WO2024098693A1 - 智能房屋系统 - Google Patents
智能房屋系统 Download PDFInfo
- Publication number
- WO2024098693A1 WO2024098693A1 PCT/CN2023/092624 CN2023092624W WO2024098693A1 WO 2024098693 A1 WO2024098693 A1 WO 2024098693A1 CN 2023092624 W CN2023092624 W CN 2023092624W WO 2024098693 A1 WO2024098693 A1 WO 2024098693A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- wall
- ceiling
- pair
- task
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 284
- 238000003032 molecular docking Methods 0.000 claims abstract description 97
- 230000033001 locomotion Effects 0.000 claims description 55
- 238000012546 transfer Methods 0.000 claims description 50
- 238000006073 displacement reaction Methods 0.000 claims description 27
- 230000003993 interaction Effects 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 54
- 238000013519 translation Methods 0.000 description 37
- 238000004873 anchoring Methods 0.000 description 29
- 230000000903 blocking effect Effects 0.000 description 28
- 230000000712 assembly Effects 0.000 description 22
- 238000000429 assembly Methods 0.000 description 22
- 238000004378 air conditioning Methods 0.000 description 15
- 239000003638 chemical reducing agent Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000017525 heat dissipation Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000013523 data management Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 241001122767 Theaceae Species 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/08—Construction
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/343—Structures characterised by movable, separable, or collapsible parts, e.g. for transport
- E04B1/34315—Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts
- E04B1/34321—Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts mainly constituted by panels
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/343—Structures characterised by movable, separable, or collapsible parts, e.g. for transport
- E04B1/34384—Assembling details for foldable, separable, collapsible or retractable structures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/348—Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
- E04B1/34815—Elements not integrated in a skeleton
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates to the technical field of house robots, and in particular to an intelligent house system.
- the existing houses include walls and a ceiling structure connected to the top of the wall.
- the bottom of the wall is fixed to the ground by anchors to fix the house and prevent it from shifting due to the influence of the external environment.
- the present invention aims to provide a smart house system that can quickly assemble or disassemble a house, save manpower and material resources, and is low-carbon and environmentally friendly.
- the present invention provides a smart house system, comprising a cloud platform and an intelligent scheduling system communicatively connected to the cloud platform, at least one ceiling robot and at least one wall robot, wherein the intelligent scheduling system is used to send a scheduling task to the cloud platform, wherein the scheduling task includes a preset robot splicing and/or disassembly sequence, and the cloud platform sends the scheduling task to at least one ceiling robot and at least one wall robot, and the ceiling robot and the wall robot are spliced into a house or disassembled according to the scheduling task;
- the wall robot comprises a walking mechanism, wherein the walking mechanism comprises a chassis, wherein a first robot connecting mechanism is provided on the chassis, wherein the first robot connecting mechanism comprises a first docking device and a second docking device matched with the first docking device, and the first docking device and the second docking device are respectively arranged at different positions on the chassis; and the first docking device on one wall robot can be connected to the second docking device on another wall robot to realize mutual s
- the scheduling task also includes at least one first displacement path and at least one second displacement path
- the ceiling robot and the wall robot have autonomous navigation, movement and obstacle avoidance functions
- the ceiling robot moves to the first target position according to the first displacement path
- the wall robot moves to the second target position according to the second displacement path, so that the wall of the ceiling robot is spliced with the wall robot.
- the scheduling task also includes at least one third displacement path
- the smart house system includes at least two wall robots, and at least one wall robot moves to a third target position according to the third displacement path, so that the two wall robots complete docking.
- the scheduling task also includes a docking task.
- the ceiling robot and the wall robot are mutually locked and fixed according to the docking task, and at least two of the wall robots are mutually locked and fixed according to the docking task.
- the smart house system also includes a digital twin system, which is communicatively connected to the cloud platform, and the digital twin system is used to realize real-time state mapping, state tracking and behavior prediction of the digital models of the ceiling robot and the wall robot.
- a digital twin system which is communicatively connected to the cloud platform, and the digital twin system is used to realize real-time state mapping, state tracking and behavior prediction of the digital models of the ceiling robot and the wall robot.
- the ceiling robot and/or the wall robot is provided with a display screen
- the smart house system further comprises a video push system, which is communicatively connected to the cloud platform, and the video push system is used to send video playback tasks to the cloud platform, wherein the video playback tasks comprise single-screen video playback tasks and/or multiple-screen video playback tasks with arbitrary splicing and long resolution, and the ceiling robot and/or the wall robot controls one of the display screens to play the video according to the video playback tasks, or controls at least two of the display screens to splice and play the video with long resolution.
- the smart house system also includes a smart terminal device, which is communicatively connected to the cloud platform, and the smart terminal device is provided with a human-computer interaction interface, and the human-computer interaction interface is used to input control instructions, and the control instructions include at least one of: a robot splicing start instruction, a robot disassembly start instruction, a video push start instruction, a robot movement start instruction, and a robot limb start instruction.
- the intelligent scheduling system sends a splicing task to the cloud platform, and the cloud platform sends the splicing task to at least one of the ceiling robots and at least one of the wall robots; the ceiling robot and the wall robot receive the command and confirm whether splicing can be performed. If splicing is possible, the ceiling robot and the wall robot are started; the intelligent scheduling system decomposes the splicing task into the scheduling tasks and sends them to the cloud platform, and the cloud platform decomposes the scheduling tasks into multiple displacement tasks and sends them to at least one of the ceiling robots and at least one of the wall robots, and at least one of the ceiling robots and at least one of the wall robots move to the target position according to the displacement tasks.
- At least one of the ceiling robots and at least one of the wall robots reports position information to the cloud platform in real time during movement.
- the cloud platform stores the timing data of the ceiling robot and/or the wall robot, and sends the timing data to the intelligent scheduling system.
- the intelligent scheduling system obtains the real-time position of the ceiling robot and/or the wall robot, and uses it to confirm the next scheduling task and real-time monitoring.
- the intelligent scheduling system sends a docking task to the cloud platform, and the cloud platform sends the docking task to at least one of the ceiling robots and at least one of the wall robots, so that the ceiling robot and the wall robot are mutually locked and fixed, and at least two of the wall robots are mutually locked and fixed according to the docking task.
- the ceiling robot includes a first wall, a second wall and a ceiling, the first wall and the second wall are arranged opposite to each other, the top of the first wall and the second wall are movably connected to the ceiling, and the bottom of the first wall and the second wall are provided with a steering wheel drive device, and the steering wheel drive device is used to drive the ceiling robot to move as a whole according to the scheduling task.
- the ceiling includes a fixed shed and at least one movable shed installed in the fixed shed and at least one extension drive mechanism
- the fixed shed is connected to the first wall and the second wall, at least one side of the fixed shed is provided with an opening
- the driving end of the extension drive mechanism is connected to the movable shed
- the extension drive mechanism is used to drive the movable shed to extend from the opening according to the scheduling task.
- the wall robot includes a display screen arranged on the walking mechanism, the walking mechanism includes a driving wheel assembly, the driving wheel assembly is arranged at the bottom of the chassis and connected to the chassis, and the display screen is arranged above the chassis and connected to the chassis; a power battery system is provided in the chassis, and the power battery system is electrically connected to the driving wheel assembly and the display screen; the walking mechanism is used to drive the wall robot to move as a whole according to the scheduling task to realize house splicing or disassembly.
- a docking and plug-in mechanism is provided on the chassis, and the docking and plug-in mechanism includes a plug-in telescopic drive device, a first pair of connectors and a second pair of connectors matching the first pair of connectors, one of the first pair of connectors and the second pair of connectors is a docking plug, and the other of the first pair of connectors and the second pair of connectors is a docking socket matching the docking plug;
- the plug-in telescopic drive device is connected to the first pair of connectors, and the plug-in telescopic drive device is used to drive the first pair of connectors to perform horizontal telescopic movement relative to the chassis;
- the first pair of connectors and the second pair of connectors are both electrically connected to the power battery system, and the first pair of connectors on one wall robot can be connected to the second pair of connectors on another wall robot to achieve electrical connection between the two wall robots.
- the ceiling robot includes a second robot connecting mechanism, which has the same structure as the first robot connecting mechanism, and the first docking device on the wall robot can be connected to the second docking device on the ceiling robot to achieve mutual splicing of the wall robot and the ceiling robot.
- the smart house system also includes at least one table and chair robot, which is communicatively connected to the cloud platform, has an autonomous navigation and movement function, and moves to the bottom of the ceiling robot according to the scheduling task.
- the table and chair robot includes an intelligent mobile chassis capable of autonomous navigation and movement and a table, the table including a support frame, a movable frame, a table top, a third adjustment mechanism and a fourth adjustment mechanism, the support frame is connected to the intelligent mobile chassis, the movable frame is movably connected to the support frame along a first direction, the table top is movably connected to the movable frame along a second direction, the third adjustment mechanism is connected between the movable frame and the support frame, and is used to drive the movable frame and the table top to move along the first direction, the fourth adjustment mechanism is connected between the movable frame and the table top, and is used to drive the table top to move along the second direction, and the first direction and the second direction have an angle.
- the intelligent mobile chassis is provided with a carrying plate
- the table and chair robot also includes a seat and an adjustment device, the seat is placed on the carrying plate, the adjustment device is connected to the carrying plate, and the adjustment device is used to fix and/or transfer the seat according to the scheduling task.
- the smart house system also includes a plurality of table and chair robots, which move to a matrix arrangement according to the scheduling task, and the third adjustment mechanism and the fourth adjustment mechanism of each table drive each table top to move to achieve splicing of multiple table tops.
- the smart house system also includes a power supply robot, which is communicatively connected to the cloud platform, and includes a mobile body and a power supply mechanism installed on the mobile body, and the power supply mechanism includes a third pair of connectors, a second buffer mechanism and a cable harness, the third pair of connectors are connected to the second buffer mechanism, the second buffer mechanism is connected to the mobile body, the second buffer mechanism is used to provide a mobile buffer space for the third pair of connectors, one end of the cable harness is electrically connected to the third pair of connectors, and the other end of the cable harness is used to connect to the mains; the power supply robot is used to power the ceiling robot and/or the wall robot.
- a power supply robot which is communicatively connected to the cloud platform, and includes a mobile body and a power supply mechanism installed on the mobile body, and the power supply mechanism includes a third pair of connectors, a second buffer mechanism and a cable harness, the third pair of connectors are connected to the second buffer mechanism, the second buffer mechanism is connected to the mobile body, the
- the second buffer mechanism includes a connecting rod, a second slider, a second slide rail and a reset member, one end of the connecting rod is movably connected to the third pair of joints, the other end of the connecting rod is movably connected to the second slider, the second slider is installed on the second slide rail and can slide on the second slide rail, the second slide rail is connected to the mobile body, and the reset member has a force to make the second slider slide close to the third pair of joints; the ceiling robot and/or the wall robot is provided with a fourth pair of joints, and the third pair of joints and the fourth pair of joints cooperate with each other to achieve electrical connection.
- the smart house system of the present invention performs data management and monitoring through a cloud platform and modular control of an intelligent scheduling system to realize modular rapid assembly of ceiling robots and wall robots into a house or dismantle a house, saving manpower and material resources, and is convenient for transportation and storage. It will not permanently occupy land resources and space, is low-carbon and environmentally friendly, has the advantages of high integration and intelligence, and is both scientific and demonstrative with the characteristics of rapid promotion.
- FIG1 is a schematic diagram of the smart house system of the present application.
- FIG2 is a schematic diagram of the three-dimensional structure of a house formed by splicing the ceiling robot and the wall robot of the present application.
- FIG. 3 is a schematic diagram of the process of house splicing by the smart house system of the present application.
- FIG. 4 is a schematic diagram of the three-dimensional structure of the ceiling robot of the present application.
- FIG5 is a schematic diagram of the three-dimensional structure of the steering wheel driving device of the present application.
- FIG6 is a schematic diagram of the structure of the ceiling robot of the present application after the first wall is translated toward the second wall.
- FIG. 7 is a schematic diagram of the three-dimensional structure of the first translation drive device or the second translation drive device of the present application.
- FIG8 is a schematic diagram of the structure of the ceiling robot of the present application after the first wall rotates relative to the ceiling.
- FIG. 9 is a schematic structural diagram of the connection between the first wall and the ceiling of the present application.
- FIG. 10 is a schematic diagram of the three-dimensional structure of the first anchoring device of the present application.
- FIG. 11 is a schematic structural diagram of the ceiling of the ceiling robot of the present application in an unfolded state.
- FIG. 12 is a schematic diagram of the top view of the structure of the ceiling of the present application in an unfolded state.
- FIG. 13 is a schematic diagram of the three-dimensional structure of the extension drive mechanism of the present application.
- FIG. 14 is a schematic diagram of the three-dimensional structure of the wall robot of the present application.
- FIG. 15 is a schematic structural diagram of the walking mechanism in FIG. 14 when the telescopic wheel assembly is retracted.
- FIG. 16 is a bottom view of the walking mechanism shown in FIG. 15 when the telescopic wheel assembly is retracted.
- FIG. 17 is a schematic structural diagram of the walking mechanism in FIG. 14 when the telescopic wheel assembly is extended.
- FIG. 18 is a schematic diagram of the connection structure between the telescopic wheel assembly and the connecting rod mechanism in FIG. 17 .
- FIG. 19 is a schematic structural diagram of the telescopic wheel assembly in FIG. 18 .
- FIG. 20 is a side view of FIG. 18 .
- FIG. 21 is an enlarged schematic diagram of the structure at position A in FIG. 20 .
- FIG. 22 is a schematic structural diagram of the anchoring mechanism of the present application before engaging with the fixing mechanism.
- FIG. 23 is a schematic structural diagram of the first robot connection mechanism of the present application.
- FIG. 24 is a schematic structural diagram of the docking and plugging mechanism of the present application.
- FIG. 25 is a top view of the modular house module of the present application.
- FIG. 26 is a schematic cross-sectional view of FIG. 25 .
- Figure 27 is a schematic diagram of the three-dimensional structure of the table and chair robot of the first embodiment of the present application.
- FIG. 28 is a schematic diagram of the three-dimensional structure of the intelligent mobile chassis of the first embodiment of the present application.
- Figure 29 is a schematic diagram of the disassembled structure of the intelligent mobile chassis of the first embodiment of the present application.
- Figure 30 is a schematic diagram of the bottom-up structure of the table of the first embodiment of the present application.
- Figure 31 is a schematic diagram of the partial three-dimensional structure of the table and chair robot of the second embodiment of the present application.
- FIG32 is a schematic diagram of the three-dimensional structure of the adjustment device of the second embodiment of the present application when it cooperates with the seat.
- Figure 33 is a schematic diagram of the rear view structure of the adjustment device of the second embodiment of the present application when it is coordinated with the seat.
- Figure 34 is a schematic diagram of the three-dimensional structure of the table and chair robot of the third embodiment of the present application.
- Figure 35 is a front view structural schematic diagram of the table and chair robot of the third embodiment of the present application.
- FIG. 36 is a schematic structural diagram of the second fixing mechanism of the third embodiment of the present application.
- Figure 37 is a schematic diagram of the three-dimensional structure of the table and chair robot of the fourth embodiment of the present application.
- Figure 38 is a schematic diagram of the front view structure of the table and chair robot of the fourth embodiment of the present application.
- Figure 39 is a schematic diagram of the side view structure of the table and chair robot of the fourth embodiment of the present application.
- Figure 40 is a schematic diagram of the side view structure of the connecting rod transfer mechanism of the fourth embodiment of the present application when the seat is transferred out of the supporting plate.
- Figure 41 is a schematic diagram of the three-dimensional structure of the table and chair robot of the fourth embodiment of the present application.
- Figures 42 to 44 are schematic diagrams of the process of the robot arm transferring the seat to the ground according to the fourth embodiment of the present application.
- Figure 45 is a side view of the structure of the table and chair robot according to the sixth embodiment of the present application.
- Figure 46 is a schematic diagram of the top view of the structure of the table and chair robot according to the sixth embodiment of the present application.
- Figure 47 is a schematic diagram of the three-dimensional structure of multiple table and chair robots after splicing according to the seventh embodiment of the present application.
- Figure 48 is a schematic diagram of the structure of the power supply system during charging in this application.
- Figure 49 is a schematic diagram of a partial top view of the three-dimensional structure of the power supply system in the present application when charging.
- Figure 50 is a schematic diagram of a partial upward-looking stereoscopic structure of the power supply system in the present application when charging.
- Figure 51 is a schematic diagram of a partial top view of the three-dimensional structure of the power supply system in the present application when not charging.
- Figure 52 is one of the main view split structure schematic diagrams of the power supply robot in this application.
- Figure 53 is one of the schematic diagrams of the rear view split structure of the power supply robot in this application.
- Figure 54 is the second schematic diagram of the main view split structure of the power supply robot in this application.
- Figure 55 is the second schematic diagram of the rear view split structure of the power supply robot in this application.
- Figure 56 is a schematic diagram of the main stereoscopic structure of the power supply mechanism in this application.
- Figure 57 is a rear perspective schematic diagram of the power supply mechanism in this application.
- Figure 58 is a schematic diagram of the main view split structure of the power supply mechanism in this application.
- Figure 59 is a schematic diagram of the rear view and disassembled structure of the power supply mechanism in this application.
- Figure 60 is a side view of the stereoscopic structure of the fourth pair of connectors in this application.
- Figure 61 is a front view stereoscopic schematic diagram of the fourth pair of connectors in this application.
- Figure 62 is a schematic diagram of the bottom-up stereoscopic structure of the fourth pair of joints in this application.
- the present application provides a smart house system.
- the smart house system includes a cloud platform 71 and an intelligent scheduling system 72 connected to the cloud platform 71, at least one ceiling robot 10 and at least one wall robot 20, the intelligent scheduling system 72 is used to send scheduling tasks to the cloud platform 71, the scheduling tasks include a preset robot splicing and/or disassembly sequence, and the cloud platform 71 sends the scheduling tasks to at least one ceiling robot 10 and at least one wall robot 20.
- the wall robots 20, the ceiling robots 10 and the wall robots 20 are assembled into a house or disassembled into a house according to the scheduling task.
- the cloud platform 71 can uniformly manage the robots and related data management, realize two-way communication between the robot and the cloud, monitor the status data of each robot, and provide robot status data to other systems (intelligent scheduling system 72, video push system 74 or digital twin system 73); the intelligent scheduling system 72 can realize the efficient and orderly position movement and modular assembly or disassembly of the robot, and realize the autonomous obstacle avoidance navigation and traffic control of each robot.
- intelligent scheduling system 72 can realize the efficient and orderly position movement and modular assembly or disassembly of the robot, and realize the autonomous obstacle avoidance navigation and traffic control of each robot.
- the smart house system of the present application performs data management and monitoring through the cloud platform 71 and the modular control of the intelligent scheduling system 72 to realize the modular rapid assembly of the ceiling robot 10 and the wall robot 20 into a house or the disassembly of the house, saving manpower and material resources, and is convenient for transportation and storage, will not permanently occupy land resources and space, is low-carbon and environmentally friendly, has the advantages of high integration and intelligence, and is both scientific and demonstrative and has the characteristics of rapid promotion.
- the scheduling task also includes at least one first displacement path and at least one second displacement path.
- the ceiling robot 10 and the wall robot 20 have autonomous navigation movement and obstacle avoidance functions.
- the ceiling robot 10 moves to the first target position according to the first displacement path
- the wall robot 20 moves to the second target position according to the second displacement path, so that the wall of the ceiling robot 10 and the wall robot 20 are spliced, that is, the splicing task is completed.
- the wall of the ceiling robot 10 and the wall robot 20 are combined into a wall.
- the scheduling task also includes at least one third displacement path.
- the smart house system includes at least two wall robots 20.
- At least one wall robot 20 moves to the third target position according to the third displacement path, so that the two wall robots 20 are docked, that is, the splicing task is completed. At this time, the two wall robots 20 are combined into a wall.
- the scheduling task also includes a docking task. When the robots complete the splicing, the ceiling robot 10 and the wall robot are mutually locked and fixed according to the docking task, and at least two wall robots 20 are mutually locked and fixed according to the docking task.
- the smart house system also includes a digital twin system 73, which is communicatively connected to the cloud platform 71. The digital twin system 73 is used to realize real-time state mapping, state tracking and behavior prediction of the digital models of the ceiling robot 10 and the wall robot 20.
- the ceiling robot 10 and/or the wall robot 20 are provided with a display screen
- the smart house system further includes a video push system 74, which is connected to the cloud platform 71 for communication, and the video push system 74 is used to send a video playback task to the cloud platform 71, and the video playback task includes a single screen video playback task and/or a multi-screen video playback task with arbitrary splicing and long resolution.
- the ceiling robot 10 and/or the wall robot 20 controls a display screen to play a video according to the video playback task, or controls at least two display screens to splice and play a long resolution video.
- the smart house system of the present application can realize that the ceiling robot 10 and/or the wall robot 20 plays a promotional video at a designated position in a non-spliced state, and provides an intelligent display function of the wall at any position in a temporary conference room in an assembled state.
- the smart house system further includes a smart terminal device 75, which is connected to the cloud platform 71 in communication, and is provided with a human-machine interaction interface, which is used to input control instructions, and the control instructions include at least one of the following: a robot splicing start instruction, a robot disassembly start instruction, a video push start instruction, a robot movement start instruction, and a robot limb start instruction.
- the smart terminal device 75 is provided with a simple and clear human-machine interaction interface, which shields the complexity of the underlying layer, and helps group management or cloud maintenance personnel quickly complete the splicing, docking, disassembly, control, video push and other functions of the management house.
- the specific steps of house splicing include: inputting a robot splicing start command in the human-computer interaction interface of the intelligent terminal device 75 to start splicing; the intelligent scheduling system 72 sends a splicing task to the cloud platform 71, and the cloud platform 71 sends the splicing task to at least one ceiling robot 10 and at least one wall robot 20; the ceiling robot 10 and the wall robot 20 receive the command and confirm whether splicing can be performed. If splicing is possible, the ceiling robot 10 and the wall robot 20 are started; then the intelligent scheduling system 72 decomposes the splicing task into scheduling tasks and sends them to the cloud platform 71. The cloud platform 71 decomposes the scheduling tasks into multiple displacement tasks and sends them to at least one ceiling robot 10 and at least one wall robot 20. At least one ceiling robot 10 and at least one wall robot 20 move to the target position according to the displacement task.
- At least one ceiling robot 10 and at least one wall robot 20 report position information to the cloud platform 71 in real time during movement.
- the cloud platform 71 stores the time series data of the ceiling robot 10 and/or the wall robot 20, and sends the time series data to the intelligent scheduling system 72.
- the intelligent scheduling system 72 obtains the real-time position of the ceiling robot 10 and/or the wall robot 20, and uses it to confirm the next scheduling task and real-time monitoring.
- the cloud platform 71 stores the task abnormality information
- the intelligent scheduling system 72 schedules an abnormal alarm
- the human-computer interaction interface of the intelligent terminal device 75 displays the task failure.
- the intelligent scheduling system 72 sends a docking task to the cloud platform 71, and the cloud platform 71 sends the docking task to at least one ceiling robot 10 and at least one wall robot 20, so that the ceiling robot 10
- the wall robot 20 is interlocked and fixed, and at least two wall robots 20 are interlocked and fixed according to the docking task.
- the cloud platform 71 stores the task exception information
- the intelligent scheduling system 72 schedules an abnormal alarm
- the human-computer interaction interface of the intelligent terminal device 75 displays the task failure.
- the house disassembly steps are opposite to the house splicing steps. Please refer to the above for details, which will not be repeated here.
- the ceiling robot 10 and the wall robot 20 are equipped with a variety of sensors, including temperature sensors, humidity sensors, photoelectric sensors, etc.
- the ceiling robot 10 and/or the wall robot 20 are equipped with a variety of electrical appliances, such as lights, speakers, etc.
- the ceiling robot 10 includes a first wall 11, a second wall 12 and a ceiling 13, the first wall 11 and the second wall 12 are arranged opposite to each other, the tops of the first wall 11 and the second wall 12 are movably connected to the ceiling 13, and the bottoms of the first wall 11 and the second wall 12 are provided with a steering wheel drive device 14, which is used to drive the ceiling robot 10 to move as a whole according to the scheduling task.
- the first wall 11 and the second wall 12 are parallel and opposite to each other, the tops of the first wall 11 and the second wall 12 are vertically connected to the ceiling 13, and an indoor space is formed between the first wall 11, the second wall 12 and the ceiling 13.
- the ceiling robot 10 of the present application can move autonomously under the drive of the steering wheel drive device 14 to achieve position transfer without disassembly and assembly, saving labor costs (saving time and labor), high transfer efficiency, and will not permanently occupy land resources and space.
- the ceiling robot 10 of the present application can be used as a temporary conference hall, temporary tea restaurant, square publicity display or tourist attraction, and has strong practicality.
- the steering wheel drive device 14 is, for example, an AGV automatic navigation transport vehicle, and the steering wheel drive device 14 includes a base 141, a first steering wheel drive assembly 142, a second steering wheel drive assembly 143, a shock absorbing device 144, and a steering wheel gear set 145.
- the first steering wheel drive assembly 142 and the second steering wheel drive assembly 143 are respectively connected to both sides of the base 141, the shock absorbing device 144 is installed on the base 141, and the steering wheel gear set 145 is installed on the top of the base 141.
- two steering wheel drive devices 14 are installed at the bottom of the first wall 11, and are respectively arranged near the opposite sides of the first wall 11; two steering wheel drive devices 14 are installed at the bottom of the second wall 12, and are respectively arranged near the opposite sides of the second wall 12.
- the ceiling robot 10 includes at least one first translation drive device 15, the first translation drive device 15 is connected between the ceiling 13 and the first wall 11, the first translation drive device 15 cooperates with the steering wheel drive device 14 to drive the first wall 11 to move toward or away from the second wall 12, and/or the ceiling robot 10 includes at least one second translation drive device, the second translation drive device is connected between the ceiling 13 and the second wall 12, the second translation drive device cooperates with the steering wheel drive device 14 to drive the second wall 12 to move toward or away from the first wall 11; the first wall 11 and/or the second wall 12 can move horizontally to change the size of the indoor space to meet the needs of houses of different sizes.
- two first translation drive devices 15 are installed between the first wall 11 and the ceiling 13, and the two first translation drive devices 15 are respectively arranged near the opposite sides of the first wall 11;
- two second translation drive devices are installed between the second wall 12 and the ceiling 13, and the two second translation drive devices are respectively arranged near the opposite sides of the second wall 12;
- the two first translation drive devices 15 are respectively located directly above the two steering wheel drive devices 14, and the two second translation drive devices are respectively located directly above the two steering wheel drive devices 14.
- the first translation driving device 15 has the same structure as the second translation driving device, and the first translation driving device 15 includes a first mounting seat 151, a first sliding seat 152 and a first driving mechanism 153, the first mounting seat 151 is fixed on the ceiling 13, the first sliding seat 152 is slidably connected to the first mounting seat 151, the first wall 11 is fixedly connected to the first sliding seat 152, the driving end of the first driving mechanism 153 is connected to the first sliding seat 152, and the first driving mechanism 153 is used to drive the first sliding seat 152 and the first wall 11 to move.
- the first driving mechanism 153 includes a first motor assembly (a combination of a motor and a reducer) and a first screw rod, the first motor assembly is fixed to one end of the first mounting seat 151, one end of the first screw rod is linked to the first motor assembly, and the other end of the first screw rod is rotatably connected to the end of the first mounting seat 151; when the first driving assembly drives the first screw rod to rotate, the first sliding seat 152 moves along the length direction of the first screw rod.
- a first motor assembly a combination of a motor and a reducer
- the second translation drive device includes a second mounting seat, a second sliding seat and a second driving mechanism
- the second mounting seat is fixed on the ceiling 13
- the second sliding seat is slidably connected to the second mounting seat
- the second wall 12 is fixedly connected to the second sliding seat
- the driving end of the second driving mechanism is connected to the second sliding seat
- the second driving mechanism is used to drive the second sliding seat and the second wall 12 to move.
- the second driving mechanism includes a second motor assembly (a combination of a motor and a reducer) and a second screw rod, the second motor assembly is fixed to one end of the second mounting seat, one end of the second screw rod is linked to the second motor assembly, and the other end of the second screw rod is rotatably connected to the end of the second mounting seat; when the second driving assembly drives the second screw rod to rotate, the second sliding seat moves along the length direction of the second screw rod.
- a second motor assembly a combination of a motor and a reducer
- the first driving mechanism 153 includes a first telescopic cylinder or oil cylinder assembly, the telescopic shaft of the first telescopic cylinder or oil cylinder assembly is connected to the first sliding seat 152;
- the second driving mechanism includes a second telescopic cylinder or oil cylinder assembly, the telescopic shaft of the second telescopic cylinder or oil cylinder assembly is connected to the first sliding seat 152; The shaft is connected to the second sliding seat.
- a first rotating shaft mechanism 17 is connected between the first wall 11 and the ceiling 13, and two steering wheel drive devices 14 are provided at the bottom of the first wall 11, one of the steering wheel drive devices 14 is arranged close to the side of the first wall 11, and the other steering wheel drive device 14 is arranged close to the other side opposite to the first wall 11, and the two steering wheel drive devices 14 cooperate to drive the first wall 11 to rotate around the axis of the first rotating shaft mechanism 17, and/or a second rotating shaft mechanism is connected between the second wall 12 and the ceiling 13, and two steering wheel drive devices 14 are provided at the bottom of the second wall 12, one of the steering wheel drive devices 14 is arranged close to the side of the second wall 12, and the other steering wheel drive device 14 is arranged close to the other side opposite to the second wall 12, and the two steering wheel drive devices 14 cooperate to drive the second wall 12 to rotate around the axis of the second rotating shaft mechanism.
- the first wall 11 and/or the second wall 12 of the ceiling robot 10 of the present application can rotate and move to change the shape and size
- the first rotating shaft mechanism 17 has the same structure as the second rotating shaft mechanism, and the first rotating shaft mechanism 17 includes a first rotating shaft and a first bearing, the first rotating shaft is fixed on the first wall 11 or the ceiling 13, the first bearing is sleeved on the first rotating shaft, and the first bearing is connected to the first wall 11 or the ceiling 13.
- the second rotating shaft mechanism includes a second rotating shaft and a second bearing, the second rotating shaft is fixed on the second wall 12 or the ceiling 13, the second bearing is sleeved on the second rotating shaft, and the second bearing is connected to the second wall 12 or the ceiling 13.
- a first anchoring device 19 is provided at the bottom of the first wall 11 and the second wall 12, and the first anchoring device 19 includes a first connecting seat 191, a lifting drive 192 (a combination structure of a motor and a reducer), a rotating drive 193 (a motor), an anchoring shaft 194 and an anchoring block 195.
- a lifting drive 192 a combination structure of a motor and a reducer
- a rotating drive 193 a motor
- an anchoring shaft 194 an anchoring shaft 194 and an anchoring block 195.
- the first connecting seat 191 is connected to the first wall 11 and the second wall 12 by bolts and screw holes, the lifting drive 192, the rotating drive 193 and the anchoring shaft 194 are connected to the first connecting seat 191, the anchoring shaft 194 is arranged in the vertical direction, the anchoring block 195 is fixed to the end of the anchoring shaft 194, the driving ends of the lifting drive 192 and the rotating drive 193 are both connected to the anchoring shaft 194, the lifting drive 192 is used to drive the anchoring shaft 194 to move up and down, and the rotating drive 193 is used to drive the anchoring shaft 194 and the anchoring block 195 to rotate, so that the anchoring block 195 switches between the locked position and the unlocked position.
- two first anchoring devices 19 are provided at the bottom of the first wall 11, and two first anchoring devices 19 are provided at the bottom of the second wall 12; the cooperation of multiple first anchoring devices 19 can fix the ceiling robot 10 to prevent it from moving due to strong winds.
- the ceiling 13 includes a fixed shed 131 and at least one movable shed 132 and at least one extension drive mechanism 133 installed in the fixed shed 131.
- the fixed shed 131 is connected to the first wall 11 and the second wall 12. At least one side of the fixed shed 131 is provided with a first opening 101.
- the driving end of the extension drive mechanism 133 is connected to the movable shed 132.
- the extension drive mechanism 133 is used to drive the movable shed 132 to extend from the first opening 101 according to the scheduling task, so as to realize ceilings 13 of different sizes and shapes, and at the same time facilitate splicing with the wall robot 20 to expand the indoor space.
- the first openings 101 are provided on both opposite sides of the fixed shed 131.
- the ceiling 13 includes two movable sheds 132 and two extension drive mechanisms 133.
- the two extension drive mechanisms 133 respectively drive the two movable sheds 132 to extend from the two first openings 101.
- the movable shed 132 includes at least two shed boards 1321 stacked on each other, two adjacent shed boards 1321 are slidably connected to each other, and the extension drive mechanism 133 is used to drive at least two shed boards 1321 to an unfolded state, or to drive at least two shed boards 1321 to a stacked state; when the movable shed 132 is in an unfolded state, each shed board 1321 extends from the first opening 101 of the fixed shed 131; when the movable shed 132 is in a stacked state, each shed board 1321 is retracted and stacked in the fixed shed 131.
- the number of shed boards 1321 is, for example, 1, 2, or 3, and the number of shed boards 1321 can be freely increased or decreased according to actual needs.
- the extension drive mechanism 133 includes an extension drive assembly 1331 and a scissor fork structure 1335, the driving end of the extension drive assembly 1331 is connected to the scissor fork structure 1335, one end of the scissor fork structure 1335 is connected to the movable shed 132, and the other end of the scissor fork structure 1335 is connected to the fixed shed 131, and the extension drive assembly 1331 is used to drive the scissor fork structure 1335 to extend or retract.
- the scissor fork structure 1335 can be telescopically moved under the drive of the extension drive assembly 1331, thereby driving the movable shed 132 to extend from the opening, or to be retracted in the fixed shed 131.
- the extension drive assembly 1331 includes a fixed seat 1332, a first movable seat 1333 and an extension driver 1334, the fixed seat 1332 is connected to the fixed shed 131, the first movable seat 1333 is slidably connected to the fixed seat 1332, and the driving end of the extension drive assembly 1331 is connected to the first movable seat 1333;
- the scissors fork structure 1335 includes an intermediate cross portion 1336, a first extension connection portion 1337 and a second extension connection portion 1338, the intermediate cross portion 1336 is hinged between the first extension connection portion 1337 and the second extension connection portion 1338, the intermediate cross portion 1336 is connected to the first movable seat 1333, the first extension connection portion 1337 is connected to the fixed shed 131, and the second extension connection portion 1338 is connected to the movable shed 132.
- the extension drive assembly 1334 includes a second motor assembly (a combination structure of a motor and a reducer) and a second screw rod.
- the second motor assembly is fixed to the end of the fixing seat 1332, one end of the second screw rod is linked to the second motor assembly, and the second screw rod The other end is rotatably connected to the fixed seat 1332, and the first movable seat 1333 is threadedly connected to the second screw rod; when the second motor assembly drives the second screw rod to rotate, the first movable seat 1333 can move along the length direction of the screw rod, thereby driving the scissors fork structure 1335 to telescopically move.
- the middle cross section 1336 includes a first link and a second link, the first link and the second link are cross-arranged, and the intersection of the first link and the second link is hinged on the first movable seat 1333;
- the first extension connection section 1337 includes a third link and a fourth link, the ends of the third link and the fourth link are cross-arranged and hinged on the fixed shelf 131, the other end of the third link is hinged to one end of the first link, and the other end of the fourth link is hinged to one end of the second link;
- the second extension connection section 1338 includes a fifth link and a sixth link, the ends of the fifth link and the sixth link are cross-arranged and hinged on the movable shelf 132, the other end of the fifth link is hinged to the other end of the first link, and the other end of the sixth link is hinged to the other end of the second link; with the first movable seat 1333 as the center, the first link, half of the second link, the third link and the fourth link are combined into a
- the extension driver 1334 includes a third motor assembly (a combination of a motor and a reducer), a third screw rod and a connecting block.
- the third screw rod is linked to the third motor assembly, the connecting block is threadedly connected to the third screw rod, and the connecting block is connected to the movable shed 132; when the third driving assembly drives the third screw rod to rotate, the connecting block moves along the length direction of the third screw rod, thereby realizing the expansion or contraction of the movable shed 132.
- a display screen 112 (ice screen) is provided on the first wall 11, and the display screen 112 is arranged on the side of the first wall 11 close to the second wall 12.
- a doorway and a door panel 122 arranged corresponding to the doorway are provided on the second wall 12.
- the door panel 122 can be connected in a rotatable or sliding manner through a mechanical structure, and a door panel 122 driving mechanism can also be connected between the second wall 12 and the door panel 122, and the door panel 122 driving mechanism is used to drive the door panel 122 to open or close.
- a sealing member is provided between the first wall 11 and the ceiling 13 and between the second wall 12 and the ceiling 13 to increase the sealing effect of the wall.
- the ceiling robot controls the movable shed 132 of the ceiling 13 to unfold according to the scheduling task, and if necessary, the first wall 11 and/or the second wall 12 can also be controlled to translate or rotate to change the shape of the ceiling robot to make it more suitable for the current environment.
- the wall robot 20 provided in the embodiment of the present application includes a walking mechanism and a display screen 22 arranged on the walking mechanism, and the walking mechanism is used to drive the wall robot 20 to move as a whole according to the scheduling task to realize the splicing or disassembly of the house.
- the display screen 22 can be an ice screen.
- the walking mechanism includes a chassis 211 and a driving wheel assembly 212, the driving wheel assembly 212 is arranged at the bottom of the chassis 211 and connected to the chassis 211, and the driving wheel assembly 212 is used to drive the chassis 211 to move.
- the display screen 22 is arranged above the chassis 211 and connected to the chassis 211.
- a power battery system 2111 is provided in the chassis 211, and the power battery system 2111 is electrically connected to the driving wheel assembly 212 and the display screen 22, and the power battery system 2111 can supply power to the driving wheel assembly 212 and the display screen 22.
- a first robot connection mechanism 31 is provided on the chassis 211, and the first robot connection mechanism 31 includes a first docking device 311 and a second docking device 312 matched with the first docking device 311, and the first docking device 311 and the second docking device 312 are respectively arranged at different positions on the chassis 211 (preferably, the first docking device 311 and the second docking device 312 are respectively arranged at opposite ends of the chassis 211); the first docking device 311 on a wall robot 20 can be connected with the second docking device 312 on another wall robot 20 to achieve connection between different wall robots 20.
- the ceiling robot 10 includes a second robot connection mechanism, and the second robot connection mechanism has the same structure as the first robot connection mechanism 31, and the first docking device on the wall robot 20 can be connected with the second docking device on the ceiling robot 10 to achieve mutual splicing of the wall robot 20 and the ceiling robot 10.
- the wall robot 20 provided in this embodiment is composed of a walking mechanism and a display screen 22.
- the walking mechanism and the display screen 22 can serve as the wall of the combined house module, that is, a plurality of wall robots 20 can be assembled to form a combined house module, and the number of wall robots 20 can be determined according to actual use requirements, so that the shape and structural size of the combined house module can be changed according to actual needs.
- the walking mechanism can provide the wall robot 20 with a walking function
- the chassis 211 is provided with a power battery system 2111 that can supply power to the driving wheel assembly 212 and the display screen 22, so that the wall robot 20 has an intelligent movement function, an intelligent assembly function, an autonomous power supply function and a wall display function.
- the chassis 211 is also provided with a first robot connection mechanism 31 for connecting different wall robots 20 to enhance the stability of the wall.
- the wall robot 20 not only improves the convenience of assembling the combined house module, but also increases the expansion function of the combined house module.
- the first docking device 311 includes a clamping plate 3111 , the clamping plate 3111 is fixed to the end of the chassis 211 , and a clamping hole 104 is provided on the clamping plate 3111 .
- the second docking device 312 is disposed in the chassis 211, and the second docking device 312 includes a first telescopic driving device 3121, a first rotating driving device 3122, and a first anchor rod 3123, and a first clamping portion 3124 is disposed at a first end of the first anchor rod 3123.
- the first telescopic driving device 3121 is connected to the second end of the first anchor rod 3123, and the first telescopic driving device 3121 is used to drive the first anchor rod 3123 to rotate.
- the first rotation drive device 3122 is connected to the second end of the first anchor rod 3123, and the first rotation drive device 3122 is used to drive the first anchor rod 3123 to perform rotational movement around its circumferential direction, so that the first anchor rod 3123 on one wall robot 20 can be engaged with the clamping plate 3111 on another wall robot 20.
- the first clamping portion 3124 is a long strip-shaped protrusion, and the width of the clamping hole 104 is greater than or equal to the width of the first clamping portion 3124 and less than the length of the first clamping portion 3124.
- the first telescopic driving device 3121 on one wall robot 20 drives the first anchor rod 3123 to move toward the clamping plate 3111 on the other wall robot 20, and the first clamping portion 3124 on the first anchor rod 3123 extends into and passes through the clamping hole 104 on the clamping plate 3111, and then the first rotation driving device 3122 drives the first anchor rod 3123 to rotate 90° (or other angles), and then the first telescopic driving device 3121 drives the first anchor rod 3123 to retract a short distance, so that the first clamping portion 3124 on the first anchor rod 3123 is engaged with the clamping plate 3111, thereby realizing the connection between the two wall robots 20.
- the first docking device 3121 As shown in FIG. 14 to FIG. 16 , as an embodiment, the first docking device 3
- a first baffle 313 is provided on the chassis 211 at one end close to the second docking device 312, and a first through hole 103 is provided on the first baffle 313.
- the first anchor rod 3123 can extend out of the chassis 211 after passing through the first through hole 103, or retract into the chassis 211 through the first through hole 103.
- the wall robot 20 further includes a telescopic wheel assembly 23, which includes a roller telescopic driving device 231 and a first roller 232.
- the roller telescopic driving device 231 is arranged in the chassis 211, and the first roller 232 is arranged at the bottom of the chassis 211 and located on one side of the chassis 211.
- the roller telescopic driving device 231 is connected to the chassis 211 and the first roller 232 at the same time, and the roller telescopic driving device 231 is used to drive the first roller 232 to perform left and right telescopic movement relative to the chassis 211 in the horizontal direction (as shown in FIGS.
- S in the figure represents the front and rear direction of the chassis 211, that is, the movement direction of the chassis 211;
- W in the figure represents the left and right direction of the chassis 211, that is, the width direction of the chassis 211, and the roller telescopic driving device 231 can drive the first roller 232 to perform telescopic movement along the left and right direction W of the chassis 211).
- the roller retractable driving device 231 when the chassis 211 is moving, the roller retractable driving device 231 is used to drive the first roller 232 to extend, thereby increasing the area of the chassis 211 (i.e., increasing the width of the chassis 211), so that the wall robot 20 has good balance and stability during movement and avoids rollover; when the wall robot 20 stops moving, the roller retractable driving device 231 is used to drive the first roller 232 to retract, thereby reducing the footprint of the chassis 211.
- the retractable wheel assembly 23 can not only increase the stability of the wall robot 20 during movement, but also does not increase the volume and footprint of the chassis 211 when the wall robot 20 is in a stopped state, thereby increasing the flexibility of the chassis 211 and facilitating the miniaturization design of the chassis 211.
- the wall robot 20 also includes a second roller 213, which is arranged at the bottom of the chassis 211 and connected to the chassis 211, and the second roller 213 and the first roller 232 are respectively arranged on the left and right sides of the chassis 211; when the first roller 232 is extended in the horizontal direction, the distance between the first roller 232 and the second roller 213 increases, which is equivalent to increasing the wheelbase, thereby increasing the stability of the chassis 211 during movement.
- a second roller 213 which is arranged at the bottom of the chassis 211 and connected to the chassis 211, and the second roller 213 and the first roller 232 are respectively arranged on the left and right sides of the chassis 211; when the first roller 232 is extended in the horizontal direction, the distance between the first roller 232 and the second roller 213 increases, which is equivalent to increasing the wheelbase, thereby increasing the stability of the chassis 211 during movement.
- the second roller 213 cannot telescope left and right compared to the chassis 211, that is, the second roller 213 is fixed on the chassis 211.
- the second roller 213 can also be in a form similar to the first roller 232, that is, the second roller 213 can also be in a telescopic form (that is, the telescopic wheel assembly 23 is provided on both opposite sides of the chassis 211), so as to further increase the area of the chassis 211 when it moves.
- the bottom of the chassis 211 is further provided with a third roller 214, the third roller 214 is provided between the first roller 232 and the second roller 213, and the third roller 214 is located in the middle of the chassis 211, and the third roller 214 can further increase the stability and passability of the chassis 211 when it moves.
- the first roller 232, the second roller 213 and the third roller 214 are all universal wheels, thereby increasing the flexibility of the chassis 211 when it moves; at the same time, since the first roller 232 is a universal wheel, the first roller 232 can smoothly perform lateral telescopic movement (that is, the first roller 232 can not only move forward and backward, but also move left and right, thereby facilitating the extension and retraction of the first roller 232).
- the driving wheel assembly 212 is a dual differential driving wheel.
- the number of the first roller 232, the second roller 213, the third roller 214 and the driving wheel assembly 212 is two respectively, and the two first rollers 232, the two second rollers 213, the two third rollers 214 and the two driving wheel assemblies 212 are respectively arranged at the front and rear ends of the chassis 211.
- a plurality of radars 2113 and a plurality of ultrasonic sensors 2114 are also arranged on the outer side wall of the chassis 211, so that the chassis 211 can automatically plan the walking route when it moves.
- the chassis 211 can realize autonomous movement functions such as omnidirectional movement, climbing, and overcoming obstacles.
- the number of the retractable wheel assemblies 23 is at least two, and at least two retractable wheel assemblies 23 are arranged on the bottom At least two retractable wheel assemblies 23 are arranged at intervals along the front-to-rear direction S of the chassis 211 on the same side of the chassis 211 .
- telescopic wheel assemblies 23 which are disposed on the same side of the chassis 211 , and are spaced apart along the front-rear direction S of the chassis 211 .
- At least two telescopic wheel assemblies 23 are connected via a connecting rod mechanism 24 so that at least two telescopic wheel assemblies 23 can perform telescopic motion synchronously.
- the connecting rod mechanism 24 not only enables the multiple telescopic wheel assemblies 23 to perform telescopic movement synchronously, thereby reducing the stroke deviation (or position deviation, i.e., the difference in telescopic distance) of the multiple telescopic wheel assemblies 23 during telescopic movement, maintaining the consistency of the front and rear widths of the vehicle body, and facilitating the simultaneous control of the telescopic strokes of the multiple telescopic wheel assemblies 23, but also can increase the structural strength of the vehicle body and the stability of the chassis 211.
- the side of the chassis 211 is provided with a receiving groove 102 for accommodating the telescopic wheel assembly 23 and the connecting rod mechanism 24, so that the telescopic wheel assembly 23 and the connecting rod mechanism 24 can be accommodated in the receiving groove 102 when retracted, thereby further reducing the footprint of the chassis 211 when it is in a stopped state and improving the aesthetics.
- At least two telescopic wheel assemblies 23 are respectively connected to the connecting rod mechanism 24 through a movable mechanism 25, so that at least two telescopic wheel assemblies 23 can perform synchronous telescopic movement within a certain deviation range.
- at least two telescopic wheel assemblies 23 can perform synchronous telescopic movement within a travel deviation range of 15 cm.
- the movable mechanism 25 can play a certain buffering role, so that the multiple telescopic wheel assemblies 23 can be asynchronous to a certain extent during the telescopic movement, thereby increasing the flexibility and stability of the telescopic wheel assembly 23, greatly reducing the requirements for the control accuracy and manufacturing dimensional accuracy of the equipment, and reducing the wear on the equipment during the synchronous telescopic movement (it is easy to understand that if the telescopic wheel assembly 23 and the connecting rod mechanism 24 are rigidly connected, during the synchronous telescopic movement, the allowable stroke deviation between the multiple telescopic wheel assemblies 23 is required to be almost close to zero, which not only places very high requirements on the mechanical and electrical control accuracy, but also easily causes damage to the equipment).
- the number of telescopic wheel assemblies 23 is two, and the two telescopic wheel assemblies 23 are respectively arranged at the two ends of the connecting rod mechanism 24, one of the telescopic wheel assemblies 23 is connected to one end of the connecting rod mechanism 24 through a movable mechanism 25, and the other telescopic wheel assembly 23 is connected to the other end of the connecting rod mechanism 24 through the movable mechanism 25.
- one end of the movable mechanism 25 is rotatably connected to the telescopic wheel assembly 23, and the other end of the movable mechanism 25 is rotatably connected to the connecting rod mechanism 24, thereby realizing the movable connection between the telescopic wheel assembly 23 and the connecting rod mechanism 24.
- the movable mechanism 25 can also be an elastic mechanism with a certain elasticity.
- the movable mechanism 25 includes a connecting pin 251 and a rotating rod 252, the first end of the connecting pin 251 is connected to the rotating rod 252, the rotating rod 252 is rotatably connected to the connecting rod mechanism 24, and the second end of the connecting pin 251 is hinged to the telescopic wheel assembly 23.
- each movable mechanism 25 includes two connecting pins 251, and the two connecting pins 251 are arranged at intervals in the upper and lower parts.
- the number of connecting pins 251 can also be more.
- the connecting rod mechanism 24 includes a first horizontal crossbar 241 and a second crossbar 242, the first crossbar 241 and the second crossbar 242 are arranged at intervals up and down, the rotating rod 252 is arranged vertically, the top end of the rotating rod 252 is rotatably connected to the first crossbar 241, and the bottom end of the rotating rod 252 is rotatably connected to the second crossbar 242.
- the connecting rod mechanism 24 also includes a plurality of vertically arranged longitudinal rods 243, the plurality of longitudinal rods 243 are arranged in sequence along the length direction of the connecting rod mechanism 24, and the upper and lower ends of each longitudinal rod 243 are respectively fixedly connected to the first crossbar 241 and the second crossbar 242, thereby increasing the structural strength and stability of the connecting rod mechanism 24.
- the wall robot 20 also includes a fourth roller 215, which is arranged below the connecting rod mechanism 24 and connected to the connecting rod mechanism 24.
- the fourth roller 215 is used to support the connecting rod mechanism 24, thereby preventing the connecting rod mechanism 24 from tipping over.
- the fourth roller 215 is a universal wheel, and the fourth roller 215 is connected to the second cross bar 242 .
- the telescopic wheel assembly 23 also includes a roller fixing plate 234, the first roller 232 is arranged on the roller fixing plate 234, and the first roller 232 is located below the roller fixing plate 234; the roller telescopic driving device 231 is connected to the roller fixing plate 234, and the roller fixing plate 234 is connected to the connecting rod mechanism 24 through a movable mechanism 25.
- the roller fixing plate 234 includes a horizontal plate 2341 and a vertical plate 2342.
- the first roller 232 is located below the horizontal plate 2341 and connected to the horizontal plate 2341
- the roller telescopic driving device 231 is connected to the vertical plate 2342
- the vertical plate 2342 is connected to the connecting rod mechanism 24 through the movable mechanism 25 .
- the telescopic wheel assembly 23 also includes a guide telescopic assembly 233, and the roller telescopic drive device 231 is connected to the first roller 232 through the guide telescopic assembly 233.
- the guide telescopic assembly 233 is used to guide the first roller 232 when it performs left and right telescopic movements.
- the guide telescopic assembly 233 includes a guide rod 2331 and a guide sleeve 2332, wherein the guide rod 2331 is inserted into the guide sleeve 2332 and can telescopically move in the guide sleeve 2332; the guide sleeve 2332 is fixed to the chassis 211, one end of the guide rod 2331 is connected to the roller telescopic drive device 231, and the other end of the guide rod 2331 is connected to the first roller 232 (specifically, the other end of the guide rod 2331 is connected to the vertical plate 2342 of the roller fixing plate 234).
- the length of the guide rod 2331 can be increased or decreased according to the required telescopic distance.
- each telescopic wheel assembly 23 includes two guiding telescopic assemblies 233 , and the two guiding telescopic assemblies 233 are respectively arranged on opposite sides of the roller telescopic driving device 231 , so as to provide a more stable guiding support effect.
- the roller telescopic drive device 231 is a linear guide rail module, and the roller telescopic drive device 231 includes a first guide rail 2311 and a first slider 2312, the first guide rail 2311 is fixed to the chassis 211, the first slider 2312 is arranged on the first guide rail 2311 and can slide along the first guide rail 2311, and the guide rod 2331 is connected to the first slider 2312; through the movement of the first slider 2312, the guide rod 2331, the roller fixing plate 234 and the first roller 232 are driven to telescopically move.
- the roller telescopic drive device 231 can also be a telescopic drive device such as an electric cylinder or a pneumatic cylinder.
- the wall robot 20 further includes a second anchoring device 26, which is disposed at the bottom of the chassis 211 and can telescope up and down relative to the chassis 211.
- the second anchoring device 26 is used to cooperate with the first fixing mechanism 32 (the first fixing mechanism 32 can be disposed on the ground or at other target positions).
- the second anchoring device 26 extends downward and cooperates with the first fixing mechanism 32 to fix the chassis 211 at the target position; when the chassis 211 needs to move, the second anchoring device 26 retracts upward and disengages from the first fixing mechanism 32, thereby unlocking the chassis 211 and enabling it to move freely.
- the number of the second anchoring devices 26 is two, and the two second anchoring devices 26 are spaced apart along the front-to-rear direction S of the chassis 211 .
- the second anchoring device 26 includes a second telescopic driving device 261 and a second anchor rod 262, the second telescopic driving device 261 is connected to the second anchor rod 262, and the second telescopic driving device 261 is used to drive the second anchor rod 262 to perform upward and downward telescopic movement relative to the chassis 211.
- the second telescopic driving device 261 is a vortex elevator
- the second anchor rod 262 is a worm gear.
- the bottom end of the second anchor rod 262 is provided with a second clamping portion 2621.
- the second anchoring device 26 further includes a second rotation driving device 263, which is connected to the second anchor rod 262 and is used to drive the second anchor rod 262 to perform horizontal rotational movement, so that the second clamping portion 2621 on the second anchor rod 262 can be engaged with the first fixing mechanism 32.
- a slot 106 is provided on the first fixing mechanism 32 , and the second clamping portion 2621 is a long strip-shaped protrusion.
- the width of the slot 106 is greater than or equal to the width of the second clamping portion 2621 and less than the length of the second clamping portion 2621 .
- the second rotation driving device 263 is first used to drive the second anchor rod 262 to extend downward, so that the second clamping portion 2621 passes through the slot 106 and then extends into the first fixing mechanism 32 (because the width of the slot 106 is greater than or equal to the width of the second clamping portion 2621, the second clamping portion 2621 can smoothly pass through the slot 106); then the second rotation driving device 263 is used to drive the second anchor rod 262 to rotate horizontally by 90°, and then the second rotation driving device 263 is used to drive the second anchor rod 262 to move a short distance upward, so that the second clamping portion 2621 on the second anchor rod 262 is engaged with the first fixing mechanism 32 (because the width of the slot 106 is less than the length of the second clamping portion 2621, the second clamping portion 2621 cannot pass through the slot 106 at this time), thereby fixing the chassis 211 at the target position.
- a docking plug-in mechanism 33 is provided on the chassis 211, and the docking plug-in mechanism 33 includes a plug-in telescopic drive device 331, a first pair of joints 332, and a second pair of joints 333 matching the first pair of joints 332, one of the first pair of joints 332 and the second pair of joints 333 is a docking plug, and the other of the first pair of joints 332 and the second pair of joints 333 is a docking plug.
- One is a docking socket that matches the docking plug.
- the plug-in telescopic drive device 331 is connected to the first pair of joints 332, and the plug-in telescopic drive device 331 is used to drive the first pair of joints 332 to perform horizontal telescopic movement relative to the chassis 211.
- the first pair of joints 332 and the second pair of joints 333 are both electrically connected to the power battery system 2111, and the first pair of joints 332 and the second pair of joints 333 are respectively arranged at different positions on the chassis 211 (preferably, the first pair of joints 332 and the second pair of joints 333 are respectively arranged at opposite ends of the chassis 211); the first pair of joints 332 on a wall robot 20 can be connected to the second pair of joints 333 on another wall robot 20 to achieve electrical connection between different wall robots 20.
- the first pair of joints 332 is a docking plug
- the second pair of joints 333 is a docking socket that matches the docking plug.
- the second pair of joints 333 can also be a docking plug
- the first pair of joints 332 can be a docking socket that matches the docking plug.
- the plug-in telescopic drive device 331 on one of the wall robots 20 drives the first pair of joints 332 to move toward the second pair of joints 333 on the other wall robot 20, so that the first pair of joints 332 and the second pair of joints 333 are plugged and connected, thereby realizing the electrical connection between the two wall robots 20.
- each wall robot 20 can automatically realize interconnection and power supply, without the need to equip each wall robot 20 with an external power supply (that is, after one or several wall robots 20 are electrically connected to the external power supply, all wall robots 20 can realize the power supply or charging function at the same time), and at the same time, there is no need to manually electrically connect each wall robot 20, thereby improving the safety and convenience of power supply.
- the first pair of connectors 332 and the second pair of connectors 333 are also electrically connected to the display screen 22, so that after the first pair of connectors 332 and the second pair of connectors 333 are connected to an external power source, they can directly power the display screen 22 (because the display screen 22 is large in size and consumes large power, the power battery system 2111 cannot provide it with sufficient power when working for a long time, so it needs to be connected to an external power source for power supply).
- the docking and plugging mechanism 33 also includes a first buffer mechanism 334, and the first pair of joints 332 are connected to the plug-in and telescopic driving device 331 through the first buffer mechanism 334, and the first buffer mechanism 334 is used to provide a moving buffer space for the first pair of joints 332.
- the first buffer mechanism 334 is an elastic mechanism.
- the first buffer mechanism 334 can avoid hard collision between the first pair of joints 332 and the second pair of joints 333 when docking, which is conducive to extending the service life of the docking and plugging mechanism 33.
- a second baffle 335 is provided on the chassis 211 at one end close to the first pair of joints 332, and a second through hole 107 is provided on the second baffle 335 for the first pair of joints 332 to pass through.
- a third baffle 336 is provided on the chassis 211 at one end close to the second pair of joints 333, and a third through hole 108 is provided on the third baffle 336 for the first pair of joints 332 to pass through.
- an air conditioning interface 271 is provided on the chassis 211 for the air conditioning docking mechanism 27 to pass through.
- an air conditioning indoor unit 28 such as an air conditioning cabinet
- an air conditioning outdoor unit 29 (the air conditioning indoor unit 28 and the air conditioning outdoor unit 29 can be movable structures) is provided outside the modular house module (outdoors)
- one end of the air conditioning docking mechanism 27 is connected to the air conditioning indoor unit 28, and the other end of the air conditioning docking mechanism 27 passes through the air conditioning interface 271 on the chassis 211 and is connected to the air conditioning outdoor unit 29, thereby realizing the connection between the air conditioning indoor unit 28 and the air conditioning outdoor unit 29, and providing air conditioning refrigeration for the internal space of the modular house module.
- the working process of the wall robot 20 in this embodiment is as follows:
- the second anchor device 26 is first extended to fix the position of the chassis 211 to prevent slipping or tipping; then the roller telescopic drive device 231 is used to drive the first roller 232 to retract, thereby reducing the floor space of the chassis 211.
- the chassis 211 is fixed at the target position.
- adjacent wall robots 20 are connected through the first robot connection mechanism 31 to increase the stability of the wall, and the interconnection and power supply between the wall robots 20 are realized through the docking and plugging mechanism 33. After multiple wall robots 20 are connected to each other, they are combined to form a combined house module as shown in Figure 25.
- the wall robot 20 provided in the present application is composed of a walking mechanism and a display screen 22.
- the walking mechanism and the display screen 22 can serve as the wall of the combined house module, that is, a plurality of wall robots 20 can be assembled to form a combined house module, and the number of wall robots 20 can be determined according to the number of wall robots 20. According to the actual use requirements, the shape and structural size of the modular house module can be changed according to the actual needs.
- the walking mechanism can provide the wall robot 20 with a walking function
- the chassis 211 is provided with a power battery system 2111 that can supply power to the driving wheel assembly 212 and the display screen 22, so that the wall robot 20 has intelligent movement function, intelligent assembly function, autonomous power supply function and wall display function.
- the chassis 211 is also provided with a first robot connection mechanism 31 for connecting different wall robots 20 to enhance the stability of the wall.
- the wall robot 20 not only improves the convenience of assembling the modular house module, but also increases the expansion function of the modular house module.
- the smart house system also includes at least one table and chair robot 40, which is communicatively connected to the cloud platform 71, and has an autonomous navigation and movement function.
- the table and chair robot 40 moves to the bottom of the ceiling robot 10 according to the scheduling task.
- the table and chair robot 40 includes an intelligent mobile chassis 41 capable of autonomous navigation and movement and a table 45, wherein the table 45 includes a support frame 451, a movable frame 452, a table top 453, a third adjustment mechanism 454, and a fourth adjustment mechanism 455, wherein the support frame 451 is connected to the intelligent mobile chassis 41, the movable frame 452 is movably connected to the support frame 451 along a first direction X, the table top 453 is movably connected to the movable frame 452 along a second direction Y, the third adjustment mechanism 454 is connected between the movable frame 452 and the support frame 451, and is used In order to drive the movable frame 452 and the table board 453 to move along the first direction X, the fourth adjustment mechanism 455 is connected between the movable frame 452 and the table board 453, and is used to drive the table board 453 to move along the second direction Y.
- the support frame 451 is connected to the intelligent mobile chassis 41
- the movable frame 452 is movably connected
- the first direction X and the second direction Y have an angle, which is, for example, 30° to 150°, preferably 90°; when the angle is 90°, the first direction X and the second direction Y are perpendicular to each other, wherein the first direction X is parallel to the width direction of the table board 453, and the second direction Y is parallel to the length direction of the table board 453, that is, the table board 453 is parallel to the first direction X and the second direction Y.
- the movable frame 452 is movably connected to the support frame 451 through the cooperation of the slide groove and the slide rail
- the table board 453 is movably connected to the movable frame 452 through the cooperation of the slide groove and the slide rail.
- the table and chair robot 40 of the present application can rely on the intelligent mobile chassis 41 to navigate and move autonomously, and can transport the table 45 to the place where the table 45 is needed; the table top 453 can move along the first direction and/or the second direction under the drive of the third adjustment mechanism 454 and the fourth adjustment mechanism 455, so that the table top 453 is in the most comfortable position for office or use, which improves the use experience, and the table top 453 will not generate noise during the movement, and will not scratch the floor; when the table 45 is used, the intelligent mobile chassis 41 carries the table 45 as a whole to move, does not take up space, can adapt to different environments and venues, meets actual needs, has strong practicality, saves manpower, and improves utilization efficiency.
- the third adjustment mechanism 454 includes a third motor drive assembly 4541 and a third screw rod, the third motor drive assembly 4541 is fixed on the support frame 451, the driving end of the third motor drive assembly 4541 is connected to the third screw rod, and a first connecting block 4521 is fixed on the movable frame 452, and the first connecting block 4521 is threadedly connected to the third screw rod; when the third motor drive assembly 4541 drives the third screw rod to rotate, the movable frame 452 and the table top 453 move synchronously along the first direction X.
- the fourth adjustment mechanism 455 includes a fourth motor drive assembly 4551 and a fourth screw rod 4552. The fourth motor drive assembly 4551 is fixed on the movable frame 452.
- the driving end of the fourth motor drive assembly 4551 is connected to the fourth screw rod 4552.
- a second connecting block 4531 is fixed to the back of the table top 453.
- the second connecting block 4531 is threadedly connected to the fourth screw rod 4552.
- the support frame 451 includes at least one support leg 4511, the support leg 4511 includes a fixed section and at least one telescopic section, the end of the fixed section is connected to the bearing plate 4111, the telescopic section is movably connected to the fixed section along a third direction, and the table 45 includes a fifth adjustment mechanism (not shown), the fifth adjustment mechanism is connected between the fixed section and the telescopic section, and is used to drive the telescopic section to move up and down along the third direction, and the third direction is perpendicular to the first direction X and the second direction Y.
- the support frame 451 includes two support legs 4511, the two support legs 4511 are arranged in two pairs, and the seat 42 is located between the two support legs 4511.
- the support frame 451 further includes a fixed frame 4512, the fixed frame 4512 and the bearing plate 4111 are arranged opposite to each other up and down, the movable frame 452 is arranged above the fixed frame 4512, the fixed frame 4512 is fixedly connected between the two supporting legs 4511, and the third motor drive assembly 4541 is fixed on the fixed frame 4512.
- the fifth adjustment mechanism is, for example, an electric lifting cylinder or a combination structure of a motor and a screw rod, which can be freely selected according to actual needs.
- the intelligent mobile chassis 41 includes a supporting plate 4111, a skeleton 4117, and a first driving wheel device 4121, a second driving wheel device 4122, a driving control module 413 and a battery module 414 installed on the skeleton 4117.
- the supporting plate 4111 is fixed on the skeleton 4117, and the adjusting device, the first driving wheel device 4121, the second driving wheel device 4122, the driving control module 413 are electrically connected to the battery module 414.
- the battery module 414 provides electrical energy for the first driving wheel device 4121, the second driving wheel device 4122 and the driving control module 413.
- the first driving wheel device 4121 and the second driving wheel device 4122 are respectively arranged at two ends of the skeleton 4117, and the first driving wheel device 4121 and the second driving wheel device 4122 can turn 360° to realize the movement of the intelligent mobile chassis 41.
- the intelligent mobile chassis 41 also includes a first universal wheel group 4151 and a second universal wheel group 4152, and the first universal wheel group 4151 and the second universal wheel group 4152 are installed on the skeleton 4117, the first universal wheel group 4151 is arranged close to the first driving wheel device 4121, and the second universal wheel group 4152 is arranged close to the second driving wheel device 4122, and the first universal wheel group 4151 and the second universal wheel group 4152 are used to assist the movement of the intelligent mobile chassis 41 to ensure that the movement of the intelligent mobile chassis 41 is more stable.
- the intelligent mobile chassis 41 also includes a PLC module 416, an ultrasonic switch 417, a depth camera 418 and a navigation component 419 (such as a lidar).
- the PLC module 416 is electrically connected to the ultrasonic switch 417, the depth camera 418, the navigation component 419, the drive control module 413 and the battery module 414 respectively.
- the ultrasonic switch 417, the depth camera 418 and the navigation component 419 cooperate to realize autonomous navigation and movement of the intelligent mobile chassis 411.
- the table and chair robot 40 of this embodiment has substantially the same structure as the table and chair robot 40 of the first embodiment, except that the table and chair robot 40 also includes a seat 42 and an adjustment device.
- Figure 31 only illustrates the intelligent mobile chassis 41, the seat 42 and the adjustment device, and the table 45 is not drawn. Please refer to the first embodiment for the structure of the intelligent mobile chassis 41 and the table 45, which will not be repeated here.
- the seat 42 is placed on the bearing plate 4111, and the adjustment device is connected to the bearing plate 4111.
- the adjustment device is used to fix and/or transfer the seat 42 according to the scheduling task.
- one or more seats 42 can be placed on the intelligent mobile chassis 41, and can be freely increased or decreased according to actual needs.
- the table and chair robot 40 of the present application can rely on the intelligent mobile chassis 41 to navigate and move autonomously, and can transport the seat 42 to the site where the seat 42 is needed; and the intelligent mobile chassis 41 can use the adjustment device to fix the seat 42 during the transportation of the seat 42 to prevent the seat 42 from falling; after arriving at the destination, the seat 42 can also be transferred to the ground by the adjustment device, and the whole process is intelligent and fast; when the seat 42 is used, the seat 42 is placed on the intelligent mobile chassis 41, and the seat 42 is transferred by the intelligent mobile chassis 41 without taking up space. Therefore, the table and chair robot 40 of the present application can intelligently transport the seat 42, can adapt to different environments and sites, meet actual needs, has strong practicality, saves manpower, and improves utilization efficiency.
- the adjustment device includes a first translation drive mechanism 431 and a swing drive mechanism 432, one end of the swing drive mechanism 432 is connected to the first translation drive mechanism 431, and the other end of the swing drive mechanism 432 is connected to the seat 42, the first translation drive mechanism 431 is used to drive the swing drive mechanism 432 and the seat 42 to move horizontally, and the swing drive mechanism 432 is used to transfer the seat 42.
- the first translation drive mechanism 431 includes a first motor drive assembly 4311 (a combination structure of a motor and a reducer) and a first screw rod 4312, the first motor drive assembly 4311 is connected to the first screw rod 4312, the first screw rod 4312 is arranged along the width direction of the bearing plate 4111, the swing drive mechanism 432 is connected to the first screw rod 4312, and the first motor drive assembly 4311 drives the first screw rod 4312 to rotate to make the swing drive mechanism 432 and the seat 42 move horizontally.
- the first translation driving mechanism 431 also includes a plurality of first guide rods 4313, which are parallel to the first screw rod 4312.
- the swing driving mechanism 432 is provided with a plurality of first guide holes, and each first guide rod 4313 is respectively arranged to pass through each first guide hole, thereby improving the stability of the horizontal movement of the swing driving mechanism 432.
- the first translation drive mechanism 431 includes a drive cylinder (oil cylinder or air cylinder) and a drive shaft, the drive cylinder is connected to the drive shaft, and the swing drive mechanism 432 is connected to the drive shaft.
- the drive cylinder drives the drive shaft to telescope and move to achieve horizontal movement of the swing drive mechanism 432 and the seat 42.
- the swing drive mechanism 432 includes a second movable seat 4321, a swing arm 4322 and a swing driver 4323, one end of the swing arm 4322 is movably connected to the second movable seat 4321, the other end of the swing arm 4322 is movably connected to the seat 42, the swing driver 4323 is fixed on the second movable seat 4321, the driving end of the swing driver 4323 is connected to the swing arm 4322, the swing driver 4323 is used to drive the swing arm 4322 to move the seat 42, and the driving end of the first translation drive mechanism 431 is connected to the second movable seat 4321.
- a plurality of first guide holes penetrate the second movable seat 4321, and the second movable seat 4321 is threadedly connected to the first screw rod 4312; when the first motor drive assembly 4311 drives the first screw rod 4312 to rotate, the second movable seat 4321 moves on the carrier plate 4111.
- the swing driver 4323 is a combination structure of a motor and a reducer, the output shaft of the reducer is connected to the swing arm 4322, and the swing driver 4323 drives the swing arm 4322 to swing around the connection to transfer the seat 42 from the intelligent mobile chassis 41 to the ground, or from the ground to the intelligent mobile chassis 41.
- the swing arm 4322 includes a first swing rod 4322a and a second swing rod 4322b arranged parallel to each other, one end of the first swing rod 4322a and the second swing rod 4322b are movably connected to the second movable seat 4321, and the other ends of the first swing rod 4322a and the second swing rod 4322b are movably connected to the back of the seat plate 421 of the seat 42, and the swing driver 4323 is connected to the first swing rod 4322a or the second swing rod 4322b, and the power output by the swing driver 4323 can drive the first swing rod 4322a and the second swing rod 4322b to swing synchronously.
- the seat plate 421 of the seat 42 is used for people to sit on.
- a second connecting seat 423 is connected to the back of the seat plate 421, and the first swing arm 4322a and the second swing arm 4322b are movably connected to the second connecting seat 423;
- the second connecting seat 423 can be fixed to the seat plate 421 by bolts, and the seat 42 cannot be separated from the second connecting seat 423, or a tray is provided on the second connecting seat 423 to support the seat plate 421 of the seat 42, and the seat 42 can be separated from the second connecting seat 423, or the second connecting seat 423 and the seat plate 421 are matched by slide grooves, slide rails and fastening bolts to adjust the position of the seat 42 and increase the comfort of the seat 42.
- the adjustment device includes a second fixing mechanism 433, the second fixing mechanism 433 includes a fixing member 4331, a movable member 4332 and a fixing driver 4333, the fixing member 4331 is fixed to the carrier plate 4111, the movable member 4332 is movably arranged on the carrier plate 4111, a receiving area for receiving the chair legs 422 of the seat 42 is formed between the movable member 4332 and the fixing member 4331, the driving end of the fixing driver 4333 is connected to the movable member 4332, and the fixing driver 4333 is connected to the movable member 4332.
- the first translation drive mechanism 431 is arranged in the accommodating area and is located between the fixed part 4331 and the movable part 4332.
- the fixed member 4331 and the movable member 4332 are both L-shaped.
- the fixed member 4331 includes a first blocking beam and a second blocking beam, the first blocking beam and the second blocking beam are vertically connected to each other, the first blocking beam and the second blocking beam are combined into an L-shape, wherein the first blocking beam is arranged along the width direction of the supporting plate 4111, and the second blocking beam is arranged along the length direction of the supporting plate 4111;
- the movable member 4332 includes a third blocking beam and a fourth blocking beam, the third blocking beam and the fourth blocking beam are vertically connected to each other, the third blocking beam and the fourth blocking beam are combined into an L-shape, wherein the third blocking beam is arranged along the width direction of the supporting plate 4111, and the third blocking beam is parallel to the first blocking beam, and the fourth blocking beam is arranged along the length direction of the supporting plate 4111; when the seat 42 is placed in the accommodating area, one leg 422 of the seat 42 is close to the connection between the first blocking beam
- a baffle 4114 is fixed on the supporting plate 4111, and the second blocking beam and the fourth blocking beam are parallel to and opposite to the baffle 4114, one end of the baffle 4114 extends to the first blocking beam, and the other end of the baffle 4114 extends to the third blocking beam; when the seat 42 is placed in the accommodating area, each leg 422 of the seat 42 is in the accommodating area formed by the fixing part 4331, the movable part 4332 and the baffle 4114, the rear two legs 422 of the seat 42 are limited by the second blocking beam and the fourth blocking beam, and the front two legs 422 of the seat 42 are limited by the baffle 4114.
- a first fixed seat 4115 and a second fixed seat 4116 are further provided on the carrier plate 4111;
- the first translation drive mechanism 431 is connected to the first fixed seat 4115, the end of the first screw rod 4312 away from the first motor drive assembly 4311 is rotatably connected to the first fixed seat 4115, and both ends of the first guide rod 4313 are fixed to the first fixed seat 4115;
- the fixed driver 4333 is connected to the second fixed seat 4116, and the fixed driver 4333 can be driven by a telescopic cylinder, or by a combined structure of a motor group (a combination of a motor and a reducer) and a screw rod, for example, a fixed
- the fixed driver 4333 includes a motor group and a screw rod.
- the motor group is fixed on the second fixed seat 4116.
- One end of the screw rod is connected to the motor group, and the other end of the screw rod is rotatably connected to the second fixed seat 4116.
- the movable member 4332 is threadedly connected to the screw rod. When the motor group drives the screw rod to rotate, the movable member 4332 moves toward or away from the fixed member 4331.
- at least one second guide rod is also connected to the second fixed seat 4116.
- the movable member 4332 is provided with at least one second guide hole, and the second guide rod is arranged through the second guide hole.
- the middle part of the baffle 4114 is fixed on the first fixed seat 4115.
- the structure of the table and chair robot 40 of this embodiment is substantially the same as that of the table and chair robot 40 of the second embodiment, except that the adjustment device is different.
- the adjusting device includes a third fixing mechanism 434, which includes a support column 4341, a bearing seat 4342, a first positioning rod 4343, a second positioning rod 4344 and a positioning driver 4345.
- One end of the support column 4341 is fixed to the bearing plate 4111, and the other end of the support column 4341 is fixed to the bearing seat 4342.
- the bearing seat 4342 is used to support the back of the seat plate 421 of the chair 42.
- the first positioning rod 4343 and the second positioning rod 4344 are movably arranged at the opposite ends of the bearing seat 4342.
- the positioning driver 4345 is fixed to the support column 4341.
- the positioning driver 4345 is used to drive the first positioning rod 4343 and the second positioning rod 4344 to rest against the chair leg 422 of the seat 42 to achieve positioning, and the first positioning rod 4343 and the second positioning rod 4344 are also used to support the seat plate 421 of the chair 42.
- the support column 4341 is arranged in the vertical direction, that is, the support column 4341 is perpendicular to the supporting plate 4111, the supporting seat 4342 is fixed to the top of the support column 4341, and the supporting seat 4342 is parallel to the supporting plate 4111; when the seat 42 is placed on the intelligent mobile chassis 41, the supporting seat 4342 is used to support the seat plate 421 of the seat 42, at this time, the chair legs 422 of the seat 42 can be detached from the supporting plate 4111, or the chair legs 422 of the seat 42 can be in contact with the supporting plate 4111.
- the positioning driver 4345 is, for example, a combination structure of a motor and a gear set.
- the third fixing mechanism 434 includes a first clamping driver 4346, a second clamping driver 4347, a first clamping jaw 4348, and a second clamping jaw 4349.
- the first clamping driver 4346 and the second clamping driver 4347 are fixed to the bearing seat 4342.
- the driving end of the first clamping driver 4346 is connected to the first clamping jaw 4348, and the driving end of the second clamping driver 4347 is connected to the second clamping jaw 4349.
- the first clamping driver 4346 is used to drive the first clamping jaw 4348 to clamp one side of the seat plate 421
- the second clamping driver 4347 is used to drive the second clamping jaw 4349 to clamp the other side of the seat plate 421.
- the first clamping driver 4346 and the second clamping driver 4347 are both electric push rod mechanisms.
- One end of the first clamping jaw 4348 is hinged to the driving end of the first clamping driver 4346, and the middle part of the first clamping jaw 4348 is hinged to the first positioning rod 4343; the first clamping driver 4346 can drive the first clamping jaw 4348 to swing around the connection (the connection between the first clamping jaw 4348 and the first positioning rod 4343) to clamp the seat plate 421;
- one end of the second clamping jaw 4349 is hinged to the driving end of the second clamping driver 4347, and the middle part of the second clamping jaw 4349 is hinged to the second positioning rod 4344;
- the second clamping driver 4347 can drive the second clamping jaw 4349 to swing around the connection (the connection between the second clamping jaw 4349 and the second positioning rod 4344) to clamp the seat plate 421.
- first clamping jaw 4348 and the second clamping jaw 4349 each include a first connection portion, a second connection portion and a hook portion, one end of the second connection portion is connected to the first connection portion, the other end of the second connection portion is connected to the hook portion, the angle between the second connection portion and the first connection portion is greater than 90°, the angle between the second connection portion and the hook portion is equal to or greater than 90°, the end of the first connection portion away from the second connection portion is connected to the driving end of the first clamping driver 4346 or the second clamping driver 4347, and the connection between the first connection portion and the second connection portion is hinged to the first positioning rod 4343 or the second positioning rod 4344.
- first embodiment for the structure and function of the intelligent mobile chassis 41, which will not be repeated here.
- the structure of the table and chair robot 40 of this embodiment is substantially the same as that of the above-mentioned table and chair robot 40 , except that the adjustment device is different.
- the adjusting device includes a connecting rod transfer mechanism 435
- the connecting rod transfer mechanism 435 includes a first transfer connecting rod 4351, a second transfer connecting rod 4352, a third transfer connecting rod 4353, a cross beam 4354 and a transfer driver 4355 (for example, a combination structure of a motor and a reducer), the first transfer connecting rod 4351 and the second transfer connecting rod 4352 are arranged parallel to each other, one end of the first transfer connecting rod 4351 and the second transfer connecting rod 4352 are movably connected to the bearing plate 4111, and the first transfer connecting rod 4351 and the second transfer connecting rod 4352 are movably connected to the bearing plate 4111.
- the other end of the rod 4352 is movably connected to the third transfer link 4353, the crossbeam 4354 is fixed on the third transfer link 4353, the seat 42 is connected or placed on the crossbeam 4354, the transfer driver 4355 is fixed to the supporting plate 4111, and the driving end of the transfer driver 4355 is connected to the first transfer link 4351.
- the transfer driver 4355 is used to drive the first transfer link 4351 to swing to realize the transfer of the seat 42, for example, to transfer the seat 42 to the ground, or from the ground to the intelligent mobile chassis 41.
- a first hinge seat 4112 and a second hinge seat 4113 are fixed on the supporting plate 4111, and the first hinge seat 4112 and the second hinge seat 4113 are arranged opposite to each other along the width direction of the supporting plate 4111, one end of the first transfer link 4351 is hinged to the first hinge seat 4112, and the other end of the first transfer link 4351 is hinged to the end of the third transfer link 4353, one end of the second transfer link 4352 is hinged to the second hinge seat 4113, and the other end of the second transfer link 4352 is hinged to the trunk of the third transfer link 4353, and the end of the third transfer link 4353 away from the first transfer link 4351 and the second transfer link 4352 is fixedly connected to the crossbeam 4354, and the first transfer link 4351, the second transfer link 4352 and the third transfer link 4353 are combined into a parallelogram structure.
- the seat plate 421 of the seat 42 is fixed to the cross beam 4354 by means of bolts and screw holes, in which case the seat 42 cannot be detached from the cross beam 4354, or a tray is provided on the cross beam 4354 to support the seat plate 421 of the seat 42, in which case the seat 42 can be detached from the cross beam 4354, or the cross beam 4354 and the seat plate 421 are matched by slide grooves, slide rails and fastening bolts to adjust the position of the seat 42 and increase the comfort of the seat 42.
- the table 45 of this embodiment has the same structure and function as the table 45 of the second embodiment, that is, the table top 453 of this embodiment can be moved horizontally along the first direction X and/or the second direction Y under the drive of the third adjustment mechanism 454 and the fourth adjustment mechanism 455, which is conducive to increasing the comfort of the user, and the support legs 4511 of the table 45 can be raised and lowered under the drive of the fifth adjustment mechanism, but it is not limited to this.
- the table top 453 of the table 45 of this embodiment is fixed on the support frame 451, and the table top 453 cannot move horizontally, and only the support legs 4511 of the table 45 can be raised and lowered, or both the table top 453 and the support legs 4511 cannot move.
- the corresponding structure and function can be freely increased or decreased according to actual needs.
- the structure of the table and chair robot 40 of this embodiment is roughly the same as that of the above-mentioned table and chair robot 40, and the difference lies in the different adjustment device.
- the adjustment device includes a mechanical arm 436, and the mechanical arm 436 includes a plurality of movable arms 4361 that are movably connected in sequence and a plurality of movable drivers 4362 that respectively drive each movable arm 4361.
- the plurality of movable drivers 4362 cooperate to drive the plurality of movable arms 4361 to fold to a state parallel to each other or drive the plurality of movable arms 4361 to unfold and transfer the seat 42.
- each movable arm 4361 is in the shape of a plate, and the plurality of movable arms 4361 can be folded to a state parallel to each other, so as to avoid the mechanical arm 436 from occupying too much space under the table 45, and improve the space utilization rate.
- the robotic arm 436 includes three movable arms 4361 and three movable drivers 4362; the end of the first movable arm 4361 is connected to the intelligent mobile chassis 41, and a movable driver 4362 is connected at the connection between the first movable arm 4361 and the intelligent mobile chassis 41, and the movable driver 4362 is used to drive the first movable arm 4361 to move around the hinge; one end of the second movable arm 4361 is connected to the first movable arm 4361, and the other end of the second movable arm 4361 is connected to the third movable arm 4361, and a movable driver 4362 is connected at the connection between the second movable arm 4361 and the first movable arm 4361, and the movable driver 4362 is used to drive the second movable arm 4361 to move around the connection; the third movable arm 4361 is connected to the connection between the second movable arm 4361 and the second movable arm 4361, and the movable driver 4362 is used to drive the third movable
- a second translation drive mechanism (not shown) is provided in the intelligent mobile chassis 41, and the second translation drive mechanism includes a third sliding seat 4110 and a second translation drive, the driving end of the second translation drive is connected to the third sliding seat 4110, a long strip of movable holes 109 are provided on the bearing plate 4111, the third sliding seat 4110 is arranged corresponding to the movable holes 109, the end of the mechanical arm 436 is connected to the third sliding seat 4110, and the second translation drive is used to drive the third sliding seat 4110 to move to change the position of the mechanical arm 436.
- the movable hole 109 passes through the bearing plate 4111, and the movable hole 109 is arranged along the length direction of the bearing plate 4111 (arranged along the second direction Y); when a plurality of seats 42 are placed on the intelligent mobile chassis 41, the second translation drive can drive the mechanical arm 436 to pass through different seats 42 through the third sliding seat 4110, so as to facilitate the mechanical arm 436 to transfer different seats 42.
- the second translation drive is a telescopic cylinder structure or a combination structure of a motor and a screw rod, which can be freely selected according to actual needs.
- the adjustment device includes at least one supporting mechanism 437, the supporting mechanism 437 includes a column 4371, a pallet 4372 and a pallet driver 4373, the end of the column 4371 is connected to the supporting plate 4111, the pallet 4372 is movably connected to the column 4371, the pallet driver 4373 is fixed to the column 4371, the driving end of the pallet driver 4373 is connected to the pallet 4372, the pallet driver 4373 is used to drive the pallet 4372 to flip, and the robotic arm 436 is used to transfer the seat 42 to the pallet 4372, or move the seat 42 away from the pallet 4372.
- the supporting mechanism 437 includes a column 4371, a pallet 4372 and a pallet driver 4373, the end of the column 4371 is connected to the supporting plate 4111, the pallet 4372 is movably connected to the column 4371, the pallet driver 4373 is fixed to the column 4371, the driving end of the pallet driver 4373 is connected to the pallet 4372, the pallet driver 4373 is used to drive the pallet 4372 to flip, and the robotic arm 4
- the pallet driver 4373 drives the pallet 4372 to a horizontal state, and the robotic arm 436 then transfers the seat 42 to the pallet 4372; when the seat 42 needs to be transferred to the ground, the robotic arm 436 moves to lift the seat 42 on the pallet 4372, and then transfers it to the ground.
- the table 45 of this embodiment has the same structure and function as the table 45 of the second embodiment, that is, the table top 453 of this embodiment can be moved horizontally along the first direction X and/or the second direction Y under the drive of the third adjustment mechanism 454 and the fourth adjustment mechanism 455, which is conducive to increasing the comfort of the user, and the support legs 4511 of the table 45 can be raised and lowered under the drive of the fifth adjustment mechanism; when the robotic arm 436 transfers the seat 42 from the pallet 4372 to the ground, or from the ground to the pallet 4372, the support legs 4511 rise under the drive of the fifth adjustment mechanism to prevent the seat 42 from colliding with the table top 453 during the transfer process; when the seat 42 is transferred, the support legs 4511 descend under the drive of the fifth adjustment mechanism.
- the structure of the table and chair robot 40 of this embodiment is substantially the same as that of the table and chair robot 40 described above, except that the adjustment device is different.
- the adjustment device includes a first adjustment mechanism (not shown) and a second adjustment mechanism (not shown), the first adjustment mechanism is used for the seat 42 to move along the first direction X, and the second adjustment mechanism is used for the seat 42 to move along the second direction Y, the first direction X and the second direction Y have an angle, the angle is, for example, 30° to 150°, preferably 90°; when the angle is 90°, the first direction X and the second direction Y are perpendicular to each other, wherein the first direction X is parallel to the width direction of the carrier plate 4111, the second direction Y is parallel to the length direction of the carrier plate 4111, the carrier plate 4111 is parallel to the first direction X and the second direction Y, and the carrier plate 4111 is parallel to the table board 453.
- the functions and structures of the first adjustment mechanism is used for the seat 42 to move along the first
- a position adjustment mechanism is provided on the seat 42, and the position adjustment mechanism is electrically connected to the first adjustment mechanism and the second adjustment mechanism respectively, and the position adjustment mechanism is used to adjust the position of the seat 42.
- the position adjustment mechanism is, for example, an operating rod 424 for controlling the direction and an electric button or knob 425, and the operating rod 424 and the electric button or knob 425 can control the first adjustment mechanism and the second adjustment mechanism to be powered on and start, and control the direction of movement of the seat 42.
- the seat 42 in this embodiment is, for example, a sofa chair, which is more comfortable.
- the smart house system includes the above-mentioned multiple table and chair robots 40, table and chair robot 40 table and chair robot 40 table board 453 table and chair robot 40 table board 453 multiple table and chair robots 40 move to a matrix arrangement according to the scheduling task, and the third adjustment mechanism 454 and the fourth adjustment mechanism 455 of each table 45 drive each table board 453 to move to achieve splicing of multiple table boards 453, which can be temporarily spliced into a larger table top in rooms such as conference tables, office desks, leisure rooms, tea break rooms or outdoors; when the large table top is used up, multiple table and chair robots 40 can move and disperse autonomously, or move to other places, and can be used in a variety of environments, with high practicality and able to meet actual needs.
- the present application provides a power supply robot 50, which is connected to the cloud platform 71 for communication.
- the power supply robot 50 includes a mobile body 51 and a power supply mechanism 52 installed on the mobile body 51.
- the power supply mechanism 52 includes a third pair of joints 521, a second buffer mechanism 522 and a cable harness 523.
- the third pair of joints 521 is connected to the second buffer mechanism 522, and the second buffer mechanism 522 is connected to the mobile body 51.
- the second buffer mechanism 522 is used to provide a mobile buffer space for the third pair of joints 521; one end of the cable harness 523 is electrically connected to the third pair of joints 521, and the other end of the cable harness 523 is used to connect to the mains; the power supply robot 50 is used to power the ceiling robot 10 and/or the wall robot 20, and the table and chair robot 40.
- the power supply robot 50 can autonomously navigate and move according to the scheduling task to power or charge the ceiling robot 10, the wall robot 20, and the table and chair robot 40.
- the present application installs the power supply mechanism 52 on the mobile body 51, so that the power supply robot can autonomously move to the vicinity of the mechanical equipment 62 (ceiling robot 10, wall robot 20, table and chair robot 40) that needs to be charged, and charge the mechanical equipment 62 that lacks power; and by setting a second buffer mechanism 522 to provide a mobile buffer space for the third docking connector 521, even if there is a certain deviation in the alignment of the charging connector, the docking connector of the power supply mechanism 52 can also be accurately combined with the connector of the mechanical equipment 62 that lacks power through the mobile buffer space provided by the second buffer mechanism 522, thereby eliminating the need for manual combination, reducing labor costs and improving safety, so that the power supply robot can be used in unattended and low-space power supply scenarios where electrical equipment is not convenient for manual operation.
- the mechanical equipment 62 ceiling robot 10, wall robot 20, table and chair robot 40
- the second buffer mechanism 522 includes a connecting rod 5221, a second slider 5222, a second slide rail 5223, and a reset member 5224.
- One end of the connecting rod 5221 is movably connected to the third joint 521, and the other end of the connecting rod 5221 is movably connected to the second slider 5222.
- the second slider 5222 is mounted on the second slide rail 5223 and can slide on the second slide rail 5223.
- the second slide rail 5223 is connected to the mobile body 51, and the reset member 5224 has a force to make the second slider 5222 slide close to the third joint 521.
- the second buffer mechanism 522 adopts the connecting rod 5221, the second slider 5222, the second slide rail 5223, the reset member 5224 and other structures, so that the second buffer mechanism 522 can provide a buffer space for translation for the third joint 521 to prevent the direction of the third joint 521 from changing.
- the number of the connecting rod 5221, the second slider 5222, the second slide rail 5223 and the reset member 5224 are all multiple, so that the second buffer mechanism 522 can provide a buffer space for translation of the third pair of joints 521 in multiple directions (for example, up and down directions, left and right directions, and front and back directions).
- the number of the connecting rods 5221 is six
- the number of the second slider 5222, the second slide rail 5223 and the reset member 5224 are all three
- every two connecting rods 5221 cooperate with a second slider 5222, the second slide rail 5223 and the reset member 5224 to form an assembly
- the arc interval between the three assemblies is 120°.
- the second buffer mechanism 522 can also use multiple sliding assemblies, such as a sliding assembly in the up and down direction cooperates with a sliding assembly in the front and back direction, so that a buffer space for translation can be provided for the third pair of joints 521 in multiple directions (for example, up and down directions and left and right directions).
- the end of the connecting rod 5221 is movably connected to the third joint 521 and the second slider 5222 through a rotating shaft or a universal ball joint.
- one end of the connecting rod 5221 is movably connected to the third joint 521 through a rotating shaft, and the other end of the connecting rod 5221 is movably connected to the second slider 5222 through a rotating shaft.
- one end of the connecting rod 5221 is movably connected to the third joint 521 through a universal ball joint, and the other end of the connecting rod 5221 is movably connected to the second slider 5222 through a universal ball joint.
- a guide column 5125 is provided on the mobile body 51, the second slider 5222 is sleeved on the guide column 5125 and can slide on the guide column 5125, and the reset member 5224 is sleeved on the guide column 5125, one end of the reset member 5224 abuts against the mobile body 51, and the other end of the reset member 5224 abuts against the second slider 5222.
- the reset member 5224 is a spring, which is sleeved on the guide column 5125, and the guide column 5125 is parallel to the second slide rail 5223.
- the power supply mechanism 52 further includes a cable harness 523, one end of which is electrically connected to the third pair of connectors 521, and the other end of which is used to be connected to the mains, so that the mains can supply power to the third pair of connectors 521.
- the mobile body 51 is also electrically connected to the cable harness 523, which can provide the mobile body 51 with electric energy for movement, and on the other hand, enables the controller on the mobile body 51 to control the state of the mains supplying power to the third pair of connectors 521.
- the mobile body 51 includes a mobile base 511 and a sliding mechanism 512 mounted on the mobile base 511, and the sliding mechanism 512 is connected to the power supply mechanism 52 and is used to drive the power supply mechanism 52 to slide.
- the sliding direction of the sliding mechanism 512 is parallel to the guide column 5125 and the second slide rail 5223.
- the sliding mechanism 512 includes a driving mechanism 5121, a third slider 5122, a third slide rail 5123 and a transmission assembly (not shown), the driving mechanism 5121 and the third slide rail 5123 are connected to the mobile base 511, the third slider 5122 is connected to the third slide rail 5123, the third slider 5122 can slide on the third slide rail 5123, the power supply mechanism 52 is connected to the third slider 5122, and the driving mechanism 5121 is connected to the third slide rail 5123 through the transmission assembly.
- the block 5122 is connected and used to drive the third slider 5122 to slide.
- the driving mechanism 5121 is a driving motor, and the transmission assembly can be a screw rod structure.
- the driving mechanism 5121 can be a telescopic cylinder or a telescopic oil cylinder, and the telescopic rod of the telescopic cylinder or the telescopic oil cylinder is directly connected to the third slider 5122, so that the transmission assembly is not required.
- the third slide rail 5123 is provided with a position detection sensor for detecting the sliding distance of the third slider 5122 to prevent the power supply mechanism 52 from not sliding into place or sliding too far.
- a mounting bracket 5124 is provided on the third slider 5122, the power supply mechanism 52 is mounted on the mounting bracket 5124, and the mounting bracket 5124 is connected to the third slider 5122.
- the second slide rail 5223 of the second buffer mechanism 522 is mounted on the mounting bracket 5124, and the guide column 5125 is mounted on the mounting bracket 5124.
- the mobile body 51 includes a housing 513, which is connected to the mobile base 511 to form a receiving chamber 204.
- the power supply mechanism 52 and the sliding mechanism 512 are both located in the receiving chamber 204.
- the housing 513 is provided with a second opening 201 that cooperates with the third pair of connectors 521.
- the sliding mechanism 512 is used to drive the third pair of connectors 521 to extend and retract at the second opening 201.
- the third pair of connectors 521 can be retracted into the housing 513 without leaking out, thereby increasing safety.
- one end of the cable harness 523 away from the third pair of connectors 521 is exposed from the housing 513, which is convenient for connecting to the mains.
- a shielding plate 5131 and a driver 5132 are provided on the housing 513, the shielding plate 5131 is located at the second opening 201, and the driver 5132 is used to drive the shielding plate 5131 to close or open the second opening 201.
- the shielding plate 5131 By providing the shielding plate 5131, when power supply is not needed, the third pair of connectors 521 can be retracted into the housing 513, and the shielding plate 5131 shields the second opening 201, further increasing safety.
- the housing 513 is also provided with a partition 5133 and a shielding cover 5134, the power supply mechanism 52 is located below the partition 5133, the cable harness 523 is located between the partition 5133 and the shielding cover 5134, one end of the cable harness 523 passes through the partition 5133 and is connected to the third pair of connectors 521, and the shielding cover 5134 is used to shield the electromagnetic field generated by the cable harness 523, thereby improving safety.
- a plurality of wheels 514 are further provided at the bottom of the mobile body 51, and the wheels 514 are used to drive the mobile body 51 to move.
- the mobile body 51 is also provided with positioning elements, image sensors, radar and other sensors, so as to facilitate the mobile body 51 to automatically find the mechanical equipment 62 that needs to be charged.
- the ceiling robot 10 and/or the wall robot 20, and the table and chair robot 40 are provided with a fourth pair of connectors 61, and the third pair of connectors 521 cooperate with the fourth pair of connectors 61 to achieve electrical connection.
- the present application also provides a power supply system, including a fourth pair of connectors 61 and a power supply robot as described above.
- the fourth pair of connectors 61 cooperates with the third pair of connectors 521, and the fourth pair of connectors 61 is provided with a guide slope 611 ( Figures 60 to 62) on the side facing the third pair of connectors 521.
- One of the third pair of connectors 521 and the fourth pair of connectors 61 is a plug, and the other is a socket, so that the third pair of connectors 521 and the fourth pair of connectors 61 can be combined and powered.
- the second buffer mechanism 522 When the third pair of connectors 521 is docked with the fourth pair of connectors 61, the second buffer mechanism 522 provides a buffer space for movement to the third pair of connectors 521. If there is a certain deviation, the guide slope 611 will force the third pair of connectors 521 to move within the range of the buffer space until the third pair of connectors 521 and the fourth pair of connectors 61 are docked.
- the third pair of connectors 521 is provided with a heat dissipation hole 202 that passes through the third pair of connectors 521, and the fourth pair of connectors 61 are provided with ventilation holes 203 corresponding to the heat dissipation holes 202 on opposite sides.
- the fourth pair of connectors 61 is provided with a heat dissipation fan 612 at at least one of the ventilation holes 203.
- the high temperature resistant material PEEK selected for the third pair of connectors 521 and the fourth pair of connectors 61 ensures that the heat generated during the power supply process is transferred in time.
- the power supply system further includes a mechanical device 62, a cable reel 63, and a wire 64.
- the fourth pair of connectors 61 is installed on the mechanical device 62 and used to charge the mechanical device 62.
- the wire 64 is wound on the cable reel 63.
- One end of the wire 64 is connected to the cable harness 523, and one end of the wire 64 is connected to the mains.
- the wire 64 and the cable harness 523 are detachably connected to facilitate replacement of wires 64 of different lengths.
- the wire 64 and the cable harness 523 are electrically connected using an aviation plug and an aviation socket.
- the smart house system of the present invention performs data management and monitoring through a cloud platform and modular control of an intelligent scheduling system to realize modular rapid assembly of ceiling robots and wall robots into a house or dismantle a house, saving manpower and material resources, and is convenient for transportation and storage. It will not permanently occupy land resources and space, is low-carbon and environmentally friendly, has the advantages of high integration and intelligence, and is both scientific and demonstrative with the characteristics of rapid promotion.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Manipulator (AREA)
Abstract
本发明的智能房屋系统包括云平台以及与云平台通讯连接的智能调度系统、至少一个顶棚机器人和至少一个墙面机器人,智能调度系统用于向云平台发送调度任务,调度任务包括预设的机器人拼接和/或拆解顺序,云平台将调度任务发至至少一个顶棚机器人和至少一个墙面机器人,顶棚机器人与墙面机器人根据调度任务拼接成房屋或拆解房屋;墙面机器人包括行走机构,行走机构包括底盘,底盘上设有第一机器人连接机构,第一机器人连接机构包括第一对接装置和第二对接装置,并分别设置于底盘的不同位置;一个墙面机器人上的第一对接装置能够与另一个墙面机器人上的第二对接装置相连。
Description
本发明涉及房屋机器人技术领域,特别涉及一种智能房屋系统。
以高科技、绿色低碳为发展理念和导向,发展循环经济;装配式移动房屋开始兴起,现有的房屋包括墙体和连接在墙体顶部的顶棚结构,墙体的底部通过锚钉固定在地上,用以固定房屋,防止房屋因外部环境影响而发生偏移;当需要整体转移房屋,且房屋所处位置处于较空旷的环境中时,可通过人工配合吊装车将房屋整体吊起,并短距离转移房屋位置;当需要整体转移房屋,且房屋所处位置处于建筑的内部或者周围空间较小的环境中时,需要拆卸墙体与顶棚结构,之后配合运输车转移墙体和顶棚结构,运到目的地后再组装墙体与顶棚结构。
在转移房屋的过程中,需要人工进行组合和拆装,还需要配合吊装车或运输车配合才能实现房屋位置转移,极为费时费力,且转移效率低。
为解决现有技术中存在的上述缺陷,本发明旨在提供一种智能房屋系统,能够快速拼接成房屋或拆解房屋,节省人力、物力,低碳环保。
本发明提供一种智能房屋系统,包括云平台以及与所述云平台通讯连接的智能调度系统、至少一个顶棚机器人和至少一个墙面机器人,所述智能调度系统用于向所述云平台发送调度任务,所述调度任务包括预设的机器人拼接和/或拆解顺序,所述云平台将所述调度任务发至至少一个所述顶棚机器人和至少一个所述墙面机器人,所述顶棚机器人与所述墙面机器人根据所述调度任务拼接成房屋或拆解所述房屋;所述墙面机器人包括行走机构,所述行走机构包括底盘,所述底盘上设有第一机器人连接机构,所述第一机器人连接机构包括第一对接装置和与所述第一对接装置相配合的第二对接装置,所述第一对接装置和所述第二对接装置分别设置于所述底盘上的不同位置;一个所述墙面机器人上的第一对接装置能够与另一个所述墙面机器人上的第二对接装置相连,以实现两个所述墙面机器人相互拼接。
可选地,所述调度任务还包括至少一条第一位移路径和至少一条第二位移路径,所述顶棚机器人和所述墙面机器人具有自主导航移动和避障功能,所述顶棚机器人根据所述第一位移路径移动至第一目标位置,所述墙面机器人根据所述第二位移路径移动至第二目标位置,使所述顶棚机器人的墙体与所述墙面机器人完成拼接。
可选地,所述调度任务还包括至少一条第三位移路径,所述智能房屋系统包括至少两个所述墙面机器人,至少一个所述墙面机器人根据所述第三位移路径移动至第三目标位置,使两个所述墙面机器人完成对接。
可选地,所述调度任务还包括对接任务,当机器人完成对接时,所述顶棚机器人与所述墙面机器人根据所述对接任务完成相互锁合固定,至少两个所述墙面机器人根据所述对接任务完成相互锁合固定。
可选地,所述智能房屋系统还包括数字孪生系统,所述数字孪生系统与所述云平台通讯连接,所述数字孪生系统用于实现所述顶棚机器人和所述墙面机器人数字化模型实时状态映射、状态跟踪及行为预测。
可选地,所述顶棚机器人和/或所述墙面机器人设有显示屏幕,所述智能房屋系统还包括视频推送系统,所述视频推送系统与所述云平台通讯连接,所述视频推送系统用于向所述云平台发送视频播放任务,所述视频播放任务包括单个屏幕视频播放任务和/或多个屏幕视频播放任意拼接长分辨率播放任务,所述顶棚机器人和/或所述墙面机器人根据所述视频播放任务控制一个所述显示屏幕播放视频,或者控制至少两个所述显示屏幕拼接长分辨率播放视频。
可选地,所述智能房屋系统还包括智能终端设备,所述智能终端设备与所述云平台通讯连接,所述智能终端设备设有人机交互界面,所述人机交互界面用于输入控制指令,所述控制指令包括其中至少一种:机器人拼接启动指令、机器人拆解启动指令、视频推送启动指令、机器人移动启动指令和机器人肢体启动指令。
可选地,所述智能调度系统向所述云平台发送拼接任务,所述云平台将所述拼接任务下发到至少一个所述顶棚机器人和至少一个所述墙面机器人;所述顶棚机器人和所述墙面机器人接收到命令,确认是否可以进行拼接,如果可以拼接,则所述顶棚机器人和所述墙面机器人启动;所述智能调度系统将所述拼接任务分解为所述调度任务,并发送至所述云平台,所述云平台将所述调度任务分解为多条位移任务,并发送到至少一个所述顶棚机器人和至少一个所述墙面机器人,至少一个所述顶棚机器人和至少一个所述墙面机器人根据所述位移任务移动至目标位置。
可选地,至少一个所述顶棚机器人和至少一个所述墙面机器人在移动过程中实时向所述云平台上报位姿信息,所述云平台存储所述顶棚机器人和/或所述墙面机器人的时序数据,并将所述时序数据发送至所述智能调度系统,所述智能调度系统获取所述顶棚机器人和/或所述墙面机器人实时位姿,并以此确认下次所述调度任务及实时监控。
可选地,当所述顶棚机器人和所述墙面机器人成功完成所述位移任务时,所述智能调度系统向所述云平台发送对接任务,所述云平台下发对接任务至至少一个所述顶棚机器人和至少一个所述墙面机器人,使所述顶棚机器人与所述墙面机器人完成相互锁合固定以及使至少两个所述墙面机器人根据所述对接任务完成相互锁合固定。
可选地,所述顶棚机器人包括第一墙体、第二墙体和顶棚,所述第一墙体与所述第二墙体相对设置,所述第一墙体和所述第二墙体的顶部可活动地连接于所述顶棚,所述第一墙体和所述第二墙体的底部设有舵轮驱动装置,所述舵轮驱动装置用于根据所述调度任务驱使所述顶棚机器人整体移动。
可选地,所述顶棚包括固定棚以及安装在所述固定棚内的至少一个活动棚和至少一个伸展驱动机构,所述固定棚连接在所述第一墙体和所述第二墙体上,所述固定棚的至少一侧边设有开口,所述伸展驱动机构的驱动端与所述活动棚连接,所述伸展驱动机构用于根据所述调度任务驱使所述活动棚从所述开口伸出。
可选地,所述墙面机器人包括设置于所述行走机构上的显示屏幕,所述行走机构包括驱动轮组件,所述驱动轮组件设置于所述底盘的底部并与所述底盘相连,所述显示屏幕设置于所述底盘上方并与所述底盘相连;所述底盘内设有动力电池系统,所述动力电池系统与所述驱动轮组件和所述显示屏幕电连接;所述行走机构用于根据所述调度任务驱使所述墙面机器人整体移动实现房屋拼接或拆解。
可选地,所述底盘上设有对接插电机构,所述对接插电机构包括插电伸缩驱动装置、第一对接头以及与所述第一对接头相匹配的第二对接头,所述第一对接头和所述第二对接头中的其中一者为对接插头,所述第一对接头和所述第二对接头中的另外一者为与所述对接插头相匹配的对接插座;所述插电伸缩驱动装置与所述第一对接头相连,所述插电伸缩驱动装置用于驱动所述第一对接头相对于所述底盘做水平伸缩运动;所述第一对接头和所述第二对接头均与所述动力电池系统电连接,一个所述墙面机器人上的第一对接头能够与另一个所述墙面机器人上的第二对接头相连,以实现两个所述墙面机器人之间的电连接。
可选地,所述顶棚机器人包括第二机器人连接机构,所述第二机器人连接机构与所述第一机器人连接机构结构相同,所述墙面机器人上的第一对接装置能够与所述顶棚机器人上的第二对接装置相连,以实现所述墙面机器人与所述顶棚机器人相互拼接。
可选地,所述智能房屋系统还包括至少一个桌椅机器人,所述桌椅机器人与所述云平台通讯连接,所述桌椅机器人具有自主导航移动功能,所述桌椅机器人根据所述调度任务移动至所述顶棚机器人的下方。
可选地,所述桌椅机器人包括能够自主导航移动的智能移动底盘和桌子,所述桌子包括支撑架、活动架、桌板、第三调节机构和第四调节机构,所述支撑架连接在所述智能移动底盘上,所述活动架沿第一方向可活动地连接在所述支撑架上,所述桌板沿第二方向可活动地连接在所述活动架上,所述第三调节机构连接于所述活动架与所述支撑架之间,并用于驱使所述活动架和所述桌板沿所述第一方向移动,所述第四调节机构连接于所述活动架与所述桌板之间,并用于驱使所述桌板沿所述第二方向移动,所述第一方向与所述第二方向具有一夹角。
可选地,所述智能移动底盘设有承载板,所述桌椅机器人还包括座椅和调节装置,所述座椅摆放在所述承载板上,所述调节装置连接在所述承载板上,所述调节装置用于根据所述调度任务固定和/或转移所述座椅。
可选地,所述智能房屋系统还包括多个桌椅机器人,多个所述桌椅机器人根据所述调度任务移动至呈矩阵排布,且各所述桌子的所述第三调节机构和所述第四调节机构驱使各所述桌板移动实现多个所述桌板拼接。
可选地,所述智能房屋系统还包括供电机器人,所述供电机器人与所述云平台通讯连接,所述供电机器人包括移动主体以及安装于所述移动主体上的供电机构,所述供电机构包括第三对接头、第二缓冲机构以及电缆线束,所述第三对接头与所述第二缓冲机构连接,所述第二缓冲机构与所述移动主体连接,所述第二缓冲机构用于为所述第三对接头提供移动缓冲空间,所述电缆线束的一端与所述第三对接头电性连接,所述电缆线束的另一端用于连接至市电;所述供电机器人用于为所述顶棚机器人和/或所述墙面机器人供电。
可选地,所述第二缓冲机构包括连接杆、第二滑块、第二滑轨以及复位件,所述连接杆的一端与所述第三对接头活动连接,所述连接杆的另一端与所述第二滑块活动连接,所述第二滑块安装于所述第二滑轨上并能够在所述第二滑轨上滑动,所述第二滑轨与所述移动主体连接,所述复位件具有使所述第二滑块靠近所述第三对接头滑动的作用力;所述顶棚机器人和/或所述墙面机器人上设有第四对接头,所述第三对接头与所述第四对接头相互配合实现电性连接。
本发明的智能房屋系统通过云平台进行数据管理和监控以及智能调度系统模块化控制实现顶棚机器人与墙面机器人模块化快速拼接成房屋或将拆解房屋,节省人力、物力,而且运输存储方便,不会永久占据土地资源和空间,低碳环保,具有集成化和智能化高等优点,兼具科技性和展示性具备快速推广特性。
图1是本申请的智能房屋系统的示意图。
图2是本申请的顶棚机器人与墙面机器人拼接形成房屋的立体结构示意图。
图3是本申请的智能房屋系统进行房屋拼接的流程示意图。
图4是本申请的顶棚机器人的立体结构示意图。
图5是本申请的舵轮驱动装置的立体结构示意图。
图6是本申请的顶棚机器人的第一墙体向着第二墙体平移后的结构示意图。
图7是本申请的第一平移驱动装置或第二平移驱动装置的立体结构示意图。
图8是本申请的顶棚机器人的第一墙体相对顶棚旋转后的结构示意图。
图9是本申请的第一墙体与顶棚连接处的结构示意图。
图10是本申请的第一锚固装置的立体结构示意图。
图11是本申请的顶棚机器人的顶棚处于展开状态的结构示意图。
图12是本申请的顶棚处于展开状态的俯视结构示意图。
图13是本申请的伸展驱动机构的立体结构示意图。
图14是本申请的墙面机器人的立体结构示意图。
图15为图14中行走机构在伸缩轮组件缩回时的结构示意图。
图16是图15所示的行走机构在伸缩轮组件缩回时的仰视图。
图17是图14中行走机构在伸缩轮组件伸出时的结构示意图。
图18是图17中伸缩轮组件与连杆机构的连接结构示意图。
图19是图18中伸缩轮组件的结构示意图。
图20是图18的侧视图。
图21为图20中A位置处的结构放大示意图。
图22为本申请的锚固机构在与固定机构卡合前的结构示意图。
图23为本申请的第一机器人连接机构的结构示意图。
图24为本申请的对接插电机构的结构示意图。
图25为本申请的组合房屋模块的俯视图。
图26是图25的截面示意图。
图27是本申请第一实施例的桌椅机器人的立体结构示意图。
图28是本申请第一实施例的智能移动底盘的立体结构示意图。
图29是本申请第一实施例的智能移动底盘的拆分结构示意图。
图30是本申请第一实施例的桌子的仰视结构示意图。
图31是本申请第二实施例的桌椅机器人的局部立体结构示意图。
图32是本申请第二实施例的调节装置与座椅配合时的立体结构示意图。
图33是本申请第二实施例的调节装置与座椅配合时的后视结构示意图。
图34是本申请第三实施例的桌椅机器人的立体结构示意图。
图35是本申请第三实施例的桌椅机器人的正视结构示意图。
图36是本申请第三实施例的第二固定机构的结构示意图。
图37是本申请第四实施例的桌椅机器人的立体结构示意图。
图38是本申请第四实施例的桌椅机器人的正视体结构示意图。
图39是本申请第四实施例的桌椅机器人的侧视体结构示意图。
图40是本申请第四实施例的连杆转移机构将座椅转移出承载板时的侧视体结构示意图。
图41是本申请第四实施例的桌椅机器人的立体结构示意图。
图42至图44是本申请第四实施例的机械臂将座椅转移至地面的流程示意图。
图45是本申请第六实施例的桌椅机器人的侧视结构示意。
图46是本申请第六实施例的桌椅机器人的俯视结构示意图。
图47是本申请第七实施例的多个桌椅机器人拼接后的立体结构示意图。
图48是本申请中供电系统充电时的结构示意图。
图49是本申请中供电系统充电时局部的俯视立体结构示意图。
图50是本申请中供电系统充电时局部的仰视立体结构示意图。
图51是本申请中供电系统未充电时局部的俯视立体结构示意图。
图52是本申请中供电机器人的主视拆分结构示意图之一。
图53是本申请中供电机器人的后视拆分结构示意图之一。
图54是本申请中供电机器人的主视拆分结构示意图之二。
图55是本申请中供电机器人的后视拆分结构示意图之二。
图56是本申请中供电机构的主视立体结构示意图。
图57是本申请中供电机构的后视立体构示意图。
图58是本申请中供电机构的主视拆分结构示意图。
图59是本申请中供电机构的后视拆分构示意图。
图60是本申请中第四对接头的侧视立体结构示意图。
图61是本申请中第四对接头的正视立体构示意图。
图62是本申请中第四对接头的仰视立体结构示意图。
本申请提供了一种智能房屋系统。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。为了便于本领域技术人员的理解,本申请通过以下实施例对本申请提供的技术方案的具体实现过程进行说明。
如图1、图2和图3所示,智能房屋系统包括云平台71以及与云平台71通讯连接的智能调度系统72、至少一个顶棚机器人10和至少一个墙面机器人20,智能调度系统72用于向云平台71发送调度任务,调度任务包括预设的机器人拼接和/或拆解顺序,云平台71将调度任务发至至少一个顶棚机器人10和至少一
个墙面机器人20,顶棚机器人10与墙面机器人20根据调度任务拼接成房屋或拆解房屋。在本实施例中,云平台71能够统一管理各机器人和相关数据管理,实现机器人与云端双向通讯,同时对各机器人的状态数据进行监控,还能为其它系统(智能调度系统72、视频推送系统74或数字孪生系统73)提供机器人状态数据;智能调度系统72能实现机器人高效有序位置移动及模块化拼接或拆解,实现各机器人自主避障导航及交通管制。
本申请的智能房屋系统通过云平台71进行数据管理和监控以及智能调度系统72模块化控制实现顶棚机器人10与墙面机器人20模块化快速拼接成房屋或将拆解房屋,节省人力、物力,而且运输存储方便,不会永久占据土地资源和空间,低碳环保,具有集成化和智能化高等优点,兼具科技性和展示性具备快速推广特性。
可选地,调度任务还包括至少一条第一位移路径和至少一条第二位移路径,顶棚机器人10和墙面机器人20具有自主导航移动和避障功能,顶棚机器人10根据第一位移路径移动至第一目标位置,墙面机器人20根据第二位移路径移动至第二目标位置,使顶棚机器人10的墙体与墙面机器人20完成拼接,即完成了拼接任务,此时顶棚机器人10的墙体与墙面机器人20组合成一个墙壁。调度任务还包括至少一条第三位移路径,智能房屋系统包括至少两个墙面机器人20,至少一个墙面机器人20根据第三位移路径移动至第三目标位置,使两个墙面机器人20完成对接,即完成了拼接任务,此时两个墙面机器人20组合成一个墙壁。调度任务还包括对接任务,当机器人完成拼接时,顶棚机器人10与墙面机器根据对接任务完成相互锁合固定,至少两个墙面机器人20根据对接任务完成相互锁合固定。智能房屋系统还包括数字孪生系统73,数字孪生系统73与云平台71通讯连接,数字孪生系统73用于实现顶棚机器人10和墙面机器人20数字化模型实时状态映射、状态跟踪及行为预测。
可选地,顶棚机器人10和/或墙面机器人20设有显示屏幕,智能房屋系统还包括视频推送系统74,视频推送系统74与云平台71通讯连接,视频推送系统74用于向云平台71发送视频播放任务,视频播放任务包括单个屏幕视频播放任务和/或多个屏幕视频播放任意拼接长分辨率播放任务,顶棚机器人10和/或墙面机器人20根据视频播放任务控制一个显示屏幕播放视频,或者控制至少两个显示屏幕拼接长分辨率播放视频。本申请的智能房屋系统能实现顶棚机器人10和/或墙面机器人20在非拼接状态下,在指定位置播放宣传片,在拼装状态下任意位置为临时会议室内提供墙面的智能显示功能。
可选地,智能房屋系统还包括智能终端设备75,智能终端设备75与云平台71通讯连接,智能终端设备75设有人机交互界面,人机交互界面用于输入控制指令,控制指令包括其中至少一种:机器人拼接启动指令、机器人拆解启动指令、视频推送启动指令、机器人移动启动指令和机器人肢体启动指令。在本实施例中,智能终端设备75设置有简易清晰的人机交互界面,屏蔽了底层的复杂度,帮组管理或云维人员快捷地完成管理房屋的拼接、对接、拆解、控制、视频推送等功能。
可选地,如图3所示,房屋拼接具体步骤包括:在智能终端设备75的人机交互界面输入机器人拼接启动指令,开始拼接;智能调度系统72向云平台71发送拼接任务,云平台71将拼接任务下发至至少一个顶棚机器人10和至少一个墙面机器人20;顶棚机器人10和墙面机器人20接收到命令,确认是否可以进行拼接,如果可以拼接,则顶棚机器人10和墙面机器人20启动;之后智能调度系统72将拼接任务分解为调度任务,并发送至云平台71,云平台71将调度任务分解为多条位移任务,并发送到至少一个顶棚机器人10和至少一个墙面机器人20,至少一个顶棚机器人10和至少一个墙面机器人20根据位移任务移动至目标位置。
可选地,至少一个顶棚机器人10和至少一个墙面机器人20在移动过程中实时向云平台71上报位姿信息,云平台71存储顶棚机器人10和/或墙面机器人20的时序数据,并将时序数据发送至智能调度系统72,智能调度系统72获取顶棚机器人10和/或墙面机器人20实时位姿,并以此确认下次调度任务及实时监控。当机器人上报位姿失败时,云平台71存储任务异常信息,智能调度系统72调度出现异常告警,智能终端设备75的人机交互界面显示任务失败。
可选地,当顶棚机器人10和墙面机器人20成功完成位移任务时,智能调度系统72向云平台71发送对接任务,云平台71下发对接任务至至少一个顶棚机器人10和至少一个墙面机器人20,使顶棚机器人10
与墙面机器人20完成相互锁合固定以及使至少两个墙面机器人20根据对接任务完成相互锁合固定。当对接出现异常时,云平台71存储任务异常信息,智能调度系统72调度出现异常告警,智能终端设备75的人机交互界面显示任务失败。房屋拆解步骤与房屋拼接步骤相反,具体请参照上述,此处不再赘述。顶棚机器人10和墙面机器人20上均设有多种传感器,多种传感器包括温度传感器、湿度传感器、光电传感器等。棚机器人10和/或墙面机器人20上设有多种电器,例如灯、喇叭等。
可选地,如图4和图5所示,顶棚机器人10包括第一墙体11、第二墙体12和顶棚13,第一墙体11与第二墙体12相对设置,第一墙体11和第二墙体12的顶部可活动地连接于顶棚13,第一墙体11和第二墙体12的底部均设有舵轮驱动装置14,舵轮驱动装置14用于根据调度任务驱使顶棚机器人10整体移动。在本实施例中,第一墙体11与第二墙体12平行且相对设置,第一墙体11和第二墙体12的顶部垂直连接于顶棚13,第一墙体11、第二墙体12和顶棚13之间形成室内空间。
本申请的顶棚机器人10在舵轮驱动装置14的驱动下能够自主移动,实现位置转移,无需进行拆装组合,节约了人力成本(省时省力),转移效率高,且不会永久占据土地资源和空间。而且本申请的顶棚机器人10能够作为临时会议厅、临时茶餐厅、广场宣传展示或旅游景点,具有较强的实用性。
可选地,如图5所示,舵轮驱动装置14例如为AGV自动导航运输车,舵轮驱动装置14包括底座141、第一舵轮驱动组件142、第二舵轮驱动组件143、减震装置144和舵轮齿轮组145,第一舵轮驱动组件142、第二舵轮驱动组件143分别连接于底座141的两侧,减震装置144安装在底座141上,舵轮齿轮组145安装于底座141的顶部。在本实施例中,第一墙体11的底部安装有两个舵轮驱动装置14,分别靠近第一墙体11的相对两侧设置;第二墙体12的底部安装有两个舵轮驱动装置14,分别靠近第二墙体12的相对两侧设置。
可选地,如图6和图7所示,顶棚机器人10包括至少一个第一平移驱动装置15,第一平移驱动装置15连接于顶棚13与第一墙体11之间,第一平移驱动装置15与舵轮驱动装置14配合驱使第一墙体11向着靠近或远离第二墙体12的方向移动,和/或顶棚机器人10包括至少一个第二平移驱动装置,第二平移驱动装置连接于顶棚13与第二墙体12之间,第二平移驱动装置与舵轮驱动装置14配合驱使第二墙体12向着靠近或远离第一墙体11的方向移动;第一墙体11和/或第二墙体12能水平移动,改变室内空间的尺寸,以满足不同尺寸大小的房屋需求。在本实施例中,第一墙体11与顶棚13之间安装有两个第一平移驱动装置15,两个第一平移驱动装置15分别靠近第一墙体11的相对两侧设置;第二墙体12与顶棚13之间安装有两个第二平移驱动装置,两个第二平移驱动装置分别靠近第二墙体12的相对两侧设置;优选地,两个第一平移驱动装置15分别位于两个舵轮驱动装置14的正上方,两个第二平移驱动装置分别位于两个舵轮驱动装置14的正上方。
可选地,如图7所示,第一平移驱动装置15与第二平移驱动装置的结构相同,第一平移驱动装置15包括第一安装座151、第一滑动座152和第一驱动机构153,第一安装座151固定在顶棚13上,第一滑动座152可滑动地连接在第一安装座151上,第一墙体11与第一滑动座152固定连接,第一驱动机构153的驱动端与第一滑动座152连接,第一驱动机构153用于驱使第一滑动座152和第一墙体11移动。在本实施例中,第一驱动机构153包括第一电机组件(电机与减速器的组合)和第一丝杆,第一电机组件固定于第一安装座151的一端,第一丝杆的一端与第一电机组件联动连接,第一丝杆的另一端可转动地连接于第一安装座151的端部;当第一驱动组件驱使第一丝杆转动时,第一滑动座152沿第一丝杆的长度方向移动。
可选地,第二平移驱动装置包括第二安装座、第二滑动座和第二驱动机构,第二安装座固定在顶棚13上,第二滑动座可滑动地连接在第二安装座上,第二墙体12与第二滑动座固定连接,第二驱动机构的驱动端与第二滑动座连接,第二驱动机构用于驱使第二滑动座和第二墙体12移动。在本实施例中,第二驱动机构包括第二电机组件(电机与减速器的组合)和第二丝杆,第二电机组件固定于第二安装座的一端,第二丝杆的一端与第二电机组件联动连接,第二丝杆的另一端可转动地连接于第二安装座的端部;当第二驱动组件驱使第二丝杆转动时,第二滑动座沿第二丝杆的长度方向移动。
在其他实施例中,第一驱动机构153包括第一伸缩气缸或油缸组件,第一伸缩气缸或油缸组件的伸缩轴与第一滑动座152连接;第二驱动机构包括第二伸缩气缸或油缸组件,第二伸缩气缸或油缸组件的伸缩
轴与第二滑动座连接。
可选地,如图8和图9所示,第一墙体11与顶棚13之间连接有第一转轴机构17,第一墙体11的底部设有两个舵轮驱动装置14,其中一个舵轮驱动装置14靠近第一墙体11的侧边设置,另一个舵轮驱动装置14靠近第一墙体11相对的另一侧边设置,两个舵轮驱动装置14配合能驱使第一墙体11绕第一转轴机构17的轴线转动,和/或第二墙体12与顶棚13之间连接有第二转轴机构,第二墙体12的底部设有两个舵轮驱动装置14,其中一个舵轮驱动装置14靠近第二墙体12的侧边设置,另一个舵轮驱动装置14靠近第二墙体12相对的另一侧边设置,两个舵轮驱动装置14配合能驱使第二墙体12绕第二转轴机构的轴线转动。本申请的顶棚机器人10的第一墙体11和/或第二墙体12能够旋转移动,改变顶棚机器人10的形状和尺寸,以适应不同场地和造型需求。
可选地,如图9所示,第一转轴机构17与第二转轴机构的结构相同,第一转轴机构17包括第一转轴和第一轴承,第一转轴固定在第一墙体11或顶棚13上,第一轴承套设在第一转轴上,第一轴承连接于第一墙体11或顶棚13。第二转轴机构包括第二转轴和第二轴承,第二转轴固定在第二墙体12或顶棚13上,第二轴承套设在第二转轴上,第二轴承连接于第二墙体12或顶棚13。
可选地,如图10所示,第一墙体11和第二墙体12的底部设有第一锚固装置19,第一锚固装置19包括第一连接座191、升降驱动器192(电机与减速器的组合结构)、旋转驱动器193(电机)、锚固轴194和锚固块195,第一连接座191通过螺栓与螺孔配合连接在第一墙体11、第二墙体12内,升降驱动器192和旋转驱动器193、锚固轴194连接在第一连接座191上,锚固轴194沿竖直方向设置,锚固块195固定于锚固轴194的端部,升降驱动器192和旋转驱动器193的驱动端均与锚固轴194连接,升降驱动器192用于驱使锚固轴194升降移动,旋转驱动器193用于驱使锚固轴194和锚固块195旋转,使锚固块195在卡锁位与解锁位之间切换。在本实施例中,第一墙体11的底部设有两个第一锚固装置19,第二墙体12的底部设有两个第一锚固装置19;多个第一锚固装置19配合能够固定顶棚机器人10,防止受大风移动。
可选地,如图11和图12所示,顶棚13包括固定棚131以及安装在固定棚131内的至少一个活动棚132和至少一个伸展驱动机构133,固定棚131连接在第一墙体11和第二墙体12上,固定棚131的至少一侧边设有第一开口101,伸展驱动机构133的驱动端与活动棚132连接,伸展驱动机构133用于根据调度任务驱使活动棚132从第一开口101伸出,实现不同尺寸大小的顶棚13和造型,同时方便与墙面机器人20拼接扩充室内空间。在本实施例中,固定棚131的相对两侧边均设有第一开口101,顶棚13包括两个活动棚132和两个伸展驱动机构133,两个伸展驱动机构133分别驱使两个活动棚132从两个第一开口101伸出。活动棚132包括至少两个相互堆叠设置的棚板1321,相邻两个棚板1321相互可滑动地连接,伸展驱动机构133用于驱使至少两个棚板1321至展开状态,或驱使至少两个棚板1321至堆叠状态;当活动棚132处于展开状态时,各棚板1321从固定棚131的第一开口101伸出;当活动棚132处于堆叠状态时,各棚板1321收缩堆叠在固定棚131内。在本实施例中,棚板1321的数量例如为1、2、3个,棚板1321的数量可根据实际需要自由增减。
可选地,如图12和图13所示,伸展驱动机构133包括伸展驱动组件1331和剪刀叉结构1335,伸展驱动组件1331的驱动端与剪刀叉结构1335连接,剪刀叉结构1335的一端连接于活动棚132,剪刀叉结构1335的另一端连接于固定棚131,伸展驱动组件1331用于驱使剪刀叉结构1335伸展或收缩移动。在本实施例中,剪刀叉结构1335在伸展驱动组件1331的驱动下能够伸缩移动,进而带动活动棚132从开口伸出展开,或者收拢在固定棚131内。
可选地,如图12和图13所示,伸展驱动组件1331包括固定座1332、第一活动座1333和伸展驱动器1334,固定座1332连接在固定棚131上,第一活动座1333可滑动地连接在固定座1332上,伸展驱动组件1331的驱动端与第一活动座1333连接;剪刀叉结构1335包括中间交叉部1336、第一伸展连接部1337和第二伸展连接部1338,中间交叉部1336铰接于第一伸展连接部1337与第二伸展连接部1338之间,中间交叉部1336连接在第一活动座1333上,第一伸展连接部1337与固定棚131连接,第二伸展连接部1338与活动棚132连接。在本实施例中,伸展驱动组器1334包括第二电机组件(电机与减速器的组合结构)和第二丝杆,第二电机组件固定于固定座1332的端部,第二丝杆的一端与第二电机组件联动连接,第二丝杆
的另一端可转动地连接于固定座1332,第一活动座1333与第二丝杆螺纹配合连接;当第二电机组件驱使第二丝杆转动时,第一活动座1333可沿丝杆的长度方向移动,进而带动剪刀叉结构1335伸缩移动。中间交叉部1336包括第一连杆和第二连杆,第一连杆与第二连杆交叉设置,第一连杆与第二连杆的交叉处铰接在第一活动座1333上;第一伸展连接部1337包括第三连杆和第四连杆,第三连杆和第四连杆的端部交叉并铰接在固定棚131上,第三连杆的另一端铰接于第一连杆的一端部,第四连杆的另一端铰接于第二连杆的一端部;第二伸展连接部1338包括第五连杆和第六连杆,第五连杆和第六连杆的端部交叉并铰接在活动棚132上,第五连杆的另一端铰接于第一连杆的另一端部,第六连杆的另一端铰接于第二连杆的另一端部;以第一活动座1333中心,第一连杆、第二连杆的一半躯干与第三连杆和第四连杆组合成一平行四边形结构,第一连杆、第二连杆的另一半躯干与第五连杆和第六连杆组合成另一平行四边形结构。
在其他实施例中,伸展驱动器1334包括第三电机组件(电机与减速器的组合)、第三丝杆和连接块,第三丝杆与第三电机组件联动连接,连接块与第三丝杆螺纹配合连接,连接块与活动棚132连接;当第三驱动组件驱使第三丝杆转动时,连接块沿第三丝杆的长度方向移动,进而实现活动棚132展开或收拢。
可选地,第一墙体11上设有显示屏112(冰屏),显示屏112设置于第一墙体11靠近第二墙体12的侧面。第二墙体12上设有门口以及对应门口设置的门板122。在本实施例中,门板122可通过机械结构可转动或滑动的方式连接,第二墙体12与门板122之间还可连接门板122驱动机构,门板122驱动机构用于驱使门板122打开或关闭。第一墙体11与顶棚13之间以及第二墙体12与顶棚13之间设有密封件,增加墙体密封效果。当顶棚机器人移动至第一目标位置后,顶棚机器人根据调度任务控制顶棚13的活动棚132展开,如果有需要还可控制第一墙体11和/或第二墙体12平移或旋转,以改变顶棚机器人的造型,使之更适应当下环境。
可选地,请参照图14至图18,本申请实施例提供的墙面机器人20,墙面机器人20包括行走机构和设置于行走机构上的显示屏幕22,行走机构用于根据调度任务驱使墙面机器人20整体移动实现房屋拼接或拆解。在本实施例中,显示屏幕22可以为冰屏。行走机构包括底盘211和驱动轮组件212,驱动轮组件212设置于底盘211的底部并与底盘211相连,驱动轮组件212用于驱动底盘211运动。显示屏幕22设置于底盘211上方并与底盘211相连。底盘211内设有动力电池系统2111,动力电池系统2111与驱动轮组件212和显示屏幕22电连接,动力电池系统2111能够为驱动轮组件212和显示屏幕22供电。
可选地,底盘211上设有第一机器人连接机构31,第一机器人连接机构31包括第一对接装置311和与第一对接装置311相配合的第二对接装置312,第一对接装置311和第二对接装置312分别设置于底盘211上的不同位置(优选地,第一对接装置311和第二对接装置312分别设置于底盘211的相对两端);一墙面机器人20上的第一对接装置311能够与另一墙面机器人20上的第二对接装置312相连,以实现不同的墙面机器人20之间的连接。在本实施例中,顶棚机器人10包括第二机器人连接机构,第二机器人连接机构与第一机器人连接机构31结构相同,墙面机器人20上的第一对接装置能够与顶棚机器人10上的第二对接装置相连,以实现墙面机器人20与顶棚机器人10相互拼接。本实施例提供的墙面机器人20,其由行走机构和显示屏幕22组合而成,行走机构和显示屏幕22可充当组合房屋模块的墙体,即通过多个墙面机器人20可组装形成组合房屋模块,且墙面机器人20的数量可根据实际使用需求决定,使得组合房屋模块的形状和结构尺寸能够根据实际需求更改。同时,行走机构能够为墙面机器人20提供行走功能,而且底盘211内设有动力电池系统2111能够给驱动轮组件212和显示屏幕22供电,使得该墙面机器人20具有智能移动功能、智能组装功能、自主供电功能和墙面显示功能,同时底盘211上还设有第一机器人连接机构31用于不同墙面机器人20之间的连接,以增强墙面的稳定性。该墙面机器人20不仅提高了组合房屋模块组装的便利性,而且增加了组合房屋模块的拓展功能。
可选地,如图14至图16及图23所示,作为一种实施方式,第一对接装置311包括卡接板3111,卡接板3111与底盘211的端部相固定,卡接板3111上设有卡孔104。
可选地,请参照图14至图21,第二对接装置312设置于底盘211内,第二对接装置312包括第一伸缩驱动装置3121、第一旋转驱动装置3122和第一锚杆3123,第一锚杆3123的第一端设有第一卡接部3124。第一伸缩驱动装置3121与第一锚杆3123的第二端相连,第一伸缩驱动装置3121用于驱动第一锚杆3123
相对于底盘211做水平伸缩运动;第一旋转驱动装置3122与第一锚杆3123的第二端相连,第一旋转驱动装置3122用于驱动第一锚杆3123绕其周向方向做旋转运动,以使得一墙面机器人20上的第一锚杆3123能够与另一墙面机器人20上的卡接板3111卡合。
具体地,第一卡接部3124为一长条形的凸块,卡孔104的宽度大于或等于第一卡接部3124的宽度,并小于第一卡接部3124的长度。在两个墙面机器人20进行连接时,其中一个墙面机器人20上的第一伸缩驱动装置3121驱动第一锚杆3123朝向另一墙面机器人20上的卡接板3111移动,并使第一锚杆3123上的第一卡接部3124伸入并穿过卡接板3111上的卡孔104,然后利用第一旋转驱动装置3122驱动第一锚杆3123旋转90°(或其他角度),再利用第一伸缩驱动装置3121驱动第一锚杆3123缩回一小段距离,使得第一锚杆3123上的第一卡接部3124与卡接板3111卡合,从而实现两个墙面机器人20之间的连接。如图14至图16所示,作为一种实施方式,第一对接装置311和第二对接装置312分别设置于底盘211的前后两端。
可选地,如图15及图23所示,作为一种实施方式,底盘211上于靠近第二对接装置312的一端设有第一挡板313,第一挡板313上设有第一穿孔103,第一锚杆3123能够穿过第一穿孔103后伸出至底盘211外,或者通过第一穿孔103缩回至底盘211内。
如图15至图19所示,作为一种实施方式,墙面机器人20还包括伸缩轮组件23,伸缩轮组件23包括滚轮伸缩驱动装置231和第一滚轮232,滚轮伸缩驱动装置231设置于底盘211内,第一滚轮232设置于底盘211的底部并位于底盘211的一侧。滚轮伸缩驱动装置231同时与底盘211和第一滚轮232相连,滚轮伸缩驱动装置231用于驱动第一滚轮232沿水平方向相对于底盘211做左右伸缩运动(如图15及图17所示,图中S表示底盘211的前后方向,也即底盘211的运动方向;图中W表示底盘211的左右方向,也即底盘211的宽度方向,滚轮伸缩驱动装置231能够驱动第一滚轮232沿底盘211的左右方向W做伸缩运动)。
具体地,本实施例通过在底盘211上设置伸缩轮组件23,当底盘211在运动时,利用滚轮伸缩驱动装置231驱动第一滚轮232伸出,从而增大底盘211的面积(即增大底盘211的宽度),使得墙面机器人20在运动时具有良好的平衡性和稳定性,避免侧翻;当墙面机器人20停止运动后,利用滚轮伸缩驱动装置231驱动第一滚轮232缩回,从而减小底盘211的占地面积。该伸缩轮组件23不仅能够增加墙面机器人20在运动时的稳定性,而且不增加墙面机器人20在停止状态时底盘211的体积和占地面积,从而增加底盘211的灵活性,且有利于底盘211的小型化设计。
可选地,如图16所示,作为一种实施方式,该墙面机器人20还包括第二滚轮213,第二滚轮213设置于底盘211的底部并与底盘211相连,第二滚轮213和第一滚轮232分别设置于底盘211的左右两侧;当第一滚轮232沿水平方向伸出时,第一滚轮232与第二滚轮213之间的间距增大,即相当于增加了轮距,从而增加底盘211在运动时的稳定性。
可选地,如图16所示,作为一种实施方式,第二滚轮213相较于底盘211不可左右伸缩运动,即第二滚轮213是固定在底盘211上的。当然,在其它实施例中,第二滚轮213也可以采用类似第一滚轮232的形式,即第二滚轮213也可以采用可伸缩的形式(即底盘211的相对两侧都设置伸缩轮组件23),从而进一步增大底盘211在运动时的面积。作为一种实施方式,底盘211的底部还设有第三滚轮214,第三滚轮214设置于第一滚轮232和第二滚轮213之间,第三滚轮214位于底盘211的中部位置,第三滚轮214能够进一步地增加底盘211在运动时的稳定性和通过性。作为一种实施方式,第一滚轮232、第二滚轮213和第三滚轮214均为万向轮,从而增加底盘211运动时的灵活性;同时,由于第一滚轮232为万向轮,使得第一滚轮232能够顺利地进行横向伸缩运动(即第一滚轮232不仅能够前后运动,还能够左右运动,从而便于第一滚轮232的伸出和缩回)。驱动轮组件212为双差速驱动轮。第一滚轮232、第二滚轮213、第三滚轮214和驱动轮组件212的数量均分别为两个,两个第一滚轮232、两个第二滚轮213、两个第三滚轮214和两个驱动轮组件212均分别设置于底盘211的前后两端。同时,底盘211的外侧壁上还设有多个雷达2113和多个超声传感器2114,以使底盘211运动时能够自动规划行走路线。通过雷达2113、超声传感器2114、第一滚轮232、第二滚轮213、第三滚轮214和驱动轮组件212的配合,可实现底盘211的全向运动、爬坡、越障等自主运动功能。伸缩轮组件23的数量为至少两个,至少两个伸缩轮组件23设置于底
盘211上的同一侧,且至少两个伸缩轮组件23沿底盘211的前后方向S间隔设置。
具体地,伸缩轮组件23的数量为两个,两个伸缩轮组件23设置于底盘211上的同一侧,且两个伸缩轮组件23沿底盘211的前后方向S间隔设置。
可选地,如图15至图18所示,作为一种实施方式,至少两个伸缩轮组件23之间通过连杆机构24相连,以使至少两个伸缩轮组件23能够同步进行伸缩运动。
具体地,连杆机构24不仅能够使多个伸缩轮组件23能够同步进行伸缩运动,从而减小多个伸缩轮组件23在伸缩运动时的行程偏差(或者称为位置偏差,即伸缩距离的差值),保持车体前后宽度的一致性,且便于同时对多个伸缩轮组件23的伸缩行程进行控制,而且能够增加车身的结构强度和底盘211的稳定性。
可选地,如图17所示,作为一种实施方式,底盘211的侧部设有用于收容伸缩轮组件23和连杆机构24的容纳槽102,使得伸缩轮组件23和连杆机构24在缩回时能够收容在容纳槽102内,从而进一步减少底盘211在停止状态时的占地面积,并提高美观性。
可选地,如图18及图20所示,作为一种实施方式,至少两个伸缩轮组件23均分别通过活动机构25与连杆机构24相连,以使至少两个伸缩轮组件23能够在一定偏差范围内进行同步伸缩运动。在本实施例中,至少两个伸缩轮组件23能够在15cm的行程偏差范围内进行同步伸缩运动。
具体地,活动机构25能够起到一定的缓冲作用,使得多个伸缩轮组件23在伸缩运动时能够在一定程度上出现不同步的情况,从而增加伸缩轮组件23的灵活性和稳定性,大大降低了对于设备的控制精度和制作尺寸精度的要求,同时减少了在同步伸缩运动过程中对设备的磨损(容易理解地,若伸缩轮组件23与连杆机构24为刚性连接,在同步伸缩运动过程中,则要求多个伸缩轮组件23之间所允许的行程偏差几乎接近于零,不仅对机械、电气的控制精度要求非常高,而且也容易对设备造成损坏)。
可选地,如图20所示,作为一种实施方式,伸缩轮组件23的数量为两个,两个伸缩轮组件23分别对应连杆机构24的两端设置,其中一个伸缩轮组件23通过活动机构25与连杆机构24的一端相连,另外一个伸缩轮组件23通过活动机构25与连杆机构24的另一端相连。
可选地,如图20及图21所示,作为一种实施方式,活动机构25的一端与伸缩轮组件23可转动地连接,活动机构25的另一端与连杆机构24可转动地连接,从而实现伸缩轮组件23与连杆机构24的活动连接。当然,在其它实施例中,活动机构25也可以是具有一定弹性的弹性机构。
可选地,如图20及图21所示,作为一种实施方式,活动机构25包括连接销251和旋转杆252,连接销251的第一端与旋转杆252相连,旋转杆252与连杆机构24可转动地连接,连接销251的第二端与伸缩轮组件23铰接。
可选地,如图20及图21所示,作为一种实施方式,每个活动机构25包括两个连接销251,该两个连接销251上下间隔设置。当然,连接销251的数量也可以为更多个。
可选地,如图20及图21所示,作为一种实施方式,连杆机构24包括水平设置的第一横杆241和第二横杆242,第一横杆241和第二横杆242上下间隔设置,旋转杆252为竖向设置,旋转杆252的顶端与第一横杆241可转动地连接,旋转杆252的底端与第二横杆242可转动地连接。连杆机构24还包括多个竖向设置的纵杆243,多个纵杆243沿连杆机构24的长度方向依次排列设置,每个纵杆243的上下两端分别与第一横杆241和第二横杆242固定连接,从而增加连杆机构24的结构强度和稳定性。
可选地,如图20所示,作为一种实施方式,该墙面机器人20还包括第四滚轮215,第四滚轮215设置于连杆机构24的下方并与连杆机构24相连,第四滚轮215用于对连杆机构24起支撑作用,从而防止连杆机构24发生侧翻。
可选地,如图20所示,作为一种实施方式,第四滚轮215为万向轮,第四滚轮215与第二横杆242相连。
可选地,如图18至图21所示,作为一种实施方式,伸缩轮组件23还包括滚轮固定板234,第一滚轮232设置于滚轮固定板234上,且第一滚轮232位于滚轮固定板234下方;滚轮伸缩驱动装置231与滚轮固定板234相连,滚轮固定板234通过活动机构25与连杆机构24相连。
具体地,在本实施例中,滚轮固定板234包括横板2341和竖板2342,横板2341与竖板2342的底端
固定连接。第一滚轮232位于横板2341下方并与横板2341相连,滚轮伸缩驱动装置231与竖板2342相连,竖板2342通过活动机构25与连杆机构24相连。
可选地,如图18及图19所示,作为一种实施方式,伸缩轮组件23还包括导向伸缩组件233,滚轮伸缩驱动装置231通过导向伸缩组件233与第一滚轮232相连,导向伸缩组件233用于为第一滚轮232做左右伸缩运动时起导向作用。
可选地,如图18及图19所示,作为一种实施方式,导向伸缩组件233包括导向杆2331和导向套筒2332,导向杆2331插入在导向套筒2332内并能够在导向套筒2332内伸缩移动;导向套筒2332与底盘211相固定,导向杆2331的一端与滚轮伸缩驱动装置231相连,导向杆2331的另一端与第一滚轮232相连(具体地,导向杆2331的另一端与滚轮固定板234的竖板2342相连)。同时,导向杆2331的长度可根据需要进行伸缩的距离进行增减。
可选地,如图18及图19所示,作为一种实施方式,每个伸缩轮组件23包括两个导向伸缩组件233,该两个导向伸缩组件233分别设置于滚轮伸缩驱动装置231的相对两侧,从而提供更稳定地导向支撑作用。
可选地,如图18及图19所示,作为一种实施方式,滚轮伸缩驱动装置231为直线导轨模组,滚轮伸缩驱动装置231包括第一导轨2311和第一滑块2312,第一导轨2311与底盘211相固定,第一滑块2312设置于第一导轨2311上并能够沿第一导轨2311滑动,导向杆2331与第一滑块2312相连;通过第一滑块2312的运动,从而带动导向杆2331、滚轮固定板234和第一滚轮232的伸缩运动。当然,在其它实施例中,滚轮伸缩驱动装置231也可以为电缸、气缸等伸缩驱动装置。
可选地,如图16及图22所示,作为一种实施方式,该墙面机器人20还包括第二锚固装置26,第二锚固装置26设置于底盘211的底部,第二锚固装置26能够相对于底盘211做上下伸缩运动。第二锚固装置26用于与第一固定机构32配合(第一固定机构32可设置于地面上或其它目标位置处),当底盘211停止运动需要进行固定时,第二锚固装置26向下伸出并与第一固定机构32配合,使底盘211固定在目标位置处;当底盘211需要进行运动时,第二锚固装置26向上缩回并与第一固定机构32脱离,从而使底盘211解锁并能够自由移动。
可选地,如图16所示,作为一种实施方式,第二锚固装置26的数量为两个,该两个第二锚固装置26沿底盘211的前后方向S间隔设置。
可选地,如图22所示,作为一种实施方式,第二锚固装置26包括第二伸缩驱动装置261和第二锚杆262,第二伸缩驱动装置261与第二锚杆262相连,第二伸缩驱动装置261用于驱动第二锚杆262相对于底盘211做上下伸缩运动。在本实施例中,第二伸缩驱动装置261为一涡流升降机,第二锚杆262为蜗杆。
可选地,如图22所示,作为一种实施方式,第二锚杆262的底端设有第二卡接部2621。第二锚固装置26还包括第二旋转驱动装置263,第二旋转驱动装置263与第二锚杆262相连,第二旋转驱动装置263用于驱动第二锚杆262做水平旋转运动,以使第二锚杆262上的第二卡接部2621能够与第一固定机构32卡合。
具体地,在本实施例中,第一固定机构32上设有卡槽106,第二卡接部2621为一长条形的凸块,卡槽106的宽度大于或等于第二卡接部2621的宽度,并小于第二卡接部2621的长度。在第二锚杆262与第一固定机构32卡合的过程中,先利用第二旋转驱动装置263驱动第二锚杆262向下伸出,使第二卡接部2621穿过卡槽106后伸入至第一固定机构32内(由于卡槽106的宽度大于或等于第二卡接部2621的宽度,故第二卡接部2621能够顺利地穿过卡槽106);然后利用第二旋转驱动装置263驱动第二锚杆262水平旋转90°,再利用第二旋转驱动装置263驱动第二锚杆262向上移动一小段距离,从而使第二锚杆262上的第二卡接部2621与第一固定机构32卡合(由于卡槽106的宽度小于第二卡接部2621的长度,故此时第二卡接部2621无法穿过卡槽106),进而将底盘211固定在目标位置处。当然,在其它实施例中,第二锚固装置26与第一固定机构32还可以为其它的配合形式。
可选地,如图14至图16及图24所示,作为一种实施方式,底盘211上设有对接插电机构33,对接插电机构33包括插电伸缩驱动装置331、第一对接头332以及与第一对接头332相匹配的第二对接头333,第一对接头332和第二对接头333中的其中一者为对接插头,第一对接头332和第二对接头333中的另外
一者为与对接插头相匹配的对接插座。插电伸缩驱动装置331与第一对接头332相连,插电伸缩驱动装置331用于驱动第一对接头332相对于底盘211做水平伸缩运动。第一对接头332和第二对接头333均与动力电池系统2111电连接,且第一对接头332和第二对接头333分别设置于底盘211上的不同位置(优选地,第一对接头332和第二对接头333分别设置于底盘211的相对两端);一墙面机器人20上的第一对接头332能够与另一墙面机器人20上的第二对接头333相连,以实现不同的墙面机器人20之间的电连接。在本实施例中,第一对接头332为对接插头,第二对接头333为与对接插头相匹配的对接插座。当然,在其他实施例中,也可以是第二对接头333为对接插头,第一对接头332为与对接插头相匹配的对接插座。
具体地,在两个墙面机器人20之间进行电连接时,其中一个墙面机器人20上的插电伸缩驱动装置331驱动第一对接头332朝向另外一个墙面机器人20上的第二对接头333运动,以使第一对接头332和第二对接头333插接连接,从而实现两个墙面机器人20之间的电连接。本实施例通过在底盘211上设置对接插电机构33,使得各个墙面机器人20之间能够自动地实现互联供电,无需给每个墙面机器人20均配备外部电源(即其中一个或几个墙面机器人20与外部电源电连接后,即可实现所有墙面机器人20同时供电或充电功能),同时无需人工将各个墙面机器人20进行电连接,提高了供电的安全性及便利性。
作为一种实施方式,第一对接头332和第二对接头333还与显示屏幕22电连接,使得第一对接头332和第二对接头333接通外部电源后,能够直接给显示屏幕22供电(由于显示屏幕22的尺寸较大,功耗也较大,长时间工作时动力电池系统2111无法为其提供足够的电能,故需要接入外部电源进行供电)。
可选地,如图24所示,作为一种实施方式,对接插电机构33还包括第一缓冲机构334,第一对接头332通过第一缓冲机构334与插电伸缩驱动装置331相连,第一缓冲机构334用于为第一对接头332提供移动缓冲空间。
具体地,在本实施例中,第一缓冲机构334为一弹性机构。通过设置第一缓冲机构334为第一对接头332提供移动缓冲空间,即使第一对接头332和第二对接头333在对接时两者位置存在一定偏差,第一对接头332也可以通过第一缓冲机构334提供的移动缓冲空间与第二对接头333精准结合,降低对控制系统精度的要求。同时,第一缓冲机构334能够避免第一对接头332和第二对接头333在对接时的硬性碰撞,有利于延长对接插电机构33的使用寿命。
可选地,如图15及图16所示,作为一种实施方式,底盘211上于靠近第一对接头332的一端设有第二挡板335,第二挡板335上设有供第一对接头332穿过的第二穿孔107。底盘211上于靠近第二对接头333的一端设有第三挡板336,第三挡板336上设有供第一对接头332穿过的第三穿孔108。
可选地,如图14、图25及图26所示,作为一种实施方式,底盘211上设有供空调对接机构27穿过的空调接口271。当多个墙面机器人20相互连接组成组合房屋模块后,在该组合房屋模块内(室内)设有空调内机28(例如空调柜机),在该组合房屋模块外(室外)设有空调外机29(空调内机28和空调外机29可以为可移动式结构),空调对接机构27的一端与空调内机28相连,空调对接机构27的另一端穿过底盘211上的空调接口271后与空调外机29连接,从而实现空调内机28与空调外机29的连接,为组合房屋模块的内部空间提供空调制冷。本实施例中该墙面机器人20的工作流程为:
1、如图14及图15所示,当墙面机器人20处于静止状态时,伸缩轮组件23处于缩回状态,第二锚固装置26处于伸出状态;如图14所示,当底盘211在运动时,先利用滚轮伸缩驱动装置231驱动第一滚轮232伸出,从而增大底盘211的面积,使得底盘211在运动时具有良好的平衡性和稳定性,然后第二锚固装置26向上缩回,此时墙面机器人20可自由运动;
2、当墙面机器人20运动至指定位置后停止运动,先伸出第二锚固装置26,使底盘211位置固定,防止打滑或侧翻;然后利用滚轮伸缩驱动装置231驱动第一滚轮232缩回,从而减小底盘211的占地面积,此时底盘211固定在目标位置处。同时,相邻的墙面机器人20之间通过第一机器人连接机构31进行连接,以增加墙面的稳定性,同时通过对接插电机构33实现墙面机器人20之间的互联供电。多个墙面机器人20相互连接后,组合形成如图25所示的组合房屋模块。
本申请提供的墙面机器人20,其由行走机构和显示屏幕22组合而成,行走机构和显示屏幕22可充当组合房屋模块的墙体,即通过多个墙面机器人20可组装形成组合房屋模块,且墙面机器人20的数量可根
据实际使用需求决定,使得组合房屋模块的形状和结构尺寸能够根据实际需求更改。同时,行走机构能够为墙面机器人20提供行走功能,而且底盘211内设有动力电池系统2111能够给驱动轮组件212和显示屏幕22供电,使得该墙面机器人20具有智能移动功能、智能组装功能、自主供电功能和墙面显示功能,同时底盘211上还设有第一机器人连接机构31用于不同墙面机器人20之间的连接,以增强墙面的稳定性。该墙面机器人20不仅提高了组合房屋模块组装的便利性,而且增加了组合房屋模块的拓展功能。
可选地,请参照图27至图30,智能房屋系统还包括至少一个桌椅机器人40,桌椅机器人40与云平台71通讯连接,桌椅机器人40具有自主导航移动功能,桌椅机器人40根据调度任务移动至顶棚机器人10的下方。
可选地,请参照图27至图30,桌椅机器人40包括能够自主导航移动的智能移动底盘41和桌子45,桌子45包括支撑架451、活动架452、桌板453、第三调节机构454和第四调节机构455,支撑架451连接在智能移动底盘41上,活动架452沿第一方向X可活动地连接在支撑架451上,桌板453沿第二方向Y可活动地连接在活动架452上,第三调节机构454连接于活动架452与支撑架451之间,并用于驱使活动架452和桌板453沿第一方向X移动,第四调节机构455连接于活动架452与桌板453之间,并用于驱使桌板453沿第二方向Y移动,第一方向X与第二方向Y具有一夹角,该夹角例如为30°~150°,优选90°;当该夹角为90°时,即第一方向X与第二方向Y相互垂直,其中第一方向X平行于桌板453的宽度方向,第二方向Y平行于桌板453的长度方向,即桌板453平行于第一方向X和第二方向Y。在本实施例中,活动架452通过滑槽与滑轨的配合实现可活动地连接于支撑架451,桌板453通过滑槽与滑轨的配合实现可活动地连接于活动架452。
本申请的桌椅机器人40能依靠智能移动底盘41自主导航移动,能将桌子45运输至需要桌子45的场地;桌板453在第三调节机构454和第四调节机构455的驱动下能够沿第一方向和/或第二方向移动,使桌板453处于最舒适办公或使用的位置,提高了使用体验,而且桌板453在移动过程中不会产生噪音,更不会刮花地板;当桌子45使用完毕后,智能移动底盘41携带桌子45整体转移位置,不占用空间,能适应不同的环境和场地,满足实际需求,具有较强的实用性,而且节省人力,提高使用效率。
可选地,如图30所示,第三调节机构454包括第三电机驱动组件4541和第三丝杆,第三电机驱动组件4541固定在支撑架451上,第三电机驱动组件4541的驱动端与第三丝杆连接,活动架452上固定有第一连接块4521,第一连接块4521与第三丝杆螺纹连接;当第三电机驱动组件4541驱使第三丝杆转动时,活动架452和桌板453同步沿第一方向X移动。第四调节机构455包括第四电机驱动组件4551和第四丝杆4552,第四电机驱动组件4551固定在活动架452上,第四电机驱动组件4551的驱动端与第四丝杆4552连接,桌板453的背面固定有第二连接块4531,第二连接块4531与第四丝杆4552螺纹连接;当第四电机驱动组件4551驱使第四丝杆4552转动时,桌板453沿第二方向Y移动。
可选地,支撑架451包括至少一根支撑腿4511,支撑腿4511包括固定段和至少一节伸缩段,固定段的端部连接于承载板4111,伸缩段沿第三方向可活动地连接于固定段,桌子45包括第五调节机构(图未示),第五调节机构连接于固定段与伸缩段之间,并用于驱使伸缩段沿第三方向升降移动,第三方向垂直于第一方向X和第二方向Y。在本实施例中,支撑架451包括两根支撑腿4511,两根支撑腿4511两对设置,座椅42位于两根支撑腿4511之间。
可选地,支撑架451还包括固定架4512,固定架4512与承载板4111上下相对设置,活动架452设置于固定架4512的上方,固定架4512固定连接于两根支撑腿4511之间,第三电机驱动组件4541固定在固定架4512上。第五调节机构例如为电动升降缸或电机与丝杆的组合结构,根据实际需要可自由选择。
可选地,如图28和图29所示,智能移动底盘41包括承载板4111、骨架4117以及安装在骨架4117上的第一驱动轮装置4121、第二驱动轮装置4122、驱动控制模块413和电池模块414,承载板4111固定在骨架4117上,调节装置、第一驱动轮装置4121、第二驱动轮装置4122、驱动控制模块413与电池模块414电性连接,电池模块414为第一驱动轮装置4121、第二驱动轮装置4122、驱动控制模块413提供电能,第一驱动轮装置4121、第二驱动轮装置4122分别设置于骨架4117的两端,第一驱动轮装置4121和第二驱动轮装置4122能360°转向以实现智能移动底盘41移动。
可选地,智能移动底盘41还包括第一万向轮组4151和第二万向轮组4152,第一万向轮组4151和第二万向轮组4152安装在骨架4117上,第一万向轮组4151靠近第一驱动轮装置4121设置,第二万向轮组4152靠近第二驱动轮装置4122设置,第一万向轮组4151和第二万向轮组4152用于辅助智能移动底盘41移动,保证智能移动底盘41移动更稳定。
可选地,智能移动底盘41还包括PLC模块416、超声波开关417、深度摄像头418和导航组件419(例如激光雷达),PLC模块416分别与超声波开关417、深度摄像头418、导航组件419、驱动控制模块413和电池模块414电性连接,超声波开关417、深度摄像头418和导航组件419配合能够实现智能移动底盘41自主导航移动。
可选地,如图31、图32和图33所示,本实施例的桌椅机器人40与第一实施例的桌椅机器人40的结构大致相同,不同点在于桌椅机器人40还包括座椅42和调节装置。在本实施例中,图31中仅示意了智能移动底盘41、座椅42和调节装置,未画出桌子45,智能移动底盘41和桌子45的结构请参照第一实施例,此处不再赘述。座椅42摆放在承载板4111上,调节装置连接在承载板4111上,调节装置用于根据调度任务固定和/或转移座椅42。在本实施例中,智能移动底盘41上可放置一个或多个座椅42,根据实际需要可自由增减。
本申请的桌椅机器人40能依靠智能移动底盘41自主导航移动,能将座椅42运输至需要座椅42的场地;而且智能移动底盘41在运输座椅42的过程中,能利用调节装置固定座椅42,避免座椅42掉落;到达目的地后还能依靠调节装置将座椅42转移至地面,整个过程智能快捷;当座椅42使用完毕后,将座椅42放置在智能移动底盘41上,并由智能移动底盘41转移座椅42,不占用空间。因此,本申请的桌椅机器人40能够智能运输座椅42,能适应不同的环境和场地,满足实际需求,具有较强的实用性,而且节省人力,提高使用效率。
可选地,如图31、图32和图33所示,调节装置包括第一平移驱动机构431和摆动驱动机构432,摆动驱动机构432的一端与第一平移驱动机构431连接,摆动驱动机构432的另一端连接于座椅42,第一平移驱动机构431用于驱使摆动驱动机构432和座椅42水平移动,摆动驱动机构432用于转移座椅42。第一平移驱动机构431包括第一电机驱动组件4311(电机与减速器的组合结构)和第一丝杆4312,第一电机驱动组件4311与第一丝杆4312连接,第一丝杆4312沿承载板4111的宽度方向设置,摆动驱动机构432与第一丝杆4312连接,第一电机驱动组件4311驱使第一丝杆4312转动即可使摆动驱动机构432和座椅42水平移动。第一平移驱动机构431还包括多根第一导向杆4313,多根第一导向杆4313平行于第一丝杆4312,摆动驱动机构432设有多个第一导向孔,各第一导向杆4313分别穿过各第一导向孔设置,提高摆动驱动机构432水平移动的稳定性。
在其他实施例中,第一平移驱动机构431包括驱动缸(油缸或气缸)和驱动轴,驱动缸与驱动轴连接,摆动驱动机构432与驱动轴连连接,驱动缸驱使驱动轴伸缩移动即可实现摆动驱动机构432和座椅42水平移动。
可选地,如图31、图32和图33所示,摆动驱动机构432包括第二活动座4321、摆动臂4322和摆动驱动器4323,摆动臂4322的一端可活动地连接于第二活动座4321,摆动臂4322的另一端可活动地连接于座椅42,摆动驱动器4323固定在第二活动座4321上,摆动驱动器4323的驱动端与摆动臂4322连接,摆动驱动器4323用于驱使摆动臂4322搬动座椅42,第一平移驱动机构431的驱动端连接于第二活动座4321。在本实施例中,多个第一导向孔贯穿第二活动座4321,第二活动座4321与第一丝杆4312螺纹连接;当第一电机驱动组件4311驱使第一丝杆4312转动时,第二活动座4321在承载板4111上移动。
可选地,摆动驱动器4323为电机与减速器的组合结构,减速器的输出轴连接于摆动臂4322,摆动驱动器4323驱使摆动臂4322绕连接处摆动将座椅42从智能移动底盘41上转移至地面,或者从地面转移至智能移动底盘41。摆动臂4322包括相互平行设置的第一摆动杆4322a和第二摆动杆4322b,第一摆动杆4322a和第二摆动杆4322b的一端可活动地连接于第二活动座4321,第一摆动杆4322a和第二摆动杆4322b的另一端可活动地连接于座椅42的座板421背面,摆动驱动器4323与第一摆动杆4322a或第二摆动杆4322b连接,摆动驱动器4323输出动力可驱使第一摆动杆4322a和第二摆动杆4322b同步摆动。在本实施例中,
座椅42的座板421用于人乘坐用。
可选地,如图33所示,座板421的背面连接有第二连接座423,第一摆动杆4322a和第二摆动杆4322b可活动地连接于第二连接座423;第二连接座423可通过螺栓固定在座板421上,此时座椅42不能脱离第二连接座423,或者第二连接座423上设置托盘,用于承托座椅42的座板421,此时座椅42能脱离第二连接座423,或者第二连接座423与座板421之间通过滑槽、滑轨以及紧固螺栓配合,用以调节座椅42的位置,增加座椅42的舒适性。
可选地,如图31、图32和图33所示,调节装置包括第二固定机构433,第二固定机构433包括固定件4331、活动件4332和固定驱动器4333,固定件4331固定在承载板4111上,活动件4332可活动地设置在承载板4111上,活动件4332与固定件4331之间形成有容置座椅42的椅腿422的容置区,固定驱动器4333的驱动端与活动件4332连接,固定驱动器4333用于驱使活动件4332移动并配合固定件4331夹住或放开椅腿422;当座椅42放置在智能移动底盘41上时,座椅42的椅腿422处于容置区中,其中两条椅腿422靠近固定件4331设置,另外两条椅腿422靠近活动件4332设置,固定驱动器4333能驱使活动件4332向着靠近固定件4331的方向移动,直至将椅腿422夹持于固定件4331与活动件4332之间。在本实施例中,第一平移驱动机构431设置在容置区中,并位于固定件4331与活动件4332之间。可选地,固定件4331和活动件4332均呈L型,具体地,固定件4331包括第一阻挡梁和第二阻挡梁,第一阻挡梁与第二阻挡梁相互垂直连接,第一阻挡梁和第二阻挡梁组合成L型,其中第一阻挡梁沿承载板4111的宽度方向设置,第二阻挡梁沿承载板4111的长度方向设置;活动件4332包括第三阻挡梁和第四阻挡梁,第三阻挡梁与第四阻挡梁相互垂直连接,第三阻挡梁和第四阻挡梁组合成L型,其中第三阻挡梁沿承载板4111的宽度方向设置,且第三阻挡梁平行于第一阻挡梁,第四阻挡梁沿承载板4111的长度方向设置;当座椅42放置在容置区时,座椅42的一椅腿422靠近第一阻挡梁与第二阻挡梁的连接处,座椅42的另一椅腿422靠近第三阻挡梁与第四阻挡梁的连接处。为了防止座椅42掉落,承载板4111上还固定有挡板4114,第二阻挡梁和第四阻挡梁均与挡板4114平行且相对设置,挡板4114的一端延伸至第一阻挡梁处,挡板4114的另一端延伸至第三阻挡梁处;当座椅42放置在容置区时,座椅42的各个椅腿422处于由固定件4331、活动件4332以及挡板4114围绕形成的容置区内,座椅42的后面两个椅腿422通过第二阻挡梁和第四阻挡梁进行限位,座椅42的前面两个椅腿422通过挡板4114进行限位。
可选地,承载板4111上还设有第一固定座4115和第二固定座4116;第一平移驱动机构431连接在第一固定座4115上,第一丝杆4312远离第一电机驱动组件4311的端部可转动地连接于第一固定座4115,第一导向杆4313的两端均固定在第一固定座4115上;固定驱动器4333连接在第二固定座4116上,固定驱动器4333可以为伸缩缸驱动,也可以为电机组(电机与减速器的组合)与丝杆的组合结构驱动,例如固定驱动器4333包括电机组和丝杆,电机组固定在第二固定座4116上,丝杆的一端连接于电机组连接,丝杆的另一端可转动地连接于第二固定座4116,活动件4332与丝杆螺纹连接;当电机组驱使丝杆转动时,活动件4332向着靠近或远离固定件4331的方向移动;为了保证活动件4332移动的稳定性,第二固定座4116上还连接有至少一根第二导向杆,活动件4332上设有至少一个第二导向孔,第二导向杆穿过第二导向孔设置。在本实施例中,挡板4114的中部固定在第一固定座4115上。
可选地,如图34、图35和图36所示,本实施例的桌椅机器人40与第二实施例的桌椅机器人40的结构大致相同,不同点在于调节装置不同。调节装置包括第三固定机构434,第三固定机构434包括支撑柱4341、承载座4342、第一定位杆4343、第二定位杆4344和定位驱动器4345,支撑柱4341的一端固定于承载板4111,支撑柱4341的另一端固定于承载座4342,承载座4342用于承载座椅42的座板421背部,第一定位杆4343与第二定位杆4344可活动地设置于承载座4342的相对两端,定位驱动器4345固定于支撑柱4341,定位驱动器4345用于驱使第一定位杆4343、第二定位杆4344抵靠在座椅42的椅腿422上实现定位,而且第一定位杆4343和第二定位杆4344还用于承载座椅42的座板421。在本实施例中,支撑柱4341沿竖直方向设置,即支撑柱4341垂直于承载板4111,承载座4342固定于支撑柱4341的顶部,承载座4342平行于承载板4111;当放置座椅42在智能移动底盘41上时,承载座4342用于承载座椅42的座板421,此时座椅42的椅腿422可脱离承载板4111,或者座椅42的椅腿422可与承载板4111接触。
可选地,定位驱动器4345例如为电机与齿轮组的组合结构。
可选地,如图36所示,第三固定机构434包括第一夹持驱动器4346、第二夹持驱动器4347、第一夹爪4348和第二夹爪4349,第一夹持驱动器4346和第二夹持驱动器4347固定于承载座4342,第一夹持驱动器4346的驱动端与第一夹爪4348连接,第二夹持驱动器4347的驱动端与第二夹爪4349连接,第一夹持驱动器4346用于驱使第一夹爪4348夹住座板421的一侧,第二夹持驱动器4347用于驱使第二夹爪4349夹住座板421的另一侧。在本实施例中,第一夹持驱动器4346和第二夹持驱动器4347均为电动推杆机构。第一夹爪4348的一端铰接于第一夹持驱动器4346的驱动端,第一夹爪4348的中部铰接于第一定位杆4343;第一夹持驱动器4346能驱使第一夹爪4348绕连接处(第一夹爪4348与第一定位杆4343的连接处)摆动,以实现夹住座板421;第二夹爪4349的一端铰接于第二夹持驱动器4347的驱动端,第二夹爪4349的中部铰接于第二定位杆4344;第二夹持驱动器4347能驱使第二夹爪4349绕连接处(第二夹爪4349与第二定位杆4344的连接处)摆动,以实现夹住座板421。在本实施例中,第一夹爪4348和第二夹爪4349均包括第一连接部、第二连接部和钩挂部,第二连接部的一端与第一连接部连接,第二连接部的另一端与钩挂部连接,第二连接部与第一连接部之间的夹角大于90°,第二连接部与钩挂部之间的夹角等于或大于90°,第一连接部远离第二连接部的端部与第一夹持驱动器4346或第二夹持驱动器4347的驱动端连接,第一连接部与第二连接部的连接处铰接于第一定位杆4343或第二定位杆4344。关于智能移动底盘41的结构和功能请参照第一实施例,此处不再赘述。
可选地,请参照图37至图40,本实施例的桌椅机器人40与上述的桌椅机器人40的结构大致相同,不同点在于调节装置不同。
可选地,调节装置包括连杆转移机构435,连杆转移机构435包括第一转移连杆4351、第二转移连杆4352、第三转移连杆4353、横梁4354和转移驱动器4355(例如电机与减速器的组合结构),第一转移连杆4351与第二转移连杆4352相互平行设置,第一转移连杆4351和第二转移连杆4352的一端可活动地连接于承载板4111,第一转移连杆4351和第二转移连杆4352的另一端可活动地连接于第三转移连杆4353,横梁4354固定在第三转移连杆4353上,座椅42连接或放置在横梁4354上,转移驱动器4355固定于承载板4111,转移驱动器4355的驱动端与第一转移连杆4351连接,转移驱动器4355用于驱使第一转移连杆4351摆动以实现转移座椅42,例如将座椅42转移至地面,或者从地面转移至智能移动底盘41上。在本实施例中,承载板4111上固定有第一铰接座4112和第二铰接座4113,第一铰接座4112与第二铰接座4113沿承载板4111的宽度方向相对设置,第一转移连杆4351的一端铰接于第一铰接座4112,第一转移连杆4351的另一端铰接于第三转移连杆4353的端部,第二转移连杆4352的一端铰接于第二铰接座4113,第二转移连杆4352的另一端铰接于第三转移连杆4353的躯干,第三转移连杆4353远离第一转移连杆4351和第二转移连杆4352的端部与横梁4354固定连接,第一转移连杆4351、第二转移连杆4352以及第三转移连杆4353组合成平行四边形结构。
可选地,座椅42的座板421通过螺栓与螺孔配合固定在横梁4354上,此时座椅42不能脱离横梁4354,或者横梁4354上设置托盘,用于承托座椅42的座板421,此时座椅42能脱离横梁4354,或者横梁4354与座板421之间通过滑槽、滑轨以及紧固螺栓配合,用以调节座椅42的位置,增加座椅42的舒适性。
本实施例的桌子45与第二实施例的桌子45具有相同的结构和功能,即本实施例的桌板453在第三调节机构454和第四调节机构455的驱动下能沿第一方向X和/或第二方向Y水平移动,有利于增加使用者的舒适性,且桌子45的支撑腿4511在第五调节机构的驱动下能进行升降移动,但并不以此为限,例如本实施例的桌子45的桌板453固定在支撑架451上,桌板453不能水平移动,仅桌子45的支撑腿4511能够升降移动,或者桌板453和支撑腿4511均不能移动,根据实际需要可自由增减相应结构和功能。
请参照图41至图44,本实施例的桌椅机器人40与上述的桌椅机器人40的结构大致相同,不同点在于调节装置不同。调节装置包括机械臂436,机械臂436包括多个依次活动连接的活动臂4361以及分别驱动各活动臂4361的多个活动驱动器4362,多个活动驱动器4362配合能驱使多个活动臂4361折叠至相互平行的状态或驱使多个活动臂4361展开转移座椅42。在本实施例中,每个活动臂4361呈板状,多个活动臂4361能够折叠至相互平行的状态,避免机械臂436过多占用桌子45下方的空间,能提高空间利用率。
可选地,机械臂436包括三个活动臂4361和三个活动驱动器4362;第一个活动臂4361的端部连接在智能移动底盘41上,第一个活动臂4361与智能移动底盘41的连接处连接有一个活动驱动器4362,该活动驱动器4362用于驱使第一个活动臂4361绕铰接处活动;第二个活动臂4361的一端与第一个活动臂4361连接,第二个活动臂4361的另一端与第三个活动臂4361连接,第二个活动臂4361与第一个活动臂4361的连接处连接有一个活动驱动器4362,该活动驱动器4362用于驱使第二个活动臂4361绕连接处活动;第三个活动臂4361与第二个活动臂4361的连接处连接有一个活动驱动器4362,该活动驱动器4362用于驱使第三个活动臂4361绕连接处活动;三个活动臂4361与三个活动驱动器4362配合完成座椅42的转移动作。在本实施例中,第三个活动臂4361上连接有插板363,插板363用于在转移座椅42时承托座椅42的座板421。
可选地,智能移动底盘41内设有第二平移驱动机构(图未示),第二平移驱动机构包括第三滑动座4110和第二平移驱动器,第二平移驱动器的驱动端与第三滑动座4110连接,承载板4111上设有长条形的活动孔109,第三滑动座4110对应活动孔109设置,机械臂436的端部连接于第三滑动座4110,第二平移驱动器用于驱使第三滑动座4110移动以改变机械臂436的位置。在本实施例中,活动孔109贯穿承载板4111,活动孔109沿承载板4111的长度方向设置(沿第二方向Y设置);当智能移动底盘41上放置有多个座椅42时,第二平移驱动器通过第三滑动座4110能驱使机械臂436经过不同座椅42,方便机械臂436转移不同座椅42。第二平移驱动器为伸缩缸结构或电机与丝杆的组合结构,根据实际需求可自由选择。
可选地,调节装置包括至少一个承托机构437,承托机构437包括立柱4371、托板4372和托板驱动器4373,立柱4371的端部连接于承载板4111,托板4372可活动地连接于立柱4371,托板驱动器4373固定于立柱4371,托板驱动器4373的驱动端与托板4372连接,托板驱动器4373用于驱使托板4372翻转,机械臂436用于将座椅42转移至托板4372上,或者将座椅42搬离托板4372。当承托机构437承托座椅42时,托板驱动器4373驱使托板4372至水平状态,此时机械臂436将座椅42转移至托板4372上即可;当需要将座椅42转移至地面时,机械臂436移动托起托板4372上的座椅42,之后转移至地面上即可。
可选地,本实施例的桌子45与第二实施例的桌子45具有相同的结构和功能,即本实施例的桌板453在第三调节机构454和第四调节机构455的驱动下能沿第一方向X和/或第二方向Y水平移动,有利于增加使用者的舒适性,且桌子45的支撑腿4511在第五调节机构的驱动下能进行升降移动;当机械臂436将座椅42从托板4372上转移至地面,或者从地面转移至托板4372上时,支撑腿4511在第五调节机构的驱动下上升,避免转移过程中座椅42碰撞桌板453;当座椅42转移完毕后,支撑腿4511在第五调节机构的驱动下下降。
可选地,如图45和图46所示,本实施例的桌椅机器人40与上述的桌椅机器人40的结构大致相同,不同点在于调节装置不同。调节装置包括第一调节机构(图未示)和第二调节机构(图未示),第一调节机构用于座椅42沿第一方向X移动,第二调节机构用于座椅42沿第二方向Y移动,第一方向X与第二方向Y具有一夹角,该夹角例如为30°~150°,优选90°;当该夹角为90°时,即第一方向X与第二方向Y相互垂直,其中第一方向X平行于承载板4111的宽度方向,第二方向Y平行于承载板4111的长度方向,承载板4111平行于第一方向X和第二方向Y,承载板4111平行于桌板453。在本实施例中,第一调节机构和第二调节机构的功能和结构请参照第二实施例驱使桌板453移动相关结构,具体细节此处不在赘述。
可选地,座椅42上设有位置调节机构,位置调节机构分别与第一调节机构、第二调节机构电性连接,位置调节机构用于调节座椅42位置。在本实施例中,位置调节机构例如为控制方向的操作杆424和电动按钮或旋钮425,操作杆424、电动按钮或旋钮425能够控制第一调节机构、第二调节机构通电启动以及控制座椅42移动的方向。本实施例的座椅42例如为沙发椅,舒适性较好。
可选地,请参照图27至图47,智能房屋系统包括上述的多个桌椅机器人40,桌椅机器人40桌椅机器人40桌板453桌椅机器人40桌板453多个桌椅机器人40根据调度任务移动至呈矩阵排布,且各桌子45的第三调节机构454和第四调节机构455驱使各桌板453移动实现多个桌板453拼接,能够在会议桌、办公桌、休闲室、茶歇厅等房间或室外临时拼接成面积较大的桌面;当大桌面使用完毕后,多个桌椅机器人40能自主移动散开,或者移动至其它场所,能够在多种环境下使用,实用性高,能满足实际需求。
可选地,如图49至图59所示,本申请提供的一种供电机器人50,供电机器人50与云平台71通讯连接,供电机器人50包括移动主体51以及安装于移动主体51上的供电机构52,供电机构52包括第三对接头521、第二缓冲机构522和电缆线束523,第三对接头521与第二缓冲机构522连接,第二缓冲机构522与移动主体51连接,第二缓冲机构522用于为第三对接头521提供移动缓冲空间;电缆线束523的一端与第三对接头521电性连接,电缆线束523的另一端用于连接至市电;供电机器人50用于为顶棚机器人10和/或墙面机器人20、桌椅机器人40供电。在本实施例中,供电机器人50能根据调度任务自主导航移动,为顶棚机器人10、墙面机器人20、桌椅机器人40供电或充电。
本申请通过将供电机构52安装于移动主体51上,使得供电机器人可以自主移动至需要充电的机械设备62(顶棚机器人10、墙面机器人20、桌椅机器人40)附近,并给缺电的机械设备62进行充电;而且通过设置第二缓冲机构522给第三对接头521提供移动的缓冲空间,即使充电接头的对位存在一定偏差,供电机构52的对接头也可以通过第二缓冲机构522提供的移动缓冲空间,与缺电机械设备62的接头精准结合,从而无需人工去结合,降低人工成本以及提高安全性,使得供电机器人可以应用于无人值守的以及低矮空间内不便于人工操作的用电设备供电场景。
本实施例中,如图52至图59所示,第二缓冲机构522包括连接杆5221、第二滑块5222、第二滑轨5223以及复位件5224,连接杆5221的一端与第三对接头521活动连接,连接杆5221的另一端与第二滑块5222活动连接,第二滑块5222安装于第二滑轨5223上并能够在第二滑轨5223上滑动,第二滑轨5223与移动主体51连接,复位件5224具有使第二滑块5222靠近第三对接头521滑动的作用力。第二缓冲机构522通过采用连接杆5221、第二滑块5222、第二滑轨5223以及复位件5224等结构,从而使得第二缓冲机构522可以为第三对接头521提供平移的缓冲空间,避免第三对接头521的方向发生改变。
可选地,连接杆5221、第二滑块5222、第二滑轨5223以及复位件5224的数量均为多个,从而使得第二缓冲机构522可以在多个方向(例如上下方向、左右方向以及前后方向)为第三对接头521提供平移的缓冲空间。本实施例中,连接杆5221的数量为六个,第二滑块5222、第二滑轨5223以及复位件5224的数量均为三个,每两个连接杆5221与一个第二滑块5222、第二滑轨5223以及复位件5224配合并形成一个组件,三个组件间隔的弧度为120°。当然,在其他实施例中,第二缓冲机构522也可采用多个滑动组件,例如上下方向的滑动组件与前后方向的滑动组件相配合,从而使得可以在多个方向(例如上下方向以及左右方向)为第三对接头521提供平移的缓冲空间。
可选地,连接杆5221端部通过转轴或万向球头与第三对接头521和第二滑块5222进行活动连接。本实施例中,连接杆5221的一端通过转轴与第三对接头521活动连接,连接杆5221的另一端通过转轴与第二滑块5222活动连接。当然,在其他实施例中,连接杆5221的一端通过万向球头与第三对接头521活动连接,连接杆5221的另一端通过万向球头与第二滑块5222活动连接。
本实施例中,移动主体51上设有导向柱5125,第二滑块5222套设于导向柱5125上并能够在导向柱5125上滑动,复位件5224套设于导向柱5125上,复位件5224的一端与移动主体51相抵靠,复位件5224的另一端与第二滑块5222相抵靠。其中,复位件5224采用弹簧,弹簧套设与导向柱5125上,导向柱5125与第二滑轨5223相平行。
本实施例中,供电机构52还包括电缆线束523,电缆线束523的一端与第三对接头521电性连接,电缆线束523的另一端用于与市电连接,从而通过市电来给第三对接头521供电。当然,移动主体51也与电缆线束523电性连接,一方面可以给移动主体51提供移动的电能,另一方面使得移动主体51上的控制器可以控制市电给第三对接头521供电的状态。
本实施例中,如图52至图55所示,移动主体51包括移动底座511以及安装于移动底座511上的滑动机构512,滑动机构512与供电机构52连接并用于驱动供电机构52滑动。其中,滑动机构512的滑动方向与导向柱5125和第二滑轨5223相平行。
可选地,滑动机构512包括驱动机构5121、第三滑块5122、第三滑轨5123以及传动组件(图未示),驱动机构5121和第三滑轨5123与移动底座511连接,第三滑块5122与第三滑轨5123连接,第三滑块5122能够在第三滑轨5123上滑动,供电机构52与第三滑块5122连接,驱动机构5121通过传动组件与第三滑
块5122连接并用于驱动第三滑块5122滑动。其中,驱动机构5121为驱动电机,传动组件可以为螺丝杆结构。当然,在其他实施例中,驱动机构5121可以为伸缩气缸或伸缩油缸,伸缩气缸或伸缩油缸的伸缩杆直接与第三滑块5122连接,从而无需传动组件。
优选地,第三滑轨5123设有位置检测传感器,用于检测第三滑块5122的滑动距离,避免供电机构52滑动不到位或是滑动距离过大。
可选地,第三滑块5122上设有安装支架5124,供电机构52安装于安装支架5124上,安装支架5124与第三滑块5122连接。其中,第二缓冲机构522的第二滑轨5223安装于安装支架5124上,导向柱5125安装于安装支架5124上。
本实施例中,移动主体51包括机壳513,机壳513与移动底座511连接并形成容纳腔204,供电机构52与滑动机构512均位于容纳腔204内,机壳513上设有与第三对接头521配合的第二开口201,滑动机构512用于驱动第三对接头521在第二开口201处伸缩。当在不需要供电时,第三对接头521可以缩回机壳513内,不会外漏,增加安全性。其中,电缆线束523远离第三对接头521的一端露出机壳513,便于与市电连接。
可选地,机壳513上设有遮挡板5131和驱动器5132,遮挡板5131位于第二开口201处,驱动器5132用于驱动遮挡板5131关闭或打开第二开口201。通过设置遮挡板5131,当在不需要供电时,第三对接头521可以缩回机壳513内,遮挡板5131将第二开口201遮挡住,进一步增加安全性。机壳513还设有隔板5133和屏蔽罩5134,供电机构52位于隔板5133的下方,电缆线束523位于隔板5133和屏蔽罩5134之间,电缆线束523的一端穿过隔板5133与第三对接头521连接,屏蔽罩5134用于屏蔽电缆线束523产生的电磁场,提高安全性。
可选地,如图50所示,移动主体51的底部还设有多个车轮514,车轮514用于驱动移动主体51移动。当然,移动主体51还设有定位元件、图像传感器以及雷达等传感器,从而便于移动主体51自动寻找到需要充电的机械设备62。顶棚机器人10和/或墙面机器人20、桌椅机器人40上设有第四对接头61,第三对接头521与第四对接头61相互配合实现电性连接。
如图48至图51所示,本申请还提供一种供电系统,包括第四对接头61以及如上所述的供电机器人。第四对接头61与第三对接头521相互配合,第四对接头61在朝向第三对接头521的一侧设有导向斜面611(图60至图62)。第三对接头521和第四对接头61其中之一为插头,其中另一为插座,从而使得第三对接头521和第四对接头61可以结合在一起并通电。第三对接头521在与第四对接头61进行对接时,通过第二缓冲机构522给第三对接头521提供移动的缓冲空间,如果存在一定偏差,导向斜面611会迫使第三对接头521在缓冲空间的范围内移动,直到第三对接头521与第四对接头61对接完成。
可选地,如图60至图62所示,第三对接头521上设有贯穿第三对接头521的散热孔202,第四对接头61的相对两侧设有与散热孔202对应的通风孔203,第四对接头61在至少其中一个通风孔203处设有散热风扇612。在充电时,第三对接头521和第四对接头61会产生一定热量,通过在第三对接头521上设置散热孔202,且第四对接头61的相对两侧设置与散热孔202对应的通风孔203,因此只需要一个散热风扇612就可以同时给第三对接头521和第四对接头61进行散热。其中,第三对接头521和第四对接头61选用的耐高温材料PEEK,确保及时转移供电过程产生的热量。
本实施例中,如图48所示,供电系统还包括机械设备62、卷线盘63以及导线64,第四对接头61安装于机械设备62上并用于给机械设备62进行充电,导线64缠绕于卷线盘63上,导线64的一端与电缆线束523连接,导线64的一端连接至市电。优选地,导线64与电缆线束523为可拆卸连接,便于更换不同长度的导线64,导线64与电缆线束523之间采用航空插头和航空插座进行电性连接。
以上结合附图详细描述了本申请的优选实施方式,但是本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
本发明的智能房屋系统通过云平台进行数据管理和监控以及智能调度系统模块化控制实现顶棚机器人与墙面机器人模块化快速拼接成房屋或将拆解房屋,节省人力、物力,而且运输存储方便,不会永久占据土地资源和空间,低碳环保,具有集成化和智能化高等优点,兼具科技性和展示性具备快速推广特性。
Claims (21)
- 一种智能房屋系统,其特征在于,包括云平台以及与所述云平台通讯连接的智能调度系统、至少一个顶棚机器人和至少一个墙面机器人,所述智能调度系统用于向所述云平台发送调度任务,所述调度任务包括预设的机器人拼接和/或拆解顺序,所述云平台将所述调度任务发至至少一个所述顶棚机器人和至少一个所述墙面机器人,所述顶棚机器人与所述墙面机器人根据所述调度任务拼接成房屋或拆解所述房屋;所述墙面机器人包括行走机构,所述行走机构包括底盘,所述底盘上设有第一机器人连接机构,所述第一机器人连接机构包括第一对接装置和与所述第一对接装置相配合的第二对接装置,所述第一对接装置和所述第二对接装置分别设置于所述底盘上的不同位置;一个所述墙面机器人上的第一对接装置能够与另一个所述墙面机器人上的第二对接装置相连,以实现两个所述墙面机器人相互拼接。
- 如权利要求1所述的智能房屋系统,其特征在于,所述调度任务还包括至少一条第一位移路径和至少一条第二位移路径,所述顶棚机器人和所述墙面机器人具有自主导航移动和避障功能,所述顶棚机器人根据所述第一位移路径移动至第一目标位置,所述墙面机器人根据所述第二位移路径移动至第二目标位置,使所述顶棚机器人的墙体与所述墙面机器人完成拼接。
- 如权利要求2所述的智能房屋系统,其特征在于,所述调度任务还包括至少一条第三位移路径,所述智能房屋系统包括至少两个所述墙面机器人,至少一个所述墙面机器人根据所述第三位移路径移动至第三目标位置,使两个所述墙面机器人完成对接。
- 如权利要求3所述的智能房屋系统,其特征在于,所述调度任务还包括对接任务,当机器人完成对接时,所述顶棚机器人与所述墙面机器人根据所述对接任务完成相互锁合固定,至少两个所述墙面机器人根据所述对接任务完成相互锁合固定。
- 如权利要求1所述的智能房屋系统,其特征在于,所述智能房屋系统还包括数字孪生系统,所述数字孪生系统与所述云平台通讯连接,所述数字孪生系统用于实现所述顶棚机器人和所述墙面机器人数字化模型实时状态映射、状态跟踪及行为预测。
- 如权利要求1所述的智能房屋系统,其特征在于,所述顶棚机器人和/或所述墙面机器人设有显示屏幕,所述智能房屋系统还包括视频推送系统,所述视频推送系统与所述云平台通讯连接,所述视频推送系统用于向所述云平台发送视频播放任务,所述视频播放任务包括单个屏幕视频播放任务和/或多个屏幕视频播放任意拼接长分辨率播放任务,所述顶棚机器人和/或所述墙面机器人根据所述视频播放任务控制一个所述显示屏幕播放视频,或者控制至少两个所述显示屏幕拼接长分辨率播放视频。
- 如权利要求1所述的智能房屋系统,其特征在于,所述智能房屋系统还包括智能终端设备,所述智能终端设备与所述云平台通讯连接,所述智能终端设备设有人机交互界面,所述人机交互界面用于输入控制指令,所述控制指令包括其中至少一种:机器人拼接启动指令、机器人拆解启动指令、视频推送启动指令、机器人移动启动指令和机器人肢体启动指令。
- 如权利要求1至7任一项所述的智能房屋系统,其特征在于,所述智能调度系统向所述云平台发送拼接任务,所述云平台将所述拼接任务下发到至少一个所述顶棚机器人和至少一个所述墙面机器人;所述顶棚机器人和所述墙面机器人接收到命令,确认是否可以进行拼接,如果可以拼接,则所述顶棚机器人和所述墙面机器人启动;所述智能调度系统将所述拼接任务分解为所述调度任务,并发送至所述云平台,所述云平台将所述调度任务分解为多条位移任务,并发送到至少一个所述顶棚机器人和至少一个所述墙面机器人,至少一个所述顶棚机器人和至少一个所述墙面机器人根据所述位移任务移动至目标位置。
- 如权利要求8所述的智能房屋系统,其特征在于,至少一个所述顶棚机器人和至少一个所述墙面机器人在移动过程中实时向所述云平台上报位姿信息,所述云平台存储所述顶棚机器人和/或所述墙面机器人的时序数据,并将所述时序数据发送至所述智能调度系统,所述智能调度系统获取所述顶棚机器人和/或所述墙面机器人实时位姿,并以此确认下次所述调度任务及实时监控。
- 如权利要求9所述的智能房屋系统,其特征在于,当所述顶棚机器人和所述墙面机器人成功完成所述位移任务时,所述智能调度系统向所述云平台发送对接任务,所述云平台下发对接任务至至少一个所述顶棚机器人和至少一个所述墙面机器人,使所述顶棚机器人与所述墙面机器人完成相互锁合固定以及使 至少两个所述墙面机器人根据所述对接任务完成相互锁合固定。
- 如权利要求1至7任一项所述的智能房屋系统,其特征在于,所述顶棚机器人包括第一墙体、第二墙体和顶棚,所述第一墙体与所述第二墙体相对设置,所述第一墙体和所述第二墙体的顶部可活动地连接于所述顶棚,所述第一墙体和所述第二墙体的底部设有舵轮驱动装置,所述舵轮驱动装置用于根据所述调度任务驱使所述顶棚机器人整体移动。
- 如权利要求11所述的智能房屋系统,其特征在于,所述顶棚包括固定棚以及安装在所述固定棚内的至少一个活动棚和至少一个伸展驱动机构,所述固定棚连接在所述第一墙体和所述第二墙体上,所述固定棚的至少一侧边设有开口,所述伸展驱动机构的驱动端与所述活动棚连接,所述伸展驱动机构用于根据所述调度任务驱使所述活动棚从所述开口伸出。
- 如权利要求1至7任一项所述的智能房屋系统,其特征在于,所述墙面机器人包括设置于所述行走机构上的显示屏幕,所述行走机构包括驱动轮组件,所述驱动轮组件设置于所述底盘的底部并与所述底盘相连,所述显示屏幕设置于所述底盘上方并与所述底盘相连;所述底盘内设有动力电池系统,所述动力电池系统与所述驱动轮组件和所述显示屏幕电连接;所述行走机构用于根据所述调度任务驱使所述墙面机器人整体移动实现房屋拼接或拆解。
- 如权利要求13所述的智能房屋系统,其特征在于,所述底盘上设有对接插电机构,所述对接插电机构包括插电伸缩驱动装置、第一对接头以及与所述第一对接头相匹配的第二对接头,所述第一对接头和所述第二对接头中的其中一者为对接插头,所述第一对接头和所述第二对接头中的另外一者为与所述对接插头相匹配的对接插座;所述插电伸缩驱动装置与所述第一对接头相连,所述插电伸缩驱动装置用于驱动所述第一对接头相对于所述底盘做水平伸缩运动;所述第一对接头和所述第二对接头均与所述动力电池系统电连接,一个所述墙面机器人上的第一对接头能够与另一个所述墙面机器人上的第二对接头相连,以实现两个所述墙面机器人之间的电连接。
- 如权利要求13所述的智能房屋系统,其特征在于,所述顶棚机器人包括第二机器人连接机构,所述第二机器人连接机构与所述第一机器人连接机构结构相同,所述墙面机器人上的第一对接装置能够与所述顶棚机器人上的第二对接装置相连,以实现所述墙面机器人与所述顶棚机器人相互拼接。
- 如权利要求1至7任一项所述的智能房屋系统,其特征在于,所述智能房屋系统还包括至少一个桌椅机器人,所述桌椅机器人与所述云平台通讯连接,所述桌椅机器人具有自主导航移动功能,所述桌椅机器人根据所述调度任务移动至所述顶棚机器人的下方。
- 如权利要求16所述的智能房屋系统,其特征在于,所述桌椅机器人包括能够自主导航移动的智能移动底盘和桌子,所述桌子包括支撑架、活动架、桌板、第三调节机构和第四调节机构,所述支撑架连接在所述智能移动底盘上,所述活动架沿第一方向可活动地连接在所述支撑架上,所述桌板沿第二方向可活动地连接在所述活动架上,所述第三调节机构连接于所述活动架与所述支撑架之间,并用于驱使所述活动架和所述桌板沿所述第一方向移动,所述第四调节机构连接于所述活动架与所述桌板之间,并用于驱使所述桌板沿所述第二方向移动,所述第一方向与所述第二方向具有一夹角。
- 如权利要求17所述的智能房屋系统,其特征在于,所述智能移动底盘设有承载板,所述桌椅机器人还包括座椅和调节装置,所述座椅摆放在所述承载板上,所述调节装置连接在所述承载板上,所述调节装置用于根据所述调度任务固定和/或转移所述座椅。
- 如权利要求17所述的智能房屋系统,其特征在于,所述智能房屋系统还包括多个桌椅机器人,多个所述桌椅机器人根据所述调度任务移动至呈矩阵排布,且各所述桌子的所述第三调节机构和所述第四调节机构驱使各所述桌板移动实现多个所述桌板拼接。
- 如权利要求1至7任一项所述的智能房屋系统,其特征在于,所述智能房屋系统还包括供电机器人,所述供电机器人与所述云平台通讯连接,所述供电机器人包括移动主体以及安装于所述移动主体上的供电机构,所述供电机构包括第三对接头、第二缓冲机构以及电缆线束,所述第三对接头与所述第二缓冲机构连接,所述第二缓冲机构与所述移动主体连接,所述第二缓冲机构用于为所述第三对接头提供移动缓冲空间,所述电缆线束的一端与所述第三对接头电性连接,所述电缆线束的另一端用于连接至市电;所述 供电机器人用于为所述顶棚机器人和/或所述墙面机器人供电。
- 如权利要求20所述的智能房屋系统,其特征在于,所述第二缓冲机构包括连接杆、第二滑块、第二滑轨以及复位件,所述连接杆的一端与所述第三对接头活动连接,所述连接杆的另一端与所述第二滑块活动连接,所述第二滑块安装于所述第二滑轨上并能够在所述第二滑轨上滑动,所述第二滑轨与所述移动主体连接,所述复位件具有使所述第二滑块靠近所述第三对接头滑动的作用力;所述顶棚机器人和/或所述墙面机器人上设有第四对接头,所述第三对接头与所述第四对接头相互配合实现电性连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211388419.X | 2022-11-08 | ||
CN202211388419.XA CN115439274B (zh) | 2022-11-08 | 2022-11-08 | 智能房屋系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024098693A1 true WO2024098693A1 (zh) | 2024-05-16 |
Family
ID=84252963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/092624 WO2024098693A1 (zh) | 2022-11-08 | 2023-05-06 | 智能房屋系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115439274B (zh) |
WO (1) | WO2024098693A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115439274B (zh) * | 2022-11-08 | 2023-03-24 | 盈合(深圳)机器人与自动化科技有限公司 | 智能房屋系统 |
CN118294257B (zh) * | 2024-04-08 | 2024-09-17 | 武汉精锐智能装备科技有限公司 | 一种用于舵杆机构拉断测试的高速摄像装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9353514B1 (en) * | 2014-10-15 | 2016-05-31 | IVP Holdings III LLC | Building configuration and management system with reconfigurable building components |
CN112307604A (zh) * | 2020-10-14 | 2021-02-02 | 上海第二工业大学 | 一种个性化生产的自动装配控制方法 |
CN115439274A (zh) * | 2022-11-08 | 2022-12-06 | 盈合(深圳)机器人与自动化科技有限公司 | 智能房屋系统 |
CN115627838A (zh) * | 2022-11-08 | 2023-01-20 | 盈合(深圳)机器人与自动化科技有限公司 | 顶棚机器人 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2524260B2 (ja) * | 1991-01-22 | 1996-08-14 | 株式会社フジタ | 建築物の構築方法及び装置 |
CA2601317C (en) * | 2006-10-11 | 2010-07-20 | The Mattamy Corporation | Housing manufacturing system and method |
CN111456462A (zh) * | 2020-04-23 | 2020-07-28 | 何淑敏 | 一种拼接式房屋钢结构墙体固定机器人 |
-
2022
- 2022-11-08 CN CN202211388419.XA patent/CN115439274B/zh active Active
-
2023
- 2023-05-06 WO PCT/CN2023/092624 patent/WO2024098693A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9353514B1 (en) * | 2014-10-15 | 2016-05-31 | IVP Holdings III LLC | Building configuration and management system with reconfigurable building components |
CN112307604A (zh) * | 2020-10-14 | 2021-02-02 | 上海第二工业大学 | 一种个性化生产的自动装配控制方法 |
CN115439274A (zh) * | 2022-11-08 | 2022-12-06 | 盈合(深圳)机器人与自动化科技有限公司 | 智能房屋系统 |
CN115627838A (zh) * | 2022-11-08 | 2023-01-20 | 盈合(深圳)机器人与自动化科技有限公司 | 顶棚机器人 |
Also Published As
Publication number | Publication date |
---|---|
CN115439274B (zh) | 2023-03-24 |
CN115439274A (zh) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024098693A1 (zh) | 智能房屋系统 | |
US10873177B2 (en) | Circuit breaker racking system and method | |
US20160024781A1 (en) | Robotically controlled architectural elements | |
CN112959331A (zh) | 换装机器人及机器人工作站 | |
CN205704218U (zh) | 一种无线互联网社交机器人 | |
CN213566539U (zh) | 一种适用于多种安装需求的无人机智能机库 | |
CN105654823A (zh) | 抽拉柜体式电力营销实训装置 | |
CN108928498A (zh) | 用于无人机的降落停机坪 | |
CN216357676U (zh) | 一种具有无人机机场的机柜 | |
CN113511263B (zh) | 一种操作机器人原地转向机构 | |
CN210148075U (zh) | 一种全向移动玻璃安装机械手控制装置 | |
CN210201975U (zh) | 一种可快速布置的无线光伏智能可视化监控装置 | |
CN209007591U (zh) | 一种带有工具箱的巡检机器人支撑台 | |
CN110739652B (zh) | 一种遥控折叠型电缆沟盖板装置 | |
CN109434816B (zh) | 一种多模块组合式多功能服务机器人 | |
CN221129313U (zh) | 桌椅机器人及智能桌椅系统 | |
CN209168450U (zh) | 可收放/展开的自适应随组式飞行仿真系统通用平台底柜 | |
CN115627837A (zh) | 墙面机器人及组合房屋模块 | |
JP7566697B2 (ja) | 無線中継システムの運搬装置 | |
CN219320686U (zh) | 一种多驱动方式的自动巡检机器人 | |
CN219302913U (zh) | 一种可提高巡航时间的自动巡检机器人 | |
CN219418039U (zh) | 一种低架设成本的自动巡检机器人 | |
CN219302914U (zh) | 一种可保持高度进行运作的自动巡检机器人 | |
CN108927810A (zh) | 真空吸附式变电站室内检测机器人与方法 | |
CN219609489U (zh) | 一种稳定性高的自动巡检机器人 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23887394 Country of ref document: EP Kind code of ref document: A1 |