WO2024098220A1 - 防抖动机构、摄像头模块、便携终端 - Google Patents

防抖动机构、摄像头模块、便携终端 Download PDF

Info

Publication number
WO2024098220A1
WO2024098220A1 PCT/CN2022/130427 CN2022130427W WO2024098220A1 WO 2024098220 A1 WO2024098220 A1 WO 2024098220A1 CN 2022130427 W CN2022130427 W CN 2022130427W WO 2024098220 A1 WO2024098220 A1 WO 2024098220A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
wire
base
shake mechanism
pair
Prior art date
Application number
PCT/CN2022/130427
Other languages
English (en)
French (fr)
Inventor
宇野勝
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/130427 priority Critical patent/WO2024098220A1/zh
Publication of WO2024098220A1 publication Critical patent/WO2024098220A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment

Definitions

  • the present invention relates to an anti-shake mechanism built into a camera module of a device such as a portable terminal (for example, a smart phone or a tablet computer), and a camera module and a portable terminal having the anti-shake mechanism.
  • a portable terminal for example, a smart phone or a tablet computer
  • a camera module and a portable terminal having the anti-shake mechanism.
  • optical image stabilization (OIS) mechanism described in CN108780207A.
  • a dynamic platform having an image sensor is configured to move in multiple directions orthogonal to the optical axis of a camera lens relative to a static platform.
  • the OIS mechanism includes a voice coil motor (VCM).
  • the voice coil motor includes an image sensor frame component as the dynamic platform, a frame of the voice coil motor as the static platform, and multiple OIS coils.
  • the OIS coil is mounted on the image sensor frame component within the magnetic field of a magnet so as to generate a force that moves the dynamic platform in multiple directions orthogonal to the optical axis of the camera lens.
  • the voice coil motor used as a driving source in this structure has low efficiency and high power consumption.
  • the combination of the dynamic platform and the static platform in this structure has the problem of easy resonance, large posture difference, and high cost.
  • the present invention aims to provide an anti-shake mechanism which is superior to the prior art, has high efficiency, low power consumption, is not prone to resonance, has a small posture difference, and is low-cost, a camera module having the anti-shake mechanism, and a portable terminal.
  • One embodiment of the present invention is an anti-shake mechanism built into a camera module, which comprises: a base; a movable part, which is arranged opposite to the base in the optical axis direction of the camera module and is movably supported on the base in a first direction orthogonal to the optical axis direction and a second direction orthogonal to the optical axis direction and the first direction; and a driving part, which connects the base and the movable part and generates a driving force for moving the movable part in at least one of the first direction and the second direction, the movable part comprises a photographing element, the driving part has a pair of driving wires in a manner opposite to each other in the first direction, and has a pair of driving wires in a manner opposite to each other in the second direction, the driving wires are deformed in a length direction, both ends of the driving wires are fixed to the base, and the middle part of the driving wires is mounted on the movable part, so that at least one of the driving wires is de
  • the driving wire can be shrunk in the longitudinal direction by heating.
  • the driving wire is made of metal, but may be made of other materials that can realize the present invention, and is preferably made of a shape memory alloy.
  • the base may include a power supply electrode, and both ends of the driving wire may be fixed to the base by being fixed to the power supply electrode and electrically connected to the power supply electrode, and the driving wire may contract by generating heat by energizing itself.
  • the movable portion may be in a quadrilateral shape when viewed from the optical axis direction, and the movable portion may have wire bending portions protruding toward the base portion at four corners, and the middle portion of the driving wire may be mounted on the movable portion by abutting against the side surface of the wire bending portion.
  • the wire bending portion may include a groove or a protrusion for restricting displacement of the driving wire in the optical axis direction.
  • the pair of driving wires opposite to each other in the first direction may be symmetrically arranged in the first direction
  • the pair of driving wires opposite to each other in the second direction may be symmetrically arranged in the second direction
  • the center positions of the pair of driving wires opposite to each other in the first direction and the pair of driving wires opposite to each other in the second direction may be consistent with the center of the shooting element when viewed from the optical axis direction.
  • the device may include a vibration detection unit and a control unit, wherein the vibration detection unit detects vibration applied to the camera module; and the control unit performs control according to the vibration detected by the vibration detection unit.
  • control unit controls the drive unit to input energy for deforming the drive wire according to the magnitude of the vibration detected by the vibration detection unit, and stops inputting the energy when the vibration detection unit detects no vibration.
  • one of the base and the movable portion may include a permanent magnet, and the other may include a Hall element, and the Hall element may detect a positional relationship of the movable portion relative to the base in at least one of the first direction and the second direction.
  • Another aspect of the present invention is a camera module having the above-mentioned anti-shake mechanism built therein.
  • Another aspect of the present invention is a portable terminal including the camera module.
  • FIG. 1 is a schematic diagram showing anti-shake of a smartphone.
  • FIG. 2 is a schematic diagram showing processing in the anti-shake mechanism.
  • FIG. 3 is a longitudinal sectional view schematically showing a portion necessary for explanation in a camera module provided with an anti-shake mechanism according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the anti-shake mechanism, and is a diagram showing a state in which the rear is viewed from the rear surface position of the bottom plate in the movable portion.
  • FIG. 5 is a diagram showing a portion necessary for explanation extracted from FIG. 4 .
  • FIG. 6 is a diagram showing a portion necessary for explanation extracted from FIG. 4 .
  • FIG. 7A is a side view showing an imaging unit in a movable portion of the anti-shake mechanism.
  • FIG. 7B is a side view showing the base portion and the movable portion (excluding the imaging portion) in the above-mentioned anti-shake mechanism.
  • FIG. 8A is a plan view showing a base portion in the above-mentioned anti-shake mechanism.
  • FIG8B is a right side view showing the base portion of the anti-shake mechanism.
  • FIG. 9A is a right side view showing a movable portion (excluding the image sensor supporting portion) in the anti-shake mechanism.
  • FIG. 9B is a bottom view showing a movable portion (excluding the image sensor support portion) in the anti-shake mechanism.
  • optical axis direction hereinafter refers to the optical axis direction of the camera module 2.
  • the subject side is regarded as the front (left direction in FIG. 3 ), and the imaging element 32b1 side is regarded as the rear (right direction in FIG. 3 ).
  • the anti-shake mechanism 3 of the present embodiment is built into a camera module 2 possessed by a portable terminal 1 (e.g., a smartphone, a tablet computer) or the like.
  • a portable terminal 1 e.g., a smartphone, a tablet computer
  • FIG. 1 and FIG. 2 show an overview of the anti-shake function in the portable terminal 1.
  • the anti-shake function itself is well known, so it is briefly described.
  • vibrations are sometimes transmitted from the user's hand or the like to the portable terminal 1 (e.g., a smartphone).
  • the vibrations are transmitted to the camera module 2.
  • the vibrations have a rotational motion component as shown by the arrow in FIG. 1 .
  • a gyro sensor 11 and a servo driver 12 are provided inside the portable terminal 1, and an actuator 13 and a sensor 14 are provided in the camera module 2.
  • the gyro sensor 11 detects it, and the servo driver 12 drives the actuator 13 under the detection of the sensor 14 to make it circulate (servo cycle), so that the image entering from the lens and projected onto the imaging element 32b1 can be prevented from shaking.
  • FIG3 briefly shows the structure of the camera module 2.
  • the portable terminal 1 supports a lens support 21.
  • a lens, an aperture, and an autofocus mechanism are provided in the lens support 21.
  • An imaging element 32b1 is provided to receive the imaging light formed by passing through the lens at the rear of the optical axis direction of the lens support 21.
  • the imaging element 32b1 is provided in the anti-shake mechanism 3.
  • the anti-shake mechanism 3 includes a base 31, a movable part 32, and a driving part 33.
  • the base 31 is a plate-shaped part fixedly provided in the anti-shake mechanism 3 (and the camera module 2).
  • the base 31 includes: a rigid, flat bottom plate 311; and a flexible substrate (Flexible Printed Circuits, FPC) 312 (refer to FIG8A and FIG8B ) that is attached to the front surface of the bottom plate 311 and is softer than the bottom plate 311.
  • the bottom plate 311 has a quadrilateral shape (specifically, a rectangle) when viewed from the optical axis direction.
  • the portion of the flexible substrate 312 that overlaps with the bottom plate 311 is set to have the same shape as the bottom plate 311.
  • the base 31 includes a power supply electrode 313.
  • the power supply electrode 313 is fixed to the bottom plate 311 in a manner protruding forward in the optical axis direction.
  • a rectangular wave-shaped current is supplied to the power supply electrode 313 from the outside of the anti-shake mechanism 3 in the camera module 2.
  • the supplied current may be a direct current or a current having a waveform other than a rectangular wave.
  • the movable part 32 is a plate-like portion disposed opposite to the base part 31 in the direction of the optical axis.
  • the movable part 32 includes a flat bottom plate 321.
  • the bottom plate 321 is in a quadrilateral (specifically, a rectangle) shape when viewed from the direction of the optical axis.
  • the movable part 32 includes: a movable mechanism part 32a; and a photographing part 32b, which is separate from the movable mechanism part 32a and is assembled to the movable mechanism part 32a by, for example, bonding, so as to be integrated with the movable mechanism part 32a.
  • the photographing part 32b includes a photographing element 32b1.
  • the movable portion 32 can be supported on the base 31 so as to be movably in each of a first direction X orthogonal to the optical axis direction and a second direction Y orthogonal to the optical axis direction and the first direction X.
  • first direction X the left-right direction shown in FIG. 4
  • second direction Y the up-down direction
  • the movable portion 32 can also move in a direction (an inclined direction in FIG. 4, the angle is arbitrary) obtained by combining the first direction X and the second direction Y.
  • the movable part 32 has wire bending parts 322 protruding backward (toward the base 31) from the bottom plate 321 at four corners. That is, in the movable part 32, the wire bending parts 322 are arranged at four positions.
  • the wire bending parts 322 of this embodiment are cylindrical protrusions protruding from the rear surface of the bottom plate 321.
  • the wire bending parts 322 are formed by an insulator such as resin.
  • a driving wire 331 is hung on the side of the wire bending part 322. Specifically, as shown in Fig. 4, the driving wire 331 is hooked along a part of the outer part 322a based on the imaginary quadrilateral formed by the four wire bending parts 322.
  • the driving wire 331 when viewed from the optical axis direction, the driving wire 331 is bent.
  • the driving wire 331 is bent at an acute angle, but it can also be bent at a right angle or an obtuse angle.
  • the wire bending part 322 has a groove 3221 (refer to Fig. 9A) that limits the displacement of the driving wire 331 in the optical axis direction.
  • the groove 3221 is provided on the side of the wire bending portion 322 in a manner orthogonal to the axial direction of the cylindrical wire bending portion 322.
  • a protrusion for hooking the driving wire 331 may be provided instead of the groove 3221.
  • the outer peripheral surface of the wire bending portion 322 may be a curved surface as a whole, and the driving wire 331 may be hooked in the concave portion of the curved surface.
  • a rotating portion 323 is provided at the axial end of the wire bending portion 322.
  • the rotating portion 323 includes a rotating body (specifically, a sphere) embedded in a manner that a portion protrudes from the end surface of the wire bending portion 322 that is opposite to the base 31.
  • the rotating portion 323 abuts against the front surface (plane) of the base 31 and rotates relative to the front surface of the base 31.
  • the movable portion 32 moves in a plane direction orthogonal to the optical axis direction while maintaining a constant distance from the base 31.
  • the base 31 and the movable part 32 are allowed to move in the plane direction in a manner that they are not separated in the optical axis direction, and the position is maintained in the optical axis direction. Specifically, the position is maintained in the optical axis direction by the attraction force formed by the magnetic force of a plurality of (four in the present embodiment) permanent magnets 324 arranged on the rear surface of the movable part 32 and a magnetic body 314 (e.g., steel) arranged on the front surface of the base 31 at a position opposite to the plurality of permanent magnets 324.
  • the attraction force between the permanent magnet 324 and the magnetic body 314 is set to work even when the movable part 32 is displaced to the maximum extent relative to the base 31.
  • a cylindrical wire guide 325 is provided in the movable portion 32.
  • the wire guide 325 protrudes backward from the bottom plate 321 of the movable portion 32.
  • the wire guide 325 is formed of an insulator such as resin.
  • the wire guide 325 is located between the power supply electrode 313 and the wire bending portion 322 (closest to the power supply electrode 313 on the above path) on the passage path of each driving wire 331.
  • a pair of driving wires 331 opposite to each other in the first direction X (a combination of the driving wire 331 shown in FIG5 and two wires of the driving wire 331 symmetrical to the left and right (not shown)) abuts against the outer peripheral surface of the wire guide 325. Therefore, two wire guides 325 are provided opposite to each other in the second direction Y.
  • the contact state between the outer peripheral surface of the wire guide 325 and each driving wire 331 changes according to the expansion and contraction relative to each driving wire 331 and the movement of the base 31 of the movable part 32.
  • the wire guide 325 suppresses the vibration of each driving wire 331 in the direction intersecting the extension direction between the power supply electrode 313 and the wire bending part 322.
  • a cylindrical wire guide 315 is also provided on the base 31.
  • the wire guide 315 protrudes forward from the bottom plate 311 of the base 31.
  • the wire guide 315 is formed of an insulator such as resin.
  • the wire guide 315 passes through the through hole 315h provided on the flexible substrate 312 shown in FIG8A.
  • the wire guide 315 is located between the power supply electrode 313 and the wire bending portion 322 (closest to the power supply electrode 313 on the above path) on the passage path of each driving wire 331.
  • each driving wire 331 facing each other in the second direction Y abuts against the outer peripheral surface of the wire guide 315. Therefore, two wire guides 315 are provided opposite to each other in the first direction X.
  • the abutment state between the outer peripheral surface of the wire guide 315 and each driving wire 331 changes according to the expansion and contraction relative to each driving wire 331. Similar to the wire guide 325 of the movable portion 32 , the wire guide 315 suppresses the vibration of each driving wire 331 in the direction intersecting with the extending direction between the power supply electrode 313 and the wire bending portion 322 .
  • the Hall element 316 is provided so as to be sandwiched by one of a pair of (two) magnetic bodies 314 extending in the first direction X (the upper magnetic body 314 in FIG. 8A) and one of a pair of magnetic bodies 314 extending in the second direction Y (the left magnetic body 314 in FIG. 8A), that is, by two magnetic bodies 314 arranged in each direction.
  • the Hall element 316 detects the magnetism emitted by the permanent magnet 324 provided at a position opposite to the magnetic body 314, thereby detecting the positional relationship of the movable part 32 with respect to the base 31 in the first direction X and the second direction Y.
  • the Hall element 316 by setting the Hall element 316 to be sandwiched by two magnetic bodies 314 arranged in various directions, the positions of the base 31 and the movable part 32 in the optical axis direction maintained by the attraction (magnetic force) between the permanent magnet 324 and the magnetic body 314, and the positional relationship of the movable part 32 relative to the base 31 can be detected in the same part.
  • the driving part 33 connects the base 31 and the movable part 32, and is a part that generates a driving force for moving the movable part 32 in at least one of the first direction X and the second direction Y.
  • the driving part 33 has a pair of driving wires 331 in a manner opposite to the first direction X, and a pair (two) of driving wires 331 in a manner opposite to the second direction Y. That is, four driving wires 331 are used.
  • the driving wires 331 are configured to be deformable (expandable) in the length direction.
  • the driving wires 331 are a structure that shrinks in the length direction by heating, and are formed of a shape memory alloy (Shape Memory Alloy, SMA), and shrink in the length direction by heating.
  • a plurality of driving wires 331 are arranged staggered in the front and back direction in the optical axis direction. Therefore, they will not interfere with each other as they expand and contract.
  • the driving wires 331 may be arranged staggered in the front and back direction.
  • the driving wires 331 are thin, so even if they are staggered in the optical axis direction, the size of the anti-shake mechanism 3 in the optical axis direction is hardly affected.
  • the driving wire 331 is, for example, a linear wire with a circular cross-section. This shape memory alloy wire is cost-effective because it is easy to obtain a general product.
  • the thickness of the driving wire 331 is constant in the length direction. In addition, the material is also homogeneous in the length direction.
  • the cross-sectional size can be set to various sizes, for example, it can be set to a diameter of 50 ⁇ m. The cross-sectional size can be determined by considering the necessary length from one end to the other end of the driving wire 331, the reaction accuracy of expansion and contraction, durability, etc.
  • the driving wire 331 If the driving wire 331 is not heated, it will return to its original length by natural cooling. In other words, if it is not heated, it will stretch in the length direction.
  • the elongation can also be achieved by applying an external force to the driving wire 331.
  • the external force is, for example, a tensile force generated by the contraction of the other driving wire 331 constituting a pair (two).
  • the two ends of the driving wire 331 (to be specific, the two ends of the driving wire 331 that generates the driving force) are fixed to the base 31 (power supply electrode 313), and the middle part of the driving wire 331 is hooked on the wire bending part 322 so as to be displaceably mounted on the movable part 32.
  • the tension of the driving wire 331 in the free state (not the contracted state and the extended state) is set to a degree that does not cause relaxation. By making the driving wire 331 stretched in the free state, the agility of the reaction can be ensured. In addition, the tension can be set in consideration of the temperature change in which the portable terminal 1 is assumed to be used.
  • a pair (two) of driving wires 331 facing each other in the first direction X are symmetrically arranged in the first direction X
  • a pair (two) of driving wires 331 facing each other in the second direction Y are symmetrically arranged in the second direction Y.
  • the center (the intersection of the diagonals of the rectangle or square) of the imaging element 32b1 as viewed in the optical axis direction is arranged to coincide with the center positions of the pair of driving wires 331 facing each other in the first direction X and the pair of driving wires 331 facing each other in the second direction Y.
  • the heating of the driving wire 331 is performed by the resistance heat generated by the power supply electrode 313 itself. Therefore, the two ends of the driving wire 331 are electrically connected to the power supply electrode 313 in the base 31.
  • the connection between the driving wire 331 and the power supply electrode 313 can be performed by physical combination such as combination, clamping, bolt fastening, etc., or by bonding using solder or conductive adhesive.
  • the side that fixes one end side of the driving wire 331 is the positive electrode, and the side that fixes the other end side is the negative electrode.
  • the middle part of the driving wire 331 abuts against the side of the wire bending part 322.
  • the driving wire 331 itself contracts by heating the current supplied from the power supply electrode 313.
  • the contraction of the driving wire 331 is not partial, but is performed over the entire length.
  • the other one is not powered and is in a non-heating state, and does not contract or stretch autonomously.
  • the other driving wire 331 receives the force accompanying the contraction of the one driving wire 331, and is stretched by the elasticity of the other driving wire 331 itself.
  • the mechanism of action is described in detail below.
  • the driving wire 331 on one side that is energized and contracted transmits the driving force to the wire bending portion 322 that hooks the driving wire 331. Accompanying this, the movable part 32 moves.
  • the driving wire 331 on the other side is forced to stretch, and the driving wire 331 on the other side is hooked on the other wire bending portion 322 of the moving movable part 32. Therefore, in this embodiment, when one of the driving wires 331 constituting a pair is contracted, the other of the driving wires 331 constituting a pair is stretched. Therefore, the driving force generated by one of the driving wires 331 is not hindered by the other of the driving wires 331. Further, when the tension of the other of the driving wires 331 is applied to the movable part 32, one of the driving wires 331 is contracted, so that the movable part 32 can be stably moved.
  • a pair of (two respectively) driving wires 331 facing each other in the directions X and Y are linked in a relationship in which one (one) of the driving wires contracts and the other extends.
  • One of the pair (two) driving wires 331 opposite to each other in the first direction X (left-right direction in the figure) shown in FIG. 4 is extracted for the convenience of explanation and is shown in FIG. 5.
  • the driving wire 331 in the pair (two) driving wires 331 opposite to each other in the first direction X which is in a relative position relationship with the driving wire 331 shown in FIG. 5, performs a 180° symmetrical movement (opposite movement of the left and right in the figure) relative to the driving wire 331 shown in the figure when viewed from the optical axis direction.
  • the pair (two) driving wires 331 are controlled so that when one of the wires contracts, the other wire does not contract, and the contraction forces of the two wires do not oppose each other.
  • one of the pair (two) driving wires 331 opposite to each other in the second direction Y (up and down direction in the figure), which is extracted for the convenience of explanation and is shown in FIG. 6.
  • the driving wire 331 in a pair (two) of driving wires 331 that are opposite to each other in the second direction Y and that is in a relative positional relationship with the driving wire 331 shown in FIG6 performs a 180° symmetrical movement (upward and downward opposite movement in the figure) with respect to the driving wire 331 shown in the figure when viewed from the optical axis direction.
  • each of the pair of driving wires 331 that are opposite to each other in the second direction Y performs a 90° symmetrical movement with respect to the driving wire 331 shown in FIG5 when viewed from the optical axis direction (refer to FIG6 ). Therefore, the following detailed description is only made with respect to FIG5 .
  • the driving wire 331 (one of a pair) shown in FIG5 is in the positional relationship shown in the figure. First, as a first path 331a, it passes through the upper wire guide 325 from the upper left power supply electrode 313 to the upper right oblique direction until the upper right wire bending part 322. The driving wire 331 bends downward through the upper right wire bending part 322, and as a second path 331b, it extends downward (directly downward) until it reaches the lower right wire bending part 322. Through the lower right wire bending part 322, the driving wire 331 bends to the left.
  • the path (the continuous first path 331a to the third path 331c) through which the driving wire 331 of the present embodiment passes is basically in the shape of a trapezoid (the first path 331a and the third path 331c, which correspond to the "legs", are symmetrical shapes), the wire bending portion 322 is located at the intersection of the "lower base” (corresponding to the second path 331b) and the "legs" of the trapezoid, and the driving wire 331 is arranged along each side of the portion after the "upper base" of the trapezoid is removed.
  • the driving wire 331 does not need to be arranged along all sides of the trapezoid (strictly trapezoidal shape), for example, in the wire bending portion 322, the driving wire 331 is arranged at a position away from the side of the trapezoid due to the bending of the driving wire 331.
  • the driving wire 331 When the driving wire 331 is energized, the driving wire 331 as a whole shrinks in the length direction.
  • the driving wire 331 moves along the paths as a whole to the left in the arrows shown in the figure (in detail, the first path 331a moves diagonally downward to the left, and the third path 331c moves diagonally upward to the left).
  • the driving wire 331 as a whole also moves as the path shrinks.
  • the power supply electrode 313 is set on the fixed base 31, so the wire bending part 322 shown in the upper and lower parts of the figure provided in the movable part 32 moves to the left in the figure. Therefore, the movable part 32 moves to the left of the arrow depicted in the center of FIG5.
  • the driving wire 331 when the driving wire 331 is stopped from being energized, the driving wire 331 as a whole stretches in the length direction by natural cooling.
  • the other driving wire 331 not shown in FIG5 shrinks by its own tension (in addition, it can also shrink by energizing).
  • the movable portion 32 moves to the right of the arrow drawn in the center of FIG. 5 , in contrast to the above-described case of energization.
  • the first path 331a and the third path 331c are symmetrically arranged with reference to an imaginary line (not shown) along the first direction X. Therefore, the lengths of the first path 331a and the third path 331c are equal, and the angles with the above-mentioned imaginary line when viewed from the optical axis direction are also equal. In addition, the angle formed by the first path 331a and the second path 331b and the angle formed by the third path 331c and the second path 331b are also equal.
  • four driving wires 331 are arranged as shown in FIG4 .
  • the movable part 32 is moved in the first direction X, one of the driving wires 331 of a pair (two) of driving wires 331 opposite to each other in the first direction X is in an energized state, and the other driving wire 331 is in a non-energized state.
  • the driving wires 331 of a pair (two) of driving wires 331 opposite to each other in the second direction Y is in an energized state, and the other driving wire 331 is in a non-energized state.
  • the driving wire 331 on the first direction X side and the driving wire 331 on the second direction Y side are sometimes energized at the same time.
  • the movable part 32 can be moved in an inclined direction.
  • the moving angle relative to the first direction X or the second direction Y can be adjusted.
  • two diagonal points in a movable part formed into a square when viewed from the optical axis direction are set as fixed points, and the other two diagonal points are set as action points, and the action points are moved in one direction along the periphery of the movable part and in another direction orthogonal to the one direction by a drive wire made of a shape memory alloy.
  • a drive wire made of a shape memory alloy In this comparative example, four drive wires extending in a straight line along the periphery of the movable part are arranged.
  • the power-on control (opening and closing) of the four drive wires becomes complicated.
  • the movable portion 32 can be moved in a desired direction. Therefore, a cost-effective, simple-structured, and high-performance anti-shake mechanism 3 can be realized. Furthermore, in the present embodiment, by using the driving wire 331 as a driving source, the anti-shake mechanism 3 can be made less likely to resonate than in the past, and the posture difference can be reduced, thereby reducing the cost.
  • the camera module 2 or the device (portable terminal 1) having the camera module 2 includes: a vibration detection unit that detects vibration applied to the camera module 2; and a control unit (not shown) that performs control according to the vibration detected by the vibration detection unit.
  • the structure of the anti-shake mechanism 3 for controlling the shaking of the camera module 2 in the portable terminal 1 can utilize a known structure.
  • the vibration detection unit uses, for example, the aforementioned gyro sensor 11 (refer to FIG. 1).
  • the control unit causes the drive unit 33 to input energy for heating the drive wire 331 (power on in this embodiment) according to the magnitude of the vibration detected by the vibration detection unit, and stops the energy input when the vibration detection unit detects no vibration.
  • the control unit By controlling the control unit in consideration of the time difference from the energization of the input to the drive wire 331 to the contraction of the output, the responsiveness to the vibration applied to the camera module 2 due to the shaking can be improved.
  • the control unit by the control unit, the energization of one of the pair of drive wires 331 facing each other in the directions X and Y is instantly switched to the energization of the other, so that the movable part 32 can be moved quickly relative to the base 31.
  • the present embodiment relates to an anti-shake mechanism 3 built into a camera module 2, which comprises: a base 31; a movable portion 32, which is arranged opposite to the base 31 in the optical axis direction of the camera module 2, and is movably supported on the base 31 in each of a first direction X orthogonal to the optical axis direction and a second direction Y orthogonal to the optical axis direction and the first direction X; and a driving portion 33, which connects the base 31 and the movable portion 32, and emits a driving force for moving the movable portion 32 in at least one of the first direction X and the second direction Y.
  • the movable part 32 has a shooting element 32b1
  • the driving part 33 has a pair of driving wires 331 that are deformed in the length direction in a manner opposite to each other in the first direction X, and has a pair of driving wires 331 that are formed of shape memory alloy and shrink in the length direction by heating in a manner opposite to each other in the second direction Y, both ends of the driving wire 331 are fixed to the base 31, and the middle part of the driving wire 331 is installed on the movable part 32, so that at least one of the driving wires 331 is deformed, thereby moving the movable part 32 toward the direction close to the two ends of the driving wire 331.
  • the movable portion 32 including the imaging element 32 b 1 is moved relative to the base portion 31 by deformation of at least one of the pair of shape memory alloy driving wires 331 provided to face each other in the directions X and Y.
  • the driving wire 331 can be shrunk in the longitudinal direction by heating.
  • the contraction force of the driving wire 331 can be used as a force for moving the movable portion 32 relative to the base portion 31 .
  • the driving force generated by one of the driving wires 331 is not hindered by the other of the driving wires 331 .
  • the driving wire 331 may be formed of a shape memory alloy.
  • the driving wire 331 is formed of a readily available material.
  • the base 31 may include a power supply electrode 313 , and both ends of the driving wire 331 may be fixed to the base 31 by being fixed to the power supply electrode 313 and electrically connected to the power supply electrode 313 , and the driving wire 331 may contract by generating heat by energizing itself.
  • the driving wire 331 generates heat by itself when electricity is supplied to it and contracts, so a separate heating unit for heating the driving wire 331 is not required.
  • the movable part 32 may be in a quadrilateral shape when viewed from the optical axis direction, and the movable part 32 may have wire bending parts 322 protruding toward the base 31 at four corners, and the middle part of the driving wire 322 may be mounted on the movable part 32 by abutting against the side of the wire bending part 322.
  • the wire bending portions 322 provided at the four corners of the movable portion 32 can easily form a pair of driving wires 331 that are opposed to each other in the directions X and Y.
  • the wire bending portion 322 may include a groove or a protrusion for restricting the displacement of the driving wire 331 in the optical axis direction.
  • the wire bending portion 322 can stably hold the driving wire 331 in the optical axis direction by means of the groove or the protrusion.
  • the pair of driving wires 331 opposite to each other in the first direction X may be symmetrically arranged in the first direction X
  • the pair of driving wires 331 opposite to each other in the second direction Y may be symmetrically arranged in the second direction Y, and at the center positions of the pair of driving wires 331 opposite to each other in the first direction X and the pair of driving wires 331 opposite to each other in the second direction Y, the center of the shooting element 32b1 when viewed from the optical axis direction is consistent.
  • all the driving wires 331 are symmetrically arranged, and the center of the imaging element 32 b 1 is located at the center position of the arrangement, so that the configuration of the anti-shake mechanism 3 can be simplified.
  • the camera module may include a vibration detection unit (such as the gyro sensor 11) that detects vibration applied to the camera module 2, and a control unit that performs control based on the vibration detected by the vibration detection unit.
  • a vibration detection unit such as the gyro sensor 11
  • a control unit that performs control based on the vibration detected by the vibration detection unit.
  • the vibration monitoring unit controls the control unit based on the detected vibration, thereby obtaining a high-performance anti-shake mechanism 3 .
  • control unit controls the driving unit 33 to input energy for deforming the driving wire 331 according to the magnitude of the vibration detected by the vibration detection unit, and stops inputting the energy when the vibration detection unit detects no vibration.
  • one of the base 31 and the movable part 32 may include a permanent magnet 324, and the other may include a Hall element 316, and the Hall element 316 may detect the positional relationship of the movable part 32 relative to the base 31 in at least one of the first direction and the second direction.
  • the configuration for detecting the movement state of the movable portion 32 can be simplified by the combination of the permanent magnet 324 and the Hall element 316 .
  • the present embodiment provides a camera module 2 having the above-mentioned anti-shake mechanism built therein, and a portable terminal 1 including the above-mentioned camera module 2 .
  • a pair of driving wires 331 are arranged relative to each other in the directions X and Y, so that the movable part 32 having the shooting element 32b1 is moved relative to the base 31. Therefore, it is possible to provide an anti-shake mechanism 3 which has advantages over the prior art, such as high efficiency, low power consumption, no resonance, and low cost, as well as a camera module 2 and a portable terminal 1 having the same.
  • the driving wire 331 is configured to contract by self-heating by the current supplied from the power supply electrode 313.
  • the present invention is not limited thereto, and a heat source different from the driving wire 331 may be provided.
  • the power supply electrode 313 is not required, and both ends of the driving wire 331 are fixed to other positions of the base 31.
  • both ends of the driving wire 331 are fixed to the base 31, and the middle portion of the driving wire 331 is attached to the movable portion 32.
  • both ends of the driving wire 331 being fixed to the movable portion 32 and the middle portion of the driving wire 331 being attached to the base 31.
  • the wire bending portion 322 in the above embodiment is a cylindrical protrusion, it can also be implemented by a pulley that rotates as the drive wire 331 expands and contracts.
  • each of the plurality of drive wires 331 is preferably arranged at a rotationally symmetrical position.
  • a groove through which the driving wire 331 passes may be formed in the wire guides 315 and 325, and the driving wire 331 may be positioned relative to the wire guides 315 and 325 through the groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

一种效率高,功耗小,不易共振,姿态差距变小且低成本的防抖动机构。防抖动机构3具备:基部(31);可动部(32),其在摄像头模块(2)的光轴方向上与基部(31)相对设置,在与光轴方向正交的第一方向(X)、和与光轴方向以及第一方向(X)正交的第二方向(Y)的各方向上可移动地支撑于基部(31);以及驱动部(33),其连结基部(31)与可动部(32),发出用于使可动部(32)向第一方向(X)以及第二方向(Y)中的至少一个方向移动的驱动力,可动部(32)具备拍摄元件(32b1),驱动部(33)以在第一方向(X)上相对的方式具有一对驱动丝(331),以在第二方向(Y)上相对的方式具有一对驱动丝(331),驱动丝(311)能够在长度方向上变形,驱动丝(331)的两端固定于基部(31),驱动丝(331)的中间部安装于可动部(32),使驱动丝(331)变形,使可动部(32)向靠近驱动丝(331)的两端的方向移动。

Description

防抖动机构、摄像头模块、便携终端 技术领域
本发明涉及内置于便携终端(例如智能手机、平板电脑)等设备所具备的摄像头模块的防抖动机构、以及具备该防抖动机构的摄像头模块、便携终端。
背景技术
作为与本发明相关的现有技术,例如,可举出CN108780207A中记载的光学图像稳定化(OIS)机构。
在该现有技术中,相对于静态平台,具备图像传感器的动态平台构成为,在与摄像头镜头的光轴正交的多个方向上移动。具体地说,OIS机构包含音圈马达(Voice Coil Motor,VCM)。音圈马达包含作为上述动态平台的图像传感器框架部件、作为上述静态平台的音圈马达的框架、以及多个OIS线圈。上述OIS线圈在磁铁的磁场内搭载于图像传感器框架构件,以便产生使动态平台在与摄像头镜头的光学轴正交的多个方向上移动的力。
在该构成中作为驱动源使用的音圈马达的效率低,功耗大。另外,该构成中的动态平台和静态平台的组合存在容易共振,姿态差距大,成本高的问题。
发明内容
发明要解决的问题
鉴于上述问题,本发明旨在,提供一种优于现有技术、效率高、功耗小、不易共振、姿态差距小、且低成本的防抖动机构、具备该防抖动机构的摄像头模块、以及便携终端。
用于解决问题的方案
本发明的一个方式是一种内置于摄像头模块的防抖动机构,其具备:基部;可动部,其在上述摄像头模块的光轴方向上与上述基部相对设置,在与上述光轴方向正交的第一方向、和与上述光轴方向以及上述第一方向正交的第二方向的各方向上可移动地支撑于上述基部;以及驱动部,其连结上述基部与上述可动部,发出用于使上述可动部向上述第一方向以及上述第二方向中的至少一个方向移动的驱动力,上述可动部具备拍摄元件,上述驱动部以在上述第一方向上相对的方式具有一对驱动丝,以在上述第二方向上相对的方式具有一对驱动丝,上述驱动丝在长度方向上变形,上述驱动丝的两端固定于上述基部,上述驱动丝的中间部安装于上述可动部,使上述驱动丝中的至少一根变形,从而使上述可动部向靠近上述驱动丝的两端的方向移动。
另外,上述驱动丝能够通过加热而在长度方向上收缩。
另外,能够在构成上述一对驱动丝的一方收缩的情况下,构成上述一对驱动丝的另一方伸长。
另外,上述驱动丝由金属形成,但也可以由能够实现本发明的其他材料形成,优选由形状记忆合金形成。
另外,也可以是,上述基部具备供电电极,上述驱动丝的两端在通过与上述供电电极固定从而与上述基部固定的同时,与上述供电电极电连接,上述驱动丝通过通电使自身发热而进行上述收缩。
另外,也可以是,上述可动部在从上述光轴方向看时的形状为四边形,上述可动部在四角具备向上述基部突出的丝弯曲部,上述驱动丝的上述中间部通过抵接于上述丝弯曲部的侧面,从而上述驱动丝的上述中间部安装于上述可动部。
另外,也可以是,上述丝弯曲部具备限制上述驱动丝在上述光轴方向上偏移的槽或突起。
另外,也可以是,在上述第一方向上相对的上述一对驱动丝在上述第一方向上对称配置,在上述第二方向上相对的上述一对驱动丝在上述第二方向上对称配置,在上述第一方向上相对的上述一对驱动丝以及在上述第二方向上相对的上述一对驱动丝的中心位置处,上述拍摄元件的从上述光轴方向看时的中心一致。
另外,也可以是,具备振动检测部以及控制部,,上述振动检测部检测施加到上述摄像头模块的振动;上述控制部根据上述振动检测部检测的振动进行控制。
另外,上述控制部根据上述振动检测部检测的振动的大小,使上述驱动部进行用于使得上述驱动丝变形的能量的输入,当上述振动检测部检测不出振动时,停止上述能量的输入。
另外,也可以是,上述基部和上述可动部中的一个具备永久磁铁,另一个具备霍尔元件,上述霍尔元件检测所述可动部相对于所述基部的、在所述第一方向以及所述第二方向中的至少一个方向上的位置关系。
另外,本发明的他的一个方式是内置有上述防抖动机构的摄像头模块。
另外,本发明的他的一个方式是具备上述摄像头模块的便携终端。
附图说明
图1是示出智能手机的防抖动的概要图。
图2是示出防抖动机构中的处理的概要图。
图3是简略地示出在设置有本发明的一个实施方式的防抖动机构的摄像头模块中的、说明所需要的部分的纵截面图。
图4是示出上述防抖动机构,并且从可动部中的底板的后表面位置看后方的情况的图。
图5是示出从图4中提取的说明所需要的部分的图。
图6是示出从图4中提取的说明所需要的部分的图。
图7A是示出上述防抖动机构中的可动部中的拍摄部的侧视图。
图7B是示出上述防抖动机构中的基部和可动部(除了拍摄部)的侧视图。
图8A是示出上述防抖动机构中的基部的平面图。
图8B是示出上述防抖动机构中的基部的右视图。
图9A是示出上述防抖动机构中的可动部(除了拍摄元件支撑部)的右视图。
图9B是示出上述防抖动机构中的可动部(除了拍摄元件支撑部)的底面图。
具体实施方式
示出附图来说明本发明的一个实施方式的防抖动机构3。此外,以下的“光轴方向”是摄像头模块2的光轴方向。将被摄体侧作为前方(图3上的左方向),将拍摄元件32b1侧作为后方(图3上的右方向)。
本实施方式的防抖动机构3内置于便携终端1(例如智能手机、平板电脑)等所具备的摄像头模块2。首先,图1以及图2示出便携终端1中的防抖动功能的概要。防抖动功能本身是公知的,因此简单地进行说明。如图1所示,振动有时从用户的手等传递到便携终端1(例示智能手机)。该振动传递到摄像头模块2。例如,振动具有图1中箭头所示的旋转运动分量。此外,有时也有直线移动分量。
如图2所示,在便携终端1的内部设置有陀螺仪传感器11以及伺服驱动器12,在摄像头模块2中设置有致动器13以及传感器14。当振动传递到摄像头模块2时,陀螺仪传感器11进行探测,伺服驱动器12在传感器14的探测下驱动致动器13,使其循环(伺服循环),从而能够使从透镜进入并投影到拍摄元件32b1的图像不抖动。
图3简略地示出摄像头模块2的构成。在便携终端1中支撑有透镜支撑部21。虽然省略了图示,但在透镜支撑部21中设置有透镜、光圈、自动对焦机构。在透镜支撑部21的光轴方向后方,设置有接受穿过透镜成像的拍摄光的拍摄元件32b1。该拍摄元件32b1设置于防抖动机构3。
防抖动机构3具备基部31、可动部32以及驱动部33。基部31是在防抖动机构3(以及摄像头模块2)中固定设置的板状的部分。如图7B所示,基部31具备:具有刚性,平板状的底板311;以及与底板311的前表面贴合,比底板311柔软的柔性基板(Flexible Printed Circuits,FPC)312(参照图8A、图8B)。底板311从光轴方向看的形状为四边形(具体地说为长方形)。柔性基板312中与底板311重叠的部分被设为与底板311相同的形状。基部31具备供电电极313。供电电极313以向光轴方向的前方突出的方式固定于底板311。矩形波状的电流从摄像头模块2中的防抖动机构3的外部供应到供电电极313。此外,供应的电流可以是直流电流或具有矩形波以外的波形的电流。
可动部32是在光轴方向上与基部31相对设置的板状的部分。可动部32具备平板状的底板321。底板321从光轴方向看的形状为四边形(具体地说为长方形)。如图7A、图7B所示,可动部32具备:可动机构部32a;以及拍摄部32b,其与可动机构部32a是分开的,例如通过粘接而装配于可动机构部32a,从而与可动机构部32a一体化。拍摄部32b具备拍摄元件32b1。
可动部32可以在与光轴方向正交的第一方向X、与光轴方向以及第一方向X正交的第二方向Y的各方向上可移动地支撑于基部31。在此,本实施方式的说明中,将图4所示的左右方向作为第一方向X,将上下方向作为第二方向Y。此外,可动部32也可以在第一方向X和第二方向Y合成的方向(图4中的倾斜方向,角度是任意的)上移动。
如图8A、图8B所示,可动部32在四角具备从底板321向后方(朝向基部31)突出的丝弯曲部322。也就是说,在可动部32中,丝弯曲部322设置在4个位置。本实施方式的丝弯曲部322是从底板321的后表面突出的圆柱状的突起。丝弯曲部322由树脂等绝缘体形成。在丝弯曲部322弯曲的侧面挂有驱动丝331。具体地说,如图4所示,驱动丝331以4个丝弯曲部322形成的假想的四边形为基准,沿着外侧部分322a的一部分被钩挂。由此,当从光轴方向看时,驱动丝331弯曲。在本实施方式中, 如图4所示,驱动丝331以锐角弯曲,但也可以是以直角、钝角的弯曲。丝弯曲部322具备限制驱动丝331在光轴方向上偏移的槽3221(参照图9A)。该槽3221以与圆柱状的丝弯曲部322的轴方向正交的方式,设置在丝弯曲部322的侧面。此外,也可以代替槽3221而设置钩挂驱动丝331的突起。另外,也可以使丝弯曲部322的外周面整体为弯曲面,弯曲面的凹陷部分钩挂驱动丝331。
在丝弯曲部322的轴向端部设置有旋转部323。旋转部323具备以一部分从丝弯曲部322的与基部31相对的端面突出的方式埋入的旋转体(具体地说为球体)。旋转部323抵接于基部31的前表面(平面),并相对于基部31的前表面旋转。由此,可动部32在保持相对于基部31的距离恒定的状态下,在与光轴方向正交的面方向上移动。
基部31与可动部32以在光轴方向上不分离的方式允许向面方向移动,并且位置保持在光轴方向上。具体地说,通过由设置在可动部32的后表面的多个(在本实施方式中为4个)永久磁铁324、以及设置在基部31的前表面的与上述多个永久磁铁324相对的位置处的磁性体314(例如钢材)的磁力形成的吸引力使位置保持的光轴方向上。永久磁铁324与磁性体314之间的吸引力设定为在可动部32相对于基部31最大限度偏移的情况下也起作用。另外,虽然未图示,关于基部31和可动部32,为了在面方向上限制超过驱动部33的驱动范围的移动,通过设置与可动部32抵接的限位件等,能将位置保持在面方向上。
如图9B所示,在可动部32,除了丝弯曲部322之外,还设置有圆柱状的丝引导件325。该丝引导件325从可动部32的底板321向后方突出。丝引导件325由树脂等绝缘体形成。如图4、以及从图4中提取一部分结构的图5所示,该丝引导件325在各驱动丝331的通过路径上,位于供电电极313与丝弯曲部322(在上述路径上最靠近供电电极313)之间。一对在第一方向X上相对的各驱动丝331(图5中示出的驱动丝331和呈左右对称的驱动丝331(未图示)的两根丝的组合)抵接在丝引导件325的外周面。因此,丝引导件325在第二方向Y上相对设置有2个。丝引导件325的外周面和各驱动丝331的抵接状态根据相对于各驱动丝331的伸缩以及可动部32的基部31的移动而变化。丝引导件325在供电电极313与丝弯曲部322之间抑制各驱动丝331的与延伸方向相交的方向上的抖动。
在此,在本实施方式中,为了便于配置,在基部31也设置有圆柱状的丝引导件315。该丝引导件315从基部31的底板311向前方突出。丝引导件315由树脂等绝缘体形成。丝引导件315贯穿图8A所示的设置于柔性基板312的贯通孔315h。图4、以及从图4中提取一部分结构的图6所示,该丝引导件315在各驱动丝331的通过路径上,位于供电电极313与丝弯曲部322(在上述路径上最靠近供电电极313)之间。一对(两根)在第二方向Y上相对的各驱动丝331抵接在丝引导件315的外周面。因此,丝引导件315在第一方向X上相对设置有2个。丝引导件315的外周面和各驱动丝331的抵接状态根据相对于各驱动丝331的伸缩而变化。该丝引导件315与可动部32的丝引导件325同样地,在供电电极313与丝弯曲部322之间抑制各驱动丝331的与延伸方向相交的方向上的抖动。
基部31和可动部32中的一个(在本实施方式中为可动部32)具备永久磁铁324,另一个(在本实施方式中为防抖动机构3中的固定侧的基部31)具备霍尔元件316。如图8A、8B所示,霍尔元件316设置为被在第一方向X上延伸的一对(两个)磁性体314中的一组(图8A中的上侧的磁性体314)、以及在第二方向Y上延伸的一对磁性体314中的一组(图8A中的左侧的磁性体314),即被排列在各方向上的2个磁性体314夹着。通过该霍尔元件316,检测设置在与磁性体314相对位置的永久磁铁324所发出的磁性,从而检测可动部32相对于基部31的第一方向X以及第二方向Y的位置关系。这样,通过使霍尔元件316设置为被排列在各方向上的2个磁性体314夹着,能够在相同的部分进行通过永久磁铁324与磁性体314之间的吸引力(磁力)保持的基部31和可动部32在光轴方向上的位置、以及可动部32相对于基部31的位置关系的检测。
驱动部33连结基部31与可动部32,是发出用于使可动部32在第一方向X以及第二方向Y中的至少一个方向上移动的驱动力的部分。如图4所示,驱动部33以与第一方向X相对的方式具有一对驱动丝331,以与第二方向Y相对的方式具有一对(两根)驱动丝331。也就是说,使用了四根驱动丝331。驱动丝331构成为能够在长度方向上变形(能够伸缩)。具体的,驱动丝331是通过加热在长度方向上收缩的构造,由形状记忆合金(Shape Memory Alloy,SMA)形成,被加热从而在长度方向上收缩。多个驱动丝331在光轴方向上前后错开配置。因此,不会随着伸缩而相互干扰。此外,至少对于在图4所示的驱动丝331彼此在光轴方向看时交叉的部分及其周围,驱动丝331前后错开配置即可。驱动丝331较细,因此,即使在光轴方向上错开配置,也几乎不会影响防抖动机构3的光轴方向的尺寸。驱动丝331例如是横截面为圆状的线状的丝。这种形状记忆合金制丝,由于容易获得通用品,因此,在成本上是有利的。驱动丝331的粗细在长度方向上恒定。另外,材质也在长度方向上为均质。截面尺寸可以设定为各种各样,例如能够设定为直径50μm。截面尺寸可以考虑从驱动丝331的一端到另一端的必要长度、伸缩的反应精度、耐久性等来确定。驱动丝331如果未被加热,则会通过自然冷却而恢复到原来 的长度。也就是说,如果不被加热,则会在长度方向上伸长。该伸长也可以通过对驱动丝331施加外力进行。外力例如是构成一对(两根)的另一根的驱动丝331收缩而产生的拉伸力。
驱动丝331的两端(详细的来说,是在驱动丝331中生成驱动力部分中的两端)固定在基部31(供电电极313)上,驱动丝331的中间部通过钩挂于丝弯曲部322从而可错位地装配于可动部32。驱动丝331的自由状态(并非收缩状态以及伸长状态)下的张力设定为不产生松弛的程度。通过使驱动丝331成为在自由状态下伸展的状态,能够确保反应的敏捷性。此外,张力可以考虑设想使用便携终端1的气温变化来设定。
如图4所示,在第一方向X上相对的一对(两根)驱动丝331在第一方向X上对称配置,在第二方向Y上相对的一对(两根)驱动丝331在第二方向Y上对称配置。拍摄元件32b1的从光轴方向看的中心(长方形或正方形的对角线的相交位置)配置为与在第一方向X上相对的一对驱动丝331以及在第二方向Y上相对的一对驱动丝331的中心位置一致。通过使驱动丝331中的至少一根变形(具体的,加热驱动丝331使其收缩),能够使可动部32向靠近驱动丝331的两端的方向移动。
在本实施方式中,驱动丝331的加热利用向驱动丝331本身通电产生的电阻热来进行。因此,驱动丝331的两端与基部31中的供电电极313电连接。驱动丝331与供电电极313的连接可以例如通过结合、夹入、螺栓紧固等物理结合的方式进行,也可以通过使用焊锡或导电性粘接剂的粘接来进行。在供电电极313中,固定驱动丝331的一端侧的一侧为正极,固定另一端侧的一侧为负极。另外,驱动丝331的中间部抵接于丝弯曲部322的侧面。驱动丝331自己通过从供电电极313供应的电流发热而进行收缩。因此,在本实施方式中,驱动丝331的收缩不是部分的,而是在全长上进行。在各方向X、Y上相对的一对(两根)驱动丝331中的一方的一根由于通电而收缩时,另一方的一根不通电而为非加热状态,也不自主的收缩或伸长。但是,上述另一驱动丝331接受伴随上述一个驱动丝331的收缩的力,通过上述另一驱动丝331自身所具有的弹性而伸长。以下具体说明其作用机理,通电而收缩的一方的驱动丝331对于钩挂该驱动丝331的丝弯曲部322传递驱动力。与之相伴,可动部32移动。其结果是,另一方的驱动丝331(非通电)被强制伸长,该另一方的驱动丝331钩挂在移动的可动部32所具备的其他的丝弯曲部322上。由此,在本实施方式中,以构成一对的所述驱动丝331的一方收缩的情况下,构成一对的所述驱动丝331的另一方伸长的方式构成。从而,驱动丝331的一方生成的驱动力不会被驱动丝331的另一方阻碍。进一步的,在驱动丝331的另一方的张力施加在可动部32的状态下驱动丝331的一方进行收缩,从而能够使得可动部32稳定地移动。这里,从外观上看起来,在各方向X、Y上相对的一对(分别为两根)驱动丝331是一方(一根)收缩,另一方伸长的关系来联动。
图4示出的、在第一方向X(图示左右方向)上相对的一对(两根)驱动丝331中的、为便于说明而提取的一根驱动丝331示于图5。此外,在第一方向X上相对的一对(两根)驱动丝331中的、与图5所示的驱动丝331为相对位置关系的驱动丝331,相对于图示的驱动丝331,在从光轴方向看时进行180°对称的动作(图示中的左右相反的动作)。此外,如上所述,一对(两根)驱动丝331被控制为在一方的一根进行收缩时另一方的一根不收缩,同时两方(两根)的收缩力不对抗。另外,第二方向Y(图示上下方向)上相对的一对(两根)驱动丝331中的、为便于说明而提取的一根驱动丝331示于图6。另外,在第二方向Y上相对的一对(两根)驱动丝331中的、与图6所示的驱动丝331为相对位置关系的驱动丝331,相对于图示的驱动丝331,在从光轴方向看时进行180°对称的动作(图示中的上下相反的动作)此外,在第二方向Y上相对的一对驱动丝331中的每一根相对于图5所示的驱动丝331,在从光轴方向看时进行90°对称的动作(参照图6)。因此,以下的详细说明只关于图5进行。
图5所示的驱动丝331(一对中的一根)在图示的位置关系下,首先,作为第一路径331a,从左上的供电电极313穿过上侧的丝引导件325向右斜上方向延伸直到右上的丝弯曲部322。通过右上的丝弯曲部322,驱动丝331向下方弯曲,作为第二路径331b,向下(正下)方延伸直到到右下的丝弯曲部322。通过右下的丝弯曲部322,驱动丝331向左方弯曲。接着,作为第三路径331c,从右下的丝弯曲部322穿过下侧的丝引导件325,向左斜上方延伸到左下的供电电极313。这样,本实施方式的驱动丝331通过的路径(连续的第一路径331a~第三路径331c)基本上为梯形的形状(相当于“腿”的第一路径331a和第三路径331c为对称形状),丝弯曲部322位于梯形的“下底”(相当于第二路径331b)和“腿”的交叉部分,并沿着除去了梯形的“上底”之后的部分的各个边配置了驱动丝331。另外,驱动丝331不必沿梯形(严格的梯形形状)的所有边配置,例如,在丝弯曲部322中,由于驱动丝331弯曲,从而配置在与梯形的边远离的位置。
当该驱动丝331通电时,驱动丝331整体在长度方向上收缩。由此,在图示上下的路径(第一路径331a以及第三路径331c)中,驱动丝331沿着各路径整体向在图中记载的箭头中的左方(详细地说,第一路径331a向左斜下方,第三路径331c向左斜上方)移动。在图示右侧的路径(第二路径331b)中,同样随着该路径的收缩,驱动丝331整体移动。供电电极313设定于被固定的基部31,因此,设 置于可动部32的图示上下的丝弯曲部322向图示左方移动。因此,可动部32向图5的中央描绘的箭头的左方移动。另一方面,当停止向驱动丝331通电时,驱动丝331整体通过自然冷却在长度方向上伸长。同时,构成一对的当中,图5未示出的另一根驱动丝331通过自身具有的张力收缩(此外,还能够通过通电使其收缩)。伴随于此,与上述通电时相反,可动部32向图5的中央描绘的箭头的右方移动。
第一路径331a和第三路径331c以沿着第一方向X的假想线(未图示)为基准对称配置。因而,第一路径331a和第三路径331c的长度相等,从光轴方向看时的与上述假想线的角度也相等。另外,第一路径331a与第二路径331b所成的角度和第三路径331c与第二路径331b所成的角度也相等。通过这样配置各路径,当驱动丝331整体收缩时,钩挂驱动丝331的、位于图示上下的两个丝弯曲部322沿着上述假想线移动相等的距离。因此,设置有丝弯曲部322的底板321也移动相同的距离。
在本实施方式中,四根驱动丝331如图4所示那样配置。在使可动部32在第一方向X上移动的情况下,在第一方向X上相对的一对(两根)驱动丝331的其中一根驱动丝331为通电状态,另一根驱动丝331为非通电状态。另外,在使可动部32在第二方向Y上移动的情况下,在第二方向Y上相对的一对(两根)驱动丝331的其中一根驱动丝331为通电状态,另一根驱动丝331为非通电状态。第一方向X侧的驱动丝331和第二方向Y侧的驱动丝331有时同时通电。在这种情况下,能够使可动部32在倾斜方向上移动。通过设置第一方向X侧的驱动丝331和第二方向Y侧的驱动丝331通电的电流差,能够调整相对于第一方向X或第二方向Y的移动角度。
在此,作为比较例,可以举出如下构成:将从光轴方向看时形成为正方形的可动部中的对角两点设定为固定点,将另外的对角两点设定为动作点,通过形状记忆合金制的驱动丝,使动作点向作为沿着可动部的周缘的方向的一个方向、以及与上述一个方向正交的另一方向移动。在该比较例中,沿着可动部的周缘延伸为直线状的驱动丝配置有四根。然而,在该比较例中,为使可动部向所希望的方向移动,需要使两个动作点移动,因此,四根驱动丝的通电控制(打开、关闭)变得复杂。
对此,在本实施方式中,仅选择在第一方向X上相对的一对(两根)驱动丝331中的一根驱动丝331和在第二方向Y上相对的一对(两根)驱动丝331中的一根驱动丝331、或、仅对第一方向X上相对的一对驱动丝331中的一根驱动丝331进行通电、或仅对第二方向Y上相对的一对驱动丝331中的一根驱动丝331进行通电,就能够使可动部32向所希望的方向移动。因此,能够实现在成本上有利、简单构成并且是高性能的防抖动机构3。并且,在本实施方式中,通过将驱动丝331用作驱动源,与以往相比,能够使防抖动机构3不容易共振,并能够使姿态差距变小,降低成本。
接着,摄像头模块2或具备摄像头模块2的设备(便携终端1)具备:振动检测部,其检测施加到摄像头模块2的振动;以及控制部(未图示),其根据振动检测部检测的振动进行控制。此外,用于控制应对便携终端1中的摄像头模块2的抖动的防抖动机构3的构成(例如,控制部或本说明中未特别记载的控制类部件)能够利用公知的构成。振动检测部例如使用前述的陀螺仪传感器11(参照图1)。控制部根据振动检测部检测的振动的大小,使驱动部33进行用于加热驱动丝331的能量的输入(在本实施方式中为通电),当振动检测部检测不出振动时,停止能量的输入。
通过考虑从对驱动丝331的输入的通电到输出的收缩为止的时间差而由控制部进行控制,能够提高对由于抖动而施加到摄像头模块2的振动的响应性。另外,通过控制部,瞬间切换在各方向X、Y上相对的一对驱动丝331中的一方的通电和另一方的通电,能够实现可动部32相对于基部31的敏捷移动。通过以上这样的控制,能够进行应对使得拍摄元件32b1免受摄像头模块2的抖动的影响。
以上,总结本实施方式,本实施方式涉及内置于摄像头模块2的防抖动机构3,其具备:基部31;可动部32,其在上述摄像头模块2的光轴方向上与上述基部31相对设置,在与上述光轴方向正交的第一方向X、和与上述光轴方向以及上述第一方向X正交的第二方向Y的各方向上可移动地支撑于上述基部31;以及驱动部33,其连结上述基部31与上述可动部32,发出用于使上述可动部32向上述第一方向X以及上述第二方向Y中的至少一个方向移动的驱动力,上述可动部32具备拍摄元件32b1,上述驱动部33以在上述第一方向X上相对的方式具有一对在长度方向上变形的一对驱动丝331,以在上述第二方向Y上相对的方式具有一对由形状记忆合金形成且通过加热而在长度方向上收缩的一对驱动丝331,上述驱动丝331的两端固定于上述基部31,上述驱动丝331的中间部安装于上述可动部32,使上述驱动丝331中的至少一根变形,从而使上述可动部32向靠近上述驱动丝331的两端的方向移动。
根据该构成,通过在各方向X、Y上以相对的方式设置为一对的形状记忆合金制的驱动丝331中的至少一根变形,使具备拍摄元件32b1的可动部32相对于基部31移动。
另外,上述驱动丝331能够通过加热而在长度方向上收缩。
根据该结构,能够将驱动丝331的收缩力利用在使得可动部32相对于基部31移动的力上。
另外,能够在构成上述一对驱动丝331的一方收缩的情况下,构成上述一对驱动丝331的另一方伸长。
根据该结构,驱动丝331的一方生成的驱动力不会被驱动丝331的另一方阻碍。
另外,上述驱动丝331能够由形状记忆合金形成。
根据该结构,驱动丝331由容易得到的材料形成。
另外,也可以是,上述基部31具备供电电极313,上述驱动丝331的两端在通过与上述供电电极313固定从而与上述基部31固定的同时,与上述供电电极313电连接,上述驱动丝331通过通电使自身发热而进行上述收缩。
根据该构成,驱动丝331通过通电使自身发热而进行收缩,因此,不需要用于加热驱动丝331的单独的加热单元。
另外,也可以是,上述可动部32在从上述光轴方向看时的形状为四边形,上述可动部32在四角具备向上述基部31突出的丝弯曲部322,上述驱动丝322的上述中间部通过抵接于上述丝弯曲部322的侧面,从而上述驱动丝331的上述中间部安装于上述可动部32。
根据该构成,通过在可动部32的四角具备的丝弯曲部322,能够容易地构成在各方向X、Y上相对的一对驱动丝331。
另外,也可以是,上述丝弯曲部322具备限制上述驱动丝331在上述光轴方向上偏移的槽或突起。
根据该构成,通过槽或突起,丝弯曲部322能够在光轴方向上稳定地保持驱动丝331。
另外,也可以是,在上述第一方向X上相对的上述一对驱动丝331在上述第一方向X上对称配置,上述第二方向Y上相对的上述一对驱动丝331在上述第二方向Y上对称配置,在上述第一方向X上相对的上述一对驱动丝331以及在上述第二方向Y上相对的上述一对驱动丝331的中心位置处,上述拍摄元件32b1的从上述光轴方向看时的中心一致。
根据该构成,所有驱动丝331对称配置,通过使拍摄元件32b1的中心位于该配置中的中心位置,能够简化防抖动机构3的构成。
另外,也可以是,具备:振动检测部(陀螺仪传感器11等),其检测施加到上述摄像头模块2的振动;以及控制部,其根据上述振动检测部检测的振动进行控制。
根据该构成,振动监测部根据检测出的振动控制控制部,从而得到一种高性能的防抖动机构3。
另外,上述控制部根据上述振动检测部检测的振动的大小,使上述驱动部33进行用于使上述驱动丝331变形的能量的输入,当上述振动检测部检测不出振动时,停止上述能量的输入
根据该构成,通过由控制部控制针对驱动部33能量的输入,能够实现高性能的防抖动机构3。
另外,也可以是,上述基部31和上述可动部32中的一个具备永久磁铁324,另一个具备霍尔元件316,上述霍尔元件316检测相对于上述基部31的上述可动部32的、上述第一方向以及上述第二方向中的至少一个方向的位置关系。
根据该构成,通过永久磁铁324和霍尔元件316的组合,能够简化用于检测可动部32的移动状态的构成。
另外,本实施方式是内置有上述防抖动机构的摄像头模块2,具备上述摄像头模块2的便携终端1。
根据如上所述构成的本实施方式,通过在各方向X、Y上相对的设置为一对的驱动丝331,使具备拍摄元件32b1的可动部32相对于基部31移动,因此,能够提供相比于现有技术具有优势、效率高、功耗小、不发生共振、成本低的防抖动机构3、以及具备其的摄像头模块2、便携终端1。
本实施方式如上所述,但本发明不限于上述方式,可以在本发明的意图范围内适当地进行设计变更。另外,本发明的作用效果也不限于上述实施方式中所述的效果。即,本次公开的实施方式在所有方面都是例示,并不限制本发明。本发明的范围不是由上述说明而是由权利要求限定的。此外,本发明的范围旨在包括与权利要求相同的含义以及范围内的所有变更。
例如,在上述实施方式中,驱动丝331构成为通过从供电电极313供应的电流自身发热而进行收缩。但不限于此,也可以具备与驱动丝331不同的热源。在这种情况下,不需要供电电极313,驱动丝331的两端固定于基部31的其他位置。
另外,在上述实施方式中,驱动丝331的两端固定于基部31,驱动丝331的中间部安装于可动部32。但是,也可以与此相反,是驱动丝331的两端固定于可动部32,驱动丝331的中间部安装于基部31的构成。
另外,上述实施方式的丝弯曲部322是圆柱状的突起,但也能够由伴随驱动丝331的伸缩而旋转的带轮来实施。
另外,在上述实施方式中使用了四根驱动丝331。但是,防抖动机构3所具有的驱动丝331的根数不受限制。因此,可以是3根或5根以上。此外,为了便于控制,优选将多个驱动丝331中的每一个配置在旋转对称位置。
另外,也可以在丝引导件315、325形成驱动丝331穿过的槽,通过该槽,进行驱动丝331相对于 丝引导件315、325的定位。
附图标记说明:
1 便携终端
2 摄像头模块
3 防抖动机构
31 基部
311 底板(基部)
312 柔性基板(FPC)
313 供电电极
314 磁性体
315 丝引导件
316 霍尔元件
32 可动部
32a 可动机构部
32b 拍摄部
32b1 拍摄元件
321 底板(可动部)
322 丝弯曲部
323 旋转部
324 永久磁铁
33 驱动部
331 驱动丝
X 第一方向
Y 第二方向

Claims (13)

  1. 一种防抖动机构,其内置于摄像头模块,并具备:
    基部;
    可动部,其在所述摄像头模块的光轴方向上与所述基部相对设置,在与所述光轴方向正交的第一方向、和与所述光轴方向以及所述第一方向正交的第二方向的各方向上可移动地支撑于所述基部;以及
    驱动部,其连结所述基部与所述可动部,发出用于使所述可动部向所述第一方向以及所述第二方向中的至少一个方向移动的驱动力,
    所述可动部具备拍摄元件,
    所述驱动部以在所述第一方向上相对的方式具有一对驱动丝,以在所述第二方向上相对的方式具有一对驱动丝,
    所述驱动丝的两端固定于所述基部,所述驱动丝的中间部安装于所述可动部,
    通过使所述驱动丝中的至少一根在长度方向上变形,使所述可动部向靠近所述驱动丝的两端的方向移动。
  2. 根据权利要求1所述的防抖动机构,其中,
    所述驱动丝通过加热而在长度方向上收缩。
  3. 根据权利要求1或2所述的防抖动机构,其中,
    在构成所述一对驱动丝的一方收缩的情况下,构成所述一对驱动丝的另一方伸长。
  4. 根据权利要求1~3中任一项所述的防抖动机构,其中,
    所述驱动丝由形状记忆合金形成。
  5. 根据权利要求2~4中任一项所述的防抖动机构,其中,
    所述基部具备供电电极,
    所述驱动丝的两端在通过与所述供电电极固定从而与所述基部固定的同时,与所述供电电极电连接,
    所述驱动丝通过通电使自身发热而进行所述收缩。
  6. 根据权利要求1~5中任一项所述的防抖动机构,其中,
    所述可动部在从所述光轴方向看时的形状为四边形,
    所述可动部在四角具备向所述基部突出的丝弯曲部,
    所述驱动丝的所述中间部通过抵接于所述丝弯曲部的侧面,从而所述驱动丝的所述中间部安装于所述可动部。
  7. 根据权利要求6所述的防抖动机构,其中,
    所述丝弯曲部具备限制所述驱动丝在所述光轴方向上偏移的槽或突起。
  8. 根据权利要求1~7中任一项所述的防抖动机构,其中,
    在所述第一方向上相对的所述一对驱动丝在所述第一方向上对称配置,
    在所述第二方向上相对的所述一对驱动丝在所述第二方向上对称配置,
    在所述第一方向上相对的所述一对驱动丝以及在所述第二方向上相对的所述一对驱动丝的中心位置处,所述拍摄元件的从所述光轴方向看时的中心一致。
  9. 根据权利要求1~8中任一项所述的防抖动机构,其中,具备:
    振动检测部,其检测施加到所述摄像头模块的振动;以及
    控制部,其根据所述振动检测部检测的振动进行控制。
  10. 根据权利要求9所述的防抖动机构,其中,
    所述控制部根据所述振动检测部检测的振动的大小,使所述驱动部进行用于使所述驱动丝变形的能量的输入,当所述振动检测部检测不出振动时,停止所述能量的输入
  11. 根据权利要求1~10中任一项所述的防抖动机构,其中,
    所述基部和所述可动部中的一个具备永久磁铁,另一个具备霍尔元件,
    所述霍尔元件检测所述可动部相对于所述基部的、在所述第一方向以及所述第二方向中的至少一个方向上的位置关系。
  12. 一种摄像头模块,其内置有权利要求1~11中任一项所述的防抖动机构。
  13. 一种便携终端,其具备权利要求12所述的摄像头模块。
PCT/CN2022/130427 2022-11-07 2022-11-07 防抖动机构、摄像头模块、便携终端 WO2024098220A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130427 WO2024098220A1 (zh) 2022-11-07 2022-11-07 防抖动机构、摄像头模块、便携终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130427 WO2024098220A1 (zh) 2022-11-07 2022-11-07 防抖动机构、摄像头模块、便携终端

Publications (1)

Publication Number Publication Date
WO2024098220A1 true WO2024098220A1 (zh) 2024-05-16

Family

ID=91031657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130427 WO2024098220A1 (zh) 2022-11-07 2022-11-07 防抖动机构、摄像头模块、便携终端

Country Status (1)

Country Link
WO (1) WO2024098220A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276835A (ja) * 2005-03-01 2006-10-12 Seiko Instruments Inc レンズ駆動モジュール、カメラモジュール及び電子機器
CN107430313A (zh) * 2015-03-24 2017-12-01 三美电机株式会社 透镜驱动装置、摄像机模块、以及摄像机搭载装置
CN108292076A (zh) * 2015-11-20 2018-07-17 三美电机株式会社 透镜驱动装置、摄像机模块以及摄像机搭载装置
CN114520858A (zh) * 2020-11-19 2022-05-20 宁波舜宇光电信息有限公司 光学防抖摄像模组
CN114554070A (zh) * 2020-11-25 2022-05-27 宁波舜宇光电信息有限公司 光学防抖摄像模组
CN114554068A (zh) * 2020-11-25 2022-05-27 宁波舜宇光电信息有限公司 光学防抖摄像模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276835A (ja) * 2005-03-01 2006-10-12 Seiko Instruments Inc レンズ駆動モジュール、カメラモジュール及び電子機器
CN107430313A (zh) * 2015-03-24 2017-12-01 三美电机株式会社 透镜驱动装置、摄像机模块、以及摄像机搭载装置
CN108292076A (zh) * 2015-11-20 2018-07-17 三美电机株式会社 透镜驱动装置、摄像机模块以及摄像机搭载装置
CN114520858A (zh) * 2020-11-19 2022-05-20 宁波舜宇光电信息有限公司 光学防抖摄像模组
CN114554070A (zh) * 2020-11-25 2022-05-27 宁波舜宇光电信息有限公司 光学防抖摄像模组
CN114554068A (zh) * 2020-11-25 2022-05-27 宁波舜宇光电信息有限公司 光学防抖摄像模组

Similar Documents

Publication Publication Date Title
JP5250544B2 (ja) カメラレンズ駆動装置
US8588598B2 (en) Shape memory alloy actuation apparatus
JP5695565B2 (ja) フォースアクチュエータ及び分散剛性を有する可変ミラー
JP2024032840A (ja) カメラモジュール
WO2010089526A2 (en) Shape memory alloy actuation apparatus
WO2008128407A1 (en) Actuator for linear motion and tilting motion
CN210129900U (zh) 摄像装置及其sma驱动设备
US9813596B2 (en) Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
CN113079302B (zh) 摄像模组和电子设备
US10978966B2 (en) Vibration wave actuator, imaging apparatus, and stage apparatus using the same
TW201109810A (en) Photographing module
JP2008020813A (ja) レンズ駆動機構およびそれを用いる撮像装置
US20240035454A1 (en) Shape memory alloy actuation apparatus
JP7436469B2 (ja) レンズ駆動装置、カメラモジュール、及びカメラ搭載装置
JP2018180353A (ja) レンズ駆動装置
JP2009122602A (ja) 駆動装置
CN109716226B (zh) 组装sma致动器组件的方法
WO2024098220A1 (zh) 防抖动机构、摄像头模块、便携终端
CN111629125A (zh) 摄像装置、sma驱动设备及其制造方法和驱动方法
JP2008090008A (ja) レンズ駆動装置
JP2009222040A (ja) 形状記憶合金アクチュエータ
JP6985876B2 (ja) 撮像装置
WO2021117404A1 (ja) 駆動ユニットの動作方法及びコントローラー
TWI514723B (zh) 驅動裝置
JP2013242426A (ja) 駆動機構およびレンズ移動機構