WO2024075299A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2024075299A1
WO2024075299A1 PCT/JP2022/037719 JP2022037719W WO2024075299A1 WO 2024075299 A1 WO2024075299 A1 WO 2024075299A1 JP 2022037719 W JP2022037719 W JP 2022037719W WO 2024075299 A1 WO2024075299 A1 WO 2024075299A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
repeat transmission
pucch
random access
transmission request
Prior art date
Application number
PCT/JP2022/037719
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
浩樹 原田
聡 永田
ジン ワン
ルフア ヨウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/037719 priority Critical patent/WO2024075299A1/ja
Publication of WO2024075299A1 publication Critical patent/WO2024075299A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This disclosure relates to a terminal that performs repeated transmissions.
  • the 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation of mobile communication systems, known as Beyond 5G, 5G Evolution or 6G.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • NTNs are networks that include flying objects such as satellites, and terminals (User Equipment, UEs) can communicate with base stations (next generation NodeBs, gNBs) via the flying objects.
  • UEs User Equipment
  • gNBs base stations
  • repeated transmission is specified for the physical uplink shared channel (PUSCH) in the random access procedure, specifically, for the Msg3 PUSCH (Non-Patent Document 1).
  • PUSCH physical uplink shared channel
  • the present disclosure has been made in light of these circumstances, and aims to provide a terminal capable of repeatedly transmitting PUCCH in a random access procedure.
  • One aspect of the disclosure is a terminal that includes a receiver (radio signal transceiver 210) that receives a reference signal, and a transmitter (control signal/reference signal processor 240) that transmits a repeat transmission request of a physical uplink control channel in a random access procedure based on a comparison between the received power of the reference signal and a threshold value.
  • a receiver radio signal transceiver 210
  • a transmitter control signal/reference signal processor 240
  • One aspect of the disclosure is a terminal including a receiver (radio signal transceiver 210) that receives an instruction to repeatedly transmit a physical uplink shared channel in a random access procedure, and a transmitter (control signal/reference signal processor 240) that performs repeated transmission of the physical uplink control channel in the random access procedure based on the instruction.
  • a receiver radio signal transceiver 210
  • a transmitter control signal/reference signal processor 240
  • One aspect of the disclosure is a terminal that includes a receiver (radio signal transmitter/receiver 210) that receives downlink control information corresponding to a physical downlink shared channel in a random access procedure, and a transmitter (control signal/reference signal processor 240) that repeatedly transmits the physical uplink control channel in the random access procedure based on the downlink control information.
  • a receiver radio signal transmitter/receiver 210
  • a transmitter control signal/reference signal processor 240
  • FIG. 1 is a diagram showing the overall configuration of a wireless communication system.
  • FIG. 2 shows a diagram illustrating frequency ranges used in a wireless communication system.
  • FIG. 3 is a diagram showing an example of the configuration of a radio frame, a subframe, a slot, and a symbol used in a radio communication system.
  • FIG. 4 is a functional block diagram of the terminal.
  • FIG. 5 illustrates a random access procedure.
  • FIG. 6 is a diagram showing thresholds for making a PUCCH repeat transmission request in the random access procedure.
  • FIG. 7 is a diagram showing the presence or absence of a PUSCH repeat transmission request and the presence or absence of a PUCCH repeat transmission request in a preamble.
  • FIG. 8 is a functional block diagram of the base station.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of a base station and a terminal.
  • FIG. 10 is a diagram showing an example of the configuration of a vehicle.
  • the wireless communication system 10 shown in Fig. 1 is a wireless communication system conforming to a method called 5G.
  • the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
  • the wireless communication system 10 can support Massive Multiple-Input Multiple-Output (Massive MIMO), which generates more directional beams by controlling the wireless signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which bundles together multiple component carriers (CC), and Dual Connectivity (DC), which communicates with two base stations simultaneously.
  • Massive MIMO Massive Multiple-Input Multiple-Output
  • CA Carrier Aggregation
  • CC component carriers
  • DC Dual Connectivity
  • the wireless communication system 10 includes a Next Generation-Radio Access Network (NG-RAN) 20, a gNB 100 connected to the NG-RAN 20, and a UE 200 that performs wireless communication with the gNB 100.
  • the NG-RAN 20 is connected to a core network (CN) not shown.
  • the NG-RAN 20 and the CN may be simply referred to as a "network.” Note that the specific configuration of the wireless communication system 10, for example, the number of gNBs 100 and UEs 200, is not limited to the example shown in FIG. 1.
  • the wireless communication system 10 of the embodiment includes an airborne vehicle 150 that mediates communication between the gNB 100 and the UE 200.
  • the airborne vehicle 150 is a satellite such as a GEO (Geostationary Earth Orbit) satellite, a MEO (Middle Earth Orbit) satellite, or a LEO (Low Earth Orbit) satellite.
  • the airborne vehicle 150 may also be a High Altitude Platform Station (HAPS) mounted on an airship, balloon, or the like, or a commercial aircraft (Air to Ground, ATG).
  • HAPS High Altitude Platform Station
  • the airborne vehicle 150 serves as a relay station in communication between the gNB 100 and the UE 200.
  • the wireless communication system 10 may also support a plurality of frequency ranges (FRs). That is, as shown in FIG. 2, the wireless communication system 10 may support the following FRs: ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2-1: 24.25GHz to 52.6GHz ⁇ FR2-2: Over 52.6GHz to 71GHz
  • a subcarrier spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz may be used.
  • SCS subcarrier spacing
  • BW bandwidth
  • an SCS of 60 or 120 kHz (which may include 240 kHz) and a BW of 50 to 400 MHz may be used.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • one slot is composed of 14 symbols, as shown in FIG. 3. If this configuration is maintained, the larger (wider) the SCS is, the shorter the symbol period (and slot period) will be.
  • the SCS is not limited to the frequencies shown in FIG. 3, and may be, for example, frequencies such as 480 kHz and 960 kHz.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols, and may be, for example, 28 or 56 symbols.
  • the number of slots per subframe may differ depending on the SCS.
  • UE 200 includes a wireless signal transmitting/receiving unit 210, an amplifier unit 220, a modulation/demodulation unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmitting/receiving unit 260, and a control unit 270.
  • the wireless signal transmitting/receiving unit 210 transmits and receives wireless signals to and from the gNB100.
  • the wireless signal transmitting/receiving unit 210 may be configured as a transmitting unit that transmits wireless signals to the gNB100, and a receiving unit that receives wireless signals from the gNB100.
  • the wireless signals include control signals and reference signals/data.
  • the wireless signal transceiver unit 210 of the embodiment can receive a reference signal (RS).
  • RS reference signal
  • the wireless signal transceiver unit 210 of the embodiment can receive an instruction to repeatedly transmit the PUCCH in the random access procedure.
  • UE200 transmits a physical random access channel (PRACH) in response to the SS/PBCH block (SSB) received from gNB100 (corresponding to Msg1 in the figure).
  • PRACH physical random access channel
  • UE200 receives a physical downlink shared channel (PDSCH) as a random access response (RAR) (corresponding to Msg2 in the figure).
  • PDSCH physical downlink shared channel
  • RAR random access response
  • UE200 transmits a PUSCH as an RRC connection request (corresponding to Msg3 in the figure).
  • UE200 receives a PDSCH as contention resolution (corresponding to Msg4 in the figure).
  • PUCCH a HARQ-ACK in response to Msg4 (corresponding to HARQ ACK in the figure).
  • the PUCCH in the random access procedure may be a PUCCH that uses a common PUCCH resource when a dedicated PUCCH resource is not configured.
  • a PUCCH may be called a HARQ-ACK PUCCH, a PUCCH for HARQ-ACK, a PUCCH for Msg4 HARQ-ACK, or PUCCH X.
  • HARQ-ACK PUCCH a PUCCH for HARQ-ACK
  • PUCCH X PUCCH X.
  • PUCCH may mean PUCCH transmission, i.e. "HARQ-ACK PUCCH” may mean HARQ-ACK PUCCH transmission.
  • the instruction to repeat transmission of the HARQ-ACK PUCCH may include the number of times the PUCCH is to be repeated.
  • the number of times the repetition is to be repeated may be referred to as a repetition factor.
  • the repetition factor may be read as "to perform repetition.”
  • the instruction to repeat transmission of the HARQ-ACK PUCCH may be an instruction to repeat transmission of the PUSCH (Msg3 PUSCH) in the random access procedure.
  • the number of times the PUCCH is repeated may be determined based on the number of times the PUSCH is repeated included in the instruction to repeat transmission of the PUSCH. For example, if the number of times the PUCCH is repeated is M and the number of times the PUSCH is repeated is N, the relationship between M and N may be defined or set as shown in the following formula. Note that Y in the following formula is an arbitrary constant.
  • the relationship between M and N may be defined or configured via Radio Resource Control (RRC) signaling or Medium Access Control (MAC) signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the RRC signaling may be a System Information Block (SIB).
  • SIB System Information Block
  • the MAC signaling may be a Medium Access Control Control Element (MAC CE) included in Msg2 in the random access procedure.
  • MAC CE Medium Access Control Element
  • the instruction for repeated transmission of the HARQ-ACK PUCCH may be downlink control information (DCI) corresponding to (scheduling) the PDSCH in the random access procedure.
  • DCI downlink control information
  • the PDSCH in the random access procedure referred to here is the Msg4 PDSCH.
  • the DCI field containing the instruction for repeated transmission of the HARQ-ACK PUCCH may be as follows. Note that some of the operations in FIG. 5 may not be performed. For example, the PUCCH repetition request may be performed in only one of Msg1 and Msg3.
  • MCS Modulation and Coding Scheme
  • TC-RNTI Radio Network Temporary Identifier
  • it may be a HARQ process number field, in which the ZM MSBs indicate the number of PUCCH repetitions, and the ZL LSBs indicate the HARQ process number.
  • 0 may indicate that HARQ-ACK PUCCH is to be repeatedly transmitted, and 1 may indicate that HARQ-ACK PUCCH is not to be repeatedly transmitted. 0 may also be associated with the number of PUCCH repetitions defined or set via RRC signaling or medium access control (MAC) signaling.
  • the RRC signaling may be a SIB.
  • the MAC signaling may be a MAC CE included in Msg2 in the random access procedure.
  • the new DCI field may be present only when a HARQ-ACK PUCCH repeat transmission request is transmitted, or may be present only when a Msg3 PUSCH repeat transmission request is indicated and made.
  • DCI format 1_0 a new DCI format may be used.
  • the repeat transmission instruction field may be set.
  • the instruction for repeat transmission of the HARQ-ACK PUCCH may be an instruction for repeat transmission of the Msg3 PUSCH or may be a DCI corresponding to the Msg4 PDSCH. Such an instruction for repeat transmission may be applied only when a request for repeat transmission of the HARQ-ACK PUCCH is transmitted via the Msg3 PUSCH.
  • the amplifier section 220 is composed of a power amplifier (PA)/low noise amplifier (LNA) etc.
  • the amplifier section 220 amplifies the wireless signal output from the wireless signal transmitting/receiving section 210.
  • the amplifier section 220 also amplifies the wireless signal output from the modulation/demodulation section 230.
  • the modem unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or another gNB).
  • CP-OFDM/DFT-S-OFDM may be applied in the modem unit 230.
  • DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal/reference signal processing unit 240 performs processing related to control signals transmitted and received between the gNB 100, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the control signal/reference signal processing unit 240 performs processing related to reference signals transmitted and received between the gNB 100, such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • DMRS is a reference signal intended for channel estimation.
  • PTRS is a reference signal intended for phase noise correction.
  • the control signal/reference signal processing unit 240 of the embodiment can transmit a repeat transmission request of HARQ-ACK PUCCH based on a comparison between the received power (Reference Signal Received Power, RSRP) of the reference signal received by the wireless signal transmitting/receiving unit 210 of the embodiment and a threshold value described later. For example, when the RSRP is below the threshold value, a repeat transmission request of HARQ-ACK PUCCH can be transmitted.
  • the RSRP may be referred to as the RSRP of DL pathloss (PL) reference.
  • the repeat transmission request may mean a request for scheduling of repeat transmission.
  • the execution of the repeat transmission request may be determined based on something other than the RSRP.
  • the reference signal may be any DL signal, may be SSB, or may be DMRS or CSI-RS.
  • the threshold may be the same as the threshold (rsrp-Threshold-Msg3Rep in the figure) that is the reference for sending a repeat transmission request for Msg 3 PUSCH.
  • the repeat transmission request for Msg 3 PUSCH is sent by the control signal/reference signal processor 240 via PRACH when the RSRP falls below rsrp-Threshold-Msg3Rep.
  • the threshold may be different from rsrp-Threshold-Msg3Rep.
  • the threshold may be set separately from rsrp-Threshold-Msg3Rep as the threshold for sending a repeat transmission request of HARQ-ACK PUCCH (rsrp-Threshold-PUCCHRep-Msg4HARQ in the figure).
  • thresholds may be defined/set. For example, rsrp-Threshold-Msg3Rep and rsrp-Threshold-PUCCHRep-Msg4HARQ may be defined/set. Each threshold may be defined/set, for example, according to a repetition factor.
  • rsrp-Threshold-PUCCHRep-Msg4HARQ-rep2 may be defined as a threshold for two repetitions
  • rsrp-Threshold-PUCCHRep-Msg4HARQ-rep4 may be defined as a threshold for four repetitions
  • rsrp-Threshold-PUCCHRep-Msg4HARQ-rep8 may be defined as a threshold for eight repetitions.
  • the control signal/reference signal processing unit 240 of the embodiment can transmit a repeat transmission request of HARQ-ACK PUCCH in a transmission method of a repeat transmission request of Msg3 PUSCH, i.e., via PRACH.
  • the control signal/reference signal processing unit 240 may transmit a repeat transmission request of HARQ-ACK PUCCH when transmitting the repeat transmission request of Msg 3 PUSCH described above. In other words, this may mean that when a PRACH is transmitted via a PRACH resource or a PRACH occasion associated with the repeat transmission request of Msg 3 PUSCH, a repeat transmission of HARQ-ACK PUCCH is requested at the same time.
  • the PRACH resource or PRACH occasion associated with a repeat transmission request of a HARQ-ACK PUCCH may be defined independently (e.g., using different parameters) from the PRACH resource or PRACH occasion associated with a repeat transmission request of a Msg 3 PUSCH.
  • FIG. 7 shows the preamble index of the PRACH, and the preamble index is associated with whether or not repeat transmission of a Msg 3 PUSCH and/or repeat transmission of a HARQ-ACK PUCCH is requested.
  • the hatched spaces at both ends indicate that there is no repeat transmission request for Msg 3 PUSCH (and no repeat transmission request for HARQ-ACK PUCCH).
  • the hatched space on the left side of the centre indicates that there is only a repeat transmission request for Msg 3 PUSCH.
  • the hatched space on the right side of the centre indicates that there is a repeat transmission request for Msg 3 PUSCH and a repeat transmission request for HARQ-ACK PUCCH.
  • startPreambleForThisPartition indicates the start number of the preamble index for the repeat transmission request for Msg 3 PUSCH
  • numberOfPreamblesForThisPartition indicates the number of preamble indexes for the repeat transmission request for Msg 3 PUSCH
  • consecutive preamble indexes from the start number are used for the repeat transmission request for Msg 3 PUSCH.
  • startPreambleForThisPartition-Msg4HARQ-ACK and numberOfPreamblesForThisPartition-Msg4HARQ-ACK may be defined in a similar manner and used to determine the preamble index used in the HARQ-ACK PUCCH repeat transmission request.
  • the control signal and reference signal processor 240 of the embodiment can transmit the repeat transmission request of the HARQ-ACK PUCCH by a transmission method different from that of the repeat transmission request of the Msg 3 PUSCH, for example, via the Msg 3 PUSCH. That is, the control signal and reference signal processor 240 may transmit the repeat transmission request of the Msg 3 PUSCH via the PRACH, and transmit the repeat transmission request of the HARQ-ACK PUCCH via the Msg 3 PUSCH. Specifically, the repeat transmission request of the HARQ-ACK PUCCH may be transmitted via the MAC signaling (e.g., MAC CE)/RRC signaling of the Msg 3 PUSCH.
  • the MAC signaling e.g., MAC CE
  • the repeat transmission request of the HARQ-ACK PUCCH may be transmitted via the PHY signaling of the Msg 3 PUSCH (e.g., uplink control information (UCI), scrambling-related information, and RNTI-related information included in the Msg 3 PUSCH).
  • the Msg 3 PUSCH e.g., uplink control information (UCI), scrambling-related information, and RNTI-related information included in the Msg 3 PUSCH.
  • control signal/reference signal processing unit 240 may configure a transmission unit that transmits a repeat transmission request of the HARQ-ACK PUCCH.
  • control signal/reference signal processing unit 240 of the embodiment can perform repeated transmission of the HARQ-ACK PUCCH based on an instruction for repeated transmission of the HARQ-ACK PUCCH received by the wireless signal transmitting/receiving unit 210 of the embodiment.
  • control signal/reference signal processing unit 240 may configure a transmission unit that repeatedly transmits the HARQ-ACK PUCCH.
  • control signal/reference signal processor 240 of the embodiment may perform a repeat transmission request of an HARQ-ACK PUCCH/repeat transmission of an HARQ-ACK PUCCH only when the UE 200 satisfies the condition A shown below. In other words, the control signal/reference signal processor 240 of the embodiment may not perform a repeat transmission request of an HARQ-ACK PUCCH/repeat transmission of an HARQ-ACK PUCCH when the UE 200 satisfies the condition B shown below. Note that the condition may be interpreted as the type of UE.
  • VSAT Very Small Aperture Terminal
  • control signal/reference signal processing unit 240 of the embodiment may change the number of PUCCH repetitions in the repeated transmission of the HARQ-ACK PUCCH between when the UE 200 satisfies condition A and when the UE 200 satisfies condition B.
  • the instruction for repeated transmission of the HARQ-ACK PUCCH (and the number of PUCCH repetitions) set/instructed by the gNB 100 and received by the radio signal transceiver unit 210 may be different for the UE 200 that satisfies condition A and the UE 200 that satisfies condition B.
  • parameters related to repeated transmission of the HARQ-ACK PUCCH e.g. parameters related to the number of repetitions
  • control signal/reference signal processor 240 of the embodiment can transmit capability information of the UE 200, such as UE Capability.
  • the capability information of the UE 200 is, for example, capability information related to repeated transmission of the HARQ-ACK PUCCH.
  • the control signal/reference signal processor 240 may report the capability information related to repeated transmission of the HARQ-ACK PUCCH to the gNB 100 as follows.
  • This may be reported as the same capability information as the repeated transmission of Msg1 PRACH/Msg3 PUSCH, or may be transmitted as different capability information.
  • support for repeat transmission of HARQ-ACK PUCCH it may also be possible to report support for repeat transmission of Msg1 PRACH/Msg3 PUSCH.
  • support for repeat transmission of Msg1 PRACH/Msg3 PUSCH may be a prerequisite for support for repeat transmission of HARQ-ACK PUCCH.
  • support for repeat transmission of Msg1 PRACH/Msg3 PUSCH it may also be possible to report support for repeat transmission of HARQ-ACK PUCCH.
  • support for repeat transmission of HARQ-ACK PUCCH may be a prerequisite for support for repeat transmission of Msg1 PRACH/Msg3 PUSCH.
  • Support for repeated transmission of HARQ-ACK PUCCH may be reported only for frequency bands defined for NTN (communications mediated by satellite, HAPS, ATG).
  • TA Timing Advance
  • the encoding/decoding unit 250 performs operations such as splitting/concatenating and coding/decoding the data contained in the wireless signal for each specified communication destination (gNB100 or another gNB).
  • the encoding/decoding unit 250 decodes the data output from the modem unit 230 and concatenates the decoded data.
  • the encoding/decoding unit 250 also divides the data output from the data transmission/reception unit 260 into data of a predetermined size and performs coding on the divided data.
  • the data transmission/reception unit 260 transmits and receives data to and from the gNB 100. Specifically, the data transmission/reception unit 260 performs assembly/disassembly of Protocol Data Units (PDUs)/Service Data Units (SDUs) between multiple layers.
  • the multiple layers include the Medium Access Control (MAC) layer, the Radio Link Control (RLC) layer, and the Packet Data Convergence Protocol (PDCP) layer.
  • the data transmission/reception unit 260 also performs data error correction and retransmission control based on Hybrid Automatic Repeat Request (HARQ).
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls the UE 200.
  • the control unit 270 controls, for example, the transmission and reception of radio signals by the radio signal transmitting and receiving unit 210, the amplification by the amplifier unit 220, the data modulation/demodulation by the modem unit 230, the signal processing by the control signal and reference signal processing unit 240, the coding/decoding by the encoding/decoding unit 250, and the transmission and reception of data by the data transmitting and receiving unit 260.
  • the gNB 100 includes a radio signal transceiver unit 110 and a control unit 120.
  • the wireless signal transmitting/receiving unit 110 transmits and receives wireless signals to and from the UE 200.
  • the wireless signal transmitting/receiving unit 110 may be configured as a transmitting unit that transmits wireless signals to the UE 200, and a receiving unit that receives wireless signals from the UE 200.
  • the control unit 120 controls the gNB 100.
  • the control unit 120 controls, for example, the transmission and reception of wireless signals by the wireless signal transmission and reception unit 210.
  • the radio signal transmitting/receiving unit 210 receives a reference signal from the gNB 100.
  • the control signal/reference signal processing unit 240 compares RSRP, which is the received power of the reference signal, with a threshold, and when RSRP is below the threshold, transmits a repeat transmission request of PUCCH in the random access procedure, i.e., HARQ-ACK PUCCH, to the gNB 100.
  • the threshold may be the same as a threshold that is a reference for transmitting a repeat transmission request of PUSCH in the random access procedure, i.e., Msg3 PUSCH.
  • the control signal/reference signal processor 240 may transmit the repeat transmission request of the HARQ-ACK PUCCH via the PRACH or via the PUSCH.
  • the repeat transmission request of the Msg3 PUSCH may be transmitted in the PRACH. That is, the control signal/reference signal processor 240 may transmit at least one of the repeat transmission request of the HARQ-ACK PUCCH and the repeat transmission request of the Msg3 PUSCH via the PRACH.
  • the radio signal transmitting/receiving unit 210 receives an instruction for repeat transmission of the PUSCH in the random access procedure, i.e., the Msg3 PUSCH, from the gNB 100.
  • the control signal/reference signal processing unit 240 performs repeat transmission of the HARQ-ACK PUCCH to the gNB 100 based on the instruction for repeat transmission of the Msg3 PUSCH.
  • the control signal/reference signal processing unit 240 performs repeat transmission of the HARQ-ACK PUCCH to the gNB 100 based on the relationship between the number of times the Msg3 PUSCH is repeated and the number of times the HARQ-ACK PUCCH is repeated.
  • the radio signal transmission/reception unit 210 receives a PDSCH in the random access procedure, i.e., DCI corresponding to the Msg4 PDSCH, from the gNB 100.
  • the control signal/reference signal processing unit 240 repeatedly transmits a HARQ-ACK PUCCH to the gNB 100 based on the DCI.
  • the control signal/reference signal processing unit 240 may change the number of repetitions of the repeated transmission of the HARQ-ACK PUCCH to the gNB 100 between the case where the above-described condition A is satisfied and the case where the above-described condition B is satisfied.
  • the instruction for repeated transmission of the HARQ-ACK PUCCH (and the number of repetitions of the PUCCH) set/instructed by the gNB 100 and received by the radio signal transmitting/receiving unit 210 may be different between the UE 200 that satisfies the condition A and the UE 200 that satisfies the condition B.
  • the UE 200 of the above-described embodiment compares the RSRP with a threshold, and when the RSRP is below the threshold, it can transmit a repeat transmission request of the PUCCH in the random access procedure, i.e., the HARQ-ACK PUCCH, to the gNB 100.
  • the threshold may be the same as the threshold that is the reference for transmitting a repeat transmission request of the PUSCH in the random access procedure, i.e., the Msg3 PUSCH. This can reduce resources for setting a new threshold.
  • the UE200 in the above-described embodiment can transmit a repeat transmission request of HARQ-ACK PUCCH to the gNB100 via the PRACH. This allows a repeat transmission request of HARQ-ACK PUCCH to be transmitted together with a repeat transmission request of Msg3 PUSCH, thereby reducing the signaling overhead and the load on the UE200. Note that the load on the UE200 may be interpreted as the UE complexity of the UE200.
  • the UE 200 in the above-described embodiment can transmit a repeat transmission request of HARQ-ACK PUCCH to the gNB 100 via PUSCH. This allows the repeat transmission request of HARQ-ACK PUCCH to be transmitted separately from the repeat transmission request of Msg3 PUSCH, thereby enabling efficient use of resources.
  • the UE 200 in the above-described embodiment can repeatedly transmit the HARQ-ACK PUCCH to the gNB 100 based on the instruction to repeatedly transmit the Msg3 PUSCH. This can reduce signaling overhead.
  • the UE 200 in the above-described embodiment performs repeated transmission of HARQ-ACK PUCCH to the gNB 100 based on the DCI. This allows for flexible instruction to instruct repeated transmission of HARQ-ACK PUCCH.
  • the UE 200 in the above-described embodiment can determine whether or not to perform repeated transmission of HARQ-ACK PUCCH to the gNB 100 based on the conditions, i.e., the type of UE 200. This is efficient because only the UE 200 that requires repeated transmission performs repeated transmission.
  • the repeated transmission of the HARQ-ACK PUCCH is primarily associated with the repeated transmission of the Msg3 PUSCH, but is not limited to this. It may also be associated with the repeated transmission of MsgA, Msg1, and Msg2. In other words, the repeated transmission of the Msg3 PUSCH in the above disclosure may be read as the repeated transmission of MsgA, Msg1, and Msg2.
  • configure, activate, update, indicate, enable, specify, and select may be read as interchangeable.
  • link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices.
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
  • apparatus can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • Each functional block of the device (see Figures 4 and 8) is realized by any hardware element of the computer device, or a combination of the hardware elements.
  • each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
  • a specific software program
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments.
  • the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the programs may be transmitted from a network via a telecommunications line.
  • Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc.
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one device (e.g., a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5th generation mobile communication system
  • 5G Future Radio Access
  • FAA New Radio
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom.
  • Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
  • certain operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW).
  • the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or appended.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • software, instructions, information, etc. may be transmitted and received over a transmission medium.
  • a transmission medium For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • Base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
  • a base station subsystem e.g., a small indoor base station (Remote Radio Head: RRH)
  • cell refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below).
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the mobile station may be configured to have the functions of a base station.
  • terms such as "uplink” and "downlink” may be interpreted as terms corresponding to communication between terminals (for example, "side”).
  • the uplink channel, downlink channel, etc. may be interpreted as a side channel.
  • the mobile station in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the mobile station.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • SCS Subcarrier Spacing
  • TTI Transmission Time Interval
  • radio frame structure a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • a slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a numerology-based unit of time.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one slot or one minislot when called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (RE).
  • RE resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by the index of the RBs relative to a common reference point of the carriers.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), ascertaining, and the like.
  • Determining and “determining” may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and the like.
  • Determining” and “determining” may also include resolving, selecting, choosing, establishing, comparing, and the like, and the like.
  • judgment and “decision” can include regarding some action as having been “judged” or “decided.”
  • judgment (decision) can be interpreted as “assuming,” “expecting,” “considering,” etc.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • FIG. 10 shows an example of the configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also called a handle
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also transmits to the external device via wireless communication the following signals input to the electronic control unit 2010: front and rear wheel rotation speed signals acquired by the rotation speed sensor 2022, front and rear wheel air pressure signals acquired by the air pressure sensor 2023, vehicle speed signals acquired by the vehicle speed sensor 2024, acceleration signals acquired by the acceleration sensor 2025, accelerator pedal depression amount signals acquired by the accelerator pedal sensor 2029, brake pedal depression amount signals acquired by the brake pedal sensor 2026, shift lever operation signals acquired by the shift lever sensor 2027, and detection signals for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on an information service unit 2012 provided in the vehicle.
  • the communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
  • the first feature is a terminal that includes a receiver that receives a reference signal, and a transmitter that transmits a repeat transmission request of a physical uplink control channel in a random access procedure based on a comparison between the received power of the reference signal and a threshold value.
  • the second feature is that in the first feature, the threshold is a threshold that is a reference for transmitting a repeated transmission request for the physical uplink shared channel in the random access procedure.
  • the third feature is a terminal according to the first or second feature, in which the transmitter transmits at least one of a repeat transmission request for the physical uplink control channel and a repeat transmission request for the physical uplink shared channel via a physical random access channel.
  • the fourth feature is the terminal according to the first or second feature, in which the transmitter transmits a repeat transmission request of the physical uplink control channel via a physical uplink shared channel in the random access procedure.
  • the fifth feature is a terminal including a receiver that receives an instruction to repeatedly transmit a physical uplink shared channel in a random access procedure, and a transmitter that performs repeated transmission of a physical uplink control channel in the random access procedure based on the instruction.
  • the sixth feature is a terminal including a receiver that receives downlink control information corresponding to a physical downlink shared channel in a random access procedure, and a transmitter that repeatedly transmits the physical uplink control channel in the random access procedure based on the downlink control information.
  • Wireless Communication Systems 20 NG-RAN 100 gNB 110 Radio signal transmitting/receiving unit 120 Control unit 200 UE 210 Wireless signal transmitting/receiving unit 220 Amplifier unit 230 Modulation/demodulation unit 240 Control signal/reference signal processing unit 250 Encoding/decoding unit 260 Data transmitting/receiving unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、参照信号を受信する受信部と、前記参照信号の受信電力と閾値との比較に基づいて、ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信リクエストを送信する送信部と、を備える。

Description

端末
 本開示は、繰り返し送信を行う端末に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる。)を仕様化し、さらに、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる次世代の移動通信システムの仕様化も進めている。
 3GPPにおいて、非地上型ネットワーク(Non-Terrestrial Network、NTN)が議論されている。NTNは、衛星などの飛翔体を含むネットワークであり、端末(User Equipment、UE)は、飛翔体を介して基地局(next Generation NodeB、gNB)と通信することができる。NTNにおいて、ランダムアクセス手順における物理上りリンク共有チャネル(PUSCH)、具体的には、Msg3 PUSCHについては、繰り返し送信が規定されている(非特許文献1)。
3GPP TS 38.214 V17.3.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 17), 3GPP, 2022年9月
 一方で、ランダムアクセス手順における物理上りリンク制御チャネル(PUCCH)、具体的には、Hybrid Automatic Repeat Request(HARQ)-ACK用のPUCCHについては、繰り返し送信が規定されていない。そのため、ランダムアクセス手順におけるPUCCHについては、どのようにして繰り返し送信を行えばよいかが明確でないという問題がある。
 そこで、本開示は、このような状況に鑑みてなされたものであり、ランダムアクセス手順におけるPUCCHの繰り返し送信を行うことのできる端末の提供を目的とする。
 開示の一態様は、参照信号を受信する受信部(無線信号送受信部210)と、前記参照信号の受信電力と閾値との比較に基づいて、ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信リクエストを送信する送信部(制御信号・参照信号処理部240)と、を備える端末である。
 開示の一態様は、ランダムアクセス手順における物理上りリンク共有チャネルの繰り返し送信の指示を受信する受信部(無線信号送受信部210)と、前記指示に基づいて、前記ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信を行う送信部(制御信号・参照信号処理部240)と、を備える端末である。
 開示の一態様は、ランダムアクセス手順における物理下りリンク共有チャネルに対応する下りリンク制御情報を受信する受信部(無線信号送受信部210)と、前記下りリンク制御情報に基づいて、前記ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信を行う送信部(制御信号・参照信号処理部240)と、を備える端末である。
図1は、無線通信システムの全体概略構成図である。 図2は、無線通信システムにおいて用いられる周波数レンジを示す図である。 図3は、無線通信システムにおいて用いられる無線フレーム、サブフレーム、スロット、シンボルの構成例を示す図である。 図4は、端末の機能ブロック図である。 図5は、ランダムアクセス手順を示す図である。 図6は、ランダムアクセス手順におけるPUCCHの繰り返し送信リクエストを行う閾値を示す図である。 図7は、プリアンブルにおける、PUSCHの繰り返し送信リクエストの有無とPUCCHの繰り返し送信リクエストの有無とを示す図である。 図8は、基地局の機能ブロック図である。 図9は、基地局及び端末のハードウェア構成の一例を示す図である。 図10は、車両の構成例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1に示す無線通信システム10は、5Gと呼ばれる方式に従った無線通信システムである。一方で、無線通信システム10は、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる方式に従った無線通信システムであってもよい。
 無線通信システム10は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive Multiple-Input Multiple-Output(Massive MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、2つの基地局と同時通信を行うデュアルコネクティビティ(DC)などをサポートすることができる。
 図1に示すように、無線通信システム10は、Next Generation-Radio Access Network(NG-RAN)20と、NG-RAN20に接続されるgNB100と、gNB100と無線通信を行うUE200とを含む。NG-RAN20は、図示しないコアネットワーク(CN)に接続される。NG-RAN20及びCNは、単に「ネットワーク」と表現されてもよい。なお、無線通信システム10の具体的な構成、例えばgNB100及びUE200の数は、図1に示す例に限定されない。
 実施形態の無線通信システム10は、gNB100とUE200との通信を仲介する飛翔体150を含む。飛翔体150は、GEO(Geostationary Earth Orbit)衛星、MEO(Middle Earth Orbit)衛星、LEO(Low Earth Orbit)衛星などの衛星である。また、飛翔体150は、飛行船、気球などに搭載される高高度基盤ステーション(High Altitude Platform Station、HAPS)であってもよいし、商用航空機(Air to Ground、ATG)であってもよい。飛翔体150は、gNB100とUE200との通信における中継局となる。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応してもよい。すなわち、図2に示すように、次のようなFRに対応してもよい。
 ・FR1:410MHz~7.125GHz
 ・FR2-1:24.25GHz~52.6GHz
 ・FR2-2:52.6GHz超~71GHz
 FR1においては、15、30または60kHzのサブキャリア間隔(SCS)及び5~100MHzの帯域幅(BW)が用いられてもよい。FR2-1においては、60または120kHz(240kHzが含まれてもよい。)のSCS及び50~400MHzのBWが用いられてもよい。
 FR2-2においては、位相雑音の増大を避けるために、より大きなSCSを有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)またはDiscrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)を適用してもよい。
 また、無線通信システム10においては、図3に示すように、1スロットが14シンボルで構成される。この構成が維持される場合、SCSが大きく(広く)なるほど、シンボル期間(及びスロット期間)は短くなる。また、SCSは、図3に示す周波数に限定されず、例えば、480kHz、960kHzなどの周波数であってもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよく、例えば、28または56シンボルであってもよい。さらに、サブフレームあたりのスロット数は、SCSによって異なってもよい。
 (2)無線通信システムの機能ブロック構成
 (2.1)端末の機能ブロック構成
 図4に示すように、UE200は、無線信号送受信部210と、アンプ部220と、変復調部230と、制御信号・参照信号処理部240と、符号化/復号部250と、データ送受信部260と、制御部270とを備える。
 無線信号送受信部210は、gNB100との間で無線信号を送受信する。無線信号送受信部210は、gNB100に無線信号を送信する送信部と、gNB100から無線信号を受信する受信部と、を構成してもよい。無線信号には、制御信号・参照信号/データが含まれる。
 実施形態の無線信号送受信部210は、参照信号(RS)を受信することができる。
 実施形態の無線信号送受信部210は、ランダムアクセス手順におけるPUCCHの繰り返し送信の指示を受信することができる。
 ここで、図5を参照しつつ、ランダムアクセス手順について簡単に説明する。第1に、UE200は、gNB100から受信したSS/PBCH Block(SSB)に対し、物理ランダムアクセスチャネル(PRACH)を送信する(図中のMsg1に対応)。第2に、UE200は、Random Access Response(RAR)として物理下りリンク共有チャネル(PDSCH)を受信する(図中のMsg2に対応)。第3に、UE200は、RRC接続要求としてPUSCHを送信する(図中のMsg3に対応)。第4に、UE200は、contention resolutionとしてPDSCHを受信する(図中のMsg4に対応)。最後に、UE200は、Msg4に対し、HARQ-ACKとしてPUCCHを送信する(図中のHARQ ACKに対応)。
 ランダムアクセス手順におけるPUCCHは、専用PUCCHリソースが設定されていない場合の共通PUCCHリソースを用いるPUCCHであってもよい。なお、このようなPUCCHは、HARQ-ACK PUCCHと呼ばれてもよいし、HARQ-ACK用のPUCCHと呼ばれてもよいし、Msg4 HARQ-ACK用のPUCCHと呼ばれてもよいし、PUCCH Xと呼ばれてもよい。以下では主に、明細書中ではHARQ-ACK PUCCHと記載し、図中ではPUCCH Xと表記する。また、「PUCCH」はPUCCH送信を意味してもよく、すなわち「HARQ-ACK PUCCH」はHARQ-ACK PUCCH送信を意味してもよい。
 HARQ-ACK PUCCHの繰り返し送信の指示は、PUCCHの繰り返し回数を含むことができる。なお、繰り返し回数は、repetition factorと呼ばれてもよい。repetition factorは、「繰り返し送信の実行(to perform repetition)」に読み替えられてもよい。
 HARQ-ACK PUCCHの繰り返し送信の指示は、ランダムアクセス手順におけるPUSCH(Msg3 PUSCH)の繰り返し送信の指示であってもよい。具体的には、PUCCHの繰り返し回数は、PUSCHの繰り返し送信の指示に含まれるPUSCHの繰り返し回数に基づいて定められてもよい。例えば、PUCCHの繰り返し回数をM、PUSCHの繰り返し回数をNとおいた場合、以下の式に示すようにMとNとの関係性が定義または設定されてもよい。なお、以下の式におけるYは、任意の定数である。
 M=N/Y
 M=N-Y
 M=N
 MとNとの関係性は、無線リソース制御(RRC)シグナリングまたは媒体アクセス制御(MAC)シグナリングを介して定義または設定されてもよい。なお、RRCシグナリングは、System Information Block(SIB)であってもよい。MACシグナリングは、ランダムアクセス手順におけるMsg2に含まれる媒体アクセス制御の制御要素(MAC CE)であってもよい。
 また、図5に示すように、HARQ-ACK PUCCHの繰り返し送信の指示は、ランダムアクセス手順におけるPDSCHに対応する(スケジューリングする)下りリンク制御情報(DCI)であってもよい。なお、ここで言うところのランダムアクセス手順におけるPDSCHは、Msg4 PDSCHである。HARQ-ACK PUCCHの繰り返し送信の指示が含まれるDCIのフィールドは、次のようなものであってもよい。なお、図5におけるいくつかの動作が実行されなくてもよい。例えば、PUCCH repetition requestはMsg1およびMsg3のいずれか一方でのみ実行されてもよい。
 Modulation and Coding Scheme(MCS)情報フィールドであってもよい。この場合、ZM個の最上位ビット(MSB)はPUCCHの繰り返し回数を示し、ZL個の最下位ビット(LSB)はMsg4 PDSCH用のMCSを示してもよい。
 Cyclic Redundancy Check(CRC)-scrambling Radio Network Temporary Identifier(RNTI)であってもよい。この場合、複数のTemporary Cell(TC)-RNTIが設定され、各TC-RNTIは異なるPUCCHの繰り返し回数を示してもよい。
 HARQ process numberフィールドであってもよい。この場合、ZM個のMSBはPUCCHの繰り返し回数を示し、ZL個のLSBはHARQ process numberを示してもよい。
 「DCIフォーマット用識別子」フィールドであってもよい。この場合、0はHARQ-ACK PUCCHの繰り返し送信を行うことを示し、1はHARQ-ACK PUCCHの繰り返し送信を行わないことを示してもよい。また、0はRRCシグナリングまたは媒体アクセス制御MACシグナリングを介して定義または設定されるPUCCHの繰り返し回数と関連付けられてもよい。なお、RRCシグナリングは、SIBであってもよい。MACシグナリングは、ランダムアクセス手順におけるMsg2に含まれるMAC CEであってもよい。
 PUCCHの繰り返し回数を示す新DCIフィールドであってもよい。この場合、新DCIフィールドは、HARQ-ACK PUCCHの繰り返し送信リクエストが送信される場合にのみ存在してもよいし、Msg3 PUSCHの繰り返し送信リクエストが示され、かつ行われる場合にのみ存在してもよい。
 DCIフォーマット1_0でなく、新DCIフォーマットであってもよい。この場合、繰り返し送信指示フィールドが設定されてもよい。
 以上のように、HARQ-ACK PUCCHの繰り返し送信の指示は、Msg3 PUSCHの繰り返し送信の指示であってもよいし、Msg4 PDSCHに対応するDCIであってもよい。このような繰り返し送信の指示は、Msg3 PUSCHを介してHARQ-ACK PUCCHの繰り返し送信リクエストが送信される場合にのみ、適用されてもよい。
 アンプ部220は、Power Amplifier(PA)/Low Noise Amplifier(LNA)などによって構成される。アンプ部220は、無線信号送受信部210から出力された無線信号を増幅する。また、アンプ部220は、変復調部230から出力された無線信号を増幅する。
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230においては、CP-OFDM/DFT-S-OFDMが適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)に用いられてもよい。
 制御信号・参照信号処理部240は、gNB100との間で送受信される制御信号、例えば、無線リソース制御(RRC)シグナリングに関する処理を実行する。
 制御信号・参照信号処理部240は、gNB100との間で送受信される参照信号、例えば、Demodulation Reference Signal(DMRS)、Phase Tracking Reference Signal(PTRS)に関する処理を実行する。DMRSは、チャネルの推定を目的とした参照信号である。PTRSは、位相雑音の補正を目的とした参照信号である。
 実施形態の制御信号・参照信号処理部240は、実施形態の無線信号送受信部210が受信する参照信号の受信電力(Reference Signal Received Power、RSRP)と後述する閾値との比較に基づいて、HARQ-ACK PUCCHの繰り返し送信リクエストを送信することができる。例えば、RSRPが閾値を下回る場合に、HARQ-ACK PUCCHの繰り返し送信リクエストを送信することができる。なお、RSRPは、RSRP of DL pathloss(PL) referenceと呼ばれてもよい。また、繰り返し送信リクエストとは繰り返し送信のスケジューリングを要求することを意味してもよい。また、繰り返し送信リクエストの実行は、RSRP以外に基づいて決定されてもよい。また、参照信号はいずれのDL信号であってもよく、SSBであってもよく、DMRSまたはCSI-RSであってもよい。
 図6に示すように、閾値は、Msg 3 PUSCHの繰り返し送信リクエストを送信する基準となる閾値(図中のrsrp-Threshold-Msg3Rep)と同じ閾値であってもよい。なお、Msg 3 PUSCHの繰り返し送信リクエストは、RSRPがrsrp-Threshold-Msg3Repを下回る場合に、制御信号・参照信号処理部240により、PRACHを介して送信される。
 また、閾値は、rsrp-Threshold-Msg3Repと異なる閾値であってもよい。この場合、閾値は、HARQ-ACK PUCCHの繰り返し送信リクエストを送信する閾値(図中のrsrp-Threshold-PUCCHRep-Msg4HARQ)として、rsrp-Threshold-Msg3Repとは別に設定されてもよい。
 また、複数の閾値が、定義/設定されてもよい。例えば、rsrp-Threshold-Msg3Repとrsrp-Threshold-PUCCHRep-Msg4HARQとが、定義/設定されてもよい。各閾値は、例えば、repetition factorに応じて定義/設定されてもよい。例えば、2回繰り返し送信用の閾値としてrsrp-Threshold-PUCCHRep-Msg4HARQ-rep2が定義されてもよく、4回繰り返し用の閾値としてrsrp-Threshold-PUCCHRep-Msg4HARQ-rep4が定義されてもよく、8回繰り返し用の閾値としてrsrp-Threshold-PUCCHRep-Msg4HARQ-rep8が定義されてもよい。
 実施形態の制御信号・参照信号処理部240は、Msg3 PUSCHの繰り返し送信リクエストの送信方法で、すなわちPRACHを介して、HARQ-ACK PUCCHの繰り返し送信リクエストを送信することができる。この場合、制御信号・参照信号処理部240は、上述したMsg 3 PUSCHの繰り返し送信リクエストを送信する場合に、HARQ-ACK PUCCHの繰り返し送信リクエストを送信してもよい。すなわち、Msg 3 PUSCHの繰り返し送信リクエストに関連付けられたPRACH resource又はPRACH occasionを介してPRACHを送信する場合、HARQ-ACK PUCCHの繰り返し送信が同時に要求されることを意味してもよい。
 一方で、図7に示すように、HARQ-ACK PUCCHの繰り返し送信リクエストに関連付けられるPRACH resource又はPRACH occasionは、Msg 3 PUSCHの繰り返し送信リクエストに関連付けられたPRACH resource又はPRACH occasionと独立して(例えば異なるパラメータを用いて)定義されてもよい。ただし、HARQ-ACK PUCCHの繰り返し送信リクエストとMsg 3 PUSCHの繰り返し送信リクエストとの両方に関連付けられたPRACH resource又はPRACH occasionが存在してもよい。なお、図7はPRACHのpreamble indexを示し、Msg 3 PUSCHの繰り返し送信及び/又はHARQ-ACK PUCCHの繰り返し送信が要求されるか否かとpreamble indexとが関連付けられている。
 図7において、両端のハッチングスペースは、Msg 3 PUSCHの繰り返し送信リクエスト(及びHARQ-ACK PUCCHの繰り返し送信リクエスト)が無いことを示す。中央左側のハッチングスペースは、Msg 3 PUSCHの繰り返し送信リクエストのみが有ることを示す。中央右側のハッチングスペースは、Msg 3 PUSCHの繰り返し送信リクエスト及びHARQ-ACK PUCCHの繰り返し送信リクエストが有ることを示す。図中のstartPreambleForThisPartitionはMsg 3 PUSCHの繰り返し送信リクエスト用のpreamble indexの開始番号を示し、numberOfPreamblesForThisPartitionはMsg 3 PUSCHの繰り返し送信リクエスト用のpreamble indexの数を示し、当該開始番号から連続するpreamble indexが、Msg 3 PUSCHの繰り返し送信リクエストに用いられる。なお、図示はしないが、同様にstartPreambleForThisPartition-Msg4HARQ-ACK、numberOfPreamblesForThisPartition-Msg4HARQ-ACKが定義され、HARQ-ACK PUCCHの繰り返し送信リクエストに用いられるpreamble indexの決定に用いられてもよい。また、図示はしないが、HARQ-ACK PUCCHの繰り返し送信リクエストのみが有ってもよい。
 実施形態の制御信号・参照信号処理部240は、Msg3 PUSCHの繰り返し送信リクエストと異なる送信方法で、例えばMsg 3 PUSCHを介して、HARQ-ACK PUCCHの繰り返し送信リクエストを送信することができる。すなわち、制御信号・参照信号処理部240は、PRACHを介してMsg 3 PUSCHの繰り返し送信リクエストを送信し、Msg 3 PUSCHを介してHARQ-ACK PUCCHの繰り返し送信リクエストを送信してもよい。具体的には、Msg 3 PUSCHのMACシグナリング(例えば、MAC CE)/RRCシグナリングを介して、HARQ-ACK PUCCHの繰り返し送信リクエストを送信してもよい。また、Msg 3 PUSCHのPHYシグナリング(例えば、Msg 3 PUSCHに含まれる上りリンク制御情報(UCI)、スクランブル関連情報、RNTI関連情報)を介して、HARQ-ACK PUCCHの繰り返し送信リクエストを送信してもよい。
 このように、制御信号・参照信号処理部240は、HARQ-ACK PUCCHの繰り返し送信リクエストを送信する送信部を構成してもよい。
 また、実施形態の制御信号・参照信号処理部240は、実施形態の無線信号送受信部210が受信するHARQ-ACK PUCCHの繰り返し送信の指示に基づいて、HARQ-ACK PUCCHの繰り返し送信を行うことができる。
 このように、制御信号・参照信号処理部240は、HARQ-ACK PUCCHの繰り返し送信を行う送信部を構成してもよい。
 また、実施形態の制御信号・参照信号処理部240は、UE200が以下に示す条件Aを満たす場合にのみ、HARQ-ACK PUCCHの繰り返し送信リクエスト/HARQ-ACK PUCCHの繰り返し送信を行ってもよい。換言すれば、実施形態の制御信号・参照信号処理部240は、UE200が以下に示す条件Bを満たす場合には、HARQ-ACK PUCCHの繰り返し送信リクエスト/HARQ-ACK PUCCHの繰り返し送信を行わなくてもよい。なお、条件は、UEの種類に読み替えられてもよい。
 (条件A)
 ・handheld UE
 ・UE with 23 dBm TX power and/or 0 or less antenna gain
 ・UE with a specific UE Capability
 (条件B)
 ・Very Small Aperture Terminal(VSAT) UE
 ・UE with higher than 23 dBm TX power and/or larger than 0 or less antenna gain
 ・UE without a specific UE Capability
 なお、VSAT UEは、衛星通信において用いられる、比較的小型のアンテナを備える地球局である。
 また、実施形態の制御信号・参照信号処理部240は、UE200が条件Aを満たす場合と、条件Bを満たす場合とで、HARQ-ACK PUCCHの繰り返し送信における、PUCCHの繰り返し回数を変更してもよい。換言すれば、条件Aを満たすUE200と、条件Bを満たすUE200とでは、gNB100により設定/指示され、無線信号送受信部210が受信するHARQ-ACK PUCCHの繰り返し送信の指示(及びPUCCHの繰り返し回数)が異なってもよい。例えば、HARQ-ACK PUCCHの繰り返し送信に係るパラメータ(例えば繰り返し回数に係るパラメータ)について、条件Aを満たすUE200向けのパラメータと条件Bを満たすUE200向けのパラメータとが異なるパラメータとして定義/設定されてもよい。
 また、実施形態の制御信号・参照信号処理部240は、UE CapabilityなどのUE200の能力情報を送信することができる。UE200の能力情報は、例えば、HARQ-ACK PUCCHの繰り返し送信に係る能力情報である。制御信号・参照信号処理部240は、HARQ-ACK PUCCHの繰り返し送信に係る能力情報を、次のようにgNB100に報告してもよい。
 Msg1 PRACH/Msg3 PUSCHの繰り返し送信と同じ能力情報として報告してもよいし、異なる能力情報として送信してもよい。
 HARQ-ACK PUCCHの繰り返し送信をサポートすることを報告する場合、Msg1 PRACH/Msg3 PUSCHの繰り返し送信をサポートすることを報告するようにしてもよい。すなわち、Msg1 PRACH/Msg3 PUSCHの繰り返し送信をサポートすることが、HARQ-ACK PUCCHの繰り返し送信をサポートすることの前提であってもよい。
 Msg1 PRACH/Msg3 PUSCHの繰り返し送信をサポートすることを報告する場合、HARQ-ACK PUCCHの繰り返し送信をサポートすることを報告するようにしてもよい。すなわち、HARQ-ACK PUCCHの繰り返し送信をサポートすることが、Msg1 PRACH/Msg3 PUSCHの繰り返し送信をサポートすることの前提であってもよい。
 NTN(衛星、HAPS、ATGを仲介する通信)用に定義された周波数帯に対してのみ、HARQ-ACK PUCCHの繰り返し送信をサポートすることを報告してもよい。
 HARQ-ACK PUCCHの繰り返し送信をサポートすることを報告する場合、少なくともGNSSによる位置情報とサービングセルの衛星軌道に基づいてUE specific Timing Advance(TA)及び周波数を計算することをサポートすることを報告するようにしてもよい。
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、無線信号に含まれるデータの分割/連結及びコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。また、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してコーディングを実行する。
 データ送受信部260は、gNB100との間でデータを送受信する。具体的には、データ送受信部260は、複数のレイヤ間においてProtocol Data Unit(PDU)/Service Data Unit(SDU)の組み立て/分解などを実行する。複数のレイヤは、媒体アクセス制御(MAC)レイヤ、無線リンク制御(RLC)レイヤ、Packet Data Convergence Protocol(PDCP)レイヤなどである。また、データ送受信部260は、Hybrid Automatic Repeat Request(HARQ)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を制御する。制御部270は、例えば、無線信号送受信部210による無線信号の送受信、アンプ部220による増幅、変復調部230によるデータ変調/復調、制御信号・参照信号処理部240による信号処理、符号化/復号部250によるコーディング/復号、データ送受信部260によるデータの送受信を制御する。
 (2.2)基地局の機能ブロック構成
 図8に示すように、gNB100は、無線信号送受信部110と、制御部120とを備える。
 無線信号送受信部110は、UE200との間で無線信号を送受信する。無線信号送受信部110は、UE200に無線信号を送信する送信部と、UE200から無線信号を受信する受信部と、を構成してもよい。
 制御部120は、gNB100を制御する。制御部120は、例えば、無線信号送受信部210による無線信号の送受信を制御する。
 (3)課題
 (3.1)課題1
 ランダムアクセス手順におけるPUCCH、すなわちHARQ-ACK PUCCHについては、繰り返し送信が規定されていない。そのため、どのようにしてHARQ-ACK PUCCHの繰り返し送信リクエストを送信すればよいかが明確でないという問題がある。
 (3.2)課題2
 ランダムアクセス手順におけるPUCCH、すなわちHARQ-ACK PUCCHについては、繰り返し送信が規定されていない。そのため、HARQ-ACK PUCCHの繰り返し送信に係るシグナリングオーバヘッドを減らしたいという要求を満たせていない。
 (3.3)課題3
 ランダムアクセス手順におけるPUCCH、すなわちHARQ-ACK PUCCHについては、繰り返し送信が規定されていない。そのため、HARQ-ACK PUCCHの繰り返し送信を行うための設定を柔軟に行いたいという要求を満たせていない。
 (3.4)課題4
 ランダムアクセス手順におけるPUCCH、すなわちHARQ-ACK PUCCHについては、繰り返し送信が規定されていない。そのため、UEの種類に応じてHARQ-ACK PUCCHの繰り返し送信を行いたいという要求を満たせていない。
 (4)無線通信システムの動作例
 (4.1)動作例1
 無線信号送受信部210は、参照信号を、gNB100から受信する。制御信号・参照信号処理部240は、参照信号の受信電力であるRSRPと閾値とを比較し、RSRPが閾値を下回る場合に、ランダムアクセス手順におけるPUCCH、すなわちHARQ-ACK PUCCHの繰り返し送信リクエストを、gNB100に送信する。閾値は、ランダムアクセス手順におけるPUSCH、すなわちMsg3 PUSCHの繰り返し送信リクエストを送信する基準となる閾値と同じであってもよい。
 制御信号・参照信号処理部240は、図5に示すように、HARQ-ACK PUCCHの繰り返し送信リクエストを、PRACHを介して送信してもよいし、PUSCHを介して送信してもよい。なお、PRACHを介してHARQ-ACK PUCCHの繰り返し送信リクエストを送信する場合は、当該PRACHにおいてMsg3 PUSCHの繰り返し送信リクエストを送信してもよい。すなわち、制御信号・参照信号処理部240は、PRACHを介して、HARQ-ACK PUCCHの繰り返し送信リクエスト及びMsg3 PUSCHの繰り返し送信リクエストの少なくとも一方を送信してもよい
 (4.2)動作例2
 無線信号送受信部210は、ランダムアクセス手順におけるPUSCH、すなわちMsg3 PUSCHの繰り返し送信の指示を、gNB100から受信する。制御信号・参照信号処理部240は、Msg3 PUSCHの繰り返し送信の指示に基づいて、gNB100に対してHARQ-ACK PUCCHの繰り返し送信を行う。具体的には、Msg3 PUSCHの繰り返し回数とHARQ-ACK PUCCHの繰り返し回数との関係性に基づいて、gNB100に対してHARQ-ACK PUCCHの繰り返し送信を行う。
 (4.3)動作例3
 無線信号送受信部210は、ランダムアクセス手順におけるPDSCH、すなわちMsg4 PDSCHに対応するDCIを、gNB100から受信する。制御信号・参照信号処理部240は、DCIに基づいて、gNB100に対してHARQ-ACK PUCCHの繰り返し送信を行う。
 (4.4)動作例4
 (4.4.1)動作例4.1
 上述した動作例1、2、3において、制御信号・参照信号処理部240は、上述した条件Aを満たす場合にのみ、gNB100に対して、HARQ-ACK PUCCHの繰り返し送信リクエスト/HARQ-ACK PUCCHの繰り返し送信を行う。換言すれば、制御信号・参照信号処理部240は、上述した条件Bを満たす場合には、gNB100に対して、HARQ-ACK PUCCHの繰り返し送信リクエスト/HARQ-ACK PUCCHの繰り返し送信を行わない。
 (4.4.2)動作例4.2
 上述した動作例2、3において、制御信号・参照信号処理部240は、上述した条件Aを満たす場合と、上述した条件Bを満たす場合とで、gNB100に対して行うHARQ-ACK PUCCHの繰り返し送信の繰り返し回数を変更してもよい。換言すれば、条件Aを満たすUE200と、条件Bを満たすUE200とでは、gNB100により設定/指示され、無線信号送受信部210が受信するHARQ-ACK PUCCHの繰り返し送信の指示(及びPUCCHの繰り返し回数)が異なってもよい。
 (5)作用・効果
 上述した実施形態のUE200は、RSRPと閾値とを比較し、RSRPが閾値を下回る場合に、ランダムアクセス手順におけるPUCCH、すなわちHARQ-ACK PUCCHの繰り返し送信リクエストを、gNB100に送信することができる。閾値は、ランダムアクセス手順におけるPUSCH、すなわちMsg3 PUSCHの繰り返し送信リクエストを送信する基準となる閾値と同じであってもよい。これにより、新しく閾値を設定するためのリソースを削減することができる。
 上述した実施形態のUE200は、PRACHを介して、HARQ-ACK PUCCHの繰り返し送信リクエストを、gNB100に送信することができる。これにより、Msg3 PUSCHの繰り返し送信リクエストとともにHARQ-ACK PUCCHの繰り返し送信リクエストを送信することができるので、シグナリングオーバヘッド及びUE200の負荷を削減することができる。なお、UE200の負荷は、UE200のUE complexityに読み替えられてもよい。
 上述した実施形態のUE200は、PUSCHを介して、HARQ-ACK PUCCHの繰り返し送信リクエストを、gNB100に送信することができる。これにより、Msg3 PUSCHの繰り返し送信リクエストと別にHARQ-ACK PUCCHの繰り返し送信リクエストを送信することができるので、効率的にリソースを使用することができる。
 上述した実施形態のUE200は、Msg3 PUSCHの繰り返し送信の指示に基づいて、gNB100に対してHARQ-ACK PUCCHの繰り返し送信を行うことができる。これにより、シグナリングオーバヘッドを削減することができる。
 上述した実施形態のUE200は、DCIに基づいて、gNB100に対してHARQ-ACK PUCCHの繰り返し送信を行う。これにより、HARQ-ACK PUCCHの繰り返し送信の指示を柔軟に指示することができる。
 上述した実施形態のUE200は、条件、すなわちUE200の種類に基づいて、gNB100に対してHARQ-ACK PUCCHの繰り返し送信を行うか否かを決定することができる。これにより、繰り返し送信を必要とするUE200のみが繰り返し送信を行うので、効率的である。
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した開示において、HARQ-ACK PUCCHの繰り返し送信は、主にMsg3 PUSCHの繰り返し送信と関連付けられたが、これに限られない。MsgA、Msg1、Msg2の繰り返し送信と関連付けられてもよい。すなわち、上述した開示におけるMsg3 PUSCHの繰り返し送信は、MsgA、Msg1、Msg2の繰り返し送信に読み替えられてもよい。
 上述した動作例は、矛盾が生じない限り、組み合わせて複合的に適用されてもよい。
 上述した開示において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。
 上述した実施形態の説明に用いたブロック構成図(図4及び図8)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4及び図8参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 図10は、車両2001の構成例を示す。図10に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 (付記)
 上述した開示は、以下のように表現されてもよい。
 第1の特徴は、参照信号を受信する受信部と、前記参照信号の受信電力と閾値との比較に基づいて、ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信リクエストを送信する送信部と、を備える端末である。
 第2の特徴は、第1の特徴において、前記閾値は、前記ランダムアクセス手順における物理上りリンク共有チャネルの繰り返し送信リクエストを送信する基準となる閾値である、端末である。
 第3の特徴は、第1の特徴または第2の特徴において、前記送信部は、物理ランダムアクセスチャネルを介して、前記物理上りリンク制御チャネルの繰り返し送信リクエスト及び物理上りリンク共有チャネルの繰り返し送信リクエストの少なくとも一方を送信する、端末である。
 第4の特徴は、第1の特徴または第2の特徴において、前記送信部は、前記ランダムアクセス手順における物理上りリンク共有チャネルを介して、前記物理上りリンク制御チャネルの繰り返し送信リクエストを送信する、端末である。
 第5の特徴は、ランダムアクセス手順における物理上りリンク共有チャネルの繰り返し送信の指示を受信する受信部と、前記指示に基づいて、前記ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信を行う送信部と、を備える端末である。
 第6の特徴は、ランダムアクセス手順における物理下りリンク共有チャネルに対応する下りリンク制御情報を受信する受信部と、前記下りリンク制御情報に基づいて、前記ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信を行う送信部と、を備える端末である。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 無線信号送受信部
 120 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM、RAM)
 2033 通信ポート

Claims (6)

  1.  参照信号を受信する受信部と、
     前記参照信号の受信電力と閾値との比較に基づいて、ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信リクエストを送信する送信部と、
     を備える端末。
  2.  前記閾値は、前記ランダムアクセス手順における物理上りリンク共有チャネルの繰り返し送信リクエストを送信する基準となる閾値である、
     請求項1に記載の端末。
  3.  前記送信部は、物理ランダムアクセスチャネルを介して、前記物理上りリンク制御チャネルの繰り返し送信リクエスト及び物理上りリンク共有チャネルの繰り返し送信リクエストの少なくとも一方を送信する、
     請求項1に記載の端末。
  4.  前記送信部は、前記ランダムアクセス手順における物理上りリンク共有チャネルを介して、前記物理上りリンク制御チャネルの繰り返し送信リクエストを送信する、
     請求項1に記載の端末。
  5.  ランダムアクセス手順における物理上りリンク共有チャネルの繰り返し送信の指示を受信する受信部と、
     前記指示に基づいて、前記ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信を行う送信部と、
     を備える端末。
  6.  ランダムアクセス手順における物理下りリンク共有チャネルに対応する下りリンク制御情報を受信する受信部と、
     前記下りリンク制御情報に基づいて、前記ランダムアクセス手順における物理上りリンク制御チャネルの繰り返し送信を行う送信部と、
     を備える端末。
PCT/JP2022/037719 2022-10-07 2022-10-07 端末 WO2024075299A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037719 WO2024075299A1 (ja) 2022-10-07 2022-10-07 端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037719 WO2024075299A1 (ja) 2022-10-07 2022-10-07 端末

Publications (1)

Publication Number Publication Date
WO2024075299A1 true WO2024075299A1 (ja) 2024-04-11

Family

ID=90608014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037719 WO2024075299A1 (ja) 2022-10-07 2022-10-07 端末

Country Status (1)

Country Link
WO (1) WO2024075299A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196833A1 (en) * 2021-03-15 2022-09-22 Sharp Kabushiki Kaisha User equipment apparatus, base station apparatus, and communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196833A1 (en) * 2021-03-15 2022-09-22 Sharp Kabushiki Kaisha User equipment apparatus, base station apparatus, and communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE: "On Coverage Enhancement for NR NTN", 3GPP TSG RAN WG1 MEETING #110BIS-E R1-2209599, 30 September 2022 (2022-09-30), XP052259072 *
QUALCOMM INCORPORATED: "Coverage enhancements for NR NTN", 3GPP TSG RAN WG1 MEETING #110BIS-E R1-2210004, 30 September 2022 (2022-09-30), XP052259475 *

Similar Documents

Publication Publication Date Title
WO2024075299A1 (ja) 端末
WO2024161661A1 (ja) 端末
WO2024161663A1 (ja) 端末
WO2024161660A1 (ja) 端末
WO2024095483A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024069901A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024209559A1 (ja) 端末及び無線通信方法
WO2024209700A1 (ja) 端末及び無線通信方法
WO2023063397A1 (ja) 端末、無線通信システム及び無線通信方法
WO2024095494A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024024096A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024161527A1 (ja) 分散ユニット、中央ユニット、無線通信システム及び無線通信方法
WO2024034093A1 (ja) 端末及び無線通信方法
WO2024034094A1 (ja) 端末及び無線通信方法
WO2024024100A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024176453A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024024098A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024209706A1 (ja) 端末及び無線通信方法
WO2023067750A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024209707A1 (ja) 端末及び無線通信方法
WO2024161525A1 (ja) 分散ユニット、中央ユニット、無線通信システム及び無線通信方法
WO2024180836A1 (ja) 基地局
WO2024069824A1 (ja) 端末
WO2023242929A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024100735A1 (ja) 端末、基地局、無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961485

Country of ref document: EP

Kind code of ref document: A1