WO2024095742A1 - 硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板 - Google Patents

硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板 Download PDF

Info

Publication number
WO2024095742A1
WO2024095742A1 PCT/JP2023/037323 JP2023037323W WO2024095742A1 WO 2024095742 A1 WO2024095742 A1 WO 2024095742A1 JP 2023037323 W JP2023037323 W JP 2023037323W WO 2024095742 A1 WO2024095742 A1 WO 2024095742A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
mass
resin layer
cured product
crosslinking agent
Prior art date
Application number
PCT/JP2023/037323
Other languages
English (en)
French (fr)
Inventor
祐輔 佐藤
和美 橋本
元司 小野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024095742A1 publication Critical patent/WO2024095742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • This disclosure relates to a curable composition, a resin sheet, a laminate, a metal-clad laminate, and a wiring board.
  • Wiring boards are used for applications such as electrical and electronic devices. Wiring boards can be manufactured, for example, as follows. A fiber substrate is impregnated with a curable composition containing a curable polymer and, if necessary, additives such as a flame retardant and an inorganic filler (also called a filler), and the curable composition is (semi-)cured to produce a prepreg. One or more prepregs are sandwiched between a pair of metal foils, and the resulting first temporary laminate is heated and pressurized to produce a metal-clad laminate. The metal foil on the outermost surface of this metal-clad laminate is used to form a conductor pattern (also called a circuit pattern) such as wiring. The outermost metal foil may be placed on only one side of the first temporary laminate.
  • a curable composition containing a curable polymer and, if necessary, additives such as a flame retardant and an inorganic filler (also called a filler), and the curable composition is (semi
  • the resulting wiring board can be further laminated with one or more prepregs, sandwiched between a pair of metal foils, and the resulting second temporary laminate can be heated and pressurized to form a conductor pattern such as wiring using the metal foil on the outermost surface, thereby producing a multilayer wiring board (also called a multilayer printed wiring board).
  • the outermost metal foil may be placed on only one side of the second temporary laminate.
  • the heated and pressurized prepreg contains a fiber base material, a resin, an inorganic filler, etc., and is also called a core base material.
  • the core base material functions as an insulating layer.
  • the resin contained in the prepreg is a (semi-)cured product of the curable composition, and the resin contained in the wiring board is a cured product of the curable composition.
  • a wiring board used for this application is required to reduce transmission loss in the high frequency range.
  • Transmission loss mainly includes conductor loss caused by the surface resistance of metal foil and dielectric loss caused by the dielectric tangent ( Df ) of the resin.
  • a resin contained in a wiring board used for the above application is required to reduce dielectric loss in the high frequency range.
  • the dielectric tangent ( Df ) depends on the frequency, and for the same material, the higher the frequency, the larger the dielectric tangent ( Df ) tends to be. It is preferable that the resin contained in the wiring board has a low dielectric tangent ( Df ) under high frequency conditions.
  • the adhesion between the core substrate and the metal foil is important.
  • Conventionally there is a technique for roughening the surface of the metal foil on the core substrate side in order to improve the adhesion between the core substrate and the metal foil.
  • this technique is not preferable because it is prone to cause loss of high frequency current.
  • Components are mounted on the surface of the wiring board using solder. In order to ensure the reliability of the wiring board when mounting components, it is preferable that the resin contained in the wiring board has good heat resistance.
  • a resin layer capable of functioning as an adhesive layer can be provided between the core substrate and the metal foil.
  • This resin layer can be a cured product of a curable composition containing a curable polymer.
  • Patent Document 1 aims to provide a thermosetting composition which is suitable for use in metal-clad laminates and wiring boards, and which has a cured product having a low dielectric constant, a low dielectric tangent, high heat resistance, and high adhesion to resins.
  • thermosetting composition containing an ethylene-propylene-diene copolymer (A) and an inorganic filler (B) that has been surface-treated with a surface treatment agent having a polymerizable unsaturated bond (Claim 1).
  • the amount of the inorganic filler (B) is preferably 30 to 500 parts by mass per 100 parts by mass of the ethylene-propylene-diene copolymer (A) (claim 2).
  • the ethylene-propylene-diene copolymer (A) is a curable polymer, and the diene unit, which is a structural unit derived from a diene, contributes to curing (paragraph 0019).
  • the inorganic filler (B) can contribute to improving the heat resistance of the cured product.
  • the thermosetting composition is cured, the polymerizable unsaturated bond of the inorganic filler (B) reacts with the diene unit of the ethylene-propylene-diene copolymer (A), thereby increasing the crosslink density of the cured product and improving the heat resistance of the cured product (paragraph 0031).
  • the thermosetting composition preferably further contains an organic compound (C) having a polymerizable unsaturated group (Claim 3).
  • the organic compound (C) can be a monofunctional compound or a polyfunctional compound.
  • the monofunctional compound can reduce the melt viscosity of the thermosetting composition to improve moldability.
  • the polyfunctional compound can increase the crosslink density of the cured product.
  • the polyfunctional compound can contribute to improving the toughness of the cured product, improving the glass transition point and thereby improving heat resistance, reducing the linear expansion coefficient, and improving adhesion (paragraph 0025).
  • the reference symbols for each component described in Patent Document 1 are the reference symbols described in this document and have no relation to the reference symbols used for each component in the present disclosure.
  • thermosetting composition described in Patent Document 1 contains a large amount of the inorganic filler (B) as one of the essential components, and preferably contains 30 parts by mass or more of the inorganic filler (B) per 100 parts by mass of the ethylene-propylene-diene copolymer (A).
  • a large amount of the inorganic filler (B) is difficult to disperse well in the composition and is prone to agglomeration in the composition, making it difficult to prepare a uniform composition and difficult to apply the composition thinly and uniformly to the surfaces of various substrates.
  • thermosetting composition containing a large amount of inorganic filler (B) tends to have reduced adhesion to various substrates (also referred to as substrate adhesion) and a high (i.e., deteriorated) dielectric tangent ( Df ) under high frequency conditions.
  • the present disclosure has been made in consideration of the above circumstances, and aims to provide a curable composition that can obtain a resin having a reduced inorganic filler content, effectively reducing the dielectric tangent (D f ) under high frequency conditions, and having good heat resistance and adhesion to substrates.
  • the present disclosure provides the following curable compositions, resin sheets, laminates, metal-clad laminates, and wiring boards.
  • thermoplastic elastomers (E) selected from the group consisting of block copolymers including one or more polymer blocks (A) composed of structural units derived from one or more aromatic vinyl compounds including one or more alkylstyrene compounds having an alkyl group having 1 to 8 carbon atoms, and one or more polymer blocks (B) composed of structural units derived from one or more conjugated diene compounds, and hydrogenated products of the block copolymers; 3 to 30 parts by mass of a crosslinking agent (C) per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C); 0 to 25 parts by mass of an inorganic filler (F) relative to 100 parts by mass in total of the thermoplastic elastomer (E) and the crosslinking agent (C); and a radical polymerization initiator (I), A curable composition, the dielectric loss tangent (D f ) of which when cured is measured using a cavity resonator at
  • a resin sheet comprising a dried product, a semi-cured product or a cured product of the curable composition according to any one of [1] to [10].
  • a laminate comprising a substrate and a resin layer made of a dried product, a semi-cured product, or a cured product of the curable composition according to any one of [1] to [10].
  • a curable composition that can obtain a resin having a reduced inorganic filler content, effectively reducing the dielectric tangent ( Df ) under high frequency conditions, and having good heat resistance and adhesion to substrates.
  • FIG. 1 is a schematic cross-sectional view of a resin sheet according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a laminate according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a metal-clad laminate according to a first embodiment of the present invention.
  • FIG. FIG. 4 is a schematic cross-sectional view of a metal-clad laminate according to a second embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a wiring board according to an embodiment of the present invention;
  • the terms “film” and “sheet” are used for thin film molded bodies depending on their thickness, but there is no clear definition of these terms and no clear distinction between them. In this specification, there is no clear distinction between a film and a sheet, and both are collectively referred to as a "sheet.”
  • the term “semi-cured” is a general term for semi-cured and fully cured.
  • the term “wiring board” includes a multilayer wiring board.
  • the "surface” of a sheet-like body such as a prepreg refers to the main surface having the largest area.
  • the term “polymer” includes homopolymers and copolymers.
  • the "alkyl group having 3 or more carbon atoms” may be either linear or branched.
  • compounds having isomers include all isomers.
  • the term “weight average molecular weight (Mw)” refers to a weight average molecular weight calculated based on standard polystyrene standards by gel permeation chromatography (GPC)
  • the term “number average molecular weight (Mn)” refers to a number average molecular weight calculated based on standard polystyrene standards by gel permeation chromatography (GPC).
  • the "high frequency region” is defined as a region having a frequency of 1 GHz or higher.
  • the term “to” indicating a range of values is used to mean that the range includes the values before and after it as the lower and upper limits.
  • the curable composition of the present disclosure comprises: one or more thermoplastic elastomers (E) selected from the group consisting of block copolymers comprising one or more polymer blocks (A) consisting of structural units derived from one or more aromatic vinyl compounds including one or more alkylstyrene compounds having an alkyl group having 1 to 8 carbon atoms, and one or more polymer blocks (B) consisting of structural units derived from one or more conjugated diene compounds, and hydrogenated products of the block copolymers; 3 to 30 parts by mass of a crosslinking agent (C) per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C); and a radical polymerization initiator (I).
  • the curable composition of the present disclosure may contain 0 to 25 parts by weight of an inorganic filler (F) per 100 parts by weight of the total of the thermoplastic elastomer (E) and the crosslinking agent (C).
  • the curable composition of the present disclosure comprises one or more thermoplastic elastomers (E) selected from the group consisting of block copolymers comprising one or more polymer blocks (A) consisting of structural units derived from one or more aromatic vinyl compounds including one or more alkylstyrene compounds having an alkyl group having 1 to 8 carbon atoms, and one or more polymer blocks (B) consisting of structural units derived from one or more conjugated diene compounds, and hydrogenated products of the block copolymers.
  • the polymer block (A) is a hard segment block
  • the polymer block (B) is a soft segment block.
  • the block copolymer can be an addition polymerization type block copolymer.
  • the number of polymer blocks in the block copolymer is not particularly limited.
  • the block copolymer can be a diblock copolymer, a triblock copolymer, a tetrablock copolymer, or a higher order multiblock copolymer.
  • a triblock copolymer is preferred.
  • the block arrangement is not particularly limited, and examples include AB, ABA, BAB, ABABA, and BABAB.
  • the compositions of the multiple polymer blocks (A) may be the same or different. The same applies when the block copolymer contains multiple polymer blocks (B).
  • the block copolymer may further contain one or more other polymer blocks other than those described above.
  • the thermoplastic elastomer (E) is preferably a hydrogenated product obtained by hydrogenating a block copolymer and removing at least a part of the residual unsaturated bonds of the block copolymer.
  • the one or more aromatic vinyl compounds which are raw material monomers for the polymer block (A) include one or more alkylstyrene compounds.
  • the aromatic vinyl compound When the aromatic vinyl compound has a structural isomer, it may be any of an ortho-isomer, a meta-isomer, and a para-isomer.
  • the alkylstyrene compound is a (C1-C8 alkyl)styrene compound having a benzene ring and an alkyl group having 1 to 8 carbon atoms bonded thereto.
  • the number of alkyl groups having 1 to 8 carbon atoms bonded to the benzene ring is not particularly limited, and may be either single or multiple.
  • the (C1-C8 alkyl)styrene compound includes o-, m-, or p-alkylstyrene, 2,4-dialkylstyrene, 3,5-dialkylstyrene, and 2,4,6-trialkylstyrene, etc.
  • the (C1-C8 alkyl)styrene compound may be a substituted alkylstyrene compound such as a halogenated alkylstyrene in which one or more hydrogen atoms in the alkyl group are replaced with a halogen atom.
  • (C1-C8 alkyl)styrene compound examples include o-, m-, or p-methylstyrene, 2,4-dimethylstyrene, 3,5-dimethylstyrene, 2,4,6-trimethylstyrene, o-, m-, or p-ethylstyrene, 2,4-diethylstyrene, 3,5-diethylstyrene, 2,4,6-triethylstyrene, o-, m-, or p-propylstyrene, 2,4-dipropylstyrene, 3,5-dipropylstyrene, 2,4,6-tripropylstyrene, 2-methyl-4-ethylstyrene, 3-methyl-5-ethylstyrene, o-, m-, or p-chloromethylstyrene, 2,4-bis(chloro
  • the content of structural units derived from a (C1-C8 alkyl)styrene compound in the polymer block (A) is not particularly limited, and is preferably 1% by mass or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, particularly preferably 20% by mass or more, and most preferably 30% by mass or more.
  • the content of structural units derived from a (C1-C8 alkyl)styrene compound in the polymer block (A) is preferably 90% by mass or less, more preferably 80% by mass or less, particularly preferably 70% by mass or less, and most preferably 60% by mass or less.
  • the "amount of polymer block (A)” refers to the total amount of the plurality of polymer blocks (A). The same applies to the polymer block (B).
  • the polymer block (A) may contain structural units derived from one or more aromatic vinyl compounds other than those mentioned above.
  • aromatic vinyl compounds other than those mentioned above include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, t-butylstyrene, monofluorostyrene, difluorostyrene, monochlorostyrene, dichlorostyrene, methoxystyrene, vinylnaphthalene, vinylanthracene, indene, acetonaphthylene, and alkylstyrene compounds having an alkyl group with 9 or more carbon atoms. Among these, styrene is preferred.
  • the polymer block (A) may contain, in addition to the structural units derived from one or more aromatic vinyl compounds, structural units derived from one or more other copolymerizable monomers.
  • the content of structural units derived from an aromatic vinyl compound in the polymer block (A) is preferably 70% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • the proportion of structural units derived from other copolymerizable monomers in the polymer block (A) is preferably 30% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less, and may be 0% by mass.
  • Examples of the other copolymerizable monomers include (meth)acrylic acid esters, 1-butene, pentene, hexene, butadiene, isoprene, methyl vinyl ether, and other monomers capable of ion polymerization.
  • (meth)acrylic is a general term for acrylic and methacrylic.
  • the polymer block (A) may contain one or more crosslinkable functional groups.
  • crosslinkable functional groups include active hydrogen atom-containing functional groups such as -OH, -SH, -NH 2 , -NHR, -CONH 2 , -CONHR, -CONH-, -SO 3 H, -SO 2 H, and -SOH; nitrogen atom-containing functional groups such as -NR 2 , >C ⁇ NH, >C ⁇ N-, -CN, -NCO, -OCN, -SCN, -NO, -NO 2 , -NCS, -CONR 2 , and -CONR-; (thio)carbonyl group-containing functional groups such as >C ⁇ O, >C ⁇ S, -CH ⁇ O, -CH ⁇ S, -COOR, and -CSOR;
  • R is a hydrocarbon group.
  • the crosslinkable functional group is preferably a non-polar atom-containing group that does not contain polar atoms such as nitrogen atoms, oxygen atoms, and sulfur atoms.
  • the constituent atoms of the crosslinkable functional group are preferably only carbon atoms and hydrogen atoms.
  • the arrangement of the multiple structural units is not particularly limited and may be any arrangement, such as an alternating arrangement, a block arrangement, a random arrangement, or a tapered block arrangement.
  • Conjugated diene compounds that are raw material monomers for polymer block (B) include isoprene, butadiene, hexadiene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene.
  • Preferred polymer blocks (B) are polyisoprene blocks, polybutadiene blocks, isoprene/butadiene copolymer blocks, and hydrogenated blocks in which at least some of the unsaturated bonds in these blocks have been hydrogenated.
  • the polymer block (B) may further contain structural units derived from one or more other copolymerizable monomers other than those mentioned above.
  • the content of the structural unit derived from the conjugated diene compound in the polymer block (B) is preferably 70% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • the proportion of structural units derived from other copolymerizable monomers in the polymer block (B) is preferably 30% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less, and may be 0% by mass.
  • the other copolymerizable monomers include styrene, p-methylstyrene, ⁇ -methylstyrene, and other monomers capable of ionically polymerizing.
  • the arrangement of the plurality of structural units is not particularly limited and may be any arrangement such as an alternating arrangement, a block arrangement, a random arrangement, or a tapered block arrangement.
  • the ratio of the mass of the polymer block (A) (total amount if there are multiple polymer blocks) to the mass of the polymer block (B) (total amount if there are multiple polymer blocks) is not particularly limited, but is preferably 5/95 to 85/15, more preferably 10/90 to 70/30, and particularly preferably 20/80 to 50/50.
  • the weight average molecular weight (Mw) of the thermoplastic elastomer (E) is not particularly limited. From the viewpoint of thin-wall coating properties of the curable composition, the Mw is preferably 50,000 to 1,000,000, more preferably 80,000 to 500,000, and particularly preferably 100,000 to 500,000.
  • the thermoplastic elastomer (E) can be produced by a known method, and a commercially available product can be used. Examples of the commercially available thermoplastic elastomer (E) include hydrogenated styrene-based thermoplastic elastomer "Septon (registered trademark) V series" manufactured by Kuraray Co., Ltd.
  • the thermoplastic elastomer (E) may have a structure in which the main chain does not contain a polar atom.
  • the thermoplastic elastomer (E) may have a structure that does not contain polar atoms or has a small amount of polar atoms. It is preferable that the thermoplastic elastomer (E) does not contain polar atoms.
  • the curable composition of the present disclosure includes one or more crosslinking agents (C).
  • the crosslinking agent (C) is a polyfunctional compound having a plurality of polymerizable functional groups in one molecule.
  • the polymerizable functional group include a group having a polymerizable carbon-carbon unsaturated bond, an epoxy group, an isocyanate group, a hydroxy group, a mercapto group, an amino group, a ureido group, a carboxy group, a sulfonic acid group, an acid chloride group, and a chlorine atom.
  • Examples of the group having a polymerizable carbon-carbon unsaturated bond include a vinyl group, an allyl group, a dienyl group, a (meth)acryloyloxy group, and a (meth)acrylamino group.
  • the crosslinking agent (C) can increase the crosslink density of the cured product of the curable composition.
  • the crosslinking agent (C) can contribute to improving the toughness of the cured product, improving the glass transition temperature (Tg) (i.e., improving the heat resistance), reducing the linear expansion coefficient, and improving the adhesion to substrates.
  • the content of the crosslinking agent (C) in the curable composition of the present disclosure (the total amount when multiple types are used) is 3 parts by mass or more, and preferably 5 parts by mass or more, per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C).
  • the content of the crosslinking agent (C) in the curable composition of the present disclosure is 30 parts by mass or less, preferably 25 parts by mass or less, more preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and most preferably 10 parts by mass or less, per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C).
  • the crosslinking agent (C) As the crosslinking agent (C), a known agent can be used. From the viewpoint of reducing the dielectric loss tangent ( Df ) of the cured product under high frequency conditions, the crosslinking agent (C) is preferably a polar atom-free organic compound that does not contain polar atoms.
  • the constituent atoms of the crosslinking agent (C) are preferably only carbon atoms and hydrogen atoms. Examples of organic compounds that do not contain polar atoms include 1,2-bis(p-vinylphenyl)ethane (BVPE); divinyl aromatic polymers such as divinylbenzene; and trivinylcyclohexane.
  • the crosslinking agent (C) may be a polar atom-containing organic compound that contains a polar atom, such as a nitrogen atom, an oxygen atom, or a sulfur atom.
  • a polar atom such as a nitrogen atom, an oxygen atom, or a sulfur atom.
  • the polar atom-containing organic compound include bismaleimides and nitrogen-containing allyl compounds.
  • bismaleimides include 4,4'-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, and 1,6-bismaleimide-(2,2,4-trimethyl)hexane.
  • nitrogen-containing allyl compound examples include triallyl isocyanurate (TAIC), compounds represented by the following formulae (CX) and (CY), and 1,3,4,6-tetraallyl glycoluril.
  • TAIC triallyl isocyanurate
  • CX and CY compounds represented by the following formulae (CX) and (CY)
  • 1,3,4,6-tetraallyl glycoluril examples include "L-DAIC”, “DD-1”, and "P-DAIC” manufactured by Shikoku Kasei Corporation.
  • R 1 and R 2 are each independently a hydrocarbon group which may have a substituent.
  • R 1 has preferably 4 to 20 carbon atoms, more preferably 8 to 18 carbon atoms.
  • R 2 has preferably 1 to 8 carbon atoms, more preferably 2 to 6 carbon atoms.
  • the substituent which R 1 and R 2 may have may include heteroatoms such as a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, and combinations thereof.
  • the content of the crosslinking agent (C) in the curable composition of the present disclosure is preferably 3 to 10 parts by mass, more preferably 5 to 10 parts by mass, per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C).
  • the curable composition of the present disclosure may contain only the thermoplastic elastomer (E) and the crosslinking agent (C) as the curable compounds.
  • the curable composition of the present disclosure may optionally contain one or more other curable compounds other than those described above.
  • curable compounds include curable compounds that, when cured alone, become resins such as polyphenylene ether resins (PPE), bismaleimide resins, epoxy resins, fluororesins, polyimides, polyolefins, polyesters, polystyrenes, hydrocarbon elastomers other than those mentioned above, benzoxazine resins, active ester resins, cyanate ester resins, butadiene resins, vinyl resins, cycloolefin polymers, aromatic polymers, and divinyl aromatic polymers.
  • PPE polyphenylene ether resins
  • bismaleimide resins epoxy resins
  • fluororesins polyimides
  • polyolefins polyesters
  • polystyrenes polystyrenes
  • hydrocarbon elastomers other than those mentioned above
  • benzoxazine resins active ester resins
  • cyanate ester resins butadiene resins
  • vinyl resins cycloolefin polymers
  • curable compounds include, for example, modified polyphenylene ether (modified PPE) oligomers represented by the following formula (PPE-o) and having polymerizable functional groups at both ends.
  • modified PPE modified polyphenylene ether
  • X at both ends of formula (PPE-o) is independently a group represented by the following formula (x1) or (x2). In these formulas, "*" indicates a bond to the oxygen atom.
  • m is preferably 1 to 20, more preferably 3 to 15, and n is preferably 1 to 20, more preferably 3 to 15.
  • the curable compositions of the present disclosure may include one or more inorganic fillers (F) (fillers).
  • the inorganic filler (F) include silica such as spherical silica, metal oxides such as alumina, titanium oxide, and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, barium sulfate, calcium carbonate, etc.
  • silica, mica, talc, etc. are preferred, and spherical silica is more preferred.
  • the inorganic filler (F) may be an inorganic filler that has been surface-treated with a surface treatment agent having a polymerizable functional group.
  • the polymerizable functional group include a group having a polymerizable carbon-carbon unsaturated bond, an epoxy group, an isocyanate group, a hydroxy group, a mercapto group, an amino group, a ureido group, a carboxy group, a sulfonic acid group, an acid chloride group, and a chlorine atom.
  • Examples of the group having a polymerizable carbon-carbon unsaturated bond include a vinyl group, an allyl group, a dienyl group, a (meth)acryloyloxy group, and a (meth)acrylamino group.
  • the surface treatment agent examples include a silane coupling agent having a polymerizable functional group.
  • the inorganic filler (F) can be surface-treated with an epoxy silane type, vinyl silane type, methacryl silane type, or amino silane type silane coupling agent.
  • the timing of the surface treatment with the silane coupling agent is not particularly limited.
  • the inorganic filler (F) surface-treated with the silane coupling agent may be prepared in advance, or the silane coupling agent may be added by the integral blend method when preparing the curable composition.
  • the average particle size of the inorganic filler (F) is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m.
  • the "average particle size” refers to the median diameter ( D50 ) determined by measuring the particle size distribution using a laser analysis type particle size distribution analyzer.
  • the inorganic filler (F) can contribute to improving the dielectric properties, heat resistance, flame retardancy, toughness, and thermal expansion coefficient of the cured product.
  • the thermoplastic elastomer (E), the crosslinking agent (C), and the polymerizable functional groups of the inorganic filler (F) can react when the curable composition is cured, and the crosslink density of the cured product can increase. This can contribute to improving the heat resistance of the cured product.
  • thermosetting composition described in Patent Document 1 listed in the section [Background Art] contains a large amount of an inorganic filler as one of its essential components, and preferably contains 30 parts by mass or more of the inorganic filler per 100 parts by mass of the ethylene-propylene-diene copolymer.
  • a large amount of inorganic filler is difficult to disperse well in the composition and is prone to agglomeration in the composition, making it difficult to prepare a uniform composition and difficult to apply the composition thinly and uniformly to the surfaces of various substrates.
  • thermosetting composition containing a large amount of an inorganic filler tends to have reduced adhesion to various substrates (substrate adhesion) and a high (i.e., deteriorated) dielectric tangent (D f ) under high frequency conditions.
  • the inorganic filler (F) can be well dispersed in the curable composition, and a uniform curable composition can be easily prepared.
  • a curable composition containing an appropriate amount of organic solvent (S) has a low solid content and a viscosity suitable for coating, and can be applied thinly and uniformly to the surface of various substrates. That is, a curable composition containing an appropriate amount of organic solvent (S) has good thin-wall coating properties.
  • the (semi-)cured product of the curable composition has a sufficiently low dielectric tangent ( Df ) under high frequency conditions and good adhesion to various substrates (substrate adhesion).
  • the content of the inorganic filler (F) in the curable composition of the present disclosure (the total amount when multiple types are used) is 0 to 25 parts by mass, preferably 0 to 20 parts by mass, more preferably 0 to 15 parts by mass, particularly preferably 0 to 10 parts by mass, and most preferably 0 to 5 parts by mass, and may be 0 part by mass, relative to 100 parts by mass in total of the thermoplastic elastomer (E) and the crosslinking agent (C).
  • the heat resistance of the cured product can be improved even if a small amount of inorganic filler (F) is used or no inorganic filler (F) is used.
  • the crosslinking reaction proceeds well and a crosslinked structure is sufficiently formed in the cured product by using a thermoplastic elastomer (E) having high crosslinking reactivity and an appropriate amount of a crosslinking agent (C) and a radical polymerization initiator (I), so that it is considered that the heat resistance of the cured product can be improved even without using an inorganic filler (F).
  • E thermoplastic elastomer
  • C crosslinking agent
  • I radical polymerization initiator
  • the curable composition of the present disclosure comprises one or more radical polymerization initiators (I).
  • the radical polymerization initiators (I) can accelerate the curing reaction of the curable composition.
  • an organic peroxide, an azo compound, or other known polymerization initiators can be used as the radical polymerization initiator (I).
  • dicumyl peroxide benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, di-t-butyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis(t-butylperoxy)butane, 2,2-bis(t-butylperoxy)octane, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, di(trimethylsilyl)peroxide, trimethyls
  • the content of the radical polymerization initiator (I) (in the case of a plurality of types) in the curable composition of the present disclosure is not particularly limited, and is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 2 parts by mass, and particularly preferably 0.1 to 1 part by mass, relative to 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C).
  • the curable compositions of the present disclosure may optionally contain one or more additives, such as flame retardants, antioxidants, compatibilizers, defoamers, heat stabilizers, antistatic agents, UV absorbers, dyes, pigments, lubricants, and dispersants.
  • additives such as flame retardants, antioxidants, compatibilizers, defoamers, heat stabilizers, antistatic agents, UV absorbers, dyes, pigments, lubricants, and dispersants.
  • the curable composition of the present disclosure may contain one or more organic solvents (S) as necessary.
  • the organic solvent (S) is not particularly limited, and examples thereof include ketones such as methyl ethyl ketone; ethers such as dibutyl ether; esters such as ethyl acetate; amides such as dimethylformamide; aromatic hydrocarbons such as benzene, toluene, and xylene; and chlorinated hydrocarbons such as trichloroethylene.
  • toluene alone or a mixed solvent containing 75% by mass or more of toluene is preferable because it has high solubility for the thermoplastic elastomer (E) and can be dried at a low temperature.
  • the timing of blending the organic solvent (S) is not particularly limited.
  • the organic solvent (S) may be blended during the preparation of the curable composition containing the thermoplastic elastomer (E), the crosslinking agent (C), the radical polymerization initiator (I), and, if necessary, the inorganic filler (F), or after the preparation of the curable composition containing the thermoplastic elastomer (E), the crosslinking agent (C), the radical polymerization initiator (I), and, if necessary, the inorganic filler (F), the organic solvent (S) may be blended before coating the curable composition on a substrate.
  • the curable composition of the present disclosure includes a curable composition that does not contain an organic solvent (S), a curable composition before the organic solvent (S) is blended, and a curable composition that contains an organic solvent (S).
  • the curable composition containing an appropriate amount of organic solvent (S) has a low solid content and a viscosity suitable for coating, and can be applied thinly and uniformly to the surface of various substrates. That is, the curable composition containing an appropriate amount of organic solvent (S) has good thin coatability.
  • the viscosity of the curable composition during coating is preferably 20 to 1000 mPa ⁇ s, more preferably 50 to 300 mPa ⁇ s, particularly preferably 50 to 200 mPa ⁇ s, and most preferably 50 to 150 mPa ⁇ s.
  • the solid content concentration of the curable composition at the time of coating is preferably 0.5 to 20 mass %, more preferably 2 to 10 mass %.
  • the method for drying the curable composition containing the organic solvent (S) is not particularly limited.
  • Examples of the drying method include heat drying, reduced pressure drying, and reduced pressure heat drying, and heat drying is preferred.
  • the drying temperature of the heat drying is not particularly limited, and is preferably 40 to 100° C. from the viewpoint of not volatilizing the crosslinking agent (C) and selectively and efficiently volatilizing only the organic solvent (S) to obtain a dried product of the curable composition not containing the organic solvent (S).
  • the curable composition of the present disclosure may be either thermosetting or active energy ray curable. For applications such as metal-clad laminates and wiring boards, thermosetting is preferred.
  • the curable composition of the present disclosure may be (semi-)cured, for example, at 100 to 300°C.
  • the curable composition of the present disclosure may be semi-cured, for example, at 100 to 180°C.
  • the curable composition of the present disclosure may be fully cured, for example, at 150 to 300°C.
  • the curable composition of the present disclosure may be semi-cured at 100 to 180°C, and then fully cured (fully cured) at 150 to 300°C.
  • thermoplastic elastomer (E) that does not contain polar atoms or has a small amount of polar atoms is used, and a crosslinking agent (C) that does not contain polar atoms or a crosslinking agent (C) that contains an appropriate amount of polar atoms is used.
  • a small amount of inorganic filler (F) can be used or no inorganic filler (F) can be used.
  • the cured product of the curable composition of the present disclosure is a resin with an effectively reduced dielectric loss tangent (D f ) under high frequency conditions.
  • the cured product of the curable composition of the present disclosure has a dielectric loss tangent ( Df ) at a frequency of 10 GHz of 0.0030 or less, preferably 0.0020 or less, more preferably 0.0010 or less, particularly preferably 0.0008 or less, and most preferably 0.0007 or less.
  • the lower limit of the dielectric loss tangent ( Df ) at a frequency of 10 GHz is not particularly limited, and is, for example, 0.0001.
  • the cured product of the curable composition of the present disclosure may have a dielectric loss tangent ( Df ) at a frequency of 28 GHz of 0.0030 or less, 0.0020 or less, 0.0010 or less, 0.0008 or less, or 0.0007 or less.
  • the lower limit of the dielectric loss tangent ( Df ) at a frequency of 28 GHz is not particularly limited and is, for example, 0.0001.
  • the "dielectric loss tangent ( Df )" is a value measured using a cavity resonator at a temperature of 23° C.
  • the dielectric loss tangent ( Df ) can be determined by the method described in the section [Examples] below.
  • the crosslinking reaction proceeds well by using the thermoplastic elastomer (E) having high crosslinking reactivity and the appropriate amount of the crosslinking agent (C) and the radical polymerization initiator (I), and a crosslinking structure is sufficiently formed in the cured product of the curable composition. Therefore, even if a small amount of the inorganic filler (F) is used or even if no inorganic filler (F) is used, the cured product of the curable composition of the present disclosure can have good heat resistance. Components are mounted on the surface of the wiring board using solder. In order to ensure the reliability of the wiring board when mounting the components, it is preferable that the resin contained in the wiring board has good heat resistance.
  • the cured product of the curable composition of the present disclosure can have good heat resistance against a solder bath of 260°C or more or 280°C or more.
  • a crosslinked structure is sufficiently formed between the substrates and the resin layer, so that the resin layer made of the cured product of the curable composition of the present disclosure can have good substrate adhesion to various substrates.
  • the resin layer made of the cured product of the curable composition of the present disclosure has good substrate adhesion to both substrates and can function as an adhesive layer that bonds the two substrates.
  • the curable composition of the present disclosure is suitable for use as a resin layer contained in a metal-clad laminate in which a resin layer and a metal foil are sequentially laminated on at least one surface of a core substrate, or as a resin layer contained in a wiring board in which a resin layer and wiring are sequentially laminated on at least one surface of a core substrate.
  • the resin sheet of the present disclosure is made of a dried product, semi-cured product, or cured product of the curable composition of the present disclosure.
  • 1 shows a schematic cross-sectional view of a resin sheet according to an embodiment of the present disclosure.
  • reference numeral 1 denotes a resin sheet.
  • the thickness of the resin sheet is designed depending on the application, and for applications such as metal-clad laminates and wiring boards, it can be, for example, 0.1 to 50 ⁇ m.
  • the method for producing the resin sheet of the present disclosure is not particularly limited.
  • Examples of the production method include a method in which the curable composition of the present disclosure containing an organic solvent (S) is applied onto a release sheet such as a polytetrafluoroethylene (PTFE) sheet to form a coating film, and the coating film is dried, semi-cured or cured, and the release sheet is peeled off.
  • S organic solvent
  • PTFE polytetrafluoroethylene
  • a resin sheet made of a cured product of the curable composition of the present disclosure has an effectively reduced dielectric tangent (D f ) under high frequency conditions, good heat resistance, and good adhesion to substrates, and can be used for various applications.
  • a resin sheet made of a dried or semi-cured product of the curable composition of the present disclosure can be overlaid on various substrates, and the resin sheet is cured by heating and pressurizing to produce a laminate including the substrate and a resin layer made of the cured product of the curable composition of the present disclosure.
  • the resin layer made of the cured product of the curable composition of the present disclosure has effectively reduced dielectric tangent ( Df ) under high frequency conditions, has good heat resistance, and has good adhesion to substrates.
  • the laminate of the present disclosure includes a substrate and a resin layer made of a dried product, semi-cured product, or cured product of the curable composition of the present disclosure.
  • the thickness of the resin layer is designed depending on the application, and for applications such as metal-clad laminates and wiring boards, it can be, for example, 0.1 to 50 ⁇ m.
  • the substrate is not particularly limited, and examples thereof include a fiber substrate, a resin substrate, a metal substrate, and a composite substrate thereof.
  • FIG. 2 shows a schematic cross-sectional view of a laminate according to one embodiment of the present disclosure.
  • the laminate 2 of this embodiment is a laminate with a two-layer structure in which a resin layer 22 is laminated on one surface of a substrate 21. It may also be a three-layer structure in which a resin layer 22 is formed on both sides of a substrate 21, a three-layer structure in which a resin layer 22 is sandwiched between two substrates 21, or a four-layer or more laminate structure including one or more substrates 21 and one or more resin layers 22.
  • the constituent fibers of the fiber substrate are not particularly limited, and include inorganic fibers such as glass fibers, silica fibers, and carbon fibers; organic fibers such as aramid fibers and polyester fibers; and combinations thereof.
  • glass fibers are preferred.
  • Examples of the form of the glass fiber substrate include glass cloth, glass paper, and glass mat.
  • the constituent resin of the resin substrate is not particularly limited, and examples thereof include polyimide, polyethylene terephthalate (PET), polyethylene naphthalate, cycloolefin polymer, polyether sulfide, and combinations thereof.
  • the form of the resin substrate may be a resin sheet or the like.
  • the constituent metal of the metal substrate copper, silver, gold, aluminum, and combinations thereof are preferred because they have low electrical resistance.
  • the form of the metal substrate may be metal foil, etc. For applications such as metal-clad laminates and wiring boards, copper foil, etc. is preferred.
  • the substrate may be a prepreg including a fiber substrate and a (semi-)cured product of a curable composition including one or more known curable polymers.
  • the curable polymer include modified polyphenylene ether (modified PPE) oligomers represented by the above formula (PPE-o) and having polymerizable functional groups at both ends, divinyl aromatic polymers, and aliphatic hydrocarbon compounds having crosslinkable functional groups.
  • the curable composition may contain one or more known additives such as a flame retardant, an inorganic filler, and an antioxidant, as required.
  • the prepreg can be produced by impregnating a fiber substrate with a curable composition containing one or more known curable polymers and (semi-)curing the composition by heat curing, etc.
  • the prepreg can be a known or commercially available product.
  • the method for producing the laminate of the present disclosure is not particularly limited. Examples include a method of applying the curable composition of the present disclosure containing an organic solvent (S) onto at least one surface of a substrate, drying or semi-curing as necessary, and then curing; a method of overlaying the resin sheet of the present disclosure, which is made of the dried or semi-cured product of the curable composition of the present disclosure, onto at least one surface of a substrate, and heating and pressurizing the resin sheet to cure it.
  • S organic solvent
  • a resin layer made of a cured product of the curable composition of the present disclosure has effectively reduced dielectric tangent ( Df ) under high frequency conditions, good heat resistance, and good adhesion to substrates.
  • a laminate of the present disclosure including this resin layer has effectively reduced dielectric tangent ( Df ) under high frequency conditions, good heat resistance, and good interlayer adhesion, and can be used for various applications.
  • the metal-clad laminate of the present disclosure has a core substrate and a metal foil laminated on at least one surface of the core substrate, and has a resin layer between the core substrate and the metal foil, the resin layer being made of a cured product of the curable composition of the present disclosure.
  • the metal foil copper foil, silver foil, gold foil, aluminum foil, and combinations thereof are preferred due to their low electrical resistance, and copper foil is more preferred.
  • the metal foil may have a metal plating layer on the surface.
  • the metal foil may be a carrier-attached metal foil including an ultra-thin metal foil and a carrier metal foil supporting the ultra-thin metal foil.
  • the metal foil may have a surface treatment such as an anti-rust treatment, a silane treatment, a roughening treatment, and a barrier formation treatment on at least one surface.
  • the thickness of the metal foil is not particularly limited, and since it is suitable for forming a conductor pattern (also called a circuit pattern) such as wiring, it is preferably 0.1 to 100 ⁇ m, more preferably 0.2 to 50 ⁇ m, and particularly preferably 1.0 to 40 ⁇ m.
  • the metal-clad laminate may be a single-sided metal-clad laminate having metal foil on one side, or a double-sided metal-clad laminate having metal foil on both sides, with a double-sided metal-clad laminate being preferred.
  • the single-sided metal-clad laminate can be produced by stacking one or more of the above prepregs and a metal foil, and then heating and pressing the resulting first temporary laminate.
  • the double-sided metal-clad laminate can be produced by sandwiching one or more of the above prepregs between a pair of metal foils and applying heat and pressure to the resulting first temporary laminate.
  • a metal-clad laminate using copper foil as the metal foil is called a copper clad laminate (CCL).
  • the core substrate is preferably made of a prepreg that has been heated and pressed.
  • the prepreg contains a fiber substrate and a resin, and may contain one or more additives such as an inorganic filler and a flame retardant, if necessary.
  • the dielectric loss tangent ( Df ) of the core substrate at a frequency of 10 GHz is not particularly limited, but is preferably 0.0030 or less, more preferably 0.0020 or less.
  • the lower limit of the dielectric loss tangent ( Df ) at a frequency of 10 GHz is not particularly limited, but is, for example, 0.0001.
  • the dielectric loss tangent ( Df ) of the core substrate at a frequency of 28 GHz is not particularly limited, but is preferably 0.0030 or less, more preferably 0.0020 or less.
  • the lower limit of the dielectric loss tangent ( Df ) at a frequency of 28 GHz is not particularly limited, but is, for example, 0.0001.
  • the conditions for heating and pressing the first temporary laminate are not particularly limited, and are preferably, for example, a temperature of 170 to 250° C., a pressure of 0.3 to 30 MPa, and a time of 3 to 240 minutes.
  • the metal-clad laminate 3A shown in FIG. 3A is a single-sided metal-clad laminate (laminate) in which a resin layer 32 made of a cured product of the curable composition of the present disclosure and a metal foil (metal layer) 33 are sequentially laminated on one side of a core substrate 31 made of a heated and pressurized prepreg.
  • 3B is a double-sided metal-clad laminate in which a resin layer 32 made of a cured product of the curable composition of the present disclosure and a metal foil (metal layer) 33 are sequentially laminated on both sides of a core substrate 31 made of a heated and pressurized prepreg.
  • the resin layer 32 made of the cured product of the curable composition of the present disclosure can function as an adhesive layer that enhances the adhesion between the core substrate 31 and the metal foil (metal layer) 33 .
  • the metal-clad laminates 3A and 3B may have layers other than those described above.
  • the thickness of the core substrate can be designed appropriately depending on the application. From the viewpoint of preventing breakage of the wiring board, it is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and particularly preferably 100 ⁇ m or more. From the viewpoint of flexibility, miniaturization, and weight reduction of the wiring board, it is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • a resin layer formed from a cured product of the curable composition of the present disclosure has effectively reduced dielectric tangent (D f ) under high frequency conditions, good heat resistance, and good adhesion to substrates.
  • the metal-clad laminate of the present disclosure containing the resin layer effectively reduces the dielectric loss tangent (D f ) under high frequency conditions, and is suitable for use as a wiring board.
  • the metal-clad laminate of the present disclosure including the resin layer has good heat resistance, and can have good heat resistance to a solder bath of 260° C. or higher or 280° C. or higher.
  • the metal-clad laminate of the present disclosure including the resin layer has good interlayer adhesion, good metal foil adhesion, and good metal foil peel strength.
  • the metal foil may be a metal foil having a roughened surface (roughened metal foil) or a metal foil having a non-roughened surface (non-roughened metal foil).
  • a roughened metal foil is used, the adhesion of the metal foil can be improved, but a loss of high frequency current is likely to occur.
  • the resin layer made of the cured product of the curable composition of the present disclosure has good adhesion to the substrate. Therefore, even if a low-roughness roughened metal foil or a non-roughened metal foil having a small surface roughness is used as the metal foil, the resin layer made of the cured product of the curable composition of the present disclosure is interposed between the core substrate and the metal foil, thereby improving the adhesion of the metal foil and increasing the metal foil peel strength.
  • the ten-point average roughness (R zjis ) of the surface of the resin layer side of the low-roughness-roughened metal foil and the non-roughened metal foil may be 1.5 ⁇ m or less or 1.0 ⁇ m or less.
  • the lower limit is not particularly limited, and is, for example, 0.1 ⁇ m.
  • the "ten-point average roughness (R zjis ) of the surface" can be measured in accordance with JIS B 0601.
  • the wiring board of the present disclosure includes an insulating layer containing a cured product of the curable composition of the present disclosure, and wiring.
  • the wiring board can be manufactured by forming a conductor pattern (circuit pattern) such as wiring using the metal foil on the outermost surface of the metal-clad laminate of the present disclosure.
  • Methods for forming the conductor pattern such as wiring include a subtractive method in which the metal foil is etched to form wiring, and a modified semi-additive process (MSAP) method in which wiring is formed on the metal foil by plating.
  • FIG. 4 A schematic cross-sectional view of a wiring board according to an embodiment of the present disclosure is shown in Fig. 4.
  • the wiring board 4 is formed by forming a conductor pattern (circuit pattern) 34 such as wiring 34W using a metal foil (metal layer) 33 on at least one outermost surface of the metal-clad laminate 3B of the second embodiment shown in Fig. 3B.
  • the wiring board 4 has a conductor pattern (circuit pattern) 34 such as wiring 34W formed on at least one surface of a core substrate 31 made of heated and pressurized prepreg.
  • a multilayer wiring board may be manufactured by further stacking one or more prepregs on the obtained wiring board, sandwiching the resultant prepreg between a pair of metal foils, heating and pressing the obtained second provisional laminate, and forming a conductor pattern such as wiring using the metal foil on the outermost surface.
  • the metal foil on the outermost surface may be disposed on only one side of the second provisional laminate.
  • the wiring board of the present disclosure is suitable for use in a high frequency range (a range of frequencies of 1 GHz or more).
  • the present disclosure it is possible to provide a curable composition that reduces the content of inorganic filler, effectively reduces the dielectric tangent ( Df ) under high frequency conditions, and can provide a resin that has good heat resistance and good adhesion to substrates.
  • the curable composition of the present disclosure is suitable for applications such as metal-clad laminates and wiring boards, but can be used for any application.
  • the curable composition of the present disclosure is suitable for applications such as metal-clad laminates and wiring boards.
  • the metal-clad laminate of the present disclosure is suitable for wiring boards and the like used in various electric devices and various electronic devices.
  • the wiring board of the present disclosure is suitable for portable electronic devices such as mobile phones, smartphones, personal digital assistants, and notebook computers; antennas for mobile phone base stations and automobiles; electronic devices such as servers, routers, and backplanes; wireless infrastructure; radar for collision prevention, etc.; various sensors (e.g., automotive sensors such as engine management sensors), and the like.
  • the wiring board of the present disclosure is particularly suitable for applications in which communication is performed using high-frequency signals, and is suitable for various applications in which reduced transmission loss is required in the high-frequency range.
  • EC Comparative Thermoplastic Elastomer
  • EC-1 Hydrogenated poly(styrene)-poly(isoprene-co-butadiene)-poly(styrene) triblock copolymer (A-B-A type triblock copolymer), "Septon 4055" manufactured by Kuraray Co., Ltd., weight average molecular weight (Mw): about 350,000, ratio of total mass of polymer block (A) to mass of polymer block (B) ((A)/(B) mass ratio): 30/70.
  • Mw weight average molecular weight
  • ⁇ Inorganic filler (F)> F-1) Spherical silica surface-treated with a vinylsilane type silane coupling agent, "SC2300-SVJ” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m.
  • Pre-1 AGC prepreg "Meteorwave 8000" (a composite material including a glass fiber substrate and a cured product of a curable composition including a modified polyphenylene ether (modified PPE) oligomer represented by the above formula (PPE-o) and a silica filler), dielectric dissipation factor (D f ) at a frequency of 10 GHz: 0.0016.
  • modified PPE modified polyphenylene ether
  • D f dielectric dissipation factor
  • PTFE sheet (PTFE-1) Polytetrafluoroethylene (PTFE) sheet manufactured by Aram Co., Ltd., thickness 100 ⁇ m.
  • the weight average molecular weight (Mw) of the thermoplastic elastomer was determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the GPC device used was a Tosoh Corporation "HLC-8320GPC” equipped with a differential refractive index detector (RI detector). Tetrahydrofuran was used as the eluent.
  • the columns used were "TSKgel SuperHZ2000”, “TSKgel SuperHZ2500”, “TSKgel SuperHZ3000” and “TSKgel SuperHZ4000” (all manufactured by Tosoh Corporation) connected in series.
  • a sample solution was prepared by dissolving 20 mg of resin in 2 mL of tetrahydrofuran. 10 ⁇ l of the sample solution was injected to measure the chromatogram. GPC was performed using 10 standard polystyrene points with molecular weights in the range of 400 to 5,000,000, and a calibration curve showing the relationship between retention time and molecular weight was created. Based on this calibration curve, Mw was determined.
  • the heating conditions in each heating oven were as follows: First upstream furnace: 50°C for 2 minutes; Second upstream furnace: 80°C for 2 minutes; The third furnace from the upstream side: 100°C for 2 minutes, Fourth furnace from the upstream: 70°C for 2 minutes.
  • First upstream furnace 50°C for 2 minutes
  • Second upstream furnace 80°C for 2 minutes
  • the third furnace from the upstream side 100°C for 2 minutes
  • Fourth furnace from the upstream 70°C for 2 minutes.
  • the conveying speed of the copper foil, the thickness of the shim plate included in the die, and the distance between the die and the copper foil were adjusted so that the thickness of the resin layer was 2 ⁇ m.
  • the evaluation was based on the following criteria.
  • the curable composition (varnish) was stably and uniformly applied onto the copper foil, and a 2 ⁇ m-thick resin layer was stably and satisfactorily formed.
  • the curable composition (varnish) could not be uniformly applied onto the copper foil, and a 2 ⁇ m-thick resin layer could not be satisfactorily formed.
  • the dielectric loss tangent (D f ) of the resin sheet made of the cured product of the curable composition (varnish) was measured at a temperature of 23° C. and a frequency of 10 GHz by a cavity resonance method.
  • a curable composition (varnish) having a solid content concentration adjusted to 7.5% by mass using toluene was applied to an area of one surface of a PTFE sheet (PTFE-1) (length 150 mm, width 150 mm) excluding the peripheral portion (area within about 30 mm from each side) using an applicator with a coating gap of 400 ⁇ m, to form a coating film with a wet thickness of 400 ⁇ m.
  • the obtained PTFE sheet with the coating film was placed in an oven set at 100° C. and heated in an air atmosphere for 10 minutes to obtain a laminated sheet of the PTFE sheet and a resin layer (30 ⁇ m thick) made of the dried product of the curable composition. Two such laminated sheets were prepared.
  • the two laminated sheets thus obtained were stacked so that the resin layers faced each other to obtain a provisional laminate.
  • a spacer having a height of 50 ⁇ m for adjusting the thickness was disposed between the peripheral edge of one laminated sheet and the peripheral edge of the other laminated sheet.
  • the obtained provisional laminate was vacuum-pressed under a surface pressure of 2.0 MPa, and heated according to a heating profile in which the temperature was increased from room temperature to 215°C at a temperature increase rate of 3°C/min, held at 215°C for 120 minutes, and then decreased to room temperature at a temperature decrease rate of 7°C/min, thereby curing the dried product of the curable composition.
  • the PTFE sheets on both sides of the obtained laminate were peeled off to obtain a resin sheet (50 ⁇ m thick) made of a cured product of the curable composition.
  • a test piece measuring 70 mm square was cut out from the obtained resin sheet, and the test piece was heated for 2 hours in an oven set at 120° C. The test piece was taken out of the oven and left to stand for 16 hours in an environment of 25° C./relative humidity 50 ⁇ 5%, and then the dielectric loss tangent (D f ) of the test piece was measured in an environment of 23° C./relative humidity 50 ⁇ 5%.
  • a network analyzer (“ZNB40" manufactured by Rohde & Schwarz) and a cavity resonator for 10 GHz (“Cavity Resonator S Series" manufactured by AET Corporation) were used.
  • a curable composition having a solid content concentration adjusted to 6.0% by mass using toluene was applied onto one surface of a copper foil (Cu-1) (length 200 mm, width 200 mm) using an applicator with a coating gap of 100 ⁇ m to form a coating film with a wet thickness of 100 ⁇ m.
  • the obtained copper foil with the coating film was placed in an oven set to 100° C. and heated in an air atmosphere for 10 minutes to obtain a laminate sheet of the copper foil and a resin layer (6 ⁇ m thick) made of the dried product of the curable composition. Two such laminate sheets were prepared.
  • the two laminated sheets were laminated with two prepregs (Pre-1) (150 mm long, 150 mm wide) in between so that the resin layers faced each other to obtain a provisional laminate.
  • the provisional laminate was heated from room temperature to 215° C. at a heating rate of 3° C./min while vacuum pressing under a surface pressure of 2.0 MPa, held at 215° C. for 120 minutes, and cooled to room temperature at a heating rate of 7° C./min, thereby curing the dried product of the curable composition.
  • a double-sided copper-clad laminate double-sided CCL
  • Example 101 two copper foils (Cu-1) (200 mm long, 200 mm wide) were stacked with two prepregs (Pre-1) (150 mm long, 150 mm wide) in between to obtain a temporary laminate.
  • This temporary laminate was pressurized and heated in the same manner as in the other examples to obtain a double-sided copper-clad laminate (double-sided CCL) in which the core substrate and each copper foil were directly stacked.
  • a test piece measuring 100 mm square was cut out from the double-sided copper-clad laminate (double-sided CCL) obtained in each example, and the test piece was immersed for 600 seconds in a solder bath at 288° C. or 300° C.
  • the test piece taken out of the solder bath was visually observed and evaluated according to the following criteria.
  • Poor (x) Blistering, peeling or whitening was observed in the solder bath at both 288° C. and 300° C. temperature conditions.
  • a curable composition having a solid content concentration adjusted to 4.0 mass% using toluene was applied to one surface of a copper foil (Cu-1) (length 200 mm, width 200 mm) using an applicator with a coating gap of 50 ⁇ m to form a coating film having a thickness of 50 ⁇ m.
  • the obtained copper foil with the coating film was placed in an oven set at 100° C. and heated for 10 minutes in an air atmosphere to obtain a laminated sheet of the copper foil and a resin layer (2 ⁇ m thick) made of a dried product of the curable composition. Two of these laminated sheets were prepared.
  • the two laminated sheets were laminated with two prepregs (Pre-1) (150 mm long, 150 mm wide) interposed between them so that the resin layers faced each other to obtain a provisional laminate.
  • the provisional laminate was heated from room temperature to 215° C. at a heating rate of 3° C./min while vacuum pressing under a surface pressure of 2.0 MPa, held at 215° C. for 120 minutes, and cooled to room temperature at a heating rate of 7° C./min, thereby curing the dried product of the curable composition.
  • a double-sided copper-clad laminate double-sided CCL
  • Example 101 two copper foils (Cu-1) (200 mm long, 200 mm wide) were stacked with two prepregs (Pre-1) (150 mm long, 150 mm wide) in between to obtain a temporary laminate.
  • This temporary laminate was pressurized and heated in the same manner as in the other examples to obtain a double-sided copper-clad laminate (double-sided CCL) in which the core substrate and each copper foil were directly stacked.
  • Examples 1 to 9, 102 to 108 In each of Examples 1 to 9 and 102 to 108, a plurality of materials having the composition shown in Table 1 or Table 2 were mixed with toluene as an organic solvent (S) to prepare a curable composition (varnish) having a solid content concentration of 4.0 to 7.5 mass%, which was then subjected to various evaluations. The solid content concentration was adjusted by the amount of toluene, and the solid content concentration was adjusted according to the evaluation items. The evaluation results are shown in Tables 1 and 2. Conditions not shown in the tables were common conditions. The unit of the blending amount in the table is "parts by mass” unless otherwise specified. The unit of the blending amount of the radical polymerization initiator (I) is "parts by mass” added to 100 parts by mass of the total of the thermoplastic elastomer (E) or (EC) and the crosslinking agent (C).
  • Example 101 the curable composition was not prepared, and two copper foils (Cu-1) were laminated with two prepregs (Pre-1) therebetween, and the laminate was pressurized and heated to obtain a double-sided copper-clad laminate, which was then evaluated.
  • the evaluation results are shown in Table 2.
  • thermoplastic elastomers (E) selected from the group consisting of block copolymers comprising one or more polymer blocks (A) consisting of structural units derived from one or more aromatic vinyl compounds including one or more alkylstyrene compounds having an alkyl group having 1 to 8 carbon atoms, and one or more polymer blocks (B) consisting of structural units derived from one or more conjugated diene compounds, and hydrogenated products of the block copolymers; 3 to 30 parts by mass of a crosslinking agent (C) per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C); 0 to 25 parts by mass of an inorganic filler (F) relative to 100 parts by mass in total of the thermoplastic elastomer (E) and the crosslinking agent (C); A radical polymerization initiator (I); A curable composition (varnish) containing the organic solvent (S) was prepared.
  • a cured product was obtained in which the dielectric loss tangent (D f ) under high frequency conditions was effectively reduced.
  • the dielectric loss tangent (D f ) at a frequency of 10 GHz of the cured products in Examples 1 to 9 was 0.0030 or less, 0.0020 or less, 0.0015 or less, and 0.0013 or less.
  • the dielectric loss tangent (D f ) at a frequency of 10 GHz of the cured products was 0.0010 or less in Examples 1 to 7 and 9, 0.0009 or less in Examples 1 to 7, and 0.0080 or less in Examples 1 to 6. In Examples 1 to 5, the value was 0.0070 or less.
  • a double-sided copper-clad laminate was obtained having a cured film made of the cured product of the curable composition between the core substrate and each copper foil. All of the obtained double-sided copper-clad laminates had good solder heat resistance and copper foil peel strength (substrate adhesion). It is believed that by using a thermoplastic elastomer (E) with high cross-linking reactivity and an appropriate amount of a cross-linking agent (C) and a radical polymerization initiator (I), the cross-linking reaction proceeded well, and a cross-linked structure was sufficiently formed within the resin layer made of the cured product, between the core substrate and the resin layer, and between the resin layer and the copper foil.
  • E thermoplastic elastomer
  • C cross-linking agent
  • I radical polymerization initiator
  • Example 101 no curable composition was prepared, and a double-sided copper-clad laminate was obtained in which copper foil was laminated in a direct stack on both sides of a core substrate.
  • the resulting double-sided copper-clad laminate had poor copper foil peel strength (substrate adhesion).
  • Example 102 in which a comparative thermoplastic elastomer (EC) was used that did not have a structural unit derived from one or more alkylstyrene compounds having an alkyl group having 1 to 8 carbon atoms, the resulting double-sided copper-clad laminate had poor solder heat resistance and copper foil peel strength (substrate adhesion).
  • the comparative thermoplastic elastomer (EC) has a low crosslinking reactivity, and therefore it is considered that a crosslinked structure was not sufficiently formed within the resin layer consisting of the cured product, between the core substrate and the resin layer, and between the resin layer and the copper foil.
  • Example 103 in which no crosslinking agent (C) was used, and in Example 104, in which the amount of crosslinking agent (C) was less than 3 parts by mass per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C), the obtained double-sided copper-clad laminate had poor solder heat resistance. It is believed that the crosslinking reaction did not proceed well, and a sufficient crosslinked structure was not formed in the resin layer made of the cured product, between the core substrate and the resin layer, and between the resin layer and the copper foil.
  • Example 105 in which no radical polymerization initiator (I) was used, the resulting double-sided copper-clad laminate had poor solder heat resistance and copper foil peel strength (substrate adhesion). It is believed that the crosslinking reaction did not proceed well, and a crosslinked structure was not sufficiently formed within the resin layer made of the cured product, between the core substrate and the resin layer, and between the resin layer and the copper foil.
  • Example 106 in which the amount of crosslinking agent (C) was more than 30 parts by mass per 100 parts by mass of the total of thermoplastic elastomer (E) and crosslinking agent (C), the viscosity of the curable composition (varnish) with a solids concentration of 5.0% by mass was low and thin-wall coating properties were poor.
  • the obtained double-sided copper-clad laminate had poor copper foil peel strength (substrate adhesion). It is believed that the crosslink density of the cured product became too high, impairing the flexibility of the resin layer and making the resin layer more susceptible to destruction during evaluation of peel strength.
  • Example 107 in which more than 10 parts by mass of the crosslinking agent (C) containing a polar atom was used per 100 parts by mass of the total of the thermoplastic elastomer (E) and the crosslinking agent (C), the dielectric tangent (D f ) of the cured product at a frequency of 10 GHz was greater than 0.0030, which was poor.
  • Example 108 in which more than 25 parts by mass of inorganic filler (F) was used per 100 parts by mass of the total of thermoplastic elastomer (E) and crosslinking agent (C), the thin coating properties of the curable composition (varnish) with a solids concentration of 5.0% by mass were poor, and the copper foil peel strength (substrate adhesion) of the obtained double-sided copper-clad laminate was poor. It is believed that aggregates of inorganic filler (F) were formed in the curable composition. It is also believed that the large amount of inorganic filler (F) made the resin layer made of the cured product brittle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示は、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好な樹脂を得ることが可能な硬化性組成物を提供する。炭素原子数が1~8個のアルキル基を有するアルキルスチレン化合物を含む1種以上の芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、1種以上の共役ジエン化合物に由来する構造単位からなる重合体ブロック(B)とを含むブロック共重合体、および、その水素添加物からなる群より選ばれる1種以上の熱可塑性エラストマー(E)と、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3~30質量部の架橋剤(C)および0~25質量部の無機充填材(F)と、ラジカル重合開始剤(I)とを含み、温度23℃および周波数10GHzにおける硬化物の誘電正接(D)が0.0030以下である、硬化性組成物。

Description

硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板
 本開示は、硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板に関する。
 電気機器および電子機器等の用途に、配線基板(プリント配線板とも言う。)が使用される。配線基板は例えば、以下のようにして、製造できる。硬化性重合体、および必要に応じて、難燃剤および無機充填材(フィラーとも言う。)等の添加剤を含む硬化性組成物を繊維基材に含浸させ、硬化性組成物を(半)硬化させて、プリプレグを作製する。1つ以上のプリプレグを一対の金属箔で挟み、得られた第1の仮積層体を加熱加圧して、金属張積層板を作製する。この金属張積層板の最表面にある金属箔を用いて、配線等の導体パターン(回路パターンとも言う。)を形成する。最表面の金属箔は、第1の仮積層体の片面側にのみ配置してもよい。
 得られた配線基板に対してさらに、1つ以上のプリプレグを重ね、これを一対の金属箔で挟み、得られた第2の仮積層体を加熱加圧し、最表面にある金属箔を用いて配線等の導体パターンを形成することで、多層配線基板(多層プリント配線板とも言う。)を製造できる。最表面の金属箔は、第2の仮積層体の片面側にのみ配置してもよい。
 プリプレグの加熱加圧物は、繊維基材、樹脂および無機充填材等を含み、コア基材とも呼ばれる。配線基板において、コア基材は、絶縁層として機能する。
 プリプレグに含まれる樹脂は硬化性組成物の(半)硬化物であり、配線基板に含まれる樹脂は硬化性組成物の硬化物である。
国際公開第2019/026927号
 近年、携帯用電子機器等の用途では、通信の高速化と大容量化が進み、信号の高周波化が進んでいる。この用途に用いられる配線基板には、高周波領域での伝送損失の低減が求められる。伝送損失には、主に金属箔の表面抵抗に起因する導体損失と、樹脂の誘電正接(D)に起因する誘電損失とがある。このため、上記用途に用いられる配線基板に含まれる樹脂には、高周波領域での誘電損失の低減が求められる。一般的に、誘電正接(D)は周波数に依存し、同じ材料であれば、周波数が高くなる程、誘電正接(D)が大きくなる傾向がある。配線基板に含まれる樹脂は、高周波条件における誘電正接(D)が低いことが好ましい。
 配線基板においては、コア基材と金属箔との密着性が重要である。従来、コア基材と金属箔との密着性向上のために、金属箔のコア基材側の表面を粗面化する技術がある。しかしながら、この技術では、高周波電流の損失が生じやすく、好ましくない。
 配線基板の表面には、半田を用いて部品が実装される。部品の実装時において、配線基板の信頼性を確保するために、配線基板に含まれる樹脂は、良好な耐熱性を有することが好ましい。
 金属箔の表面を粗面化せずに、コア基材と金属箔との密着性を高めるために、コア基材と金属箔との間に、接着層として機能できる樹脂層を設けることができる。この樹脂層は、硬化性重合体を含む硬化性組成物の硬化物であることができる。
 特許文献1は、金属張積層板および配線基板の用途に用いて好適で、硬化物が低い誘電率、低い誘電正接、高い耐熱性、および樹脂に対する高い密着性を有する熱硬化性組成物の提供を目的としている。
 この文献には、エチレン-プロピレン-ジエン共重合体(A)と、重合性不飽和結合を有する表面処理剤で表面処理された無機充填材(B)とを含有する熱硬化性組成物が開示されている(請求項1)。
 無機充填材(B)の量は、好ましくは、エチレン-プロピレン-ジエン共重合体(A)100質量部に対して、30~500質量部である(請求項2)。
 エチレン-プロピレン-ジエン共重合体(A)は、硬化性重合体であり、ジエンに由来する構造単位であるジエンユニットが硬化に寄与する(段落0019)。
 無機充填材(B)は、硬化物の耐熱性向上に寄与できる。熱硬化性組成物の硬化時には、無機充填材(B)の重合性不飽和結合とエチレン-プロピレン-ジエン共重合体(A)のジエンユニットとが反応し、これにより硬化物の架橋密度を増大でき、硬化物の耐熱性を向上できる(段落0031)。
 上記熱硬化性組成物は、好ましくは、重合性不飽和基を有する有機化合物(C)をさらに含有する(請求項3)。有機化合物(C)は、単官能化合物または多官能化合物であることができる。単官能化合物は、熱硬化性組成物の溶融粘度を低減して成形性を向上できる。多官能化合物は、硬化物の架橋密度を増大できる。多官能化合物は、硬化物の靭性向上、ガラス転移点向上とそれによる耐熱性向上、線膨張係数の低減、並びに密着性向上に、寄与できる(段落0025)。
 なお、特許文献1に記載の各成分の符号は、この文献に記載の符号であり、本開示の各成分に使用する符号とは何ら関係がない。
 上記のように、特許文献1に記載の熱硬化性組成物は、必須成分の1つとして無機充填材(B)を多く含み、好ましくは、エチレン-プロピレン-ジエン共重合体(A)100質量部に対して、30質量部以上の無機充填材(B)を含む。
 多量の無機充填材(B)は組成物中に良好に分散させることが難しく、組成物中で凝集しやすい。そのため、均一な組成物を調製することが難しく、各種基材の表面に対して、組成物を薄く均一に塗工させることが難しい。
 また、無機充填材(B)を多量に含む熱硬化性組成物の(半)硬化物は、各種基材に対する密着性(基材密着性とも言う。)が低下し、高周波条件における誘電正接(D)が高くなる(すなわち、悪化する)傾向がある。
 本開示は上記事情に鑑みてなされたものであり、無機充填材の含有量が低減され、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好な樹脂を得ることが可能な硬化性組成物の提供を目的とする。
 本開示は、以下の硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板を提供する。
[1] 炭素原子数が1~8個のアルキル基を有する1種以上のアルキルスチレン化合物を含む1種以上の芳香族ビニル化合物に由来する構造単位からなる1つ以上の重合体ブロック(A)と、1種以上の共役ジエン化合物に由来する構造単位からなる1つ以上の重合体ブロック(B)とを含むブロック共重合体、および、当該ブロック共重合体の水素添加物からなる群より選ばれる1種以上の熱可塑性エラストマー(E)と、
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3~30質量部の架橋剤(C)と、
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、0~25質量部の無機充填材(F)と、
 ラジカル重合開始剤(I)とを含み、
 温度23℃および周波数10GHzの条件で、空洞共振器を用いて測定される硬化物の誘電正接(D)が0.0030以下である、硬化性組成物。
[2] 温度23℃および周波数10GHzの条件で、空洞共振器を用いて測定される硬化物の誘電正接(D)が、0.0001~0.0015である、[1]の硬化性組成物。
[3] 架橋剤(C)が、極性原子を含まない極性原子非含有有機化合物である、[1]または[2]の硬化性組成物。
[4] 架橋剤(C)の構成原子が、炭素原子と水素原子とのみである、[3]の硬化性組成物。
[5] 架橋剤(C)が極性原子を含む極性原子含有有機化合物であり、架橋剤(C)の量が、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3~10質量部である、[1]~[4]のいずれかの硬化性組成物。
[6] 前記極性原子が、窒素原子、酸素原子および硫黄原子からなる群より選ばれる1種以上の原子である、[5]の硬化性組成物。
[7] 熱可塑性エラストマー(E)の重量平均分子量が50,000~1,000,000である、[1]~[6]のいずれかの硬化性組成物。
[8] 1種以上の前記芳香族ビニル化合物が、前記アルキルスチレン化合物としてp-メチルスチレン化合物を含む、[1]~[7]のいずれかの硬化性組成物。
[9] 1種以上の前記共役ジエン化合物が、ブタジエンおよびイソプレンからなる群より選ばれる1種以上の化合物を含む、[1]~[8]のいずれかの硬化性組成物。
[10] コア基材の少なくとも一方の表面上に樹脂層と金属箔とが順次積層された金属張積層板に含まれる前記樹脂層、または、コア基材の少なくとも一方の表面上に樹脂層と配線とが順次積層された配線基板に含まれる前記樹脂層用である、[1]~[9]のいずれかの硬化性組成物。
[11] [1]~[10]のいずれかの硬化性組成物の乾燥物、半硬化物または硬化物からなる、樹脂シート。
[12] 基材と、[1]~[10]のいずれかの硬化性組成物の乾燥物、半硬化物または硬化物からなる樹脂層とを含む、積層体。
[13] 前記樹脂層の厚みが0.1~50μmである、[12]の積層体。
[14] コア基材と、当該コア基材の少なくとも一方の表面上に積層された金属箔とを有する金属張積層板であって、
 前記コア基材と前記金属箔との間に、[1]~[10]のいずれかの硬化性組成物の硬化物からなる樹脂層を有する、金属張積層板。
[15] コア基材と、当該コア基材の少なくとも一方の表面上に形成された配線とを有する配線基板であって、
 前記コア基材と前記配線との間に、[1]~[10]のいずれかの硬化性組成物の硬化物からなる樹脂層を有する、配線基板。
 本開示によれば、無機充填材の含有量が低減され、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好な樹脂を得ることが可能な硬化性組成物を提供できる。
本発明に係る一実施形態の樹脂シートの模式断面図である。 本発明に係る一実施形態の積層体の模式断面図である。 本発明に係る第1の実施形態の金属張積層板の模式断面図である。 本発明に係る第2の実施形態の金属張積層板の模式断面図である。 本発明に係る一実施形態の配線基板の模式断面図である。
 一般的に、薄膜成形体に対しては、厚みに応じて、「フィルム」または「シート」の用語が使用されるが、これらの明確な定義はなく、これらの間に明確な区別はない。本明細書では、フィルムとシートとを明確に区別せず、両者を合わせて「シート」と称す。
 本明細書において、(半)硬化は、半硬化および完全硬化の総称である。
 本明細書において、特に分けて記載しない限り、「配線基板」は、多層配線基板を含むものとする。
 本明細書において、特に明記しない限り、プリプレグ等の面状体の「表面」とは、面積の大きい主面を指す。
 本明細書において、特に明記しない限り、「重合体」は、単独重合体および共重合体を包含する。
 本明細書において、特に明記しない限り、「炭素数が3以上のアルキル基」は、直鎖状でも分岐鎖状でもよい。
 本明細書において、特に明記しない限り、異性体が存在する化合物は、すべての異性体を包含する。
 本明細書において、特に明記しない限り、「重量平均分子量(Mw)」はゲル浸透クロマトグラフィ(GPC)法により求められる標準ポリスチレン換算の重量平均分子量であり、「数平均分子量(Mn)」はゲル浸透クロマトグラフィ(GPC)法により求められるポリスチレン換算の数平均分子量である。
 本明細書において、「高周波領域」は、周波数1GHz以上の領域と定義する。
 本明細書において、特に明記しない限り、数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含む意味で使用される。
 以下、本発明の実施の形態を説明する。
[硬化性組成物]
 本開示の硬化性組成物は、
 炭素原子数が1~8個のアルキル基を有する1種以上のアルキルスチレン化合物を含む1種以上の芳香族ビニル化合物に由来する構造単位からなる1つ以上の重合体ブロック(A)と、1種以上の共役ジエン化合物に由来する構造単位からなる1つ以上の重合体ブロック(B)とを含むブロック共重合体、および、このブロック共重合体の水素添加物からなる群より選ばれる1種以上の熱可塑性エラストマー(E)と、
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3~30質量部の架橋剤(C)と、
 ラジカル重合開始剤(I)とを含む。
 本開示の硬化性組成物は、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、0~25質量部の無機充填材(F)を含むことができる。
(熱可塑性エラストマー(E))
 本開示の硬化性組成物は、炭素原子数が1~8個のアルキル基を有する1種以上のアルキルスチレン化合物を含む1種以上の芳香族ビニル化合物に由来する構造単位からなる1つ以上の重合体ブロック(A)と、1種以上の共役ジエン化合物に由来する構造単位からなる1つ以上の重合体ブロック(B)とを含むブロック共重合体、および、このブロック共重合体の水素添加物からなる群より選ばれる1種以上の熱可塑性エラストマー(E)を含む。
 重合体ブロック(A)はハードセグメントブロックであり、重合体ブロック(B)はソフトセグメントブロックである。
 ブロック共重合体は、付加重合系ブロック共重合体であることができる。
 ブロック共重合体における重合体ブロックの数は、特に制限されない。ブロック共重合体は、ジブロック共重合体、トリブロック共重合体、テトラブロック共重合体、またはより高次のマルチブロック共重合体であることができる。トリブロック共重合体等が好ましい。
 ブロック配列は特に制限されず、A-B、A-B-A、B-A-B、A-B-A-B-A、およびB-A-B-A-B等が挙げられる。
 ブロック共重合体が複数の重合体ブロック(A)を含む場合、複数の重合体ブロック(A)の組成は同一でも非同一でもよい。ブロック共重合体が複数の重合体ブロック(B)を含む場合も、同様である。ブロック共重合体はさらに、上記以外の1種以上の他の重合体ブロックを含むことができる。
 熱可塑性エラストマー(E)としては、ブロック共重合体に対して水素添加し、ブロック共重合体の少なくとも一部の残留不飽和結合を除去して得られる水素添加物が好ましい。
 重合体ブロック(A)の原料単量体である1種以上の芳香族ビニル化合物は、1種以上のアルキルスチレン化合物を含む。芳香族ビニル化合物が構造異性体を有する場合、オルト体、メタ体、パラ体のいずれでもよい。
 上記アルキルスチレン化合物は、ベンゼン環と、これに結合した炭素原子数が1~8個のアルキル基とを有する(C1-C8アルキル)スチレン化合物である。ベンゼン環に結合した炭素原子数が1~8個のアルキル基の数は特に制限されず、単数でも複数でもよい。
 (C1-C8アルキル)スチレン化合物としては、o-、m-またはp-アルキルスチレン、2,4-ジアルキルスチレン、3,5-ジアルキルスチレン、および2,4,6-トリアルキルスチレン等が挙げられる。(C1-C8アルキル)スチレン化合物は、アルキル基に含まれる1つ以上の水素原子がハロゲン原子で置換されたハルゲン化アルキルスチレン等の置換アルキルスチレン化合物であってもよい。
 (C1-C8アルキル)スチレン化合物の具体例としては、o-、m-またはp-メチルスチレン、2,4-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6-トリメチルスチレン、o-、m-またはp-エチルスチレン、2,4-ジエチルスチレン、3,5-ジエチルスチレン、2,4,6-トリエチルスチレン、o-、m-またはp-プロピルスチレン、2,4-ジプロピルスチレン、3,5-ジプロピルスチレン、2,4,6-トリプロピルスチレン、2-メチル-4-エチルスチレン、3-メチル-5-エチルスチレン、o-、m-またはp-クロロメチルスチレン、2,4-ビス(クロロメチル)スチレン、3,5-ビス(クロロメチル)スチレン、2,4,6-トリ(クロロメチル)スチレン、o-、m-またはp-ジクロロメチルスチレン等が挙げられる。
 (C1-C8アルキル)スチレン化合物は、p-メチルスチレン等のp-アルキルスチレンを含むことが好ましい。
 重合体ブロック(A)中の(C1-C8アルキル)スチレン化合物に由来する構造単位の含有量(複数種の場合は、合計量)は特に制限されず、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上、特に好ましくは20質量%以上、最も好ましくは30質量%以上である。重合体ブロック(A)中の(C1-C8アルキル)スチレン化合物に由来する構造単位の含有量は、好ましくは90質量%以下、より好ましくは80質量%以下、特に好ましくは70質量%以下、最も好ましくは60質量%以下である。
 本明細書において、ブロック共重合体が複数の重合体ブロック(A)を含む場合、「重合体ブロック(A)の量」は、複数の重合体ブロック(A)の合計量である。重合体ブロック(B)についても、同様である。
 重合体ブロック(A)は、上記以外の1種以上の他の芳香族ビニル化合物に由来する構造単位を含んでいてもよい。上記以外の他の芳香族ビニル化合物としては、スチレン、α-メチルスチレン、β-メチルスチレン、t-ブチルスチレン、モノフルオロスチレン、ジフルオロスチレン、モノクロロスチレン、ジクロロスチレン、メトキシスチレン、ビニルナフタレン、ビニルアントラセン、インデン、アセトナフチレン、および炭素原子数が9個以上のアルキル基を有するアルキルスチレン化合物等が挙げられる。中でも、スチレン等が好ましい。
 重合体ブロック(A)は、1種以上の芳香族ビニル化合物に由来する構造単位に加えて、1種以上の他の共重合可能な単量体に由来する構造単位を含んでもよい。
 重合体ブロック(A)中の芳香族ビニル化合物に由来する構造単位の含有量は、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。
 重合体ブロック(A)中の他の共重合可能な単量体に由来する構造単位の割合は、好ましくは30質量%以下、より好ましくは20質量%以下、特に好ましくは10質量%以下であり、0質量%であってもよい。他の共重合性単量体としては、(メタ)アクリル酸エステル、1-ブテン、ペンテン、ヘキセン、ブタジエン、イソプレン、メチルビニルエーテル、およびイオン重合できる他の単量体が挙げられる。
 本明細書において、(メタ)アクリルは、アクリルおよびメタクリルの総称である。
 重合体ブロック(A)は、1つ以上の架橋性官能基を含んでいてもよい。重合体ブロック(A)が架橋性官能基を含む場合、本開示の硬化性組成物の硬化物の耐熱性および基材密着性が向上できる。
 架橋性官能基としては、-OH、-SH、-NH、-NHR、-CONH、-CONHR、-CONH-、-SOH、-SOH、および-SOH等の活性水素原子含有官能基;-NR、>C=NH、>C=N-、-CN、-NCO、-OCN、-SCN、-NO、-NO、-NCS、-CONR、および-CONR-等の窒素原子含有官能基;>C=O、>C=S、-CH=O、-CH=S、-COOR、および-CSOR等の(チオ)カルボニル基含有官能基;(チオ)エポキシ基等が挙げられる。これら式中、Rは、炭化水素基である。
 高周波条件における誘電正接(D)の低減の観点から、架橋性官能基としては、窒素原子、酸素原子および硫黄原子等の極性原子を含まない極性原子非含有基が好ましい。架橋性官能基の構成原子は、炭素原子と水素原子とのみであることが好ましい。
 重合体ブロック(A)が、複数の構造単位を含む場合、複数の構造単位の配列は特に制限されず、交互配列、ブロック配列、ランダム配列、およびテーパーブロック配列等、任意である。
 重合体ブロック(B)の原料単量体である共役ジエン化合物としては、イソプレン、ブタジエン、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、および1,3-ペンタジエン等が挙げられる。重合体ブロック(B)としては、ポリイソプレンブロック、ポリブタジエンブロック、イソプレン/ブタジエン共重合体ブロック、およびこれらブロックの少なくとも一部の不飽和結合が水素添加された水素添加ブロック等が好ましい。
 重合体ブロック(B)は、上記以外の1種以上の他の共重合可能な単量体に由来する構造単位をさらに含んでいてもよい。
 重合体ブロック(B)中の共役ジエン化合物に由来する構造単位の含有量は、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。
 重合体ブロック(B)中の他の共重合可能な単量体に由来する構造単位の割合は、好ましくは30質量%以下、より好ましくは20質量%以下、特に好ましくは10質量%以下であり、0質量%であってもよい。他の共重合可能な単量体としては、スチレン、p-メチルスチレン、α-メチルスチレン、およびイオン重合できる他の単量体が挙げられる。
 重合体ブロック(B)が、複数の構造単位を含む場合、複数の構造単位の配列は特に制限されず、交互配列、ブロック配列、ランダム配列、およびテーパーブロック配列等、任意である。
 熱可塑性エラストマー(E)において、重合体ブロック(A)の質量(複数の場合は、合計量)と重合体ブロック(B)の質量(複数の場合は、合計量)との比((A)/(B)質量比)は特に制限されず、好ましくは5/95~85/15、より好ましくは10/90~70/30、特に好ましくは20/80~50/50である。
 熱可塑性エラストマー(E)の重量平均分子量(Mw)は特に制限されない。硬化性組成物の薄肉塗工性等の点から、Mwは、好ましくは50,000~1,000,000、より好ましくは80,000~500,000、特に好ましくは100,000~500,000である。
 熱可塑性エラストマー(E)は公知方法にて製造でき、市販品を用いることができる。市販の熱可塑性エラストマー(E)としては、クラレ社製の水添スチレン系熱可塑性エラストマー「セプトン(登録商標)Vシリーズ」等が挙げられる。
 熱可塑性エラストマー(E)は、主鎖が極性原子を含まない構造であることができる。
 熱可塑性エラストマー(E)は、は、極性原子を含まない、または、極性原子の少ない構造であることができる。熱可塑性エラストマー(E)は、極性原子を含まないことが好ましい。
 極性原子を含まない、または、極性原子の少ない熱可塑性エラストマー(E)を用いることで、高周波条件における誘電正接(D)が効果的に低減された樹脂を得ることができる。
(架橋剤(C))
 本開示の硬化性組成物は、1種以上の架橋剤(C)を含む。架橋剤(C)は、一分子中に複数の重合性官能基を有する多官能化合物である。重合性官能基としては、重合性炭素-炭素不飽和結合を有する基、エポキシ基、イソシアネート基、ヒドロキシ基、メルカプト基、アミノ基、ウレイド基、カルボキシ基、スルホン酸基、酸クロライド基、および塩素原子等が挙げられる。重合性炭素-炭素不飽和結合を有する基としては、例えば、ビニル基、アリル基、ジエニル基、(メタ)アクリロイルオキシ基、および(メタ)アクリルアミノ基等が挙げられる。
 架橋剤(C)は、硬化性組成物の硬化物の架橋密度を増大させることができる。架橋剤(C)は、硬化物の靭性向上、ガラス転移温度(Tg)の向上(すなわち、耐熱性向上)、線膨張係数の低減、および基材密着性の向上に、寄与できる。
 硬化物の靭性向上、ガラス転移温度(Tg)の向上(すなわち、耐熱性向上)、線膨張係数の低減、および基材密着性の向上の観点から、本開示の硬化性組成物中の架橋剤(C)の含有量(複数種の場合は、合計量)は、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3質量部以上、好ましくは5質量部以上である。
 硬化物の高周波条件における誘電正接(D)の低減の観点から、本開示の硬化性組成物中の架橋剤(C)の含有量は、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、30質量部以下であり、好ましくは25質量部以下、より好ましくは20質量部以下、特に好ましくは15質量部以下、最も好ましくは10質量部以下である。
 架橋剤(C)としては、公知のものを用いることができる。
 硬化物の高周波条件における誘電正接(D)の低減の観点から、架橋剤(C)は、極性原子を含まない極性原子非含有有機化合物であることが好ましい。架橋剤(C)の構成原子は、炭素原子と水素原子とのみであることが好ましい。
 極性原子を含まない極性原子非含有有機化合物としては、1,2-ビス(p-ビニルフェニル)エタン(BVPE);ジビニルベンゼン等のジビニル芳香族重合体;トリビニルシクロヘキサン等が挙げられる。
 架橋剤(C)は、極性原子を含む極性原子含有有機化合物であってもよい。極性原子としては、窒素原子、酸素原子、および硫黄原子等が挙げられる。
 極性原子含有有機化合物としては、ビスマレイミドおよび窒素含有アリル化合物等が挙げられる。
 ビスマレイミドとしては、4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、および1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等が挙げられる。
 窒素含有アリル化合物としては、トリアリルイソシアヌレート(TAIC)、下式(CX)、(CY)で表される化合物、および1,3,4,6-テトラアリルグリコールウリル等が挙げられる。式(CX)、(CY)で表される化合物の市販品としては、四国化成社製の「L-DAIC」、「DD-1」、「P-DAIC」等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(CX)、(CY)中、RおよびRはそれぞれ独立に、置換基を有していてもよい炭化水素基である。Rの炭素原子数は、好ましくは4~20、より好ましくは8~18である。Rの炭素原子数は、好ましくは1~8、より好ましくは2~6である。RおよびRが有していてもよい置換基は、窒素原子、酸素原子、リン原子、硫黄原子およびこれらの組合せ等のヘテロ原子を含んでもよい。
 架橋剤(C)が極性原子含有有機化合物である場合、硬化物の高周波条件における誘電正接(D)の低減の観点から、本開示の硬化性組成物中の架橋剤(C)の含有量は、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、好ましくは3~10質量部、より好ましくは5~10質量部である。
(他の硬化性化合物)
 本開示の硬化性組成物は、硬化性化合物として、熱可塑性エラストマー(E)および架橋剤(C)のみを含むことができる。
 本開示の硬化性組成物は、必要に応じて、上記以外の1種以上の他の硬化性化合物を含むことができる。
 他の硬化性化合物としては、単独で硬化した場合に、ポリフェニレンエーテル樹脂(PPE)、ビスマレイミド樹脂、エポキシ樹脂、フッ素樹脂、ポリイミド、ポリオレフィン、ポリエステル、ポリスチレン、上記以外の炭化水素エラストマー、ベンゾオキサジン樹脂、活性エステル樹脂、シアネートエステル樹脂、ブタジエン樹脂、ビニル樹脂、シクロオレフィンポリマー、芳香族重合体、およびジビニル芳香族重合体等の樹脂となる硬化性化合物が挙げられる。
 他の硬化性化合物の形態としては、モノマー、オリゴマーおよびプレポリマー等が挙げられる。
 他の硬化性化合物としては、例えば、下式(PPE-o)で表され、両末端に重合性官能基を有する変性ポリフェニレンエーテル(変性PPE)オリゴマー等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(PPE-o)の両端のXはそれぞれ独立に、下式(x1)または下式(x2)で表される基である。これら式中、「*」は酸素原子との結合手を示す。
Figure JPOXMLDOC01-appb-C000004
 式(PPE-o)中、mは、好ましくは1~20、より好ましくは3~15であり、nは、好ましくは1~20、より好ましくは3~15である。
(無機充填材(F))
 本開示の硬化性組成物は、1種以上の無機充填材(F)(フィラー)を含むことができる。
 無機充填材(F)としては、球状シリカ等のシリカ、アルミナ、酸化チタンおよびマイカ等の金属酸化物;水酸化アルミニウムおよび水酸化マグネシウム等の金属水酸化物;タルク;ホウ酸アルミニウム;硫酸バリウム;炭酸カルシウム等が挙げられる。中でも、低熱膨張性の観点から、シリカ、マイカおよびタルク等が好ましく、球状シリカがより好ましい。
 無機充填材(F)は、重合性官能基を有する表面処理剤で表面処理された無機充填材であってもよい。重合性官能基としては、重合性炭素-炭素不飽和結合を有する基、エポキシ基、イソシアネート基、ヒドロキシ基、メルカプト基、アミノ基、ウレイド基、カルボキシ基、スルホン酸基、酸クロライド基、および塩素原子等が挙げられる。重合性炭素-炭素不飽和結合を有する基としては、ビニル基、アリル基、ジエニル基、(メタ)アクリロイルオキシ基、および(メタ)アクリルアミノ基等が挙げられる。
 表面処理剤としては、重合性官能基を有するシランカップリング剤が挙げられる。無機充填材(F)は、エポキシシランタイプ、ビニルシランタイプ、メタクリルシランタイプ、またはアミノシランタイプのシランカップリング剤で表面処理されたものであることができる。シランカップリング剤による表面処理のタイミングは、特に制限されない。予め、シランカップリング剤で表面処理された無機充填材(F)を用意してもよいし、硬化性組成物の調製時にインテグラルブレンド法でシランカップリング剤を添加してもよい。
 無機充填材(F)の平均粒径は特に制限されず、好ましくは0.01~10μm、より好ましくは0.1~3μmである。
 本明細書において、特に明記しない限り、「平均粒径」は、レーザー解析式粒度分布計を用いて粒度分布を測定し、求められるメディアン径(D50)である。
 無機充填材(F)は、硬化物の誘電特性の改善、耐熱性向上、難燃性向上、靱性向上、および熱膨張係数低減等に寄与できる。表面処理剤で表面処理された無機充填材を用いる場合、硬化性組成物の硬化時に、熱可塑性エラストマー(E)と架橋剤(C)と無機充填材(F)の重合性官能基とが反応でき、硬化物の架橋密度が増大し得る。このことは、硬化物の耐熱性向上に寄与できる。
 [背景技術]の項で挙げた特許文献1に記載の熱硬化性組成物は、必須成分の1つとして無機充填材を多く含み、好ましくは、エチレン-プロピレン-ジエン共重合体100質量部に対して、30質量部以上の無機充填材を含む。
 多量の無機充填材は組成物中に良好に分散させることが難しく、組成物中で凝集しやすい。そのため、均一な組成物を調製することが難しく、各種基材の表面に対して、組成物を薄く均一に塗工させることが難しい。
 無機充填材を多量に含む熱硬化性組成物の(半)硬化物は、各種基材に対する密着性(基材密着性)が低下し、高周波条件における誘電正接(D)が高くなる(すなわち、悪化する)傾向がある。
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、無機充填材(F)の含有量が25質量部以下であれば、硬化性組成物中に無機充填材(F)を良好に分散でき、均一な硬化性組成物を調製しやすい。適量の有機溶剤(S)を含む硬化性組成物は、低固形分で、塗工に適した粘度を有することができ、各種基材の表面に対して、薄く均一に塗工できる。すなわち、適量の有機溶剤(S)を含む硬化性組成物は、薄肉塗工性が良好である。
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、無機充填材(F)の含有量が25質量部以下であれば、硬化性組成物の(半)硬化物は、高周波条件における誘電正接(D)が充分に低く、各種基材に対する密着性(基材密着性)が良好である。
 本開示の硬化性組成物中の無機充填材(F)の含有量(複数種の場合は、合計量)は、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、0~25質量部であり、好ましくは0~20質量部、より好ましくは0~15質量部、特に好ましくは0~10質量部、最も好ましくは0~5質量部であり、0質量部であってもよい。
 本開示の硬化性組成物では、無機充填材(F)が少量または不使用でも、硬化物の耐熱性を高められる。本開示の硬化性組成物では、架橋反応性が高い熱可塑性エラストマー(E)と適切な量の架橋剤(C)とラジカル重合開始剤(I)とを用いることで、架橋反応が良好に進行し、硬化物内に架橋構造が充分に形成されるので、無機充填材(F)を用いなくても、硬化物の耐熱性を高められると考えられる。
(ラジカル重合開始剤(I))
 本開示の硬化性組成物は、1種以上のラジカル重合開始剤(I)を含む。ラジカル重合開始剤(I)は、硬化性組成物の硬化反応を促進できる。
 ラジカル重合開始剤(I)としては、有機過酸化物、アゾ系化合物、またはその他の公知の重合開始剤を用いることができる。具体例としては、ジクミルパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド、およびアゾビスイソブチロニトリル等が挙げられる。
 本開示の硬化性組成物中のラジカル重合開始剤(I)(複数種の場合は、合計量)の含有量は特に制限されず、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~2質量部、特に好ましくは0.1~1質量部である。
(添加物)
 本開示の硬化性組成物は必要に応じて、1種以上の添加剤を含むことができる。添加剤としては、難燃剤、酸化防止剤、相溶化剤、消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料、顔料、滑剤、および分散剤等が挙げられる。
(有機溶剤(S))
 本開示の硬化性組成物は必要に応じて、1種以上の有機溶剤(S)を含むことができる。有機溶剤(S)としては特に制限されず、メチルエチルケトン等のケトン類;ジブチルエーテル等のエーテル類;酢酸エチル等のエステル類;ジメチルホルムアミド等のアミド類;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素類;トリクロロエチレン等の塩素化炭化水素等が挙げられる。有機溶剤(S)としては、熱可塑性エラストマー(E)の溶解性が高いこと、低温で乾燥できることから、トルエン単独、あるいはトルエンを75質量%以上含む混合溶剤であることが好ましい。
 有機溶剤(S)の配合タイミングは、特に制限されない。熱可塑性エラストマー(E)、架橋剤(C)、ラジカル重合開始剤(I)、および必要に応じて無機充填材(F)を含む硬化性組成物の調製時に有機溶剤(S)を配合してもよいし、熱可塑性エラストマー(E)、架橋剤(C)、ラジカル重合開始剤(I)、および必要に応じて無機充填材(F)を含む硬化性組成物を調製した後、これを基材上に塗工する前に、有機溶剤(S)を配合してもよい。
 本開示の硬化性組成物は、有機溶剤(S)を含まない硬化性組成物、有機溶剤(S)を配合する前の硬化性組成物、および、有機溶剤(S)を含む硬化性組成物を含むものとする。
 上記したように、適切な量の有機溶剤(S)を含む硬化性組成物は、低固形分で、塗工に適した粘度を有することができ、各種基材の表面に対して、薄く均一に塗工できる。すなわち、適量の有機溶剤(S)を含む硬化性組成物は、薄肉塗工性が良好である。
 薄肉塗工性の観点から、塗工時の硬化性組成物の粘度は、好ましくは20~1000mPa・s、より好ましくは50~300mPa・s、特に好ましくは50~200mPa・s、最も好ましくは50~150mPa・sである。
 薄肉塗工性の観点から、塗工時の硬化性組成物の固形分濃度は、好ましくは0.5~20質量%、より好ましくは2~10質量%である。
 有機溶剤(S)を含む硬化性組成物の乾燥方法は、特に制限されない。乾燥方法としては、加熱乾燥、減圧乾燥および減圧加熱乾燥が挙げられ、加熱乾燥が好ましい。
 加熱乾燥の乾燥温度は特に制限されず、架橋剤(C)は揮発させず、有機溶剤(S)のみを選択的に効率良く揮発させ、有機溶剤(S)を含まない硬化性組成物の乾燥物を得る観点から、好ましくは40~100℃である。
(硬化物)
 本開示の硬化性組成物は、熱硬化性でも活性エネルギー線硬化性でもよい。金属張積層板および配線基板等の用途では、熱硬化性が好ましい。本開示の硬化性組成物は、例えば、100~300℃で(半)硬化できる。本開示の硬化性組成物は、例えば、100~180℃で半硬化できる。本開示の硬化性組成物は、例えば、150~300℃で完全硬化できる。本開示の硬化性組成物は、100~180℃で半硬化した後、150~300℃で完全硬化(本硬化)してもよい。
 本開示の硬化性組成物では、極性原子を含まない、または、極性原子の少ない熱可塑性エラストマー(E)を用い、極性原子を含まない架橋剤(C)または適切な量の極性原子を含む架橋剤(C)を用いる。本開示の硬化性組成物では、無機充填材(F)は少量または不使用にできる。これら作用効果が相俟って、本開示の硬化性組成物を用いることで、高周波条件における誘電正接(D)が効果的に低減された樹脂を得ることができる。
 本開示の硬化性組成物の硬化物は、高周波条件における誘電正接(D)が効果的に低減された樹脂である。
 本開示の硬化性組成物の硬化物は、周波数10GHzにおける誘電正接(D)が0.0030以下であり、好ましくは0.0020以下、より好ましくは0.0010以下、特に好ましくは0.0008以下、最も好ましくは0.0007以下である。周波数10GHzにおける誘電正接(D)の下限値は特に制限されず、例えば0.0001である。
 本開示の硬化性組成物の硬化物は、周波数28GHzにおける誘電正接(D)が0.0030以下、0.0020以下、0.0010以下、0.0008以下、または0.0007以下であることができる。周波数28GHzにおける誘電正接(D)の下限値は特に制限されず、例えば0.0001である。
 本明細書において、特に明記しない限り、「誘電正接(D)」は、温度23℃で、空洞共振器を用いて測定される値である。誘電正接(D)は、後記[実施例]の項に記載の方法にて求めることができる。
 本開示の硬化性組成物では、架橋反応性が高い熱可塑性エラストマー(E)と適切な量の架橋剤(C)とラジカル重合開始剤(I)とを用いることで、架橋反応が良好に進行し、硬化性組成物の硬化物内に、架橋構造が充分に形成される。そのため、無機充填材(F)が少量または不使用でも、本開示の硬化性組成物の硬化物は、良好な耐熱性を有することができる。
 配線基板の表面には、半田を用いて部品が実装される。部品の実装時において、配線基板の信頼性を確保するために、配線基板に含まれる樹脂は、良好な耐熱性を有することが好ましい。本開示の硬化性組成物の硬化物は、260℃以上または280℃以上の半田浴に対して、良好な耐熱性を有することができる。
 各種基材上に本開示の硬化性組成物の硬化物からなる樹脂層を形成する場合、各種基材と樹脂層との間にも、架橋構造が充分に形成される。そのため、本開示の硬化性組成物の硬化物からなる樹脂層は、各種基材に対して、良好な基材密着性を有することができる。
 2つの基材の間に本開示の硬化性組成物の硬化物からなる樹脂層を介在させる場合、本開示の硬化性組成物の硬化物からなる樹脂層は、両方の基材に対して良好な基材密着性を有し、2つの基材を接着する接着層として機能できる。
 本開示の硬化性組成物は、コア基材の少なくとも一方の表面上に樹脂層と金属箔とが順次積層された金属張積層板に含まれる樹脂層、または、コア基材の少なくとも一方の表面上に樹脂層と配線とが順次積層された配線基板に含まれる樹脂層用として好適である。
[樹脂シート]
 本開示の樹脂シートは、上記の本開示の硬化性組成物の乾燥物、半硬化物または硬化物からなる。
 図1に、本開示に係る一実施形態の樹脂シートの模式断面図を示す。図中、符合1は、樹脂シートである。
 樹脂シートの厚みは用途に応じて設計され、金属張積層板および配線基板等の用途では、例えば0.1~50μmであることができる。
 本開示の樹脂シートの製造方法は、特に制限されない。製造方法としては、ポリテトラフルオロエチレン(PTFE)シート等の離型シート上に、有機溶剤(S)を含む本開示の硬化性組成物を塗工して塗工膜を形成し、この塗工膜を、乾燥、半硬化または硬化し、離型シートを剥離する方法が挙げられる。
 本開示の硬化性組成物の硬化物からなる樹脂シートは、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好であり、各種用途に使用できる。
 各種基材上に、本開示の硬化性組成物の乾燥物または半硬化物からなる樹脂シートを重ね、加熱加圧して、樹脂シートを硬化することで、基材と、本開示の硬化性組成物の硬化物からなる樹脂層とを含む積層体を製造できる。本開示の硬化性組成物の硬化物からなる樹脂層は、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好である。
[積層体]
 本開示の積層体は、基材と、上記の本開示の硬化性組成物の乾燥物、半硬化物または硬化物からなる樹脂層とを含む。
 樹脂層の厚みは用途に応じて設計され、金属張積層板および配線基板等の用途では、例えば0.1~50μmであることができる。
 基材としては特に制限されず、繊維基材、樹脂基材、金属基材およびこれらの複合基材等が挙げられる。
 図2に、本開示に係る一実施形態の積層体の模式断面図を示す。本実施形態の積層体2は、基材21の一方の表面上に樹脂層22が積層された2層構造の積層体である。基材21の両面上に樹脂層22が形成された3層構造、2つの基材21の間に樹脂層22が挟まれた3層構造、または、1つ以上の基材21と1つ以上の樹脂層22とを含む4層以上の積層構造でもよい。
 繊維基材の構成繊維としては特に制限されず、ガラス繊維、シリカ繊維および炭素繊維等の無機繊維;アラミド繊維およびポリエステル繊維等の有機繊維;これらの組合せ等が挙げられる。金属張積層板および配線基板等の用途では、ガラス繊維等が好ましい。ガラス繊維基材の形態としては、ガラスクロス、ガラスペーパーおよびガラスマット等が挙げられる。
 樹脂基材の構成樹脂としては特に制限されず、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリエーテルサルファイド、およびこれらの組合せ等が挙げられる。樹脂基材の形態としては、樹脂シート等が挙げられる。
 金属基材の構成金属としては、電気抵抗が低いことから、銅、銀、金、アルミニウム、およびこれらの組合せ等が好ましい。金属基材の形態としては、金属箔等が挙げられる。金属張積層板および配線基板等の用途では、銅箔等が好ましい。
 基材は、繊維基材と、1種以上の公知の硬化性重合体を含む硬化性組成物の(半)硬化物とを含むプリプレグであってもよい。硬化性重合体としては、上式(PPE-o)で表され、両末端に重合性官能基を有する変性ポリフェニレンエーテル(変性PPE)オリゴマー、ジビニル芳香族重合体、および架橋性官能基を有する脂肪族炭化水素化合物等が挙げられる。硬化性組成物は必要に応じて、難燃剤、無機充填材(フィラー)、および酸化防止剤等の1種以上の公知の添加物を含むことができる。
 プリプレグは、1種以上の公知の硬化性重合体を含む硬化性組成物を繊維基材に含浸させ、熱硬化等により(半)硬化させることで、製造できる。プリプレグは、公知のものまたは市販品を用いることができる。
 本開示の積層体の製造方法は、特に制限されない。基材の少なくとも一方の表面上に、有機溶剤(S)を含む本開示の硬化性組成物を塗工し、必要に応じて乾燥または半硬化した後、硬化する方法;基材の少なくとも一方の表面上に、本開示の硬化性組成物の乾燥物または半硬化物からなる上記の本開示の樹脂シートを重ね、加熱加圧して、樹脂シートを硬化する方法等が挙げられる。
 本開示の硬化性組成物の硬化物からなる樹脂層は、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好である。この樹脂層を含む本開示の積層体は、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、層間密着性が良好であり、各種用途に使用できる。
[金属張積層板]
 本開示の金属張積層板は、コア基材と、このコア基材の少なくとも一方の表面上に積層された金属箔とを有し、コア基材と金属箔との間に、上記の本開示の硬化性組成物の硬化物からなる樹脂層を有する。
 電気抵抗が低いことから、金属箔としては、銅箔、銀箔、金箔、アルミニウム箔およびこれらの組合せ等が好ましく、銅箔等がより好ましい。金属箔は、表面に金属メッキ層を有するものでもよい。金属箔は、極薄金属箔とそれを支持するキャリア金属箔とを含むキャリア付き金属箔であってもよい。金属箔は、少なくとも一方の表面に、防錆処理、シラン処理、粗面化処理およびバリア形成処理等の表面処理が施されたものでもよい。
 金属箔の厚みは特に制限されず、配線等の導体パターン(回路パターンとも言う。)の形成に好適であることから、好ましくは0.1~100μm、より好ましくは0.2~50μm、特に好ましくは1.0~40μmである。
 金属張積層板は、片面に金属箔を有する片面金属張積層板であってもよいし、両面に金属箔を有する両面金属張積層板であってもよく、両面金属張積層板であることが好ましい。
 片面金属張積層板は、1つ以上の上記のプリプレグと金属箔とを重ね、得られた第1の仮積層体を加熱加圧することで、製造できる。
 両面金属張積層板は、1つ以上の上記のプリプレグを一対の金属箔で挟み、得られた第1の仮積層体を加熱加圧することで、製造できる。
 金属箔として銅箔を使用した金属張積層板は、銅張積層板(Copper Clad Laminate:CCL)と呼ばれる。
 コア基材は好ましくは、プリプレグの加熱加圧物からなる。プリプレグの加熱加圧物は、繊維基材と樹脂とを含み、必要に応じて無機充填材および難燃剤等の1種以上の添加剤を含むことができる。
 コア基材の周波数10GHzにおける誘電正接(D)は特に制限されず、好ましくは0.0030以下、より好ましくは0.0020以下である。周波数10GHzにおける誘電正接(D)の下限値は特に制限されず、例えば0.0001である。
 コア基材の周波数28GHzにおける誘電正接(D)は特に制限されず、好ましくは0.0030以下、より好ましくは0.0020以下である。周波数28GHzにおける誘電正接(D)の下限値は特に制限されず、例えば0.0001である。
 第1の仮積層体の加熱加圧条件は特に制限されず、例えば、温度170~250℃、圧力0.3~30MPa、時間3~240分間が好ましい。
 図3Aおよび図3Bに、本開示に係る第1、第2の実施形態の金属張積層板の模式断面図を示す。
 図3Aに示す金属張積層板3Aは、プリプレグの加熱加圧物からなるコア基材31の片面に、本開示の硬化性組成物の硬化物からなる樹脂層32と、金属箔(金属層)33とが順次積層された片面金属張積層板(積層体)である。
 図3Bに示す金属張積層板3Bは、プリプレグの加熱加圧物からなるコア基材31の両面にそれぞれ、本開示の硬化性組成物の硬化物からなる樹脂層32と、金属箔(金属層)33とが順次積層された両面金属張積層板である。
 本開示の硬化性組成物の硬化物からなる樹脂層32は、コア基材31と金属箔(金属層)33との接着性を高める接着層として、機能できる。
 金属張積層板3A、3Bは、上記以外の層を有していてもよい。
 コア基材の厚みは、用途に応じて適宜設計できる。配線基板の断線予防の観点から、好ましくは50μm以上、より好ましくは70μm以上、特に好ましくは100μm以上である。配線基板の柔軟性、小型化および軽量化の観点から、好ましくは、300μm以下、より好ましくは250μm以下、特に好ましくは200μm以下である。
 本開示の硬化性組成物の硬化物からなる樹脂層は、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好である。
 上記樹脂層を含む本開示の金属張積層板は、高周波条件における誘電正接(D)が効果的に低減され、配線基板用途に好適である。
 上記樹脂層を含む本開示の金属張積層板は、耐熱性が良好であり、260℃以上または280℃以上の半田浴に対して、良好な耐熱性を有することができる。
 上記樹脂層を含む本開示の金属張積層板は、層間密着性が良好であり、金属箔の密着性が良好で、金属箔剥離強度が良好である。
 金属箔は、粗面化された金属箔(粗面化金属箔)でもよいし、粗面化されていない金属箔(非粗面化金属箔)でもよい。
 粗面化金属箔を用いる場合、金属箔の密着性を高められるが、高周波電流の損失が生じやすい。
 本開示の硬化性組成物の硬化物からなる樹脂層は、基材密着性が良好である。そのため、金属箔として表面粗さの小さい低粗度粗面化金属箔または非粗面化金属箔を用いても、コア基材と金属箔との間に本開示の硬化性組成物の硬化物からなる樹脂層を介在させることで、金属箔の密着性を高め、金属箔剥離強度を高めることができる。
 低粗度粗面化金属箔および非粗面化金属箔の樹脂層側の表面の十点平均粗さ(Rzjis)は、1.5μm以下または1.0μm以下であることができる。下限値は特に制限されず、例えば0.1μmである。
 「表面の十点平均粗さ(Rzjis)」は、JIS B 0601に準拠して、測定できる。
[配線基板]
 本開示の配線基板は、本開示の硬化性組成物の硬化物を含む絶縁層と、配線とを含む。
 配線基板は、上記の本開示の金属張積層板の最表面にある金属箔を用いて配線等の導体パターン(回路パターン)を形成することで、製造できる。配線等の導体パターンを形成する方法としては、金属箔をエッチングして配線等を形成するサブトラクティブ法、および、金属箔の上にメッキで配線を形成するMSAP(Modified Semi Additive Process)法等が挙げられる。
 図4に、本開示に係る一実施形態の配線基板の模式断面図を示す。配線基板4は、図3Bに示した第2の実施形態の金属張積層板3Bの少なくとも一方の最表面にある金属箔(金属層)33を用いて配線34W等の導体パターン(回路パターン)34を形成したものである。
 配線基板4は、プリプレグの加熱加圧物からなるコア基材31の少なくとも片面に、配線34W等の導体パターン(回路パターン)34が形成されたものである。
 得られた配線基板に対してさらに、1つ以上のプリプレグを重ね、これを一対の金属箔で挟み、得られた第2の仮積層体を加熱加圧し、最表面の金属箔を用いて配線等の導体パターンを形成することで、多層配線基板(多層プリント配線板)を製造してもよい。最表面の金属箔は、第2の仮積層体の片面側にのみ配置してもよい。
 本開示の配線基板は、高周波領域(周波数1GHz以上の領域)で用いて好適である。
 以上説明したように、本開示によれば、無機充填材の含有量が低減され、高周波条件における誘電正接(D)が効果的に低減され、耐熱性が良好で、基材密着性が良好な樹脂を得ることが可能な硬化性組成物を提供できる。
 本開示の硬化性組成物は、金属張積層板および配線基板等の用途に好適なものであるが、任意の用途に使用可能なものである。
[用途]
 本開示の硬化性組成物は、金属張積層板および配線基板等の用途に好適である。
 本開示の金属張積層板は、各種電気機器および各種電子機器等に使用される配線基板等に好適である。
 本開示の配線基板は、携帯電話、スマートフォン、携帯情報端末およびノートパソコン等の携帯用電子機器;携帯電話基地局および自動車等のアンテナ;サーバー、ルーターおよびバックプレーン等の電子機器;無線インフラ;衝突防止用等のレーダー;各種センサ(例えば、エンジンマネージメントセンサ等の自動車用センサ)等に好適である。
 本開示の配線基板は特に、高周波信号を用いて通信を行う用途に好適であり、高周波領域において伝送損失の低減が求められる様々な用途に好適である。
 以下に例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。例1~9が実施例であり、101~108が比較例である。特に明記しない限り、25℃程度の室温下で操作を実施した。
[材料]
<熱可塑性エラストマー(E)>
(E-1)
(p-メチルスチレン-co-スチレン)-ポリ(イソプレン-co-ブタジエン)-ポリ(p-メチルスチレン-co-スチレン)トリブロック共重合体(A-B-A型トリブロック共重合体)の水素添加物、クラレ社製「セプトンV9461」、重量平均分子量(Mw):344,000、重合体ブロック(A)の合計質量と重合体ブロック(B)の質量との比((A)/(B)質量比):30/70、全重合体ブロック(A)中のp-メチルスチレンに由来する構造単位の含有量:50質量%。
<比較用の熱可塑性エラストマー(EC)>
(EC-1)
ポリ(スチレン)-ポリ(イソプレン-co-ブタジエン)-ポリ(スチレン)トリブロック共重合体(A-B-A型トリブロック共重合体)の水素添加物、クラレ社製「セプトン4055」、重量平均分子量(Mw):約350,000、重合体ブロック(A)の合計質量と重合体ブロック(B)の質量との比((A)/(B)質量比):30/70。
<架橋剤(C)>
(BVPE)1-エテニルー4-[2-(4-エテニルフェニル)エチル]ベンゼン。
(TAIC)トリアリルイソシアヌレート。
<ラジカル重合開始剤(I)>
(I-1)α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、日油社製「パーブチルP」。
<無機充填材(F)>
(F-1)ビニルシランタイプのシランカップリング剤で表面処理された球状シリカ、アドマテックス社製「SC2300-SVJ」、平均粒径0.5μm。
<銅箔>
(Cu-1)三井金属鉱業社製の低粗度粗面化金属箔「SI-VSP」、厚み:18μm、粗化面の表面の十点平均粗さ(Rzjis):0.6μm。
<コア基材)
(Pre-1)AGC社製プリプレグ「Meteorwave 8000」(ガラス繊維基材と、上式(PPE-o)で表される変性ポリフェニレンエーテル(変性PPE)オリゴマーとシリカフィラーとを含む硬化性組成物の硬化物とを含む複合材料)、周波数10GHzにおける誘電正接(D):0.0016。
<PTFEシート)
(PTFE-1)アラム社製のポリテトラフルオロエチレン(PTFE)シート、厚み100μm。
[評価項目と評価方法]
(重量平均分子量(Mw))
 熱可塑性エラストマーの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により求めた。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー社製「HLCー8320GPC」を使用した。溶離液としてテトラヒドロフランを用いた。カラムとして、「TSKgel SuperHZ2000」、「TSKgel SuperHZ2500」、「TSKgel SuperHZ3000」および「TSKgel SuperHZ4000」(いずれも東ソー社製)の4本を直列に接続したものを用いた。樹脂20mgをテトラヒドロフラン2mLに溶解させて試料溶液を調製した。試料溶液10μlを注入して、クロマトグラムを測定した。分子量が400~5000000の範囲の標準ポリスチレン10点を用いてGPC測定し、保持時間と分子量との関係を示す検量線を作成した。この検量線に基づいて、Mwを決定した。
(硬化性組成物(ワニス)の粘度)
 例1~9、102~108の各例において、トルエンを用いて固形分濃度を5.0質量%に調整した硬化性組成物(ワニス)の25℃における粘度を、東機産業社製のE型粘度計「RE-215R」を用いて、測定した。
(硬化性組成物(ワニス)の薄肉塗工性)
 例1~9、102~108の各例においては、ロール・トゥ・ロール(Roll to Roll)プロセスにより、トルエンを用いて固形分濃度を5.0質量%に調整した硬化性組成物(ワニス)の銅箔上への塗工および乾燥を実施した。
 室温下で、銅箔ロールから連続的に繰り出された銅箔(Cu-1)の粗化面上に、ダイコート法により、固形分濃度5.0質量%の硬化性組成物(ワニス)を塗工して、塗工膜を形成した。続いて、得られた塗工膜/銅箔の積層体を、4つの熱風加熱炉を用いて4段階で加熱した。各加熱炉における加熱条件は、以下の通りとした。
上流側から1番目の加熱炉:50℃で2分間、
上流側から2番目の加熱炉:80℃で2分間、
上流側から3番目の加熱炉:100℃で2分間、
上流側から4番目の加熱炉:70℃で2分間。
 以上のようにして、銅箔と、硬化性組成物の乾燥物からなる樹脂層(2μm厚)との積層体を得た。樹脂層の厚みが2μmとなるように、銅箔の搬送速度、ダイに含まれるシム板の厚み、およびダイと銅箔との離間距離を調整した。
 下記基準にて、評価した。
合格:銅箔上に硬化性組成物(ワニス)を安定的に均一に塗工でき、2μm厚の樹脂層を安定的に良好に成膜できた。
不合格:銅箔上に硬化性組成物(ワニス)を均一に塗工できず、2μm厚の樹脂層を良好に成膜できなかった。
(硬化物の誘電正接(D))
 例1~9、102~108の各例において、硬化性組成物(ワニス)の硬化物からなる樹脂シートの温度23℃および周波数10GHzの条件での誘電正接(D)を、空洞共振法により測定した。
 PTFEシート(PTFE-1)(縦150mm、横150mm)の一方の表面の周縁部(各辺から30mm程度の範囲の領域)を除く領域に、塗工ギャップ400μmのアプリケータを用いて、トルエンを用いて固形分濃度を7.5質量%に調整した硬化性組成物(ワニス)を塗工して、ウェット膜厚400μmの塗工膜を形成した。
 得られた塗工膜付きPTFEシートを100℃に設定したオーブンに入れ、空気雰囲気下で10分間加熱して、PTFEシートと硬化性組成物の乾燥物からなる樹脂層(30μm厚)との積層シートを得た。この積層シートを2枚用意した。
 得られた2枚の積層シートを、樹脂層同士が互いに対向するように重ね合わせて、仮積層体を得た。このとき、一方の積層シートの周縁部と他方の積層シートの周縁部との間に、厚み調整用の50μm高さのスペーサーを配置した。
 得られた仮積層体を、面圧2.0MPaの条件で真空プレスしながら、室温から215℃まで昇温速度3℃/分で昇温し、215℃で120分間保持し、降温速度7℃/分で室温まで降温する加熱プロファイルで加熱することによって、硬化性組成物の乾燥物を硬化させた。
 得られた積層体から両面にあるPTFEシートを剥離し、硬化性組成物の硬化物からなる樹脂シート(50μm厚)を得た。
 得られた樹脂シートから、70mm四方の試験片を切り出し、この試験片を120℃に設定したオーブンに入れ2時間加熱した。オーブンから取り出した試験片を、25℃/相対湿度50±5%の環境下に16時間静置した後、この試験片の誘電正接(D)を、23℃/相対湿度50±5%の環境下で、測定した。
 測定装置として、ネットワークアナライザー(ROHDE & SCHWARZ社製「ZNB40」)、および、10GHz用の空洞共振器(エーイーティ社製「Cavity Resornator Sシリーズ」)を用いた。
(両面銅張積層板の半田耐熱性)
 例1~9、102~108の各例においては、銅箔(Cu-1)(縦200mm、横200mm)の一方の表面上に、塗工ギャップ100μmのアプリケータを用いて、トルエンを用いて固形分濃度を6.0質量%に調整した硬化性組成物(ワニス)を塗工して、ウェット膜厚100μmの塗工膜を形成した。
 得られた塗工膜付き銅箔を100℃に設定したオーブンに入れ、空気雰囲気下で10分間加熱して、銅箔と、硬化性組成物の乾燥物からなる樹脂層(6μm厚)との積層シートを得た。この積層シートを2枚用意した。
 上記2枚の積層シートを、2枚のプリプレグ(Pre-1)(縦150mm、横150mm)を介して、樹脂層同士が互いに対向するように重ね合わせて、仮積層体を得た。この仮積層体を、面圧2.0MPaの条件で真空プレスしながら、室温から215℃まで昇温速度3℃/分で昇温し、215℃で120分間保持し、降温速度7℃/分で室温まで降温する加熱プロファイルで加熱することによって、硬化性組成物の乾燥物を硬化させた。
 以上のようにして、コア基材と各銅箔との間に硬化性組成物の硬化物からなる樹脂層(6μm厚)を有する両面銅張積層板(両面CCL)を得た。
 例101においては、2枚の銅箔(Cu-1)(縦200mm、横200mm)を2枚のプリプレグ(Pre-1)(縦150mm、横150mm)を介して、重ね合わせて、仮積層体を得た。この仮積層体を、他の例と同様に加圧加熱して、コア基材と各銅箔とが直積積層された両面銅張積層板(両面CCL)を得た。
 各例において得られた両面銅張積層板(両面CCL)から、100mm四方の試験片を切り出し、この試験片を288℃または300℃の半田浴に600秒間浸漬させた。半田浴から取り出した試験片を目視観察し、下記基準にて評価した。
良好(○):288℃および300℃のいずれの温度条件の半田浴においても、膨れ、剥離および白化が、全く見られなかった。
可(△):288℃の温度条件の半田浴では、膨れ、剥離および白化が見られなかったが、300℃の温度条件の半田浴では、膨れ、剥離または白化が見られた。
不良(×):288℃および300℃のいずれの温度条件の半田浴においても、膨れ、剥離または白化が見られた。
(両面銅張積層板の銅箔剥離強度)
 例1~9、102~108の各例においては、銅箔(Cu-1)(縦200mm、横200mm)の一方の表面上に、塗工ギャップ50μmのアプリケータを用いて、トルエンを用いて固形分濃度を4.0質量%に調整した硬化性組成物(ワニス)を塗工して、50μm厚の塗工膜を形成した。得られた塗工膜付き銅箔を100℃に設定したオーブンに入れ、空気雰囲気下で10分間加熱して、銅箔と、硬化性組成物の乾燥物からなる樹脂層(2μm厚)との積層シートを得た。この積層シートを2枚用意した。
 上記2枚の積層シートを、2枚のプリプレグ(Pre-1)(縦150mm、横150mm)を介して、樹脂層同士が互いに対向するように、重ね合わせ、仮積層体を得た。この仮積層体を、面圧2.0MPaの条件で真空プレスしながら、室温から215℃まで昇温速度3℃/分で昇温し、215℃で120分間保持し、降温速度7℃/分で室温まで降温する加熱プロファイルで加熱することによって、硬化性組成物の乾燥物を硬化させた。
 以上のようにして、コア基材と各銅箔との間に硬化性組成物の硬化物からなる樹脂層(2μm厚)を有する両面銅張積層板(両面CCL)を得た。
 例1~9、102~108の各例においては、硬化性組成物(ワニス)の固形分濃度を6.0質量%に変更し、アプリケータの塗工ギャップを100μmに変更した以外は上記と同様にして、コア基材と各銅箔との間に硬化性組成物の硬化物からなる樹脂層(6μm厚)を有する両面銅張積層板(両面CCL)を得た。
 例101においては、2枚の銅箔(Cu-1)(縦200mm、横200mm)を2枚のプリプレグ(Pre-1)(縦150mm、横150mm)を介して、重ね合わせて、仮積層体を得た。この仮積層体を、他の例と同様に加圧加熱して、コア基材と各銅箔とが直積積層された両面銅張積層板(両面CCL)を得た。
 各例において、得られた両面銅張積層板(両面CCL)から、幅15mm、長さ150mmの試験片を切り出した。オートグラフ(島津製作所社製「AG-10kNIS」)を用い、一方の銅箔を、これと接する樹脂層またはコア基材の表面に対して垂直方向に、50mm/minの剥離速度で剥離した際に要する応力[N/cm]を測定した。計5回の測定を行い、平均値を剥離強度のデータとして採用した。銅箔剥離強度は、基材密着性の評価の1つである。
[例1~9、102~108]
 例1~9、102~108の各例において、表1または表2に示す配合組成の複数の材料と、有機溶剤(S)としてのトルエンとを混合し、固形分濃度4.0~7.5質量%の硬化性組成物(ワニス)を調製し、各種評価に供した。固形分濃度はトルエンの量によって調整し、評価項目に応じて、固形分濃度を調整した。評価結果を表1および表2に示す。表に不記載の条件は共通条件とした。
 表中の配合量の単位は、特に明記しない限り、「質量部」である。ラジカル重合開始剤(I)の配合量の単位の「phr」は、熱可塑性エラストマー(E)または(EC)と架橋剤(C)との合計100質量部に対する添加量「質量部」である。
[例101]
 例101においては、硬化性組成物の調製を行わず、2枚の銅箔(Cu-1)を2枚のプリプレグ(Pre-1)を介して、重ね合わせ、加圧加熱して得られた両面銅張積層板について、評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[結果のまとめ]
 例1~9では、
 炭素原子数が1~8個のアルキル基を有する1種以上のアルキルスチレン化合物を含む1種以上の芳香族ビニル化合物に由来する構造単位からなる1つ以上の重合体ブロック(A)と、1種以上の共役ジエン化合物に由来する構造単位からなる1つ以上の重合体ブロック(B)とを含むブロック共重合体、および、このブロック共重合体の水素添加物からなる群より選ばれる1種以上の熱可塑性エラストマー(E)と、
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3~30質量部の架橋剤(C)と、
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、0~25質量部の無機充填材(F)と、
 ラジカル重合開始剤(I)と、
 有機溶剤(S)とを含む、硬化性組成物(ワニス)を調製した。
 これらの例で得られた固形分濃度5.0質量%の硬化性組成物(ワニス)はいずれも、適度な粘度を有し、薄肉塗工性が良好であった。
 これらの例ではいずれも、例102~108に対して、高周波条件における誘電正接(D)が効果的に低減された硬化物が得られた。
 硬化物の周波数10GHzにおける誘電正接(D)は、例1~9では、0.0030以下、0.0020以下、0.0015以下、および0.0013以下であった。
 硬化物の周波数10GHzにおける誘電正接(D)は、例1~7、9では0.0010以下であり、例1~7では0.0009以下であり、例1~6では0.0080以下、
例1~5では0.0070以下であった。
 これらの例ではいずれも、コア基材と各銅箔との間に硬化性組成物の硬化物からなる硬化膜を有する両面銅張積層板を得た。得られた両面銅張積層板はいずれも、半田耐熱性および銅箔剥離強度(基材密着性)が良好であった。架橋反応性が高い熱可塑性エラストマー(E)と適切な量の架橋剤(C)とラジカル重合開始剤(I)とを用いることで、架橋反応が良好に進行し、硬化物からなる樹脂層内、コア基材と樹脂層との間、および樹脂層と銅箔との間に、架橋構造が充分に形成されたと考えられる。
 例101では、硬化性組成物の調製を行わず、コア基材の両面に銅箔が直積積層された両面銅張積層板を得た。得られた両面銅張積層板は、銅箔剥離強度(基材密着性)が不良であった。
 炭素原子数が1~8個のアルキル基を有する1種以上のアルキルスチレン化合物に由来する構造単位を有さない比較用の熱可塑性エラストマー(EC)を用いた例102では、得られた両面銅張積層板は、半田耐熱性と銅箔剥離強度(基材密着性)が不良であった。
 熱可塑性エラストマー(E)に対して、比較用の熱可塑性エラストマー(EC)は架橋反応性が低いため、硬化物からなる樹脂層内、コア基材と樹脂層との間、および樹脂層と銅箔との間に、架橋構造が充分に形成されなかったと考えられる。
 架橋剤(C)を用いなかった例103、および、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、架橋剤(C)の量が3質量部未満であった例104では、得られた両面銅張積層板は、半田耐熱性が不良であった。架橋反応が良好に進行せず、硬化物からなる樹脂層内、コア基材と樹脂層との間、および樹脂層と銅箔との間に、架橋構造が充分に形成されなかったと考えられる。
 ラジカル重合開始剤(I)を用いなかった例105では、得られた両面銅張積層板は、半田耐熱性と銅箔剥離強度(基材密着性)が不良であった。架橋反応が良好に進行せず、硬化物からなる樹脂層内、コア基材と樹脂層との間、および樹脂層と銅箔との間に、架橋構造が充分に形成されなかったと考えられる。
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、架橋剤(C)の量が30質量部超であった例106では、固形分濃度5.0質量%の硬化性組成物(ワニス)の粘度が低く、薄肉塗工性が不良であった。得られた両面銅張積層板は、銅箔剥離強度(基材密着性)が不良であった。硬化物の架橋密度が高くなりすぎて樹脂層の柔軟性が損なわれ、剥離強度の評価中に樹脂層が破壊されやすくなったと考えられる。
 極性原子を含む架橋剤(C)を、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、10質量部超用いた例107では、硬化物の周波数10GHzにおける誘電正接(D)が0.0030超であり、不良であった。
 熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、25質量部超の無機充填材(F)を用いた例108では、固形分濃度5.0質量%の硬化性組成物(ワニス)の薄肉塗工性が不良であり、得られた両面銅張積層板の銅箔剥離強度(基材密着性)が不良であった。硬化性組成物中に、無機充填材(F)の凝集体が形成されたと考えられる。また、多量の無機充填材(F)によって、硬化物からなる樹脂層が脆くなったと考えられる。
 本発明は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更できる。
 この出願は、2022年11月2日に出願された日本出願特願2022-176031号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1:樹脂シート、2:積層体、3A、3B:金属張積層板、4:配線基板、21:基材、22:樹脂層、31:コア基材、32:樹脂層、33:金属箔、34:導体パターン(回路パターン)、34W:配線。

Claims (15)

  1.  炭素原子数が1~8個のアルキル基を有する1種以上のアルキルスチレン化合物を含む1種以上の芳香族ビニル化合物に由来する構造単位からなる1つ以上の重合体ブロック(A)と、1種以上の共役ジエン化合物に由来する構造単位からなる1つ以上の重合体ブロック(B)とを含むブロック共重合体、および、当該ブロック共重合体の水素添加物からなる群より選ばれる1種以上の熱可塑性エラストマー(E)と、
     熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3~30質量部の架橋剤(C)と、
     熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、0~25質量部の無機充填材(F)と、
     ラジカル重合開始剤(I)とを含み、
     温度23℃および周波数10GHzの条件で、空洞共振器を用いて測定される硬化物の誘電正接(D)が0.0030以下である、硬化性組成物。
  2.  温度23℃および周波数10GHzの条件で、空洞共振器を用いて測定される硬化物の誘電正接(D)が、0.0001~0.0015である、請求項1に記載の硬化性組成物。
  3.  架橋剤(C)が、極性原子を含まない極性原子非含有有機化合物である、請求項1または2に記載の硬化性組成物。
  4.  架橋剤(C)の構成原子が、炭素原子と水素原子とのみである、請求項3に記載の硬化性組成物。
  5.  架橋剤(C)が極性原子を含む極性原子含有有機化合物であり、架橋剤(C)の量が、熱可塑性エラストマー(E)と架橋剤(C)との合計100質量部に対して、3~10質量部である、請求項1または2に記載の硬化性組成物。
  6.  前記極性原子が、窒素原子、酸素原子および硫黄原子からなる群より選ばれる1種以上の原子である、請求項5に記載の硬化性組成物。
  7.  熱可塑性エラストマー(E)の重量平均分子量が50,000~1,000,000である、請求項1または2に記載の硬化性組成物。
  8.  1種以上の前記芳香族ビニル化合物が、前記アルキルスチレン化合物としてp-メチルスチレン化合物を含む、請求項1または2に記載の硬化性組成物。
  9.  1種以上の前記共役ジエン化合物が、ブタジエンおよびイソプレンからなる群より選ばれる1種以上の化合物を含む、請求項1または2に記載の硬化性組成物。
  10.  コア基材の少なくとも一方の表面上に樹脂層と金属箔とが順次積層された金属張積層板に含まれる前記樹脂層、または、コア基材の少なくとも一方の表面上に樹脂層と配線とが順次積層された配線基板に含まれる前記樹脂層用である、請求項1または2に記載の硬化性組成物。
  11.  請求項1または2に記載の硬化性組成物の乾燥物、半硬化物または硬化物からなる、樹脂シート。
  12.  基材と、請求項1または2に記載の硬化性組成物の乾燥物、半硬化物または硬化物からなる樹脂層とを含む、積層体。
  13.  前記樹脂層の厚みが0.1~50μmである、請求項12に記載の積層体。
  14.  コア基材と、当該コア基材の少なくとも一方の表面上に積層された金属箔とを有する金属張積層板であって、
     前記コア基材と前記金属箔との間に、請求項1または2に記載の硬化性組成物の硬化物からなる樹脂層を有する、金属張積層板。
  15.  コア基材と、当該コア基材の少なくとも一方の表面上に形成された配線とを有する配線基板であって、
     前記コア基材と前記配線との間に、請求項1または2に記載の硬化性組成物の硬化物からなる樹脂層を有する、配線基板。
PCT/JP2023/037323 2022-11-02 2023-10-16 硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板 WO2024095742A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176031 2022-11-02
JP2022176031 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095742A1 true WO2024095742A1 (ja) 2024-05-10

Family

ID=90930210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037323 WO2024095742A1 (ja) 2022-11-02 2023-10-16 硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板

Country Status (1)

Country Link
WO (1) WO2024095742A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257296A (ja) * 2005-03-17 2006-09-28 Kuraray Co Ltd 伸縮性部材
WO2021010432A1 (ja) * 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2022059625A1 (ja) * 2020-09-18 2022-03-24 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257296A (ja) * 2005-03-17 2006-09-28 Kuraray Co Ltd 伸縮性部材
WO2021010432A1 (ja) * 2019-07-17 2021-01-21 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2022059625A1 (ja) * 2020-09-18 2022-03-24 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Similar Documents

Publication Publication Date Title
CN106459704B (zh) 低介电性粘合剂组合物
US8431222B2 (en) Circuit materials with improved bond, method of manufacture thereof, and articles formed therefrom
EP1985654B1 (en) Thermocurable resin composition comprising semi-ipn-type complex, and varnish, prepreg and metal-clad laminate sheet using the same
KR100894712B1 (ko) 상분리를 억제한 폴리부타디엔 수지조성물과 그것을 사용한프린트 기판
JP2008095061A (ja) セミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP5303852B2 (ja) セミipn型複合体の樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
WO2021166847A1 (ja) 熱硬化性樹脂組成物、樹脂シート、樹脂付き金属箔、金属張積層板及びプリント配線板
TWI826452B (zh) 附樹脂之金屬箔之製造方法、附樹脂之金屬箔、積層體及印刷基板
JP2011225639A (ja) 熱硬化性樹脂組成物並びにこれを用いた樹脂ワニス、プリプレグ及び金属張積層板
KR20200012764A (ko) 수지 조성물
US11930596B2 (en) Materials for printed circuit boards
CN111372372B (zh) 一种电路材料及包含其的电路板
TW202021799A (zh) 積層體、印刷基板及其製造方法
WO2024095742A1 (ja) 硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板
US20060246294A1 (en) Circuit materials, circuits, and methods of manufacture thereof
JP2003283098A (ja) プリント配線板製造用積層材料、積層板、樹脂付き銅箔、プリント配線板及び多層プリント配線板
JPH0579686B2 (ja)
WO2022054864A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
KR20240009969A (ko) 수지 조성물, 및, 그것을 이용한 프리프레그, 수지 부가 필름, 수지 부가 금속박, 금속 클래드 적층판 및 배선 기판
JP2022022261A (ja) 樹脂組成物
CN115768626A (zh) 粘接剂组合物、粘接片、层叠体及印刷线路板
JP6988588B2 (ja) 樹脂組成物、シート状積層材料、プリント配線板及び半導体装置
WO2022054862A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2024106433A1 (ja) 絶縁接着層を含む多層構造体及びその硬化物
WO2024009831A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板