WO2024024096A1 - 端末、基地局、無線通信システム及び無線通信方法 - Google Patents

端末、基地局、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2024024096A1
WO2024024096A1 PCT/JP2022/029331 JP2022029331W WO2024024096A1 WO 2024024096 A1 WO2024024096 A1 WO 2024024096A1 JP 2022029331 W JP2022029331 W JP 2022029331W WO 2024024096 A1 WO2024024096 A1 WO 2024024096A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
base station
unit
dci
signal
Prior art date
Application number
PCT/JP2022/029331
Other languages
English (en)
French (fr)
Inventor
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/029331 priority Critical patent/WO2024024096A1/ja
Publication of WO2024024096A1 publication Critical patent/WO2024024096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present disclosure relates to a terminal, a base station, a wireless communication system, and a wireless communication method that support a mechanism that can appropriately reduce power consumption of a network.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)), and the next generation specifications called Beyond 5G, 5G Evolution, or 6G. is also progressing.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • 6G 6th Generation
  • Non-Patent Document 1 studies are underway to reduce power consumption of networks (base stations) (for example, Non-Patent Document 1).
  • the present invention has been made to solve the above-mentioned problems, and provides a terminal, a base station, a wireless communication system, and a wireless communication method that are compatible with a mechanism that can appropriately reduce power consumption of a network. With the goal.
  • One aspect of the disclosure includes a communication unit that performs communication with a base station, and at least one of whether the base station receives an uplink signal and whether the base station transmits a downlink signal.
  • a control unit that assumes communication to be performed with the base station according to a network state defined by the terminal, wherein the network state is defined as a minimum unit of time and is set quasi-statically. It is.
  • One aspect of the disclosure is a base station that includes a communication unit that performs communication with a terminal, and a communication unit that determines whether the base station receives an uplink signal and whether or not the base station transmits a downlink signal.
  • a control unit that assumes communication to be performed with the terminal according to a network state defined by at least one of the above, wherein the network state is defined as a minimum unit of time and is set quasi-statically. It is a base station.
  • One aspect of the disclosure includes a terminal and a base station, and the terminal includes a communication unit that performs communication with the base station, and determines whether the base station receives an uplink signal and whether the base station receives a downlink signal. a control unit that assumes communication to be performed with the base station in accordance with a network state defined by at least one of whether to transmit or not, and the network state is determined based on a unit time as a minimum unit.
  • a wireless communication system that is defined and semi-statically configured.
  • One aspect of the disclosure is to perform communication with a base station, and at least one of whether the base station receives an uplink signal and whether the base station transmits a downlink signal. a step of assuming communication to be performed with the base station according to a defined network state, wherein the network state is defined as a minimum unit of time and is set quasi-statically. It is.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a diagram showing frequency ranges used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a radio frame, subframe, and slot used in the radio communication system 10.
  • FIG. 4 is a functional block diagram of the UE 200.
  • FIG. 5 is a functional block diagram of the gNB 100.
  • FIG. 6 is a diagram for explaining operation example 1.
  • FIG. 7 is a diagram for explaining operation example 1.
  • FIG. 8 is a diagram for explaining operation example 1.
  • FIG. 9 is a diagram for explaining operation example 1.
  • FIG. 10 is a diagram for explaining operation example 1.
  • FIG. 11 is a diagram for explaining operation example 2.
  • FIG. 12 is a diagram for explaining operation example 3.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the gNB 100 and the UE 200.
  • FIG. 14 is a diagram showing an example of the configuration of vehicle 2001.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to an embodiment.
  • the wireless communication system 10 is a wireless communication system that complies with 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter referred to as UE (User Equipment) 200). .
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE User Equipment
  • the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
  • the NG-RAN 20 includes a base station 100 (hereinafter referred to as gNB 100). Note that the specific configuration of the wireless communication system 10 including the number of gNBs 100 and UEs 200 is not limited to the example shown in FIG. 1.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a 5G-compliant core network (5GC, not shown).
  • NG-RAN20 and 5GC may also be simply expressed as "networks”.
  • gNB100 is a 5G-compliant wireless base station, and performs 5G-compliant wireless communication with UE200.
  • gNB100 and UE200 utilize Massive MIMO (Multiple-Input Multiple-Output), which generates a highly directional beam BM by controlling radio signals transmitted from multiple antenna elements, and multiple component carriers (CC). It can support carrier aggregation (CA), which is used in bundles, and dual connectivity (DC), which communicates with two or more transport blocks simultaneously between the UE and each of two NG-RAN nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency ranges used in wireless communication system 10.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is at a higher frequency than FR1, with an SCS of 60, or 120kHz (may include 240kHz), and a bandwidth (BW) of 50-400MHz may be used.
  • SCS may also be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands exceeding 52.6 GHz and up to 71 GHz or 114.25 GHz. Such a high frequency band may be conveniently referred to as "FR2x.”
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) with larger Sub-Carrier Spacing (SCS)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM Discrete Fourier Transform - Spread
  • FIG. 3 shows an example of the configuration of radio frames, subframes, and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • SCS is not limited to the intervals (frequency) shown in FIG. For example, 480kHz, 960kHz, etc. may be used.
  • the number of symbols that make up one slot does not necessarily have to be 14 symbols (for example, 28 symbols, 56 symbols). Furthermore, the number of slots per subframe may vary depending on the SCS.
  • time direction (t) shown in FIG. 3 may also be called a time domain, symbol period, symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
  • DMRS is a type of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically, DMRS for PDSCH (Physical Downlink Shared Channel).
  • DMRS for an uplink data channel specifically, PUSCH (Physical Uplink Shared Channel)
  • PUSCH Physical Uplink Shared Channel
  • DMRS may be used for channel estimation in a device, eg, UE 200, as part of coherent demodulation. DMRS may only be present in resource blocks (RBs) used for PDSCH transmission.
  • RBs resource blocks
  • DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. In mapping type A, the first DMRS is placed in the second or third symbol of the slot. In mapping type A, DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason why the first DMRS is placed in the second or third symbol of the slot may be interpreted as placing the first DMRS after control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of the data allocation. That is, the location of the DMRS may be given relative to where the data is located, rather than relative to the slot boundaries.
  • DMRS may have multiple types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
  • FIG. 4 is a functional block diagram of the UE 200.
  • the UE 200 includes a radio signal transmission/reception section 210, an amplifier section 220, a modulation/demodulation section 230, a control signal/reference signal processing section 240, an encoding/decoding section 250, a data transmission/reception section 260, and a control section 270. .
  • the wireless signal transmitting/receiving unit 210 transmits and receives wireless signals according to NR.
  • the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that uses a plurality of CCs in a bundle, and DC that simultaneously communicates between the UE and each of two NG-RAN nodes.
  • the wireless signal transmitting/receiving unit 210 may constitute a communication unit that communicates with the base station (gNB 100).
  • the amplifier section 220 is composed of a PA (Power Amplifier)/LNA (Low Noise Amplifier), etc.
  • Amplifier section 220 amplifies the signal output from modulation/demodulation section 230 to a predetermined power level. Furthermore, the amplifier section 220 amplifies the RF signal output from the radio signal transmitting/receiving section 210.
  • the modulation/demodulation unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modulation/demodulation unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, a radio resource control layer (RRC) control signal. Furthermore, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, a radio resource control layer (RRC) control signal.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between a terminal-specific base station and the terminal for estimating a fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include a Channel State Information-Reference Signal (CSI-RS), a Sounding Reference Signal (SRS), and a Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • Control channels include a control channel and a data channel.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Includes Physical Broadcast Channel (PBCH), etc.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared Channel), and the like.
  • Data refers to data transmitted over a data channel.
  • a data channel may also be read as a shared channel.
  • control signal/reference signal processing section 240 may receive downlink control information (DCI).
  • DCI has the following existing fields: DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Assignment), TDRA (Time Domain Resource Assignment), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
  • the value stored in the DCI Format field is an information element that specifies the format of the DCI.
  • the value stored in the CI field is an information element that specifies the CC to which the DCI applies.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which the DCI is applied.
  • the BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied. Frequency domain resources are identified by the value stored in the FDRA field and the information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which the DCI applies.
  • Time domain resources are identified by the value stored in the TDRA field and the information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • Time domain resources may be identified by values stored in TDRA fields and default tables.
  • the value stored in the MCS field is an information element that specifies the MCS to which the DCI applies.
  • the MCS is specified by the value stored in the MCS and the MCS table.
  • the MCS table may be specified by the RRC message and may be identified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which the DCI applies.
  • the value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data.
  • the value stored in the RV field is an information element that specifies the redundancy of data to
  • the encoding/decoding unit 250 performs data division/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmitting/receiving unit 260 into predetermined sizes, and performs channel coding on the divided data. Furthermore, the encoding/decoding section 250 decodes the data output from the modulation/demodulation section 230 and concatenates the decoded data.
  • the data transmitting and receiving unit 260 transmits and receives Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transceiver 260 transmits PDUs/SDUs in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Perform assembly/disassembly, etc. The data transmitting/receiving unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block that configures the UE 200.
  • the control unit 270 determines at least one of whether or not the gNB 100 receives an uplink signal (hereinafter referred to as a UL signal) and whether or not the gNB 100 transmits a downlink signal (hereinafter referred to as a DL signal).
  • a control unit is configured to perform communication with the gNB 100 assuming a network state defined by (hereinafter referred to as NW state).
  • NW state is defined with unit time as the minimum unit. In the following, a case where the unit time is a slot will be exemplified.
  • the NW state includes a state in which the gNB 100 assumes both reception of UL signals and transmission of DL signals (hereinafter referred to as Active state).
  • the NW state may include at least the following states.
  • the NW state may include a state in which the gNB 100 does not assume both reception of UL signals and transmission of DL signals (hereinafter referred to as Non-active state).
  • a non-active state may also be referred to as a sleep state.
  • the NW state may include a state in which the gNB 100 assumes receiving a UL signal but does not assume transmitting a DL signal (hereinafter referred to as DL non-active state).
  • DL non-active state may be referred to as UL active state.
  • the NW state may include a state in which the gNB 100 does not assume reception of UL signals but assumes transmission of DL signals (hereinafter referred to as UL non-active state).
  • UL non-active state may be referred to as DL active state.
  • control unit 270 assumes both UL signal transmission and DL signal reception in the Active state. In the Non-active state, the control unit 270 does not assume both UL signal transmission and DL signal reception. In the DL non-active state, the control unit 270 assumes transmission of a UL signal, but does not assume reception of a DL signal. In the UL non-active state, the control unit 270 does not assume transmission of a UL signal, but assumes reception of a DL signal.
  • NW state may be associated with an index (hereinafter referred to as NW state index).
  • NW state index For example, Active state may be associated with NW state #0.
  • Non-active state may be associated with NW state #1.
  • DL non-active state may be associated with NW state #2.
  • UL non-active state may be associated with NW state #3.
  • NW state may be set semi-statically.
  • NW state may be set semi-statically by upper layer parameters.
  • the NW state index may be used in upper layers. Details of such operations will be described later (see operation example 1).
  • NW state may be specified dynamically.
  • the NW state may be dynamically specified by the physical layer (eg, a field included in the DCI).
  • the NW state index may be used at the physical layer. Details of such an operation will be described later (see operation example 2).
  • the NW state may include a specific state (hereinafter referred to as Flexible NW state) that can be changed by the NW state that is dynamically specified by downlink control information (DCI). Details of such an operation will be described later (see operation example 3).
  • DCI downlink control information
  • FIG. 5 is a functional block diagram of the gNB 100. As shown in FIG. 5, the gNB 100 includes a receiving section 110, a transmitting section 120, and a control section 130.
  • the receiving unit 110 receives various signals from the UE 200.
  • the receiving unit 110 may receive the UL signal via PUCCH or PUSCH.
  • the transmitter 120 transmits various signals to the UE 200.
  • the transmitter 120 may transmit the DL signal via the PDCCH or PDSCH.
  • the receiving unit 110 and the transmitting unit 120 constitute a communication unit that communicates with the terminal (UE 200).
  • the control unit 130 controls the gNB 100.
  • the control unit 130 assumes an NW state defined by at least one of whether or not the gNB 100 receives a UL signal and whether or not the gNB 100 transmits a DL signal, and executes the process with the UE 200. Assume that the communication is as follows.
  • the control unit 130 assumes both UL signal reception and DL signal transmission in the Active state.
  • the control unit 130 does not assume both reception of a UL signal and transmission of a DL signal.
  • the control unit 130 assumes receiving a UL signal, but does not assume transmitting a DL signal.
  • the control unit 130 does not assume reception of a UL signal, but assumes transmission of a DL signal.
  • the NW state includes an Active state, a Non-active state, and a DL non-active state
  • the NW state may include one or more states selected from Non-active state, DL non-active state, and UL non-active state. Therefore, the NW state may include the UL non-active state.
  • the NW state may be set quasi-statically.
  • the NW state may be set quasi-statically by upper layer parameters.
  • the NW state index may be used in higher layers.
  • options for operation example 1 the following options are possible.
  • the UE 200 may receive a parameter that periodically sets an NW state pattern (hereinafter referred to as NW state pattern).
  • NW state pattern an NW state pattern
  • the parameters will be referred to as upper layer parameters.
  • the upper layer parameters may be referred to as RRC parameters, and may be read as RRC configuration.
  • the NW state pattern may be represented by the NW state set for each slot for X slots.
  • the NW state pattern may be set periodically for all slots.
  • X may be predefined in the wireless communication system 10, may be set by upper layer parameters, or may be determined (automatically) by the NW state pattern set by upper layer parameters.
  • the NW state pattern may be expressed as a bitmap that specifies the NW state for each slot.
  • the bitmap includes the NW state index for each slot. bitmap is included in the upper layer parameters.
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., Non-active state
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., Non -active state
  • the NW state pattern is applied repeatedly until the end of the slots set by the upper layer parameter (maxNrofSlots).
  • the NW state pattern may be represented by the number of slots corresponding to each NW state for X slots.
  • X may be predefined in the wireless communication system 10, may be set by upper layer parameters, or may be determined (automatically) by the NW state pattern set by upper layer parameters.
  • the number of slots corresponding to each NW state is set by separate upper layer parameters for each NW state.
  • the number of slots corresponding to NW state index #0 i.e., Active state
  • the number of slots corresponding to NW state index #1 i.e., Non-active state
  • nrofState0Slots may be set by nrofState0Slots.
  • nrofState1Slots may be set by nrofState1Slots.
  • the values of separate upper layer parameters for each NW state e.g., nrofState0Slots, nrofState1Slots, etc.
  • the order of each NW state within X slots may be determined based on the NW state index. For example, the order of each NW state may be determined in ascending order of NW state index, or may be determined in descending order of NW state index. Alternatively, the order of each NW state may be set by an upper layer parameter, such as "NW state index #0 -> NW state index #2 -> NW state index #1".
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., Non-active state
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., Non -active state
  • the NW state pattern is applied repeatedly until the end of the slots set by the upper layer parameter (maxNrofSlots).
  • the UE 200 may receive upper layer parameters that directly configure the NW state of each slot.
  • the NW state of each slot may be considered to be an NW state pattern.
  • NW state may be set in one slot as a setting unit.
  • the upper layer parameter that sets the NW state may include a value (NW state index) corresponding to the number of slots set by the upper layer parameter (maxNrofSlots).
  • Upper layer parameters that set the NW state may be expressed as a bitmap that specifies the NW state for each slot.
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., Non-active state
  • NW state index #2 i.e., DL non-active state
  • NW state index #0 i.e., active state
  • the NW state index included in the bitmap is applied to each slot until the end of the slots set by the upper layer parameter (maxNrofSlots).
  • NW state may be set as a setting unit for a group containing one or more slots.
  • the Alt shown below can be considered.
  • the number of slots that make up a group may be fixedly defined.
  • the number of slots included in a group may be represented by X.
  • Upper layer parameters that set the NW state may be expressed as a bitmap that specifies the NW state for each group. The same NW state is applied to the slots that make up each group.
  • X may be predefined in the wireless communication system 10 or may be set by upper layer parameters.
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., NW state index #1 (i.e. Non-active state)
  • NW state index #2 i.e. DL non -active state
  • NW state index #0 i.e. Active state
  • the NW state index included in the bitmap is applied to the slots forming each group until the end of the slots set by the upper layer parameter (maxNrofSlots).
  • the number of slots forming a group may be defined for each NW state (NW state index). That is, the number of slots forming the group corresponding to each NW state index is defined separately.
  • the number of slots constituting a group corresponding to each NW state may be predefined in the wireless communication system 10, or may be set by upper layer parameters.
  • Upper layer parameters that set the NW state may be expressed as a bitmap that specifies the NW state for each group.
  • the number of slots forming a group corresponding to NW state index #0 is 2
  • the number of slots forming a group corresponding to NW state index #1 is 1
  • the number of slots forming a group corresponding to NW state index #2 is 2.
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., Non-active state
  • NW state index #1 i.e., Non-active state
  • NW state index #2 i.e., DL non-active state
  • NW state index #0 i.e., active state
  • the NW state index included in the bitmap is applied to the slots forming each group until the end of the slots set by the upper layer parameter (maxNrofSlots).
  • the number of slots to which the NW state index included in the bitmap is applied can be set for each NW state.
  • the NW state may be dynamically specified.
  • the NW state may be dynamically specified by the physical layer (eg, a field included in the DCI).
  • the NW state pattern applied to each slot may be specified by the DCI.
  • the NW state pattern may be associated with an index (hereinafter referred to as NW state pattern index).
  • NW state pattern index an index
  • the UE 200 may receive higher layer parameters that configure one or more NW state patterns.
  • UE 200 may receive a DCI specifying any one pattern from one or more NW state patterns set by upper layer parameters.
  • the NW state pattern set by the upper layer parameter may be represented by the NW state set for each slot for X slots corresponding to the Flexible NW state.
  • the NW state pattern may be set periodically for all slots.
  • X may be predefined in the wireless communication system 10, may be set by upper layer parameters, or may be determined (automatically) by the NW state pattern set by upper layer parameters.
  • the NW state pattern may be set using the same method as each option (option 1-1, option 1-2, option 2-1, option 2-2) explained in operation example 1.
  • one or more NW state patterns may be predefined in the wireless communication system 10.
  • the UE 200 may receive a DCI specifying any one pattern from one or more predefined NW state patterns.
  • the predefined NW state pattern may be represented by the NW state set for each slot for X slots corresponding to the Flexible NW state.
  • the NW state pattern may be set periodically for all slots.
  • X may be predefined in the wireless communication system 10, may be set by upper layer parameters, or may be determined (automatically) by the NW state pattern set by upper layer parameters.
  • NW state pattern corresponding to NW state pattern index #0 is ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ⁇
  • NW state pattern corresponding to NW state pattern index #1 is An example is given for the case where the pattern is ⁇ 0, 0, 0, 1, 1, 0, 0, 0, 1, 1 ⁇ .
  • these NW state patterns may be a pattern set by upper layer parameters, or may be a pattern predefined in the wireless communication system 10.
  • NW state index #0 i.e., Active state
  • NW state index #1 i.e., Non-active state
  • NW state pattern index #1 is repeatedly applied until the end of the slots set by the upper layer parameter (maxNrofSlots).
  • NW state index #0 i.e., Active state
  • slot #3 - NW state index #1 i.e. Non-active state
  • NW state index #0 i.e. Active state
  • NW state index #8 i.e. Active state
  • NW state index #1 i.e. Non-active state
  • the DCI shown below is considered as the DCI that specifies the NW state pattern (NW state pattern index) (hereinafter referred to as specific DCI).
  • the format of the specific DCI may be a DCI (UE-specific DCI format) specific to the UE 200, or a DCI (Group common DCI format) common to one or more UEs.
  • the specific DCI format may be any DCI format selected from the existing DCI formats (e.g. DCI format 1_1/1_2/2_0) or a newly defined DCI (e.g. DCI format 1_1/1_2/2_0). , DCI format 2_x).
  • the RNTI used for scrambling the CRC of a specific DCI is one of the RNTIs selected from existing RNTIs (e.g., C (Cell)-RNTI, SFI (Slot Format Indication)-RNTI). It may be a newly defined RNTI.
  • Two or more options selected from Option 1 to Option 3 may be combined.
  • the NW state pattern may be specified by DCI format 2_0 (specific DCI) with CRC scrambled by SFI-RNTI.
  • DCI format 2_0 specific DCI
  • CRC scrambled by SFI-RNTI When the NW state pattern is set by a new upper layer parameter, such a specific DCI may be used to specify the NW state pattern.
  • the NW state pattern may be specified by DCI format 1_1 (specific DCI) with the CRC scrambled by the new RNTI. If the NW state pattern is set by a new upper layer parameter, such a specific DCI may include a field specifying the NW state pattern.
  • the operation of the UE 200 to receive the specific DCI may include the options shown below.
  • the specific DCI may refer to a specific slot number between the slot to which the NW state pattern is applied and the reference slot. That is, the UE 200 may assume that the NW state pattern will be applied after the specific slot from the reference slot.
  • the specific number of slots may be included in a field that specifies the NW state pattern index.
  • the specific number of slots may be specified for each DL BWP or for each UL BWP.
  • the number of specific slots may be equal to or greater than the slot period for monitoring the PDCCH related to the specific DCI.
  • the reference slot may be the slot where the specific DCI was detected, or the slot + Y slot where the specific DCI was detected. Y may be predefined in the wireless communication system 10 or may be reported by the UE Capability.
  • the field specifying the NW state pattern index may contain a number of bits of max ⁇ log 2 (maxNWstateIndex+1),1 ⁇ . That is, the UE 200 may assume the number of bits of max ⁇ log 2 (maxNWstateIndex+1),1 ⁇ as the field that specifies the NW state pattern index.
  • maxNWstateIndex is the maximum value that the NW state pattern index can take, and may be predefined in the wireless communication system 10, or may be set by upper layer parameters.
  • the UE 200 may transmit to the gNB 100 an indication indicating whether or not it has successfully received the DCI (specific DCI) that specifies the NW state pattern (NW state pattern index).
  • the resource used for transmitting the indication may be a resource selected from PUCCH, PUSCH, and PRACH.
  • Two or more options selected from Option 1 to Option 3 may be combined.
  • the NW state may include a Flexible NW state that can be changed by the NW state dynamically specified by the DCI.
  • the NW state may include Flexible NW state in addition to Active state, Non-active state, DL non-active state, and UL non-active state.
  • the NW state that is dynamically specified by the DCI to change the Flexible NW state may be referred to as a dynamic NW state.
  • the state that can be taken as the dynamic NW state may be one or more states selected from Active state, Non-active state, DL non-active state, and UL non-active state.
  • the UE 200 may receive an upper layer parameter that semi-statically sets the NW state pattern.
  • the Flexible NW state may be included in a NW state pattern that is semi-statically set by upper layer parameters.
  • a quasi-statically configured NW state pattern (Configured NW state pattern in FIG. 12) may include Flexible NW states in slots #4 to #5.
  • the Flexible NW state may be associated with the NW state index, similar to Active state, Non-active state, DL non-active state, UL non-active state, and the like.
  • the UE 200 assumes that the slot corresponding to the Flexible NW state is the dedicated NW state. In other words, if a NW state pattern that includes a Flexible NW state is set but the UE200 does not receive a DCI specifying a dynamic NW state, the UE200 assumes that the slot corresponding to the Flexible NW state is a dedicated NW state.
  • the dedicated NW state may be a predetermined state in the wireless communication system 10, or may be a state set by upper layer parameters.
  • the state that can be taken as the dedicated NW state may be one or more states selected from Active state, Non-active state, DL non-active state, and UL non-active state.
  • the UE 200 assumes that the slot corresponding to the Flexible NW state is the dynamic NW state. In other words, if the NW state pattern including Flexible NW state is set and the UE 200 receives a DCI specifying dynamic NW state, the UE 200 overwrites the Flexible NW state with the dynamic NW state.
  • the DCI shown below can be considered as a DCI that specifies the dynamic NW state (hereinafter referred to as a specific DCI).
  • the format of the specific DCI may be a DCI (UE-specific DCI format) specific to the UE 200, or a DCI (Group common DCI format) common to one or more UEs.
  • the specific DCI format may be any DCI format selected from the existing DCI formats (e.g. DCI format 1_1/1_2/2_0) or a newly defined DCI (e.g. DCI format 1_1/1_2/2_0). , DCI format 2_x).
  • the RNTI used for scrambling the CRC of a specific DCI is one of the RNTIs selected from existing RNTIs (e.g., C (Cell)-RNTI, SFI (Slot Format Indication)-RNTI). It may be a newly defined RNTI.
  • Two or more options selected from Option 1 to Option 3 may be combined.
  • dynamic NW state may be specified by DCI format 2_0 (specific DCI) with CRC scrambled by SFI-RNTI.
  • DCI format 2_0 specific DCI
  • DCI format 1_1 specific DCI
  • dynamic NW state may include a field specifying dynamic NW state.
  • the specific DCI includes a field that specifies a dynamic NW state that is applied to all slots that correspond to the Flexible NW state. For example, if the UE200 receives a specific DCI specifying NW state #1 (i.e., Non-activated state) as the dynamic NW state, it assumes that all slots corresponding to the Flexible NW state are NW state #1. do.
  • NW state #1 i.e., Non-activated state
  • one or more NW state patterns may be predefined in the wireless communication system 10 or may be set by upper layer parameters.
  • Each NW state pattern may be represented by an NW state set for each slot for X slots corresponding to the Flexible NW state.
  • the NW state pattern may be set periodically for all slots.
  • X may be predefined in the wireless communication system 10, may be set by upper layer parameters, or may be determined (automatically) by the NW state pattern set by upper layer parameters.
  • An NW state pattern of 1 or more applies to each option (option 1-1, option 1-2, option 2-1, option 2) explained in operation example 1, except that the slot corresponding to Flexible NW state is the target. It may be set using a method similar to -2).
  • the specific DCI may include a new field specifying any one NW state pattern selected from one or more NW state patterns.
  • the operation of the UE 200 to receive the specific DCI may include the following options.
  • the specific DCI may refer to a specific slot number between the slot to which the dynamic NW state is applied and the reference slot. That is, the UE 200 may assume that the Flexible NWstate is the dynamic NWstate after the specific slot from the reference slot.
  • the specific number of slots may be included in a field that specifies dynamic NW state.
  • the specific number of slots may be specified for each DL BWP or for each UL BWP.
  • the number of specific slots may be equal to or greater than the slot period for monitoring the PDCCH related to the specific DCI.
  • the reference slot may be the slot where the specific DCI was detected, or the slot + Y slot where the specific DCI was detected. Y may be predefined in the wireless communication system 10 or may be reported by the UE Capability.
  • the field specifying dynamic NW state may contain a number of bits of max ⁇ log 2 (maxNWstateIndex+1),1 ⁇ .
  • maxNWstateIndex is the maximum value that the NW state index corresponding to the dynamic NW state can take, and may be predefined in the wireless communication system 10 or may be set by upper layer parameters. That is, the UE 200 may assume the number of bits of max ⁇ log 2 (maxNWstateIndex+1),1 ⁇ as the field that specifies the dynamic NW state.
  • the UE 200 may transmit to the gNB 100 an indication indicating whether or not it has successfully received the DCI (specific DCI) specifying the dynamic NW state.
  • the resource used for transmitting the indication may be a resource selected from PUCCH, PUSCH, and PRACH.
  • Two or more options selected from Option 1 to Option 3 may be combined.
  • a new concept of NW state is defined by at least one of whether or not the gNB100 receives a UL signal and whether or not the gNB100 transmits a DL signal. By doing so, it is possible to realize a mechanism for appropriately reducing the power consumption of the network (in particular, the gNB 100).
  • the NW state may include one or more states selected from Non-active state, DL non-active state, and UL non-active state.
  • the non-active state the power consumption of the gNB 100 associated with both UL reception and DL transmission can be reduced.
  • the power consumption of the gNB 100 associated with DL transmission can be reduced.
  • the power consumption of the gNB 100 associated with UL reception can be reduced.
  • NW state may be set semi-statically. According to such a configuration, it is possible to reduce the power consumption of the gNB 100 while reducing the signaling load on the physical layer.
  • NW state may be set dynamically. According to such a configuration, the power consumption of the gNB 100 can be quickly reduced depending on the situation. Note that when the DCI specifies an NW state pattern set by upper layer parameters or a predefined NW state pattern, the signaling load on the physical layer can be reduced.
  • the NW state includes a Flexible NW state that is modifiable by the DCI. According to such a configuration, the power consumption of the gNB 100 can be flexibly reduced depending on the situation.
  • the slot was exemplified as the time unit for defining the NW state.
  • the time unit that defines the NW state may be one or more symbols.
  • slot may be replaced with one or more symbols.
  • the following UE Capability may be defined.
  • the UE Capability shown below may be reported from the UE 200 to the gNB 100.
  • the UE Capability may include an information element including whether the UE 200 supports the statically configured NW state (operation example 1).
  • UE Capability may include an information element including whether the UE 200 supports the dynamically configured NW state (operation example 2).
  • UE Capability may include an information element including whether or not the UE 200 supports a combination of a statically configured NW state and a dynamically configured NW state (operation example 3).
  • the UE Capability may include an information element including whether the UE 200 supports the Flexible NW state (operation example 3) included in the NW state.
  • UE Capability may include an information element including whether the UE 200 supports any of the options and alts of each operation example.
  • the specification related to operation example 2 may be referred to as a first specific DCI, and the DCI according to operation example 3 may be referred to as a second DCI.
  • configure, activate, update, indicate, enable, specify, and select may be used interchangeably.
  • link, associate, correspond, and map may be used interchangeably; allocate, assign, and monitor.
  • map may also be read interchangeably.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of hardware elements.
  • each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of data reading and writing in the storage 1002 and the storage 1003.
  • predetermined software programs
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called auxiliary storage.
  • the above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor 1001 may be implemented using at least one of these hardwares.
  • information notification is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • information notification can be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as RRC messages, such as RRC Connection Setup ) message, RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5th generation mobile communication system 5G
  • 6th generation mobile communication system 6th generation mobile communication system
  • xth generation mobile communication system x is an integer or decimal, for example
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM® CDMA2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), other appropriate systems, and next-generation systems expanded based on these.
  • a combination of multiple systems for example, a combination of at least one of LTE and LTE-A with 5G
  • a combination of at least one of LTE and LTE-A with 5G may be applied.
  • the specific operations performed by the base station in this disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: S-GW, etc.).
  • MME Mobility Management Entity
  • S-GW Serving GW
  • Information, signals can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output can be overwritten, updated, or added. The output information may be deleted. The input information may be sent to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, cell, frequency carrier, etc.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (Remote Radio Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Communication services
  • cell refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be composed of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • TTI is not limited to this.
  • the TTI may be a unit of transmission time such as a channel-coded data packet (transport block), a code block, or a codeword, or may be a unit of processing such as scheduling or link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI e.g., normal TTI, subframe, etc.
  • short TTI e.g., shortened TTI, etc.
  • TTI with a time length of less than the long TTI and 1ms. It may also be read as a TTI having a TTI length of the above length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the new merology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs can be classified into physical resource blocks (Physical RBs: PRBs), sub-carrier groups (SCGs), resource element groups (Resource Element Groups: REGs), PRB pairs, RB pairs, etc. May be called.
  • Physical RBs Physical RBs: PRBs
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be composed of one or more resource elements (RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of contiguous common resource blocks for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured within one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with “BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • FIG. 14 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, Equipped with various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also referred to as a steering wheel
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2028 include current signals from current sensor 2021 that senses motor current, front and rear wheel rotation speed signals obtained by rotation speed sensor 2022, and front wheel rotation speed signals obtained by air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal acquired by vehicle speed sensor 2024, acceleration signal acquired by acceleration sensor 2025, accelerator pedal depression amount signal acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
  • the Information Services Department 2012 provides various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g. GNSS, etc.), map information (e.g. high definition (HD) maps, autonomous vehicle (AV) maps, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. It consists of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • GPS Light Detection and Ranging
  • map information e.g. high definition (HD) maps, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g., IMU (Inertial Measurement Unit), INS (Iner
  • the communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port.
  • the communication module 2013 communicates via the communication port 2033 with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001.
  • Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • Communication module 2013 may be located either inside or outside electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor, which are input to the electronic control unit 2010.
  • the shift lever operation signal acquired by the sensor 2027, the detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may be controlled.
  • various information traffic information, signal information, inter-vehicle information, etc.
  • the first feature is a communication unit that performs communication with a base station, and at least one of whether the base station receives an uplink signal and whether the base station transmits a downlink signal.
  • a control unit that assumes communication to be performed with the base station according to a network state defined by, The network state is defined as a minimum unit of time, and is semi-statically set for the terminal.
  • a second feature is that in the first feature, the communication unit is a terminal that periodically receives parameters for setting the pattern of the network state.
  • a third feature is that in the first feature or the second feature, the communication unit is a terminal that receives parameters that directly set the network state using one unit time as a setting unit.
  • a fourth feature is that in the first feature or the second feature, the communication unit is a terminal that receives parameters for directly setting the network state using a group including one or more unit times as a setting unit. be.
  • the base station includes a communication unit that performs communication with a terminal, and a communication unit that determines whether or not the base station receives an uplink signal and whether or not the base station transmits a downlink signal.
  • a control unit that assumes communication to be performed with the terminal according to a network state defined by at least one of the above, wherein the network state is defined as a minimum unit of time and is set quasi-statically. It is a base station.
  • a sixth feature is that the terminal includes a terminal and a base station, and the terminal includes a communication unit that performs communication with the base station, and determines whether or not the base station receives an uplink signal, and whether or not the base station receives a downlink signal.
  • a control unit that assumes communication to be performed with the base station in accordance with a network state defined by at least one of whether to transmit or not, and the network state is determined based on a unit time as a minimum unit.
  • a wireless communication system that is defined and semi-statically configured.
  • a seventh feature includes the step of communicating with a base station, and at least one of whether the base station receives an uplink signal and whether the base station transmits a downlink signal. assuming communication to be performed with the base station depending on defined network conditions;
  • the network state is a wireless communication method in which a unit time is defined as a minimum unit and is set quasi-statically.
  • Wireless communication system 20 NG-RAN 100 gNB 110 Receiving unit 120 Transmitting unit 130 Control unit 200 UE 210 Wireless signal transmission/reception unit 220 Amplifier unit 230 Modulation/demodulation unit 240 Control signal/reference signal processing unit 250 Encoding/decoding unit 260 Data transmission/reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service department 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed Sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、基地局と通信を実行する通信部と、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定する制御部と、を備え、前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される。

Description

端末、基地局、無線通信システム及び無線通信方法
 本開示は、ネットワークの消費電力の削減を適切に実現し得る仕組みに対応する端末、基地局、無線通信システム及び無線通信方法に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 さらに、3GPPでは、ネットワーク(基地局)の電力消費を削減する検討が進められている(例えば、非特許文献1)。
" New SI: Study on network energy savings for NR", RP-213554, 3GPP TSG RAN Meeting #94e, 3GPP, 2021年12月
 ところで、ネットワークの消費電力の削減について検討を進めることが決定されているが、ネットワークの消費電力の削減の詳細については決定していない。
 そこで、本発明は、上述した課題を解決するためになされたものであり、ネットワークの消費電力の削減を適切に実現し得る仕組みに対応する端末、基地局、無線通信システム及び無線通信方法の提供を目的とする。
 開示の一態様は、基地局と通信を実行する通信部と、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定する制御部と、を備え、前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、端末である。
 開示の一態様は、基地局であって、端末と通信を実行する通信部と、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記端末と実行する通信を想定する制御部と、を備え、前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、基地局である。
 開示の一態様は、端末及び基地局を備え、前記端末は、前記基地局と通信を実行する通信部と、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定する制御部と、を備え、前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、無線通信システムである。
 開示の一態様は、基地局と通信を実行するステップと、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定するステップと、を備え、前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、無線通信方法である。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、UE200の機能ブロック構成図である。 図5は、gNB100の機能ブロック構成図である。 図6は、動作例1を説明するための図である。 図7は、動作例1を説明するための図である。 図8は、動作例1を説明するための図である。 図9は、動作例1を説明するための図である。 図10は、動作例1を説明するための図である。 図11は、動作例2を説明するための図である。 図12は、動作例3を説明するための図である。 図13は、gNB100及びUE200のハードウェア構成の一例を示す図である。 図14は、車両2001の構成例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE(User Equipment)200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、基地局100(以下、gNB100)を含む。なお、gNB100及びUE200の数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 gNB100は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。
 高周波数帯では位相雑音の影響が大きくなる問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28シンボル、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth Part)などと呼ばれてもよい。
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
 第1に、UE200の機能ブロック構成について説明する。
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 実施形態では、無線信号送受信部210は、基地局(gNB100)と通信を実行する通信部を構成してもよい。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Assignment)、TDRA(Time Domain Resource Assignment)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、gNB100が上りリンク信号(以下、UL信号)を受信するか否か及びgNB100が下りリンク信号(以下、DL信号)を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態(以下、NW state)を想定して、gNB100と実行する通信を想定する制御部を構成する。
 ここで、NW stateは、単位時間を最小単位として定義される。以下においては、単位時間がslotであるケースについて例示する。具体的には、NW stateは、gNB100がUL信号の受信及びDL信号の送信の双方を想定する状態(以下、Active state)を含む。NW stateは、Active stateに加えて、以下に示す状態を少なくとも含んでもよい。NW stateは、gNB100がUL信号の受信及びDL信号の送信の双方を想定しない状態(以下、Non-active state)を含んでもよい。Non-active stateは、Sleep stateと称されてもよい。NW stateは、gNB100がUL信号の受信を想定するがDL信号の送信を想定しない状態(以下、DL non-active state)を含んでもよい。DL non-active stateは、UL active stateと称されてもよい。NW stateは、gNB100がUL信号の受信を想定しないがDL信号の送信を想定する状態(以下、UL non-active state)を含んでもよい。UL non-active stateは、DL active stateと称されてもよい。
 ここで、制御部270は、Active stateにおいて、UL信号の送信及びDL信号の受信の双方を想定する。制御部270は、Non-active stateにおいて、UL信号の送信及びDL信号の受信の双方を想定しない。制御部270は、DL non-active stateにおいて、UL信号の送信を想定するが、DL信号の受信を想定しない。制御部270は、UL non-active stateにおいて、UL信号の送信を想定しないが、DL信号の受信を想定する。
 NW stateは、インデックス(以下、NW state index)と対応付けられてもよい。例えば、Active stateは、NW state #0と対応付けられてもよい。Non-active stateは、NW state #1と対応付けられてもよい。DL non-active stateは、NW state #2と対応付けられてもよい。UL non-active stateは、NW state #3と対応付けられてもよい。
 第1に、NW stateは、準静的に設定されてもよい。言い換えると、NW stateは、上位レイヤパラメータによって準静的に設定されてもよい。NW state indexは、上位レイヤで用いられてもよい。このような動作の詳細については後述する(動作例1を参照)。
 第2に、NW stateは、動的に指定されてもよい。言い換えると、NW stateは、物理レイヤ(例えば、DCIに含まれるフィールド)によって動的に指定されてもよい。NW state indexは、物理レイヤで用いられてもよい。このような動作の詳細については後述する(動作例2を参照)。
 第3に、NW stateは、下りリンク制御情報(DCI)によって動的に指定されるNW stateによって変更可能な特定状態(以下、Flexible NW state)を含んでもよい。このような動作の詳細については後述する(動作例3を参照)。
 第2に、gNB100の機能ブロック構成について説明する。
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHを介してUL信号を受信してもよい。
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHを介してDL信号を送信してもよい。
 実施形態では、受信部110及び送信部120は、端末(UE200)と通信を実行する通信部を構成する。
 制御部130は、gNB100を制御する。実施形態では、制御部130は、gNB100がUL信号を受信するか否か及びgNB100がDL信号を送信するか否かの少なくともいずれか1つによって定義されるNW stateを想定して、UE200と実行する通信を想定する。
 上述したように、制御部130は、Active stateにおいて、UL信号の受信及びDL信号の送信の双方を想定する。制御部130は、Non-active stateにおいて、UL信号の受信及びDL信号の送信の双方を想定しない。制御部130は、DL non-active stateにおいて、UL信号の受信を想定するが、DL信号の送信を想定しない。制御部130は、UL non-active stateにおいて、UL信号の受信を想定しないが、DL信号の送信を想定する。
 (3)課題
 3GPPでは、持続可能な環境への配慮から、ネットワークのエネルギー削減が重要であると認識されている。特に、gNB100の消費電力の削減について検討すべきであることが決定されている。しかしながら、gNB100の消費電力の削減を具体的に実現する仕組みについては決定に至っていない。
 このような背景下において、実施形態では、NW stateという概念を新たに導入することによって、ネットワーク(特に、gNB100)の消費電力の削減を適切に実行する仕組みについて説明する。
 (4)動作例
 次に、実施形態の動作例について説明する。以下においては、NW stateがActive state、Non-active state及びDL non-active stateを含むケースについて例示する。但し、NW stateは、Active stateに加えて、Non-active state、DL non-active state及びUL non-active stateの中から選択された1以上の状態を含んでもよい。従って、NW stateは、UL non-active stateを含んでもよい。
 (4.1)動作例1
 動作例1では、NW stateは、準静的に設定されてもよい。言い換えると、NW stateは、上位レイヤパラメータによって準静的に設定されてもよい。NW state indexは、上位レイヤで用いられてもよい。動作例1のオプションとしては、以下に示すオプションが考えられる。
 オプション1では、UE200は、NW stateのパターン(以下、NW state pattern)を周期的に設定するパラメータを受信してもよい。以下において、パラメータを上位レイヤパラメータでと称する。上位レイヤパラメータは、RRCパラメータと称されてもよく、RRC configurationと読み替えられてもよい。
 オプション1-1では、NW state patternは、X slotsについて、slot毎に設定されるNW stateによって表されてもよい。NW state patternは、全てのslotsに対して周期的に設定されてもよい。Xは、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよく、上位レイヤパラメータによって設定されるNW state patternによって(自動的に)決定されてもよい。
 NW state patternは、slot毎のNW stateを特定するbitmapで表現されてもよい。言い換えると、bitmapは、slot毎のNW state indexを含む。bitmapは、上位レイヤパラメータに含まれる。
 例えば、Xが5slotsであり、bitmapの値が{0,0,0,1,1}であるケースについて例示する。このようなケースでは、図6に示すように、slot #0 - #2についてNW state index #0(すなわち、Active state)が適用され、slot #3 - #4についてNW state index #1(すなわち、Non-active state)が適用される。NW state patternは周期的に適用されるため、slot #5 - #7についてNW state index #0(すなわち、Active state)が適用され、slot #8 - #9についてNW state index #1(すなわち、Non-active state)が適用される。NW state patternは、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsの終わりまで繰り返し適用される。
 オプション1-2では、NW state patternは、X slotsについて、各NW stateに対応するslotの数によって表されてもよい。Xは、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよく、上位レイヤパラメータによって設定されるNW state patternによって(自動的に)決定されてもよい。
 各NW stateに対応するslotの数は、NW state毎に別々の上位レイヤパラメータによって設定される。例えば、NW state index #0(すなわち、Active state)に対応するslotの数は、nrofState0Slotsによって設定されてもよく、NW state index #1(すなわち、Non-active state)に対応するslotの数は、nrofState1Slotsによって設定されてもよい。NW state毎に別々の上位レイヤパラメータ(例えば、nrofState0Slots、nrofState1Slotsなど)の値は、0からXの範囲内の整数であってもよい。
 X slots内における各NW stateの順序は、NW state indexに基づいて定められてもよい。例えば、各NW stateの順序は、NW state indexの昇順で定められてもよく、NW state indexの降順で定められてもよい。或いは、各NW stateの順序は、”NW state index #0 -> NW state index #2 -> NW state index #1”などのように、上位レイヤパラメータによって設定されてもよい。
 例えば、Xが5slotsであり、各NW stateの順序がNW state indexの昇順で定められ、nrofState0Slotsが3であり、nrofState1Slotsが2であるケースについて例示する。このようなケースでは、図7に示すように、slot #0 - #2についてNW state index #0(すなわち、Active state)が適用され、slot #3 - #4についてNW state index #1(すなわち、Non-active state)が適用される。NW state patternは周期的に適用されるため、slot #5 - #7についてNW state index #0(すなわち、Active state)が適用され、slot #8 - #9についてNW state index #1(すなわち、Non-active state)が適用される。NW state patternは、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsの終わりまで繰り返し適用される。
 オプション2では、UE200は、slotの各々のNW stateを直接的に設定する上位レイヤパラメータを受信してもよい。slotの各々のNW stateは、NW state patternであると考えてもよい。
 オプション2-1では、NW stateは、1つのslotを設定単位にとして設定されてもよい。NW stateを設定する上位レイヤパラメータは、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsに相当する数の値(NW state index)を含んでもよい。NW stateを設定する上位レイヤパラメータは、slot毎のNW stateを特定するbitmapで表現されてもよい。
 例えば、bitmapの値が{0, 0, 0, 0, 0, 1, 2, 2, 0, 0, …}であるケースについて例示する。このようなケースでは、図8に示すように、slot #0 - #4についてNW state index #0(すなわち、Active state)が適用され、slot #5についてNW state index #1(すなわち、Non-active state)が適用され、slot #6 - #7についてNW state index #2(すなわち、DL non-active state)が適用され、slot #8 - #9についてNW state index #0(すなわち、Active state)が適用される。図8では省略しているが、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsの終わりまで、bitmapに含まれるNW state indexが各slotに適用される。
 オプション2-2では、NW stateは、1以上のslotを含むグループを設定単位にとして設定されてもよい。グループの設定方法としては、以下に示すAltが考えられる。
 Alt.1では、グループを構成するslotの数は固定的に定義されてもよい。例えば、グループに含まれるslotの数はXで表されてもよい。NW stateを設定する上位レイヤパラメータは、グループ毎のNW stateを特定するbitmapで表現されてもよい。各グループを構成するslotには、同一のNW stateが適用される。Xは、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよい。
 例えば、Xが2slotsであり、bitmapが{0, 1, 1, 2, 0, …}であるケースについて例示する。このようなケースでは、図9に示すように、slot #0 - #1についてNW state index #0(すなわち、Active state)が適用され、slot #2 - #3についてNW state index #1(すなわち、Non-active state)が適用され、slot #4 - #5についてNW state index #1(すなわち、Non-active state)が適用され、slot #6 - #7についてNW state index #2(すなわち、DL non-active state)が適用され、slot #8 - #9についてNW state index #0(すなわち、Active state)が適用される。図9では省略しているが、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsの終わりまで、bitmapに含まれるNW state indexが各グループを構成するslotに適用される。
 Alt.2では、グループを構成するslotの数は、NW state(NW state index)毎に定義されてもよい。すなわち、各NW state indexに対応するグループを構成するslotの数は別々に定義される。各NW stateに対応するグループを構成するslotの数は、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよい。NW stateを設定する上位レイヤパラメータは、グループ毎のNW stateを特定するbitmapで表現されてもよい。
 例えば、NW state index #0に対応するグループを構成するslotの数が2であり、NW state index #1に対応するグループを構成するslotの数が1であり、NW state index #2に対応するグループを構成するslotの数が2であり、bitmapが{0, 1, 1, 2, 2, 0, …}であるケースについて例示する。このようなケースでは、図10に示すように、slot #0 - #1についてNW state index #0(すなわち、Active state)が適用され、slot #2についてNW state index #1(すなわち、Non-active state)が適用され、slot #3についてNW state index #1(すなわち、Non-active state)が適用され、slot #4 - #5についてNW state index #2(すなわち、DL non-active state)が適用され、slot #6 - #7についてNW state index #2(すなわち、DL non-active state)が適用され、slot #8 - #9についてNW state index #0(すなわち、Active state)が適用される。図10では省略しているが、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsの終わりまで、bitmapに含まれるNW state indexが各グループを構成するslotに適用される。
 上述したように、Alt.2では、bitmapに含まれるNW state indexが適用されるslot数は、NW state毎に設定することが可能である。
 (4.2)動作例2
 動作例2では、NW stateは、動的に指定されてもよい。言い換えると、NW stateは、物理レイヤ(例えば、DCIに含まれるフィールド)によって動的に指定されてもよい。具体的には、各slotに適用するNW state patternはDCIによって指定されてもよい。NW state patternは、インデックス(以下、NW state pattern index)と対応付けられてもよい。動作例2のオプションとしては、以下に示すオプションが考えられる。
 オプション1では、UE200は、1以上のNW state patternを設定する上位レイヤパラメータを受信してもよい。UE200は、上位レイヤパラメータによって設定される1以上のNW state patternの中からいずれか1つのパターンを指定するDCIを受信してもよい。
 例えば、上位レイヤパラメータによって設定されるNW state patternは、Flexible NW stateに対応するX slotsについて、slot毎に設定されるNW stateによって表されてもよい。NW state patternは、全てのslotsに対して周期的に設定されてもよい。Xは、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよく、上位レイヤパラメータによって設定されるNW state patternによって(自動的に)決定されてもよい。
 なお、オプション1において、動作例1で説明した各オプション(オプション1-1、オプション1-2、オプション2-1、オプション2-2)と同様の手法でNW state patternが設定されてもよい。
 オプション2では、1以上のNW state patternは、無線通信システム10で予め定義されてもよい。UE200は、予め定義された1以上のNW state patternの中からいずれか1つのパターンを指定するDCIを受信してもよい。
 例えば、予め定義されたNW state patternは、Flexible NW stateに対応するX slotsについて、slot毎に設定されるNW stateによって表されてもよい。NW state patternは、全てのslotsに対して周期的に設定されてもよい。Xは、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよく、上位レイヤパラメータによって設定されるNW state patternによって(自動的に)決定されてもよい。
 例えば、NW state pattern index #0に対応するNW state patternが{0, 0, 0, 0, 0, 0, 0, 0, 1, 1}であり、NW state pattern index #1に対応するNW state patternが{0, 0, 0, 1, 1, 0, 0, 0, 1, 1}であるケースについて例示する。なお、これらのNW state patternは、上位レイヤパラメータによって設定されるパターンであってもよく、無線通信システム10で予め定義されるパターンであってもよい。このようなケースにおいて、DCIがNW state pattern index #0を指定する場合には、図11に示すように、slot #0 - #7についてNW state index #0(すなわち、Active state)が適用され、slot #8 - #9についてNW state index #1(すなわち、Non-active state)が適用される。なお、NW state patternは、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsの終わりまで繰り返し適用される。一方で、DCIがNW state pattern index #1を指定する場合には、図11に示すように、slot #0 - #2についてNW state index #0(すなわち、Active state)が適用され、slot #3 - #4についてNW state index #1(すなわち、Non-active state)が適用され、slot #5 - #7についてNW state index #0(すなわち、Active state)が適用され、slot #8 - #9についてNW state index #1(すなわち、Non-active state)が適用される。なお、NW state patternは、上位レイヤパラメータ(maxNrofSlots)によって設定されるslotsの終わりまで繰り返し適用される。
 第1に、NW state pattern(NW state pattern index)を指定するDCI(以下、特定DCI)としては、以下に示すDCIが考えられる。
 オプション1では、特定DCIのformatは、UE200に固有のDCI(UE-specific DCI format)であってもよく、1以上のUEに共通のDCI(Group common DCI format)であってもよい。
 オプション2では、特定DCIのformatは、既存のDCI format(例えば、DCI format 1_1/1_2/2_0)の中から選択されたいずれかのDCI formatであってもよく、新たに定義されるDCI(例えば、DCI format 2_x)であってもよい。
 オプション3では、特定DCIのCRCのスクランブリングに用いるRNTIは、既存のRNTI(例えば、C(Cell)-RNTI、SFI(Slot Format Indication)-RNTI)の中から選択されたいずれかのRNTIであってもよく、新たに定義されるRNTIであってもよい。
 オプション1~オプション3の中から選択された2以上のオプションが組み合わされてもよい。
 例えば、NW state patternは、SFI-RNTIによってスクランブリングされたCRCを有するDCI format 2_0(特定DCI)によって指定されてもよい。NW state patternが新たな上位レイヤパラメータによって設定された場合に、このような特定DCIがNW state patternの指定に用いられてもよい。或いは、NW state patternは、新たなRNTIによってスクランブリングされたCRCを有するDCI format 1_1(特定DCI)によって指定されてもよい。NW state patternが新たな上位レイヤパラメータによって設定された場合に、このような特定DCIがNW state patternを指定するフィールドを含んでもよい。
 第2に、特定DCIを受信するUE200の動作は、以下に示すオプションを含んでもよい。
 オプション1では、特定DCIは、NW state patternを適用するslotと基準slotとの間の特定slot数を指してもよい。すなわち、UE200は、基準slotから特定slot後において、NW state patternが適用されると想定してもよい。特定slot数は、NW state pattern indexを指定するフィールドに含まれてもよい。特定slot数は、DL BWP毎に指定されてもよく、UL BWP毎に指定されてもよい。特定slot数は、特定DCIに関するPDCCHを監視するslot周期以上であってもよい。基準slotは、特定DCIを検出したslotであってもよく、特定DCIを検出したslot + Y slotであってもよい。Yは、無線通信システム10で予め定義されてもよく、UE Capabilityによって報告されてもよい。
 オプション2では、NW state pattern indexを指定するフィールドは、max{log2(maxNWstateIndex+1),1}のビット数を含んでもよい。すなわち、UE200は、NW state pattern indexを指定するフィールドとして、max{log2(maxNWstateIndex+1),1}のビット数を想定してもよい。maxNWstateIndexは、NW state pattern indexが取り得る最大値であり、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよい。
 オプション3では、UE200は、NW state pattern(NW state pattern index)を指定するDCI(特定DCI)の受信に成功したか否かを通知するインディケーションをgNB100に送信してもよい。インディケーションの送信に用いるリソースは、PUCCH、PUSCH及びPRACHの中から選択されたリソースであってもよい。
 オプション1~オプション3の中から選択された2以上のオプションが組み合わされてもよい。
 (4.3)動作例3
 動作例3では、NW stateは、DCIによって動的に指定されるNW stateによって変更可能なFlexible NW stateを含んでもよい。例えば、NW stateは、Active state、Non-active state、DL non-active state及びUL non-active stateに加えて、Flexible NW stateを含んでもよい。Flexible NW stateを変更するためにDCIによって動的に指定されるNW stateについては、dynamic NW stateと称してもよい。dynamic NW stateとして取り得る状態は、Active state、Non-active state、DL non-active state及びUL non-active stateの中から選択された1以上の状態であってもよい。
 ここで、UE200は、動作例1と同様に、NW state patternを準静的に設定する上位レイヤパラメータを受信してもよい。このようなケースにおいて、Flexible NW stateは、上位レイヤパラメータによって準静的に設定されるNW state patternに含まれてもよい。例えば、図12に示すように、準静的に設定されるNW state pattern(図12では、Configured NW state pattern)は、slot #4 - #5においてFlexible NW stateを含んでもよい。なお、Flexible NW stateは、Active state、Non-active state、DL non-active state及びUL non-active stateなどと同様に、NW state indexと対応付けられてもよい。
 UE200は、DCIによって動的に指定されるdynamic NW stateによってFlexible NW stateが変更されない場合に、Flexible NW stateに対応するslotがdedicated NW stateであると想定する。言い換えると、UE200は、Flexible NW stateを含むNW state patternが設定されたが、dynamic NW stateを指定するDCIを受信しない場合には、Flexible NW stateに対応するslotがdedicated NW stateであると想定する。dedicated NW stateは、無線通信システム10で予め定められた状態であってもよく、上位レイヤパラメータによって設定された状態であってもよい。dedicated NW stateとして取り得る状態は、Active state、Non-active state、DL non-active state及びUL non-active stateの中から選択された1以上の状態であってもよい。
 一方で、UE200は、DCIによって動的に指定されるdynamic NW stateによってFlexible NW stateが変更される場合に、Flexible NW stateに対応するslotがdynamic NW stateであると想定する。言い換えると、UE200は、Flexible NW stateを含むNW state patternが設定され、かつ、dynamic NW stateを指定するDCIを受信した場合には、Flexible NW stateをdynamic NW stateで上書きする。
 第1に、dynamic NW stateを指定するDCI(以下、特定DCI)としては、以下に示すDCIが考えられる。
 オプション1では、特定DCIのformatは、UE200に固有のDCI(UE-specific DCI format)であってもよく、1以上のUEに共通のDCI(Group common DCI format)であってもよい。
 オプション2では、特定DCIのformatは、既存のDCI format(例えば、DCI format 1_1/1_2/2_0)の中から選択されたいずれかのDCI formatであってもよく、新たに定義されるDCI(例えば、DCI format 2_x)であってもよい。
 オプション3では、特定DCIのCRCのスクランブリングに用いるRNTIは、既存のRNTI(例えば、C(Cell)-RNTI、SFI(Slot Format Indication)-RNTI)の中から選択されたいずれかのRNTIであってもよく、新たに定義されるRNTIであってもよい。
 オプション1~オプション3の中から選択された2以上のオプションが組み合わされてもよい。
 例えば、dynamic NW stateは、SFI-RNTIによってスクランブリングされたCRCを有するDCI format 2_0(特定DCI)によって指定されてもよい。dynamic NW stateが新たな上位レイヤパラメータによって設定された場合に、このような特定DCIがdynamic NW stateの指定に用いられてもよい。或いは、dynamic NW stateは、新たなRNTIによってスクランブリングされたCRCを有するDCI format 1_1(特定DCI)によって指定されてもよい。dynamic NW stateが新たな上位レイヤパラメータによって設定された場合に、このような特定DCIがdynamic NW stateを指定するフィールドを含んでもよい。
 第2に、特定DCIの内容としては、以下に示すオプションが考えられる。
 オプション1では、特定DCIは、Flexible NW stateに対応する全てのslotに適用されるdynamic NW stateを指定するフィールドを含む。例えば、UE200は、dynamic NW stateとしてNW state #1(すなわち、Non-activated state)を指定する特定DCIを受信した場合に、Flexible NW stateに対応する全てのslotがNW state #1であると想定する。
 オプション2では、1以上のNW state patternが、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよい。各NW state patternは、Flexible NW stateに対応するX slotsについて、slot毎に設定されるNW stateによって表されてもよい。NW state patternは、全てのslotsに対して周期的に設定されてもよい。Xは、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよく、上位レイヤパラメータによって設定されるNW state patternによって(自動的に)決定されてもよい。
 1以上のNW state patternは、Flexible NW stateに対応するslotが対象である点を除いて、動作例1で説明した各オプション(オプション1-1、オプション1-2、オプション2-1、オプション2-2)に類似する手法で設定されてもよい。
 オプション2において、特定DCIは、1以上のNW state patternの中から選択されたいずか1つのNW state patternを指定する新たなフィールドを含んでもよい。
 第3に、特定DCIを受信するUE200の動作は、以下に示すオプションを含んでもよい。
 オプション1では、特定DCIは、dynamic NW stateを適用するslotと基準slotとの間の特定slot数を指してもよい。すなわち、UE200は、基準slotから特定slot後において、Flexible NWstateがdynamic NW stateであると想定してもよい。特定slot数は、dynamic NW stateを指定するフィールドに含まれてもよい。特定slot数は、DL BWP毎に指定されてもよく、UL BWP毎に指定されてもよい。特定slot数は、特定DCIに関するPDCCHを監視するslot周期以上であってもよい。基準slotは、特定DCIを検出したslotであってもよく、特定DCIを検出したslot + Y slotであってもよい。Yは、無線通信システム10で予め定義されてもよく、UE Capabilityによって報告されてもよい。
 オプション2では、dynamic NW stateを指定するフィールドは、max{log2(maxNWstateIndex+1),1}のビット数を含んでもよい。maxNWstateIndexは、dynamic NW stateに対応するNW state indexが取り得る最大値であり、無線通信システム10で予め定義されてもよく、上位レイヤパラメータによって設定されてもよい。すなわち、UE200は、dynamic NW stateを指定するフィールドとして、max{log2(maxNWstateIndex+1),1}のビット数を想定してもよい。
 オプション3では、UE200は、dynamic NW stateを指定するDCI(特定DCI)の受信に成功したか否かを通知するインディケーションをgNB100に送信してもよい。インディケーションの送信に用いるリソースは、PUCCH、PUSCH及びPRACHの中から選択されたリソースであってもよい。
 オプション1~オプション3の中から選択された2以上のオプションが組み合わされてもよい。
 (5)作用・効果
 実施形態では、gNB100がUL信号を受信するか否か及びgNB100がDL信号を送信するか否かの少なくともいずれか1つによって定義されるNW stateという概念を新たに導入することによって、ネットワーク(特に、gNB100)の消費電力の削減を適切に実行する仕組みを実現することができる。例えば、NW stateは、Active stateに加えて、Non-active state、DL non-active state及びUL non-active stateの中から選択された1以上の状態を含んでもよい。Non-active stateでは、UL受信及びDL送信の双方に伴うgNB100の消費電力を削減することができる。DL non-active stateでは、DL送信に伴うgNB100の消費電力を削減することができる。UL non-active stateでは、UL受信に伴うgNB100の消費電力を削減することができる。
 実施形態では、NW stateは、準静的に設定されてもよい。このような構成によれば、物理レイヤにおけるシグナリング負荷を軽減しつつ、gNB100の消費電力を削減することができる。
 実施形態では、NW stateは、動的に設定されてもよい。このような構成によれば、gNB100の消費電力を状況に応じて速やかに削減することができる。なお、上位レイヤパラメータによって設定されるNW state pattern又は予め定義されるNW state patternをDCIが指定する場合には、物理レイヤにおけるシグナリング負荷を軽減することができる。
 実施形態では、NW stateは、DCIによって変更可能なFlexible NW stateを含む。このような構成によれば、gNB100の消費電力を状況に応じて柔軟に削減することができる。
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した開示では、動作例1-3及び各動作例のオプション及びAltにおいて、上位レイヤパラメータ及びDCIを用いるケースについて例示した。しかしながら、上述した開示はこれに限定されるものではない。動作例1-3及び各動作例のオプション及びAltにおいて、RRC configuration、MAC CE、DCI及びUE Capabilityの中から選択された1以上の要素が用いられてもよい。例えば、上位レイヤパラメータ(RRC configuration)によって準静的に設定されたNW state patternは、MAC CEによって活性化されてもよく、MAC CEによって非活性化されてもよい。
 上述した開示では、NW stateを定義する時間単位としてslotを例示した。しかしながら、上述した開示はこれに限定されるものではない。NW stateを定義する時間単位は、1以上のsymbolであってもよい。このようなケースにおいて、slotは、1以上のsymbolと読み替えてもよい。
 上述した開示では特に触れていないが、以下に示すUE Capabilityが定義されてもよい。以下に示すUE CapabilityがUE200からgNB100に報告されてもよい。例えば、UE Capabilityは、順静的に設定されるNW state(動作例1)をUE200がサポートするか否かを含む情報要素を含んでもよい。UE Capabilityは、動的に設定されるNW state(動作例2)をUE200がサポートするか否かを含む情報要素を含んでもよい。UE Capabilityは、順静的に設定されるNW state及び動的に設定されるNW stateの組合せ(動作例3)をUE200がサポートするか否かを含む情報要素を含んでもよい。言い換えると、UE Capabilityは、NW stateに含まれるFlexible NW state(動作例3)をUE200がサポートするか否かを含む情報要素を含んでもよい。UE Capabilityは、各動作例のオプション及びAltのいずれをUE200がサポートするか否かを含む情報要素を含んでもよい。
 上述した開示では特に触れていないが、NW state pattern indexを指定する特定DCI(動作例2)及びdynamic NW stateを指定する特定DCI(動作例3)を区別する観点から、動作例2に係る特定DCIを第1特定DCIと称し、動作例3に係るDCIを第2DCIと称してもよい。
 上述した開示において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xは、例えば整数、小数)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 図14は、車両2001の構成例を示す。図14に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 (付記)
 上述した開示は、以下のように表現されてもよい。
 第1の特徴は、基地局と通信を実行する通信部と、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定する制御部と、を備え、
 前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、端末である。
 第2の特徴は、第1の特徴において、前記通信部は、前記ネットワーク状態のパターンを周期的に設定するパラメータを受信する、端末である。
 第3の特徴は、第1の特徴又は第2の特徴において、前記通信部は、1つの単位時間を設定単位として前記ネットワーク状態を直接的に設定するパラメータを受信する、端末である。
 第4の特徴は、第1の特徴又は第2の特徴において、前記通信部は、1以上の単位時間を含むグループを設定単位として前記ネットワーク状態を直接的に設定するパラメータを受信する、端末である。
 第5の特徴は、基地局であって、端末と通信を実行する通信部と、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記端末と実行する通信を想定する制御部と、を備え、前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、基地局である。
 第6の特徴は、端末及び基地局を備え、前記端末は、前記基地局と通信を実行する通信部と、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定する制御部と、を備え、前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、無線通信システムである。
 第7の特徴は、基地局と通信を実行するステップと、前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定するステップと、を備え、
 前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、無線通信方法である。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM, RAM)
 2033 通信ポート

Claims (7)

  1.  基地局と通信を実行する通信部と、
     前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定する制御部と、を備え、
     前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、端末。
  2.  前記通信部は、前記ネットワーク状態のパターンを周期的に設定するパラメータを受信する、請求項1に記載の端末。
  3.  前記通信部は、1つの単位時間を設定単位として前記ネットワーク状態を直接的に設定するパラメータを受信する、請求項1に記載の端末。
  4.  前記通信部は、1以上の単位時間を含むグループを設定単位として前記ネットワーク状態を直接的に設定するパラメータを受信する、請求項1に記載の端末。
  5.  基地局であって、
     端末と通信を実行する通信部と、
     前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記端末と実行する通信を想定する制御部と、を備え、
     前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、基地局。
  6.  端末及び基地局を備え、
     前記端末は、
      前記基地局と通信を実行する通信部と、
      前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定する制御部と、を備え、
     前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、無線通信システム。
  7.  基地局と通信を実行するステップと、
     前記基地局が上りリンク信号を受信するか否か及び前記基地局が下りリンク信号を送信するか否かの少なくともいずれか1つによって定義されるネットワーク状態に応じて、前記基地局と実行する通信を想定するステップと、を備え、
     前記ネットワーク状態は、単位時間を最小単位として定義され、準静的に設定される、無線通信方法。
PCT/JP2022/029331 2022-07-29 2022-07-29 端末、基地局、無線通信システム及び無線通信方法 WO2024024096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029331 WO2024024096A1 (ja) 2022-07-29 2022-07-29 端末、基地局、無線通信システム及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029331 WO2024024096A1 (ja) 2022-07-29 2022-07-29 端末、基地局、無線通信システム及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2024024096A1 true WO2024024096A1 (ja) 2024-02-01

Family

ID=89705830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029331 WO2024024096A1 (ja) 2022-07-29 2022-07-29 端末、基地局、無線通信システム及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2024024096A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150319758A1 (en) * 2014-05-01 2015-11-05 Samsung Electronics Co., Ltd. Method and apparatus for controlling cell state at subframe level in wireless network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150319758A1 (en) * 2014-05-01 2015-11-05 Samsung Electronics Co., Ltd. Method and apparatus for controlling cell state at subframe level in wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (INTEL CORPORATION): "Discussion Summary for energy saving techniques of NW energy saving SI", 3GPP DRAFT; R1-2205140, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 9 May 2022 (2022-05-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191785 *

Similar Documents

Publication Publication Date Title
WO2023162085A1 (ja) 通信装置及び無線通信方法
WO2024024096A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024024100A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024024098A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2023210009A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024029078A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024034121A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2023210008A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2023067750A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024100735A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024100741A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024209646A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024100731A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024034094A1 (ja) 端末及び無線通信方法
WO2024034093A1 (ja) 端末及び無線通信方法
WO2024225093A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024069900A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024209643A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2023210006A1 (ja) 端末、無線基地局及び無線通信方法
WO2023242928A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024171397A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024166368A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024069901A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2024171440A1 (ja) 端末及び無線基地局
WO2023242929A1 (ja) 端末、基地局、無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953184

Country of ref document: EP

Kind code of ref document: A1