WO2024098809A1 - 一种人体自供电智能区域血流控制装置 - Google Patents

一种人体自供电智能区域血流控制装置 Download PDF

Info

Publication number
WO2024098809A1
WO2024098809A1 PCT/CN2023/104902 CN2023104902W WO2024098809A1 WO 2024098809 A1 WO2024098809 A1 WO 2024098809A1 CN 2023104902 W CN2023104902 W CN 2023104902W WO 2024098809 A1 WO2024098809 A1 WO 2024098809A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric converter
emitting device
blood flow
light emitting
flow control
Prior art date
Application number
PCT/CN2023/104902
Other languages
English (en)
French (fr)
Inventor
熊力
张江杰
彭彦缙
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2024098809A1 publication Critical patent/WO2024098809A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12009Implements for ligaturing other than by clamps or clips, e.g. using a loop with a slip knot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6876Blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B2017/12004Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for haemostasis, for prevention of bleeding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply

Definitions

  • the invention relates to a hemostasis device, in particular to a human body self-powered intelligent regional blood flow control device.
  • Surgical technology is based on hemostasis.
  • the first step is to prevent and stop bleeding. How to avoid bleeding, deal with bleeding, and ensure a clean surgical field is the basis for ensuring the successful completion of the operation.
  • bleeding is prevented by avoiding the main trunk of large blood vessels, ligating and cutting off the blood vessels and their branches that supply the target area, and using electric or ultrasonic knives to coagulate the blood vessel ends while cutting tissue.
  • the blood supply to the surgical area is very rich, and a certain volume of normal tissue in the surgical area needs to be retained during the resection process. At this time, it is impossible to block the blood supply to the surgical area by the aforementioned methods.
  • the traditional spring vascular clamp commonly known as "Pug” (also known as Bulldog small vascular clamp) or a homemade blocking band made of rubber tubes and sutures in combination with a vascular clamp to block the upstream trunk of the blood supply vessel.
  • the blood vessels are blocked by tightening the base of the legs or upper limbs with a tourniquet. These methods can effectively and completely block the blood supply, but there are also some inherent defects: 1. When it is necessary to loosen the blockage and restore blood perfusion, additional operations are required to loosen these devices, and when the loosening and re-blocking need to be repeated, it is particularly time-consuming and interferes with the surgery. 1. The blockage is complete and the degree of blockage cannot be adjusted flexibly. In many cases, when the blood pressure in the blocked area is well controlled, low-flow perfusion can be performed to ensure blood supply to the organ without affecting the control effect of hemostasis, thereby reducing complications such as organ failure or damage caused by hypoxia; 2. Blockage usually requires additional personnel for timing control to remind the surgeon of the length of blockage to prevent tissue hypoxia and necrosis due to excessive blockage.
  • the present invention provides a human body self-powered intelligent regional blood flow control device, the purpose of which is to provide a new type of hemostasis equipment, change the traditional surgical area blood flow blocking mode of fixed time and complete blocking, and realize real-time dynamic intelligent blood flow blocking.
  • an embodiment of the present invention provides a human body self-powered intelligent regional blood flow control device, comprising:
  • a control ring the inner wall of which is provided with an air bag, the air bag blocks the blood vessel by expansion, and a barometer is provided inside the air bag;
  • An integrated heart rate and blood oxygen sensor comprising a first light emitting device, a first photoelectric converter and a second photoelectric converter, wherein the first light emitting device, the first photoelectric converter and the second photoelectric converter are all arranged on the inner wall of the control ring and are located on the same side of the airbag, the first light emitting device and the first photoelectric converter are located on the same diameter of the control ring, the angle between the second photoelectric converter and the center of the control ring and the diameter where the first light emitting device and the first photoelectric converter are located form an acute angle, the first photoelectric converter is used to measure the light transmittance of the blocked blood vessel to determine the blood oxygen content in the blood vessel, and the second photoelectric converter is used to measure the light transmittance fluctuation frequency of the blocked blood vessel to obtain the heart rate;
  • the control circuit is used to electrically connect the first light emitting device, the first photoelectric converter and the second photoelectric converter.
  • the control circuit is also electrically connected to an air compressor to inflate and deflate the airbag, and the air pressure gauge is used to connect the first light emitting device, the first photoelectric converter and the second photoelectric converter. Feedback the current air pressure of the airbag;
  • a plurality of deep blood oxygen sensors comprising a second light emitting device and a third photoelectric converter, wherein the second light emitting device and the third photoelectric converter are used to be arranged inside the tissue at the blocked blood vessel to detect the change of blood oxygen concentration inside the tissue, and the second light emitting device and the third photoelectric converter are connected to the control circuit signal;
  • a plurality of surface blood oxygen sensors including a third light emitting device and a fourth photoelectric converter, wherein the third light emitting device and the fourth photoelectric converter are used to be arranged on the tissue surface at the blocked blood vessel to detect the change of blood oxygen concentration on the tissue surface, and the third light emitting device and the fourth photoelectric converter are connected to the control circuit signal;
  • An arterial pulsation power generation component includes a pulsation shell and a pulsation base, wherein the pulsation shell and the pulsation base are buckled to form a accommodating cavity for accommodating an artery, wherein the pulsation shell is an arc-shaped storage cavity, and an energy conversion structure is arranged on the pulsation shell, wherein the energy conversion structure includes a transmission connecting rod, wherein the transmission connecting rod is arranged along the radial direction of the pulsation shell, wherein one end of the transmission connecting rod passing through the storage cavity is used to abut against the artery, and the other end of the transmission connecting rod is rotatably connected to a rotating connecting rod, wherein the rotating connecting rod is eccentrically connected to a flywheel, wherein a transmission shaft is arranged at the center of the flywheel, wherein the transmission shaft is connected to a micro generator, wherein the flywheel drives the micro generator to generate electricity, and wherein the micro generator is connected to an electric wire for supplying power to a control circuit.
  • a control ring the inner wall of which is provided with an air bag, the air bag blocks the blood vessel by expansion, and a barometer is provided inside the air bag;
  • An integrated heart rate and blood oxygen sensor comprising a first light emitting device, a first photoelectric converter and a second photoelectric converter, wherein the first light emitting device, the first photoelectric converter and the second photoelectric converter are all arranged on the inner wall of the control ring and are located on the same side of the airbag, the first light emitting device and the first photoelectric converter are located on the same diameter of the control ring, the angle between the second photoelectric converter and the center of the control ring and the diameter where the first light emitting device and the first photoelectric converter are located form an acute angle, the first photoelectric converter is used to measure the light transmittance of the blocked blood vessel to determine the blood oxygen content in the blood vessel, and the second photoelectric converter is used to measure the light transmittance fluctuation frequency of the blocked blood vessel to obtain the heart rate;
  • a control circuit used to electrically connect the first light emitting device, the first photoelectric converter and the second photoelectric converter, the control circuit is also electrically connected to an air compressor to inflate and deflate the airbag, and to feed back the current air pressure of the airbag through a barometer;
  • a plurality of deep blood oxygen sensors comprising a second light emitting device and a third photoelectric converter, wherein the second light emitting device and the third photoelectric converter are used to be arranged inside the tissue at the blocked blood vessel to detect the change of blood oxygen concentration inside the tissue, and the second light emitting device and the third photoelectric converter are connected to the control circuit signal;
  • a plurality of surface blood oxygen sensors including a third light emitting device and a fourth photoelectric converter, wherein the third light emitting device and the fourth photoelectric converter are used to be arranged on the tissue surface at the blocked blood vessel to detect the change of blood oxygen concentration on the tissue surface, and the third light emitting device and the fourth photoelectric converter are connected to the control circuit signal;
  • An arterial pulsation power generation component includes a pulsation shell and a pulsation base, wherein the pulsation shell and the pulsation base are buckled to form a accommodating cavity for accommodating an artery, the pulsation shell is an arc-shaped storage cavity, an energy conversion structure is arranged on the pulsation shell, and the energy conversion structure includes a transmission connecting rod, the transmission connecting rod is arranged along the radial direction of the pulsation shell, one end of the transmission connecting rod passing through the storage cavity is used to support the artery, the other end of the transmission connecting rod is rotatably connected to a rotating connecting rod, the rotating connecting rod is eccentrically connected to a flywheel, a transmission shaft is arranged at the center of the flywheel, the transmission shaft is connected to a micro generator, the flywheel drives the micro generator to generate electricity, and the micro generator is connected to an electric wire for powering a control circuit.
  • control ring is composed of an upper buckle and a lower buckle, one end of the upper buckle is hinged to one end of the lower buckle, and the other end of the lower buckle is provided with a spring lock for locking the upper buckle and the lower buckle.
  • the spring lock comprises a locking tongue and a first elastic body
  • the locking tongue can move horizontally along the axial direction of the lower ring buckle under the action of the first elastic body
  • the upper ring buckle is provided with a locking piece for the locking tongue to be inserted.
  • a lifting structure is provided at one end of the lower ring buckle away from the hinge, and the lifting structure includes a lifting rod and a second elastomer, and the lifting rod is fixed to the end face of the lower ring buckle through the second elastomer, and when the second elastomer is in a natural state, the upper end of the lifting rod is higher than the end face of the lower ring buckle.
  • the width of the airbag is smaller than the width of the control ring, and the airbag is connected with a connecting pipe, and the connecting pipe is connected with the air compressor.
  • the deep blood oxygen sensor also includes a first carrier, which is a nail-shaped shell, and the nail-shaped shell includes a rounded end and a spiked end for inserting into the tissue, and the second light-emitting device and the third photoelectric converter are arranged on the spiked end, and the second light-emitting device is closer to the tip of the spiked end relative to the third photoelectric converter.
  • a first carrier which is a nail-shaped shell
  • the nail-shaped shell includes a rounded end and a spiked end for inserting into the tissue
  • the second light-emitting device and the third photoelectric converter are arranged on the spiked end, and the second light-emitting device is closer to the tip of the spiked end relative to the third photoelectric converter.
  • the surface blood oxygen sensor further comprises a second carrier, the second carrier is a sheet-type housing, and the third light-emitting device and the fourth photoelectric converter are arranged on the second carrier.
  • the control circuit includes a central processing module, a signal transceiver module, an alarm module, a power supply module, and a display module.
  • the central processing module is signal-connected to the third photoelectric converter and the fourth photoelectric converter through the signal transceiver module.
  • the central processing module is electrically connected to the first photoelectric converter, the second photoelectric converter, the power supply module, the air compressor, the alarm module, and the display module through the signal transceiver module.
  • the human body self-powered intelligent regional blood flow control device includes a first battery and a second battery, the first battery is used to power the deep blood oxygen sensor, the second battery is used to power the surface blood oxygen sensor, the arterial pulsation power generation component is used to power the control circuit, the integrated heart rate blood oxygen sensor and the air compressor, and a buffer battery pack is also arranged between the arterial pulsation power generation component and the control system, and the buffer battery pack is electrically connected to the control system and the energy conversion structure.
  • a pressure transmission sheet is provided at one end of the transmission connecting rod passing through the storage cavity, and an elastic component is provided between the pressure transmission sheet and the pulsating housing.
  • the present invention integrates the airbag, multiple detection sensors, intelligent control circuit, and arterial pulsation power generation components into one, effectively improving the intelligence of blood flow control and enhancing its convenience of use.
  • the "control circuit" is the key component that integrates the airbag and multiple detection sensors. It is also the basis for building a feedback loop. By processing the feedback data from multiple detection sensors, the pressure component can be intelligently regulated. The linkage of the three realizes the intelligent control of blood flow automation, which has achieved a qualitative leap in the control method and will greatly increase the convenience and safety of clinical applications.
  • the use of pulse self-energy supply solves the problem of energy supply duration and stability of human electronic equipment, and can provide a long-lasting and stable energy supply for the equipment.
  • the functions of power supply, detection, regulation, and alarm reminders that it realizes are unattainable by any currently manually controlled blood flow control device. Its scalability and adaptability in different blood flow control demand scenarios are also unmatched by existing devices.
  • Figure 1 is a schematic diagram of the use of the control loop
  • FIG2 is a schematic diagram of the structure of the present application.
  • FIG3 is an exploded view of the present application
  • FIG4 is a schematic diagram of a ring buckle according to the present application.
  • Fig. 5 is a schematic diagram of the structure of a spring lock
  • FIG6 is a schematic diagram of a jacking structure
  • FIG7 is a schematic diagram of a deep blood oxygen sensor
  • FIG8 is a perspective view of a surface blood oxygen sensor
  • FIG9 is a schematic diagram of the interior of an arterial pulsation power generation assembly
  • FIG. 10 is a schematic diagram of the use of the present application.
  • an embodiment of the present invention provides a human body self-powered intelligent regional blood flow control device, comprising a control loop 1, an integrated heart rate blood oxygen sensor 2, a control circuit, a deep blood oxygen sensor 4, a surface blood oxygen sensor 5 and an arterial pulsation power generation component (7), wherein:
  • the inner wall of the control ring 1 is provided with an inflatable and deflated airbag 11.
  • the integrated heart rate and blood oxygen sensor 2 includes a first light emitting device 21, a first photoelectric converter 22 and a second photoelectric converter 23. All three are provided on the inner wall of the control ring 1 and are located on the same side of the airbag 11.
  • the first light emitting device 21 and the first photoelectric converter 22 are located on the same diameter of the control ring 1.
  • the line connecting the center of the second photoelectric sensor and the control ring 1 forms an acute angle with the diameter where the first light emitting device 21 is located.
  • the control circuit is electrically connected to the aforementioned first light emitting device 21, the first photoelectric converter 22 and the second photoelectric converter 23.
  • control circuit is also electrically connected to an air compressor to realize the inflation and deflation of the airbag 11.
  • a barometer is provided in the airbag 11 to detect the air pressure of the airbag 11. The barometer can feed back the detection result to the control circuit.
  • the aforementioned deep blood oxygen sensor 4 is provided with a plurality of devices for detecting changes in blood oxygen concentration inside the tissue of the blocked area, including a second light emitting device 41 and a third photoelectric converter 42.
  • the third photoelectric converter 42 is used to receive the optical signal of the second light emitting device 41 and convert the optical signal into an electrical signal for transmission.
  • the aforementioned surface blood oxygen sensor 5 is provided with several pieces for detecting the change of blood oxygen concentration on the tissue surface of the blocked area, including a third light emitting device 51 and a fourth photoelectric converter 52, and the third light emitting device 51 and the fourth photoelectric converter 52 are connected to the control circuit signal.
  • the fourth photoelectric converter 52 is used to receive the optical signal of the third light emitting device 51 and convert the optical signal into an electrical signal for transmission.
  • control ring 1 When using the present application, the control ring 1 is sleeved on the blood vessel upstream of the blood flow area to be blocked, and the integrated heart rate and blood oxygen sensor 2 is located downstream of the control ring 1 to detect the heart rate and blood oxygen content after blocking; the deep blood oxygen sensor is set inside the tissue of the blocking area, and the surface blood oxygen sensor 5 is attached to the tissue surface of the blocking area.
  • the barometer is used to feedback the degree of blocking, such as achieving full blocking, half blocking or full open mode.
  • the present application realizes dynamic control by real-time detection of changes in blood oxygen concentration and heart rate in the blocked area, and controls the air compressor to inflate and deflate. Compared with the traditional fixed-time, complete blocking mode, it can not only ensure the basic effect of blocking blood flow, but also make targeted blocking adjustments to avoid tissue and organ hypoxia damage caused by forgetting to release the manual blocking or blocking for too long, thereby improving safety.
  • the aforementioned control ring 1 is composed of an upper buckle 12 and a lower buckle 13, which are hinged through their respective first ends, and the second section of the lower buckle 13 is provided with a spring lock 14 for locking the upper buckle 12 and the lower buckle 13.
  • a spring lock 14 for locking the upper buckle 12 and the lower buckle 13.
  • the aforementioned airbag 11 is arranged in the upper buckle 12 and the lower buckle 13, and the airbag 11 is C-shaped, and the opening of the airbag 11 is arranged at the second end of the lower buckle 13 and the upper buckle 12, so as to avoid the tearing of the airbag 11 when the control ring 1 is opened or the inability to install the control ring 1 on the blood vessel.
  • control ring 1 can be made of metal material or hard medical plastic.
  • the aforementioned spring lock 14 comprises a lock tongue 141, a first elastic body 142 and a lock housing, wherein the lock tongue 141 and the first elastic body 142 are arranged in the lock housing, and the lock tongue 141 can be extended or retracted into the lock housing under the action of the first elastic body 142.
  • a lever is further arranged on the lock tongue 141, and the lever extends out of the lock housing to move the lock tongue 141 into or out of the lock housing to achieve unlocking or locking.
  • a locking piece 143 is also provided at the second end of the upper ring buckle 12, and the locking piece 143 is used for the locking tongue 141 to be inserted.
  • the locking tongue 141 is inserted into the locking piece 143, the upper ring buckle 12 and the lower ring buckle 13 are locked to prevent the upper ring buckle 12 and the lower ring buckle 13 from being disengaged when the airbag 11 is inflated.
  • a lifting structure 15 is also provided at the second end of the upper ring buckle 12 and the lower ring buckle 13. Specifically, the lifting structure 15 is provided on the second end of the lower ring buckle 13, and a recess is provided on the second end.
  • a second elastic body 152 is provided in the recess. One end of the second elastic body 152 is provided in the recess, and a push rod 151 is provided at the other end. The push rod 151 can be raised and lowered under the action of the second elastic body 152. In the natural state of the second elastic body 152, the upper end of the push rod 151 is higher than the second end face of the lower ring buckle 13.
  • the second elastic body 152 and the push rod 151 are both provided in a lifting shell, and the push rod 151 can extend out of the lifting shell, and the lifting shell is provided in the aforementioned recess.
  • the lifting rod 151 lifts the upper ring buckle 12 upward, making it easier for the doctor to open the control ring 1 .
  • a ring handle 18 is also provided at the first end where the upper ring buckle 12 and the lower ring buckle 13 are hinged, and one end of the ring handle 18 is connected to the first end of the lower ring buckle 13.
  • a cavity is provided on the ring handle 18, and the cavity is used to accommodate the control circuit.
  • the control circuit includes a central processing module, a signal transceiver module, an alarm module, a power supply module, a button module and a display module, and the aforementioned modules can be arranged in the cavity.
  • the aforementioned central processing module is connected to the third photoelectric converter 42, the fourth photoelectric converter 52, and the barometer signal through the signal transceiver module, and the central processing module is electrically connected to the first photoelectric converter 22, the second photoelectric converter 23, the power supply module, and the air compressor through the signal transceiver module, and the central processing module is also electrically connected to the alarm module and the display module through the signal transceiver module.
  • the integrated heart rate blood oxygen sensor 2, the deep blood oxygen sensor 4 and the surface blood oxygen sensor 5 The test results are displayed on the display module.
  • the values of the three sensors represent the blood oxygen content in the tissues at three different locations in the entire blocked area after blocking. The user makes independent decisions based on the values of the three sensors.
  • the characteristic of the blood flow in the hepatic artery is that it flows from the deep part of the liver to the surface. Oxygen is gradually consumed along the way of the artery, so the deep blood oxygen content will be lower than the surface blood oxygen content.
  • the blood oxygen content reflects the degree of hypoxia in the liver tissue. The user comprehensively considers the comprehensive hypoxia situation of the entire blocked area based on the blood oxygen content in different parts.
  • the aforementioned deep blood oxygen sensor 4 also includes a first carrier 43, which is a nail-shaped shell.
  • the nail-shaped shell includes a round end and a spike end for inserting into the tissue, wherein the second light-emitting device 41 and the third photoelectric converter 42 are arranged in the spike end, and the second light-emitting device 41 is closer to the tip of the spike end than the third photoelectric converter 42.
  • the first carrier 43 is inserted into the tissue, the round end is pressed against the surface of the tissue to prevent the spike end from being inserted too deeply.
  • the second light-emitting device 41 and the third photoelectric converter 42 located at the spike end detect changes in blood oxygen concentration inside the tissue, and display the internal blood oxygen concentration through the display module of the control circuit.
  • the aforementioned surface blood oxygen sensor 5 also includes a second carrier 53, which is a sheet-type shell.
  • the third light-emitting device 51 and the fourth photoelectric conversion device are arranged on the second carrier 53.
  • the second carrier 53 is used to be attached to the tissue surface to detect the blood oxygen concentration on the tissue surface.
  • the integrated heart rate blood oxygen sensor 2 is used to convert the optical signal into an electrical signal, and the electrical signal is transmitted to the control circuit and displayed.
  • the blocking degree, blocking time, and blocking mode can be accurately adjusted to avoid organ tissue damage caused by long-term blocking, and overcome the defects of the existing blood flow blocking technology that the blocking degree cannot be adjusted arbitrarily and the blocking time cannot be intelligently controlled.
  • the deep blood oxygen sensor 4 and the surface blood oxygen sensor 5 are used to monitor the blood oxygen content in the blocking area to ensure that the organ tissue within the blocking area can maintain work during the blocking process. When the deep blood oxygen sensor 4 and the surface blood oxygen sensor 5 detect that the blood oxygen concentration is too low, the blood oxygen concentration is restored by changing the blocking mode or alarming.
  • the automated monitoring reduces the operation action, improves the convenience, and avoids unnecessary infection. On the other hand, it provides a guarantee for the safety of the operation, and the safety is much higher than the existing technology.
  • blocking time, blocking mode, blocking degree, etc. are set according to surgical requirements.
  • the airbag 11 is connected to the air compressor via a connecting pipe 16 , and a manual deflation valve may be provided on the connecting pipe 16 as a protective structure for deflation of the airbag 11 .
  • the present application also includes a first battery, a second battery and an arterial pulsation power generation component 7, wherein the first battery powers the deep blood oxygen sensor 4, the second battery powers the surface blood oxygen sensor 5, and the arterial pulsation power generation component 7 powers the control circuit while also powering the integrated heart rate blood oxygen sensor 2 and the air compressor connected to the control circuit.
  • the first battery and the second battery are button batteries
  • the arterial pulsation power generation assembly 7 includes a pulsation housing 71 and a pulsation base 72.
  • the pulsation housing 71 is a major arc type, and the pulsation housing 71 forms a major arc type storage cavity.
  • the pulsation base 72 can be hinged with the pulsation housing 71 to form a storage cavity, and the storage cavity is used to accommodate the artery and generate electricity by the beating of the artery.
  • An energy conversion structure 73 is arranged on the pulsation housing 71, and the energy conversion structure 73 includes a transmission connecting rod 731, which is arranged along the radial direction of the pulsation housing 71.
  • the transmission connecting rod 731 After one end of the transmission connecting rod 731 passes through the storage cavity, it is used to abut the artery, and the other end is rotatably connected to a rotating connecting rod 736.
  • the other end of the rotating connecting rod 736 is connected to a flywheel 732.
  • the rotating connecting rod 736 is rotatably connected to the flywheel 732 and the connection point is eccentric to the center of the flywheel 732.
  • a transmission shaft is arranged at the center of the flywheel 732, and the transmission shaft is connected to a micro generator 733.
  • the movable ends of the pulsating housing 71 and the pulsating base 72 are provided with locking structures for locking the two together.
  • the transmission connecting rod 731 When the pulse beats, the transmission connecting rod 731 is acted upon by the force of the pulse, pushing the transmission connecting rod 731 to move radially along the pulsating housing 71.
  • the transmission connecting rod 731 and the rotating connecting rod 736 drive the flywheel 732 to rotate through the eccentric force.
  • the transmission shaft on the flywheel 732 transmits power to the micro-generator 733, providing power for the micro-generator 733 to generate electricity.
  • the micro-generator 733 is a manual generator similar to that in the CN2908844Y patent.
  • a pressure transmission sheet 734 is provided at one end of the transmission connecting rod 731 extending out of the storage cavity, and an elastic component 735 is provided between the pressure transmission transmission sheet and the pulsating housing 71.
  • the pressure transmission sheet 734 is used to protect the artery and prevent the transmission connecting rod 731 from causing damage to the artery.
  • the elastic component 735 is used to restore the initial state of the transmission connecting rod 731. state to ensure that the transmission connecting rod 731 can always keep in contact with the artery every time the artery beats.
  • the micro generator 733 is provided with a power supply wire, which is used to supply power to the control circuit.
  • the energy conversion structure 73 is provided with multiple groups, and the power supply wires of the multiple groups of energy conversion structures 73 are connected in series.
  • the pressure on the side wall of the blood vessel caused by arterial pulsation is 120 mmHg, and the average number of reciprocating times is 72 times/minute.
  • the side wall pressure can be as high as 180 mmHg, and the number of reciprocating times can reach 180 times/minute. Therefore, it contains a sufficient power source.
  • a buffer battery pack is also electrically connected between the control circuit and the micro generator 733.
  • the power supply module is electrically connected to the aforementioned micro generator 733 through the buffer battery pack, and the power supply module supplies power to the integrated heart rate blood oxygen sensor 2.
  • the buffer battery pack not only serves as a power supply, but also has the functions of stabilizing and storing current.
  • the current generated by the arterial pulsation power generation component 7 is not stable.
  • the current is stabilized by storing the current in the buffer battery pack.
  • the buffer battery pack supplies power, and the arterial pulsation power generation component 7 serves as a charging function. Or when the power supply module is insufficient, the buffer battery pack serves as a compensation function.
  • This application can flexibly and freely control the blood flow in the target area, can intelligently feedback the changes in hypoxia in various parts of the blood flow blockage area, and set intelligent adjustment of the degree of blood vessel blockage.
  • This effectively avoids the tedious operations of repeated blocking and loosening during manual blocking, and avoids hypoxia damage to tissues and organs caused by long blocking time due to forgetting to loosen the blockage.
  • Its human body self-powered technology can avoid shutdowns and downtimes caused by insufficient battery power supply and battery failure, as well as avoid problems such as entanglement of wire knots, inconvenient control, and pollution of the surgical area caused by the use of external power cables.
  • the functions and uses have greatly enhanced and expanded the results achieved by existing technologies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Reproductive Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种人体自供电智能区域血流控制装置,通过将气囊(11)、多个检测传感器、控制电路、动脉搏动发电组件(7)合理布控集成为一体,增强了其使用的便捷性,其中"控制电路"是将气囊(11)、检测传感器进行整合的关键部件,也是构建反馈环路的基础,通过对多个检测传感器反馈数据的处理,得以智能地调控压力部件,三者联动从而实现了血流自动化的智能控制,利用脉搏自体供能的方式,可以为设备提供持久稳定的能量供应,将极大增加临床应用的便捷性与安全性,其所实现的集供电、检测、调控、警报提醒于一体的功能是目前任何手工控制的血流控制装置都无法达到的,其在不同的血流控制需求场景的可扩展性与适应性也是现有装置无法比拟的。

Description

一种人体自供电智能区域血流控制装置
相关申请的交叉引用
本申请要求2022年11月07日提交的中国专利申请202211385413.7的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及止血设备,特别涉及一种人体自供电智能区域血流控制装置。
背景技术
外科技术是建立在止血基础上的技术,任何外科操作,首要的操作步骤便是预防出血以及止血。如何避免出血、处理好出血、保证手术视野的干净,是保证手术顺利完成的基础。通常情况下,普通手术操作过程中通过避开大血管主干,结扎离断目标区域供血血管及其分支,以及使用电刀或超声刀在切割组织的同时凝固血管断端等措施来防止出血。
然而,对于某些部位的外科操作,譬如肝脏、肾脏、脾脏、四肢末端等脏器或涉及到血管本身的手术,由于术区血供十分丰富,且在切除的过程中需要保留术区一定体积的正常组织。此时,无法通过前述的方法阻断术区血供,在体内的操作只能使用传统的俗称“哈巴狗”的弹簧血管夹(又称Bulldog小血管钳)或使用橡皮管以及缝线自制的阻断带配合血管钳来阻断供血血管的上游主干,在体外的操作则是通过止血带来压紧腿部或上肢根部来实现血管阻断。这些方法可以有效且完全的阻断血流供应,但也存在一些固有缺陷:1.当需要松开阻断,恢复血流灌注时需要额外的操作来松开这些装置,而当松开与重新阻断需要反复进行时,尤其耗时且干扰手术 的步骤;2.阻断是完全的,无法灵活的调整阻断的程度。很多时候阻断的操作区域在血压控制良好的情况下,可以进行低流量灌注来保证器官的血供而不会影响止血的控制效果,从而可以减少脏器因缺氧引起衰竭或损伤等并发症;3.通常阻断需要额外的人员进行计时控制,来提醒主刀医生阻断时长,防止因阻断过长而发生组织缺氧坏死。
发明内容
本发明提供了一种人体自供电智能区域血流控制装置,其目的是为了提供一种新型止血设备,改变传统手术区域血流阻断的固定时间、完全阻断的模式,实现实时动态的智能阻断血流。
为了达到上述目的,本发明的实施例提供了一种人体自供电智能区域血流控制装置,包括:
控制环,内壁设置有气囊,所述气囊通过膨胀阻断血管,所述气囊内设置气压计;
集成心率血氧传感器,包括第一发光装置、第一光电转换器和第二光电转换器,所述第一发光装置、第一光电转换器和第二光电转换器均设置在所述控制环的内壁上,且位于气囊的同一侧,所述第一发光装置与所述第一光电转换器位于控制环的同一直径上,所述第二光电转换器与控制环圆心连线的夹角与第一发光装置和第一光电转换器所在的直径构成锐角夹角,所述第一光电转换器用以测量阻断后血管的透光率以判断血管内的血含氧量,所述第二光电转换器用于测量阻断后血管的透光波动频率以获得心率;
控制电路,用于电连接信号连接所述第一发光装置、第一光电转换器和第二光电转换,所述控制电路还电连接有空气压缩机以实现为气囊充放气,并通过气压计 反馈气囊当前的气压;
若干深部血氧传感器,包括第二发光装置和第三光电转换器,所述第二发光装置和第三光电转换器用于设置在被阻断血管处的组织内部以检测组织内部的血氧浓度变化,所述第二发光装置和所述第三光电转换器与所述控制电路信号连接;
若干表层血氧传感器,包括第三发光装置和第四光电转换器,所述第三发光装置和第四光电转换器用于设置在被阻断血管处的组织表面以检测组织表面的血氧浓度变化,所述第三发光装置和第四光电转换器与所述控制电路信号连接;
动脉搏动发电组件,包括搏动外壳和搏动底座,所述搏动外壳与搏动底座扣合形成用于容纳动脉的容纳腔,所述搏动外壳为优弧状的置物腔,在所述搏动外壳上设置有能量转换结构,所述能量转换结构包括传动连杆,所述传动连杆沿着搏动外壳的径向设置,所述传动连杆穿出置物腔的一端用于抵住动脉,传动连杆的另一端转动连接有一转动连杆,所述转动连杆偏心连接有一飞轮,所述飞轮的圆心设置有一传动轴,所述传动轴连接有微型发电机,所述飞轮带动所述微型发电机发电,所述微型发电机上连接有为控制电路供电的电线。
控制环,内壁设置有气囊,所述气囊通过膨胀阻断血管,所述气囊内设置气压计;
集成心率血氧传感器,包括第一发光装置、第一光电转换器和第二光电转换器,所述第一发光装置、第一光电转换器和第二光电转换器均设置在所述控制环的内壁上,且位于气囊的同一侧,所述第一发光装置与所述第一光电转换器位于控制环的同一直径上,所述第二光电转换器与控制环圆心连线的夹角与第一发光装置和第一光电转换器所在的直径构成锐角夹角,所述第一光电转换器用以测量阻断后血管的透光率以判断血管内的血含氧量,所述第二光电转换器用于测量阻断后血管的透光波动频率以获得心率;
控制电路,用于电连接所述第一发光装置、第一光电转换器和第二光电转换,所述控制电路还电连接有空气压缩机以实现为气囊充放气,并通过气压计反馈气囊当前的气压;
若干深部血氧传感器,包括第二发光装置和第三光电转换器,所述第二发光装置和第三光电转换器用于设置在被阻断血管处的组织内部以检测组织内部的血氧浓度变化,所述第二发光装置和所述第三光电转换器与所述控制电路信号连接;
若干表层血氧传感器,包括第三发光装置和第四光电转换器,所述第三发光装置和第四光电转换器用于设置在被阻断血管处的组织表面以检测组织表面的血氧浓度变化,所述第三发光装置和第四光电转换器与所述控制电路信号连接;
动脉搏动发电组件,包括搏动外壳和搏动底座,所述搏动外壳与搏动底座扣合形成用于容纳动脉的容纳腔,所述搏动外壳为优弧状的置物腔,在所述搏动外壳上设置有能量转换结构,所述能量转换结构包括传动连杆,所述传动连杆沿着搏动外壳的径向设置,所述传动连杆穿出置物腔的一端用于抵住动脉,传动连杆的另一端转动连接有一转动连杆,所述转动连杆偏心连接有一飞轮,所述飞轮的圆心设置有一传动轴,所述传动轴连接有微型发电机,所述飞轮带动所述微型发电机发电,所述微型发电机上连接有为控制电路供电的电线。
优选的,所述控制环由上环扣下环扣构成,所述上环扣的一端与下环扣的一端铰接,下环扣的另一端设置有用于锁合所述上环扣和下环扣的弹簧锁。
优选的,所述弹簧锁包括锁舌和第一弹性体,所述锁舌在第一弹性体的作用下可沿下环扣的轴向进行水平移动,所述上环扣上设置有供锁舌插入的锁合件。
优选的,下环扣远离铰接处的一端设置有顶起结构,所述顶起结构包括顶杆和第二弹性体,所述顶杆通过所述第二弹性体固定在所述下环扣的端面上,所述第二弹性体在自然状态下,所述顶杆的上端高于下环扣的端面。
优选的,所述气囊的宽度小于所述控制环的宽度,所述气囊上连通有连接管,所述连接管与所述空气压缩机连通。
优选的,所述深部血氧传感器还包括第一载体,所述第一载体为钉型外壳,所述钉型外壳包括圆顿端和用于插入组织内部的尖刺端,所述第二发光装置和第三光电转换器设置在所述尖刺端,所述第二发光装置相对于第三光电转换器更靠近尖刺端的尖端。
优选的,所述表层血氧传感器还包括第二载体,所述第二载体为片型外壳,所述第三发光装置和第四光电转换器设置在第二载体上。
优选的,所述控制电路包括中央处理模块、信号收发模块、报警模块、供电模块、显示模块,所述中央处理模块通过信号收发模块与所述第三光电转换器和第四光电转换器信号连接,所述中央处理模块通过信号收发模块与所述第一光电转换器、第二光电转换器、所述供电模块、所述空气压缩机、所述报警模块和显示模块电连接。
优选的,人体自供电智能区域血流控制装置包括第一电池、第二电池,所述第一电池为所述深部血氧传感器供电,所述第二电池为表层血氧传感器供电,所述动脉搏动发电组件为所述控制电路、集成心率血氧传感器和空气压缩机供电,所述动脉搏动发电组件与控制系统之间还设置有缓冲电池组,所述缓冲电池组与所述控制系统和能量转换结构电性连接。
优选的,所述传动连杆穿出置物腔的一端还设置有压力传导片,所述压力传导片与搏动外壳之间设置有弹性部件。
本发明的上述方案有如下的有益效果:
本发明通过将气囊、多个检测传感器、智能的控制电路、动脉搏动发电组件合理布控集成为一体,有效提升了血流控制智能化程度,增强了其使用的便捷性。其 中“控制电路”是将气囊、多个检测传感器进行整合的关键部件,也是构建反馈环路的基础,通过对多个检测传感器反馈数据的处理,得以智能地调控压力部件。三者联动从而实现了血流自动化的智能控制,在控制方法上实现了质的飞跃,将极大增加临床应用的便捷性与安全性。利用脉搏自体供能的方式,解决了人体电子设备能源供应时长与稳定性的问题,可以为设备提供持久稳定的能量供应。其所实现的集供电、检测、调控、警报提醒于一体的功能是目前任何手工控制的血流控制装置都无法达到的。其在不同的血流控制需求场景的可扩展性与适应性也是现有装置无法比拟的。
附图说明
图1是控制环的使用示意图;
图2是本申请的结构示意图;
图3是本申请的爆炸图;
图4是本申请下环扣的示意图;
图5是弹簧锁的结构示意图;
图6是顶起结构的示意图;
图7是深部血氧传感器示意图;
图8是表层血氧传感器透视图;
图9是动脉搏动发电组件的内部示意图;
图10是本申请的使用示意图。
附图标记说明
1-控制环、11-气囊、12-上环扣、13-下环扣、14-弹簧锁、141-锁舌、142-第一弹
性体、143-锁合件、15-顶起结构、151-顶杆、152-第二弹性体、16-连接管、18-环柄;
2-集成心率血氧传感器、21-第一发光装置、22-第一光电转换器、23-第二光电转
换器;
4-深部血氧传感器、41-第二发光装置、42-第三光电转换器、43-第一载体;
5-表层血氧传感器、51-第三发光装置、52-第四光电转换器、53-第二载体;
7-动脉搏动发电组件、71-搏动外壳、72-搏动底座、73-能量转换结构、731-传动
连杆、732-飞轮、733-微型发电机、734-压力传导片、735-弹性部件、736-转动连杆。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1-10所示,本发明的实施例提供了一种人体自供电智能区域血流控制装置,包括控制环1、集成心率血氧传感器2、控制电路、深部血氧传感器4,表层血氧传感器5和动脉搏动发电组件(7),其中:
控制环1的内壁设置有可充气、放气的气囊11,集成心率血氧传感器2包括第一发光装置21、第一光电转换器22和第二光电转换器23,三者均设置在控制环1的内壁上,且三者位于气囊11的同一侧,第一发光装置21与第一光电转换器22位于控制环1的同一直径上,第二光电传感器与控制环1圆心连线与第一发光装置21所在的直径构成锐角夹角;控制电路与前述的第一发光装置21、第一光电转换器22和第二光电转换器23电连接,同时控制电路还电连接有空气压缩机以实现为气囊11充、放气。在气囊11内设置气压计用于检测气囊11的气压,气压计可以将检测结果反馈给控制电路。
进一步的,前述深部血氧传感器4设置有若干个,用于检测被阻断区域的组织内部的血氧浓度变化,包括第二发光装置41和第三光电转换器42,第二发光装置 41和第三光电转换器42均与控制电路信号连接。第三光电转换器42用于接收第二发光装置41的光信号并将光信号转换为电信号传输。
前述的表层血氧传感器5设置有若干个,用于检测被阻断区域的组织表面的血氧浓度变化,包括第三发光装置51和第四光电转换器52,第三发光装置51和第四光电转换器52与控制电路信号连接。第四光电转换器52用于接收第三发光装置51的光信号并将该光信号转换为电信号传输。
当使用本申请时,将控制环1套接在需要阻断血流区域上游的血管上,并且保证集成心率血氧传感器2位于控制环1的下游检测阻断后的心率和血氧含量;深部血氧传感设置在阻断区域的组织内部,表层血氧传感器5贴附设置在阻断区域的组织表面。
在本申请中,气压计用于反馈阻断程度,如实现完全阻断、半阻断或者是完全开放模式。
本申请通过实时检测阻断区域的血氧浓度变化和心率变化,控制空气压缩机进行充气和放气,实现动态控制,相对于传统的固定时间、完全阻断的模式来说,既能保证阻断血流的基本功效,还能针对性进行阻断调整,避免因人工阻断忘记松开或者阻断时间过长导致的组织脏器缺氧损伤,提高安全性。
前述的控制环1由上环扣12和下环扣13组成,上环扣12和下环扣13通过各自的第一端进行铰接,下环扣13的第二段设置有用于锁合上环扣12和下环扣13的弹簧锁14。在本申请中,通过采用可铰接的上环扣12和下环扣13组成整圆,有利于将控制环1安装在血管上,避免对血管造成损伤。前述的气囊11设置在上环扣12和下环扣13内,且气囊11呈C型,气囊11的开口布置在下环扣13和上环扣12的第二端,避免控制环1打开时造成气囊11撕裂或者无法将控制环1安装到血管上。
优选的,控制环1可以是金属材料、硬质医用塑料制成。
前述的弹簧锁14包括锁舌141、第一弹性体142和锁壳,锁舌141和第一弹性体142设置在锁壳内,锁舌141在第一弹性体142的作用下可以伸出或者缩回锁壳内。优选的,锁舌141上还设置有拨杆,拨杆伸出锁壳外用于拨动锁舌141向锁壳内或外运动,实现解锁或锁定。
在上环扣12的第二端还设置有锁合件143,锁合件143用于供锁舌141插入,当锁舌141插入锁合件143内时,上环扣12和下环扣13实现锁紧,防止在气囊11充气时,上环扣12和下环扣13脱开。
在上环扣12和下环扣13的第二端还设置有顶起结构15,具体来说,顶起结构15设置在下环扣13的第二端上,第二端上设置凹陷,在凹陷内设置有第二弹性体152,第二弹性体152一端设置在凹陷内,另一端设置有顶杆151,顶杆151在第二弹性体152的作用可以升降。第二弹性体152在自然状态下顶杆151的上端高于下环扣13的第二端端面。优选的,第二弹性体152和顶杆151均设置在顶起壳体内,顶杆151可以伸出顶起壳体,顶起壳体设置在前述的凹陷内。
在控制环1打开的过程中,由于顶起结构15的存在,顶杆151向上顶起上环扣12,方便医生打开控制环1。
在上环扣12和下环扣13铰接的第一端还设置有环柄18,环柄18一端与下环扣13的第一端连接,在环柄18上设置有空腔,该空腔用于容纳控制电路。控制电路包括中央处理模块、信号收发模块、报警模块、供电模块、按键模块和显示模块,前述的各模块可以设置在该空腔内。前述的中央处理模块通过信号收发模块与第三光电转换器42、第四光电转换器52、气压计信号连接,所述中央处理模块通过信号收发模块与第一光电转换器22、第二光电转换器23、供电模块、所述空气压缩机电连接,所述中央处理模块还通过信号收发模块电连接有报警模块和显示模块。
在本申请中,集成心率血氧传感器2、深部血氧传感器4和表层血氧传感器5的 检测结果通过显示模块进行显示,三个传感器的数值代表阻断后整个阻断区域三种不同位置组织内的血氧含量。使用者根据三个传感器的数值进行自主决策。
肝脏动脉血流的流向特点是由肝脏深部流向表层,氧气在动脉流经的沿途逐渐被消耗,故深部血氧含量会低于表层血氧含量,血氧含量的大小体现了肝组织的缺氧程度,使用者根据不同部位的血氧含量综合考虑整个阻断区域的综合缺氧情况。
前述的深部血氧传感器4还包括第一载体43,第一载体43为钉型外壳,钉型外壳包括圆顿端和用于插入组织内部的尖刺端,其中第二发光装置41和第三光电转换器42设置在尖刺端内,并且第二发光装置41相较于第三光电转换器42更靠近尖刺端的尖端。当第一载体43插入组织内时,通过圆顿端抵在组织的表面防止尖刺端插入过深。位于尖刺端的第二发光装置41和第三光电转换器42检测组织内部血氧浓度变化,并将内部血氧浓度通过控制电路的显示模块予以显示。
前述的表层血氧传感器5还包括第二载体53,第二载体53为片型外壳,第三发光装置51和第四光电转换装置设置在第二载体53,第二载体53用于贴附在组织表面上,检测组织表面的血氧浓度。
在本申请中,利用集成心率血氧传感器2将光信号转换为电信号,并且将电信号传递至控制电路中并显示,可以精确的调整阻断程度、阻断时间、阻断模式,避免因长时间阻断造成脏器组织损伤,克服了现有血流阻断技术中阻断程度无法随意调节,阻断时间无法智能调控的缺陷。进一步的,通过深部血氧传感器4和表层血氧传感器5起到监控阻断区域的血氧含量,保证在阻断过程中,阻断区域范围内的脏器组织可以维持工作,当深部血氧传感器4和表层血氧传感器5检测到血氧浓度过低时,通过更改阻断模式或报警的方式恢复血氧浓度,一方面通过自动化监控减少了操作动作,提高了便捷性,避免了不必要的感染,另一方面对手术的安全性提供了保障,安全性也远比现有的技术要高。
需要强调的是阻断时间和阻断模式、阻断程度等根据手术需求设置。
优选的,气囊11与空气压缩机通过连接管16连通,在连接管16上还可以设置有手动放气阀,作为气囊11放气的保护结构。
在本申请中还包括第一电池、第二电池和动脉搏动发电组件7,其中第一电池为深部血氧传感器4供电,第二电池为表层血氧传感器5供电,动脉搏动发电组件7为控制电路供电的同时还为与控制电路连接的所述集成心率血氧传感器2和空气压缩机供电。
具体来说,第一电池和第二电池采用纽扣电池,动脉搏动发电组件7包括搏动外壳71和搏动底座72,搏动外壳71为优弧型,并且搏动外壳71形成有优弧型的置物腔,搏动底座72可与搏动外壳71铰接在一起形成容纳腔,容纳腔用于容纳动脉,利用动脉的跳动进行发电。在搏动外壳71上设置有能量转换结构73,能量转换结构73包括传动连杆731,传动连杆731沿着搏动外壳71的径向布置,传动连杆731一端穿出置物腔的后用于抵接动脉,另一端转动连接有转动连杆736,转动连杆736的另一端连接有飞轮732,转动连杆736与飞轮732转动连接且连接点与飞轮732的圆心偏心,飞轮732的圆心处设置有传动轴,传动轴连接有微型发电机733。
优选的,搏动外壳71与搏动底座72的活动端设置有用于锁合两者的锁紧结构。
当脉搏跳动时,传动连杆731受到脉搏的作用力,推动传动连杆731沿搏动外壳71的径向运动,传动连杆731和转动连杆736通过偏心力带动飞轮732转动,此时位于飞轮732上的传动轴将动力传递至微型发电机733内,为微型发电机733的提供发电的动力。优选的,微型发电机733为类似CN2908844Y专利中的手动式发电机。进一步的,在传动连杆731的伸出置物腔的一端设置有压力传导片734,压力传动传导片与搏动外壳71之间设置有弹性部件735。压力传导片734用以保护动脉,防止传动连杆731对动脉造成损伤。弹性部件735用于恢复传动连杆731的初始状 态,以保证在动脉每次跳动时传动连杆731能够与动脉时刻保持贴合。
优选的,微型发电机733上设置有供电电线,供电电线用于为控制电路供电。
能量转换结构73设置有多组,多组能量转换结构73的供电电线串联连接。对于正常人。在安静时,动脉搏动使血管侧壁产生的压力为120mmHg,往复次数平均为72次/分。运动时,侧壁压力可高达180mmHg,往复次数可达180次/分。故而含有充沛的动力来源。
所述控制电路与所述微型发电机733之间还电性连接有一缓冲电池组,供电模块通过缓冲电池组与前述的微型发电机733电性连接,供电模块为集成心率血氧传感器2供电。在本申请中,缓冲电池组既起到供电的作用,同时还具有稳定、储存电流的作用,由动脉搏动发电组件7产生的电流并不稳定,通过将电流存储在缓冲电池组内实现电流的稳定,当需要供电时,由缓冲电池组供电,动脉搏动发电组件7起到充电的作用,或者在供电模块电量不足时,缓冲电池组起到补偿作用。
该申请可以灵活自由的控制目标区域的血流量大小,可以智能的反馈血流阻断区域各处的缺氧变化情况,并设定智能调节血管阻断程度。从而有效避免人工阻断时的反复阻断、松开等繁琐操作,以及避免因人为忘记松开阻断,导致阻断时间过长组织脏器缺氧损伤。其人体自供电技术可以避免因电池供能不足、电池故障而导致的停机、宕机,以及避免采用外接电线供电带来的线结缠绕、布控不便、污染手术区域等问题。在功能与用途上大幅增强与扩展了现有技术所达成的成效。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种人体自供电智能区域血流控制装置,其特征在于,包括:
    控制环(1),内壁设置有气囊(11),所述气囊(11)通过膨胀阻断血管,所述气囊(11)内设置气压计;
    集成心率血氧传感器(2),包括第一发光装置(21)、第一光电转换器(22)和第二光电转换器(23),所述第一发光装置(21)、第一光电转换器(22)和第二光电转换器(23)均设置在所述控制环(1)的内壁上,且位于气囊(11)的同一侧,所述第一发光装置(21)与所述第一光电转换器(22)位于控制环(1)的同一直径上,所述第二光电转换器(23)与控制环(1)圆心连线的夹角与第一发光装置(21)和第一光电转换器(22)所在的直径构成锐角夹角,所述第一光电转换器(22)用以测量阻断后血管的透光率以判断血管内的血含氧量,所述第二光电转换器(23)用于测量阻断后血管的透光波动频率以获得心率;
    控制电路,用于电连接信号连接所述第一发光装置(21)、第一光电转换器(22)和第二光电转换,所述控制电路还电连接有空气压缩机以实现为气囊(11)充放气,并通过气压计反馈气囊(11)当前的气压;
    若干深部血氧传感器(4),包括第二发光装置(41)和第三光电转换器(42),所述第二发光装置(41)和第三光电转换器(42)用于设置在被阻断血管处的组织内部以检测组织内部的血氧浓度变化,所述第二发光装置(41)和所述第三光电转换器(42)与所述控制电路信号连接;
    若干表层血氧传感器(5),包括第三发光装置(51)和第四光电转换器(52),所述第三发光装置(51)和第四光电转换器(52)用于设置在被阻断血管处的组织表面以检测组织表面的血氧浓度变化,所述第三发光装置(51)和第四光电转换器(52)与所述控制电路信号连接;
    动脉搏动发电组件(7),包括搏动外壳(71)和搏动底座(72),所述搏动外壳(71)与搏动底座(72)扣合形成用于容纳动脉的容纳腔,所述搏动外壳(71)为优弧状的置物腔,在所述搏动外壳(71)上设置有能量转换结构(73),所述能量转换结构(73)包括传动连杆(731),所述传动连杆(731)沿着搏动外壳(71)的径向设置,所述传动连杆(731)穿出置物腔的一端用于抵住动脉,传动连杆(731)的另一端转动连接有一转动连杆(736),所述转动连杆(736)偏心连接有一飞轮(732),所述飞轮(732)的圆心设置有一传动轴,所述传动轴连接有微型发电机(733),所述飞轮(732)带动所述微型发电机(733)发电,所述微型发电机(733)上连接有为控制电路供电的电线。
  2. 根据权利要求1所述的人体自供电智能区域血流控制装置,其特征在于:所述控制环(1)由上环扣(12)下环扣(13)构成,所述上环扣(12)的一端与下环扣(13)的一端铰接,下环扣(13)的另一端设置有用于锁合所述上环扣(12)和下环扣(13)的弹簧锁(14)。
  3. 根据权利要求2所述的人体自供电智能区域血流控制装置,其特征在于:所述弹簧锁(14)包括锁舌(141)和第一弹性体(142),所述锁舌(141)在第一弹性体(142)的作用下可沿下环扣(13)的轴向进行水平移动,所述上环扣(12)上设置有供锁舌(141)插入的锁合件(143)。
  4. 根据权利要求2所述的人体自供电智能区域血流控制装置,其特征在于:下环扣(13)远离铰接处的一端设置有顶起结构(15),所述顶起结构(15)包括顶杆(151)和第二弹性体(152),所述顶杆(151)通过所述第二弹性体(152)固 定在所述下环扣(13)的端面上,所述第二弹性体(152)在自然状态下,所述顶杆(151)的上端高于下环扣(13)的端面。
  5. 根据权利要求1所述的人体自供电智能区域血流控制装置,其特征在于:所述气囊(11)的宽度小于所述控制环(1)的宽度,所述气囊(11)上连通有连接管(16),所述连接管(16)与所述空气压缩机连通。
  6. 根据权利要求1所述的人体自供电智能区域血流控制装置,其特征在于:所述深部血氧传感器(4)还包括第一载体(43),所述第一载体(43)为钉型外壳,所述钉型外壳包括圆顿端和用于插入组织内部的尖刺端,所述第二发光装置(41)和第三光电转换器(42)设置在所述尖刺端,所述第二发光装置(41)相对于第三光电转换器(42)更靠近尖刺端的尖端。
  7. 根据权利要求1所述的人体自供电智能区域血流控制装置,其特征在于:所述表层血氧传感器(5)还包括第二载体(53),所述第二载体(53)为片型外壳,所述第三发光装置(51)和第四光电转换器(52)设置在第二载体(53)上。
  8. 根据权利要求1所述的人体自供电智能区域血流控制装置,其特征在于:所述控制电路包括中央处理模块、信号收发模块、报警模块、供电模块、显示模块,所述中央处理模块通过信号收发模块与所述第三光电转换器(42)和第四光电转换器(52)信号连接,所述中央处理模块通过信号收发模块与所述第一光电转换器(22)、第二光电转换器(23)、所述供电模块、所述空气压缩机、所述报警模块和显示模块电连接。
  9. 根据权利要求1所述的人体自供电智能区域血流控制装置,其特征在于:人体自供电智能区域血流控制装置包括第一电池、第二电池,所述第一电池为所述深部血氧传感器(4)供电,所述第二电池为表层血氧传感器(5)供电,所述动脉搏动发电组件(7)为所述控制电路、集成心率血氧传感器(2)和空气压缩机供电,所述动脉搏动发电组件(7)与控制系统之间还设置有缓冲电池组,所述缓冲电池组与所述控制系统和能量转换结构(73)电性连接。
  10. 根据权利要求1所述的人体自供电智能区域血流控制装置,其特征在于:所述传动连杆(731)穿出置物腔的一端还设置有压力传导片(734),所述压力传导片(734)与搏动外壳(71)之间设置有弹性部件(735)。
PCT/CN2023/104902 2022-11-07 2023-06-30 一种人体自供电智能区域血流控制装置 WO2024098809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211385413.7 2022-11-07
CN202211385413.7A CN115429373B (zh) 2022-11-07 2022-11-07 一种人体自供电智能区域血流控制装置

Publications (1)

Publication Number Publication Date
WO2024098809A1 true WO2024098809A1 (zh) 2024-05-16

Family

ID=84252301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104902 WO2024098809A1 (zh) 2022-11-07 2023-06-30 一种人体自供电智能区域血流控制装置

Country Status (2)

Country Link
CN (1) CN115429373B (zh)
WO (1) WO2024098809A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115429373B (zh) * 2022-11-07 2023-03-24 中南大学 一种人体自供电智能区域血流控制装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022854A1 (de) * 2006-05-16 2007-12-20 Albert-Ludwig-Universität Freiburg Implantierbarer Blutsauerstoffsensor
CN103479411A (zh) * 2013-10-14 2014-01-01 中国人民解放军第三军医大学第三附属医院 血流量可控的血管阻断器
CN104740773A (zh) * 2013-12-26 2015-07-01 中国人民解放军第二军医大学 心脏发电系统
CN105193473A (zh) * 2015-10-15 2015-12-30 上海艾络格电子技术有限公司 一种气囊式血流阻断仪
CN205548548U (zh) * 2016-03-08 2016-09-07 纳智源科技(唐山)有限责任公司 基于摩擦发电机的心率监测装置及包括其的可穿戴设备
CN209091499U (zh) * 2018-06-25 2019-07-12 立维顺(海南)智能医疗科技有限公司 一种气囊式血流阻断件
CN111481253A (zh) * 2020-03-26 2020-08-04 刘夙璇 一种气囊式动脉压迫止血控制系统及其配套设备
CN111526806A (zh) * 2017-10-06 2020-08-11 瓦尔德性能私人有限公司 血液阻断或限制袖带
CN115429373A (zh) * 2022-11-07 2022-12-06 中南大学 一种人体自供电智能区域血流控制装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387037B1 (en) * 1997-10-09 2002-05-14 Orqis Medical Corporation Implantable heart assist system and method of applying same
US7780628B1 (en) * 1999-01-11 2010-08-24 Angiodynamics, Inc. Apparatus and methods for treating congestive heart disease
CN110353753A (zh) * 2019-06-28 2019-10-22 北京康瑞迪医疗科技有限公司 心脏冠状静脉灌注系统及其控制方法
CN115067954A (zh) * 2022-06-13 2022-09-20 湖南工程学院 自发电心电信号监测器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022854A1 (de) * 2006-05-16 2007-12-20 Albert-Ludwig-Universität Freiburg Implantierbarer Blutsauerstoffsensor
CN103479411A (zh) * 2013-10-14 2014-01-01 中国人民解放军第三军医大学第三附属医院 血流量可控的血管阻断器
CN104740773A (zh) * 2013-12-26 2015-07-01 中国人民解放军第二军医大学 心脏发电系统
CN105193473A (zh) * 2015-10-15 2015-12-30 上海艾络格电子技术有限公司 一种气囊式血流阻断仪
CN205548548U (zh) * 2016-03-08 2016-09-07 纳智源科技(唐山)有限责任公司 基于摩擦发电机的心率监测装置及包括其的可穿戴设备
CN111526806A (zh) * 2017-10-06 2020-08-11 瓦尔德性能私人有限公司 血液阻断或限制袖带
CN209091499U (zh) * 2018-06-25 2019-07-12 立维顺(海南)智能医疗科技有限公司 一种气囊式血流阻断件
CN111481253A (zh) * 2020-03-26 2020-08-04 刘夙璇 一种气囊式动脉压迫止血控制系统及其配套设备
CN115429373A (zh) * 2022-11-07 2022-12-06 中南大学 一种人体自供电智能区域血流控制装置

Also Published As

Publication number Publication date
CN115429373B (zh) 2023-03-24
CN115429373A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
JP6552764B1 (ja) 静脈血流を減少させるためのデバイス
WO2024098809A1 (zh) 一种人体自供电智能区域血流控制装置
JP5151801B2 (ja) 血圧情報測定装置用カフおよびこれを備えた血圧情報測定装置
KR101854639B1 (ko) 손목 혈압계
US7404801B2 (en) Blood pressure monitor
CN110575219A (zh) 一种动脉固定及压迫装置及方法
JP2004254882A (ja) 血圧計
US6575913B1 (en) Relating to sphygmometers
JP2013027633A (ja) 血圧計
CN108451579B (zh) 一种气动抽血装置及其使用方法
WO2013046556A1 (ja) 血圧計
CN210871842U (zh) 一种桡动脉压迫器
JP5933301B2 (ja) 血圧計及びその制御方法
CN211022915U (zh) 一种自动充气式止血带
JP2013192877A (ja) 腕帯部及びそれを備えた血圧計
JP2013192878A (ja) 血圧計
JP2012000292A (ja) 血圧計
WO2014102873A1 (ja) 血圧計および血圧計の腕帯部の製造方法
JP2012065806A (ja) 血圧計
WO2014102874A1 (ja) 血圧計
JP5909118B2 (ja) 血圧計
CN216933350U (zh) 一种旋压式止血带
CN218356297U (zh) 一种动脉压迫器
CN214907645U (zh) 一种自动充放气止血带
WO2014108939A1 (ja) 血圧計