WO2024095984A1 - 固体電解コンデンサ及び製造方法 - Google Patents

固体電解コンデンサ及び製造方法 Download PDF

Info

Publication number
WO2024095984A1
WO2024095984A1 PCT/JP2023/039150 JP2023039150W WO2024095984A1 WO 2024095984 A1 WO2024095984 A1 WO 2024095984A1 JP 2023039150 W JP2023039150 W JP 2023039150W WO 2024095984 A1 WO2024095984 A1 WO 2024095984A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte layer
electrolytic capacitor
pedot
polymer
Prior art date
Application number
PCT/JP2023/039150
Other languages
English (en)
French (fr)
Inventor
良弥 小関
桃世 宮本
将貴 小池
佳保里 桐山
智裕 畑井
俊一 平尾
徹 雨夜
Original Assignee
日本ケミコン株式会社
大八化学工業株式会社
国立大学法人大阪大学
公立大学法人名古屋市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社, 大八化学工業株式会社, 国立大学法人大阪大学, 公立大学法人名古屋市立大学 filed Critical 日本ケミコン株式会社
Publication of WO2024095984A1 publication Critical patent/WO2024095984A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor and a manufacturing method.
  • Solid electrolytic capacitors have valve metals such as tantalum or aluminum as anode and cathode bodies.
  • the anode body is a sintered body made by sintering valve metal powder or a foil body made by stretching valve metal, and its surface is enlarged by etching or other processes.
  • the enlarged surface of the anode body has a dielectric oxide film formed by anodizing or other processes.
  • Between the anode body and cathode body is a solid electrolyte layer that adheres closely to the anode body and acts as a true cathode.
  • TCNQ 7,7,8,8-tetracyanoquinodimethane
  • PES polystyrene sulfonic acid
  • a solid electrolyte layer that mixes a conductive polymer and polyvinyl acetal has also been proposed.
  • This solid electrolyte layer is made by immersing the anode in a solution containing a mixture of polyvinyl acetal and an oxidizing agent, and then in a solution of a monomer, and then causing a chemical polymerization reaction (see, for example, Patent Document 1).
  • the etching layer formed on the anode body has become denser, aiming to increase the surface area of the foil.
  • the capacitance appearance rate is the ratio of the capacitance of the solid electrolytic capacitor to the combined capacitance of the anode body and the cathode body, and is the percentage obtained by dividing the capacitance of the solid electrolytic capacitor by the combined capacitance of the anode body and the cathode body. In other words, the efficiency of increasing the capacitance in relation to the density of the etching layer is deteriorating.
  • the opposing area of the anode and cathode becomes smaller. This may result in a decrease in the capacitance appearance rate of the solid electrolytic capacitor.
  • the present invention has been proposed to solve the above problems, and its purpose is to provide a solid electrolytic capacitor with an increased capacitance appearance rate and a manufacturing method thereof.
  • the solid electrolytic capacitor of this embodiment has the following features.
  • the solid electrolyte layer includes a first conductive polymer and a second conductive polymer, the first conductive polymer being a polymer of 3,4-ethylenedioxythiophene in which a methylenephosphonic acid group has been introduced into the ethylenedioxy skeleton, and the second conductive polymer being a polymer of 3,4-ethylenedioxythiophene or a derivative thereof.
  • the solid electrolyte layer may have one or more regions of the first conductive polymer and one or more regions of the second conductive polymer.
  • the device may include an anode body on which a dielectric oxide film is formed, and the first conductive polymer may be more closely adhered to the anode body than the second conductive polymer.
  • the anode body may have a surface expansion layer, and the region of the first conductive polymer may be more densely distributed within the surface expansion layer than the region of the second conductive polymer.
  • the anode body may have spongy etching pits.
  • the region of the first conductive polymer may contain a small amount of the second conductive polymer compared to the first conductive polymer, or may not contain the second conductive polymer at all, and the region of the second conductive polymer may contain a small amount of the first conductive polymer compared to the second conductive polymer, or may not contain the first conductive polymer at all.
  • the method for manufacturing a solid electrolytic capacitor has the following features.
  • the solid electrolytic capacitor includes an anode body, a cathode body, and a solid electrolyte layer
  • the manufacturing method includes a primary solid electrolyte layer formation step in which a first polymer of 3,4-ethylenedioxythiophene having a methylenephosphonic acid group introduced into an ethylenedioxy skeleton is attached to the anode body, and a secondary solid electrolyte layer formation step, which is a step separate from the primary solid electrolyte layer formation step and is performed after the primary solid electrolyte layer formation step, in which a second polymer of 3,4-ethylenedioxythiophene or a derivative thereof is attached to a region of the first polymer or to the anode body.
  • a drying process may be included between the primary solid electrolyte layer formation process and the secondary solid electrolyte layer formation process.
  • the secondary process of forming the solid electrolyte layer may include chemical polymerization or electrolytic polymerization to polymerize a monomer of 3,4-ethylenedioxythiophene or a derivative thereof, or a process of impregnating at least the anode body with a dispersion liquid in which a polymer of 3,4-ethylenedioxythiophene or a derivative thereof is dispersed.
  • Solid electrolytic capacitors have a high capacitance appearance rate.
  • a solid electrolytic capacitor is a passive element that obtains capacitance by the dielectric polarization action of a dielectric oxide film and stores and discharges electric charge.
  • This solid electrolytic capacitor includes an anode body, a cathode body, and a solid electrolyte layer, each of which has a dielectric oxide film formed on its surface.
  • the anode body and the cathode body are disposed opposite each other, and a separator and a solid electrolyte layer are interposed between the anode body and the cathode body.
  • the anode body and the cathode body are arranged in a stacked type in which they are alternately stacked with the separator in between, or in a wound type in which they are alternately stacked with the separator in between and wound.
  • the solid electrolyte layer contains a conductive polymer.
  • the conductive polymer adheres to the dielectric oxide film formed on the surface of the anode body.
  • This solid electrolyte layer is arranged so as to connect between the dielectric oxide film and the cathode body, creating a conductive path and becoming the true cathode.
  • a solid electrolyte layer can be used in combination with an electrolyte, and the electrolyte fills the gaps in the capacitor element.
  • the capacitor element is inserted into a cylindrical exterior case with a bottom.
  • a seal is attached to the open end of the exterior case, and the capacitor element is sealed by crimping the open end.
  • the seal is made of rubber, for example, or a laminate of rubber and a hard substrate. Examples of rubber include ethylene propylene rubber and butyl rubber.
  • Anode leads and cathode leads are connected to the anode body and cathode body, and the anode leads and cathode leads are pulled out from the seal.
  • the capacitor element does not have to be inserted into a cylindrical exterior case with a bottom.
  • the capacitor element may be covered with a laminate film.
  • the capacitor element may also be sealed by molding it with a resin such as a heat-resistant resin or an insulating resin, or by forming the resin into a thin film on the capacitor element using a method such as dip coating or printing. It may also be a flat plate type that omits the exterior.
  • the anode body is a foil that is drawn using a valve metal as a material.
  • Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • the purity of the anode body is preferably 99.9% or more, but impurities such as silicon, iron, copper, magnesium, and zinc may be included.
  • a surface-expanding layer is formed on one or both sides of the anode body.
  • the surface-expanding layer is a sintered body made by sintering valve metal powder, or an etched layer made by etching an expanded foil, and is made up of gaps between the densely packed powder particles, or tunnel-like or spongy pits.
  • Tunnel-shaped etching pits are holes dug in the thickness direction of the foil. These tunnel-shaped etching pits are typically formed by passing a direct current in an acidic aqueous solution, such as hydrochloric acid, in which halogen ions are present. The tunnel-shaped etching pits are further expanded in diameter by passing a direct current in an acidic aqueous solution, such as nitric acid. The spongy etching pits make the expanded surface layer into a sponge-like layer with fine gaps that are connected together in a space. These spongy etching pits are formed by passing an alternating current in an acidic aqueous solution, such as hydrochloric acid, in which halogen ions are present.
  • the surface expansion layer of the anode body is preferably formed with spongy etching pits.
  • Anode bodies with spongy etching pits have a dense surface expansion layer, and when the solid electrolyte layer is sufficiently filled, a larger foil capacity can be obtained compared to anode bodies with tunnel-shaped etching pits when the rated voltage is 100V or less.
  • the dielectric oxide film is formed on one or both sides of the anode body on which the surface expansion layer is formed.
  • the dielectric oxide film is typically an oxide film formed on the surface layer of the anode body, and if the anode body is made of aluminum, it is an aluminum oxide layer formed by oxidizing the surface of the surface expansion layer.
  • a voltage is applied to the anode body in a chemical conversion solution until the desired withstand voltage is achieved.
  • the chemical conversion solution is a solution that does not contain halogen ions, and examples of such solutions include phosphoric acid-based chemical conversion solutions such as ammonium dihydrogen phosphate, boric acid-based chemical conversion solutions such as ammonium borate, and adipic acid-based chemical conversion solutions such as ammonium adipate.
  • phosphoric acid-based chemical conversion solutions such as ammonium dihydrogen phosphate
  • boric acid-based chemical conversion solutions such as ammonium borate
  • adipic acid-based chemical conversion solutions such as ammonium adipate.
  • the cathode body is a cathode foil made of a valve metal and stretched.
  • the purity of the cathode foil is preferably 99% or more.
  • the cathode foil has a surface expansion layer formed thereon, as with the anode body.
  • a plain foil without a surface expansion layer may also be used as the cathode foil.
  • the cathode foil may have a natural oxide film or a thin oxide film (about 1 to 10 V) formed by chemical conversion treatment. The natural oxide film is formed by the reaction of the cathode foil with oxygen in the air.
  • the cathode foil may have a layer of metal nitride, metal carbide, or metal carbonitride formed by vapor deposition, or a layer containing carbon may be formed on the surface.
  • the cathode body is a laminate of a metal layer and a carbon layer, with the carbon layer facing the anode body.
  • the carbon layer is made into a paste form, which is applied onto the solid electrolyte layer after the solid electrolyte layer is formed on the anode body, and then hardened by heating.
  • the metal layer is, for example, a silver layer, which is made into a paste form, which is applied onto the carbon layer, and then hardened by heating.
  • the solid electrolyte layer contains two kinds of conductive polymers.
  • the first conductive polymer is a polymer of 3,4-ethylenedioxythiophene in which a methylenephosphonic acid group is introduced into the ethylenedioxy skeleton.
  • 3,4-ethylenedioxythiophene is 2,3-dihydrothieno[3,4-b][1,4]dioxine.
  • first conductive polymer is a polymer of 3,4-ethylenedioxythiophene having a methylene phosphonic acid group introduced at the 2-position of the skeleton, as shown in the following chemical formula (A).
  • first conductive polymer is a polymer of 3,4-ethylenedioxythiophene having a methylene phosphonic acid group introduced at the 1-position of the skeleton.
  • the methylene phosphonic acid group in the side chain acts as a hydrogen ion donating dopant.
  • the first conductive polymer may be a homopolymer formed by polymerizing only a monomer unit of 3,4-ethylenedioxythiophene having a methylenephosphonic acid group introduced into the ethylenedioxy skeleton, or a copolymer containing this monomer unit and 3,4-ethylenedioxythiophene or a derivative of 3,4-ethylenedioxythiophene.
  • the first conductive polymer will be referred to as PEDOT with a phosphonic acid group introduced therein.
  • the second conductive polymer is a polymer containing 3,4-ethylenedioxythiophene or a derivative thereof in the monomer unit.
  • the derivative may be a compound selected from thiophenes having substituents at the 3rd and 4th positions, and the substituents at the 3rd and 4th positions of the thiophene ring may form a ring together with the 3rd and 4th carbons.
  • the derivative may also be a compound in which a side chain having an alkyl group is bonded to the ethylene group of 3,4-ethylenedioxythiophene, and examples of such a compound include 2-methyl-ethylenedioxythiophene, 2-ethyl-3,4-ethylenedioxythiophene, and 2-butyl-3,4-ethylenedioxythiophene.
  • PEDOT becomes conductive when doped with external dopant molecules.
  • Any known dopant can be used without any particular limitations. Examples include inorganic acids such as boric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid, oxalic acid, citric acid, ascot acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2-dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalateborate acid, sulfonylimide acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, and butylnaphthalenesulfonic acid.
  • polyanions examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly(2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfonic acid, polyacrylic acid, polymethacrylic acid, and polymaleic acid.
  • the capacitance appearance rate of the solid electrolytic capacitor is improved.
  • phosphonic acid group-introduced PEDOT is solubilized by improving its solubility in solvents due to the dissociation of the phosphonic acid group, and the phosphonic acid group is highly adsorbent to the oxide film formed on the surface of the anode body.
  • the phosphonic acid group-introduced PEDOT that covers the surface of the anode foil increases the adhesion between the anode body and the solid electrolyte layer, reducing the dissociation area between the anode body and the solid electrolyte layer. If the solid electrolyte layer is formed only with phosphonic acid group-introduced PEDOT, the density of the conductive polymer in the gaps of the etching pits decreases. PEDOT easily fills the gaps that could not be filled by phosphonic acid group-introduced PEDOT, enriching the solid electrolyte layer.
  • the phosphonic acid group-introduced PEDOT can penetrate and settle into these dense spongy etching pits. If the solid electrolyte layer is formed from two types of polymer, phosphonic acid group-introduced PEDOT and PEDOT, the capacitance appearance rate of the solid electrolytic capacitor is significantly increased.
  • the capacitance appearance rate is the ratio of the capacitance of a solid electrolytic capacitor to the combined capacitance of the anode and cathode bodies, and is the percentage obtained by dividing the capacitance of a solid electrolytic capacitor by the combined capacitance of the anode and cathode bodies.
  • the combined capacitance of the anode and cathode bodies is the combined capacitance when the solid electrolytic capacitor is regarded as a capacitor with an anode side and a cathode side connected in series, and is a calculated value calculated using the actual or theoretical value of the capacitance of the anode body and the actual or theoretical value of the capacitance of the cathode body as parameters.
  • the combined capacitance of the anode and cathode bodies is the actual or theoretical value of the capacitance of the anode body.
  • the capacitance of a solid electrolytic capacitor is an actual value.
  • the capacitance of the anode body or cathode body is measured by cutting a test piece of a specified area from the anode body or cathode body, immersing it in a capacitance measurement solution in a glass measurement tank using a platinum plate as a counter electrode, and using a capacitance meter.
  • the specified area is 1 cm2
  • the capacitance measurement solution is an aqueous solution of ammonium adipate at 30°C
  • the capacitance meter is a potentiostat and a frequency response analyzer, an electrochemical impedance analyzer, or an LCR meter, etc.
  • the measurement conditions are a DC bias voltage of 0V to 1.5V and an AC amplitude of 0.1V to 1V.
  • the entire surface of the anode body is covered with a thin layer of PEDOT with phosphonic acid groups introduced.
  • PEDOT phosphonic acid groups
  • the phosphonic acid groups have good adsorption properties to the dielectric oxide film formed by anodizing an aluminum base material, and it can be assumed that by forming a solid electrolyte layer with two types of polymers to which PEDOT has been added, it is possible to thinly coat the entire surface of the anode body with PEDOT with phosphonic acid groups.
  • the method for producing phosphonic acid group-introduced PEDOT is not particularly limited, but it can be obtained, for example, by the following production method.
  • 3,4-ethylenedioxythiophene in which a methylene group having a halogen substituent has been introduced into the ethylenedioxy skeleton, is heated in the presence of an acid catalyst such as sulfuric acid, paratoluenesulfonic acid, or methanesulfonic acid.
  • an acid catalyst such as sulfuric acid, paratoluenesulfonic acid, or methanesulfonic acid.
  • a Michaelis-Arbuzov transfer reaction is caused between 3,4-ethylenedioxythiophene in which a methylene group having a halogen substituent has been introduced and tris(trialkylsilyl)phosphite, and the halogen is replaced with a bis(trialkylsilyl)phosphonate group or a phosphonate diester group.
  • the compound is treated with a basic aqueous solution such as an aqueous solution of sodium carbonate, potassium carbonate, or ammonia to cause deprotection.
  • phosphonate-group-introduced PEDOT is produced by electrolytic polymerization or chemical polymerization.
  • the phosphonate-group-introduced PEDOT may be dissolved in a solution after removing residual monomers and impurities by purification means such as ultrafiltration, cation exchange, and anion exchange.
  • the pH of the phosphonate-group-introduced PEDOT solution is adjusted, and various additives are added as necessary.
  • the solvent for the phosphonic acid group-introduced PEDOT solution is preferably water or a mixture of water and an organic solvent, as long as it dissolves the phosphonic acid group-introduced PEDOT.
  • organic solvents include polar solvents, alcohols, esters, hydrocarbons, carbonate compounds, ether compounds, chain ethers, heterocyclic compounds, and nitrile compounds.
  • the conductive polymer solution may contain conventional additives such as organic binders, surfactants, dispersants, defoamers, coupling agents, antioxidants, and ultraviolet absorbers.
  • PEDOT with phosphonic acid groups is attached to various objects by immersing the object in a solution of PEDOT with phosphonic acid groups and drying it.
  • the object is an anode body.
  • the object is each of an anode body, a cathode body, and a separator.
  • the object is a capacitor element that is an assembly incorporating an anode body, a cathode body, and a separator.
  • the solvent in the conductive polymer solution is removed by a drying process.
  • the temperature environment in the drying process is, for example, 40°C or higher and 200°C or lower, and the drying time is, for example, in the range of 3 minutes or higher and 180 minutes or lower.
  • the drying process may be repeated multiple times. Drying may be performed in a reduced pressure environment, for example, by reducing the pressure to 5 kPa or higher and 100 kPa or lower.
  • the phosphonic acid group-introduced PEDOT solution may be applied by drop coating or spray coating.
  • PEDOT is further attached onto the attachment target object to which the phosphonic acid group-introduced PEDOT has been attached.
  • Any known method for attaching PEDOT may be used, such as electrolytic polymerization or chemical polymerization, or an impregnation method in which PEDOT is impregnated into a PEDOT dispersion liquid in which PEDOT is dispersed in the form of particles or powder.
  • the object to be attached is immersed in a solution containing a monomer that will be the monomer unit of PEDOT and a solution containing an oxidizing agent, or in a mixed solvent in which the monomer and the oxidizing agent are stirred and mixed, and a polymerization reaction is carried out.
  • the oxidizing agent may be any known compound that releases a dopant, such as trivalent iron salts such as iron(III) p-toluenesulfonate, iron(III) naphthalenesulfonate, and iron(III) anthraquinonesulfonate, or peroxodisulfates such as peroxodisulfate, ammonium peroxodisulfate, and sodium peroxodisulfate.
  • a single compound may be used, or two or more compounds may be used.
  • the polymerization time is generally in the range of 10 minutes to 30 hours.
  • the object to be attached is immersed in a polymerization solution and polymerized.
  • the polymerization solution contains a monomer that will be the monomer unit of PEDOT and a supporting electrolyte.
  • the supporting electrolyte contains at least one compound selected from the group consisting of borodisalicylic acid and borodisalicylic acid salts.
  • salts include alkali metal salts such as lithium salts, sodium salts, and potassium salts, alkyl ammonium salts such as ammonium salts, ethyl ammonium salts, and butyl ammonium salts, dialkyl ammonium salts such as diethyl ammonium salts and dibutyl ammonium salts, trialkyl ammonium salts such as triethyl ammonium salts and tributyl ammonium salts, and tetraalkyl ammonium salts such as tetraethyl ammonium salts and tetrabutyl ammonium salts. It is preferable to use a quaternary ammonium salt as the supporting electrolyte.
  • alkali metal salts such as lithium salts, sodium salts, and potassium salts
  • alkyl ammonium salts such as ammonium salts, ethyl ammonium salts, and butyl ammonium salts
  • Quaternary ammonium salts have high electrical conductivity, and the current distribution on the electrode foil during electrolytic polymerization becomes uniform, so that the solid electrolyte layer is formed more uniformly, which leads to a reduction in leakage current.
  • quaternary ammonium ions of quaternary ammonium salts include tetramethyl ammonium, triethyl methyl ammonium, and tetraethyl ammonium.
  • TeEA-BS tetraethylammonium borodisalicylate
  • TeMA-BS tetramethylammonium borodisalicylate
  • the electrolytic polymerization is carried out by any of the constant potential method, the constant current method, and the potential sweep method.
  • the constant potential method a potential of 1.0 to 1.5 V with respect to the reference electrode is suitable
  • a current value of 1 to 10,000 ⁇ A/cm 2 is suitable
  • the potential sweep method it is suitable to sweep the range of 0 to 1.5 V with respect to the reference electrode at a rate of 5 to 200 mV/sec.
  • the polymerization temperature is generally in the range of 10 to 60° C.
  • the polymerization time is generally in the range of 10 minutes to 30 hours.
  • the solvent can be any solvent that can dissolve the desired amount of monomer and supporting electrolyte and does not adversely affect the electrolytic polymerization.
  • the solvent can be water, methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, butyronitrile, acetone, methyl ethyl ketone, tetrahydrofuran, 1,4-dioxane, ⁇ -butyrolactone, methyl acetate, ethyl acetate, methyl benzoate, ethyl benzoate, ethylene carbonate, propylene carbonate, nitromethane, nitrobenzene, sulfolane, and dimethylsulfolane.
  • These solvents can be used alone or in a mixture of two or more.
  • the object to be attached is immersed in the PEDOT dispersion liquid.
  • the PEDOT dispersion liquid is impregnated into the object to be attached by immersion, and the solvent evaporates upon drying, leaving the PEDOT on the object to be attached.
  • the PEDOT dispersion liquid can also be applied dropwise or sprayed onto the object to be attached.
  • PEDOT dispersion is a solution in which PEDOT is dispersed.
  • PEDOT is produced by chemical polymerization or electrolytic polymerization, and the PEDOT dispersion is purified by purification means such as ultrafiltration of the polymerization solution, cation exchange, and anion exchange. It is sufficient that PEDOT is dispersed in the conductive polymer dispersion. Therefore, examples of the solvent for the PEDOT dispersion include water, an organic solvent, and a mixture of water and an organic solvent. The pH of the PEDOT dispersion is preferably adjusted. An ultrasonic homogenizer or the like can be used to disperse PEDOT in the PEDOT dispersion.
  • the drying process of the PEDOT dispersion liquid may be repeated multiple times, or may be performed under reduced pressure.
  • the temperature environment in the drying process is, for example, 40°C or higher and 200°C or lower, and the drying time is, for example, in the range of 3 minutes or longer and 180 minutes or shorter.
  • the drying process may be repeated multiple times.
  • the drying may be performed under reduced pressure, for example, at a pressure of 5 kPa or higher and 100 kPa or lower.
  • the phosphonic acid group-introduced PEDOT and PEDOT need to be attached to the attachment object in separate steps, and the phosphonic acid group-introduced PEDOT is attached to the attachment object before the PEDOT. That is, the solid electrolyte layer is formed in a primary solid electrolyte layer formation process in which the phosphonic acid group-introduced PEDOT is attached, and a secondary solid electrolyte layer formation process in which the PEDOT is attached.
  • the secondary solid electrolyte layer formation process is performed after the attachment of the phosphonic acid group-introduced PEDOT and the drying process.
  • the primary solid electrolyte layer formation process and the secondary solid electrolyte layer formation process are separate processes separated by a drying process.
  • the PEDOT will prevent most of the phosphonic acid group-introduced PEDOT from penetrating into the dense spongy etching pits.
  • the solid electrolyte layer is formed in a primary solid electrolyte layer formation process in which phosphonic acid group-introduced PEDOT is attached, and a secondary solid electrolyte layer formation process in which PEDOT is attached, and the secondary solid electrolyte layer formation process is performed after the phosphonic acid group-introduced PEDOT is attached and a drying process is performed.
  • a two-layer structure may be formed in which a phosphonic acid group-introduced PEDOT layer, which is the first solid electrolyte layer, and a PEDOT layer, which is the second solid electrolyte layer, are laminated.
  • separator examples include cellulose papers such as kraft, Manila hemp, esparto, hemp, and rayon, and mixed papers thereof; polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof; polytetrafluoroethylene-based resins, polyvinylidene fluoride-based resins, vinylon-based resins, polyamide-based resins such as aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides; polyimide-based resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, and polyvinyl alcohol resins. These resins can be used alone or in combination.
  • the separator separates the anode body from the cathode body to prevent shorting between them, and also holds the solid electrolyte between the anode body and the cathode body. If the shape of the solid electrolyte can be maintained by itself and the cathode body can be isolated by the solid electrolyte, the separator can be eliminated from the solid electrolytic capacitor.
  • the solid electrolytic capacitor may be provided with only a solid electrolyte or may be provided with an electrolytic solution in addition to the solid electrolyte.
  • the electrolytic solution is impregnated into the capacitor element after the conductive polymer deposition step and the drying step.
  • the electrolytic solution is responsible for at least the repairing effect of the dielectric oxide film.
  • the solvent for the electrolyte is not particularly limited, but a protonic organic polar solvent or an aprotic organic polar solvent can be used.
  • protonic polar solvents include monohydric alcohols, polyhydric alcohols, oxyalcohol compounds, and water, such as ethylene glycol or propylene glycol.
  • aprotic polar solvents include sulfones, amides, lactones, cyclic amides, nitriles, and sulfoxides, such as sulfolane, ⁇ -butyrolactone, ethylene carbonate, and propylene carbonate.
  • the solutes contained in the electrolyte include anionic and cationic components, and are typically organic acids such as adipic acid or benzoic acid or their salts, inorganic acids such as boric acid or phosphoric acid or their salts, or complex compounds of organic acids such as borodisalicylic acid and inorganic acids or their ionically dissociable salts, and are used alone or in combination of two or more.
  • organic acids such as adipic acid or benzoic acid or their salts
  • inorganic acids such as boric acid or phosphoric acid or their salts
  • complex compounds of organic acids such as borodisalicylic acid and inorganic acids or their ionically dissociable salts
  • Examples of at least one salt of these organic acid salts, inorganic acid salts, and complex compounds of organic acids and inorganic acids include ammonium salts, quaternary ammonium salts, quaternary amidinium salts, amine salts, sodium salts, potassium salts, etc.
  • additives can be added to the electrolyte.
  • additives include polyethylene glycol, complex compounds of boric acid and polysaccharides (mannitol, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohols, boric acid esters, nitro compounds, phosphate esters, colloidal silica, etc. These may be used alone or in combination of two or more.
  • Nitro compounds suppress the generation of hydrogen gas in the electrolytic capacitor.
  • nitro compounds include o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, etc.
  • Example 1 The solid electrolytic capacitor of Example 1 was fabricated as follows.
  • the solid electrolytic capacitor of Example 1 had a flat plate structure.
  • an aluminum foil was used as an anode body.
  • a surface-expanding layer was formed on the surface of the aluminum foil.
  • an alternating current was passed through the aluminum foil in an aqueous solution containing hydrochloric acid to form spongy etching pits.
  • the aluminum foil with the surface-expanding layer formed thereon was subjected to a chemical treatment in an aqueous solution of ammonium adipate, forming a dielectric oxide film on the surface of the aluminum foil with a chemical voltage of 8 V.
  • the aluminum foil with the dielectric oxide film formed was cut with a laser into a specified shape so that multiple solid electrolytic capacitors could be diced from one side of the foil. After cutting, the aluminum foil was subjected to a chemical conversion treatment in an aqueous solution of ammonium dihydrogen phosphate to form a dielectric oxide film on the cut surface.
  • An insulating resist layer was printed on the area that would later become the anode terminal, but not on the area that would later become the anode, and then dried at 150°C for 20 minutes. In other words, the insulating resist layer was printed so that a solid electrolyte layer would not be formed in the area that would later become the anode terminal.
  • the aluminum foil was immersed in a conductive polymer solution containing phosphonic acid group-introduced PEDOT.
  • the solvent for the conductive polymer solution was water, and the phosphonic acid group-introduced PEDOT accounted for 2 wt% of the conductive polymer solution.
  • After immersing the aluminum foil in the conductive polymer solution for 2 minutes it was moved to a drying process, left at room temperature for 10 minutes, and then exposed to a temperature environment of 100°C for 30 minutes. As a result, a first conductive polymer region of the solid electrolyte layer containing phosphonic acid group-introduced PEDOT was formed on the anode surface of the aluminum foil.
  • a second conductive polymer region of the solid electrolyte layer containing PEDOT was formed by electrolytic polymerization on the aluminum foil to which phosphonic acid group-introduced PEDOT had been attached.
  • the polymerization solution for electrolytic polymerization contained acetonitrile as the solvent, 2-ethyl-3,4-ethylenedioxythiophene (Et-EDOT) as the monomer, and tetraethylammonium borodisalicylate (TeEA-BS) as the supporting electrolyte. After immersing the aluminum foil in this polymerization solution, a current was passed through it, thereby carrying out electrolytic polymerization.
  • a restoration chemical treatment was performed on the aluminum foil on which PEDOT had been formed by electrolytic polymerization.
  • a voltage of 8 V was applied to the aluminum foil for 10 minutes in an aqueous solution of ammonium adipate at 30°C.
  • carbon paste was printed on the solid electrolyte layer using a screen printer and dried at 120°C for 10 minutes. After this drying process, a carbon layer was formed on the solid electrolyte layer. Furthermore, silver paste was printed on the carbon layer and dried at 150°C for 30 minutes. After this drying process, a silver layer was formed on the carbon layer. These carbon and silver layers correspond to the cathode body of the solid electrolytic capacitor.
  • the insulating resist layer and dielectric oxide film covering the area where the anode terminal was to be formed were peeled off using a laser. Note that the insulating resist layer and dielectric oxide film layer can be peeled off mechanically by pressing a jig against them, in addition to laser irradiation. The anode terminal was then formed on the area exposed by the peeling. The formation of the anode terminal involved pre-plating and plating processes.
  • the pre-plating treatments were as follows: Alkaline etching as smut treatment (treatment temperature: 55° C., treatment time: 60 seconds) Desmutting treatment (treatment solution: 30% nitric acid aqueous solution, treatment temperature: room temperature, treatment time: 60 seconds) First Zn replacement treatment (treatment temperature: room temperature, treatment time: 20 seconds) Zn stripping treatment (treatment solution: 30% nitric acid aqueous solution, treatment temperature: room temperature, treatment time: 30 seconds) Second Zn replacement treatment (treatment temperature: room temperature, treatment time: 30 seconds)
  • Electrolytic Ni plating treatment solution: watt bath, treatment temperature: 50°C, current density: -100mAcm -2 , treatment time: 10 minutes
  • Electrolytic Sn/Ag plating treatment solution: neutral Sn plating bath, treatment temperature: 50° C., current density: ⁇ 10 mA cm ⁇ 2 , treatment time: 10 minutes
  • the watt bath contains 300 g/L nickel sulfate hexahydrate, 50 g/L nickel chloride hexahydrate, and 40 g/L boric acid.
  • the neutral Sn plating bath contains 0.1 M tin sulfate, 0.01 M silver nitrate, and 0.2 M sodium pyrophosphate.
  • the area including the anode foil, solid electrolyte layer, cathode body, and anode terminal made of aluminum foil was diced with a laser to separate the pieces, forming the solid electrolytic capacitor of Example 1.
  • the resulting solid electrolytic capacitor was subjected to an aging treatment by passing a current through it at 125°C with a current density of 1 mA and applying a voltage of 4.6 V for 60 minutes.
  • the rated voltage of this solid electrolytic capacitor was 4 V.
  • a solid electrolytic capacitor of Comparative Example 1 was produced for comparison with Example 1.
  • the solid electrolytic capacitor of Comparative Example 1 differs from Example 1 in that the primary process of forming the solid electrolyte layer is omitted. In other words, the solid electrolytic capacitor of Comparative Example 1 does not contain phosphonic acid group-introduced PEDOT in the solid electrolyte layer. Comparative Example 1 was produced in all other respects with the same configuration, composition, manufacturing method, and manufacturing conditions as Example 1.
  • the foil capacitance of the anode foil of the solid electrolytic capacitors of Example 1 and Comparative Example 1 and the capacitance (Cap), dielectric tangent (tan ⁇ ), and equivalent series resistance (ESR) of the solid electrolytic capacitors of Example 1 and Comparative Example 1 were measured.
  • the capacitance appearance rate was calculated from the capacitance and capacitance of the anode foil.
  • the capacitance of the anode foil was measured using aluminum foil that had been subjected to surface enlargement and chemical conversion treatment.
  • the aluminum foil with a sample area of 1 cm2 was immersed in an aqueous solution of ammonium adipate at a temperature of 30°C, and the capacitance was measured using a potentiostat SI1287 and a frequency response analyzer 1252A manufactured by Solartron analytical at a DC bias voltage of 1.5V, an AC amplitude of 1V, and a measurement frequency of 120Hz.
  • the foil capacitance of the anode foil of Example 1 and Comparative Example 1 was 55.0 ⁇ F.
  • Cap, tan ⁇ and ESR were measured at a temperature of 20°C using an LCR meter (model number ZM2376, manufactured by NF Corporation).
  • the measurement frequency for Cap and tan ⁇ was 120 Hz
  • the measurement frequency for ESR was 100 kHz.
  • the capacitance appearance rate was obtained by dividing the measurement result of the electrostatic capacitance by the foil capacitance of the anode foil and multiplying it by 100 to convert it into a percentage.
  • Example 1 had a 16.6% improvement in the capacity appearance rate compared to Comparative Example 1.
  • Example 2 The solid electrolytic capacitor of Example 2 was fabricated as follows.
  • the solid electrolytic capacitor of Example 2 was a wound type.
  • a surface-expanding layer was formed on the surface of each aluminum foil to be the anode body and the cathode body.
  • an alternating current was passed through the aluminum foil in an aqueous solution containing hydrochloric acid to form spongy etching pits.
  • the aluminum foil on which the surface-expanding layer was formed was subjected to a chemical conversion treatment in an aqueous solution of ammonium adipate, and the aluminum foil on which a dielectric oxide film was formed at a chemical conversion voltage of 55 V was used as the anode foil.
  • the aluminum foil on which the surface-expanding layer was formed was subjected to an arc ion plating method to form a titanium carbide layer, and the aluminum foil was used as the cathode foil.
  • a lead wire was connected to each of the anode and cathode foils, and the anode and cathode foils were wound facing each other with a separator made of acrylic fiber interposed between them to form a capacitor element with an element diameter of 10 mm and a height of 11.5 mm.
  • a current was passed through this capacitor element in an aqueous solution of ammonium dihydrogen phosphate at a current density of 10 mA, and after the voltage reached 58 V, this voltage was maintained for 24 minutes to perform a repair formation.
  • the capacitor element was then washed in pure water and dried at 105°C.
  • the capacitor element was immersed in a conductive polymer solution containing PEDOT with phosphonic acid groups introduced.
  • the solvent for the conductive polymer solution was water, and the PEDOT with phosphonic acid groups accounted for 2 wt% of the conductive polymer solution.
  • After immersing the capacitor element in the conductive polymer solution it was moved to a drying process and exposed to a temperature environment of 100°C for 15 minutes.
  • a region of the first conductive polymer of the solid electrolyte layer containing PEDOT with phosphonic acid groups was formed in the capacitor element, including the anode foil surface.
  • the capacitor element with PEDOT with phosphonic acid groups introduced was then exposed to a temperature environment of 170°C for 60 minutes and heat-treated.
  • a second conductive polymer region containing PEDOT was formed in the solid electrolyte layer by chemical polymerization on the heat-treated capacitor element.
  • a polymerization liquid was prepared by mixing an ethanol solution containing 60 wt% iron(III) paratoluenesulfonate as an oxidizing agent with 3,4-ethylenedioxythiophene as a monomer. The capacitor element was immersed in this polymerization liquid.
  • the capacitor element was impregnated with the polymerization liquid, it was exposed to a temperature environment of 40°C for 30 minutes, then to a temperature environment of 60°C for 60 minutes, and then to a temperature environment of 150°C for 60 minutes to carry out polymerization.
  • a sealant was attached to the capacitor element and inserted into a cylindrical exterior case with a bottom, and the opening of the exterior case was sealed with a sealant.
  • the obtained solid electrolytic capacitor was subjected to an aging treatment by passing a current at 125°C with a current density of 1 mA and applying a voltage of 32.5 V for 60 minutes.
  • the rated voltage of the solid electrolytic capacitor of Example 2 was 25 V.
  • a solid electrolytic capacitor of Comparative Example 2 was produced for comparison with Example 2.
  • the solid electrolytic capacitor of Comparative Example 2 differs from Example 2 in that the primary process of forming the solid electrolyte layer is omitted.
  • the solid electrolytic capacitor of Comparative Example 2 does not contain phosphonic acid group-introduced PEDOT in the solid electrolyte layer.
  • Comparative Example 2 was produced in all other respects with the same configuration, composition, manufacturing method, and manufacturing conditions as Example 2.
  • the foil capacitance of the anode foil of the solid electrolytic capacitors of Example 2 and Comparative Example 2 and the capacitance (Cap), dielectric tangent (tan ⁇ ), and equivalent series resistance (ESR) of the solid electrolytic capacitors of Example 2 and Comparative Example 2 were measured.
  • the capacitance occurrence rate was also calculated from the foil capacitance and capacitance. The measurement and calculation methods were the same as those of Example 1 and Comparative Example 1.
  • Example 2 and Comparative Example 2 The measurement and calculation results for Example 2 and Comparative Example 2 are shown in Table 2 below.
  • the foil capacitance of the anode foil for Example 2 and Comparative Example 2 was 517.5 ⁇ F.
  • Example 2 had an 8.6% improvement in the capacity appearance rate compared to Comparative Example 2. Also, as shown in Table 2, when PEDOT with phosphonic acid groups was formed in the solid electrolyte layer and a PEDOT region was further formed in the solid electrolyte layer, it was confirmed that tan ⁇ at 120 Hz and ESR at 100 kHz were improved.
  • Example 3 A solid electrolytic capacitor of Example 3 was produced.
  • the solid electrolytic capacitor of Example 3 is a wound type.
  • the configuration of the capacitor element and the secondary process of forming a solid electrolyte layer in which a region of a second conductive polymer containing PEDOT is formed are different from those of Example 2.
  • a capacitor element was used in which an anode foil on which a dielectric oxide film with a chemical voltage of 63.6 V was formed and a cathode foil on which a dielectric oxide film with a chemical voltage of 3 V was formed were wound with a manila paper separator interposed therebetween.
  • Example 3 has the same configuration and composition as Example 2, and was produced by the same manufacturing method and under the same manufacturing conditions.
  • Example 3 the secondary process of forming the solid electrolyte layer was performed by impregnating the capacitor element with a conductive polymer dispersion liquid in which PEDOT was dispersed.
  • the capacitor element was immersed in the conductive polymer dispersion liquid, and the conductive polymer dispersion liquid was impregnated into the capacitor element for 2 minutes under a pressure environment of 20 kPa.
  • the element was moved to a drying process, left to stand at room temperature for 10 minutes, and exposed to a temperature environment of 150°C for 30 minutes.
  • a region of a second conductive polymer containing PEDOT was formed in the solid electrolyte layer of the capacitor element. Note that impregnation with the conductive polymer dispersion liquid was performed only once.
  • the resulting solid electrolytic capacitor was subjected to an aging treatment by passing a current through it at 125°C with a current density of 1 mA and applying a voltage of 40.3 V for 60 minutes.
  • the rated voltage of the solid electrolytic capacitor of Example 3 was 35 V.
  • a solid electrolytic capacitor of Comparative Example 3 was produced for comparison with Example 3.
  • the solid electrolytic capacitor of Comparative Example 3 differs from Example 3 in that the primary process of forming the solid electrolyte layer is omitted.
  • the solid electrolytic capacitor of Comparative Example 3 does not contain phosphonic acid group-introduced PEDOT in the solid electrolyte layer.
  • Comparative Example 3 was produced in all other respects with the same configuration, composition, manufacturing method, and manufacturing conditions as Example 3.
  • the foil capacitance of the anode foil of the solid electrolytic capacitors of Example 3 and Comparative Example 3 and the capacitance (Cap), dielectric tangent (tan ⁇ ), and equivalent series resistance (ESR) of the solid electrolytic capacitors of Example 3 and Comparative Example 3 were measured.
  • the capacitance occurrence rate was also calculated from the foil capacitance and capacitance.
  • the measurement method was the same as in Example 1 and Comparative Example 1.
  • the capacitance occurrence rate was also calculated by dividing the capacitance measurement result by the combined capacitance of the anode foil and cathode foil, and multiplying it by 100 to convert it into a percentage.
  • Example 3 and Comparative Example 3 are shown in Table 3 below.
  • the combined capacitance of the anode foil and cathode foil for Example 3 and Comparative Example 3 was 270.0 ⁇ F.
  • Example 3 had a 14.1% improvement in the capacity appearance rate compared to Comparative Example 3. Also, as shown in Table 3, it was confirmed that when a region of phosphonic acid group-introduced PEDOT was formed within the solid electrolyte layer, tan ⁇ at 120 Hz and ESR at 100 kHz were improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

容量出現率を高めた固体電解コンデンサ及び製造方法を提供する。固体電解コンデンサの固体電解質層は、第1の導電性高分子と第2の導電性高分子を含む。第1の導電性高分子は、エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの重合体である。第2の導電性高分子は、3,4-エチレンジオキシチオフェン又はその誘導体の重合体である。エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの第1の重合体は、固体電解質層形成一次工程によって、陽極体に付着する。3,4-エチレンジオキシチオフェン又はその誘導体の第2の重合体は、固体電解質層形成一次工程とは別の工程であり、固体電解質層形成一次工程よりも後の固体電解質層形成二次工程によって第1の重合体の層又は前記陽極体に付着させる。

Description

固体電解コンデンサ及び製造方法
 本発明は、固体電解コンデンサ及び製造方法に関する。
 固体電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極体及び陰極体として備えている。陽極体は、弁作用金属の粉末を焼結した焼結体あるいは弁作用金属を延伸した箔体であり、エッチング処理等よって拡面化される。陽極体は、拡面化された表面に陽極酸化等の処理によって誘電体酸化皮膜を有する。陽極体と陰極体との間には、陽極体に密着して真の陰極として作用する固体電解質層が介在する。
 固体電解質としては、二酸化マンガンや7,7,8,8-テトラシアノキノジメタン(TCNQ)錯体が知られている。近年は、高い導電性を有するポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が固体電解質として急速に普及している。ポリ(3,4-エチレンジオキシチオフェン)は、典型的にはポリスチレンスルホン酸(PSS)がドープされることにより、高い導電性が発現する。
 導電性高分子とポリビニルアセタールを混在させた固体電解質層も提案されている。この固体電解質層は、陽極体をポリビニルアセタールと酸化剤との混合液を含有させた溶液と、モノマーの溶液に順次浸漬し、化学重合反応させる(例えば、特許文献1参照。)
特開2021-64737号公報
 近年の電子機器及び電気機器は、小型化と大電力化が進展している。そのため、固体電解コンデンサも、体積当たりの静電容量の向上が求められる。そこで、箔の大表面積化を目指し、陽極体に形成されるエッチング層がより一層緻密になっている。
 エッチング層が緻密になると、固体電解コンデンサの容量出現率が低下する傾向がある。容量出現率は、陽極体及び陰極体の合成容量に対する固体電解コンデンサの静電容量の割合であり、固体電解コンデンサの静電容量を陽極体及び陰極体の合成容量で除算した結果の百分率である。即ち、エッチング層の緻密さに対する静電容量の大容量化の効率が悪くなっている。
 容量出現率の低下の原因について種々の仮説を立てることができる。原因の一つとして、例えば、エッチング層が緻密になればなるほど、エッチング層を形成する空隙が細かくなり、空隙内に固体電解質層を形成し難くなる。固体電解質層は、陽極体の表面に形成された誘電体酸化皮膜に密着する。この密着は、誘電体酸化皮膜と陰極体の間に連なる導電パスを作出し、固体電解質層は、真の陰極となる。エッチング層の空隙に固体電解質を充填できなかったり、充填されている導電性高分子の密度が低かったりすると、陽極と陰極の対向面積が小さくなる。これにより、固体電解コンデンサの容量出現率が小さくなる虞がある。
 本発明は、上記課題を解決するために提案されたものであり、その目的は、容量出現率を高めた固体電解コンデンサ及び製造方法を提供することにある。
 上記課題を解決すべく、本実施形態の固体電解コンデンサは下記特徴を有する。固体電解質層は、第1の導電性高分子と第2の導電性高分子を含み、前記第1の導電性高分子は、エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの重合体であり、前記第2の導電性高分子は、3,4-エチレンジオキシチオフェン又はその誘導体の重合体である。
 前記固体電解質層は、1又は複数の前記第1の導電性高分子の領域と、1又は複数の前記第2の導電性高分子の領域を有するようにしてもよい。
 誘電体酸化皮膜が形成された陽極体を備え、前記第1の導電性高分子は、前記第2の導電性高分子よりも、前記陽極体に多く密着しているようにしてもよい。
 前記陽極体は、拡面層を有し、前記第1の導電性高分子の領域は、前記第2の導電性高分子の領域よりも、前記拡面層内に密に分布するようにしてもよい。
 前記陽極体は、海綿状のエッチングピットを有するようにしてもよい。
 前記第1の導電性高分子の領域は、前記第1の導電性高分子と比べて前記第2の導電性高分子が少量含有するか、非含有であり、前記第2の導電性高分子の領域は、前記第2の導電性高分子と比べて前記第1の導電性高分子が少量含有するか、非含有であるようにしてもよい。
 また、上記課題を解決すべく、本実施形態の固体電解コンデンサの製造方法は下記特徴を有する。固体電解コンデンサは、陽極体、陰極体及び固体電解質層を備え、製造方法は、エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの第1の重合体を前記陽極体に付着させる固体電解質層形成一次工程と、前記固体電解質層形成一次工程とは別の工程であり、前記固体電解質層形成一次工程よりも後に、3,4-エチレンジオキシチオフェン又はその誘導体の第2の重合体を、前記第1の重合体の領域又は前記陽極体に付着させる形成する固体電解質層形成二次工程と、を含む。
 前記固体電解質層形成一次工程と前記固体電解質層形成二次工程との間に、乾燥工程を含むようにしてもよい。
 前記固体電解質層形成二次工程は、3,4-エチレンジオキシチオフェン又はその誘導体のモノマーを重合させる化学重合若しくは電解重合、又は3,4-エチレンジオキシチオフェン又はその誘導体の重合体が分散した分散液を少なくとも前記陽極体に含浸する工程を含むようにしてもよい。
 固体電解コンデンサは、高い容量出現率を有する。
 以下、本発明の実施形態に係る固体電解コンデンサ及び製造方法ついて説明する。尚、本発明は、以下に説明する実施形態に限定されるものではない。
 (全体構成)
 固体電解コンデンサは、誘電体酸化皮膜の誘電分極作用により静電容量を得て、電荷の蓄電及び放電を行う受動素子である。この固体電解コンデンサは、誘電体酸化皮膜が表面に形成された陽極体、陰極体、固体電解質層を備えている。陽極体と陰極体とは対向配置され、セパレータ及び固体電解質層は、陽極体と陰極体の間に介在する。陽極体と陰極体とは、セパレータを挟んで交互に積層される積層型により配置され、又はセパレータを挟んで交互に積層されて巻回される巻回型により配置される。
 固体電解質層は、導電性高分子を含む。導電性高分子は、陽極体の表面に形成された誘電体酸化皮膜に密着する。この固体電解質層は、誘電体酸化皮膜と陰極体の間に連なるように配置されて導電パスを作出し、真の陰極となる。電解コンデンサには、固体電解質層と電解液とを併用でき、電解液は、コンデンサ素子の空隙に充填される。
 コンデンサ素子は、有底筒状の外装ケースに挿入される。外装ケースの開口端部には、封口体が装着され、コンデンサ素子は、開口端部の加締め加工により封止される。封口体は、例えば、ゴムから構成され、又はゴムと硬質基板の積層体から構成される。ゴムとしてはエチレンプロピレンゴムやブチルゴム等が挙げられる。陽極体及び陰極体には陽極リード及び陰極リードが接続されており、陽極リード及び陰極リードは封口体から引き出されている。
 また、コンデンサ素子は有底筒状の外装ケースに挿入されていなくてもよい。たとえば、ラミネートフィルムによってコンデンサ素子を被覆することによって行ってもよい。また、コンデンサ素子を耐熱性樹脂や絶縁樹脂などの樹脂でモールドすることで封止してもよく、コンデンサ素子に当該樹脂をディップコートや印刷などの手法を用いて薄膜状に形成することで封止してもよい。また、外装を省略した平板型としてもよい。
 (陽極体)
 陽極体は、弁作用金属を材料として延伸された箔体である。弁作用金属は、アルミニウム、タンタル、ニオブ、酸化ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度は、陽極体に関して99.9%以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていてもよい。
 陽極体の片面又は両面には、拡面層が形成されている。拡面層は、弁作用金属の粉体を焼結した焼結体、又は延伸された箔にエッチング処理を施したエッチング層であり、密集した粉体間の空隙、又はトンネル状のピット若しくは海綿状のピットにより成る。
 トンネル状のエッチングピットは、箔厚み方向に掘り込まれた孔である。このトンネル状のエッチングピットは、典型的には、塩酸等のハロゲンイオンが存在する酸性水溶液中で直流電流を流すことで形成される。トンネル状のエッチングピットは、更に、硝酸等の酸性水溶液中で直流電流を流すことで拡径される。海綿状のエッチングピットによって、拡面層は、空間状に細かい空隙が連なり拡がったスポンジ状の層になる。この海綿状のエッチングピットは、塩酸等のハロゲンイオンが存在する酸性水溶液中で交流電流を流すことで形成される。
 陽極体の拡面層は、特に、海綿状のエッチングピットで形成されることが好ましい。海綿状のエッチングピットを有する陽極体は、拡面層が緻密であり、定格電圧100V以下に対応する場合、固体電解質層が十分に充填されると、トンネル状のエッチングピットを備える陽極体と比べて、大きな箔容量を得られる。
 誘電体酸化皮膜は、拡面層が形成された陽極体の片面又は両面に形成されている。誘電体酸化皮膜は、典型的には、陽極体の表層に形成される酸化皮膜であり、陽極体がアルミニウム製であれば、拡面層の表面を酸化させた酸化アルミニウム層である。誘電体酸化皮膜を形成する化成処理では、化成液中で陽極体に対して、所望の耐電圧を目指して電圧印加する。化成液は、ハロゲンイオン不在の溶液であり、例えば、リン酸二水素アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液である。
 (陰極体)
 陰極体は、弁作用金属を材料として延伸された陰極箔である。純度は、陰極箔に関して99%以上が望ましい。陰極箔は、陽極体と同じく拡面層が形成される。拡面層のないプレーン箔を陰極箔として用いてもよい。陰極箔は、自然酸化皮膜、又は化成処理により形成された薄い酸化皮膜(1~10V程度)を有していてもよい。自然酸化皮膜は、陰極箔が空気中の酸素と反応することにより形成される。さらに、陰極箔には、金属窒化物、金属炭化物、金属炭窒化物からなる層が蒸着法により形成されてもよいし、あるいは表面に炭素を含有した層が形成されてもよい。
 または、陰極体は、金属層とカーボン層の積層体であり、カーボン層を陽極体に向けて配置される。カーボン層は、ペースト状にして、陽極体上に固体電解質層を形成された後に固体電解質層上に塗工し、加熱より硬化させることで形成される。金属層は例えば銀層であり、金属層は、ペースト状にして、カーボン層の上から塗工し、加熱により硬化させることで形成される。
 (固体電解質層)
 固体電解質層は、2種の導電性高分子を含有する。第1の導電性高分子は、エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの重合体である。3,4-エチレンジオキシチオフェンは、換言すれば、2,3-ジヒドロチエノ[3,4-b][1,4]ジオキシンである。
 この第1の導電性高分子としては、例えば、以下化学式(A)で表されるように、骨格の2位の位置にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの重合体が挙げられる。または、第1の導電性高分子としては、骨格の1位の位置にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの重合体が挙げられる。側鎖のメチレンホスホン酸基は、水素イオン供与性のドーパントとして作用する。
Figure JPOXMLDOC01-appb-C000001
 第1の導電性高分子は、エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの単量体ユニットのみが重合した単一重合体の他、この単量体ユニットと3,4-エチレンジオキシチオフェン又は3,4-エチレンジオキシチオフェンの誘導体が含まれる共重合体であってもよい。以下、第1の導電性高分子をホスホン酸基導入PEDOTと呼ぶ。
 第2の導電性高分子は、3,4-エチレンジオキシチオフェン又はこの誘導体を単量体ユニットに含む重合体である。誘導体としては、3位と4位に置換基を有するチオフェンから選択された化合物が挙げられ、チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していてもよい。また、誘導体としては、3,4-エチレンジオキシチオフェンのエチレン基にアルキル基を有する側鎖が結合している化合物であってもよく、例えば、2-メチル-エチレンジオキシチオフェン、2-エチル-3,4-エチレンジオキシチオフェン、及び2-ブチル-3,4-エチレンジオキシチオフェン等が挙げられる。
 以下、第2の導電性高分子を単にPEDOTと呼ぶ。PEDOTは、外部ドーパント分子によりドーピングされることにより、導電性が発現する。ドーパントは、公知のものを特に限定なく使用することができる。例えば、ホウ酸、硝酸、リン酸などの無機酸、酢酸、シュウ酸、クエン酸、アスコット酸、酒石酸、スクアリン酸、ロジゾン酸、クロコン酸、サリチル酸、p-トルエンスルホン酸、1,2-ジヒドロキシ-3,5-ベンゼンジスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ボロジサリチル酸、ビスオキサレートボレート酸、スルホニルイミド酸、ドデシルベンゼンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などの有機酸が挙げられる。また、ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などが挙げられる。
 このように、固体電解質層がホスホン酸基導入PEDOTとPEDOTの2種類の高分子で形成されていると、固体電解コンデンサの容量出現率が向上する。その理由として、ホスホン酸基導入PEDOTは、ホスホン酸基の解離により溶媒への溶解性が向上することにより可溶化しており、更にホスホン酸基は、陽極体表面に形成された酸化皮膜への吸着性が高い。そのため、陽極箔表面を覆うホスホン酸基導入PEDOTが陽極体と固体電解質層との密着性を高め、陽極体と固体電解質層との解離面積を減らす。ホスホン酸基導入PEDOTのみで固体電解質層を形成すると、エッチングピットの空隙部における導電性高分子の密度が低下する。PEDOTは、ホスホン酸基導入PEDOTで埋めきることが出来なかった空隙部を容易に埋め、固体電解質層を充実させる。
 陽極体の拡面層が海綿状のエッチングピットで形成されていたとしても、また化成処理の前に疑似ベーマイト皮膜を形成した場合であっても、ホスホン酸基導入PEDOTは、この緻密な海綿状のエッチングピットに入り込んで定着することができる。固体電解質層がホスホン酸基導入PEDOTとPEDOTの2種類の高分子で形成されていると、固体電解コンデンサの容量出現率が顕著に高くなる。
 尚、容量出現率は、陽極体及び陰極体の合成容量に対する固体電解コンデンサの静電容量の割合であり、固体電解コンデンサの静電容量を陽極体及び陰極体の合成容量で除算した結果の百分率である。陽極体及び陰極体の合成容量は、固体電解コンデンサを陽極側と陰極側とが直列したコンデンサと見做した合成容量であり、陽極体の静電容量の実測値又は理論値と陰極体の静電容量の実測値又は理論値をパラメータとして計算した計算値である。陰極体に誘電体がない、又は陰極体の静電容量が無限大に収束すると言える場合には、陽極体及び陰極体の合成容量は、陽極体の静電容量の実測値又は理論値とする。固体電解コンデンサの静電容量は、実測値である。
 陽極体や陰極体の容量は、陽極体や陰極体から規定面積の試験片を切り出し、白金板を対向電極としてガラス製の測定槽内の静電容量測定液に浸漬し、静電容量計を用いて計測する。例えば、規定面積は1cmとし、静電容量測定液は30℃のアジピン酸アンモニウム水溶液とし、静電容量計はポテンショスタットと周波数応答アナライザ、電気化学インピーダンスアナライザー又はLCRメータ等とし、測定条件としてDCバイアス電圧は0Vから1.5Vとし、交流振幅を0.1Vから1Vとする。
 好ましくは、エッチングピットの内壁を含む陽極体の全表面を、ホスホン酸基導入PEDOTの薄層で覆う。ホスホン酸基導入PEDOTによる陽極体の表面の被覆率が全表面に近づくと、PEDOTが容量を十分に引き出し、容量出現率は極めて良好になる。ここで、アルミニウム基材を陽極酸化させた誘電体酸化皮膜に対するホスホン酸基の吸着性は良好であり、PEDOTを加えた2種類の高分子で固体電解質層を形成することで、ホスホン酸基導入PEDOTを陽極体の全表面を薄く被覆できると推測できる。
 ホスホン酸基導入PEDOTの製造方法は、特に限定されないが、例えば次の製造方法によって得ることできる。
 まず、ハロゲン置換体を有するメチレン基がエチレンジオキシ骨格に導入された3,4-エチレンジオキシチオフェンを、硫酸、パラトルエンスルホン酸又はメタンスルホン酸等の酸性触媒の存在下で加熱する。ハロゲン置換体を有するメチレン基が導入された3,4-エチレンジオキシチオフェンとトリス(トリアルキルシリル)ホスファイトとによりミカエリス-アルブゾフ転移反応を生じさせ、ハロゲンをホスホン酸ビス(トリアルキルシリル)基又はホスホン酸ジエステル基で置換する。そして、反応後の化合物に炭酸ナトリウム、炭酸カリウム又はアンモニアの水溶液等の塩基性水溶液を作用させることで脱保護を起こす。
 次に、電解重合又は化学重合によってホスホン酸基導入PEDOTを生成する。ホスホン酸基導入PEDOTは、限外濾過、陽イオン交換、及び陰イオン交換などの精製手段により残留モノマーや不純物を除去し、溶液に溶解させておくとよい。ホスホン酸基導入PEDOT溶液は、pHが調整され、また必要に応じて各種添加剤が加えられている。
 ホスホン酸基導入PEDOT溶液の溶媒は、ホスホン酸基導入PEDOTが溶解すればよく、水又は水と有機溶媒の混合物が好ましい。有機溶媒としては、極性溶媒、アルコール類、エステル類、炭化水素類、カーボネート化合物、エーテル化合物、鎖状エーテル類、複素環化合物、ニトリル化合物等が挙げられる。更に、導電性高分子溶液には、例えば、有機バインダー、界面活性剤、分散剤、消泡剤、カップリング剤、酸化防止剤、紫外線吸収剤等の慣用の添加剤が含まれていてもよい。
 ホスホン酸基導入PEDOTは、付着対象物をホスホン酸基導入PEDOT溶液に浸漬及び乾燥させることで、各種付着対象物に付着する。付着対象物は、陽極体である。または、付着対象物は、陽極体、陰極体及びセパレータの各々である。または、付着対象物は、陽極体、陰極体及びセパレータが組み込まれたアセンブリであるコンデンサ素子である。
 浸漬後は、乾燥工程により導電性高分子溶液の溶媒を除去する。乾燥工程での温度環境は例えば40℃以上200℃以下であり、乾燥時間は例えば3分以上180分以下の範囲である。乾燥工程は複数回繰り返してもよい。減圧環境下で乾燥してもよく、例えば5kPa以上100kPa以下の圧力で減圧する。浸漬の他、ホスホン酸基導入PEDOT溶液を滴下塗布又はスプレー塗布してもよい。
 PEDOTは、ホスホン酸基導入PEDOTを付着させた付着対象物上に更に付着させる。PEDOTの付着方法としては、公知の何れでもよく、例えば電解重合若しくは化学重合、又はPEDOTが粒子又は粉末の状態で分散されたPEDOT分散液に含浸させる含浸法を用いればよい。
 化学重合では、PEDOTの単量体ユニットとなるモノマーを含む溶液と酸化剤を含む溶液にそれぞれ付着対象物を浸漬し、または、このモノマーと酸化剤とを攪拌混合した混合溶媒に付着対象物を浸漬し、重合反応させる。酸化剤としては、ドーパントを放出する化合物であれば公知の何れでもよく、p-トルエンスルホン酸鉄(III)、ナフタレンスルホン酸鉄(III)、アントラキノンスルホン酸鉄(III)等の三価の鉄塩、若しくは、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム等のペルオキソ二硫酸塩、などを使用することができ、単独の化合物を使用しても良く、2種以上の化合物を使用してもよい。重合温度には厳密な制限がないが、一般的には10~200℃の範囲である。重合時間は、一般的には10分~30時間の範囲である。
 電解重合では、重合液に付着対象物を浸漬し、重合反応させる。重合液は、PEDOTの単量体ユニットとなるモノマー及び支持電解質が添加されている。支持電解質には、ボロジサリチル酸及びボロジサリチル酸塩からなる群から選択された少なくとも一種の化合物が含まれる。塩としては、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、エチルアンモニウム塩、ブチルアンモニウム塩等のアルキルアンモニウム塩、ジエチルアンモニウム塩、ジブチルアンモニウム塩等のジアルキルアンモニウム塩、トリエチルアンモニウム塩、トリブチルアンモニウム塩等のトリアルキルアンモニウム塩、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩等のテトラアルキルアンモニウム塩が例示される。支持電解質としては、四級アンモニウム塩を用いることが好ましい。四級アンモニウム塩は導電率が高く、電解重合時の電極箔に対する電流分布が均一になるため、固体電解質層がより均一に形成されることにより、漏れ電流の低減につながる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。例えば、支持電解質としては、テトラエチルアンモニウムボロジサリチレート(TeEA-BS)、テトラメチルアンモニウムボロジサリチレート(TeMA-BS)などを用いることができる。
 電解重合は、定電位法、定電流法、電位掃引法のいずれかの方法により行われる。定電位法による場合には、基準電極に対して1.0~1.5Vの電位が好適であり、定電流法による場合には、1~10000μA/cmの電流値が好適であり、電位掃引法による場合には、基準電極に対して0~1.5Vの範囲を5~200mV/秒の速度で掃引するのが好適である。重合温度には厳密な制限がないが、一般的には10~60℃の範囲である。重合時間は、一般的には10分~30時間の範囲である。
 電解重合及び化学重合において、溶媒は、所望量のモノマー及び支持電解質を溶解することができ電解重合に悪影響を及ぼさない溶媒を特に限定なく使用することができる。例えば、溶媒としては、水、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、アセトニトリル、ブチロニトリル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,4-ジオキサン、γ-ブチロラクトン、酢酸メチル、酢酸エチル、安息香酸メチル、安息香酸エチル、エチレンカーボネート、プロピレンカーボネート、ニトロメタン、ニトロベンゼン、スルホラン、ジメチルスルホランが挙げられる。これらの溶媒は、単独で使用しても良く、2種以上を混合して使用してもよい。
 含浸法ではPEDOT分散液に付着対象物を浸漬する。浸漬により付着対象物にPEDOT分散液が含浸され、乾燥により溶媒が揮発してPEDOTが付着対象物に残る。浸漬の他、PEDOT分散液を付着対象物に滴下塗布又はスプレー塗布してもよい。
 PEDOT分散液は、PEDOTが分散した溶液である。PEDOTは、化学重合又は電解重合によって生成され、PEDOT分散液は、重合液の限外濾過、陽イオン交換、及び陰イオン交換などの精製手段により精製される。導電性高分子分散液にはPEDOTが分散していればよい。そのため、PEDOT分散液の溶媒としては、例えば水、有機溶媒又は水と有機溶媒の混合物が挙げられる。PEDOT分散液は、pHが調整されているとよい。PEDOT分散液へのPEDOTの分散は、超音波ホモジナイザー等を用いることができる。
 PEDOT分散液の乾燥工程は複数回繰り返してもよく、減圧環境下で乾燥してもよい。乾燥工程での温度環境は例えば40℃以上200℃以下であり、乾燥時間は例えば3分以上180分以下の範囲である。乾燥工程は複数回繰り返してもよい。減圧環境下で乾燥してもよく、例えば5kPa以上100kPa以下の圧力で減圧する。
 ここで、製造工程上、ホスホン酸基導入PEDOTとPEDOTは、工程上分けて付着対象物に付着される必要があり、ホスホン酸基導入PEDOTは、PEDOTよりも先んじて付着対象物に付着される。即ち、固体電解質層は、ホスホン酸基導入PEDOTを付着させる固体電解質層形成一次工程と、PEDOTを付着させる固体電解質層形成二次工程に分けて形成される。固体電解質層形成二次工程は、ホスホン酸基導入PEDOTの付着と乾燥工程を経た後に行われる。固体電解質層形成一次工程と固体電解質層形成二次工程は、乾燥工程で隔てられた別工程とする。
 ホスホン酸基導入PEDOTよりも先にPEDOTを付着対象物に付着させようとしたり、ホスホン酸基導入PEDOTとPEDOTを同時に付着対象物に付着させようとすると、少なくとも一部のホスホン酸基導入PEDOTは、PEDOTによって、陽極体との密着を物理的に阻害される。そのため、ホスホン酸基導入PEDOTがPEDOTよりも陽極体に多く密着することができず、固体電解質層と陽極体との密着性が上がらない。特に、陽極体の拡面層が海綿状のエッチングピットで形成されていたり、化成処理の前に疑似ベーマイト皮膜を形成した場合には、PEDOTによって、多くのホスホン酸基導入PEDOTが緻密な海綿状のエッチングピットに入り込むことができなくなる。
 そのため、製造工程上、固体電解質層は、ホスホン酸基導入PEDOTを付着させる固体電解質層形成一次工程と、PEDOTを付着させる固体電解質層形成二次工程に分けて形成し、固体電解質層形成二次工程は、ホスホン酸基導入PEDOTを付着させ、乾燥工程を経た後に行う。また、このような製造工程に基づいて固体電解質層を形成する際、第1の固体電解質層であるホスホン酸基導入PEDOT層と第2の固体電解質層であるPEDOT層とが積層された2層構造としてもよい。
 (セパレータ)
 セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロースおよびこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリビニルアルコール樹脂等があげられ、これらの樹脂を単独で又は混合して用いることができる。
 尚、セパレータは、陽極体と陰極体のショート防止のために、陽極体と陰極体を隔て、また陽極体及び陰極体の間の固体電解質を保持する。固体電解質の形状が自力で保持され、固体電解質によって陰極体と陽極体を隔離できる場合、セパレータを固体電解コンデンサから排除できる。
 (電解液)
 固体電解コンデンサは、固体電解質のみを備えるほか、電解液が併用されてもよい。電解液は、導電性高分子の付着工程と乾燥工程の後にコンデンサ素子に含浸させる。この電解液は、少なくとも誘電体酸化皮膜の修復作用を担う。
 電解液の溶媒は、特に限定されるものではないが、プロトン性の有機極性溶媒又は非プロトン性の有機極性溶媒を用いることができる。プロトン性の極性溶媒として、一価アルコール類、及び多価アルコール類、オキシアルコール化合物類、水などが代表として挙げられ、例えばエチレングリコール又はプロピレングリコールである。非プロトン性の極性溶媒としては、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、スルホキシド系などが代表として挙げられ、例えばスルホラン、γ-ブチロラクトン、エチレンカーボネート又はプロピレンカーボネートである。
 電解液に含まれる溶質は、アニオン及びカチオンの成分が含まれ、典型的には、アジピン酸や安息香酸等の有機酸若しくはその塩、ホウ酸やリン酸等の無機酸若しくはその塩、又はボロジサリチル酸等の有機酸と無機酸との複合化合物若しくはそのイオン解離性のある塩であり、単独又は2種以上を組み合わせて用いられる。これら有機酸の塩、無機酸の塩、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、アンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。アニオンとなる酸及びカチオンとなる塩基を溶質成分として別々に電解液に添加してもよい。
 さらに、電解液には他の添加剤を添加することもできる。添加剤としては、ポリエチレングリコール、ホウ酸と多糖類(マンニット、ソルビットなど)との錯化合物、ホウ酸と多価アルコールとの錯化合物、ホウ酸エステル、ニトロ化合物、リン酸エステル、コロイダルシリカなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ニトロ化合物は、電解コンデンサ内の水素ガスの発生量を抑制する。ニトロ化合物としては、o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール等が挙げられる。
 以下、実施例に基づいて固体電解コンデンサとその製造方法をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。
 (実施例1)
 次のようにして実施例1の固体電解コンデンサを作製した。実施例1の固体電解コンデンサは、平板型構造である。まず、陽極体としてアルミニウム箔を用いた。アルミニウム箔の表面に拡面層を形成した。拡面層の形成においては、塩酸を含む水溶液中でアルミニウム箔に交流電流を流すことで、海綿状のエッチングピットを形成した。
 次に、拡面層を形成したアルミニウム箔にアジピン酸アンモニウム水溶液中で化成処理を行い、当該アルミニウム箔表面に化成電圧8Vの誘電体酸化皮膜を形成した。
 誘電体酸化皮膜を形成したアルミニウム箔に対しては、箔一面から複数の固体電解コンデンサをダイシングして個片化できるように、所定形状にレーザで切削加工した。切削後、当該アルミニウム箔をリン酸二水素アンモニウム水溶液中で化成処理を行い、切削面に誘電体酸化皮膜を形成した。
 後に陽極側の端子となる領域を含め、陽極となる領域を除き、絶縁レジスト層を印刷し、150℃で20分間乾燥させた。即ち、陽極側の端子となる領域に固体電解質層が形成されないように、絶縁レジスト層を印刷した。
 絶縁レジスト層の印刷後、アルミニウム箔を、ホスホン酸基導入PEDOTを含有する導電性高分子溶液に浸漬した。導電性高分子溶液の溶媒は水であり、ホスホン酸基導入PEDOTは、導電性高分子溶液中の2wt%を占める。導電性高分子溶液に2分間、アルミニウム箔を浸漬させた後、乾燥工程に移り、室温で10分間静置後、100℃の温度環境下に30分間晒した。これにより、アルミニウム箔の陽極表面上には、ホスホン酸基導入PEDOTを含む、固体電解質層の第1の導電性高分子の領域を形成した。
 ホスホン酸基導入PEDOTを付着させたアルミニウム箔に対し、電解重合によりPEDOTを含む、固体電解質層の第2の導電性高分子の領域を形成した。電解重合の重合液は、溶媒としてアセトニトリルと、モノマーとして2-エチル-3,4-エチレンジオキシチオフェン(Et-EDOT)と、支持電解質としてテトラエチルアンモニウムボロジサリチレート(TeEA-BS)を含む。この重合液に、アルミニウム箔を浸漬した後、電流を流し、これにより電解重合を行った。
 電解重合によりPEDOTを形成させたアルミニウム箔に対し、修復化成処理を行った。修復化成処理では、30℃のアジピン酸アンモニウム水溶液中でアルミニウム箔に8Vの電圧を10分間印加した。
 次に、スクリーン印刷機により、固体電解質層上にカーボンペーストを印刷し、120℃で10分間乾燥させた。この乾燥工程を経て、固体電解質層上にはカーボン層が形成された。さらに、カーボン層上に銀ペーストを印刷し、150℃で30分間乾燥させた。この乾燥工程を経て、カーボン層上には銀層が形成された。これらカーボン層及び銀層は、固体電解コンデンサの陰極体に相当する。
 陰極体を形成した後、陽極端子を形成する領域を被覆している絶縁レジスト層及び誘電体酸化皮膜をレーザにより剥離した。尚、絶縁レジスト層および誘電体酸化皮膜層の剥離は、レーザ照射以外に治具の押し当てによる機械的剥離法が可能である。そして、剥離により露出した部分に陽極端子を形成した。陽極端子の形成では、めっき前処理とめっき処理とを経た。
 めっき前処理としては、以下の処理を順番に行った。
・スマット処理としてのアルカリエッチング(処理温度:55℃、処理時間:60秒間)
・デスマット処理(処理液:30%硝酸水溶液、処理温度:室温、処理時間:60秒間)
・第1のZn置換処理(処理温度:室温、処理時間:20秒間)
・Zn剥離処理(処理液:30%硝酸水溶液、処理温度:室温、処理時間:30秒間)
・第2のZn置換処理(処理温度:室温、処理時間:30秒間)
 めっき処理としては、以下の処理を順番に行った。
・電解Niめっき(処理液:watt浴、処理温度:50℃、電流密度:-100mAcm-2、処理時間:10分間)
・電解Sn/Agめっき(処理液:中性Snめっき浴、処理温度:50℃、電流密度:-10mAcm-2、処理時間:10分間)
 尚、watt浴は、300g/L硫酸ニッケル・6水和物、50g/L塩化ニッケル・6水和物、および40g/Lホウ酸を含む。また、中性Snめっき浴は、0.1M硫酸すず、0.01M硝酸銀、0.2Mピロリン酸ナトリウムを含む。
 アルミニウム箔により成る陽極箔、固体電解質層、陰極体及び陽極端子を含む領域を、レーザーにてダイシングして個片化し、実施例1の固体電解コンデンサとした。得られた固体電解コンデンサを125℃において、電流密度1mAで通電し、4.6Vの電圧を60分間印加することで、エージング処理が施された。この固体電解コンデンサの定格電圧は4Vであった。
 実施例1との比較対象として、比較例1の固体電解コンデンサを作製した。比較例1の固体電解コンデンサは、固体電解質層形成一次工程が省かれている点で実施例1と異なる。即ち、比較例1の固体電解コンデンサは、固体電解質層内にホスホン酸基導入PEDOTが含まれていない。比較例1は、その他の全てにおいて実施例1と同一構成、同一組成、同一製造方法及び同一製造条件で作製された。
 実施例1及び比較例1の固体電解コンデンサが有する陽極箔の箔容量、実施例1及び比較例1の固体電解コンデンサの静電容量(Cap)、誘電正接(tanδ)、及び等価直列抵抗(ESR)を測定した。また、陽極箔の容量と静電容量から容量出現率を計算した。
 陽極箔の容量は、拡面化及び化成処理を行ったアルミニウム箔を用いて測定した。試料面積を1cmに規定したアルミニウム箔を温度30℃のアジピン酸アンモニウム水溶液に浸漬し、DCバイアス電圧1.5V、交流振幅1V、測定周波数120Hzとし、Solartron analytical製のポテンショスタットSI1287及び周波数応答アナライザ1252Aを用いて測定した。その結果、実施例1及び比較例1の陽極箔の箔容量は55.0μFであった。
 Cap、tanδ及びESRはLCRメータ(株式会社エヌエフ回路設計ブロック製、型番ZM2376)を用いて20℃の温度下で測定した。Cap及びtanδの測定周波数は120Hzであり、ESRの測定周波数は100kHzである。容量出現率は、静電容量の測定結果を陽極箔の箔容量で除算し、100を乗算することで百分率に換算して得た。
 実施例1及び比較例1の測定結果と計算結果を下表1に示す。下表1に示すように、実施例1は、比較例1に比べて容量出現率が16.6%向上していることが確認された。
 (表1)
Figure JPOXMLDOC01-appb-I000002
 (実施例2)
 次のようにして実施例2の固体電解コンデンサを作製した。実施例2の固体電解コンデンサは、巻回型である。まず、陽極体及び陰極体となる各アルミニウム箔の表面に拡面層を形成した。拡面層の形成においては、塩酸を含む水溶液中でアルミニウム箔に交流電流を流すことで、海綿状のエッチングピットを形成した。次に、拡面層を形成したアルミニウム箔にアジピン酸アンモニウム水溶液中で化成処理を行い、当該アルミニウム箔表面に化成電圧55Vの誘電体酸化皮膜を形成したアルミニウム箔を陽極箔とした。また、拡面層を形成したアルミニウム箔に、アークイオンプレーティング法により炭化チタン層を形成したアルミニウム箔を陰極箔とした。
 これら陽極箔と陰極箔の各々にリード線を接続し、アクリル繊維から成るセパレータを介して陽極箔と陰極箔を対向させて巻回し、素子径10mm、高さ11.5mmのコンデンサ素子とした。このコンデンサ素子に対して、リン酸二水素アンモニウム水溶液中で電流密度10mAの条件にて通電し、電圧が58Vに達した後、その電圧を24分間保持することで、修復化成を行った。その後、純水中にてコンデンサ素子を洗浄し、105℃で乾燥させた。
 コンデンサ素子を、ホスホン酸基導入PEDOTを含有する導電性高分子溶液に浸漬した。導電性高分子溶液の溶媒は水であり、ホスホン酸基導入PEDOTは、導電性高分子溶液中の2wt%を占める。導電性高分子溶液にコンデンサ素子を浸漬させた後、乾燥工程に移り、100℃の温度環境下に15分間晒した。これにより、陽極箔表面を含むコンデンサ素子内には、ホスホン酸基導入PEDOTを含む、固体電解質層の第1の導電性高分子の領域が形成された。その後、ホスホン酸基導入PEDOTを形成したコンデンサ素子を、170℃の温度環境下に60分間晒し、熱処理を行った。
 次いで、熱処理後のコンデンサ素子に対し、化学重合によりPEDOTを含む、固体電解質層の第2の導電性高分子の領域を形成した。酸化剤として60wt%のパラトルエンスルホン酸鉄(III)を含むエタノール溶液と、モノマーとして3,4-エチレンジオキシチオフェンとを混合することで、重合液を調製した。この重合液に、コンデンサ素子を浸漬させた。
 コンデンサ素子に重合液を含浸させた後、40℃の温度環境下に30分間晒した後、60℃の温度環境下に60分間晒し、更に150℃の温度環境下に60分間晒し、重合を行った。固体電解質層が形成された後、コンデンサ素子に封口体を装着し、有底筒状の外装ケースに挿入し、外装ケースの開口を封口体で封止した。得られた固体電解コンデンサを125℃において、電流密度1mAで通電し、32.5Vの電圧を60分間印加することで、エージング処理を施した。この実施例2の固体電解コンデンサの定格電圧は、25Vであった。
 実施例2との比較対象として、比較例2の固体電解コンデンサを作製した。比較例2の固体電解コンデンサは、固体電解質層形成一次工程が省かれている点で実施例2と異なる。即ち、比較例2の固体電解コンデンサは、固体電解質層内にホスホン酸基導入PEDOTが含まれていない。比較例2は、その他の全てにおいて実施例2と同一構成、同一組成、同一製造方法及び同一製造条件で作製された。
 実施例2及び比較例2の固体電解コンデンサが有する陽極箔の箔容量、実施例2及び比較例2の固体電解コンデンサの静電容量(Cap)、誘電正接(tanδ)、及び等価直列抵抗(ESR)を測定した。また、箔容量と静電容量から容量出現率を計算した。測定方法及び計算方法は、実施例1及び比較例1と同一である。
 実施例2及び比較例2の測定結果と計算結果を下表2に示す。尚、実施例2と比較例2の陽極箔の箔容量は、517.5μFであった。
 (表2)
Figure JPOXMLDOC01-appb-I000003
 表2に示すように、実施例2は、比較例2に比べて容量出現率が8.6%向上していることが確認された。また、表2に示すように、ホスホン酸基導入PEDOTを固体電解質層内に形成し、更にPEDOTの領域を固体電解質層内に形成した場合、120Hzにおけるtanδと、100kHzにおけるESRとが向上していることが確認された。
 (実施例3)
 実施例3の固体電解コンデンサを作製した。実施例3の固体電解コンデンサは、巻回型である。実施例2に対して、コンデンサ素子の構成及びPEDOTを含む第2の導電性高分子の領域を形成する固体電解質層形成二次工程が異なる。実施例3の固体電解コンデンサには、化成電圧63.6Vの誘電体酸化皮膜を形成した陽極箔と、化成電圧3Vの誘電体酸化皮膜を形成した陰極箔とをマニラ紙セパレータを介して巻回したコンデンサ素子を用いた。コンデンサ素子の構成と固体電解質層形成二次工程を除き、実施例3は実施例2と同一構成及び同一組成を有し、同一の製造方法及び同一の製造条件で作製された。
 実施例3において、固体電解質層形成二次工程は、PEDOTが分散した導電性高分子分散液をコンデンサ素子に含浸して行った。コンデンサ素子を導電性高分子分散液に浸漬し、20kPaの圧力環境下で2分間、導電性高分子分散液をコンデンサ素子に含浸した。次いで、乾燥工程に移り、室温で10分静置し、150℃の温度環境下に30分間晒した。これにより、コンデンサ素子の固体電解質層内に、PEDOTを含む第2の導電性高分子の領域が形成された。なお、導電性高分子分散液の含浸は1回のみ行った。
 固体電解質層が形成された後、コンデンサ素子には封口体が装着され、コンデンサ素子を有底筒状の外装ケースにコンデンサ素子を挿入し、封口体で封止した。得られた固体電解コンデンサを125℃において、電流密度1mAで通電し、40.3Vの電圧を60分間印加することで、エージング処理を施した。この実施例3の固体電解コンデンサの定格電圧は、35Vであった。
 実施例3との比較対象として、比較例3の固体電解コンデンサを作製した。比較例3の固体電解コンデンサは、固体電解質層形成一次工程が省かれている点で実施例3と異なる。即ち、比較例3の固体電解コンデンサは、固体電解質層内にホスホン酸基導入PEDOTが含まれていない。比較例3は、その他の全てにおいて実施例3と同一構成、同一組成、同一製造方法及び同一製造条件で作製された。
 実施例3及び比較例3の固体電解コンデンサが有する陽極箔の箔容量、実施例3及び比較例3の固体電解コンデンサの静電容量(Cap)、誘電正接(tanδ)、及び等価直列抵抗(ESR)を測定した。また、箔容量と静電容量から容量出現率を計算した。測定方法は、実施例1及び比較例1と同一である。また、容量出現率は、静電容量の測定結果を陽極箔及び陰極箔の合成容量で除算し、100を乗算することで百分率に換算して得た。
 実施例3及び比較例3の測定結果と計算結果を下表3に示す。尚、実施例3と比較例3の陽極箔及び陰極箔の合成容量は、270.0μFであった。
 (表3)
Figure JPOXMLDOC01-appb-I000004
 表3に示すように、実施例3は、比較例3に比べて容量出現率が14.1%向上していることが確認された。また、表3に示すように、ホスホン酸基導入PEDOTの領域を固体電解質層内に形成した場合、120Hzにおけるtanδと、100kHzにおけるESRとが向上していることが確認された。

Claims (6)

  1.  固体電解質層を有する固体電解コンデンサであって、
     前記固体電解質層は、第1の導電性高分子と第2の導電性高分子を含み、
     前記第1の導電性高分子は、エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの重合体であり、
     前記第2の導電性高分子は、3,4-エチレンジオキシチオフェン又はその誘導体の重合体であること、
     を特徴とする固体電解コンデンサ。
  2.  誘電体酸化皮膜が形成された陽極体を備え、
     前記第1の導電性高分子は、前記第2の導電性高分子よりも、前記陽極体に多く密着していること、
     を特徴とする請求項1記載の固体電解コンデンサ。
  3.  前記陽極体には、海綿状のエッチングピットを有する拡面層が形成され、
     前記拡面層内に、前記第2の導電性高分子よりも第1の導電性高分子がより多く密着していること、
     を特徴とする請求項2記載の固体電解コンデンサ。
  4.  陽極体、陰極体及び固体電解質層を備える固体電解コンデンサの製造方法であって、
     エチレンジオキシ骨格にメチレンホスホン酸基が導入された3,4-エチレンジオキシチオフェンの第1の重合体を前記陽極体に付着させる固体電解質層形成一次工程と、
     前記固体電解質層形成一次工程とは別の工程であり、前記固体電解質層形成一次工程よりも後に、3,4-エチレンジオキシチオフェン又はその誘導体の第2の重合体を、前記第1の重合体の領域又は前記陽極体に付着させる固体電解質層形成二次工程と、
     を含むこと、
     を特徴とする固体電解コンデンサの製造方法。
  5.  前記固体電解質層形成一次工程と前記固体電解質層形成二次工程との間に、乾燥工程を含むこと、
     を特徴とする請求項4記載の固体電解コンデンサの製造方法。
  6.  前記固体電解質層形成二次工程は、3,4-エチレンジオキシチオフェン又はその誘導体のモノマーを重合させる化学重合若しくは電解重合、又は3,4-エチレンジオキシチオフェン又はその誘導体の重合体が分散した分散液を少なくとも前記陽極体に含浸する工程を含むこと、
     を特徴とする請求項4又は5記載の固体電解コンデンサの製造方法。
PCT/JP2023/039150 2022-11-01 2023-10-30 固体電解コンデンサ及び製造方法 WO2024095984A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022175755A JP2024066275A (ja) 2022-11-01 2022-11-01 固体電解コンデンサ及び製造方法
JP2022-175755 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024095984A1 true WO2024095984A1 (ja) 2024-05-10

Family

ID=90930508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039150 WO2024095984A1 (ja) 2022-11-01 2023-10-30 固体電解コンデンサ及び製造方法

Country Status (2)

Country Link
JP (1) JP2024066275A (ja)
WO (1) WO2024095984A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155141A (ja) * 2010-01-27 2011-08-11 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP2014049602A (ja) * 2012-08-31 2014-03-17 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法
WO2018020985A1 (ja) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP2022529801A (ja) * 2019-05-09 2022-06-24 シェンズェン カプチェム テクノロジー カンパニー リミテッド 導電性ポリマー、コンデンサ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155141A (ja) * 2010-01-27 2011-08-11 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP2014049602A (ja) * 2012-08-31 2014-03-17 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法
WO2018020985A1 (ja) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP2022529801A (ja) * 2019-05-09 2022-06-24 シェンズェン カプチェム テクノロジー カンパニー リミテッド 導電性ポリマー、コンデンサ及びその製造方法

Also Published As

Publication number Publication date
JP2024066275A (ja) 2024-05-15

Similar Documents

Publication Publication Date Title
JP4916416B2 (ja) 電解コンデンサの製造方法及び電解コンデンサ
TWI436391B (zh) 固態電解電容元件及其製造方法
JP2011181611A (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP4983744B2 (ja) 固体電解コンデンサの製造方法
JP2009016770A (ja) 電解コンデンサの製造方法及び電解コンデンサ
WO2020153242A1 (ja) 電解コンデンサおよびその製造方法
JP2006173593A (ja) 固体電解コンデンサ及びその製造方法
US9892858B2 (en) Method for manufacturing electrolytic capacitor
JP2019110322A (ja) 電解コンデンサの製造方法
JP2019071469A (ja) 電解コンデンサ
WO2007069738A1 (ja) 固体電解質の製造方法、および固体電解コンデンサ
WO2024095984A1 (ja) 固体電解コンデンサ及び製造方法
JP6735510B2 (ja) 電解コンデンサ
JP2008288342A (ja) 電解コンデンサ用電解質の形成方法
US20160196924A1 (en) Method for manufacturing solid electrolytic capacitor
CN109643610A (zh) 电解电容器及其制造方法
KR100765840B1 (ko) 적층형 알루미늄 고체 전해 콘덴서 제조 방법
EP4386797A1 (en) Solid electrolyte capacitor and method for manufacturing same
WO2023054099A1 (ja) 固体電解質、固体電解コンデンサ、導電性高分子分散液、固体電解質の製造方法及び導電性高分子分散液の製造方法
KR20150045051A (ko) 적층형 알루미늄 캐패시터용 전극박의 제조방법
JP5496708B2 (ja) 固体電解コンデンサの製造方法
WO2023190189A1 (ja) 巻回形電解コンデンサ
WO2024204630A1 (ja) 導電性高分子分散液、導電性高分子分散液の製造方法、及び固体電解コンデンサの製造方法
WO2024070603A1 (ja) 固体電解コンデンサ及び製造方法
WO2022270492A1 (ja) 電解コンデンサ、陰極体及び電解コンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885738

Country of ref document: EP

Kind code of ref document: A1