WO2024095494A1 - 端末、基地局、無線通信システム及び無線通信方法 - Google Patents

端末、基地局、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2024095494A1
WO2024095494A1 PCT/JP2022/041263 JP2022041263W WO2024095494A1 WO 2024095494 A1 WO2024095494 A1 WO 2024095494A1 JP 2022041263 W JP2022041263 W JP 2022041263W WO 2024095494 A1 WO2024095494 A1 WO 2024095494A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
base station
signal
unit
Prior art date
Application number
PCT/JP2022/041263
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
聡 永田
ルフア ヨウ
ウェイチー スン
ジン ワン
ラン チン
ジンミン ジャオ
ヨン リ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/041263 priority Critical patent/WO2024095494A1/ja
Publication of WO2024095494A1 publication Critical patent/WO2024095494A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This disclosure relates to a terminal, a base station, a wireless communication system, and a wireless communication method for estimating terminal location information.
  • the 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation, known as Beyond 5G, 5G Evolution or 6G.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • 3GPP specifies technologies for estimating the location information of a terminal (hereinafter referred to as UE; User Equipment) using methods such as Multi-RTT (Round Trip Time), DL-TDOA (Downlink Time Difference of Arrival), DL-AoD (Downlink Angle of Departure), UL-TDOA (Uplink Time Difference of Arrival), UL-AoA (Uplink Angle of Arrival), and E-CID (Enhanced Cell ID) (for example, Non-Patent Document 1).
  • Methods such as Multi-RTT are methods for estimating the location information of a UE 200 in the RRC Connected state.
  • Methods such as Multi-RTT are methods that assume communication between multiple (preferably three or more) TRPs (Transmission-Reception Points) and the UE.
  • NTN will use non-terrestrial networks, including non-terrestrial network equipment such as satellites, to provide services to areas that cannot be covered by terrestrial networks for cost and other reasons.
  • the above-mentioned technology is a technology for estimating the location information of a UE in the RRC Connected state.
  • the inventors after careful consideration, have discovered the need to quickly estimate the location information of a UE at a stage before the UE transitions from the RRC IDLE state to the RRC Connected state (e.g., Initial Access).
  • the RRC Connected state e.g., Initial Access
  • the present disclosure has been made to solve the above-mentioned problems, and aims to provide a terminal, a base station, a wireless communication system, and a wireless communication method that can quickly estimate the location information of a UE.
  • One aspect of the present disclosure is a terminal that includes a communication unit that communicates with a base station via a non-terrestrial network, and a control unit that performs specific control to measure a signal used to estimate the location information of the terminal before the connection with the base station is completed.
  • One aspect of the present disclosure is a base station that includes a communication unit that communicates with a terminal via a non-terrestrial network, and a control unit that performs specific control to measure a signal used to estimate location information of the terminal before a connection with the terminal is completed.
  • One aspect of the present disclosure is a wireless communication system comprising a terminal and a base station, the terminal comprising a communication unit that communicates with the base station via a non-terrestrial network, and a control unit that performs specific control to measure a signal used to estimate location information of the terminal before the connection with the base station is completed.
  • One aspect of the present disclosure is a wireless communication method comprising step A of communicating with a base station via a non-terrestrial network, and step B of executing specific control to measure a signal used to estimate the location information of a terminal before the connection with the base station is completed.
  • FIG. 1 is a schematic diagram showing the overall configuration of a wireless communication system 10.
  • FIG. 2 is a diagram illustrating the frequency ranges used in the wireless communication system 10.
  • FIG. 3 is a diagram showing an example of the configuration of a radio frame, a subframe, and a slot used in the radio communication system 10.
  • FIG. 4 is a functional block diagram of the UE 200.
  • Figure 5 is a functional block diagram of gNB100.
  • FIG. 6 is a functional block diagram of the LMF 300.
  • FIG. 7 is a diagram for explaining the protocol.
  • FIG. 8 is a diagram for explaining an outline of an operation example.
  • FIG. 9 is a diagram for explaining an example of the contents reported by the UE 200.
  • FIG. 10 is a diagram for explaining an example of the contents reported by the UE 200.
  • FIG. 11 is a diagram for explaining an example of the contents reported by the UE 200.
  • FIG. 12 is a diagram illustrating an example of the content reported by gNB100.
  • FIG. 13 is a diagram illustrating an example of the content reported by gNB100.
  • FIG. 14 is a diagram illustrating an example of the content reported by gNB100.
  • FIG. 15 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 16 is a diagram showing an example of the configuration of a vehicle 2001.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to an embodiment.
  • the wireless communication system 10 is a wireless communication system conforming to 5G New Radio (NR) and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN 20) and a terminal 200 (hereinafter, UE (User Equipment) 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE User Equipment
  • the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a base station 100 (hereinafter, gNB 100).
  • gNB 100 base station 100
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a core network 30 conforming to 5G (e.g., 5GC).
  • NG-RAN 20 and core network 30 may simply be referred to as a "network.”
  • the gNB100 is a 5G-compliant radio base station, and performs 5G-compliant radio communication with the UE200.
  • the gNB100 and UE200 are capable of supporting Massive MIMO (Multiple-Input Multiple-Output), which generates a more directional beam BM by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) by bundling them together, and Dual Connectivity (DC), which communicates simultaneously on two or more transport blocks between the UE and each of two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CA Carrier Aggregation
  • CC component carriers
  • DC Dual Connectivity
  • the core network 30 includes a network device 300.
  • the network device 300 may include a Location Management Function (LMF).
  • the network device 300 may include an Access and Mobility management Function (AMF).
  • the network device 300 may be an Evolved Serving Mobile Location Centre (E-SMLC). The following mainly describes the case where the network device 300 is an LMF 300.
  • LMF Location Management Function
  • AMF Access and Mobility management Function
  • E-SMLC Evolved Serving Mobile Location Centre
  • NTN non-terrestrial network
  • satellite 150 an artificial satellite 150
  • NTN can provide more reliable services.
  • IoT Inter of things
  • NTN also has scalability through efficient multicast or broadcast.
  • a network that does not include a satellite 150 but includes a gNB 100 and a UE 200 may be referred to as a terrestrial network (TN) in contrast to an NTN.
  • TN terrestrial network
  • the gNB100 has an NTN gateway 100X.
  • the NTN gateway 100X transmits downlink signals to the satellite 150.
  • the NTN gateway 100X receives uplink signals from the satellite 150.
  • the gNB100 has a cell C1 as its coverage area.
  • Satellite 150 relays the downlink signal received from NTN gateway 100X to UE 200. Satellite 150 relays the uplink signal received from UE 200 to NTN gateway 100X. Satellite 150 has cell C2 as its coverage area. Satellite 150 may be considered to be a TRP (Transmission-Reception Point).
  • TRP Transmission-Reception Point
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • Figure 2 shows the frequency ranges used in the wireless communication system 10.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows:
  • FR1 may use a Sub-Carrier Spacing (SCS) of 15, 30, or 60 kHz and a bandwidth (BW) of 5 to 100 MHz.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is a higher frequency than FR1, and may use a SCS of 60 or 120 kHz (including 240 kHz) and a bandwidth (BW) of 50 to 400 MHz.
  • SCS may also be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports higher frequency bands than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz up to 71 GHz or 114.25 GHz. For convenience, such high frequency bands may be referred to as "FR2x.”
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows an example of the configuration of a radio frame, subframe, and slot used in the wireless communication system 10.
  • one slot is made up of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in Figure 3. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols that make up one slot does not necessarily have to be 14 symbols (e.g., 28 symbols, 56 symbols). Furthermore, the number of slots per subframe may differ depending on the SCS.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, or symbol time.
  • the frequency direction may be called the frequency domain, resource block, subcarrier, bandwidth part (BWP), etc.
  • DMRS is a type of reference signal and is prepared for various channels. Unless otherwise specified, the term may refer to a downlink data channel, specifically, a DMRS for a PDSCH (Physical Downlink Shared Channel). However, a DMRS for an uplink data channel, specifically, a PUSCH (Physical Uplink Shared Channel), may be interpreted as being the same as a DMRS for a PDSCH.
  • DMRS may be used for channel estimation in a device, e.g., UE 200, as part of coherent demodulation. DMRS may only be present in resource blocks (RBs) used for PDSCH transmission.
  • RBs resource blocks
  • the DMRS may have multiple mapping types. Specifically, the DMRS has mapping type A and mapping type B. In mapping type A, the first DMRS is placed in the second or third symbol of a slot. In mapping type A, the DMRS may be mapped relative to the slot boundary, regardless of where in the slot the actual data transmission starts. The reason for placing the first DMRS in the second or third symbol of a slot may be interpreted as being to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • the first DMRS may be placed in the first symbol of the data allocation, i.e., the position of the DMRS may be given relative to where the data is placed, rather than relative to a slot boundary.
  • DMRS may have multiple types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 is a single-symbol DMRS that can output up to four orthogonal signals, and Type 2 is a double-symbol DMRS that can output up to eight orthogonal signals.
  • FIG. 4 is a functional block diagram of UE 200.
  • UE 200 includes a radio signal transmitting/receiving unit 210, an amplifier unit 220, a modulation/demodulation unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmitting/receiving unit 260, and a control unit 270.
  • the radio signal transmission/reception unit 210 transmits and receives radio signals conforming to NR.
  • the radio signal transmission/reception unit 210 supports Massive MIMO, CA that uses a bundle of multiple CCs, and DC that simultaneously communicates between a UE and each of two NG-RAN nodes.
  • the wireless signal transmission/reception unit 210 constitutes a communication unit that communicates with the base station (gNB100) via a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the amplifier section 220 is composed of a PA (Power Amplifier)/LNA (Low Noise Amplifier) etc.
  • the amplifier section 220 amplifies the signal output from the modem section 230 to a predetermined power level.
  • the amplifier section 220 also amplifies the RF signal output from the wireless signal transmission/reception section 210.
  • the modem unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - Spread (DFT-S-OFDM).
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform - Spread
  • DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal/reference signal processing unit 240 performs processing related to various control signals transmitted and received by the UE 200, and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processor 240 receives various control signals, such as radio resource control layer (RRC) control signals, transmitted from the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processor 240 also transmits various control signals to the gNB 100 via a predetermined control channel.
  • the control signal/reference signal processing unit 240 performs processing using reference signals (RS) such as the Demodulation Reference Signal (DMRS) and the Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between the base station and the terminal for each terminal, used to estimate the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal intended to estimate phase noise, which is an issue in high frequency bands.
  • reference signals may also include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for location information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • Control channels also include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH).
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data refers to data transmitted via a data channel.
  • a data channel may also be read as a shared channel.
  • the control signal/reference signal processing unit 240 may receive downlink control information (DCI).
  • DCI includes fields that store existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Assignment), TDRA (Time Domain Resource Assignment), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number), NDI (New Data Indicator), and RV (Redundancy Version).
  • the value stored in the DCI Format field is an information element that specifies the format of the DCI.
  • the value stored in the CI field is an information element that specifies the CC to which the DCI applies.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which the DCI applies.
  • the BWP that can be specified by the BWP indicator is set by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which the DCI applies.
  • the frequency domain resource is identified by the value stored in the FDRA field and the information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which the DCI applies.
  • the time domain resource is identified by the value stored in the TDRA field and the information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • the time domain resource may be identified by the value stored in the TDRA field and the default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which the DCI applies.
  • the MCS is specified by the value stored in the MCS and the MCS table.
  • the MCS table may be specified by an RRC message or may be specified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which the DCI is applied.
  • the value stored in the NDI is an information element that specifies whether the data to which the DCI is applied is initial transmission data or not.
  • the value stored in the RV field is an information element that specifies the redundancy of the data to which the DCI is applied.
  • the encoding/decoding unit 250 performs data division/concatenation and channel coding/decoding for each predetermined communication destination (gNB100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data.
  • the encoding/decoding unit 250 also decodes the data output from the modem unit 230, and concatenates the decoded data.
  • the data transmission/reception unit 260 transmits and receives Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transmission/reception unit 260 performs assembly/disassembly of PDUs/SDUs in multiple layers (such as the Medium Access Control layer (MAC), Radio Link Control layer (RLC), and Packet Data Convergence Protocol layer (PDCP)). The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC Medium Access Control layer
  • RLC Radio Link Control layer
  • PDCP Packet Data Convergence Protocol layer
  • the data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 may assume a control (hereinafter, the first control) that estimates the location information of the UE 200 based on the measurement results of the downlink signal.
  • the measurement results may be reported to the LMF 300 via the satellite 150 and the gNB 100.
  • the first control may be DL-TDOA (Downlink Time Difference of Arrival) Positioning using the downlink signal, DL-AoD (Downlink Angle of Departure) Positioning using the downlink signal, or may be a part of Multi-RTT (Round Trip Time) Positioning.
  • the first control may be E-CID (Enhanced Cell Identifier) Positioning using the measurement results of the UE 200 and/or the gNB 100 in addition to the geographic coordinates of the gNB 100.
  • E-CID Enhanced Cell Identifier
  • the control unit 270 may assume a control (hereinafter, the second control) that estimates the location information of the UE 200 based on the measurement results of the uplink signal.
  • the second control may be UL-TDOA (Uplink Time Difference of Arrival) Positioning using the uplink signal, UL-AoA (Uplink Angle Of Arrival) using the uplink signal, or a part of Multi-RTT Positioning.
  • the second control may be E-CID Positioning.
  • control unit 270 configures a control unit that executes specific control (hereinafter, first specific control) to measure a signal used to estimate location information of the terminal (UE200) before the connection with the base station (gNB100) is completed.
  • the stage before the connection with the gNB100 is completed may be referred to as Initial Access.
  • the stage before the connection with the gNB100 is completed may be a random access procedure (hereinafter, RA procedure).
  • the RA procedure may include a 4-step RA procedure or a 2-step RA procedure (3GPP TS38.321 V17.2.0 ⁇ 5.1 “Random Access procedure”).
  • the first specific control may be considered to be a control that performs a measurement in the RA procedure, and the measurement results by the first specific control may be reported during the RA procedure or after the RA procedure is completed.
  • the first specific control may be considered to be a first control that is performed in Initial Access (e.g., the RA procedure).
  • FIG. 5 is a functional block diagram of the gNB100. As shown in FIG. 5, the gNB100 has a receiving unit 110, a transmitting unit 120, and a control unit 130.
  • the receiver 110 receives various signals from the UE 200.
  • the receiver 110 may receive a UL signal via a PUCCH or a PUSCH.
  • the transmitter 120 transmits various signals to the UE 200.
  • the transmitter 120 may transmit DL signals via the PDCCH or PDSCH.
  • the receiving unit 110 and the transmitting unit 120 constitute a communication unit that communicates with a terminal (UE200) via a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the control unit 130 controls the gNB 100.
  • the control unit 130 may assume the first control described above.
  • the control unit 130 may assume the second control described above.
  • control unit 130 configures a control unit that executes specific control (hereinafter, second specific control) to measure a signal used to estimate location information of the terminal (UE200) before the connection with the terminal is completed.
  • the stage before the connection with the terminal is completed may be referred to as Initial Access.
  • the stage before the connection with the terminal is completed may be an RA procedure.
  • the RA procedure may include a 4-step RA procedure or a 2-step RA procedure (3GPP TS38.321 V17.2.0 ⁇ 5.1 “Random Access procedure”).
  • the second specific control may be considered to be a control that performs a measurement in the RA procedure, and the measurement results by the second specific control may be reported during the RA procedure or after the RA procedure is completed.
  • the second specific control may be considered to be a second control that is performed in Initial Access (e.g., the RA procedure).
  • FIG. 6 is a functional block diagram of the LMF 300. As shown in FIG. 6, the LMF 300 has a receiving unit 310, a transmitting unit 320, and a control unit 330.
  • the receiving unit 310 may receive a message such as a measurement result related to the first control from the UE 200.
  • the message may be referred to as an LPP Provide Location Information.
  • the receiving unit 310 may receive a message such as a measurement result related to the second control from the gNB 100.
  • the message may be referred to as an NRPPa (NR Positioning Protocol A) message (Type: Measurement Report).
  • the receiving unit 310 may receive a message used in the measurement related to the second control from the gNB 100.
  • the message may be referred to as an NRPPa message (Type: POSITIONING INFORMATION REQUEST).
  • the transmitting unit 320 may transmit a message to the UE 200 for use in measurements related to the first control.
  • the message may be referred to as LPP Provide Assistance Data.
  • the transmitting unit 320 may transmit a message to the gNB 100 requesting measurements related to the second control.
  • the message may be referred to as an NRPPa message (Type: Measurement Request).
  • the control unit 330 controls the LMF 300.
  • the control unit 330 may execute control (UE location verification) to estimate location information of the UE 200, assuming the first control.
  • the control unit 330 may execute control (UE location verification) to estimate location information of the UE 200, assuming the second control.
  • the gNB 100 has a protocol stack such as PHY, MAC, RLC, PDCP, RRC/SDAP, etc.
  • the UE 200 has a protocol stack such as PHY, MAC, RLC, PDCP, RRC/SDAP, etc.
  • the satellite 150 relays communication between the gNB 100 and the UE 200.
  • the link between the gNB100 (NTN Gateway 100X) and the satellite 150 may be referred to as a Feeder link.
  • the link between the satellite 150 and the UE 200 may be referred to as a Service link.
  • the interface between the gNB100 and the UE 200 may be referred to as an NR Uu.
  • NTN's network architecture may be FDD or TDD.
  • the terrestrial cells may be fixed or mobile.
  • UE200 may have the capability to support GNSS (Global Navigation Satellite System).
  • UE200 may be a power class 3 handheld device in FR1, and may be a VSAT (Very small aperture terminal) at least in FR2.
  • GNSS Global Navigation Satellite System
  • VSAT Very small aperture terminal
  • NTN's network architecture may assume regenerative payloads.
  • the gNB100 functionality may be mounted on a satellite or an aircraft.
  • a gNB-DU distributed Unit
  • a gNB-CU Central Unit
  • the above-mentioned methods such as DL-TDOA, DL-AoD, UL-TDOA, UL-AoA, Multi-RTT, and E-CID are methods for estimating location information of UE 200 in the RRC Connected state.
  • the inventors after careful consideration, have discovered the need to quickly estimate the location information of the UE at a stage before the UE200 transitions from the RRC IDLE state to the RRC Connected state (e.g., Initial Access).
  • the RRC Connected state e.g., Initial Access
  • step S10 UE 200 receives an RRCReconfiguration that changes the configuration of the cell to which UE 200 is connected. Note that, if UE 200 transitions from the RRC IDLE state to the RRC CONNECTED state, step S10 is omitted.
  • step S12 UE200 transmits Msg1 to gNB100.
  • Msg1 may be transmitted via PRACH (Physical Random Access Channel).
  • Msg1 may be referred to as a random access preamble.
  • gNB100 transmits Msg2 to UE200.
  • Msg2 may be transmitted via a PDSCH scheduled by the PDCCH (DCI).
  • DCI PDCCH
  • Msg2 may be referred to as a RAR (Random Access Response).
  • step S16 UE 200 transmits Msg3 to gNB 100.
  • Msg3 may be transmitted via a PUSCH scheduled by Msg2.
  • Msg3 may be referred to as an RRC Connection Request.
  • gNB100 transmits Msg4 to UE200.
  • Msg4 may be transmitted via a PDSCH scheduled by the PDCCH (DCI).
  • DCI PDCCH
  • Msg4 may be referred to as RRC Connection Setup or Contention Resolution.
  • step S20 UE 200 transmits a HARQ-ACK for Msg4 to gNB 100.
  • the HARQ-ACK may be transmitted via PUCCH.
  • an RRC Reconfiguration message may be transmitted via PDSCH.
  • the method of control for estimating the location information of UE200 may be one or more methods selected from DL-TDOA, DL-AoD, UL-TDOA, UL-AoA, Multi-RTT, and E-CID.
  • the measurement results transmitted from UE 200 to LMF 300 are as shown in Figure 9.
  • the measurement results shown in Figure 9 may be similar to the measurement results included in the table specified in 3GPP TS 38.305 V17.2.0 ⁇ 8.12 "DL-TDOA positioning".
  • the measurement results transmitted from UE 200 to LMF 300 are as shown in Figure 10.
  • the measurement results shown in Figure 10 may be the same as the measurement results included in the table specified in 3GPP TS 38.305 V17.2.0 ⁇ 8.11 "DL-AoD positioning".
  • the measurement results sent from UE 200 to LMF 300 are as shown in Figure 11.
  • the measurement results shown in Figure 11 may be the same as the measurement results included in the table specified in 3GPP TS 38.305 V17.2.0 ⁇ 8.10 "Multi-RTT positioning".
  • the measurement results transmitted from the gNB100 to the LMF300 are as shown in Figure 12.
  • the measurement results shown in Figure 12 may be the same as the measurement results included in the table specified in 3GPP TS38.305 V17.2.0 ⁇ 8.13 “UL-TDOA positioning”.
  • the measurement results transmitted from the gNB100 to the LMF300 are as shown in Figure 13.
  • the measurement results shown in Figure 13 may be the same as the measurement results included in the table specified in 3GPP TS38.305 V17.2.0 ⁇ 8.14 “UL-AoA positioning”.
  • the measurement results sent from the gNB100 to the LMF300 are as shown in Figure 14.
  • the measurement results shown in Figure 14 may be the same as the measurement results included in the table specified in 3GPP TS38.305 V17.2.0 ⁇ 8.10 "Multi-RTT positioning".
  • Operation example 1 In operation example 1, at least one of UE200 and gNB100 transmits or measures a signal used to estimate location information of UE200 before or during the RA procedure.
  • the signal used to estimate the location information of UE200 in the first specific control is a downlink signal.
  • the signal used to estimate the location information of UE200 may be referred to as a specific downlink signal or a specific downlink reference signal. The following options are possible for the specific downlink signal.
  • broadcast information that can be received in the RRC IDLE state may be used as a specific downlink signal.
  • the broadcast information may be SSB (Synchronization Signal Block), a newly defined SIB, or MSG2 (MSG4).
  • a downlink signal (e.g., DL-PRS) having a setting specified by broadcast information receivable in the RRC IDLE state may be used as the specific downlink signal.
  • the broadcast information may be an SSB, a newly defined SIB, or MSG2 (MSG4).
  • the broadcast information may be transmitted from the serving gNB100 or from a neighbor gNB100 adjacent to the serving gNB100.
  • the downlink signal used in the RA procedure (at least one of Msg2 and Msg4) may be used as the specific downlink signal.
  • Option 1-1 to Option 1-3 Two or more options selected from Option 1-1 to Option 1-3 may be combined.
  • DL-PRS may be read as SSB.
  • DL-PRS-RSRP Reference Signal Received Power
  • DL-PRS-RSRPP Reference Signal Received Path Power
  • Figure 10 DL-PRS receive beam index shown in Figure 10 may be read as SSB receive beam index.
  • DL-PRS when MSG2 (MSG4) is measured, DL-PRS may be read as MSG2 (MSG4).
  • MSG2 MSG4
  • DL-PRS-RSRP measurements and DL-PRS-RSRPP measurements shown in Figures 9, 10, and 11 may be read as MSG2 (or MSG4)-RSRP measurements and MSG2 (or MSG4)-RSRPP measurements, respectively.
  • MSG2 MSG4
  • MSG4-RSRP measurements when MSG2 (or MSG4) is measured, the DL-PRS receive beam index shown in Figure 10 may be read as MSG2 (or MSG4) receive beam index.
  • UE200 may report a timing advance specific to UE200 (UE specific TA), SSB-RSRP, PCI (Physical Cell Identifier), etc. to LMF300.
  • UE specific TA is the delay time of the Service link shown in Figure 7, and may be considered to be 1/2 the RTD (Round Trip Delay) of the Service link.
  • the signal used to estimate the location information of UE200 in the second specific control is an uplink signal.
  • the signal used to estimate the location information of UE200 may be referred to as a specific uplink signal or a specific uplink reference signal.
  • an uplink signal (e.g., UL-SRS) having a setting specified by broadcast information receivable in the RRC IDLE state may be used as the specific uplink signal.
  • the broadcast information may be an SSB, a newly defined SIB, or MSG2 (MSG4).
  • the broadcast information may be transmitted from the serving gNB100 or from a neighbor gNB100 adjacent to the serving gNB100.
  • the specific uplink signal may be an uplink signal used in the RA procedure (at least one of Msg1 and Msg3).
  • a PUCCH (PUCCH after MSG4) for ACK to Msg4 used in the RA procedure may be used as a specific uplink signal.
  • Option 2-1 to Option 2-3 Two or more options selected from Option 2-1 to Option 2-3 may be combined.
  • UL-SRS may be read as Msg3 (Msg1 or PUCCH after MSG4).
  • Msg3 Msg1 or PUCCH after MSG4
  • UL-SRS-RSRP measurements and UL-SRS-RSRPP measurements shown in Figures 12, 13 and 41 may be read as Msg3 (Msg1 or PUCCH after MSG4)-RSRP measurements and Msg3 (or PUCCH after MSG4)-RSRPP measurements, respectively.
  • Operation example 1 may be applied to a case where one satellite 150 is observed by UE 200, or may be applied to a case where two or more satellites 150 are observed by UE 200.
  • Observation may mean that the quality (RSRP or RSRQ) of the signal received by UE 200 from satellite 150 is above a threshold.
  • the operation of reporting the measured information to gNB 100 or LMF may be performed during or immediately after the operation related to RRC connection establishment, and may be reported, for example, in Msg2, or in an RRC setup message or an RRC reconfiguration message.
  • UE200 performs measurements of signals used to estimate UE200's location information prior to connecting to gNB100 (e.g., Initial Access), and therefore UE200's location information can be quickly estimated.
  • gNB100 e.g., Initial Access
  • the gNB100 performs measurements of signals used to estimate the location information of the UE200 at a stage prior to connecting to the UE200 (e.g., Initial Access), and therefore can quickly estimate the location information of the UE200.
  • Option 3-1 describes reporting of capabilities regarding whether UE200 supports measuring signals used to estimate UE200's location information at a stage prior to UE200 connecting to gNB100 (e.g., Initial Access).
  • the UE200 may transmit its capabilities regarding measurements in Initial Access via Msg3.
  • the capabilities may include information indicating whether or not it supports measurements in Initial Access, and may include the information shown below.
  • the capabilities may include whether the UE 200 supports measurements in cases where there is one satellite 150 observed by the UE 200.
  • the capabilities may include whether the UE 200 supports measurements in cases where there are two or more satellites 150 observed by the UE 200.
  • the capabilities may include which of the UE location verification methods (DL-TDOA, DL-AoD, UL-TDOA, UL-AoA, Multi-RTT, E-CID) the UE 200 supports.
  • the information indicating the capabilities regarding measurements in Initial Access may be 4 bits, with 1 bit indicating Alt 1 and 3 bits indicating Alt 2.
  • UE200 may request by Msg3 that its location information be estimated by measurements during Initial Access.
  • UE200 may report the measurement results at Initial Access via Msg3.
  • UE 200 may transmit a specific uplink signal (e.g., UL-SRS) along with Msg3.
  • UL-SRS a specific uplink signal
  • UE200 transmits capabilities related to the first specific control (capabilities related to whether or not to support measurements in Initial Access) via an uplink signal (Msg3) used in the RA procedure.
  • Msg3 uplink signal
  • gNB100 can grasp the capabilities of UE200 and can instruct UE200 to appropriately measure and report.
  • Operation example 3 In the third operation example, a method will be described in which the gNB 100 instructs the UE 200 to report a measurement result performed by the UE 200 in a stage (e.g., Initial Access) before the UE 200 connects to the gNB 100. As such a method, the following options are considered.
  • a stage e.g., Initial Access
  • Option 4-1 assumes a case where UE200 supports one measurement method.
  • UE200 may transmit one measurement method supported by UE200 to gNB100 by Msg3.
  • the measurement method may include a specific downlink signal type for which UE200 supports measurement, as described in operation example 1.
  • the measurement method may include a UE location verification method supported by UE200 (DL-TDOA, DL-AoD, UL-TDOA, UL-AoA, Multi-RTT, E-CID) as described in operation example 2.
  • gNB100 transmits new information to UE200 instructing it to report the measurement results.
  • the new information may be referred to as verification information.
  • the verification information may be included in Msg4 (RRC Connection Setup).
  • Msg4 RRC Connection Setup
  • UE200 reports the measurement results performed in a stage prior to UE200 connecting to gNB100 (e.g., Initial Access).
  • Verification information may instruct the reporting of information other than measurement results (e.g., PCI, GCI (Global Cell Identifier), ARFCN (Absolute Radio-Frequency Channel Number), etc.).
  • Information other than measurement results may be referred to as assistance information.
  • UE200 may report the measurement results (or/and assistance information).
  • verificationinformation is "0" (or "1"
  • UE200 may not report the measurement results (or/and assistance information).
  • UE200 does not need to report the measurement results (and/or assistance information) if verification information is not notified.
  • Option 4-2 assumes a case where UE200 supports two measurement methods.
  • UE200 may transmit the two measurement methods supported by UE200 to gNB100 by Msg3.
  • the measurement methods may include the types of specific downlink signals that UE200 supports measuring, as described in operation example 1.
  • the measurement methods may include the UE location verification methods supported by UE200 (DL-TDOA, DL-AoD, UL-TDOA, UL-AoA, Multi-RTT, E-CID) as described in operation example 2.
  • gNB100 transmits new information to UE200 instructing it to report the measurement results.
  • the new information may include the measurement method instructed to UE200 in addition to the verification information described above.
  • the verification information and measurement method may be included in Msg4 (RRC Connection Setup).
  • UE200 reports the measurement results performed in the stage before UE200 connects to gNB100 (e.g., Initial Access).
  • the measurement results are the results of measurement using the measurement method notified by gNB100.
  • measurementmethod may be information specifying the type of specific downlink signal that UE200 supports measuring.
  • measurementmethod may be information specifying the UE location verification method (DL-TDOA, DL-AoD, UL-TDOA, UL-AoA, Multi-RTT, E-CID).
  • measurement method when measurement method is notified, the notification of verification information may be omitted. measurement method may be read as measured information or reported information.
  • gNB100 may transmit new information (verificationinformation and/or measurementmethod) by RRCReconfiguration or Msg2. gNB100 may obtain the measurement method supported by UE200 in advance from a gNB100 or LMF300 adjacent to gNB100.
  • UE200 reports the measurement results performed at a stage prior to UE200 connecting to gNB100 (e.g., Initial Access) in response to an instruction from gNB100, so that location information of UE200 can be quickly estimated.
  • gNB100 e.g., Initial Access
  • UE200 performs measurement of a signal (the specific downlink signal described in Operation Example 1) used to estimate location information of UE200 at a stage prior to connecting to gNB100 (e.g., Initial Access), and therefore, can quickly estimate location information of UE200.
  • a signal the specific downlink signal described in Operation Example 1 used to estimate location information of UE200 at a stage prior to connecting to gNB100 (e.g., Initial Access), and therefore, can quickly estimate location information of UE200.
  • the gNB100 performs measurements of the signal (the specific uplink signal described in Operation Example 1) used to estimate the location information of the UE200 prior to connecting to the UE200 (e.g., Initial Access), and therefore can quickly estimate the location information of the UE200.
  • the signal the specific uplink signal described in Operation Example 1 used to estimate the location information of the UE200 prior to connecting to the UE200 (e.g., Initial Access), and therefore can quickly estimate the location information of the UE200.
  • Msg1 and Msg3 may be read as MsgA.
  • Msg2 and Msg4 may be read as MsgB.
  • Msg3 and MsgA may be replaced with another signal (e.g., Msg3-bis) after transmitting Msg3 and MsgA and before receiving Msg4. The resource of the other signal may be notified via Msg2.
  • the non-terrestrial network device that relays UL signals or DL signals in the NTN is a satellite 150.
  • the non-terrestrial network device may be any node that constitutes an NTN in the air, and may be referred to as an aerial node, a floating body, an air vehicle, or a flying object.
  • configure, activate, update, indicate, enable, specify, and select may be read as interchangeable.
  • link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (for example, using wires, wirelessly, etc.) and these multiple devices.
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the devices.
  • the devices may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
  • apparatus can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • Each functional block of the device (see Figures 4 to 6) is realized by any hardware element of the computer device, or a combination of such hardware elements.
  • each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
  • a specific software program
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments.
  • the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the programs may be transmitted from a network via a telecommunications line.
  • Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc.
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 may store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one device (e.g., a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG)
  • x is, for example, an integer or decimal
  • Future Radio Access (FRA) New Radio (NR)
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therewith.
  • multiple systems may be combined (for example, a combination of at least one of LTE and LTE-A with 5G).
  • certain operations that are described as being performed by a base station may in some cases also be performed by its upper node.
  • various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW).
  • the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or appended.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., with a predetermined value).
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • software, instructions, information, etc. may be transmitted and received over a transmission medium.
  • a transmission medium For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • Base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
  • a base station subsystem e.g., a small indoor base station (Remote Radio Head: RRH)
  • cell refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below).
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the mobile station may be configured to have the functions of a base station.
  • terms such as "uplink” and "downlink” may be interpreted as terms corresponding to communication between terminals (for example, "side”).
  • the uplink channel, downlink channel, etc. may be interpreted as a side channel.
  • the mobile station in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the mobile station.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • SCS Subcarrier Spacing
  • TTI Transmission Time Interval
  • radio frame structure a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • a slot may be a numerology-based unit of time.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one slot or one minislot when called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (RE).
  • RE resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as “judging” or “determining.”
  • determining and “determining” may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as “judging” or “determining.”
  • judgment” and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment (decision)” can be interpreted as “assuming,” “ex
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • FIG. 16 shows an example of the configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also called a handle
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 transmits a current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: a front wheel or rear wheel rotation speed signal acquired by a rotation speed sensor 2022, a front wheel or rear wheel air pressure signal acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting an obstacle, a vehicle, a pedestrian, etc. acquired by an object detection sensor 2028.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on an information service unit 2012 provided in the vehicle.
  • the communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
  • the first feature is that the terminal is equipped with a communication unit that communicates with a base station via a non-terrestrial network, and a control unit that performs specific control to measure signals used to estimate the terminal's location information before the connection with the base station is completed.
  • the second feature is that in the first feature, the signal used to estimate the location information of the terminal is one or more signals selected from notification information, a downlink signal having a setting specified by the notification information, and a downlink signal in a random access procedure.
  • the third feature is a terminal according to the first or second feature, in which the control unit transmits at least one of the uplink signals, which are signals used to estimate the capability related to the specific control, the result of the measurement, and the location information of the terminal, using an uplink signal in a random access procedure.
  • the control unit transmits at least one of the uplink signals, which are signals used to estimate the capability related to the specific control, the result of the measurement, and the location information of the terminal, using an uplink signal in a random access procedure.
  • the fourth feature is a base station that includes a communication unit that communicates with a terminal via a non-terrestrial network, and a control unit that performs specific control to measure a signal used to estimate the location information of the terminal before the connection with the terminal is completed.
  • the fifth feature is a wireless communication system comprising a terminal and a base station, the terminal comprising a communication unit that communicates with the base station via a non-terrestrial network, and a control unit that performs specific control to measure a signal used to estimate the location information of the terminal before the connection with the base station is completed.
  • the sixth feature is a wireless communication method comprising step A of communicating with a base station via a non-terrestrial network, and step B of executing specific control to measure a signal used to estimate the terminal's location information before the connection with the base station is completed.
  • Wireless Communication Systems 20 NG-RAN 30 Core Network 100 gNB 100X NTN Gateway 110 Receiving unit 120 Transmitting unit 130 Control unit 200 UE 210 Radio signal transmitting/receiving unit 220 Amplifying unit 230 Modulation/demodulation unit 240 Control signal/reference signal processing unit 250 Encoding/decoding unit 260 Data transmitting/receiving unit 270 Control unit 300 LMF 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus 2001 vehicle 2002 drive unit 2003 steering unit 2004 accelerator pedal 2005 brake pedal 2006 shift lever 2007 left and right front wheels 2008 left and right rear wheels 2009 axle 2010 electronic control unit 2012 information service unit 2013 communication module 2021 current sensor 2022 rotation speed sensor 2023 air pressure sensor 2024 vehicle speed sensor 2025 acceleration sensor 2026 brake pedal sensor 2027 shift lever sensor 2028 object detection sensor 2029 accelerator pedal sensor 2030 driving support system unit 2031 microprocessor 2032 memory (ROM, RAM) 2033 communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、非地上型ネットワークを介して基地局と通信を実行する通信部と、前記基地局との接続が完了する前段階において、端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える。

Description

端末、基地局、無線通信システム及び無線通信方法
 本開示は、端末の位置情報の推定に関する端末、基地局、無線通信システム及び無線通信方法に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 3GPPでは、Multi-RTT(Round Trip Time)、DL-TDOA(Downlink Time Difference of Arrival)、DL-AoD(Downlink Angle of Departure)、UL-TDOA(Uplink Time Difference of Arrival)、UL-AoA(Uplink Angle of Arrival)、E-CID(Enhanced Cell ID)などの手法を用いて、端末(以下、UE; User Equipment)の位置情報を推定する技術が規定されている(例えば、非特許文献1)。Multi-RTTなどの方式は、RRC Connected状態においてUE200の位置情報を推定する方式である。Multi-RTTなどの手法は、複数の(望ましくは3以上)のTRP(Transmission-Reception Point)とUEとの間の通信を前提とする手法である。
 さらに、3GPPでは、NTNでは、衛星などの非地上ネットワーク装置を含む非地上型ネットワークを利用することによって、地上型ネットワークではコストなどの理由からカバーできないエリアにサービスが提供される。
3GPP TS38.305 V17.2.0 2022年9月
 ところで、上述した技術は、RRC Connected状態においてUEの位置情報を推定する技術である。
 このような背景下において、発明者等は、鋭意検討の結果、UEがRRC IDLE状態からRRC Connected状態に遷移する前段階(例えば、Initial Access)において、UEの位置情報を速やかに推定する必要性について見出した。
 そこで、本開示は、上述した課題を解決するためになされたものであり、UEの位置情報を速やかに推定し得る端末、基地局、無線通信システム及び無線通信方法の提供を目的とする。
 本開示の一態様は、非地上型ネットワークを介して基地局と通信を実行する通信部と、前記基地局との接続が完了する前段階において、端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、端末である。
 本開示の一態様は、非地上型ネットワークを介して端末と通信を実行する通信部と、前記端末との接続が完了する前段階において、前記端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、基地局である。
 本開示の一態様は、端末と基地局とを備え、前記端末は、非地上型ネットワークを介して前記基地局と通信を実行する通信部と、前記基地局との接続が完了する前段階において、前記端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、無線通信システムである。
 本開示の一態様は、非地上型ネットワークを介して基地局と通信を実行するステップAと、前記基地局との接続が完了する前段階において、端末の位置情報の推定に用いる信号を測定する特定制御を実行するステップBと、を備える、無線通信方法である。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、UE200の機能ブロック構成図である。 図5は、gNB100の機能ブロック構成図である。 図6は、LMF300の機能ブロック構成図である。 図7は、プロトコルについて説明するための図である。 図8は、動作例の概要について説明するための図である。 図9は、UE200が報告する内容の一例を説明するための図である。 図10は、UE200が報告する内容の一例を説明するための図である。 図11は、UE200が報告する内容の一例を説明するための図である。 図12は、gNB100が報告する内容の一例を説明するための図である。 図13は、gNB100が報告する内容の一例を説明するための図である。 図14は、gNB100が報告する内容の一例を説明するための図である。 図15は、gNB100及びUE200のハードウェア構成の一例を示す図である。 図16は、車両2001の構成例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE(User Equipment)200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、基地局100(以下、gNB100)を含む。なお、gNB100及びUE200の数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク30(例えば、5GC)と接続される。なお、NG-RAN20及びコアネットワーク30は、単に「ネットワーク」と表現されてもよい。
 gNB100は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 コアネットワーク30は、ネットワーク装置300を含む。ネットワーク装置300は、LMF(Location Management Function)を含んでもよい。ネットワーク装置300は、AMF(Access and Mobility management Function)を含んでもよい。ネットワーク装置300は、E-SMLC(Evolved Serving Mobile Location Centre)であってもよい。以下においては、ネットワーク装置300がLMF300であるケースについて主として説明する。
 実施形態では、非地上型ネットワーク(以下、NTN; Non-Terrestrial Network)を想定する。NTNでは、人工衛星150(以下、衛星150)などの非地上型ネットワークを利用することによって、地上型ネットワーク(以下、TN)ではコストなどの理由からカバーできないエリアにサービスが提供される。NTNによって、より信頼性の高いサービスを供給することができる。例えば、NTNは、IoT(Inter of things)、船舶、バス、列車、クリティカルな通信に適用することが想定される。また、NTNは、効率的なマルチキャスト又はブロードキャストによるスケーラビリティを有する。
 なお、衛星150を含まずにgNB100とUE200とを含むネットワークは、NTNと対比する意味で地上型ネットワーク(TN)と称されてもよい。
 gNB100は、NTNゲートウェイ100Xを有する。NTNゲートウェイ100Xは、下りリンク信号を衛星150に送信する。NTNゲートウェイ100Xは、上りリンク信号を衛星150から受信する。gNB100は、セルC1をカバレッジエリアとして有する。
 衛星150は、NTNゲートウェイ100Xから受信する下りリンク信号をUE200に中継する。衛星150は、UE200から受信する上りリンク信号をNTNゲートウェイ100Xに中継する。衛星150は、セルC2をカバレッジエリアとして有する。衛星150は、TRP(Transmission-Reception Point)であると考えてもよい。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。
 高周波数帯では位相雑音の影響が大きくなる問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28シンボル、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth Part)などと呼ばれてもよい。
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
 第1に、UE200の機能ブロック構成について説明する。
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 実施形態では、無線信号送受信部210は、非地上型ネットワーク(NTN)を介して基地局(gNB100)と通信を実行する通信部を構成する。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Assignment)、TDRA(Time Domain Resource Assignment)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。例えば、制御部270は、下りリンク信号の測定結果に基づいてUE200の位置情報を推定する制御(以下、第1制御)を想定してもよい。測定結果は、衛星150及びgNB100を介してLMF300に対して報告されてもよい。第1制御は、下りリンク信号を用いたDL-TDOA(Downlink Time Difference of Arrival) Positioningであってもよく、下りリンク信号を用いたDL-AoD(Downlink Angle of Departure) Positioningであってもよく、Multi-RTT(Round Trip Time) Positioningの一部であってもよい。第1制御は、gNB100の地理的な座標に加えてUE200又は/及びgNB100の測定結果を用いるE-CID(Enhanced Cell Identifier) Positioningであってもよい。
 制御部270は、上りリンク信号の測定結果に基づいてUE200の位置情報を推定する制御(以下、第2制御)を想定してもよい。第2制御は、上りリンク信号を用いたUL-TDOA (Uplink Time Difference of Arrival) Positioningであってもよく、上りリンク信号を用いたUL-AoA(Uplink Angle Of Arrival)であってもよく、Multi-RTT Positioningの一部であってもよい。第2制御は、E-CID Positioningであってもよい。
 実施形態では、制御部270は、基地局(gNB100)との接続が完了する前段階において、端末(UE200)の位置情報の推定に用いる信号を測定する特定制御(以下、第1特定制御)を実行する制御部を構成する。gNB100との接続が完了する前段階は、Initial Accessと称されてもよい。gNB100との接続が完了する前段階は、ランダムアクセス手順(以下、RA手順)であってもよい。RA手順は、4-step RA手順を含んでもよく、2-step RA手順を含んでもよい(3GPP TS38.321 V17.2.0 §5.1 “Random Access procedure”)。
 ここで、第1特定制御は、RA手順において測定を実行する制御であると考えてよいが、第1特定制御による測定結果は、RA手順中に報告されてもよく、RA手順が完了した後に報告されてもよい。第1特定制御は、Initial Access(例えば、RA手順)で実行される第1制御であると考えてもよい。
 第2に、gNB100の機能ブロック構成について説明する。
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHを介してUL信号を受信してもよい。
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHを介してDL信号を送信してもよい。
 実施形態では、受信部110及び送信部120は、非地上型ネットワーク(NTN)を介して端末(UE200)と通信を実行する通信部を構成する。
 制御部130は、gNB100を制御する。例えば、制御部130は、上述した第1制御を想定してもよい。制御部130は、上述した第2制御を想定してもよい。
 実施形態では、制御部130は、端末(UE200)との接続が完了する前段階において、UE200の位置情報の推定に用いる信号を測定する特定制御(以下、第2特定制御)を実行する制御部を構成する。UE200との接続が完了する前段階は、Initial Accessと称されてもよい。UE200との接続が完了する前段階は、RA手順であってもよい。RA手順は、4-step RA手順を含んでもよく、2-step RA手順を含んでもよい(3GPP TS38.321 V17.2.0 §5.1 “Random Access procedure”)。
 ここで、第2特定制御は、RA手順において測定を実行する制御であると考えてよいが、第2特定制御による測定結果は、RA手順中に報告されてもよく、RA手順が完了した後に報告されてもよい。第2特定制御は、Initial Access(例えば、RA手順)で実行される第2制御であると考えてもよい。
 第3に、LMF300の機能ブロック構成について説明する。
 図6は、LMF300の機能ブロック構成図である。図6に示すように、LMF300は、受信部310、送信部320及び制御部330を有する。
 受信部310は、第1制御に関する測定結果などのメッセージをUE200から受信してもよい。メッセージは、LPP Provide Location Informationと称されてもよい。受信部310は、第2制御に関する測定結果などのメッセージをgNB100から受信してもよい。メッセージは、NRPPa(NR Positioning Protocol A)メッセージ(Type: Measurement Report)と称されてもよい。受信部310は、第2制御に関する測定で用いるメッセージをgNB100から受信してもよい。メッセージは、NRPPaメッセージ(Type: POSITIONING INFORMATION REQUEST)と称されてもよい。
 送信部320は、第1制御に関する測定で用いるメッセージをUE200に送信してもよい。メッセージは、LPP Provide Assistance Dataと称されてもよい。送信部320は、第2制御に関する測定を要求するメッセージをgNB100に送信してもよい。メッセージは、NRPPaメッセージ(Type: Measurement Request)と称されてもよい。
 制御部330は、LMF300を制御する。制御部330は、第1制御を想定して、UE200の位置情報を推定する制御(UE location verification)を実行してもよい。制御部330は、第2制御を想定して、UE200の位置情報を推定する制御(UE location verification)を実行してもよい。
 (3)プロトコル
 図7に示すように、gNB100は、PHY、MAC、RLC、PDCP、RRC/SDAPなどのプロトコルスタックを有する。同様に、UE200は、PHY、MAC、RLC、PDCP、RRC/SDAPなどのプロトコルスタックを有する。衛星150は、gNB100とUE200との間の通信を中継する。
 ここで、gNB100(NTNゲートウェイ100X)と衛星150との間のリンクはFeeder linkと称されてもよい。衛星150とUE200との間のリンクはService linkと称されてもよい。gNB100とUE200との間のインタフェースは、NR Uuと称されてもよい。
 なお、NTNのネットワークアーキテクチャの想定として、FDDが採用されてもよく、TDDが採用されてもよい。地上のセルは、固定されてもよく、移動可能であってもよい。UE200は、GNSS(Global Navigation Satellite System)に対応する能力を有してもよい。UE200としては、FR1では、パワークラス3のハンドヘルドデバイスが想定されてもよく、少なくともFR2では、VSAT(Very small aperture terminal)が想定されてもよい。
 NTNのネットワークアーキテクチャは、リジェネレイティブペイロードを想定してもよい。例えば、gNB100の機能が衛星又は飛行体に搭載されてもよい。また、gNB-DU(Distributed Unit)が衛星又は飛行体に搭載され、gNB-CU(Central Unit)が地上局として配置されてもよい。
 (4)課題
 上述したDL-TDOA、DL-AoD、UL-TDOA、UL-AoA、Multi-RTT、E-CIDなどの方式は、RRC Connected状態においてUE200の位置情報を推定する方式である。
 このような背景下において、発明者等は、鋭意検討の結果、UE200がRRC IDLE状態からRRC Connected状態に遷移する前段階(例えば、Initial Access)において、UEの位置情報を速やかに推定する必要性について見出した。
 (5)動作例の概要
 次に、動作例の概要について説明する。以下においては、UE200とgNB100との間の接続が完了する前段階として4-step RA手順を例に挙げて説明する。
 図8に示すように、ステップS10において、UE200は、UE200が接続するセルの構成を変更するRRCReconfigurationを受信する。なお、UE200がRRC IDLE状態からRRC CONNECTED状態に遷移する場合には、ステップS10は省略される。
 ステップステップS12において、UE200は、Msg1をgNB100に送信する。Msg1は、PRACH(Physical Random Access Channel)を介して送信されてもよい。Msg1は、ランダムアクセスプリアンブルと称されてもよい。
 ステップS14において、gNB100は、Msg2をUE200に送信する。Msg2は、PDCCH(DCI)によってスケジューリングされるPDSCHを介して送信されてもよい。Msg2は、RAR(Random Access Response)と称されてもよい。
 ステップS16において、UE200は、Msg3をgNB100に送信する。Msg3は、Msg2によってスケジューリングされるPUSCHを介して送信されてもよい。Msg3は、RRC Connection Requestと称されてもよい。
 ステップS18において、gNB100は、Msg4をUE200に送信する。Msg4は、PDCCH(DCI)によってスケジューリングされるPDSCHを介して送信されてもよい。Msg4は、RRC Connection Setupと称されてもよく、Contention Resolutionと称されてもよい。
 ステップS20において、UE200は、Msg4に対するHARQ-ACKをgNB100に送信する。HARQ-ACKは、PUCCHを介して送信されてもよい。ステップS20の後、RRC Reconfiguration messageがPDSCHを介して送信されてもよい。
 ここで、UE200の位置情報を推定する制御(UE location verification)の方式は、DL-TDOA、DL-AoD、UL-TDOA、UL-AoA、Multi-RTT、E-CIDの中から選択された1以上の方式であってもよい。
 例えば、既存のDL-TDOAにおいて、UE200からLMF300に送信される測定結果は、図9に示す通りである。図9に示す測定結果は、3GPP TS38.305 V17.2.0 §8.12 “DL-TDOA positioning”で規定されたテーブルに含まれる測定結果と同様であってもよい。
 既存のDL-AoDにおいて、UE200からLMF300に送信される測定結果は、図10に示す通りである。図10に示す測定結果は、3GPP TS38.305 V17.2.0 §8.11 “DL-AoD positioning”で規定されたテーブルに含まれる測定結果と同様であってもよい。
 既存のMulti-RTTにおいて、UE200からLMF300に送信される測定結果は、図11に示す通りである。図11に示す測定結果は、3GPP TS38.305 V17.2.0 §8.10 “Multi-RTT positioning”で規定されたテーブルに含まれる測定結果と同様であってもよい。
 既存のUL-TDOAにおいて、gNB100からLMF300に送信される測定結果は、図12に示す通りである。図12に示す測定結果は、3GPP TS38.305 V17.2.0 §8.13 “UL-TDOA positioning”で規定されたテーブルに含まれる測定結果と同様であってもよい。
 既存のUL-AoAにおいて、gNB100からLMF300に送信される測定結果は、図13に示す通りである。図13に示す測定結果は、3GPP TS38.305 V17.2.0 §8.14 “UL-AoA positioning”で規定されたテーブルに含まれる測定結果と同様であってもよい。
 既存のMulti-RTTにおいて、gNB100からLMF300に送信される測定結果は、図14に示す通りである。図14に示す測定結果は、3GPP TS38.305 V17.2.0 §8.10 “Multi-RTT positioning”で規定されたテーブルに含まれる測定結果と同様であってもよい。
 (5.1)動作例1
 動作例1では、UE200及びgNB100の少なくともいずれか1つは、RA手順前又はRA手順中において、UE200の位置情報の推定に用いる信号を送信又は測定する。
 第1に、第1特定制御においてUE200の位置情報の推定に用いる信号は、下りリンク信号である。UE200の位置情報の推定に用いる信号は、特定下りリンク信号と称されてもよく、特定下りリンク参照信号と称されてもよい。特定下りリンク信号としては、以下に示すオプションが考えられる。
 オプション1-1では、特定下りリンク信号として、DL-PRSに代えて、RRC IDLE状態で受信可能な報知情報が用いられてもよい。報知情報は、SSB(Synchronization Signal Block)であってもよく、新たに定義されるSIBであってもよく、MSG2(MSG4)であってもよい。
 オプション1-2では、特定下りリンク信号として、RRC IDLE状態で受信可能な報知情報によって指定される設定を有する下りリンク信号(例えば、DL-PRS)が用いられてもよい。報知情報は、SSBであってもよく、新たに定義されるSIBであってもよく、MSG2(MSG4)であってもよい。報知情報は、serving gNB100から送信されてもよく、serving gNB100に隣接するneighbor gNB100から送信されてもよい。
 オプション1-3では、特定下りリンク信号として、RA手順で用いる下りリンク信号(Msg2及びMsg4の少なくともいずれか1つ)が用いられてもよい。
 オプション1-1~オプション1-3の中から選択された2以上のオプションが組み合わされてもよい。
 測定した情報をgNB100又はLMFに報告する動作について、例えば、DL-TDOA、DL-AoD及びMulti-RTTにおいて、SSBが測定される場合において、DL-PRSはSSBと読み替えられてもよい。具体的には、図9、図10及び図11に示すDL-PRS-RSRP(Reference Signal Received Power) measurements、DL-PRS-RSRPP(Reference Signal Received Path Power) measurementsは、それぞれ、SSB-RSRP measurements、SSB-RSRPP measurementsと読み替えられてもよい。DL-AoDにおいて、SSBが測定される場合には、図10に示すDL-PRS receive beam indexは、SSB receive beam indexと読み替えられてもよい。
 例えば、DL-TDOA、DL-AoD及びMulti-RTTにおいて、MSG2(MSG4)が測定される場合において、DL-PRSはMSG2(MSG4)と読み替えられてもよい。具体的には、図9、図10及び図11に示すDL-PRS-RSRP measurements、DL-PRS-RSRPP measurementsは、それぞれ、MSG2(又はMSG4)-RSRP measurements、MSG2(又はMSG4)-RSRPP measurementsと読み替えられてもよい。DL-AoDにおいて、MSG2(又はMSG4)が測定される場合には、図10に示すDL-PRS receive beam indexは、MSG2(又はMSG4) receive beam indexと読み替えられてもよい。
 例えば、E-CIDにおいて、UE200は、UE200に固有のタイミングアドバンス(UE specific TA)、SSB-RSRP、PCI(Physical Cell Identifier)などをLMF300に報告してもよい。UE specific TAは、図7に示すService linkの遅延時間であり、Service linkのRTD(Round Trip Delay)の1/2であると考えてもよい。
 第2に、第2特定制御においてUE200の位置情報の推定に用いる信号は、上りリンク信号である。UE200の位置情報の推定に用いる信号は、特定上りリンク信号と称されてもよく、特定上りリンク参照信号と称されてもよい。
 オプション2-1では、特定上りリンク信号として、RRC IDLE状態で受信可能な報知情報によって指定される設定を有する上りリンク信号(例えば、UL-SRS)が用いられてもよい。報知情報は、SSBであってもよく、新たに定義されるSIBであってもよく、MSG2(MSG4)であってもよい。報知情報は、serving gNB100から送信されてもよく、serving gNB100に隣接するneighbor gNB100から送信されてもよい。
 オプション2-2では、特定上りリンク信号として、RA手順で用いる上りリンク信号(Msg1及びMsg3の少なくともいずれか1つ)が用いられてもよい。
 オプション2-3では、特定上りリンク信号として、RA手順で用いるMsg4に対するACK用のPUCCH(PUCCH after MSG4)が用いられてもよい。
 オプション2-1~オプション2-3の中から選択された2以上のオプションが組み合わされてもよい。
 測定した情報をLMFに報告する動作について、例えば、UL-TDOA、UL-AoA及びMulti-RTTにおいて、Msg3(Msg1又はPUCCH after MSG4)が測定される場合において、UL-SRSはMsg3(Msg1又はPUCCH after MSG4)と読み替えられてもよい。具体的には、図12、図13及び図41に示すUL-SRS-RSRP measurements、UL-SRS- RSRPP measurementsは、それぞれ、Msg3(Msg1又はPUCCH after MSG4)-RSRP measurements、Msg3(又は、PUCCH after MSG4)-RSRPP measurementsと読み替えられてもよい。
 動作例1は、UE200によって観測される衛星150が1つであるケースに適用されてもよく、UE200によって観測される衛星150が2以上であるケースに適用されてもよい。観測は、UE200が衛星150から受信する信号の品質(RSRP又はRSRQ)が閾値以上であることを意味してもよい。また、測定した情報をgNB100又はLMFに報告する動作は、RRC接続確立に係る動作の間に又は直後に実行されてもよく、例えばMsg2において報告されてもよく、RRC setup message、RRC reconfiguration messageにおいて報告されてもよい。
 動作例1によれば、UE200は、gNB100と接続する前段階(例えば、Initial Access)において、UE200の位置情報の推定に用いる信号の測定を実行するため、UE200の位置情報を速やかに推定し得る。
 動作例1によれば、gNB100は、UE200と接続する前段階(例えば、Initial Access)において、UE200の位置情報の推定に用いる信号の測定を実行するため、UE200の位置情報を速やかに推定し得る。
 (5.2)動作例2
 動作例2では、RA手順におけるMsg3の利用方法について説明する。Msg3の利用方法としては、以下に示すオプションが考えられる。
 オプション3-1では、UE200がgNB100と接続する前段階(例えば、Initial Access)において、UE200の位置情報の推定に用いる信号の測定をUE200がサポートするか否かに関する能力の報告について説明する。
 UE200は、Initial Accessにおける測定に関する能力をMsg3によって送信してもよい。能力は、Initial Accessにおける測定をサポートするか否かを示す情報を含んでもよく、以下に示す情報を含んでもよい。
 Alt.1では、能力は、UE200によって観測される衛星150が1つであるケースの測定をUE200がサポートするか否かを含んでもよい。能力は、UE200によって観測される衛星150が2以上であるケースの測定をUE200がサポートするか否かを含んでもよい。
 Alt.2では、能力は、UE location verificationの方式(DL-TDOA、DL-AoD、UL-TDOA、UL-AoA、Multi-RTT、E-CID)のいずれをUE200がサポートするかを含んでもよい。例えば、Initial Accessにおける測定に関する能力を示す情報は4ビットであってもよく、1ビットはAlt 1を示し、3ビットはAlt 2を示してもよい。
 オプション3-2では、UE200は、Initial Accessにおける測定によってUE200の位置情報を推定することをMsg3によって要求してもよい。
 オプション3-3では、UE200は、Initial Accessにおける測定結果をMsg3によって報告してもよい。
 オプション3-4では、UE200は、特定アップリング信号(例えば、UL-SRS)をMsg3とともに送信してもよい。
 動作例2によれば、Msg3を有効に利用することによって、UE200の位置情報の推定に用いる信号の測定を適切に実行することができる。
 例えば、UE200は、RA手順で用いる上りリンク信号(Msg3)によって、第1特定制御に関する能力(Initial Accessにおける測定をサポートするか否かに関する能力)を送信する。このような構成によれば、gNB100は、UE200の能力を把握することができ、UE200に対して適切に測定及び報告を指示することができる。
 (5.3)動作例3
 動作例3では、UE200がgNB100と接続する前段階(例えば、Initial Access)においてUE200によって実行される測定結果について、gNB100がUE200に対して報告を指示する方法について説明する。このような方法としては、以下に示すオプションが考えられる。
 オプション4-1では、UE200が測定方法として1つの測定方法をサポートするケースを想定する。UE200は、UE200がサポートする1つの測定方法をMsg3によってgNB100に送信してもよい。測定方法は、動作例1で説明したように、UE200が測定をサポートする特定下りリンク信号の種類を含んでもよい。測定方法は、動作例2で説明したように、UE200がサポートするUE location verificationの方式(DL-TDOA、DL-AoD、UL-TDOA、UL-AoA、Multi-RTT、E-CID)を含んでもよい。
 このようなケースにおいて、gNB100は、測定結果の報告を指示する新たな情報をUE200に送信する。新たな情報は、verificationinformationと称されてもよい。verificationinformationは、Msg4(RRC Connection Setup)に含まれてもよい。UE200は、verificationinformationが通知された場合に、UE200がgNB100と接続する前段階(例えば、Initial Access)において実行された測定結果を報告する。
 verificationinformationは、測定結果以外の情報(例えば、PCI、GCI(Global Cell Identifier)、ARFCN(Absolute Radio-Frequency Channel Number)など)の報告を指示してもよい。測定結果以外の情報は、assistance informationと称されてもよい。
 例えば、verificationinformationが”0”(又は”1”)である場合に、UE200は、測定結果(又は/及びassistance information)を報告してもよい。一方で、verificationinformationが”1”(又は”0”)である場合に、UE200は、測定結果(又は/及びassistance information)を報告しなくてもよい。
 なお、UE200は、verificationinformationが通知されない場合に、測定結果(又は/及びassistance information)を報告しなくてもよい。
 オプション4-2では、UE200が測定方法として2つの測定方法をサポートするケースを想定する。UE200は、UE200がサポートする2つの測定方法をMsg3によってgNB100に送信してもよい。測定方法は、動作例1で説明したように、UE200が測定をサポートする特定下りリンク信号の種類を含んでもよい。測定方法は、動作例2で説明したように、UE200がサポートするUE location verificationの方式(DL-TDOA、DL-AoD、UL-TDOA、UL-AoA、Multi-RTT、E-CID)を含んでもよい。
 このようなケースにおいて、gNB100は、測定結果の報告を指示する新たな情報をUE200に送信する。新たな情報は、上述したverificationinformationに加えて、UE200に指示するmeasurementmethodを含んでもよい。verificationinformation及びmeasurementmethodは、Msg4(RRC Connection Setup)に含まれてもよい。UE200は、verificationinformation及びmeasurementmethodが通知された場合に、UE200がgNB100と接続する前段階(例えば、Initial Access)において実行された測定結果を報告する。測定結果は、gNB100から通知されたmeasurementmethodを用いた測定の結果である。
 measurementmethodは、動作例1で説明したように、UE200が測定をサポートする特定下りリンク信号の種類を指定する情報であってもよい。measurementmethodは、動作例2で説明したように、UE location verificationの方式(DL-TDOA、DL-AoD、UL-TDOA、UL-AoA、Multi-RTT、E-CID)を指定する情報であってもよい。
 なお、measurementmethodが通知される場合に、verificationinformationの通知が省略されてもよい。measurementmethodは、measured informationと読み替えてもよく、reported Informationと読み替えてもよい。
 動作例3において、gNB100は、UE200がサポートする測定方法が既知である場合に、新たな情報(verificationinformation又は/及びmeasurementmethod)をRRCReconfiguration又はMsg2によって送信してもよい。gNB100は、UE200がサポートする測定方法をgNB100に隣接するgNB100又はLMF300から事前に取得してもよい。
 動作例3において、gNB100は、UE200がサポートする測定方法(UE200の能力)によらずに、新たな情報(verificationinformation又は/及びmeasurementmethod)をSSB、SIB1又は新たに定義されるSIBによって送信してもよい。
 動作例3によれば、UE200は、gNB100の指示に応じて、UE200がgNB100と接続する前段階(例えば、Initial Access)において実行された測定結果を報告するため、UE200の位置情報を速やかに推定することができる。
 (6)作用・効果
 実施形態では、UE200は、gNB100と接続する前段階(例えば、Initial Access)において、UE200の位置情報の推定に用いる信号(動作例1で説明した特定下りリンク信号)の測定を実行するため、UE200の位置情報を速やかに推定し得る。
 実施形態では、gNB100は、UE200と接続する前段階(例えば、Initial Access)において、UE200の位置情報の推定に用いる信号(動作例1で説明した特定上りリンク信号)の測定を実行するため、UE200の位置情報を速やかに推定し得る。
 (7)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した開示では、4-step RA手順について主として説明した。しかしながら、上述した開示は、2-step RA手順に適用されてもよい。このようなケースにおいて、Msg1及びMsg3は、MsgAと読み替えてもよい。Msg2及びMsg4はMsgBと読み替えてもよい。また、4-step RA手順、2-step RA手順のいずれの場合においても、Msg3及びMsgAは、Msg3及びMsgA送信後かつMsg4受信前の他の信号(例えばMsg3-bis)に置き換えられてもよい。当該他の信号のリソースはMsg2を介して通知されてもよい。
 上述した開示では、NTNにおいてUL信号又はDL信号を中継する非地上ネットワーク装置が衛星150であるケースについて例示した。しかしながら、上述した開示はこれに限定されるものではない。非地上ネットワーク装置は、空中においてNTNを構成するノードであればよく、空中ノードと称されてもよく、浮遊体と称されてもよく、飛行体と称されてもよく、飛翔体と称されてもよい。
 上述した開示において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。
 上述した実施形態の説明に用いたブロック構成図(図4-図6)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100、UE200及びLMF300(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、当該装置のハードウェア構成の一例を示す図である。図15に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4-図6参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xは、例えば整数、小数)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 図16は、車両2001の構成例を示す。図16に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 (付記)
 上述した開示は、以下のように表現されてもよい。
 第1の特徴は、非地上型ネットワークを介して基地局と通信を実行する通信部と、前記基地局との接続が完了する前段階において、端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、端末である。
 第2の特徴は、第1の特徴において、前記端末の位置情報の推定に用いる信号は、報知情報、前記報知情報によって指定される設定を有する下りリンク信号及びランダムアクセス手順における下りリンク信号の中から選択された1以上の信号である、端末である。
 第3の特徴は、第1の特徴又は第2の特徴において、前記制御部は、ランダムアクセス手順における上りリンク信号を用いて、前記特定制御に関する能力及び前記測定の結果及び前記端末の位置情報の推定に用いる信号である上りリンク信号の少なくとも一つを送信する、端末である。
 第4の特徴は、非地上型ネットワークを介して端末と通信を実行する通信部と、前記端末との接続が完了する前段階において、前記端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、基地局である。
 第5の特徴は、端末と基地局とを備え、前記端末は、非地上型ネットワークを介して前記基地局と通信を実行する通信部と、前記基地局との接続が完了する前段階において、前記端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、無線通信システムである。
 第6の特徴は、非地上型ネットワークを介して基地局と通信を実行するステップAと、前記基地局との接続が完了する前段階において、端末の位置情報の推定に用いる信号を測定する特定制御を実行するステップBと、を備える、無線通信方法である。
 10 無線通信システム
 20 NG-RAN
 30 コアネットワーク
 100 gNB
 100X NTNゲートウェイ
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 300 LMF
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM, RAM)
 2033 通信ポート

Claims (6)

  1.  非地上型ネットワークを介して基地局と通信を実行する通信部と、
     前記基地局との接続が完了する前段階において、端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、端末。
  2.  前記端末の位置情報の推定に用いる信号は、報知情報、前記報知情報によって指定される設定を有する下りリンク信号及びランダムアクセス手順における下りリンク信号の中から選択された1以上の信号である、請求項1に記載の端末。
  3.  前記制御部は、ランダムアクセス手順における上りリンク信号を用いて、前記特定制御に関する能力及び前記測定の結果及び前記端末の位置情報の推定に用いる信号である上りリンク信号の少なくとも一つを送信する、請求項1に記載の端末。
  4.  非地上型ネットワークを介して端末と通信を実行する通信部と、
     前記端末との接続が完了する前段階において、前記端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、基地局。
  5.  端末と基地局とを備え、
     前記端末は、
      非地上型ネットワークを介して前記基地局と通信を実行する通信部と、
      前記基地局との接続が完了する前段階において、前記端末の位置情報の推定に用いる信号を測定する特定制御を実行する制御部と、を備える、無線通信システム。
  6.  非地上型ネットワークを介して基地局と通信を実行するステップAと、
     前記基地局との接続が完了する前段階において、端末の位置情報の推定に用いる信号を測定する特定制御を実行するステップBと、を備える、無線通信方法。
PCT/JP2022/041263 2022-11-04 2022-11-04 端末、基地局、無線通信システム及び無線通信方法 WO2024095494A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041263 WO2024095494A1 (ja) 2022-11-04 2022-11-04 端末、基地局、無線通信システム及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041263 WO2024095494A1 (ja) 2022-11-04 2022-11-04 端末、基地局、無線通信システム及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2024095494A1 true WO2024095494A1 (ja) 2024-05-10

Family

ID=90929998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041263 WO2024095494A1 (ja) 2022-11-04 2022-11-04 端末、基地局、無線通信システム及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2024095494A1 (ja)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Discussion on LPHAP", 3GPP DRAFT; R2-2209695, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052263022 *
INTERDIGITAL, INC.: "UE location determination during initial access in NTN", 3GPP DRAFT; R1-2209643, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052259116 *
NTT DOCOMO, INC.: "Discussion on Network verified UE location for NR NTN", 3GPP DRAFT; R1-2209922, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052259395 *

Similar Documents

Publication Publication Date Title
WO2023162085A1 (ja) 通信装置及び無線通信方法
WO2024095494A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024095489A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024095483A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024069901A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024209701A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2023248447A1 (ja) 端末及び基地局
WO2023228294A1 (ja) 無線通信ノード、端末、及び無線通信方法
WO2023228295A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024018574A1 (ja) 基地局及び端末
WO2023248443A1 (ja) 端末、基地局及び無線通信システム
WO2024075299A1 (ja) 端末
WO2024161661A1 (ja) 端末
WO2024161660A1 (ja) 端末
WO2023067750A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2023242928A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024069824A1 (ja) 端末
WO2024018572A1 (ja) 端末
WO2023242929A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024161663A1 (ja) 端末
WO2023084757A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024100904A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024171264A1 (ja) 端末
WO2024034029A1 (ja) 端末及び無線通信方法
WO2024209700A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964510

Country of ref document: EP

Kind code of ref document: A1