WO2022059625A1 - 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 - Google Patents

樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 Download PDF

Info

Publication number
WO2022059625A1
WO2022059625A1 PCT/JP2021/033408 JP2021033408W WO2022059625A1 WO 2022059625 A1 WO2022059625 A1 WO 2022059625A1 JP 2021033408 W JP2021033408 W JP 2021033408W WO 2022059625 A1 WO2022059625 A1 WO 2022059625A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
compound
resin
styrene
Prior art date
Application number
PCT/JP2021/033408
Other languages
English (en)
French (fr)
Inventor
誼群 王
宏典 齋藤
博晴 井上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/026,292 priority Critical patent/US20230357558A1/en
Priority to JP2022550534A priority patent/JPWO2022059625A1/ja
Priority to CN202180062840.9A priority patent/CN116323725A/zh
Publication of WO2022059625A1 publication Critical patent/WO2022059625A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Definitions

  • the present invention relates to a resin composition, and a prepreg using the resin composition, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring substrate.
  • the substrate material for forming the base material of the wiring board used in various electronic devices is required to have a low dielectric constant and a low dielectric loss tangent in order to increase the signal transmission speed and reduce the loss during signal transmission. ..
  • Polyphenylene ether has excellent dielectric properties such as low dielectric constant and dielectric loss tangent, and excellent dielectric properties such as dielectric constant and dielectric loss tangent even in the high frequency band (high frequency region) from MHz band to GHz band. It has been known. Therefore, polyphenylene ether is being studied for use as, for example, a molding material for high frequencies. More specifically, it is preferably used as a substrate material for constituting a base material of a wiring board provided in an electronic device using a high frequency band.
  • Patent Document 1 discloses a resin composition containing a modified polyphenylene ether compound and a styrene-based thermoplastic elastomer having a weight average molecular weight of 10,000 or more.
  • Patent Document 1 According to the resin composition as disclosed in Patent Document 1, it is reported that the film forming ability can be imparted without impairing the low dielectric property and heat resistance.
  • the present invention has been made in view of such circumstances, and has excellent low dielectric properties, low thermal expansion rate, high Tg, and other properties in the cured product, and also has circuit filling properties when used as a substrate material. It is an object of the present invention to provide an excellent resin composition. Another object of the present invention is to provide a prepreg using the resin composition, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board.
  • the resin composition according to one aspect of the present invention includes a styrene-based block copolymer, a radically polymerizable compound, a compound (A) represented by the following formula (1), and a compound represented by the following formula (2). (B) and at least selected from the group consisting of the compound (C) having at least one group selected from the groups represented by the following formulas (3-1) and (3-2). It is characterized by containing one free radical compound.
  • X A and X B are independently hydrogen atom, amino group, cyano group, hydroxy group, isothiocyanate, methoxy group, carboxy group, carbonyl group and amide group, respectively. , Or a benzoyloxy group.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a prepreg according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of a metal-clad laminate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a wiring board according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the metal leaf with resin according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the resin film according to the embodiment of the present invention.
  • the resin composition according to the embodiment of the present invention (hereinafter, also simply referred to as a resin composition) includes a styrene-based block copolymer, a radically polymerizable compound, and a compound (A) represented by the above formula (1).
  • heat resistance is one of the factors for further improvement in a material having a high Tg of a cured product.
  • the fact that the material has a high Tg in the cured product has an advantage that the coefficient of thermal expansion of the material in a higher temperature region is small. Generally, when the temperature exceeds the glass transition temperature, the thermal expansion rapidly increases. Therefore, when the glass transition temperature is low, the coefficient of thermal expansion increases in the high temperature region exceeding the glass transition temperature. If the coefficient of thermal expansion in the high temperature region is large, the reliability of interlayer connection (barrel crack generation of through holes, etc.) in the wiring board may deteriorate, and the printed circuit board may not function.
  • a resin composition which has excellent low dielectric properties, low thermal expansion rate, high Tg and other properties in the cured product, and also has excellent circuit filling properties when used as a substrate material. Can be done. Further, by using the resin composition, it is possible to provide a prepreg, a film with a resin, a metal foil with a resin, a metal-clad laminate, and a wiring board having excellent characteristics.
  • the resin composition of the present embodiment contains a styrene-based block copolymer. This is considered to have advantages such as further lowering the dielectric constant of the resin and improving the handling property (film property) when the resin composition or the semi-cured product (B stage) of the resin composition is formed.
  • the styrene-based block copolymer used in the present embodiment is, for example, a copolymer obtained by block-polymerizing a monomer containing a styrene-based monomer.
  • the styrene-based copolymer can be obtained, for example, by block-polymerizing one or more of styrene-based monomers and one or more of other monomers copolymerizable with the styrene-based monomers. Examples thereof include copolymers.
  • Examples of the styrene-based monomer include styrene and styrene derivatives.
  • the weight average molecular weight of the styrene-based block copolymer of the present embodiment is preferably about 10,000 to 200,000, more preferably about 50,000 to 180,000.
  • the weight average molecular weight may be measured by a general molecular weight measuring method, and specifically, a value measured by gel permeation chromatography measurement (GPC: Gel Permeation Chromatography). And so on.
  • the styrene-based block polymer of the present embodiment is preferably a styrene-based block copolymer having a hardness of 20 to 100. Further, the hardness of the styrene-based block copolymer is preferably 30 to 80. By containing a styrene-based block copolymer having a hardness within the above range, it is considered that when cured, a resin composition having a lower dielectric property and a lower coefficient of thermal expansion can be obtained. ..
  • the hardness may be, for example, a durometer hardness or the like, and more specifically, a durometer hardness or the like measured using a type A durometer compliant with JIS K6253.
  • styrene-based block copolymer As a specific styrene-based block copolymer, conventionally known ones can be widely used and are not particularly limited, but for example, a structural unit represented by the following formula (5) (structure derived from a styrene-based monomer) can be used. Examples thereof include polymers contained in molecules.
  • R 2 to R 4 independently represent a hydrogen atom or an alkyl group
  • R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, or an isopropenyl group.
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • the alkenyl group is preferably an alkenyl group having 1 to 10 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • the styrene-based block copolymer of the present embodiment preferably contains at least one structural unit represented by the above formula (5), but may contain two or more different types in combination. Further, it may include a structure in which the structural unit represented by the above formula (5) is repeated.
  • the styrene-based block copolymer of the present embodiment has the following formula (6) as another monomer copolymerizable with the styrene-based monomer in addition to the structural unit represented by the above formula (5).
  • )-(8) may have at least one of the structural units.
  • R 6 to R 23 each independently represent any group selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, and an isopropenyl group. ..
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • the alkenyl group is preferably an alkenyl group having 1 to 10 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • the styrene-based block copolymer of the present embodiment preferably contains at least one structural unit represented by the above formulas (6) to (8), and contains two or more different types in combination. You may be. Further, it may include a structure in which the structural units represented by the above formulas (6), (7) and / or formula (8) are repeated.
  • the structural unit represented by the above formula (5) more specifically, for example, the structural unit represented by the following formulas (9) to (11) can be mentioned.
  • the structural unit represented by the above formula (5) may be one of these alone or a combination of two or more different types. Further, a structure or the like in which the structural units represented by the following formulas (9) to (11) are repeated may be used.
  • examples of the structural unit represented by the above formula (6) include structural units represented by the following formulas (12) to (18).
  • the structural unit represented by the above formula (6) may be one of these alone or a combination of two or more different types. Further, a structure or the like in which the structural units represented by the following formulas (12) to (18) are repeated may be used.
  • the structural unit represented by the above formula (7) more specifically, for example, the structural unit represented by the following formulas (19) to (20) can be mentioned.
  • the structural unit represented by the above formula (7) may be one of these alone or a combination of two or more different types. Further, a structure or the like in which the structural units represented by the following formulas (19) to (20) are repeated may be used.
  • structural unit represented by the above formula (8) more specifically, for example, structural units represented by the following formulas (21) to (22) can be mentioned.
  • the structural unit represented by the above formula (8) may be one of these alone or a combination of two or more different types. Further, a structure in which the structural units represented by the following formulas (21) to (22) are repeated may be used.
  • styrene-based block copolymer As a preferable example of the styrene-based block copolymer, one or more styrene-based monomers such as styrene, styrene ethylene, vinyl toluene, ⁇ -methyl styrene, isopropenyl toluene, divinyl benzene, and allyl styrene are polymerized or copolymerized. Examples thereof include the copolymer thus obtained.
  • methylstyrene (ethylene / butylene) methylstyrene copolymer methylstyrene (ethylene-ethylene / propylene) methylstyrene copolymer, styreneisoprene copolymer, styreneisoprenestyrene copolymer, styrene (ethylene).
  • styrene copolymer examples include syrup.
  • the above-exemplified one may be used alone, or two or more kinds thereof may be used in combination.
  • the styrene-based block copolymer contains at least one of the structural units represented by the formulas (9) to (11), its mass fraction (that is, the content of the styrene-derived structural unit) is determined. It is preferably about 10 to 60%, more preferably about 20 to 40%, based on the whole polymer. As a result, there is an advantage that better dielectric properties can be obtained when the resin composition is cured while maintaining good compatibility with the radically polymerizable compound.
  • styrene-based block copolymers of the present embodiment can also be used, for example, "Septon V9827” and “Septon 2063” manufactured by Kuraray Corporation, and “Tough Tech (registered trademark)” manufactured by Asahi Kasei Corporation. Examples thereof include “H1052”, “Tough Tech (registered trademark) H1041” and “Tough Tech (registered trademark) H1221", and “Dynaroon9901P” manufactured by JSR Corporation.
  • the radically polymerizable compound used in the present embodiment is not particularly limited as long as it is a radically polymerizable compound, and includes a polyphenylene ether compound terminally modified to a substituent having a carbon-carbon unsaturated double bond. It is preferable to be.
  • the polyphenylene ether compound that can be used in the present embodiment is preferably a modified polyphenylene ether compound that can exhibit excellent low dielectric properties when cured, and is a polyphenylene ether compound having a group represented by the following formula (4). It is preferable to have. It is considered that the inclusion of such a modified polyphenylene ether compound provides a resin composition capable of obtaining a cured product having low dielectric properties and high heat resistance.
  • R 1 represents a hydrogen atom or an alkyl group.
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • the polyphenylene ether compound of the present embodiment may be a polyphenylene ether compound having a group represented by the following formula (23).
  • p represents an integer of 0 to 10.
  • Z represents an arylene group.
  • R 1 to R 3 are independent of each other. That is, R 24 to R 26 may be the same group or different groups, respectively. Further, R 24 to R 26 represent a hydrogen atom or an alkyl group.
  • the above-mentioned Z allylene group is not particularly limited.
  • the arylene group include a monocyclic aromatic group such as a phenylene group and a polycyclic aromatic group in which the aromatic is not a monocyclic but a polycyclic aromatic such as a naphthalene ring.
  • the arylene group also includes a derivative in which the hydrogen atom bonded to the aromatic ring is replaced with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. ..
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • Examples of the substituent represented by the above formula (4) include an acrylate group and a methacrylate group. Moreover, as a preferable specific example of the substituent represented by the above formula (23), for example, a substituent containing a vinylbenzyl group and the like can be mentioned. Examples of the substituent containing the vinylbenzyl group include a substituent represented by the following formula (24).
  • a vinylbenzyl group such as a p-ethenylbenzyl group and an m-ethenylbenzyl group, a vinylphenyl group, an acrylate group, a methacrylate group and the like.
  • the polyphenylene ether compound has a polyphenylene ether chain in the molecule, and for example, it is preferable that the repeating unit represented by the following formula (25) is contained in the molecule.
  • t represents 1 to 50.
  • R 27 to R 30 are independent of each other. That is, R 27 to R 30 may be the same group or different groups, respectively.
  • R 27 to R 30 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Of these, a hydrogen atom and an alkyl group are preferable.
  • R 27 to R 30 Specific examples of the functional groups listed in R 27 to R 30 include the following.
  • the alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include a vinyl group, an allyl group, a 3-butenyl group and the like.
  • the alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include an ethynyl group and a propa-2-in-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, a cyclohexylcarbonyl group and the like.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specific examples thereof include an acryloyl group, a methacryloyl group, and a crotonoyl group.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specifically, for example, a propioloyl group and the like can be mentioned.
  • the weight average molecular weight (Mw) of the polyphenylene ether compound is not particularly limited. Specifically, it is preferably 500 to 5000, more preferably 800 to 4000, and even more preferably 1000 to 3000.
  • the weight average molecular weight may be measured by a general molecular weight measuring method, and specific examples thereof include values measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • t is a numerical value such that the weight average molecular weight of the polyphenylene ether compound is within such a range. It is preferable to have. Specifically, t is preferably 1 to 50.
  • the polyphenylene ether compound When the weight average molecular weight of the polyphenylene ether compound is within such a range, the polyphenylene ether has excellent low dielectric properties, and not only the heat resistance of the cured product is excellent, but also the moldability is excellent. Become. This is considered to be due to the following. When the weight average molecular weight of ordinary polyphenylene ether is within such a range, the heat resistance of the cured product tends to decrease because it has a relatively low molecular weight. In this respect, since the polyphenylene ether compound according to the present embodiment has one or more unsaturated double bonds at the ends, it is considered that a cured product having sufficiently high heat resistance can be obtained.
  • the polyphenylene ether compound when the weight average molecular weight of the polyphenylene ether compound is within such a range, the polyphenylene ether compound has a relatively low molecular weight and is considered to be excellent in moldability. Therefore, it is considered that such a polyphenylene ether compound is not only excellent in heat resistance of the cured product but also excellent in moldability.
  • the average number of substituents (number of terminal functional groups) at the molecular ends per molecule of the polyphenylene ether compound is not particularly limited. Specifically, the number is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain sufficient heat resistance of the cured product. Further, if the number of terminal functional groups is too large, the reactivity becomes too high, and there is a possibility that problems such as deterioration of the storage stability of the resin composition and deterioration of the fluidity of the resin composition may occur. .. That is, when such a polyphenylene ether compound is used, molding defects such as voids generated during multi-layer molding occur due to insufficient fluidity, etc., and it is difficult to obtain a highly reliable printed wiring board. Problems may occur.
  • the number of terminal functional groups of the polyphenylene ether compound may be a numerical value representing the average value of the substituents per molecule of all the modified polyphenylene ether compounds present in 1 mol of the polyphenylene ether compound.
  • the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether compound and calculating the amount of decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before this modification is the number of terminal functional groups.
  • the method for measuring the number of hydroxyl groups remaining in the modified polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) associated with the hydroxyl group to the solution of the modified polyphenylene ether compound and measure the UV absorbance of the mixed solution. By doing so, it can be obtained.
  • a quaternary ammonium salt tetraethylammonium hydroxide
  • the intrinsic viscosity of the polyphenylene ether compound of this embodiment is not particularly limited. Specifically, it may be 0.03 to 0.12 dl / g, preferably 0.04 to 0.11 dl / g, and more preferably 0.06 to 0.095 dl / g. .. If this intrinsic viscosity is too low, the molecular weight tends to be low, and it tends to be difficult to obtain low dielectric properties such as low dielectric constant and low dielectric loss tangent. Further, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, if the intrinsic viscosity of the polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be realized.
  • the intrinsic viscosity here is the intrinsic viscosity measured in methylene chloride at 25 ° C., more specifically, for example, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) is used with a viscometer. These are the values measured in. Examples of this viscometer include AVS500 Visco System manufactured by Shott.
  • polyphenylene ether compound of the present embodiment examples include modified polyphenylene ether compounds represented by the following formulas (26) to (28). Moreover, as the polyphenylene ether compound of this embodiment, these modified polyphenylene ether compounds may be used alone, or these modified polyphenylene ether compounds may be used in combination.
  • R 30 to R 37 , R 38 to R 45 , and R 46 to R 49 are independent of each other. That is, R 30 to R 37 , R 38 to R 45 , and R 46 to R 49 may be the same group or different groups, respectively.
  • R 30 to R 37 , R 38 to R 45 and R 46 to R 49 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • s indicates an integer from 1 to 100.
  • R 30 to R 37 , R 38 to R 45 , and R 46 to R 49 include the following.
  • the alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group and the like.
  • the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include a vinyl group, an allyl group, a 3-butenyl group and the like.
  • the alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples thereof include an ethynyl group and a propa-2-in-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable. .. Specific examples thereof include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, a cyclohexylcarbonyl group and the like.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable. .. Specific examples thereof include an acryloyl group, a methacryloyl group, and a crotonoyl group.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable. .. Specifically, for example, a propioloyl group and the like can be mentioned.
  • a and B indicate repeating units represented by the following formulas (29) and the following formulas (30), respectively.
  • Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
  • m and n represent 0 to 20, respectively. Further, it is preferable that m and n represent numerical values in which the total value of m and n is 1 to 30. Therefore, it is more preferable that m indicates 0 to 20, n indicates 0 to 20, and the total of m and n indicates 1 to 30.
  • R 50 to R 53 and R 54 to R 57 are independent of each other, and R 50 to R 53 and R 54 to R 57 are each based on the same group. It may be a different group or a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • Y is a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms, as described above.
  • Examples of Y include groups represented by the following formula (31).
  • R 58 and R 59 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group include a methyl group and the like.
  • the group represented by the formula (31) include a methylene group, a methylmethylene group, a dimethylmethylene group and the like, and among these, a dimethylmethylene group is preferable.
  • X 1 to X 3 are, for example, independently represented by the substituents represented by the above formula (4) and / or the above formula (23). Indicates a substituent.
  • X 1 to X 3 may be the same substituent or may be different substituents.
  • modified polyphenylene ether compound represented by the above formula (26) for example, a modified polyphenylene ether compound represented by the following formula (32) can be mentioned.
  • modified polyphenylene ether compound represented by the formula (26) include, for example, the modified polyphenylene ether compound represented by the following formula (33) and the modified polyphenylene represented by the following formula (34).
  • examples include ether compounds.
  • m and n have the same meaning as m and n in the formula (29) and the formula (30).
  • R 24 to R 26 , p and Z are the same as R 24 to R 26 , p and Z in the above formula (23), respectively.
  • Y is the same as Y in the above formula (27).
  • R 1 is the same as R 1 in the above formula (4).
  • the modified polyphenylene ether compounds represented by the formulas (32) to (34) preferably have a group represented by the above formula (4) at the end. ..
  • Examples of the method for synthesizing the polyphenylene ether compound used in the present embodiment include a method for synthesizing a polyphenylene ether compound terminally modified by a group represented by the formula (4) and / or the formula (23). More specifically, a method of reacting a polyphenylene ether with a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded can be mentioned.
  • Examples of the compound in which the substituent having a carbon-carbon unsaturated double bond and the halogen atom are bonded include the substituent represented by the above formulas (4), (23) and (24) and the halogen atom. Examples thereof include bound compounds. Specific examples of the halogen atom include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, and among these, a chlorine atom is preferable. More specific examples of the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include p-chloromethylstyrene and m-chloromethylstyrene.
  • the polyphenylene ether as a raw material is not particularly limited as long as it can finally synthesize a predetermined modified polyphenylene ether compound.
  • a polyphenylene ether composed of at least one of 2,6-dimethylphenol, bifunctional phenol and trifunctional phenol, and polyphenylene ether such as poly (2,6-dimethyl-1,4-phenylene oxide) can be used. Examples thereof include those having a main component.
  • the bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in the molecule, and examples thereof include tetramethylbisphenol A and the like.
  • the trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in the molecule.
  • Examples of the method for synthesizing the polyphenylene ether compound of the present embodiment include the methods described above. Specifically, the above-mentioned polyphenylene ether and a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded are dissolved in a solvent and stirred. By doing so, the polyphenylene ether is reacted with the compound in which the substituent having a carbon-carbon unsaturated double bond and the halogen atom are bonded to obtain the polyphenylene ether compound used in the present embodiment.
  • the alkali metal hydroxide functions as a dehalogenating agent, specifically, a dehydrochlorating agent. That is, the alkali metal hydroxide desorbs hydrogen halide from the phenol group of the polyphenylene ether and the compound in which the substituent having a carbon-carbon unsaturated double bond and the halogen atom are bonded to do so. Thereby, it is considered that the substituent having a carbon-carbon unsaturated double bond is bonded to the oxygen atom of the phenol group instead of the hydrogen atom of the phenol group of the polyphenylene ether.
  • the alkali metal hydroxide is not particularly limited as long as it can act as a dehalogenating agent, and examples thereof include sodium hydroxide. Further, the alkali metal hydroxide is usually used in the state of an aqueous solution, and specifically, it is used as an aqueous solution of sodium hydroxide.
  • Reaction conditions such as reaction time and reaction temperature differ depending on the compound or the like in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded, and the above-mentioned reaction may proceed favorably.
  • the reaction temperature is preferably room temperature to 100 ° C, more preferably 30 to 100 ° C.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
  • the solvent used in the reaction can dissolve the polyphenylene ether and the compound in which the substituent having a carbon-carbon unsaturated double bond and the halogen atom are bonded, and the polyphenylene ether and the carbon-carbon unsaturated double bond can be dissolved. It is not particularly limited as long as it does not inhibit the reaction between the substituent having a bond and the compound to which the halogen atom is bonded. Specific examples thereof include toluene and the like.
  • the above reaction is preferably carried out in the presence of not only the alkali metal hydroxide but also the phase transfer catalyst. That is, the above reaction is preferably carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst. By doing so, it is considered that the above reaction proceeds more preferably. This is considered to be due to the following.
  • the phase transfer catalyst has a function of taking up an alkali metal hydroxide and is soluble in both a phase of a polar solvent such as water and a phase of a non-polar solvent such as an organic solvent. It is thought that it is a catalyst that can move.
  • aqueous sodium hydroxide solution when used as the alkali metal hydroxide and an organic solvent such as toluene, which is incompatible with water, is used as the solvent, the aqueous sodium hydroxide solution is subjected to the reaction. It is considered that the solvent and the aqueous sodium hydroxide solution are separated even when the solution is added dropwise to the solvent, and it is difficult for the sodium hydroxide to transfer to the solvent. In that case, it is considered that the sodium hydroxide aqueous solution added as the alkali metal hydroxide is less likely to contribute to the reaction promotion.
  • the reaction when the reaction is carried out in the presence of the alkali metal hydroxide and the phase transfer catalyst, the alkali metal hydroxide is transferred to the solvent in a state of being incorporated into the phase transfer catalyst, and the aqueous sodium hydroxide solution reacts. It is thought that it will be easier to contribute to promotion. Therefore, it is considered that the above reaction proceeds more preferably when the reaction is carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst.
  • phase transfer catalyst is not particularly limited, and examples thereof include quaternary ammonium salts such as tetra-n-butylammonium bromide.
  • the resin composition used in this embodiment preferably contains the modified polyphenylene ether compound obtained as described above as the radically polymerizable compound.
  • the resin composition according to the present embodiment may contain a compound as exemplified below as a radically polymerizable compound.
  • a compound having an acryloyl group in the molecule a compound having a methacryloyl group in the molecule, a compound having a vinyl group in the molecule, a compound having an allyl group in the molecule, and a compound having an acenaphtylene structure in the molecule.
  • examples thereof include a compound, a compound having a maleimide group in the molecule, and an isocyanurate compound having an isocyanurate group in the molecule.
  • the compound having an acryloyl group in the molecule is an acrylate compound.
  • the acrylate compound include a monofunctional acrylate compound having one acryloyl group in the molecule and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule.
  • the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • Examples of the polyfunctional acrylate compound include diacrylate compounds such as tricyclodecanedimethanol diacrylate.
  • the compound having a methacryloyl group in the molecule is a methacrylate compound.
  • the methacrylate compound include a monofunctional methacrylate compound having one methacryloyl group in the molecule and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule.
  • the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and the like.
  • the polyfunctional methacrylate compound include a dimethacrylate compound such as tricyclodecanedimethanol dimethacrylate, and a trimethacrylate compound such as trimethylolpropane trimethacrylate.
  • the compound having a vinyl group in the molecule is a vinyl compound.
  • the vinyl compound include a monofunctional vinyl compound (monovinyl compound) having one vinyl group in the molecule and a polyfunctional vinyl compound having two or more vinyl groups in the molecule.
  • the polyfunctional vinyl compound include divinylbenzene and polybutadiene.
  • the compound having an allyl group in the molecule is an allyl compound.
  • the allyl compound include a monofunctional allyl compound having one allyl group in the molecule and a polyfunctional allyl compound having two or more allyl groups in the molecule.
  • the polyfunctional allyl compound include triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
  • the compound having an acenaphthylene structure in the molecule is an acenaphthylene compound.
  • the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes.
  • the alkyl acenaftylenes include 1-methylacenaftylene, 3-methylacenaftylene, 4-methylacenaftylene, 5-methylacenaftylene, 1-ethylacenaftylene, and 3-ethylacena.
  • Examples thereof include phthalene, 4-ethylacenaftylene, 5-ethylacenaftylene and the like.
  • Examples of the halogenated acenaphthylenes include 1-chloroacenaphthylene, 3-chloroacenaftylene, 4-chloroacenaftylene, 5-chloroacenaftylene, 1-bromoacenaftylene and 3-bromoacenaphthylene. Examples thereof include len, 4-bromoacenaphthylene and 5-bromoacenaphthylene.
  • phenylacenaftylenes examples include 1-phenylacenaftylene, 3-phenylacenaftylene, 4-phenylacenaftylene, 5-phenylacenaftylene and the like.
  • the acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule as described above, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule. ..
  • the compound having a maleimide group in the molecule is a maleimide compound.
  • the maleimide compound include a monofunctional maleimide compound having one maleimide group in the molecule, a polyfunctional maleimide compound having two or more maleimide groups in the molecule, and a modified maleimide compound.
  • the modified maleimide compound include a modified maleimide compound in which a part of the molecule is modified with an amine compound, a modified maleimide compound in which a part of the molecule is modified with a silicone compound, and a part of the molecule in an amine compound. And modified maleimide compounds modified with silicone compounds.
  • the compound having an isocyanurate group in the molecule is an isocyanurate compound.
  • the isocyanurate compound include compounds having an alkenyl group in the molecule (alkenyl isocyanurate compound), and examples thereof include trialkenyl isocyanurate compounds such as triallyl isocyanurate (TAIC).
  • radically polymerizable compound other than the above-mentioned modified polyphenylene ether compound an allyl compound, a vinyl compound, a maleimide compound and the like are preferably exemplified.
  • the above-mentioned radically polymerizable compound may be used alone or in combination of two or more.
  • the terminal-modified polyphenylene ether compound When two or more kinds are combined, it is preferable to contain one or more kinds of the above-mentioned terminal-modified polyphenylene ether compound and, for example, an allyl compound having an allyl group in the molecule as described above.
  • an allyl compound an allyl isocyanurate compound having two or more allyl groups in the molecule is preferable, and triallyl isocyanurate (TAIC) is more preferable.
  • TAIC triallyl isocyanurate
  • the free radical compound used in this embodiment includes the compound (A) represented by the following formula (1), the compound (B) represented by the following formula (2), and the following formulas (3-1) and formula (1). It contains at least one selected from the group consisting of the compound (C) having two or more groups at least one selected from the groups represented by 3-2).
  • the resin composition of the present embodiment has excellent formability (resin flowability capable of filling a circuit pattern) while having properties such as low dielectric properties and high Tg. That is, it is considered that the circuit filling property) can be exhibited.
  • X A and X B are independently hydrogen atom, amino group, cyano group, hydroxy group, isothiocyanate, methoxy group, carboxy group, carbonyl group and amide group, respectively. , Or a benzoyloxy group.
  • the compound (C) having two or more at least one group selected from the groups represented by the formulas (3-1) and (3-2) is not particularly limited, and is not particularly limited to the formula (3-). Whether it is a compound having both the groups represented by 1) and the formula (3-2) or a compound having two or more groups represented by the formula (3-1), the formula (3-2) ) May be a compound having two or more groups. Specific examples thereof include compounds represented by the following formula (3-3).
  • XC represents an alkylene group, an aromatic structure, a carbonyl group, an amide group or an ether bond.
  • More specific free radical compounds preferably used in the present embodiment include 4-amino-2,2,6,6-tetramethylpiperidin 1-oxyl free radical, 4-acetamide-2,2,6,6. -Tetramethylpiperidine 1-oxyl free radical, 4-carboxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-cyano-2,2,6,6-tetramethylpiperidine 1-oxyl free Radical, 4-glycidyloxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy-2 , 2,6,6-Tetramethylpiperidin 1-oxylbenzoate free radical, 4-isothiocianato-2,2,6,6-tetramethylpiperidine1-oxyl free radical, 4- (2-iodoacetamide) -2, 2,6,6-Tetramethylpiperidin 1-oxyl free radical, 4- [2- [2- (4-iodophenoxy) e
  • the free radical compound as described above in this embodiment a commercially available one can be used, and it can be obtained from, for example, Tokyo Chemical Industry Co., Ltd.
  • the resin composition according to the present embodiment may further contain an inorganic filler.
  • the inorganic filler include those added to enhance heat resistance and flame retardancy of the cured product of the resin composition, and the present invention is not particularly limited. It is considered that the inclusion of the inorganic filler can further enhance the heat resistance, flame retardancy and the like, and suppress the increase in the coefficient of thermal expansion.
  • metal oxides such as alumina, titanium oxide, and mica
  • metal hydroxides such as aluminum hydroxide and magnesium hydroxide.
  • examples thereof include talc, aluminum borate, barium sulfate, calcium carbonate and the like.
  • silica, mica, and talc are preferable, and spherical silica is more preferable.
  • the inorganic filler may be used alone or in combination of two or more.
  • the inorganic filler as described above may be used as it is, or may be surface-treated with an epoxysilane type, vinylsilane type, methacrylicsilane type, or phenylaminosilane type silane coupling agent.
  • silane coupling agent it can be used by adding it to the filler by an integral blending method instead of the method of surface-treating the filler in advance.
  • the resin composition according to the present embodiment may contain a reaction initiator (initiator).
  • the resin composition can proceed with a curing reaction even if it does not contain a reaction initiator.
  • a reaction initiator may be added.
  • the reaction initiator is not particularly limited as long as it can accelerate the curing reaction of the resin composition. Specific examples thereof include metal oxides, azo compounds, peroxides and the like.
  • metal oxide examples include a carboxylic acid metal salt and the like.
  • peroxide examples include ⁇ , ⁇ '-di (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexine, benzoyl peroxide, 3 , 3', 5,5'-tetramethyl-1,4-diphenoquinone, chloranyl, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, azobisisobutyronitrile, etc. Can be mentioned.
  • azo compound examples include 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (N-butyl-2-methylpropionamide), and 2,2'-.
  • examples thereof include azobis (2-methylbutyronitrile).
  • ⁇ , ⁇ '-di (t-butylperoxy) diisopropylbenzene is preferably used as a preferable reaction initiator. Since ⁇ , ⁇ '-di (t-butylperoxy) diisopropylbenzene has low volatility, it does not volatilize during drying or storage, and has good stability. Further, since ⁇ , ⁇ '-di (t-butylperoxy) diisopropylbenzene has a relatively high reaction start temperature, it suppresses the promotion of the curing reaction at a time when curing is not necessary, such as during prepreg drying. Can be done. By suppressing this curing reaction, it is possible to suppress a decrease in the storage stability of the resin composition.
  • reaction initiator as described above may be used alone or in combination of two or more.
  • the content of the free radical compound is preferably 0.001 to 1 part by mass with respect to 100 parts by mass in total of the styrene-based block copolymer and the radically polymerizable compound in the resin composition. It is more preferably 0.01 to 0.5 parts by mass, and further preferably 0.001 to 0.2 parts by mass.
  • the content of the free radical compound is within the above range, a cured product having a low dielectric property, a high Tg, and a low coefficient of thermal expansion can be obtained, and a resin composition having excellent moldability can be obtained more reliably. Conceivable.
  • the content of the styrene-based block copolymer is preferably 10 to 60 parts by mass, preferably 15 to 50 parts by mass with respect to 100 parts by mass of the resin component (organic component) in the resin composition. More preferably, it is 20 to 40 parts by mass. That is, the content of the styrene-based block copolymer is preferably 10 to 60% by mass with respect to the components other than the inorganic filler (inorganic component) in the resin composition.
  • the content of the radically polymerizable compound is preferably 30 to 90 parts by mass, more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the resin component (organic component) in the resin composition. , 50 to 70 parts by mass is more preferable. That is, the content of the radically polymerizable compound is preferably 30 to 90% by mass with respect to the components other than the inorganic filler (inorganic component) in the resin composition.
  • the content of the preferred radically polymerizable compound is 10 parts by mass of the resin component (organic component) in the resin composition. It is preferably about 50 parts by mass, more preferably 20 to 50 parts by mass, and even more preferably 30 to 40 parts by mass.
  • the radically polymerizable compound contains a radically polymerizable compound (allyl compound or the like) other than the above, the content of these other radically polymerizable compounds is 100 parts by mass of the resin component (organic component) in the resin composition. On the other hand, it is preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass.
  • the content thereof is not particularly limited, but is, for example, 0.01 with respect to 100 parts by mass of the resin component (organic component) in the resin composition. It is preferably up to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and even more preferably 0.1 to 3 parts by mass. If the content of the reaction initiator is too small, the curing reaction of the resin composition tends not to be suitably started. Further, if the content of the initiator is too large, the dielectric loss tangent of the obtained cured product of the prepreg becomes large, and it tends to be difficult to exhibit excellent low dielectric properties. Therefore, if the content of the reaction initiator is within the above range, a cured prepreg having excellent low dielectric properties can be obtained.
  • the content (filler content) thereof is preferably 30 to 300% by mass, preferably 50 to 200% by mass, based on the entire resin composition. More preferably, it is by mass%.
  • the resin composition according to the present embodiment may contain components (other components) other than the above-mentioned components, if necessary, as long as the effects of the present invention are not impaired.
  • Other components contained in the resin composition according to the present embodiment include, for example, a curing agent, a silane coupling agent, a flame retardant, an antifoaming agent, an antioxidant, a heat stabilizer, an antistatic agent, and an ultraviolet absorber.
  • Additives such as dyes, pigments, dispersants and lubricants may be further included.
  • the resin composition of the present embodiment may contain other thermosetting resins such as an epoxy resin and a phenol resin in addition to the polyphenylene ether compound, the allyl compound, and the styrene-based block copolymer. good.
  • FIG. 1 is a schematic cross-sectional view showing an example of a prepreg 1 according to an embodiment of the present invention.
  • each reference numeral is 1 prepreg, 2 resin composition or semi-cured product of resin composition, 3 fibrous base material, 11 metal-clad laminate, 12 insulating layer, 13 metal foil, 14 wiring. , 21 Wiring board, 31 Metal foil with resin, 32, 42 Resin layer, 41 Film with resin, 43 Support film.
  • the prepreg 1 includes the resin composition containing the heat-expandable microcapsules or the semi-cured product 2 of the resin composition, and the fibrous base material 3.
  • the prepreg 1 include those in which the fibrous base material 3 is present in the resin composition or the semi-cured product 2 thereof. That is, the prepreg 1 includes the resin composition or a semi-cured product thereof, and the fibrous base material 3 present in the resin composition or the semi-cured product 2 thereof.
  • the "semi-cured product” is a state in which the resin composition is partially cured to the extent that it can be further cured. That is, the semi-cured product is a semi-cured (B-staged) resin composition. For example, when the resin composition is heated, the viscosity gradually decreases first, then curing starts, and the viscosity gradually increases. In such a case, the semi-curing state includes a state between the time when the viscosity starts to increase and the time before it is completely cured.
  • the prepreg obtained by using the resin composition according to the present embodiment may include the semi-cured product of the resin composition as described above, or the resin composition which has not been cured. It may be provided with itself. That is, it may be a prepreg comprising a semi-cured product of the resin composition (the resin composition of the B stage) and a fibrous base material, or the resin composition before curing (the resin composition of the A stage). It may be a prepreg including a thing) and a fibrous base material. Specific examples thereof include those in which a fibrous base material is present in the resin composition.
  • the resin composition or a semi-cured product thereof may be a heat-dried resin composition.
  • the resin composition according to the present embodiment is often prepared in the form of a varnish and used as a resin varnish when manufacturing the prepreg, a metal leaf with a resin, a metal-clad laminate, or the like described later.
  • a resin varnish is prepared, for example, as follows.
  • each component that can be dissolved in an organic solvent such as a resin component and a reaction initiator is put into an organic solvent and dissolved. At this time, it may be heated if necessary.
  • an inorganic filler or the like which is a component that does not dissolve in an organic solvent, is added and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill or the like until a predetermined dispersion state is obtained, thereby forming a varnish-like resin composition.
  • the thing is prepared.
  • the organic solvent used here is not particularly limited as long as it dissolves the styrene-based block copolymer, the radically polymerizable compound and the like and does not inhibit the curing reaction. Specific examples thereof include toluene, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate and the like. These may be used alone or in combination of two or more.
  • the fibrous base material 3 is impregnated with the resin varnish-like resin composition 2 and then dried.
  • the method can be mentioned.
  • the fibrous substrate used in producing the prepreg include glass cloth, aramid cloth, polyester cloth, LCP (liquid crystal polymer) non-woven fabric, glass non-woven fabric, aramid non-woven fabric, polyester non-woven fabric, and pulp paper. And linter paper and the like.
  • a glass cloth is used, a laminated board having excellent mechanical strength can be obtained, and a flattened glass cloth is particularly preferable.
  • the glass cloth used in the present embodiment is not particularly limited, and examples thereof include low dielectric constant glass cloths such as E glass, S glass, NE glass, Q glass, L glass, L2 glass, and T glass.
  • the flattening process can be performed by, for example, continuously pressing the glass cloth with a press roll at an appropriate pressure to flatten the yarn.
  • the thickness of the fibrous base material for example, one having a thickness of 0.01 to 0.3 mm can be generally used.
  • the impregnation of the resin varnish (resin composition 2) into the fibrous base material 3 is performed by dipping and coating. This impregnation can be repeated multiple times as needed. Further, at this time, it is also possible to repeat impregnation using a plurality of resin varnishes having different compositions and concentrations to finally adjust the desired composition (content ratio) and the amount of resin.
  • the fibrous base material 3 impregnated with the resin varnish (resin composition 2) is heated under desired heating conditions, for example, 80 ° C. or higher and 180 ° C. or lower for 1 minute or longer and 10 minutes or shorter.
  • desired heating conditions for example, 80 ° C. or higher and 180 ° C. or lower for 1 minute or longer and 10 minutes or shorter.
  • the solvent is volatilized from the varnish and the solvent is reduced or removed to obtain a pre-cured (A stage) or semi-cured (B stage) prepreg 1.
  • the resin-attached metal foil 31 of the present embodiment has a structure in which a resin layer 32 containing the above-mentioned resin composition or a semi-cured product of the resin composition and a metal foil 13 are laminated.
  • the metal foil with resin of the present embodiment may be a metal foil with resin including the resin layer containing the resin composition (the resin composition of the A stage) before curing and the metal foil. It may be a metal foil with a resin including a resin layer containing a semi-cured product of the resin composition (the resin composition of the B stage) and a metal foil.
  • Examples of the method for producing such a metal leaf 31 with a resin include a method in which the resin composition in the form of a resin varnish as described above is applied to the surface of a metal leaf 13 such as a copper foil and then dried.
  • Examples of the coating method include a bar coater, a comma coater, a die coater, a roll coater, a gravure coater, and the like.
  • metal foil 13 metal foil used in a metal-clad laminate, a wiring substrate, or the like can be used without limitation, and examples thereof include copper foil and aluminum foil.
  • the resin-attached film 41 of the present embodiment a resin layer 42 containing the above-mentioned resin composition or a semi-cured product of the resin composition and a film-supporting base material 43 are laminated.
  • the resin-attached film of the present embodiment may be a resin-attached film including the resin composition (the resin composition of the A stage) before curing and the film-supporting base material, or the resin composition.
  • a resin-attached film including the semi-cured product (the resin composition of the B stage) and a film-supporting base material may be used.
  • a film with a resin before curing (A stage) or in a semi-cured state (B stage) can be obtained by allowing the resin to be removed or removing the solvent.
  • the film supporting base material includes an electrically insulating film such as a polyimide film, a PET (polyethylene terephthalate) film, a polyester film, a polyparavanic acid film, a polyether ether ketone film, a polyphenylene sulfide film, an aramid film, a polycarbonate film, and a polyarylate film. And so on.
  • an electrically insulating film such as a polyimide film, a PET (polyethylene terephthalate) film, a polyester film, a polyparavanic acid film, a polyether ether ketone film, a polyphenylene sulfide film, an aramid film, a polycarbonate film, and a polyarylate film. And so on.
  • the resin composition or the semi-cured product thereof may be a dried or heat-dried resin composition as in the above-mentioned prepreg.
  • the thickness of the metal foil 13 and the film supporting base material 43 can be appropriately set according to a desired purpose.
  • a metal leaf 13 having a thickness of about 0.2 to 70 ⁇ m can be used as the metal foil 13.
  • a copper foil with a carrier provided with a release layer and a carrier may be used in order to improve handleability.
  • the application of the resin varnish to the metal foil 13 or the film supporting base material 43 is performed by coating or the like, but it can be repeated a plurality of times as necessary. Further, at this time, it is also possible to repeat the coating using a plurality of resin varnishes having different compositions and concentrations to finally adjust the desired composition (content ratio) and the amount of the resin.
  • the drying or heat-drying conditions in the method for producing the resin-attached metal foil 31 and the resin film 41 are not particularly limited, but are desired after the resin varnish-like resin composition is applied to the metal foil 13 or the film support base material 43.
  • the heating conditions of the above for example, heating at 50 to 170 ° C. for about 0.5 to 10 minutes to volatilize the solvent from the varnish to reduce or remove the solvent, thereby pre-curing (stage A) or semi-curing state (B).
  • stage A pre-curing
  • B semi-curing state
  • the metal foil 31 with resin and the resin film 41 may be provided with a cover film or the like, if necessary.
  • a cover film By providing a cover film, it is possible to prevent foreign matter from entering.
  • the cover film is not particularly limited as long as it can be peeled off without impairing the form of the resin composition, but for example, a polyolefin film, a polyester film, a TPX film, and a mold release agent for these films.
  • a film formed by providing a layer, and a paper obtained by laminating these films on a paper substrate can be used.
  • the metal-clad laminate 11 of the present embodiment is characterized by having an insulating layer 12 containing a cured product of the above-mentioned resin composition or a cured product of the above-mentioned prepreg, and a metal foil 13. do.
  • the metal foil 13 used in the metal-clad laminate 11 the same metal foil 13 as described above can be used.
  • the metal-clad laminate 11 of the present embodiment can also be manufactured by using the above-mentioned metal foil 31 with resin or resin film 41.
  • the prepreg 1, the metal foil 31 with resin, or the resin film 41 obtained as described above is used alone or.
  • a laminated body of double-sided metal foil or single-sided metal foil is formed by stacking a plurality of sheets, further stacking metal foils 13 such as copper foil on both upper and lower surfaces or one side, and laminating and integrating them by heat and pressure molding. It can be manufactured.
  • the heating and pressurizing conditions can be appropriately set depending on the thickness of the laminated board to be manufactured, the type of resin composition, and the like. For example, the temperature is 170 to 230 ° C., the pressure is 0.5 to 5.0 MPa, and the time is 60. It can be up to 150 minutes.
  • the metal-clad laminate 11 may be manufactured by forming a film-shaped resin composition on the metal foil 13 and heating and pressurizing it without using the prepreg 1 or the like.
  • the wiring board 21 of the present embodiment has an insulating layer 12 containing a cured product of the above-mentioned resin composition or a cured product of the above-mentioned prepreg, and wiring 14.
  • the resin composition of this embodiment is suitably used as a material for an insulating layer of a wiring board.
  • a method for manufacturing the wiring board 21 for example, the metal foil 13 on the surface of the metal-clad laminate 13 obtained above is etched to form a circuit (wiring), thereby forming a circuit on the surface of the laminate 13.
  • a wiring board 21 provided with a conductor pattern (wiring 14) can be obtained.
  • Examples of the method for forming a circuit include circuit formation by a semi-additive method (SAP: Semi Adaptive Process) and a modified semi-additive method (MSAP: Modified Semi Adaptive Process), in addition to the methods described above.
  • SAP Semi Adaptive Process
  • MSAP Modified Semi Adaptive Process
  • the prepreg, the film with the resin, and the metal foil with the resin obtained by using the resin composition of the present embodiment have low dielectric properties, low thermal expansion rate, and high Tg in the cured product, and have formability (circuit filling property). It is very useful for industrial use because it is excellent in plastics. Further, the metal-clad laminate and the wiring board obtained by curing them have the advantages of low dielectric property, high Tg, and excellent handleability.
  • Styrene block copolymer Styrene-based block copolymer 1: Styrene isoprene Styrene copolymer (Septon2063 manufactured by Kuraray Co., Ltd., durometer hardness: 36, content of structural units derived from styrene: 13% by mass, weight average molecular weight: 95000)
  • Styrene-based block copolymer 2 Hydrogenated styrene (ethylene / butylene) styrene copolymer (Tuftec H1052 manufactured by Asahi Kasei Co., Ltd., durometer hardness: 67, content of styrene-derived constituent units 20% by mass, weight average Molecular weight 91000)
  • PPE1 A modified polyphenylene ether in which the terminal hydroxyl group of the polyphenylene ether is modified with a methacryloyl group (represented by the above formula (34), Y in the formula (34) is represented by a dimethylmethylene group (formula (31), and the formula (31). ) Is a modified polyphenylene ether compound in which R 58 and R 59 are methyl groups), SA9000 manufactured by SABIC Innovative Plastics, weight average molecular weight Mw2000, and 2 terminal functional groups).
  • PPE2 A polyphenylene ether compound having a vinylbenzyl group (ethenylbenzyl group) at the terminal (OPE-2st 1200, Mn1200 manufactured by Mitsubishi Gas Chemicals Co., Ltd., represented by the above formula (32), where Z is a phenylene group. , R 24 -R 26 are hydrogen atoms and p is 1 polyphenylene ether compound)
  • (Free radical compound) -Free radical compound 1 4-benzoyloxy tempo, a free radical compound represented by the following formula ("H0878" manufactured by Tokyo Chemical Industry Co., Ltd.)
  • -Free radical compound 2 sebacic acid bis-tempo, free radical compound represented by the following formula ("B5642” manufactured by Tokyo Chemical Industry Co., Ltd. "
  • -Free radical compound 3 tempo, a free radical compound represented by the following formula ("T3751" manufactured by Tokyo Chemical Industry Co., Ltd.
  • Silica particles "SC2300-SVJ” Vinylsilane-treated spherical silica (manufactured by Admatex Co., Ltd.)
  • a metal leaf with resin and evaluation board A metal leaf with a resin was prepared using the resin varnishes of the examples and comparative examples prepared above.
  • the obtained varnish is applied to a metal foil (copper foil, 3EC-VLP manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 12 ⁇ m) so as to have a thickness of 20 ⁇ m, and heated at 80 ° C. for 2 minutes to form a resin. Obtained a metal leaf.
  • two of the obtained metal foils with resin were stacked so that the resin layers were in contact with each other.
  • the resin layer of the metal foil with resin was cured by heating and pressurizing under the conditions of vacuum at 200 ° C. and pressure of 4 MPa for 2 hours. This was used as an evaluation substrate (a cured product of a metal foil with resin).
  • the thickness of the resin layer (thickness other than the metal foil) on the evaluation substrate was 40 ⁇ m.
  • Tg Glass transition temperature
  • DMA dynamic viscoelasticity measurement
  • Dk Relative permittivity
  • Line expansion coefficient (CTE) The linear expansion coefficient in the plane direction of the laminated plate from which the copper foil of the evaluation substrate (cured product of the metal foil with resin) was removed was measured in the pull mode by a method according to JIS C 6481.
  • the measurement conditions are a heating rate of 10 ° C./min, the temperature range is a temperature range of less than Tg, specifically, a thermomechanical analysis (TMA) device (TMA manufactured by Hitachi High-Tech Science Corporation) at 50 to 100 ° C. / SS7000) was used for measurement.
  • TMA thermomechanical analysis
  • a cured product having a residual copper ratio of 50%, a copper wire thickness of 12 ⁇ m, a copper wire wiring width of 2 ⁇ m, and a copper pattern on a lattice of 250 mm ⁇ 250 mm was prepared.
  • a metal leaf with a resin of 250 mm ⁇ 250 mm was laminated on both sides thereof so that the resin surface was in contact with the cured product. These were sandwiched between metal plates having a thickness of about 3 mm, and heated and pressed with a press for laminating molding under the conditions shown below. As a heating condition, the temperature was raised at 6 degrees per minute from 30 degrees to 200 degrees.
  • the pressure applied to the metal leaf with resin is set to 1 MPa at the start of heating, and then when the temperature reaches 80 ° C., the pressure applied to the metal leaf with resin is 4 MPa. The metal leaf with resin was cured.
  • the present invention has a wide range of industrial applicability in the technical field of electronic materials and various devices using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本発明の一つの局面は、スチレン系ブロック共重合体と、ラジカル重合性化合物と、式(1)で表される化合物(A)、式(2)で表される化合物(B)、並びに、式(3-1)及び式(3-2)で表される基から選択される少なくとも1つの基を2つ以上有する化合物(C)からなる群より選択される少なくとも1つのフリーラジカル化合物とを含む、樹脂組成物に関する。

Description

樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
 本発明は、樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板に関する。
 近年、各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が急速に進展している。各種電子機器において用いられる配線基板の基材を構成するための基板材料には、信号の伝送速度を高め、信号伝送時の損失を低減させるために、誘電率及び誘電正接が低いことが求められる。
 ポリフェニレンエーテル(PPE)は、誘電率や誘電正接が低い等の誘電特性に優れ、MHz帯からGHz帯という高周波数帯(高周波領域)においても誘電率や誘電正接等の誘電特性が優れていることが知られている。このため、ポリフェニレンエーテルは、例えば、高周波用成形材料として用いられることが検討されている。より具体的には、高周波数帯を利用する電子機器に備えられる配線板の基材を構成するための基板材料等に好ましく用いられる。
 例えば、特許文献1には、変性ポリフェニレンエーテル化合物と、重量平均分子量が10000以上のスチレン系熱可塑性エラストマーなどを含む樹脂組成物が開示されている。
 前記特許文献1に開示されているような樹脂組成物によれば、低誘電特性、耐熱性を損なうことなく、フィルム形成能を付与できると報告されている。
 一方で、近年、さらなる薄型化が求められる基板材料において、より優れた低誘電特性が求められている。そのため、スチレン系熱可塑性エラストマーの添加量を増加させることなどが考えられるが、前記エラストマーは分子量が高いため、その含有量を増加させると、樹脂組成物を基板材料とした際の回路充填性に問題があった。
特開2006-83364号公報
 本発明は、かかる事情に鑑みてなされたものであって、その硬化物において優れた低誘電特性、低熱膨張率、高Tgなどの特性を備え、基板材料として使用する際の回路充填性にも優れる樹脂組成物を提供することを目的とする。また、前記樹脂組成物を用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線基板を提供することを目的とする。
 本発明の一態様に係る樹脂組成物は、スチレン系ブロック共重合体と、ラジカル重合性化合物と、下記式(1)で表される化合物(A)、下記式(2)で表される化合物(B)、並びに、下記式(3-1)及び式(3-2)で表される基から選択される少なくとも1つの基を2つ以上有する化合物(C)からなる群より選択される少なくとも1つのフリーラジカル化合物とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(式(1)および式(2)中、XおよびXは、それぞれ独立して、水素原子、アミノ基、シアノ基、ヒドロキシ基、イソチオシアネート、メトキシ基、カルボキシ基、カルボニル基、アミド基、または、ベンゾイルオキシ基を示す。)
図1は、本発明の一実施形態に係るプリプレグの構成を示す概略断面図である。 図2は、本発明の一実施形態に係る金属張積層板の構成を示す概略断面図である。 図3は、本発明の一実施形態に係る配線基板の構成を示す概略断面図である。 図4は、本発明の一実施形態に係る樹脂付き金属箔の構成を示す概略断面図である。 図5は、本発明の一実施形態に係る樹脂フィルムの構成を示す概略断面図である。
 本発明の実施形態に係る樹脂組成物(以下、単に樹脂組成物ともいう)は、スチレン系ブロック共重合体と、ラジカル重合性化合物と、前記式(1)で表される化合物(A)、前記式(2)で表される化合物(B)、並びに、前記式(3-1)及び式(3-2)で表される基から選択される少なくとも1つの基を2つ以上有する化合物(C)からなる群より選択される少なくとも1つのフリーラジカル化合物とを含むことを特徴とする。
 スチレン系ブロック共重合体とラジカル重合性化合物とを含むことによって、その硬化物において低誘電特性、低熱膨張率、高Tg(ガラス転移温度)を備える樹脂組成物とすることができる。一方で、スチレン系ブロック共重合体の使用により、樹脂組成物または樹脂組成物の半硬化物(Bステージ)として用いる際の樹脂流れ性が悪化し、回路充填性が懸念されるが、本実施形態のようにフリーラジカル化合物を加えることにより、樹脂の硬化開始を遅延させたり、最低溶融粘度を下げたりすることが可能となる。よって、低誘電特性や高Tgなどを維持したまま、回路充填性を向上させることができると考えられる。
 なお、材料特性として、硬化物のTgが高い材料では、耐熱性(リフロー耐熱性等)が、より向上する要因の1つとなる。また、硬化物においてTgが高い材料であることは、より高温領域での材料の熱膨張率が小さいという利点もある。一般にガラス転移温度を越える温度では、急激に熱膨張が大きくなるため、ガラス転移温度が低いと、そのガラス転移温度を越える高温領域では、熱膨張率が大きくなる。高温領域での熱膨張率が大きいと、配線基板における、例えば、層間接続信頼性(スルーホールのバレルクラック発生等)が悪くなり、プリント板として機能しない恐れがある。これは基板内の樹脂組成物の硬化物からなる絶縁層と、金属からなるスルーホールとの材質間で、高温での熱膨張率の差が大きくなるため、金属からなるスルーホールの壁面にクラックが生じ、接続信頼性が悪くなるためと考えられる。
 すなわち、本発明によれば、その硬化物において優れた低誘電特性、低熱膨張率、高Tgなどの特性を備え、基板材料として使用する際の回路充填性にも優れる樹脂組成物を提供することができる。また、前記樹脂組成物を用いることにより、前記特性に優れたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線基板を提供することができる。
 以下、本実施形態に係る樹脂組成物の各成分について、具体的に説明する。
 (スチレン系ブロック共重合体)
 本実施形態の樹脂組成物は、スチレン系ブロック共重合体を含む。それにより、さらなる樹脂の低誘電率化や、樹脂組成物または樹脂組成物の半硬化物(Bステージ)にした際のハンドリング性(フィルム性)の向上といった利点があると考えられる。
 本実施形態で使用されるスチレン系ブロック共重合体とは、例えば、スチレン系単量体を含む単量体をブロック重合して得られる共重合体である。前記スチレン系共重合体としては、例えば、スチレン系単量体の1種以上と、スチレン系単量体と共重合可能な他の単量体の1種以上とを、ブロック重合させて得られる共重合体等が挙げられる。スチレン系単量体としては、例えば、スチレン、及び、スチレン誘導体等が挙げられる。
 本実施形態のスチレン系ブロック共重合体の重量平均分子量は、10,000~200,000程度であることが好ましく、さらに50,000~180,000程度であることがより好ましい。重量平均分子量が上記範囲であれば、樹脂組成物又は樹脂組成物の半硬化状態(Bステージ)において適正な樹脂流動性を担保することが可能であるといった利点がある。なお、本明細書において、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲル浸透クロマトグラフィー測定(GPC:Gel Permeation Chromatography)を用いて測定した値等が挙げられる。
 好ましい実施形態において、本実施形態のスチレン系ブロック重合体は、硬さが20~100のスチレン系ブロック共重合体でることが好ましい。さらに、スチレン系ブロック共重合体の硬さは、30~80であることが好ましい。硬さが前記範囲内であるスチレン系ブロック共重合体を含有することによって、硬化させると、より誘電特性が低く、かつ、熱膨張係数の低い硬化物となる樹脂組成物が得られると考えられる。
 なお、前記硬さは、例えば、デュロメータ硬さ等が挙げられ、より具体的には、JIS K 6253に準拠のタイプAデュロメータを用いて測定したデュロメータ硬さ等が挙げられる。
 具体的なスチレン系ブロック共重合体としては、従来公知のものを広く使用でき、特に限定されないが、例えば、下記式(5)で表される構造単位(スチレン系単量体由来の構造)を分子中に有する重合体等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(5)中、R~Rは、それぞれ独立して、水素原子又はアルキル基を示し、Rは水素原子、アルキル基、アルケニル基、または、イソプロペニル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。また、前記アルケニル基は、炭素数1~10のアルケニル基が好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 本実施形態のスチレン系ブロック共重合体は、上記式(5)で表される構造単位を少なくとも1種含んでいることが好ましいが、異なる2種以上を組み合わせて含んでいてもよい。また、上記式(5)で表される構造単位を繰り返した構造を含んでいてもよい。
 さらに、本実施形態のスチレン系ブロック共重合体は、上記式(5)で表される構造単位に加えて、スチレン系単量体と共重合可能な他の単量体として、下記式(6)~(8)で表される構造単位のうち少なくとも一つを有していてもよい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 前記式(6)~(8)中、R~R23は、それぞれ独立して、水素原子、アルキル基、アルケニル基、及び、イソプロペニル基からなる群から選択されるいずれかの基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。また、前記アルケニル基は、炭素数1~10のアルケニル基が好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。本実施形態のスチレン系ブロック共重合体は、上記式(6)~(8)で表される構造単位を少なくとも1種含んでいることが好ましく、こられのうち異なる2種以上を組み合わせて含んでいてもよい。また、上記式(6)、式(7)および/または式(8)で表される構造単位を繰り返した構造を含んでいてもよい。
 また、上記式(5)で表される構造単位としては、より具体的には、例えば、下記式(9)~(11)で表される構造単位などが挙げられる。上記式(5)で表される構造単位はこれらのうち1種単独であってもよいし、異なる2種以上を組み合わせたものであってもよい。さらに、下記式(9)~(11)で表される構造単位を、それぞれ繰り返した構造等でもよい。
Figure JPOXMLDOC01-appb-C000014
 上記式(6)で表される構造単位としては、より具体的には、例えば、下記式(12)~(18)で表される構造単位などが挙げられる。上記式(6)で表される構造単位はこれらのうち1種単独であってもよいし、異なる2種以上を組み合わせたものであってもよい。さらに、下記式(12)~(18)で表される構造単位を、それぞれ繰り返した構造等でもよい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 また、上記式(7)で表される構造単位としては、より具体的には、例えば、下記式(19)~(20)で表される構造単位などが挙げられる。上記式(7)で表される構造単位はこれらのうち1種単独であってもよいし、異なる2種以上を組み合わせたものであってもよい。さらに、下記式(19)~(20)で表される構造単位を、それぞれ繰り返した構造等でもよい。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 また、上記式(8)で表される構造単位としては、より具体的には、例えば、下記式(21)~(22)で表される構造単位などが挙げられる。上記式(8)で表される構造単位はこれらのうち1種単独であってもよいし、異なる2種以上を組み合わせたものであってもよい。さらに、下記式(21)~(22)で表される構造単位を、それぞれ繰り返した構造等でもよい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 スチレン系ブロック共重合体の好ましい例示としては、スチレン、スチレンエチレン、ビニルトルエン、α-メチルスチレン、イソプロペニルトルエン、ジビニルベンゼン、アリルスチレンなどのスチレン系単量体の1種以上を重合もしくは共重合して得られる共重合体が挙げられる。より具体的には、メチルスチレン(エチレン/ブチレン)メチルスチレン共重合体、メチルスチレン(エチレン-エチレン/プロピレン)メチルスチレン共重合体、スチレンイソプレン共重合体、スチレンイソプレンスチレン共重合体、スチレン(エチレン/ブチレン)スチレン共重合体、スチレン(エチレン-エチレン/プロピレン)スチレン共重合体、スチレンブタジエンスチレン共重合体、スチレン(ブタジエン/ブチレン)スチレン共重合体、スチレンイソブチレンスチレン共重合体、及びこれらの水添物等が挙げられる。
 なお、前記スチレン系ブロック共重合体としては、上記例示したものを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記スチレン系ブロック共重合体において、前記式(9)~(11)で表される構造単位の少なくとも一種を含む場合において、その質量分率(すなわち、スチレン由来の構成単位の含有量)は、前記重合体全体に対して10~60%程度であることが好ましく、さらに、20~40%程度であることがより好ましい。それにより、ラジカル重合性化合物との良好な相溶性を保ちつつ、樹脂組成物を硬化した際により優れる誘電特性も得られるという利点がある。
 本実施形態のスチレン系ブロック共重合体は、市販のものを使用することもでき、例えば、株式会社クラレ製の「セプトンV9827」、「セプトン2063」、旭化成株式会社製の「タフテック(登録商標)H1052」、「タフテック(登録商標)H1041」及び「タフテック(登録商標)H1221」、JSR株式会社製「Dynaron9901P」等が挙げられる。
 <ラジカル重合性化合物>
 本実施形態で使用されるラジカル重合性化合物は、ラジカル重合性を有する化合物であれば特に限定はされないが、炭素―炭素不飽和二重結合を有する置換基に末端変性されたポリフェニレンエーテル化合物を含んでいることが好ましい。
 本実施形態で使用できるポリフェニレンエーテル化合物は、硬化させた場合に優れた低誘電特性を発揮できる変性ポリフェニレンエーテル化合物であることが好ましく、さらに下記式(4)表される基を有するポリフェニレンエーテル化合であることが好ましい。このような変性ポリフェニレンエーテル化合物を含有することによって、誘電特性が低く、耐熱性の高い硬化物を得ることができる樹脂組成物となると考えられる。
Figure JPOXMLDOC01-appb-C000026
 式(4)中、Rは、水素原子又はアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 または、本実施形態のポリフェニレンエーテル化合物は、下記式(23)表される基を有するポリフェニレンエーテル化合であってもよい。
Figure JPOXMLDOC01-appb-C000027
 式(23)中、pは0~10の整数を示す。また、Zは、アリーレン基を示す。また、R~Rは、それぞれ独立している。すなわち、R24~R26は、それぞれ同一の基であっても、異なる基であってもよい。また、R24~R26は、水素原子又はアルキル基を示す。
 なお、式(23)において、pが0である場合は、Zがポリフェニレンエーテルの末端に直接結合していることを示す。
 上記Zのアリーレン基は、特に限定されない。このアリーレン基としては、例えば、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子が、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。また、前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 前記式(4)で表される置換基としては、例えば、アクリレート基及びメタクリレート基等が挙げられる。また、前記式(23)で表される置換基の好ましい具体例としては、例えば、ビニルベンジル基を含む置換基等が挙げられる。前記ビニルベンジル基を含む置換基としては、例えば、下記式(24)で表される置換基等が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 また、前記置換基としては、より具体的には、p-エテニルベンジル基及びm-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、及びメタクリレート基等が挙げられる。
 前記ポリフェニレンエーテル化合物は、ポリフェニレンエーテル鎖を分子中に有しており、例えば、下記式(25)で表される繰り返し単位を分子中に有していることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 式(25)において、tは、1~50を示す。また、R27~R30は、それぞれ独立している。すなわち、R27~R30は、それぞれ同一の基であっても、異なる基であってもよい。また、R27~R30は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 R27~R30において、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
 アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
 アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
 アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
 アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。
 前記ポリフェニレンエーテル化合物の重量平均分子量(Mw)は、特に限定されない。具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、ポリフェニレンエーテル化合物が、前記式(25)で表される繰り返し単位を分子中に有している場合、tは、ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、tは、1~50であることが好ましい。
 前記ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテルの有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルでは、その重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、硬化物の耐熱性が低下する傾向がある。この点、本実施形態に係るポリフェニレンエーテル化合物は、末端に不飽和二重結合を1つ以上有するので、硬化物の耐熱性が充分に高いものが得られると考えられる。また、ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このようなポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。
 前記ポリフェニレンエーテル化合物における、ポリフェニレンエーテル化合物1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生する恐れがある。すなわち、このようなポリフェニレンエーテル化合物を用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高いプリント配線板が得られにくいという成形性の問題が生じるおそれがある。
 なお、ポリフェニレンエーテル化合物の末端官能基数は、ポリフェニレンエーテル化合物1モル中に存在する全ての変性ポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、変性ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。
 本実施形態のポリフェニレンエーテル化合物の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであればよいが、0.04~0.11dl/gであることが好ましく、0.06~0.095dl/gであることがより好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電特性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた硬化物の耐熱性及び成形性を実現できる。
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
 本実施形態のポリフェニレンエーテル化合物としては、例えば、下記式(26)~(28)で表される変性ポリフェニレンエーテル化合物等が挙げられる。また、本実施形態のポリフェニレンエーテル化合物としては、これらの変性ポリフェニレンエーテル化合物を単独で用いてもよいし、これらの変性ポリフェニレンエーテル化合物を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 式(26)~式(28)中、R30~R37、R38~R45並びにR46~R49は、それぞれ独立している。すなわち、R30~R37、R38~R45並びにR46~R49は、それぞれ同一の基であっても、異なる基であってもよい。R30~R37、R38~R45並びにR46~R49は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
 また、上記式(28)中、sは1~100の整数を示す。
 前記R30~R37、R38~R45並びにR46~R49について、上記で挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 また、アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
 また、アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
 また、アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
 また、アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
 また、アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。
 また、上記式(26)及び(27)中、A及びBは、それぞれ、下記式(29)及び下記式(30)で表される繰り返し単位を示す。また、式(27)中、Yは、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素を示す。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 式(29)及び式(30)中、m及びnは、それぞれ、0~20を示す。また、m及びnは、mとnとの合計値が、1~30となる数値を示すことが好ましい。よって、mは、0~20を示し、nは、0~20を示し、mとnとの合計は、1~30を示すことがより好ましい。
 また、式(29)及び式(30)において、R50~R53並びにR54~R57は、それぞれ独立しており、R50~R53並びにR54~R57は、それぞれ同一の基であっても、異なる基であってもよく、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
 前記式(27)中において、Yは、上述したように、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素である。Yとしては、例えば、下記式(31)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 前記式(31)中、R58及びR59は、それぞれ独立して、水素原子またはアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(31)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられ、この中でも、ジメチルメチレン基が好ましい。
 前記式(26)~式(28)中において、X~Xは、例えば、それぞれ独立して、上記式(4)で表される置換基及び/又は上記式(23)で表される置換基を示す。なお、前記式(26)~式(28)で表される変性ポリフェニレンエーテル化合物において、X~Xは、同一の置換基であってもよいし、異なる置換基であってもよい。
 前記式(26)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(32)で表される変性ポリフェニレンエーテル化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 前記式(26)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(33)で表される変性ポリフェニレンエーテル化合物、及び下記式(34)で表される変性ポリフェニレンエーテル化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 前記式(32)~式(34)において、m及びnは、上記式(29)及び上記式(30)におけるm及びnと同じ意味である。また、上記式(32)及び上記式(33)において、R24~R26、p及びZは、それぞれ、上記式(23)におけるR24~R26、p及びZと同じである。また、上記式(33)及び上記式(34)において、Yは、上記(27)におけるYと同じである。また、上記式(34)において、Rは、上記式(4)におけるRと同じである。高いTgをより確実に得るという観点から、前記式(32)~式(34)で表される変性ポリフェニレンエーテル化合物は、上記式(4)に示される基を末端に有していることが好ましい。
 本実施形態において用いられるポリフェニレンエーテル化合物の合成方法は、例えば、前記式(4)及び/又は式(23)で表される基により末端変性されたポリフェニレンエーテル化合物を合成する方法等が挙げられる。より具体的には、ポリフェニレンエーテルに、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。
 炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、例えば、前記式(4)、(23)、(24)で表される置換基とハロゲン原子とが結合された化合物等が挙げられる。前記ハロゲン原子としては、具体的には、塩素原子、臭素原子、ヨウ素原子、及びフッ素原子が挙げられ、この中でも、塩素原子が好ましい。炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、より具体的には、p-クロロメチルスチレンやm-クロロメチルスチレン等が挙げられる。
 原料であるポリフェニレンエーテルは、最終的に、所定の変性ポリフェニレンエーテル化合物を合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。
 本実施形態のポリフェニレンエーテル化合物の合成方法は、上述した方法が挙げられる。具体的には、上記のようなポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とが反応し、本実施形態で用いられるポリフェニレンエーテル化合物が得られる。
 前記反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、炭素-炭素不飽和二重結合を有する置換基が、フェノール基の酸素原子に結合すると考えられる。
 アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。
 反応時間や反応温度等の反応条件は、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。
 反応時に用いる溶媒は、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶解させることができ、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。
 上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。
 相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。
 本実施形態で用いられる樹脂組成物は、ラジカル重合性化合物として、上記のようにして得られた変性ポリフェニレンエーテル化合物を含むことが好ましい。
 また、本実施形態に係る樹脂組成物は、ラジカル重合性化合物として、以下に例示するような化合物を含んでいてもよい。
 具体的には、例えば、分子中にアクリロイル基を有する化合物、分子中にメタクリロイル基を有する化合物、分子中にビニル基を有する化合物、分子中にアリル基を有する化合物、分子中にアセナフチレン構造を有する化合物、分子中にマレイミド基を有する化合物、及び分子中にイソシアヌレート基を有するイソシアヌレート化合物等が挙げられる。
 前記分子中にアクリロイル基を有する化合物が、アクリレート化合物である。前記アクリレート化合物としては、分子中にアクリロイル基を1個有する単官能アクリレート化合物、及び分子中にアクリロイル基を2個以上有する多官能アクリレート化合物が挙げられる。前記単官能アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、及びブチルアクリレート等が挙げられる。前記多官能アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等のジアクリレート化合物等が挙げられる。
 前記分子中にメタクリロイル基を有する化合物が、メタクリレート化合物である。前記メタクリレート化合物としては、分子中にメタクリロイル基を1個有する単官能メタクリレート化合物、及び分子中にメタクリロイル基を2個以上有する多官能メタクリレート化合物が挙げられる。前記単官能メタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、及びブチルメタクリレート等が挙げられる。前記多官能メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート等のジメタクリレート化合物、及びトリメチロールプロパントリメタクリレート等のトリメタクリレート化合物等が挙げられる。
 前記分子中にビニル基を有する化合物が、ビニル化合物である。前記ビニル化合物としては、分子中にビニル基を1個有する単官能ビニル化合物(モノビニル化合物)、及び分子中にビニル基を2個以上有する多官能ビニル化合物が挙げられる。前記多官能ビニル化合物としては、例えば、ジビニルベンゼン、及びポリブタジエン等が挙げられる。
 前記分子中にアリル基を有する化合物が、アリル化合物である。前記アリル化合物としては、分子中にアリル基を1個有する単官能アリル化合物、及び分子中にアリル基を2個以上有する多官能アリル化合物が挙げられる。前記多官能アリル化合物としては、例えば、トリアリルイソシアヌレート(TAIC)等のトリアリルイソシアヌレート化合物、ジアリルビスフェノール化合物、及びジアリルフタレート(DAP)等が挙げられる。
 前記分子中にアセナフチレン構造を有する化合物が、アセナフチレン化合物である。前記アセナフチレン化合物としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン化合物としては、前記のような、分子中にアセナフチレン構造を1個有する単官能アセナフチレン化合物であってもよいし、分子中にアセナフチレン構造を2個以上有する多官能アセナフチレン化合物であってもよい。
 前記分子中にマレイミド基を有する化合物が、マレイミド化合物である。前記マレイミド化合物としては、分子中にマレイミド基を1個有する単官能マレイミド化合物、分子中にマレイミド基を2個以上有する多官能マレイミド化合物、及び変性マレイミド化合物等が挙げられる。前記変性マレイミド化合物としては、例えば、分子中の一部がアミン化合物で変性された変性マレイミド化合物、分子中の一部がシリコーン化合物で変性された変性マレイミド化合物、及び分子中の一部がアミン化合物及びシリコーン化合物で変性された変性マレイミド化合物等が挙げられる。
 前記分子中にイソシアヌレート基を有する化合物が、イソシアヌレート化合物である。前記イソシアヌレート化合物としては、分子中にアルケニル基をさらに有する化合物(アルケニルイソシアヌレート化合物)等が挙げられ、例えば、トリアリルイソシアヌレート(TAIC)等のトリアルケニルイソシアヌレート化合物等が挙げられる。
 これらの中でも、上述した変性ポリフェニレンエーテル化合物以外のラジカル重合性化合物としては、アリル化合物、ビニル化合物、マレイミド化合物等が好適に例示される。
 上述のラジカル重合性化合物は、単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 2種以上を組み合わせる場合、上述の末端変性のポリフェニレンエーテル化合物1種以上と、さらに、例えば、上述したような分子中にアリル基を有するアリル化合物を含むことが好ましい。前記アリル化合物としては、分子中に2個以上のアリル基を有するアリルイソシアヌレート化合物が好ましく、トリアリルイソシアヌレート(TAIC)がより好ましい。それにより、末端変性のポリフェニレンエーテルとトリアリルイソシアヌレートがラジカル反応する場合、得られる樹脂硬化物は高い耐熱性を示すという利点がある。
 (フリーラジカル化合物) 
 本実施形態で用いるフリーラジカル化合物は、下記式(1)で表される化合物(A)、下記式(2)で表される化合物(B)、並びに、下記式(3-1)及び式(3-2)で表される基から選択される少なくとも1つの基を2つ以上有する化合物(C)からなる群より選択される少なくとも1つを含む。このようなフリーラジカル化合物を含むことにより、本実施形態の樹脂組成物は、低誘電特性や高Tg等の特性を有しつつ、優れた成形性(回路パターンを充填することができる樹脂流れ性、すなわち、回路充填性)を発揮することができると考えられる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 前記式(1)および式(2)において、XおよびXは、それぞれ独立して、水素原子、アミノ基、シアノ基、ヒドロキシ基、イソチオシアネート、メトキシ基、カルボキシ基、カルボニル基、アミド基、またはベンゾイルオキシ基を示す。
 また、前記式(3-1)及び式(3-2)で表される基から選択される少なくとも1つの基を2つ以上有する化合物(C)としては、特に限定されず、式(3-1)及び式(3-2)で表される基を両方有する化合物であっても、式(3-1)で表される基を2つ以上有する化合物であっても、式(3-2)で表される基を2つ以上有する化合物であってもよい。具体的には、例えば、下記式(3-3)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000043
 式(3-3)中、Xはアルキレン基、芳香族構造、カルボニル基、アミド基またはエーテル結合を示す。
 これらのより具体的な例示としては、例えば、4-アセトアミド、4-グリシジルオキシ、4-ベンゾイルオキシ、4-(2-ヨードアセトアミド)、4-[2-[2-(4-ヨードフェノキシ)エトキシ]カルボニル]ベンゾイルオキシ、4-メタクリロイルオキシ、4-オキソ、4-プロパルギルオキシ等が挙げられる。
 本実施形態で好ましく使用されるより具体的なフリーラジカル化合物としては、4-アミノ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-カルボキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-シアノ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-グリシジルオキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルベンゾアート フリーラジカル、4-イソチオシアナト-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-(2-ヨードアセトアミド)-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-[2-[2-(4-ヨードフェノキシ)エトキシ]カルボニル]ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル、4-メトキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、2,2,6,6-テトラメチル-4-(2-プロピニルオキシ)ピペリジン1-オキシル フリーラジカル、セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル-1-オキシル)、3-カルボキシ-2,2,5,5-テトラメチルピロリジン1-オキシル フリーラジカル、4-(2-クロロアセトアミド)-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル等が挙げられる。
 以上、様々なフリーラジカル化合物を挙げたが、これらは1種単独で使用しても、2種以上を組み合わせて使用してもよい。
 本実施形態の上述したようなフリーラジカル化合物は市販のものを使用することもでき、例えば、東京化成工業株式会社などから入手可能である。
 (無機充填剤)
 本実施形態に係る樹脂組成物は、さらに無機充填剤を含有してもよい。無機充填剤としては、樹脂組成物の硬化物の、耐熱性や難燃性を高めるために添加するもの等が挙げられ、特に限定されない。無機充填剤を含有させることによって、耐熱性や難燃性等をより高めるとともに、熱膨張率の増加を抑制することもできると考えられる。
 本実施形態で使用できる無機充填剤としては、具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。これらの中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、無機充填剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、上述したような無機充填剤は、そのまま用いてもよいが、エポキシシランタイプ、ビニルシランタイプ、メタクリルシランタイプ、又はフェニルアミノシランタイプのシランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、充填剤に予め表面処理する方法でなく、インテグラルブレンド法で添加して用いることもできる。
 (反応開始剤)
 本実施形態に係る樹脂組成物には、上述の通り、反応開始剤(開始剤)を含有してもよい。前記樹脂組成物は、特に反応開始剤を含めなくとも、硬化反応が進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。
 前記反応開始剤は、前記樹脂組成物の硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、金属酸化物、アゾ化合物、過酸化物等が挙げられる。
 金属酸化物としては、具体的には、カルボン酸金属塩等が挙げられる。
 過酸化物としては、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等が挙げられる。
 アゾ化合物としては、具体的には、2,2’-アゾビス(2,4,4―トリメチルペンタン)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(2-メチルブチロニトリル)等が挙げられる。
 中でも好ましい反応開始剤としては、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼンが好ましく用いられる。α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼンは、揮発性が低いために、乾燥時や保存時に揮発せず、安定性が良好である。また、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼンは、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができる。この硬化反応の抑制により、樹脂組成物の保存性の低下を抑制することができる。
 上述したような反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
 (各成分の含有量)
 前記フリーラジカル化合物の含有量は、前記樹脂組成物における前記スチレン系ブロック共重合体と前記ラジカル重合性化合物の合計100質量部に対して、0.001~1質量部であることが好ましく、0.001~0.5質量部であることがより好ましく、0.001~0.2質量部であることがさらに好ましい。前記フリーラジカル化合物の含有量が上記範囲内であれば、誘電特性が低く、Tgが高く、熱膨張率が低い硬化物が得られ、かつ成形性に優れる樹脂組成物がより確実に得られると考えられる。
 前記スチレン系ブロック共重合体の含有量は、前記樹脂組成物における樹脂成分(有機成分)100質量部に対して、10~60質量部であることが好ましく、15~50質量部であることがより好ましく、20~40質量部であることがさらに好ましい。すなわち、前記スチレン系ブロック共重合体の含有率は、前記樹脂組成物における前記無機充填剤(無機成分)以外の成分に対して、10~60質量%であることが好ましい。
 前記ラジカル重合性化合物の含有量は、前記樹脂組成物における樹脂成分(有機成分)100質量部に対して、30~90質量部であることが好ましく、40~80質量部であることがより好ましく、50~70質量部であることがさらに好ましい。すなわち、前記ラジカル重合性化合物の含有率は、前記樹脂組成物における前記無機充填剤(無機成分)以外の成分に対して、30~90質量%であることが好ましい。
 特に、好ましい実施形態のラジカル重合性化合物(変性ポリフェニレンエーテル化合物)を含む場合、それら好ましいラジカル重合性化合物の含有量は、前記樹脂組成物における樹脂成分(有機成分)100質量部に対して、10~50質量部であることが好ましく、20~50質量部であることがより好ましく、30~40質量部であることがさらに好ましい。
 さらに、ラジカル重合性化合物として、上記以外のラジカル重合性化合物(アリル化合物等)を含む場合、それらその他のラジカル重合性化合物の含有量は、前記樹脂組成物における樹脂成分(有機成分)100質量部に対して、10~50質量部であることが好ましく、20~40質量部であることがより好ましい。
 本実施形態の樹脂組成物が前記反応開始剤を含む場合、その含有量としては、特に限定されないが、例えば、前記樹脂組成物における樹脂成分(有機成分)100質量部に対して、0.01~10質量部であることが好ましく、0.01~5質量部であることがより好ましく、0.1~3質量部であることがさらに好ましい。前記反応開始剤の含有量が少なすぎると、前記樹脂組成物の硬化反応が好適に開始しない傾向がある。また、前記開始剤の含有量が多すぎると、得られたプリプレグの硬化物の誘電正接が大きくなり、優れた低誘電特性を発揮しにくくなる傾向がある。よって、前記反応開始剤の含有量が上記範囲内であれば、優れた低誘電特性を有するプリプレグの硬化物が得られる。
 本実施形態の樹脂組成物が前記反応開始剤を含む場合、樹脂組成物中における前記フリーラジカル化合物と前記反応開始剤との割合は、フリーラジカル化合物:反応開始剤=0.001:1.0~0.1:1.0程度となっていることが好ましく、0.005:1.0~0.1:1.0程度となっていることがより好ましく、0.01:1.0~0.1:1.0程度となっていることがさらに好ましい。それにより、本発明の効果をより確実に得ることができると考えられる。
 また、本実施形態の樹脂組成物が無機充填剤を含有する場合、その含有率(フィラーコンテンツ)は、前記樹脂組成物全体に対して、30~300質量%であることが好ましく、50~200質量%であることがより好ましい。
 <その他の成分>
 本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、上述した成分以外の成分(その他の成分)を含有してもよい。本実施形態に係る樹脂組成物に含有されるその他の成分としては、例えば、硬化剤、シランカップリング剤、難燃剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、分散剤及び滑剤等の添加剤をさらに含んでもよい。また、本実施形態の樹脂組成物には、前記ポリフェニレンエーテル化合物、前記アリル化合物、前記スチレン系ブロック共重合体以外にも、エポキシ樹脂、フェノール樹脂等の他の熱硬化性樹脂を含有してもよい。
 (プリプレグ、樹脂付きフィルム、金属張積層板、配線板、及び樹脂付き金属箔)
 次に、本実施形態の樹脂組成物を用いた配線基板用のプリプレグ、金属張積層板、配線板、及び樹脂付き金属箔について説明する。
 図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。なお、以下の説明において、各符号はそれぞれ、1 プリプレグ、2 樹脂組成物又は樹脂組成物の半硬化物、3 繊維質基材、11 金属張積層板、12 絶縁層、13 金属箔、14 配線、21 配線基板、31 樹脂付き金属箔、32、42 樹脂層、41 樹脂付きフィルム、43 支持フィルムを示す。
 本実施形態に係るプリプレグ1は、図1に示すように、前記熱膨張性マイクロカプセルを含む前記樹脂組成物又は前記樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1としては、前記樹脂組成物又はその半硬化物2の中に繊維質基材3が存在するものが挙げられる。すなわち、このプリプレグ1は、前記樹脂組成物又はその半硬化物と、前記樹脂組成物又はその半硬化物2の中に存在する繊維質基材3とを備える。
 なお、本実施形態において、「半硬化物」とは、樹脂組成物を、さらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。
 本実施形態に係る樹脂組成物を用いて得られるプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。具体的には、例えば、前記樹脂組成物の中に繊維質基材が存在するもの等が挙げられる。なお、樹脂組成物またはその半硬化物は、前記樹脂組成物を加熱乾燥したものであってもよい。
 本実施形態に係る樹脂組成物は、前記プリプレグや、後述の樹脂付金属箔や金属張積層板等を製造する際には、ワニス状に調製し、樹脂ワニスとして用いられることが多い。このような樹脂ワニスは、例えば、以下のようにして調製される。
 まず、樹脂成分、反応開始剤等の有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて加熱してもよい。その後、有機溶媒に溶解しない成分である無機充填剤等を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の樹脂組成物が調製される。ここで用いられる有機溶媒としては、前記スチレン系ブロック共重合体、前記ラジカル重合性化合物等を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエン、メチルエチルケトン、シクロヘキサノン及びプロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらは単独で使用しても、2種以上を併用してもよい。
 本実施形態のワニス状の樹脂組成物を用いて本実施形態のプリプレグ1を製造する方法としては、例えば、樹脂ワニス状の樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。
 プリプレグを製造する際に用いられる繊維質基材としては、具体的には、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、LCP(液晶ポリマー)不織布、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙等が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。本実施形態で使用するガラスクロスとしては特に限定はされないが、例えば、Eガラス、Sガラス、NEガラス、Qガラス、Lガラス、L2ガラス、Tガラスなどの低誘電率ガラスクロス等が挙げられる。偏平処理加工としては、具体的には、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮することにより行うことができる。なお、繊維質基材の厚みとしては、例えば、0.01~0.3mmのものを一般的に使用できる。
 樹脂ワニス(樹脂組成物2)の繊維質基材3への含浸は、浸漬及び塗布等によって行われる。この含浸は、必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂ワニスを用いて含浸を繰り返し、最終的に希望とする組成(含有比)及び樹脂量に調整することも可能である。
 樹脂ワニス(樹脂組成物2)が含浸された繊維質基材3を、所望の加熱条件、例えば、80℃以上、180℃以下で1分間以上、10分間以下で加熱する。加熱によって、ワニスから溶媒を揮発させ、溶媒を減少又は除去させて、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。
 また、図4に示すように、本実施形態の樹脂付金属箔31は、上述した樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層32と金属箔13とが積層されている構成を有する。すなわち、本実施形態の樹脂付金属箔は、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付金属箔であってもよいし、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付金属箔であってもよい。
 そのような樹脂付金属箔31を製造する方法としては、例えば、上述したような樹脂ワニス状の樹脂組成物を銅箔などの金属箔13の表面に塗布した後、乾燥する方法が挙げられる。前記塗布方法としては、バーコーター、コンマコーターやダイコーター、ロールコーター、グラビアコータ等が挙げられる。
 前記金属箔13としては、金属張積層板や配線基板等で使用される金属箔を限定なく用いることができ、例えば、銅箔及びアルミニウム箔等が挙げられる。
 さらに、図5に示すように、本実施形態の樹脂付きフィルム41は、上述した樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層42とフィルム支持基材43とが積層されている構成を有する。すなわち、本実施形態の樹脂付フィルムは、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、フィルム支持基材とを備える樹脂付フィルムであってもよいし、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、フィルム支持基材とを備える樹脂付フィルムであってもよい。
 そのような樹脂付きフィルム41を製造する方法としては、例えば、上述したような樹脂ワニス状の樹脂組成物をフィルム支持基材43表面に塗布した後、ワニスから溶媒を揮発させて、溶媒を減少させる、又は溶媒を除去させることにより、硬化前(Aステージ)又は半硬化状態(Bステージ)の樹脂付フィルムを得ることができる。
 前記フィルム支持基材としては、ポリイミドフィルム、PET(ポリエチレンテレフタレート)フィルム、ポリエステルフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、アラミドフィルム、ポリカーボネートフィルム、ポリアリレートフィルム等の電気絶縁性フィルム等が挙げられる。
 なお、本実施形態の樹脂付フィルム及び樹脂付金属箔においても、上述したプリプレグと同様、樹脂組成物またはその半硬化物は、前記樹脂組成物を乾燥または加熱乾燥したものであってもよい。
 上記金属箔13やフィルム支持基材43の厚み等は、所望の目的に応じて、適宜設定することができる。例えば、金属箔13としては、0.2~70μm程度のものを使用できる。金属箔の厚さが例えば10μm以下となる場合などは、ハンドリング性向上のために剥離層及びキャリアを備えたキャリア付銅箔であってもよい。樹脂ワニスの金属箔13やフィルム支持基材43への適用は、塗布等によって行われるが、それは必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂ワニスを用いて塗布を繰り返し、最終的に希望とする組成(含有比)及び樹脂量に調整することも可能である。
 樹脂付金属箔31や樹脂フィルム41の製造方法における乾燥もしくは加熱乾燥条件について、特に限定はされないが、樹脂ワニス状の樹脂組成物を上記金属箔13やフィルム支持基材43に塗布した後、所望の加熱条件、例えば、50~170℃で0.5~10分間程度加熱し、ワニスから溶媒を揮発させて、溶媒を減少又は除去させることにより、硬化前(Aステージ)又は半硬化状態(Bステージ)の樹脂付金属箔31や樹脂フィルム41が得られる。
 樹脂付金属箔31や樹脂フィルム41は、必要に応じて、カバーフィルム等を備えてもよい。カバーフィルムを備えることにより異物の混入等を防ぐことができる。カバーフィルムとしては樹脂組成物の形態を損なうことなく剥離することができるものであれば特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、TPXフィルム、またこれらのフィルムに離型剤層を設けて形成されたフィルム、さらにはこれらのフィルムを紙基材上にラミネートした紙等を用いることができる。
 図2に示すように、本実施形態の金属張積層板11は、上述の樹脂組成物の硬化物または上述のプリプレグの硬化物を含む絶縁層12と、金属箔13とを有することを特徴とする。なお、金属張積層板11で使用する金属箔13としては、上述した金属箔13と同様ものを使用することができる。
 また、本実施形態の金属張積層板11は、上述の樹脂付金属箔31や樹脂フィルム41を用いて作製することもできる。
 上記のようにして得られたプリプレグ1、樹脂付金属箔31や樹脂フィルム41を用いて金属張積層板を作製する方法としては、プリプレグ1、樹脂付金属箔31や樹脂フィルム41を一枚または複数枚重ね、さらにその上下の両面又は片面に銅箔等の金属箔13を重ね、これを加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層体を作製することができるものである。加熱加圧条件は、製造する積層板の厚みや樹脂組成物の種類等により適宜設定することができるが、例えば、温度を170~230℃、圧力を0.5~5.0MPa、時間を60~150分間とすることができる。
 また、金属張積層板11は、プリプレグ1等を用いずに、フィルム状の樹脂組成物を金属箔13の上に形成し、加熱加圧することにより作製されてもよい。
 そして、図3に示すように、本実施形態の配線基板21は、上述の樹脂組成物の硬化物又は上述のプリプレグの硬化物を含む絶縁層12と、配線14とを有する。
 本実施形態の樹脂組成物は、配線基板の絶縁層の材料として好適に使用される。配線基板21の製造方法としては、例えば、上記で得られた金属張積層体13の表面の金属箔13をエッチング加工等して回路(配線)形成をすることによって、積層体の表面に回路として導体パターン(配線14)を設けた配線基板21を得ることができる。回路形成する方法としては、上記記載の方法以外に、例えば、セミアディティブ法(SAP:Semi Additive Process)やモディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)による回路形成等が挙げられる。
 本実施形態の樹脂組成物を用いて得られるプリプレグ、樹脂付きフィルム、樹脂付き金属箔は、その硬化物において、低誘電特性、低熱膨張率、高Tgを備えつつ、成形性(回路充填性)に優れているため、産業利用上非常に有用である。また、それらを硬化させた金属張積層板及び配線基板は、低誘電特性を備え、高Tg、及びハンドリング性に優れるという利点を備える。
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 まず、本実施例において、樹脂組成物を調製する際に用いる成分について説明する。
 (スチレン系ブロック共重合体)
・スチレン系ブロック共重合体1:スチレンイソプレンスチレン共重合体(株式会社クラレ製のSepton2063、デュロメータ硬さ:36、スチレン由来の構成単位の含有量13質量%、重量平均分子量95000)
・スチレン系ブロック共重合体2:水添スチレン(エチレン/ブチレン)スチレン共重合体(旭化成株式会社製のTuftec H1052、デュロメータ硬さ:67、スチレン由来の構成単位の含有量20質量%、重量平均分子量91000)
・スチレン系ブロック共重合体3:水添メチルスチレン(エチレン/ブチレン)メチルスチレン共重合体(株式会社クラレ製のSeptonV9827、デュロメータ硬さ:78、スチレン由来の構成単位の含有量30質量%、重量平均分子量92000)
・スチレン系ブロック共重合体4:水添スチレン(エチレン/ブチレン)スチレン共重合体(JSR株式会社製のDynaron9901P、デュロメータ硬さ:98、スチレン由来の構成単位の含有量53質量%、重量平均分子量100000)
 (ラジカル重合性化合物:ポリフェニレンエーテル化合物)
・PPE1:ポリフェニレンエーテルの末端水酸基をメタクリロイル基で変性した変性ポリフェニレンエーテル(上記式(34)で表され、式(34)中のYがジメチルメチレン基(式(31)で表され、式(31)中のR58及びR59がメチル基である基)である変性ポリフェニレンエーテル化合物、SABICイノベーティブプラスチックス社製のSA9000、重量平均分子量Mw2000、末端官能基数2個)
・PPE2:末端にビニルベンジル基(エテニルベンジル基)を有するポリフェニレンエーテル化合物(三菱ガス化学株式会社製のOPE-2st 1200、Mn1200、上記式(32)で表され、Zが、フェニレン基であり、R24~R26が水素原子であり、pが1であるポリフェニレンエーテル化合物)
 (ラジカル重合性化合物:アリル化合物)
・TAIC:トリアリルイソシアヌレート(日本化成株式会社製)
 (フリーラジカル化合物)
・フリーラジカル化合物1:4-ベンゾイルオキシtempo、下記式で示されるフリーラジカル化合物(東京化成工業株式会社製「H0878」)
Figure JPOXMLDOC01-appb-C000044
・フリーラジカル化合物2:セバシン酸bis-tempo、下記式で示されるフリーラジカル化合物(東京化成工業株式会社製「B5642」
Figure JPOXMLDOC01-appb-C000045
・フリーラジカル化合物3:tempo、下記式で示されるフリーラジカル化合物(東京化成工業株式会社製「T3751」
Figure JPOXMLDOC01-appb-C000046
・フリーラジカル化合物4:4H-tempo、下記式で示されるフリーラジカル化合物(東京化成工業株式会社製「H0865」
Figure JPOXMLDOC01-appb-C000047
 (重合禁止剤)
・ヒドロキノンHQ:ハイドロキノン(東京化成工業株式会社製)
 (反応開始剤)
・過酸化物:「パーブチルP」、1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン(日本油脂株式会社製)
 (無機充填剤)
 シリカ粒子:「SC2300―SVJ」ビニルシラン処理された球状シリカ(株式会社アドマテックス製)
 <実施例1~13、比較例1~3>
 [調製方法]
 (樹脂ワニス)
 まず、無機充填剤以外の上記各成分を表1に記載の組成(質量部)で、固形分濃度が50質量%となるように、トルエンに添加し、混合させた。その混合物を60分間攪拌した。その後、得られた液体に無機充填剤を添加し、ビーズミルで充填剤を分散させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
 (樹脂付き金属箔および評価基板)
 上記で作製した各実施例および比較例の樹脂ワニスを用いて樹脂付き金属箔を作製した。得られたワニスを、金属箔(銅箔、三井金属鉱業株式会社製の3EC-VLP、厚み12μm)に、厚み20μmとなるように塗布し、80℃で、2分間加熱することにより、樹脂付き金属箔を得た。そして、得られた樹脂付き金属箔を、樹脂層同士が接触するように2枚重ねた。これを被圧体とし、真空下200℃、圧力4MPaの条件で2時間加熱加圧することにより、樹脂付き金属箔の樹脂層を硬化させた。これを評価基板(樹脂付き金属箔の硬化物)とした。なお、評価基板における樹脂層の厚み(金属箔以外の厚み)は、40μmであった。
 <評価試験>
 (ガラス転移温度(Tg))
 前記評価基板(樹脂付き金属箔の硬化物)の銅箔を除去した積層板において、セイコーインスツルメンツ株式会社製の粘弾性スペクトロメータ「DMS100」を用いて、Tgを測定した。このとき、引張モジュールで周波数を10Hzとして動的粘弾性測定(DMA)を行い、昇温速度5℃/分の条件で室温から320℃まで昇温した際のtanδが極大を示す温度をTgとした。本実施例では、Tgが230℃以上であれば◎、200℃以上であれば○、200℃未満を×として評価した。
 (誘電特性:比誘電率(Dk))
 10GHzにおける評価基板(樹脂付き金属箔の硬化物)の銅箔を除去した積層板の比誘電率を、空洞共振器摂動法で測定した。具体的には、ネットワークアナライザ(アジレント・テクノロジー株式会社製のN5230A)を用い、10GHzにおける評価基板の銅箔を除去した積層板の比誘電率(Dk)を測定した。本実施例では、Dkが2.6以下であれば◎、2.7以下であれば○、2.7超を×として評価した。
 [線膨張係数(CTE)]
 JIS C 6481に準拠の方法で、評価基板(樹脂付き金属箔の硬化物)の銅箔を除去した積層板の、面方向における線膨張係数を引っ張りモードで測定した。なお、測定条件は、昇温速度10℃/分、温度範囲は、Tg未満の温度範囲、具体的には、50~100℃で熱機械分析(TMA)装置(株式会社日立ハイテクサイエンス製のTMA/SS7000)を用い測定した。本実施例では、CTEが30ppm以下であれば◎、40ppm以下であれば○、40ppm超を×として評価した。
 (成形性:回路充填性)
 残銅率50%、銅線厚みが12μm、銅線の配線幅が2μmとなる、格子上の銅パターンが250mm×250mmの硬化物を用意した。その両側に、樹脂面が硬化物と接触するように250mm×250mmの樹脂付き金属箔を重ねた。これらを厚さ3mm程度の金属製プレートで挟み、積層成形用プレス機で、以下に示す、条件で、加熱加圧した。加温条件としては、30度から、200度に到達するまでに、毎分6度で昇温させた。加圧条件としては、加温開始時は、樹脂付き金属箔にかかる圧力が1MPaとなるように設定し、その後、温度は80℃になった際に、樹脂付き金属箔にかかる圧力が4MPaとなるようにし、樹脂付き金属箔を硬化させた。
 本実施例では、格子パターンと樹脂硬化物との間に隙間が発生せず、充填された場合は「〇」と評価し、隙間が発生する場合は「×」と評価した。隙間の有無については、積層成形用プレス機で作製した硬化物の銅箔を、除去し、他面から光を透過させた際に、白っぽく見える隙間が確認できるかどうかで判断した。
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000048
 (考察)
 表1に示す結果から明らかなように、本発明の樹脂組成物により、低誘電特性、低CTEおよび高Tgをバランス良く備えつつ、回路充填性に優れる硬化物が得られることが確認できた。
 それに対し、本発明に係るフリーラジカル化合物を使用していない比較例1では十分な回路充填性が得られないことがわかった。また、フリーラジカル化合物の代わりに一般的な重合開始剤を使用した比較例2では、Tgが下がり、かつCTEが高くなってしまった。また、スチレン系ブロック共重合体を含まない比較例3は、十分な低誘電特性が得られなかった。
 この出願は、2020年9月18日に出願された日本国特許出願特願2020-157403を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、電子材料やそれを用いた各種デバイスに関する技術分野において、広範な産業上の利用可能性を有する。

Claims (13)

  1.  スチレン系ブロック共重合体と、
     ラジカル重合性化合物と、
     下記式(1)で表される化合物(A)、下記式(2)で表される化合物(B)、並びに、下記式(3-1)及び式(3-2)で表される基から選択される少なくとも1つの基を2つ以上有する化合物(C)からなる群より選択される少なくとも1つのフリーラジカル化合物とを含む、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式(1)および式(2)中、XおよびXは、それぞれ独立して、水素原子、アミノ基、シアノ基、ヒドロキシ基、イソチオシアネート、メトキシ基、カルボキシ基、カルボニル基、アミド基、または、ベンゾイルオキシ基を示す。)
  2.  前記スチレン系ブロック共重合体の重量平均分子量が10000~200000である、請求項1に記載の樹脂組成物。
  3.  前記のスチレン系ブロック共重合体が、メチルスチレン(エチレン/ブチレン)メチルスチレン共重合体、メチルスチレン(エチレン-エチレン/プロピレン)メチルスチレン共重合体、スチレンイソプレン共重合体、スチレンイソプレンスチレン共重合体、スチレン(エチレン/ブチレン)スチレン共重合体、スチレンエチレン共重合体、スチレン(エチレン-エチレン/プロピレン)スチレン共重合体、スチレンブタジエンスチレン共重合体、スチレン(ブタジエン/ブチレン)スチレン共重合体、スチレンイソブチレンスチレン共重合体、及びこれらの水添物からなる群から選ばれる少なくとも1つを含む、請求項1または2に記載の樹脂組成物。
  4.  前記ラジカル重合性化合物が、炭素―炭素不飽和二重結合を有する置換基に末端変性されたポリフェニレンエーテル化合物を含む、請求項1~3のいずれかに記載の樹脂組成物。
  5.  前記ポリフェニレンエーテル化合物が、下記式(4)で表される基を有する、請求項1~4のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(4)中、Rは、水素原子又はアルキル基を示す)
  6.  前記スチレン系ブロック共重合体と前記ラジカル重合性化合物の合計100質量部に対して、前記フリーラジカル化合物を0.001~1質量部含む、請求項1~5のいずれかに記載の樹脂組成物。
  7.  さらに反応開始剤を含む、請求項1~6のいずれかに記載の樹脂組成物。
  8.  前記フリーラジカル化合物と前記反応開始剤との含有量比(質量比)が、0.001:1.0~0.1:1.0である、請求項7に記載の樹脂組成物。
  9.  請求項1~8のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを有する、プリプレグ。
  10.  請求項1~8のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを有する、樹脂付きフィルム。
  11.  請求項1~8のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを有する、樹脂付き金属箔。
  12.  請求項1~8のいずれかに記載の樹脂組成物の硬化物又は請求項9に記載のプリプレグの硬化物を含む絶縁層と、金属箔とを有する、金属張積層板。
  13.  請求項1~8のいずれかに記載の樹脂組成物の硬化物又は請求項9に記載のプリプレグの硬化物を含む絶縁層と、配線とを有する、配線基板。
PCT/JP2021/033408 2020-09-18 2021-09-10 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 WO2022059625A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/026,292 US20230357558A1 (en) 2020-09-18 2021-09-10 Resin composition, prepreg using same, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
JP2022550534A JPWO2022059625A1 (ja) 2020-09-18 2021-09-10
CN202180062840.9A CN116323725A (zh) 2020-09-18 2021-09-10 树脂组合物、和使用其的预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板及布线板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157403 2020-09-18
JP2020157403 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059625A1 true WO2022059625A1 (ja) 2022-03-24

Family

ID=80776643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033408 WO2022059625A1 (ja) 2020-09-18 2021-09-10 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Country Status (4)

Country Link
US (1) US20230357558A1 (ja)
JP (1) JPWO2022059625A1 (ja)
CN (1) CN116323725A (ja)
WO (1) WO2022059625A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189800A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 中空粒子及びその製造方法
WO2024095742A1 (ja) * 2022-11-02 2024-05-10 Agc株式会社 硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131763A (ja) * 2005-11-11 2007-05-31 Showa Highpolymer Co Ltd (スチレン−アリールマレイミド)ブロック共重合体、その製造方法、およびそれを含む熱硬化性樹脂組成物
JP2010523788A (ja) * 2007-04-13 2010-07-15 エルジー・ケム・リミテッド 光学フィルム、位相差フィルムおよびそれを含む液晶表示装置
WO2020158849A1 (ja) * 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、樹脂シート、積層板及びプリント配線板
WO2021166847A1 (ja) * 2020-02-18 2021-08-26 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、樹脂シート、樹脂付き金属箔、金属張積層板及びプリント配線板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131763A (ja) * 2005-11-11 2007-05-31 Showa Highpolymer Co Ltd (スチレン−アリールマレイミド)ブロック共重合体、その製造方法、およびそれを含む熱硬化性樹脂組成物
JP2010523788A (ja) * 2007-04-13 2010-07-15 エルジー・ケム・リミテッド 光学フィルム、位相差フィルムおよびそれを含む液晶表示装置
WO2020158849A1 (ja) * 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、樹脂シート、積層板及びプリント配線板
WO2021166847A1 (ja) * 2020-02-18 2021-08-26 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、樹脂シート、樹脂付き金属箔、金属張積層板及びプリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189800A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 中空粒子及びその製造方法
WO2024095742A1 (ja) * 2022-11-02 2024-05-10 Agc株式会社 硬化性組成物、樹脂シート、積層体、金属張積層板および配線基板

Also Published As

Publication number Publication date
CN116323725A (zh) 2023-06-23
US20230357558A1 (en) 2023-11-09
JPWO2022059625A1 (ja) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2018159080A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP6653458B2 (ja) 硬化性組成物、プリプレグ、樹脂付き金属箔、金属張積層板、及びプリント配線板
EP3715393B1 (en) Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board
WO2022059625A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7316572B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2022049965A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7203386B2 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2021060181A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2020262089A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2021059911A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JPWO2019188187A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2022014582A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2022014584A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP2021123682A (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2021060178A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2021010432A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JPWO2020017399A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2020203320A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7054840B2 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、金属張積層板及び配線基板
WO2023119805A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2022054861A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2021060046A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7289074B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP6994660B2 (ja) 金属張積層板及びプリント配線板
JP2021152107A (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869312

Country of ref document: EP

Kind code of ref document: A1