WO2024094126A1 - 一种确定切换上行传输的方法和装置 - Google Patents

一种确定切换上行传输的方法和装置 Download PDF

Info

Publication number
WO2024094126A1
WO2024094126A1 PCT/CN2023/129348 CN2023129348W WO2024094126A1 WO 2024094126 A1 WO2024094126 A1 WO 2024094126A1 CN 2023129348 W CN2023129348 W CN 2023129348W WO 2024094126 A1 WO2024094126 A1 WO 2024094126A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
uplink transmission
transmission
carrier
port
Prior art date
Application number
PCT/CN2023/129348
Other languages
English (en)
French (fr)
Inventor
张莉莉
戴喜增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024094126A1 publication Critical patent/WO2024094126A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and apparatus for determining switching uplink transmission.
  • the terminal device needs to switch on at least three frequency bands (for example, 700MHz-800MHz, 700MHz-900MHz, 1.8GHz-2.1GHz, 3.5GHz-4.9GHz, etc.) to ensure data transmission performance.
  • SUL supplementary UL
  • the current protocol only defines the circumstances under which the transmission state of the RF chain needs to be switched when the terminal device switches on two frequency bands.
  • how the terminal device determines whether the transmission state of the RF chain needs to be switched becomes a technical problem that needs to be solved.
  • the embodiment of the present application provides a method for determining the switching of uplink transmission, which can enable the terminal device to clearly understand the operating status and ensure the transmission performance of uplink data.
  • a method for determining switching uplink transmission is provided, which may be executed by a terminal device (eg, a user device) or by a component of the terminal device (eg, a chip or a circuit), without limitation.
  • a terminal device eg, a user device
  • a component of the terminal device eg, a chip or a circuit
  • the method includes: a terminal device determines a first port configuration, the first port configuration is used for a first uplink transmission, wherein the terminal device is capable of uplink switching on at least three frequency bands or at least three carriers; the terminal device determines a second port configuration, the second port configuration is used for a second uplink transmission, and the first uplink transmission is earlier than the second uplink transmission; according to the first port configuration and the second port configuration, the terminal device performs a first operation; wherein the terminal device performs the first operation including at least one of the following: the terminal device does not expect to perform uplink transmission within the switching time from the first uplink transmission to the second uplink transmission, or; the terminal device determines to change the transmission state when performing the second uplink transmission, or; the terminal device determines that switching is required from the first uplink transmission to the second uplink transmission, or; the terminal device determines to switch before performing the second uplink transmission, or; the terminal device determines the switching time from the first uplink transmission to the second uplink transmission, or; the terminal device determines not to
  • the first port configuration is a port configuration corresponding to the first uplink transmission.
  • the first port configuration and the first uplink transmission may correspond one to one.
  • the second uplink transmission may also be multiple, corresponding to different carriers. Accordingly, the second port configuration may be multiple.
  • the second port configuration is a port configuration corresponding to the second uplink transmission.
  • the second port configuration and the second uplink transmission may be one-to-one corresponding.
  • a plurality of first uplink transmissions in the at least one first uplink transmission corresponds to a first port configuration; similarly, a plurality of second uplink transmissions in the at least one second uplink transmission corresponds to a second port configuration.
  • these different carriers may be of the same frequency band or of different frequency bands.
  • the terminal device is capable of performing uplink switching on at least three frequency bands, which can be understood as: the terminal device supports uplink switching on at least three frequency bands by reporting capability information; or, the terminal device determines to perform uplink switching on at least three frequency bands by receiving a second RRC signaling.
  • the method includes: the terminal device determines at least one first port configuration, the at least one first port configuration is used for at least one first uplink transmission, wherein the terminal device is capable of uplink switching on at least three frequency bands or at least three carriers; the terminal device determines at least one second port configuration, the at least one second port configuration is used for at least one second uplink transmission, the first uplink transmission is earlier than the second uplink transmission; according to the first port configuration and the second port configuration, the terminal device performs a first operation; wherein the terminal device performs the first operation including at least one of the following: the terminal device does not expect to perform uplink transmission within the switching time from the first uplink transmission to the second uplink transmission, or; the terminal device determines to perform the second uplink transmission.
  • the transmission state is changed during transmission, or; the terminal device determines that switching is required from the first uplink transmission to the second uplink transmission, or; the terminal device determines to switch before performing the second uplink transmission, or; the terminal device determines the switching time from the first uplink transmission to the second uplink transmission, or; the terminal device determines not to perform uplink transmission within the switching time from the first uplink transmission to the second uplink transmission.
  • the terminal device determines at least one first port configuration can also be understood as: the terminal device receives the first information, the first information includes at least one first port configuration, and each first port configuration in the at least one first port configuration is used for the first uplink transmission of the terminal device within the first time unit. Alternatively, each first port configuration in the at least one first port configuration is used for the first uplink transmission of the terminal device within the first time unit. Alternatively, each first port configuration in the at least one first port configuration is used for the first uplink transmission of the terminal device within the first time unit. Alternatively, each first port configuration in the at least one first port configuration is used for the first uplink transmission of the terminal device.
  • the first information can be sent through downlink control information (downlink control information, DCI) in combination with radio resource control (radio resource control, RRC) signaling, or sent only through DCI signaling, or sent only through RRC signaling, without limitation.
  • DCI downlink control information
  • RRC radio resource control
  • the terminal device determines at least one second port configuration can also be understood as: the terminal device receives the second information, the second information includes at least one second port configuration, and each second port configuration in the at least one second port configuration is used for the second uplink transmission of the terminal device within the second time unit. Alternatively, each second port configuration in the at least one second port configuration is used for the second uplink transmission of the terminal device within the second time unit. Alternatively, each second port configuration in the at least one second port configuration is used for the second uplink transmission of the terminal device within the second time unit. Alternatively, each second port configuration in the at least one second port configuration is used for the second uplink transmission of the terminal device.
  • the second information can be sent through DCI combined with RRC signaling, or sent only through DCI signaling, or sent only through RRC signaling, without limitation.
  • the first uplink transmission is earlier than the second uplink transmission
  • the first uplink transmission is the uplink transmission before the second uplink transmission.
  • the first uplink transmission is the uplink transmission of the first time unit
  • the second uplink transmission is the uplink transmission of the second time unit.
  • the first time unit is earlier than the second time unit.
  • the terminal device changes the transmission state when determining to perform the second uplink transmission
  • the transmission state changes or converts when the terminal device determines to perform the second uplink transmission
  • one first port configuration may be configured with at least one first uplink transmission, or one first port configuration may be configured with two first uplink transmissions at the same time.
  • the at least one first port configuration corresponds to the at least one first uplink transmission in a one-to-one manner
  • the at least one second port configuration corresponds to the at least one second uplink transmission in a one-to-one manner.
  • the at least three frequency bands correspond one-to-one to at least three carriers, and the at least three carriers are respectively located in the at least three frequency bands.
  • the "first carrier” can be understood as a carrier of the first frequency band, or a carrier belonging to the first frequency band, or a carrier located in the first frequency band, or a carrier included in the first frequency band.
  • the "second carrier” can be understood as a carrier of the second frequency band, or a carrier belonging to the second frequency band, or a carrier located in the second frequency band, or a carrier included in the second frequency band.
  • the “third carrier” and “fourth carrier” can also be understood similarly and will not be explained one by one.
  • three frequency bands may be a first frequency band (e.g., frequency band #A), a second frequency band (e.g., frequency band #B), and a third frequency band (e.g., frequency band #C).
  • four frequency bands may be a first frequency band (e.g., frequency band #A), a second frequency band (e.g., frequency band #B), a third frequency band (e.g., frequency band #C), and a fourth frequency band (e.g., frequency band #D).
  • three carriers may be a first carrier (carrier #1), a second carrier (carrier #2), and a third carrier (carrier #3).
  • a fourth carrier may be a first carrier (carrier #1), a second carrier (carrier #2), a third carrier (carrier #3), and a fourth carrier (carrier #4).
  • the first carrier belongs to or is included in the first frequency band
  • the second carrier belongs to or is included in the second frequency band
  • the third carrier belongs to or is included in the third frequency band
  • the fourth carrier belongs to or is included in the fourth frequency band as an example.
  • the present application is not limited to this.
  • the one-to-one correspondence between frequency bands and carriers means that each frequency band contains at least one carrier.
  • the terminal device determines the first port configuration for performing the first uplink transmission within the first time unit, wherein the terminal device supports uplink switching on at least three frequency bands or at least three carriers; the terminal device determines a second port configuration for performing a second uplink transmission within a second time unit, the first time unit being earlier than the second time unit; the terminal device performs a first operation according to the first port configuration and the second port configuration; wherein the terminal device performs the first operation including at least one of the following: the terminal device does not expect to perform uplink data transmission within the switching time required for switching from the first uplink transmission to the second uplink transmission, or; the terminal device determines to switch the transmission state of the RF chain when performing the second uplink transmission within the second time unit, or; the terminal device determines that switching is required from the first uplink transmission to the second uplink transmission, or; the terminal device determines to switch before performing the second uplink transmission, or; the terminal device determines the switching time required for switching from the first uplink transmission
  • the terminal device performs the first operation can also be understood as: the terminal device does not expect to perform uplink data transmission on at least three carriers within the switching time required to switch from the first uplink transmission to the second uplink transmission, wherein the at least three carriers respectively belong to at least three frequency bands (that is, at least three carriers and at least three frequency bands are in a one-to-one correspondence); or, the terminal device determines not to perform uplink data transmission on at least three carriers within the switching time required to switch from the first uplink transmission to the second uplink transmission, wherein the at least three carriers respectively belong to at least three frequency bands.
  • the transmission state of the terminal device can be understood as the transmission state of the terminal device within the first time unit, or the transmission state of the terminal device corresponding to the first port configuration.
  • uplink data may include at least one of the following: a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH) or an uplink signal (for example, a sounding reference signal (SRS)).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • the first carrier of the first frequency band may also be directly replaced by the first carrier.
  • the second carrier of the second frequency band may also be directly replaced by the second carrier.
  • the third carrier of the third frequency band may also be directly replaced by the third carrier.
  • the fourth carrier of the fourth frequency band may also be directly replaced by the fourth carrier.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission or 2-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the second carrier of the second frequency band and the first uplink transmission on the third carrier of the third frequency band are respectively 1-port transmissions, the terminal device performs the first operation.
  • the second port is configured to transmit...” may also be understood as: “when the second port is configured to transmit...”.
  • this application proposes that if the last port configuration is "0P+1P+1P" and the next port configuration is "2P+0P+0P” or "1P+0P+0P", the terminal device needs to perform the first operation.
  • the second port is configured as 1-port transmission for the second uplink transmission of the terminal device on the first carrier of the first frequency band and the second uplink transmission on the second carrier of the second frequency band, respectively. If the first port is configured as 1-port transmission or 2-port transmission for the first uplink transmission of the terminal device on the third carrier of the third frequency band, the terminal device performs the first operation.
  • this application proposes that if the last port configuration is "0P+0P+1P", “0P+0P+2P”, and the next port configuration is "1P+1P+0P", the terminal device needs to perform the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band and the second uplink transmission on the second carrier of the second frequency band are respectively 1-port transmissions. If the first port is configured so that the first uplink transmission of the terminal device on the first carrier of the first frequency band and the first uplink transmission on the third carrier of the third frequency band are respectively 1-port uplink transmissions, the terminal device performs the first operation, or; if the first port is configured so that the first uplink transmission of the terminal device on the second carrier of the second frequency band and the first uplink transmission on the third carrier of the third frequency band are respectively 1-port transmissions, the terminal device performs the first operation.
  • this application proposes that if the last port configuration is "1P+0P+1P", “0P+1P+1P”, and the next port configuration is "1P+1P+0P", the terminal device needs to perform the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band and the second uplink transmission on the second carrier of the second frequency band are respectively 1-port transmissions. If the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band and the first uplink transmission on the fourth carrier of the fourth frequency band are respectively 1-port transmissions, the terminal device performs the first operation.
  • this application proposes that if the last port configuration is "1P+1P+0P+0P" and the next port configuration is "0P+0P+1P+0P", the terminal device needs to perform the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the second carrier of the second frequency band is a 2-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the first carrier of the first frequency band is a 2-port transmission, the terminal device performs a first operation.
  • the present application proposes that if the last port configuration is "2P+0P" and the next port configuration is "0P+2P", the terminal device needs to perform the first operation.
  • the terminal device Since the transmission state of the RF chain of the terminal device's uplink transmission is limited, based on the solution provided in the present application, in a scenario where the terminal device needs to switch the transmission state on at least three frequency bands or three carriers, the terminal device can clearly or explicitly understand the operating state, thereby correctly switching the transmission state and ensuring the transmission performance of the uploaded data.
  • the terminal device performs a first operation according to the first port configuration and the second port configuration, including: the terminal device performs the first operation according to the first port configuration, the second port configuration, and the transmission status within the first time unit.
  • the terminal device can clearly understand the operation status and ensure the transmission performance of the uplink data according to the port configuration of the last uplink transmission, the port configuration of the next uplink transmission, and the transmission status of the last uplink transmission.
  • the method also includes: the terminal device determines that the transmission state of the RF chain corresponding to the first port configuration is a first set, and the transmission state of the RF chain corresponding to the second port configuration is a second set; the terminal device determines, based on the first set and the second set, that the intersection of the first set and the second set is the transmission state of the first RF chain, and determines that the transmission state within the first time unit is not the transmission state of the first RF chain, and then the terminal device performs a first operation.
  • determining that the transmission state within the first time unit is not the transmission state of the first RF chain may also be understood as “determining that the transmission state within the first time unit does not include the transmission state of the first RF chain”.
  • the above implementation method can also be understood as: the transmission state of the first RF chain is not included in the transmission state in the first time unit, or the transmission state in the first time unit does not include the transmission state of the first RF chain, or the transmission state of the first RF chain and the transmission state in the first time unit The intersection is empty.
  • this application proposes that if the state of the last uplink transmission of the terminal device is different from one or more transmission states corresponding to the next uplink transmission port configuration, the terminal device performs the first operation. Based on the above technical solution, the terminal device can clearly understand the operation state and ensure the performance of uplink data transmission.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is not supporting simultaneous 1-port transmission on the first carrier of the first frequency band and on the third carrier of the third frequency band, the terminal device performs the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 1-port transmission on the second carrier of the second frequency band; or, the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, then the terminal device performs the first operation.
  • this application proposes that if the last port configuration is "0P+0P+1P", the next port configuration is "1P+0P+0P", and the last transmission state is not Tx state #2, or the last transmission state is Tx state #3, or the last transmission state is Tx state #6, the terminal device needs to perform the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the second carrier of the second frequency band is 1-port transmission, and the transmission state is not supporting simultaneous 1-port transmission on the first carrier of the first frequency band and on the second carrier of the second frequency band respectively, the terminal device performs a first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission; if the first port is configured so that the first uplink transmission of the terminal device on the second carrier of the second frequency band is 1-port transmission, and the transmission state is to support 1-port transmission on the third carrier of the third frequency band; or, the transmission state is to support 2-port transmission on the second carrier of the second frequency band, then the terminal device performs the first operation.
  • the present application proposes that if the last port configuration is "0P+1P+0P", the next port configuration is "1P+0P+0P", and the last transmission state is not Tx state #1, or the last transmission state is Tx state #3, or the last transmission state is When the state is Tx state #5, the terminal device needs to perform the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the second carrier of the second frequency band is 1-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is not supporting simultaneous 1-port transmission on the second carrier of the second frequency band and on the third carrier of the third frequency band, the terminal device performs the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the carrier of the second frequency band is 1-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 1-port transmission on the first carrier of the first frequency band; or, the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, then the terminal device performs the first operation.
  • this application proposes that if the last port configuration is "0P+0P+1P", the next port configuration is "0P+1P+0P", and the last transmission state is not Tx state #3, or the last transmission state is Tx state #2, or the last transmission state is Tx state #6, the terminal device needs to perform the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, the terminal device determines to switch the transmission state of the RF chain.
  • this application proposes that if the last port configuration is "0P+0P+1P", the next port configuration is "1P+0P+0P”, and the last transmission state is Tx state #6, the terminal device needs to perform the first operation.
  • the second port is configured so that the second uplink transmission of the terminal device on the second carrier of the second frequency band is 1-port transmission. If the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, the terminal device determines to switch the transmission state of the RF chain.
  • this application proposes that if the last port configuration is "0P+0P+1P", the next port configuration is "0P+1P+0P”, and the last transmission state is Tx state #6, the terminal device needs to perform the first operation.
  • the second port configuration corresponds to at least one transmission state, wherein if the at least one transmission state is different from the at least one transmission state corresponding to the first port configuration, the terminal device performs a first operation.
  • the present application proposes that if at least one transmission state corresponding to the next port configuration is different from at least one transmission state corresponding to the previous port configuration, the terminal device needs to perform a first operation so that the terminal device can clearly understand the operation status and ensure the transmission performance of the uplink data.
  • the method also includes: the terminal device receives a first wireless resource control signaling from a network device, the first wireless resource control signaling indicating that the terminal device is configured as a first option or a second option, wherein the first option indicates that the terminal device is configured to switch uplink transmission, and the second option indicates that the terminal device is configured for dual uplink transmission.
  • the network device in the present application can configure the terminal device to switch uplink transmission or dual uplink transmission, so that the terminal device can perform uplink switching on at least three frequency bands or at least three carriers.
  • the method also includes: the terminal device receives a second wireless resource control signaling from a network device, the second wireless resource control signaling indicating that the terminal device is configured to support uplink switching on three frequency bands, or the second wireless resource control signaling indicates that the terminal device is configured to support uplink switching on four frequency bands.
  • the network device can configure the terminal device to support uplink switching on at least three frequency bands, so that the terminal device can flexibly switch on multiple frequency bands based on specific application scenarios.
  • the method also includes: the terminal device receives a third RRC signaling from a network device, the third RRC signaling instructing the terminal device to transmit 1 RF chain or 2 RF chains on at least one frequency band; the terminal device determines the switching time for uplink transmission according to the first port configuration, the second port configuration and the third RRC signaling.
  • the method also includes: the terminal device determines the switching time for uplink transmission according to the first port configuration, the second port configuration and the third RRC signaling, including: the terminal device determines the switching time for uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling and predefined rules.
  • the terminal device can clearly identify the operation status. Further, the terminal device can The command determines how the frequency band is switched during uplink transmission, thereby determining the switching time of the uplink transmission.
  • the predefined rules include at least one of the following: if the terminal device supports uplink switching on three frequency bands, the predefined rules may be to specify the priorities of the three frequency bands during uplink switching; if the terminal device supports uplink switching on four frequency bands, the predefined rules may be to specify the priorities of the four frequency bands during uplink switching.
  • the terminal device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling and predefined rules, including: the network device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling, the predefined rules and the working mode of the radio frequency chain.
  • the working mode of the RF chain can be understood as each RF chain in the RF chain can work independently, or each RF chain in the RF chain cannot work independently.
  • the method further includes receiving a fifth RRC signaling from a network device, where the fifth RRC signaling is used to configure a frequency band or a carrier where the switching time is located.
  • the frequency band or carrier at which the switching time is located may be the frequency band or carrier before the switching; in another possible implementation, the frequency band or carrier at which the switching time is located may be the frequency band or carrier after the switching.
  • the method further includes: the terminal device transmitting uplink data on the resources scheduled by the network device according to the switching time.
  • the terminal device can transmit the uploaded data on the resources scheduled by the network device according to the switching time, thereby ensuring the transmission performance of the uplink data.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the at least two first uplink transmissions to the second uplink transmission, respectively.
  • the at least two different fifth carriers correspond one-to-one to the at least two first uplink transmissions.
  • the fifth carrier or the sixth carrier is a general carrier name, which can be understood as the fifth carrier or the sixth carrier includes any carrier from the first carrier to the fourth carrier (for example, carrier #1 to carrier #4).
  • the fifth carrier or the sixth carrier is any carrier from the first carrier to the fourth carrier (for example, carrier #1 to carrier #4).
  • the fifth frequency band or the sixth frequency band is a general frequency band name, which can be understood as the fifth frequency band or the sixth frequency band includes any frequency band from the first frequency band to the fourth frequency band (for example, band #A to band #D).
  • the fifth frequency band or the sixth frequency band includes any frequency band from the first frequency band to the fourth frequency band (for example, band #A to band #D).
  • two different fifth carriers can be understood, for example, that the two different fifth carriers are any two different carriers from the first carrier to the fourth carrier (for example, carrier #1 to carrier #4).
  • two different fifth carriers may refer to the first carrier (for example, carrier #1) and the second carrier (for example, carrier #2).
  • carrier #1 for example, carrier #1
  • second carrier for example, carrier #2
  • third carrier for example, carrier #3
  • fourth carrier for example, carrier #4
  • two different fifth carriers may be the first carrier (for example, carrier #1), the third carrier (for example, carrier #3), and so on.
  • the above description also applies to the sixth carrier, that is, the "two different sixth carriers" can be understood similarly.
  • the "sixth carrier” may be understood as a carrier different from the two different fifth carriers.
  • the "sixth carrier” may be any one of the remaining two carriers from the first carrier to the fourth carrier.
  • the "sixth carrier” may be the third carrier or the fourth carrier.
  • the "sixth carrier” may be the first carrier or the second carrier.
  • the "two different fifth carriers" are the first carrier and the third carrier
  • the "sixth carrier” may be the second carrier or the fourth carrier, and so on.
  • the above description also applies to the fifth carrier.
  • the "fifth carrier” may be understood as a carrier different from the two different sixth carriers.
  • two different fifth frequency bands can be understood as the two different fifth frequency bands being any two different frequency bands from the first frequency band to the fourth frequency band.
  • “two different fifth frequency bands” can refer to the first frequency band (for example, frequency band #A) and the second frequency band (for example, frequency band #B).
  • “two different fifth frequency bands” can be the third frequency band (for example, frequency band #C) and the fourth frequency band (for example, frequency band #D).
  • “two different fifth frequency bands” can be the first frequency band (for example, frequency band #A), the third frequency band (for example, frequency band #C), and so on.
  • the above description also applies to the sixth frequency band, that is, “two different sixth frequency bands” can be understood similarly. .
  • the "sixth frequency band” can be understood as a frequency band different from the two different fifth frequency bands.
  • the "sixth frequency band” can be any one of the remaining two frequency bands from the first frequency band to the fourth frequency band.
  • the "sixth frequency band” can be the third frequency band or the fourth frequency band.
  • the "sixth frequency band” can be the first frequency band or the second frequency band.
  • the "sixth frequency band” can be the second frequency band or the fourth frequency band, and so on.
  • the above description also applies to the fifth frequency band.
  • the "fifth carrier frequency band” can be understood as a frequency band different from the two different first frequency bands.
  • the switching time may be two switching times corresponding to switching from two first uplink transmissions of 1T+1T of two different carriers to two second uplink transmissions of 2T of another carrier.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the first uplink transmission to the at least two second uplink transmissions, respectively.
  • the at least two different sixth carriers correspond one-to-one to the at least two second uplink transmissions.
  • each fifth carrier of the at least two different fifth carriers is different from the sixth carrier, and/or each sixth carrier of the at least two different sixth carriers is different from the fifth carrier.
  • the switching time may be two switching times corresponding to switching from two first uplink transmissions of 2T on one carrier to two second uplink transmissions of 1T+1T on two other different carriers.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the at least two first uplink transmissions to the at least two second uplink transmissions, respectively.
  • the at least two different fifth carriers correspond one-to-one to the at least two first uplink transmissions
  • the at least two different sixth carriers correspond one-to-one to the at least two second uplink transmissions.
  • each fifth carrier of the at least two fifth carriers is different from each sixth carrier of the at least two sixth carriers, or; a fifth carrier of the at least two fifth carriers is the same as a sixth carrier of the at least two sixth carriers.
  • the switching time can be two switching times corresponding to two first uplink transmissions to two second uplinks, wherein the first uplink transmission and the second uplink transmission can share a carrier, or the first uplink transmission and the second uplink transmission may not share a carrier.
  • the first uplink transmission includes at least one uplink transmission in a fifth frequency band
  • the second uplink transmission includes at least one uplink transmission in a sixth frequency band
  • the terminal device does not expect to perform uplink transmission on a corresponding carrier within a switching time of at least one frequency band switching pair involved in from the first uplink transmission to the second uplink transmission, wherein the corresponding carrier is associated with the at least one frequency band switching pair, and each of the at least one frequency band switching pairs includes a fifth frequency band and a sixth frequency band.
  • the frequency bands included in the "frequency band switching pair" are different frequency bands.
  • a fifth frequency band and a sixth frequency band included in the frequency band switching pair are different frequency bands.
  • the first uplink transmission includes at least one uplink transmission in a fifth frequency band
  • the second uplink transmission includes at least one uplink transmission in a sixth frequency band
  • the terminal device determines not to perform uplink transmission on a corresponding carrier within a switching time of at least one frequency band switching pair involved in from the first uplink transmission to the second uplink transmission, wherein the corresponding carrier is associated with the at least one frequency band switching pair.
  • the switching time may refer to the time of the carrier involved in the switching.
  • the first uplink transmission includes at least one fifth frequency band
  • the second uplink transmission includes at least one sixth frequency band
  • the switching time includes at least one of the following: the maximum value of the switching time corresponding to each of the at least one frequency band switching pairs involved in the first uplink transmission to the second uplink transmission, or; the sum of the switching time corresponding to each of the at least one frequency band switching pairs involved in the first uplink transmission to the second uplink transmission, or; the switching time corresponding to each of the at least one frequency band switching pairs involved in the first uplink transmission to the second uplink transmission, wherein each of the at least one frequency band switching pairs includes a fifth frequency band and a sixth frequency band.
  • the first uplink transmission includes at least two fifth frequency bands, each of the at least two fifth frequency bands is different; if the first uplink transmission includes at least two sixth frequency bands, each of the at least two sixth frequency bands is different; wherein, one of the at least two fifth frequency bands is the same as one of the at least two sixth frequency bands, or, each of the fifth frequency bands is different from each of the sixth frequency bands.
  • the switching time of the at least one frequency band switching pair is the switching time corresponding to each of the at least one frequency band switching pairs.
  • the switching time can be flexibly determined.
  • a method for determining switching uplink transmission is provided, which can be executed by a terminal device (eg, a user device), or can also be executed by a component of the terminal device (eg, a chip or a circuit), without limitation.
  • a terminal device eg, a user device
  • a component of the terminal device eg, a chip or a circuit
  • the beneficial effects corresponding to this method can refer to the beneficial effects corresponding to each implementation manner in the aforementioned first aspect.
  • the method includes: a terminal device determines a first port configuration for performing a first uplink transmission within a first time unit, wherein the terminal device supports uplink switching on at least three frequency bands or at least three carriers; the terminal device determines a second port configuration for performing a second uplink transmission within a second time unit, and the first time unit is earlier than the second time unit; the terminal device determines whether a first condition is satisfied; if the terminal device determines that the first condition is satisfied, the terminal device performs a first operation, and the first operation includes at least one of the following:
  • the terminal device does not expect to perform uplink data transmission within the switching time required for switching from the first uplink transmission to the second uplink transmission, or; the terminal device determines to switch the transmission state of the RF chain when performing the second uplink transmission within the second time unit, or; the terminal device determines that switching is required from the first uplink transmission to the second uplink transmission, or; the terminal device determines to switch before performing the second uplink transmission, or; the terminal device determines the switching time required for switching from the first uplink transmission to the second uplink transmission, or; the terminal device determines not to perform uplink data transmission within the switching time required for switching from the first uplink transmission to the second uplink transmission;
  • the first condition includes at least one of the following:
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is not supporting 1-port transmission on the first carrier of the first frequency band and on the third carrier of the third frequency band at the same time, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 1-port transmission on the second carrier of the second frequency band, or the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the second carrier of the second frequency band is 1-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is not supporting 1-port transmission on the second carrier of the second frequency band and on the third carrier of the third frequency band at the same time, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the carrier of the second frequency band is 1-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 1-port transmission on the first carrier of the first frequency band; or, the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the second carrier of the second frequency band is 1-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission, and the transmission state of the terminal device is to support 2-port transmission on the third carrier of the third frequency band, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band is 1-port transmission or 2-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the second carrier of the second frequency band and the first uplink transmission on the third carrier of the third frequency band are respectively 1-port transmission, or;
  • the second port is configured as the second uplink transmission of the terminal device on the first carrier of the first frequency band and the second carrier of the second frequency band.
  • the second uplink transmission on the carrier is respectively 1-port transmission, if the first port is configured as the first uplink transmission of the terminal device on the third carrier of the third frequency band is 1-port transmission or 2-port transmission, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band and the second uplink transmission on the second carrier of the second frequency band are respectively 1-port transmissions. If the first port is configured so that the first uplink transmission of the terminal device on the first carrier of the first frequency band and the first uplink transmission on the third carrier of the third frequency band are respectively 1-port uplink transmissions, the terminal device performs the first operation, or; if the first port is configured so that the first uplink transmission of the terminal device on the second carrier of the second frequency band and the first uplink transmission on the third carrier of the third frequency band are respectively 1-port transmissions, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the first carrier of the first frequency band and the second uplink transmission on the second carrier of the second frequency band are respectively 1-port transmissions, if the first port is configured so that the first uplink transmission of the terminal device on the third carrier of the third frequency band and the first uplink transmission on the fourth carrier of the fourth frequency band are respectively 1-port transmissions, or;
  • the second port is configured so that the second uplink transmission of the terminal device on the second carrier of the second frequency band is 2-port transmission, if the first port is configured so that the first uplink transmission of the terminal device on the first carrier of the first frequency band is 2-port transmission, or;
  • the method also includes: the terminal device receives a first wireless resource control signaling from a network device, the first wireless resource control signaling indicating that the terminal device is configured as a first option or a second option, wherein the first option indicates that the terminal device is configured to switch uplink transmission, and the second option indicates that the terminal device is configured for dual uplink transmission.
  • the terminal device receives a second wireless resource control signaling from a network device, and the second wireless resource control signaling indicates that the terminal device is configured to support uplink switching on three frequency bands, or the second wireless resource control signaling indicates that the terminal device is configured to support uplink switching on four frequency bands.
  • the method also includes: the terminal device receives a third RRC signaling from a network device, and the third RRC signaling instructs the terminal device to transmit 1 RF chain or 2 RF chains on at least one frequency band; the terminal device determines the switching time for uplink transmission or determines to perform the first operation according to the first port configuration, the second port configuration and the third RRC signaling.
  • the method also includes: the terminal device receives a third RRC signaling from a network device, the third RRC signaling instructing the terminal device to transmit 1 RF chain or 2 RF chains on at least one frequency band; the terminal device determines the switching time for uplink transmission or determines to perform the first operation according to the first port configuration, the second port configuration, the third RRC signaling, and predefined rules.
  • the predefined rules include at least one of the following: if the terminal device supports uplink switching on three frequency bands, the predefined rules may be to specify the priorities of the three frequency bands during uplink switching; if the terminal device supports uplink switching on four frequency bands, the predefined rules may be to specify the priorities of the four frequency bands during uplink switching.
  • the terminal device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling and predefined rules, including: the network device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling, the predefined rules and the working mode of the radio frequency chain.
  • the working mode of the RF chain can be understood as each RF chain in the RF chain can work independently, or each RF chain in the RF chain cannot work independently.
  • the method further includes receiving a fifth RRC signaling from a network device, where the fifth RRC signaling is used to configure a frequency band or a carrier where the switching time is located.
  • the frequency band or carrier at which the switching time is located may be the frequency band or carrier before the switching; in another possible implementation, the frequency band or carrier at which the switching time is located may be the frequency band or carrier after the switching.
  • the method further includes: the terminal device transmitting uplink data on the resources scheduled by the network device according to the switching time.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the at least two first uplink transmissions to the second uplink transmission, respectively.
  • the transmission from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the first uplink transmission to the at least two second uplink transmissions respectively.
  • the at least two different sixth carriers correspond one-to-one to the at least two second uplink transmissions.
  • each fifth carrier of the at least two different fifth carriers is different from the sixth carrier, and/or each sixth carrier of the at least two different sixth carriers is different from the fifth carrier.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the at least two first uplink transmissions to the at least two second uplink transmissions, respectively.
  • the at least two different fifth carriers correspond one-to-one to the at least two first uplink transmissions
  • the at least two different sixth carriers correspond one-to-one to the at least two second uplink transmissions.
  • each fifth carrier of the at least two fifth carriers is different from each sixth carrier of the at least two sixth carriers, or; a fifth carrier of the at least two fifth carriers is the same as a sixth carrier of the at least two sixth carriers.
  • the first uplink transmission includes at least one uplink transmission in a fifth frequency band
  • the second uplink transmission includes at least one uplink transmission in a sixth frequency band
  • the terminal device does not expect to perform uplink transmission on a corresponding carrier within a switching time of at least one frequency band switching pair involved in from the first uplink transmission to the second uplink transmission, wherein the corresponding carrier is associated with the at least one frequency band switching pair, and each of the at least one frequency band switching pairs includes a fifth frequency band and a sixth frequency band.
  • the frequency bands included in the "frequency band switching pair" are different frequency bands.
  • a fifth frequency band and a sixth frequency band included in the frequency band switching pair are different frequency bands.
  • the first uplink transmission includes at least one uplink transmission in a fifth frequency band
  • the second uplink transmission includes at least one uplink transmission in a sixth frequency band
  • the terminal device determines not to perform uplink transmission on a corresponding carrier within a switching time of at least one frequency band switching pair involved in from the first uplink transmission to the second uplink transmission, wherein the corresponding carrier is associated with the at least one frequency band switching pair.
  • the first uplink transmission includes at least one fifth frequency band
  • the second uplink transmission includes at least one sixth frequency band
  • the switching time includes at least one of the following: the maximum value of the switching time corresponding to each of the at least one frequency band switching pairs involved in the first uplink transmission to the second uplink transmission, or; the sum of the switching time corresponding to each of the at least one frequency band switching pairs involved in the first uplink transmission to the second uplink transmission, or; the switching time corresponding to each of the at least one frequency band switching pairs involved in the first uplink transmission to the second uplink transmission, wherein each of the at least one frequency band switching pairs includes a fifth frequency band and a sixth frequency band.
  • the first uplink transmission includes at least two fifth frequency bands, each of the at least two fifth frequency bands is different; if the first uplink transmission includes at least two sixth frequency bands, each of the at least two sixth frequency bands is different; wherein, one of the at least two fifth frequency bands is the same as one of the at least two sixth frequency bands, or, each of the fifth frequency bands is different from each of the sixth frequency bands.
  • the switching time of the at least one frequency band switching pair is the switching time corresponding to each of the at least one frequency band switching pairs.
  • a method for determining switching uplink transmission is provided, which can be executed by a network device (for example, a base station), or can also be executed by a component of the network device (for example, a chip or a circuit), without limitation.
  • a network device for example, a base station
  • a component of the network device for example, a chip or a circuit
  • the method includes: a network device sends first information to a terminal device, the first information indicating a first port configuration of the terminal device for a first uplink transmission within a first time unit; the network device sends second information to the terminal device, the second information indicating a second port configuration of the terminal device for a second uplink transmission within a second time unit; the network device sends a third RRC signaling to the terminal device, the third RRC signaling indicating the terminal device to transmit 1 RF chain or 2 RF chains on at least one frequency band; the network device determines a switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration and the third RRC signaling.
  • the network device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration and the third RRC signaling, including: the network device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling and a predefined rule.
  • the predefined rules include at least one of the following: if the terminal device supports uplink switching on three frequency bands, the predefined rules may be to specify the priorities of the three frequency bands during uplink switching; if the terminal device supports uplink switching on four frequency bands, the predefined rules may be to specify the priorities of the four frequency bands during uplink switching.
  • the network device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling and predefined rules, including: the network device determines the switching time for the terminal device to perform uplink transmission according to the first port configuration, the second port configuration, the third RRC signaling, the predefined rules and the working mode of the radio frequency chain.
  • the working mode of the RF chain can be understood as each RF chain in the RF chain can work independently, or each RF chain in the RF chain cannot work independently.
  • the method further includes receiving a fifth RRC signaling from a network device, where the fifth RRC signaling is used to configure a frequency band or a carrier where the switching time is located.
  • the frequency band or carrier at which the switching time is located may be the frequency band or carrier before the switching; in another possible implementation, the frequency band or carrier at which the switching time is located may be the frequency band or carrier after the switching.
  • the method further includes: the network device configuring resources for uplink transmission for the terminal device according to the switching time.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the at least two first uplink transmissions to the second uplink transmission, respectively.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the first uplink transmission to the at least two second uplink transmissions, respectively.
  • the at least two different sixth carriers correspond one-to-one to the at least two second uplink transmissions.
  • each fifth carrier of the at least two different fifth carriers is different from the sixth carrier, and/or each sixth carrier of the at least two different sixth carriers is different from the fifth carrier.
  • the switching time from the first uplink transmission to the second uplink transmission is: at least two switching times corresponding to the at least two first uplink transmissions to the at least two second uplink transmissions, respectively.
  • the at least two different fifth carriers correspond one-to-one to the at least two first uplink transmissions
  • the at least two different sixth carriers correspond one-to-one to the at least two second uplink transmissions.
  • each fifth carrier of the at least two fifth carriers is different from each sixth carrier of the at least two sixth carriers, or; a fifth carrier of the at least two fifth carriers is the same as a sixth carrier of the at least two sixth carriers.
  • the first uplink transmission includes at least one uplink transmission in a fifth frequency band
  • the second uplink transmission includes at least one uplink transmission in a sixth frequency band
  • the terminal device does not expect to perform uplink transmission on a corresponding carrier within a switching time of at least one frequency band switching pair involved in from the first uplink transmission to the second uplink transmission, wherein the corresponding carrier is associated with the at least one frequency band switching pair, and each of the at least one frequency band switching pairs includes a fifth frequency band and a sixth frequency band.
  • the frequency bands included in the "frequency band switching pair" are different frequency bands.
  • a fifth frequency band and a sixth frequency band included in the frequency band switching pair are different frequency bands.
  • the first uplink transmission includes at least one uplink transmission in a fifth frequency band
  • the second uplink transmission includes at least one uplink transmission in a sixth frequency band
  • the terminal device determines not to perform uplink transmission on a corresponding carrier within a switching time of at least one frequency band switching pair involved in from the first uplink transmission to the second uplink transmission, wherein the corresponding carrier is associated with the at least one frequency band switching pair.
  • the first uplink transmission includes at least one fifth frequency band
  • the second uplink transmission includes at least one sixth frequency band
  • the switching time includes at least one of the following: The maximum value of the switching time corresponding to each of at least one frequency band switching pairs, or; the sum of the switching time corresponding to each of at least one frequency band switching pairs involved in from the first uplink transmission to the second uplink transmission, or; the switching time corresponding to each of at least one frequency band switching pairs involved in from the first uplink transmission to the second uplink transmission, wherein each of the at least one frequency band switching pairs includes a fifth frequency band and a sixth frequency band.
  • the first uplink transmission includes at least two fifth frequency bands, each of the at least two fifth frequency bands is different; if the first uplink transmission includes at least two sixth frequency bands, each of the at least two sixth frequency bands is different; wherein, one of the at least two fifth frequency bands is the same as one of the at least two sixth frequency bands, or, each of the fifth frequency bands is different from each of the sixth frequency bands.
  • the switching time of the at least one frequency band switching pair is the switching time corresponding to each of the at least one frequency band switching pairs.
  • a communication device is provided, the device being used to execute the method in any possible implementation of any one of the first to second aspects.
  • the device may include a unit and/or module, such as a transceiver unit and/or a processing unit, for executing the method in any possible implementation of any one of the first to second aspects.
  • the device is a terminal device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, chip system or circuit for a terminal device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit;
  • the processing unit may be at least one processor, processing circuit or logic circuit.
  • a communication device which is used to execute the method in any possible implementation of the third aspect.
  • the device may include a unit and/or module, such as a transceiver unit and/or a processing unit, for executing the method in any possible implementation of the third aspect.
  • the device is a network device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, chip system or circuit for a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit;
  • the processing unit may be at least one processor, processing circuit or logic circuit.
  • a communication device comprising: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute a method in any possible implementation of any one of the first to second aspects above.
  • the device further comprises a memory, configured to store a computer program or instruction.
  • the device further comprises a communication interface, and the processor reads the computer program or instruction stored in the memory through the communication interface.
  • the apparatus is a terminal device.
  • the apparatus is a chip, a chip system or a circuit for a terminal device.
  • a communication device comprising: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation of any aspect of the third aspect.
  • the device further comprises a memory, configured to store a computer program or instruction.
  • the device further comprises a communication interface, and the processor reads the computer program or instruction stored in the memory through the communication interface.
  • the apparatus is a network device.
  • the apparatus is a chip, a chip system, or a circuit for a network device.
  • the present application provides a processor, comprising: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any possible implementation of any aspect from the first aspect to the third aspect.
  • the processor may be one or more chips
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a trigger, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a transceiver
  • the signal output by the output circuit may be, for example, but not limited to, output to a transmitter and transmitted by the transmitter
  • the input circuit and the output circuit may be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation methods of the processor and various circuits.
  • a processing device comprising a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a transceiver and transmit signals through a transmitter to execute the method in any possible implementation of any aspect from the first aspect to the third aspect.
  • the number of the processors is one or more, and the number of the memories is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated with the processor on the same chip or can be separately set on different chips.
  • ROM read-only memory
  • the embodiments of the present application do not limit the type of memory and the setting method of the memory and the processor.
  • the related data interaction process can be a process of outputting indication information from the processor
  • receiving capability information can be a process of receiving input capability information by the processor.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the transceiver.
  • the transmitter and the transceiver can be collectively referred to as a transceiver.
  • the processing device in the ninth aspect may be one or more chips.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor implemented by reading software code stored in a memory, which may be integrated in the processor or located outside the processor and exist independently.
  • a computer-readable storage medium which stores a program code for execution by a device, wherein the program code includes a method for executing any possible implementation of the first to third aspects above.
  • a computer program product comprising instructions
  • the computer program product when the computer program product is run on a computer, the computer is enabled to execute the method in any possible implementation of the first to third aspects above.
  • a chip system comprising a processor for calling and running a computer program from a memory, so that a device equipped with the chip system executes the methods in each implementation manner in any one of the first to third aspects above.
  • a communication system comprising the terminal device and the network device.
  • the terminal device is used to execute any possible implementation method in any aspect of the first to second aspects
  • the network device is used to execute any possible implementation method in any aspect of the third aspect.
  • FIG1 is a schematic diagram of a system architecture to which the present application is applicable.
  • FIG. 2 is a schematic flow chart of a method 200 for determining switching uplink transmission proposed in the present application.
  • FIG3 is a schematic block diagram of a communication device 100 proposed in this application.
  • FIG4 is a schematic block diagram of a communication device 200 proposed in this application.
  • the wireless communication systems to which the embodiments of the present application can be applied include, but are not limited to: global system of mobile communication (GSM) system, long term evolution (LTE) frequency division duplex (FDD) system, LTE time division duplex (TDD), LTE system, advanced long term evolution (LTE-Advanced, LTE-A) system, next generation communication system (for example, 6G communication system), a fusion system of multiple access systems, or an evolution system.
  • GSM global system of mobile communication
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE system LTE system
  • LTE-Advanced, LTE-A advanced long term evolution
  • next generation communication system for example, 6G communication system
  • 6G communication system a fusion system of multiple access systems
  • evolution system for example, 6G communication system
  • the technical solution provided in the present application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), device to device (D2D) network, machine to machine (M2M) network, Internet of things (IoT) network or other networks.
  • IoT network can include vehicle networking, for example.
  • vehicle to X, V2X, X can represent anything
  • the V2X can include: vehicle to vehicle (V2V) communication, vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) communication or vehicle to network (V2N) communication, etc.
  • the terminal devices involved in the embodiments of the present application may include various access terminals, mobile devices, user Terminal or user device.
  • the terminal device may be user equipment (UE), such as a mobile phone, a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, etc.
  • UE user equipment
  • VR virtual reality
  • AR augmented reality
  • the terminal device may also be a wireless terminal in industrial control, a machine type communication (MTC) terminal, a customer premise equipment (CPE), a wireless terminal in self-driving, a wireless terminal in remote medical, a wireless terminal in a smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, a smart home, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a 5G network, or a terminal device in a future evolved public land mobile network (PLMN), etc.
  • MTC machine type communication
  • CPE customer premise equipment
  • PDA personal digital assistant
  • the network equipment (for example, wireless access network equipment) involved in the embodiments of the present application can be an access equipment for a terminal device to access the mobile communication system by wireless means.
  • the wireless access network equipment can be: a base station, an evolved node B (eNB), a home base station, an access point (AP) in a wireless fidelity (WiFi) system, a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP), a macro base station or a micro base station, a high-frequency base station, etc.
  • the wireless access network equipment can also be a next generation node B (gNB) in an NR system, or it can also be a component or a part of a base station, such as a central unit (CU), a distributed unit (DU) or a baseband unit (BBU).
  • gNB next generation node B
  • CU central unit
  • DU distributed unit
  • BBU baseband unit
  • the specific technology and specific equipment form adopted by the wireless access network equipment are not limited.
  • wireless access network equipment is referred to as network equipment.
  • network equipment refers to wireless access network equipment.
  • network equipment can refer to the network equipment itself or a chip used in the network equipment to perform wireless communication processing functions.
  • scenario shown in Figure 1 is only an example of a scenario used in the technical solution of the present application.
  • the present application does not exclude the need for terminal devices to switch between multiple frequency bands in other scenarios.
  • the technical solution of the present application can be applied to scenarios where various terminal devices need to switch between multiple frequency bands.
  • network devices e.g., base stations
  • the transmission power of terminal devices is very low, and uplink coverage is limited. Therefore, the received signal strength of the uplink transmitted signal when it reaches the network device may not be sufficient to ensure its coverage performance.
  • there is a problem of insufficient uplink spectrum so it is impossible to rely on retransmission of data to ensure its uplink coverage performance.
  • FIG1 is a schematic diagram of a scenario to which the technical solution of the present application is applicable.
  • NR currently introduces supplementary uplink (SUL) as an alternative when uplink coverage is insufficient in the NR system.
  • SUL considers using carriers from the lower frequency bands where LTE is located (e.g., 700MHz, 1.8GHz, or 2.1GHz) for NR uplink transmission. It has been determined that when using the LTE frequency band for NR transmission, the terminal device can reuse the frequency band with the LTE uplink time division duplex (TDD) when using the LTE frequency band.
  • TDD time division duplex
  • the terminal device when the terminal device is in the coverage of the TDD mid-band (2.6GHz, 3.5GHz or 4.9GHz), the terminal device uses the TDD mid-band; when the terminal device moves out of the TDD mid-band (2.6GHz, 3.5GHz or 4.9GHz) coverage, the terminal device can use the LTE low-band in the uplink, which supplements the uplink coverage shortcomings of the TDD mid-band and extends the uplink coverage.
  • the terminal device can also use other frequency bands in the uplink as supplementary uplinks to further extend the uplink coverage.
  • a carrier can be used for NR uplink transmission from a lower frequency band (for example, 700MHz/800MHz/900MHz, 1.8GHz or 2.1GHz) where LTE is located.
  • the carrier can be understood as the SUL band. That is to say, in the SUL scenario, it is expected that the terminal device can dynamically switch between multiple frequency bands such as 700M/800M/900M, 1.8G, 2.1G, 3.5G or 4.9GHz according to the channel state or the load condition of the corresponding frequency band.
  • the current protocol only defines the circumstances under which the transmission state of the RF chain needs to be switched when the terminal device switches between two frequency bands.
  • the terminal device needs to switch between at least three frequency bands, how the terminal device determines whether the transmission state of the RF chain needs to be switched becomes a technical problem that needs to be solved.
  • the present application provides a method for determining the switching of uplink transmission.
  • the terminal device supports uplink transmission switching on at least three frequency bands, the terminal device can clearly know whether it is necessary to switch the transmission state of the current radio frequency chain, thereby ensuring the transmission performance of uplink data.
  • the terminal device can clearly know the operation to be performed, thereby ensuring the transmission performance of uplink data.
  • the "RF chain” may also be replaced by TX , transmission chain (Tx chain), antenna, RF, transmission channel, transmission port, receiving channel or any combination thereof, which will not be described in detail below.
  • the “band” mentioned in the embodiments of the present application can also be understood as “frequency band”, “frequency point” and “spectrum”.
  • the component carrier (CC) also referred to as “carrier” in the present application can be understood as a carrier belonging to a certain frequency band.
  • carrier #1, carrier #2, carrier #3 and carrier #4 respectively represent different carriers in different frequency bands.
  • the first carrier, the second carrier, the third carrier and the fourth carrier respectively represent different carriers in different frequency bands.
  • the transmitting RF chain can also be understood as “sending”, “capable of transmitting”, “transmitting” or “capable of transmitting”.
  • the number of transmitting RF chains can be understood as “the number of sending”, “the number of capable of sending”, “the number of transmitting” or “the number of capable of transmitting”.
  • the number of transmitting RF chains can also be understood as “the number of layers", “the number of antenna layers” or “the number of channels”.
  • support can also be described as “can support”, or “is supported”, or “can be supported”; “simultaneously” can also be described as “can simultaneously”.
  • the “switch” (switch or switching) mentioned in the embodiments of the present application can also be understood as “conversion” or “antenna conversion” or “radio frequency conversion” or “radio frequency adjustment/re-adjustment”;
  • the “switching time” mentioned in the embodiments of the present application can also be understood as “carrier switching time”, “carrier conversion time”, “carrier conversion period (period or interval)” or “conversion interval (gap)”;
  • the “switching time” mentioned in the embodiments of the present application can also be referred to as “switching time in carrier switching preparation time (switching time)” or “switching time in switching preparation advance time (switching time)” or “switching period (switching period)”;
  • the “switching time” mentioned in the embodiments of the present application can also be referred to as "switching delay”.
  • port configuration may be the number of ports, port number, number of layers, or number of streams; it may also be a demodulation reference signal (DMRS) port, a sounding reference signal (SRS) port, a channel state information reference signal (CSI-RS) port, an antenna port, or a physical uplink shared channel (PUSCH) port/physical uplink control channel (PUCCH) port; it may also be the number of DMRS ports, the number of SRS ports, the number of antenna ports, or the number of PUSCH/PUCCH ports, etc.
  • DCI downlink control information
  • RRC radio resource control
  • the antenna port(s) contained in the DCI can also be indicated by the port(s)no or port index in the RRC signaling; it can also be indicated by the antenna port(s) contained in the DCI combined with the RRC signaling, and so on.
  • uplink data may include at least one of the following: PUSCH, PUCCH or an uplink signal (eg, SRS).
  • the terminal device supports uplink switching on at least three frequency bands or at least three carriers.
  • the terminal device can switch on frequency band #A, frequency band #B, and frequency band #C.
  • the terminal device can switch frequency bands on frequency band #A, frequency band #B, frequency band #C, and frequency band #D.
  • frequency band #A can be 3.5GHz
  • frequency band #B can be 2.1GHz
  • frequency band #C can be 1.8GHz
  • frequency band #D can be 700MHz/800MHz/900MHz, and so on.
  • the terminal device can switch on uplink on carrier #1, carrier #2, and carrier #3.
  • the terminal device can switch on carrier #1, carrier #2, carrier #3, and carrier #4.
  • transmission state can be interchangeably described.
  • “1 port transmission” can be understood as “1 antenna port transmission”, “1 port uplink transmission”, “1 antenna port uplink transmission”, etc.
  • “transmitting 1 RF chain” can be replaced by “sending 1 RF chain”.
  • last uplink transmission may be replaced by “previous uplink transmission” or “previous uplink transmission”, etc.
  • next uplink transmission may also be understood as “current uplink transmission” or “target uplink transmission”, etc.
  • last uplink transmission may also be understood as “current uplink transmission”.
  • Next uplink transmission may be alternatively described as “upcoming uplink transmission” or “target uplink transmission”, etc.
  • the last uplink transmission may also be understood as “the first uplink transmission” or “the first uplink transmission”.
  • the next uplink transmission may be alternatively described as “the second uplink transmission” or “the second uplink transmission”, etc.
  • “the first uplink transmission” is the uplink transmission before “the second uplink transmission”; compared with “the first uplink transmission”, “the first uplink transmission” is the uplink transmission before “the second uplink transmission”.
  • band pair can also be understood as “band switching pair”.
  • Band switching pair can be understood as the band before switching - the band after switching. For example, if the last uplink transmission of the terminal device was 1-port uplink transmission on band #A and band #B respectively, the next uplink transmission of the terminal device is 1-port uplink transmission on band #C and band #D respectively.
  • the "band switching pair” is: band #A ⁇ band #C, band #B ⁇ band #D.
  • the "band switching pair” is: Band #A ⁇ Band #D, Band #B ⁇ Band #C.
  • frequency band pair and “frequency band switching pair” mentioned in the present application refer to the frequency band switching pair involved in the transition from the first uplink transmission to the second uplink transmission.
  • the base station when the base station indicates data transmission for the terminal device, it can indicate the port configuration.
  • the terminal device needs to switch on at least three frequency bands, one or a kind of antenna port transmission configuration will exist in the transmission state of multiple RF chains. Therefore, in some cases, if the base station only indicates the port configuration, the terminal device is not sure whether it needs to switch the transmission state of the current RF chain, which affects the transmission performance of the uplink data of the terminal device.
  • the terminal device does not need to switch the transmission state of the RF chain.
  • the current port configuration and the port configuration of the uplink transmission of the terminal device in the next time slot indicated by the base station the corresponding transmission state of the RF chain of the terminal device changes, that is, the transmission state of multiple RF chains supports the port configuration indicated by the base station, and switching may also be required at this time.
  • the corresponding transmission state of the RF chain of the terminal device can be the same state or different states, that is, the transmission states of multiple RF chains all support the port configuration indicated by the base station.
  • switching is also required at this time.
  • Table 1 shows the transmission states of the RF chain that may exist if the terminal device supports uplink switching on three frequency bands, and the supported ("supported” can also be understood as "corresponding") port configurations under the transmission state of each RF chain.
  • Tx state #1 indicates that the terminal device supports transmission of 1 RF chain on frequency band #A (e.g., carrier #1 of frequency band #A) and frequency band #B (e.g., carrier #2 of frequency band #B), respectively, and no RF chain transmission on frequency band #C.
  • the terminal device can support 3 port configurations, namely: the terminal device performs 1 port transmission on carrier #1 of frequency band #A and carrier #2 of frequency band #B, respectively; the terminal device performs 1 port transmission on carrier #1 of frequency band #A; and the terminal device performs 1 port transmission on carrier #2 of frequency band #B.
  • performing 1-port transmission can also be understood as that the transmission of the terminal device on the carrier is 1-port transmission, or that 1-port transmission is performed on the carrier.
  • Tx state #6 indicates that the terminal device supports transmission of 2 RF chains on frequency band #C (for example, carrier #3 of frequency band #C).
  • the terminal device can support 2 port configurations, namely: 2-port transmission of the terminal device on carrier #3 of frequency band #C, and 1-port transmission of the terminal device on carrier #3 of frequency band #C.
  • the transmission states of other RF chains in Table 1 can be understood with reference to Tx state #1 and Tx state #6, and no examples are given one by one.
  • Table 1 can be rearranged to obtain Table 2.
  • the port configuration of "0P+0P+1P” corresponds to the Tx state #2, Tx state #3, and Tx state #6 of the terminal device
  • the port configuration of "1P+0P+0P” corresponds to the Tx state #1, Tx state #2, and Tx state #4 of the terminal device.
  • each port configuration can correspond to multiple transmission states of the RF chain, and in the above example, Tx state #2 supports both "0P+0P+1P" and "1P+0P+0P" port configurations. Therefore, under the above port configuration, the terminal device is not sure whether it needs to switch the transmission state of the current RF chain. In other words, under the above port configuration, the operations that the terminal device needs to perform are unclear. This will affect the transmission performance of uplink data on the terminal device.
  • the various specific configurations in the "last port configuration” and “next port configuration” in the above Table 2 can also be interchanged.
  • the "last port configuration” can be “1P+0P+0P”
  • the corresponding "next port configuration” can be “0P+0P+1P”.
  • the "last port configuration” can be "1P+0P+1P”
  • the corresponding "next port configuration” can be "0P+1P+0P”.
  • the "last port configuration” can be "0P+1P+0P”
  • the corresponding "next port configuration” can be "0P+0P+1P”. In this case, the above-mentioned problem also exists.
  • the following embodiment provides a method for determining switching uplink transmission, which can enable the terminal device to clearly identify the operation to be performed, thereby ensuring uplink data transmission performance.
  • the technical solution provided by the present application is described in detail below.
  • FIG2 is a schematic flow chart of a method 200 for determining switching uplink transmission provided by the present application. The steps shown in FIG2 are described below. It should be noted that the steps indicated by dotted lines in FIG2 are optional and will not be described in detail in the following text.
  • the method includes:
  • the network device sends a first radio resource control signaling (radio resource control, RRC) to the terminal device.
  • RRC radio resource control
  • the first RRC signaling indicates at least one of the first option or the second option. That is, the first RRC signaling indicates that the terminal device is configured as at least one of the first option, the second option, or the third option.
  • the first RRC signaling indicates that the terminal device is configured as the second option or the third option.
  • the second option indicates that the terminal device is dual uplink transmission (dual uplink, dual UL) or concurrent uplink transmission (concurrent UL, or 1Tx+1Tx). It can also be understood that the terminal device can use dual channels for uplink transmission.
  • the first option indicates that the terminal device is switched uplink transmission (switched uplink) or single uplink transmission (single uplink).
  • the third option indicates that the terminal device has both switched uplink transmission and dual uplink transmission (switched uplink and dual uplink).
  • uplink transmission can also be understood as “uplink transmission”.
  • Switching uplink transmission can also be understood as “switching uplink” or “switching transmission”.
  • Dual uplink transmission can also be understood as “dual uplink” or “concurrent transmission”.
  • Step 202 The terminal device determines whether the uplink transmission is dual uplink transmission or concurrent uplink transmission.
  • the terminal device may receive a first RRC signaling from the network device, and determine, based on the first RRC signaling, whether the uplink transmission is a dual uplink transmission or a concurrent uplink transmission.
  • step 203 is included, and the network device sends a second RRC signaling to the terminal device.
  • the second RRC signaling indicates that the terminal device is configured to perform uplink switching on at least three frequency bands or at least three carriers.
  • the second RRC signaling may indicate at least three frequency bands capable of uplink transmission switching, or the second RRC signaling may indicate at least three carriers capable of uplink transmission switching.
  • the second RRC signaling may also indicate the number of RF chains supported or the maximum number of RF chains on at least three frequency bands (or at least three carriers). The number of RF chains may be configured per band or per serving cell for one frequency band.
  • step 201 and step 203 can be performed simultaneously.
  • the first RRC signaling and the second RRC signaling can be sent in the same message (for example, the first message).
  • the first message contains two information blocks, namely the first RRC signaling and second RRC signaling.
  • the second RRC signaling indicates that the terminal device is configured to perform uplink switching on three frequency bands.
  • the second RRC signaling indicates that the terminal device is configured to perform uplink switching on four frequency bands.
  • the second RRC signaling indicates that the terminal device is configured to perform uplink switching on three carriers.
  • the second RRC signaling indicates that the terminal device is configured to perform uplink switching on four carriers.
  • the second RRC signaling instructs the terminal device to perform 2Tx transmission in the 2.6G Hz band, the 4.9G Hz band, and the F band, respectively. Specifically, it can be 2.6G Hz 160MHz@2T+4.9G 160MHz@2T+F 30MHz@2T.
  • the second RRC signaling instructs the terminal device to perform 2Tx transmission in the 2.6G Hz band and the 4.9G Hz band, respectively, and to perform 1Tx transmission in the F band and the A band, respectively.
  • it can be FSA 2.6G 160MHz@2T+4.9G 160MHz@2T+(F 30MHz@1T+A 15MHz@1T).
  • Step 204 The terminal device determines to perform uplink switching on at least three frequency bands or at least three carriers.
  • the terminal device receives a second RRC signaling from the network device, and determines, based on the second RRC signaling, that uplink switching can be performed on three frequency bands or at least three carriers.
  • the terminal device receives a second RRC signaling from the network device, and determines, based on the second RRC signaling, that switching can be performed on four frequency bands or at least four carriers.
  • the terminal device needs to ensure that there is at least 500 microseconds, or 14 symbols and the subcarrier spacing is 30KHz between two adjacent switches.
  • the terminal device can report the interval requirement through capability reporting information.
  • the interval requirement is reported when the sum of the RF chains of each band of the three-band or four-band is greater than a certain threshold value.
  • the threshold value is 5Tx.
  • the above second RRC signaling instructs the terminal device to perform 2Tx transmission in the 2.6G Hz band, 4.9G Hz band, and F band respectively. There are a total of 6Tx transmissions in these three bands. If the UE capability is to only perform dynamic uplink transmission switching within 5Tx transmission, that is, then the terminal device needs to report the interval requirement.
  • the second RRC signaling instructs the terminal device to perform 2Tx transmission in the 2.6G Hz band and the 4.9G Hz band, and 1Tx transmission in the F band and the A band respectively.
  • These four frequency bands have a total of 6Tx transmissions.
  • the terminal device If the terminal device is capable of dynamic uplink transmission switching only within 5Tx transmission, that is, then the terminal device needs to report the interval requirement. Therefore, it is ensured that when the transmission capacity of the terminal device's dynamic switching is exceeded, effective switching between multiple frequency bands can still be performed.
  • the terminal device can report a more conservative capability value. For example, it is necessary to ensure that there is at least 1000 microseconds between two adjacent switches, or 14 symbols and the subcarrier spacing is 15KHz. While reporting the interval requirement through the capability reporting information, the terminal device can report the allowed threshold value.
  • the threshold value is the maximum value of the sum of the RF chains of each frequency band supported when switching the carrier for dynamic uplink transmission between three or four frequency bands.
  • the network device sends first information to the terminal device.
  • the first information indicates a first port configuration of the terminal device for performing a first uplink transmission within a first time unit.
  • the first information includes at least one first port configuration.
  • Each of the at least one first port configuration is used for the first uplink transmission of the terminal device within the first time unit.
  • each of the at least one first port configuration is used for the first uplink transmission of the terminal device within the first time unit.
  • each of the at least one first port configuration is used for the first uplink transmission of the terminal device within the first time unit.
  • each of the at least one first port configuration is used for the first uplink transmission of the terminal device.
  • the first information can be sent through downlink control information (downlink control information, DCI) in combination with radio resource control (radio resource control, RRC) signaling, or sent only through DCI signaling, or sent only through RRC signaling, without limitation.
  • DCI downlink control information
  • RRC radio resource control
  • Step 206 The terminal device determines the first port configuration.
  • the first port is configured for a first uplink transmission.
  • first port configurations there may be one or more first port configurations, and there may also be one or more first uplink transmissions. Furthermore, at least one first port configuration is used for at least one first uplink transmission. At least one first uplink transmission corresponds one-to-one to at least one first port configuration.
  • the terminal device determines at least one first port configuration for performing at least one first uplink transmission within a first time unit.
  • the terminal device may receive first information from the network device, and determine a first port configuration for performing a first uplink transmission within a first time unit.
  • Step 206 can also be understood as the terminal device determining the port configuration during the last or current uplink transmission.
  • the network device sends second information to the terminal device.
  • the second information indicates a second port configuration for the terminal device to perform a second uplink transmission within a second time unit.
  • the second information includes at least one second port configuration.
  • Each second port configuration in the at least one second port configuration is used for the terminal device to perform a second uplink transmission in the second time unit.
  • each second port configuration in the at least one second port configuration is used for the terminal device to perform a second uplink transmission in the second time unit.
  • Each second port configuration is used for the second uplink transmission of the terminal device within the second time unit.
  • each second port configuration in the at least one second port configuration is used for the second uplink transmission of the terminal device.
  • the second information may be sent through DCI combined with RRC signaling, or sent only through DCI signaling, or sent only through RRC signaling, without limitation.
  • step 205 and step 207 can be performed simultaneously.
  • step 201, step 203, step 205 and step 207 can be performed simultaneously.
  • the specific implementation method can refer to the relevant description in step 203, which will not be repeated. It can also be understood that the execution order of any one of step 201, step 203, step 205 and step 207 is not limited.
  • Step 208 The terminal device determines the second port configuration.
  • the second port is configured for second uplink transmission.
  • the terminal device determines at least one second port configuration for performing at least one second uplink transmission within a second time unit.
  • the terminal device may receive second information from the network device, and determine a second port configuration for performing a second uplink transmission within a second time unit.
  • Step 208 can also be understood as the terminal device determining the port configuration for the current or next uplink transmission.
  • step 208 is for the terminal device to determine the port configuration for the current uplink transmission.
  • step 208 is for the terminal device to determine the port configuration for the next uplink transmission.
  • step 206 is the terminal device determining the port configuration for the last uplink transmission
  • step 208 is the terminal device determining the port configuration for the next uplink transmission.
  • the "last" and “next" uplink transmissions are two adjacent uplink transmissions, or two uplink transmissions that are sequential on the time axis.
  • the first time unit is earlier than the second time unit, which can be understood as: the first time unit and the second time unit are time units with a sequence, or the first time unit is the previous time unit. That is, relative to the second time unit, the first time unit is an earlier time unit.
  • the first time unit and the second time unit can be adjacent time units.
  • the first time unit and the second time unit may not be adjacent, but the first time unit is the time unit before the second time unit.
  • the first uplink transmission is the uplink transmission before the second uplink transmission. This application does not impose any restrictions on this.
  • a "time unit” may be, for example, one or more radio frames, one or more subframes, one or more time slots, one or more micro-time slots, one or more symbols, etc.
  • a symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing (DFT-S-OFDM) symbol, etc.
  • a time unit may also be 1 second ("s") or multiple seconds, 1 millisecond (“ms”) or multiple milliseconds, etc.
  • the first time unit is time slot #1
  • the second time unit is time slot #2.
  • the first time unit may be the second symbol in time slot #3
  • the second time unit may be the fourth symbol in time slot #4, and so on.
  • Step 209 According to the first port configuration and the second port configuration, the terminal device performs the first operation, or according to the first port configuration, the second port configuration, and the transmission state of the first uplink transmission, the terminal device performs the first operation.
  • Step 209 can also be understood as the terminal device performing the first operation according to the port configuration during the last uplink transmission and the port configuration during the next uplink transmission (in some cases, it is also necessary to combine the last uplink transmission status).
  • the terminal device performs the first operation can be alternatively described as one of the following.
  • the terminal device does not expect to perform uplink data transmission within the switching time required to switch from the first uplink transmission to the second uplink transmission.
  • the terminal device does not expect to perform uplink data transmission on at least three carriers within the switching time required to switch from the first uplink transmission to the second uplink transmission, wherein the at least three carriers respectively belong to (“belong to” can also be understood as "located in") at least three frequency bands (that is, at least three carriers and at least three frequency bands are in a one-to-one correspondence).
  • the terminal device determines to switch the transmission state of the RF chain when performing the second uplink transmission within the second time unit.
  • the terminal device determines that switching is required from the first uplink transmission to the second uplink transmission. For another example, the terminal device determines to switch before performing the second uplink transmission. For example, the terminal device determines the switching time required to switch from the first uplink transmission to the second uplink transmission. For another example, the terminal device determines not to perform uplink data transmission within the switching time required to switch from the first uplink transmission to the second uplink transmission. For another example, the terminal device determines not to perform uplink data transmission on at least three carriers during the switching time required for switching from the first uplink transmission to the second uplink transmission, wherein the at least three carriers belong to at least three frequency bands respectively.
  • the terminal device determines that within the switching time required for switching from the first uplink transmission to the second uplink transmission, No uplink data transmission is performed on the carrier involved in the switching. Among them, the terminal device performs uplink data transmission on the carrier not involved in the switching among at least three carriers. According to the terminal device capability, when the terminal device supports that during the switching process of one RF chain, another RF chain can operate independently without being affected by the other, the terminal device may not perform uplink data transmission only on the carrier involved in the switching.
  • the terminal device determines that within the switching time required to switch between the first uplink transmission and the second uplink transmission, uplink data transmission is not performed within the corresponding switching time on the carrier involved in the switching among the at least three carriers. Among them, the terminal device performs uplink data transmission on the carrier not involved in the switching among the at least three carriers. According to the terminal device capability, when the terminal device supports that during the switching process of one RF chain, another RF chain can operate independently without being affected by the other party, the terminal device may not perform uplink data transmission only within the corresponding switching time on the carrier involved in the switching.
  • a terminal device switches from a carrier of frequency band #A to a carrier of frequency band #B, a first switching time is required, and when a terminal device switches from a carrier of frequency band #C to a carrier of frequency band #D, a second switching time is required.
  • a terminal device switches from 1 port transmission of frequency band #A and 1 port transmission of frequency band #C to 1 port transmission of frequency band #B and 1 port transmission of frequency band #D, if the switching is from frequency band #A to frequency band #B, and from frequency band #C to frequency band #D, then the terminal device does not perform uplink transmission within the first switching time from the carrier of frequency band #A to the carrier of frequency band #B; and the terminal device does not perform uplink transmission within the second switching time from the carrier of frequency band #C to the carrier of frequency band #D.
  • the first switching time and the second switching time can be the same value or different values. When the first switching time and the second switching time are different, within the time range of the difference between the two, one RF chain can transmit and the other RF chain cannot transmit.
  • the first switching time is greater than the second switching time. Then, before the terminal device completes the switching from the carrier of frequency band #C to the carrier of frequency band #D, the terminal device has already completed the switching from the carrier of frequency band #C to the carrier of frequency band #D. Therefore, the uplink transmission on the carrier of frequency band #D can be started earlier.
  • a first switching time is required, and when the terminal device switches from the carrier of frequency band #C to the carrier of frequency band #D, a third switching time is required, and when the terminal device switches from the carrier of frequency band #A to the carrier of frequency band #D, a fourth switching time is required.
  • the terminal device switches from 1 port transmission of frequency band #A and 1 port transmission of frequency band #C to 1 port transmission of frequency band #B and 1 port transmission of frequency band #D, if the switching is from frequency band #A to frequency band #D, and from frequency band #C to frequency band #B, the terminal device does not perform uplink transmission during the third switching time from the carrier of frequency band #A to the carrier of frequency band #D; and the terminal device does not perform uplink transmission during the fourth switching time from the carrier of frequency band #C to the carrier of frequency band #B.
  • the third switching time and the fourth switching time can be the same value or different values. When the third switching time is different from the fourth switching time, within the time range of the difference between the two, one RF chain can transmit and the other RF chain cannot transmit.
  • the terminal device has completed the switching from the carrier of frequency band #C to the carrier of frequency band #B, and thus can start the uplink transmission on the carrier of frequency band #B earlier.
  • the terminal device switches from 1 port transmission of band #A and 1 port transmission of band #C to 1 port transmission of band #B and 1 port transmission of band #D, if it cannot be determined whether the switching is from band #A to band #D and from band #C to band #B, or from band #A to band #B and from band #C to band #D, then the terminal device does not perform uplink transmission within Max ⁇ first switching time, second switching time, third switching time, fourth switching time ⁇ . That is, the terminal device does not perform uplink transmission within the maximum value of the above four switching times.
  • the network device performs uplink scheduling transmission, it also follows this principle and does not perform uplink scheduling transmission within Max ⁇ first switching time, second switching time, third switching time, fourth switching time ⁇ .
  • the terminal device determines whether the first condition is satisfied, and if the terminal device determines that the first condition is satisfied, the terminal device performs a first operation.
  • the "first condition" at least includes any possible implementation method of any one of the following various implementation schemes.
  • the terminal device performs the first operation, which can specifically include the following schemes.
  • Various implementation schemes of this embodiment are specifically introduced below.
  • the terminal device can clearly need to perform the first operation based on the first port configuration and the second port configuration.
  • the terminal device can clearly need to perform the first operation based on the first port configuration, the second port configuration, and the transmission state within the first time unit.
  • a first carrier of a first frequency band for example, carrier #1 of frequency band #A
  • a second carrier of a second frequency band for example, carrier #2 of frequency band #B
  • a third carrier of a third frequency band for example, carrier #3 of frequency band #C
  • a fourth carrier of a fourth frequency band for example, carrier #4 of frequency band #D
  • carrier #4 the following is an example of carrier #4.
  • the uplink transmission to be performed by the terminal device is "1P+0P+0P”. It can also be understood that if the last uplink transmission of the terminal device is 1-port transmission on carrier #3 of frequency band #C, the terminal device is about to perform 1-port transmission on carrier #1 of frequency band #A.
  • Table 3 The transmission status of the corresponding RF chain under this port configuration is shown in Table 3 below.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation if the terminal device is in a transmission state where it cannot simultaneously transmit on carrier #1 of frequency band #A and carrier #3 of frequency band #C during the last uplink transmission.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the transmission state of the last uplink transmission is Tx state #3.
  • the terminal device needs to perform the first operation.
  • Tx state #3 switches to Tx state #1.
  • Tx state #3 switches to Tx state #2.
  • Tx state #3 switches to Tx state #4.
  • the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device is in a transmission state where 2-port transmission can be performed simultaneously on carrier #3 of frequency band #C during the last uplink transmission, the terminal device performs the first operation. Or it can also be described as follows: if the terminal device determines that the terminal device is in a carrier that can transmit simultaneously during the last uplink transmission and is located in the third frequency band, the terminal device performs the first operation. For example, the transmission state of the last uplink transmission is Tx state #6.
  • Tx state #6 switches to Tx state #1.
  • Tx state #6 switches to Tx state #2.
  • Tx state #6 switches to Tx state #4.
  • method 1 can also be understood as, if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is not Tx state #2, then the terminal device can clearly need to perform the first operation.
  • method 1 can also be understood as, the terminal device determines that the transmission state of the RF chain corresponding to the first port configuration is the first set (for example, the first set is ⁇ Tx state #2, Tx state #3, Tx state #6 ⁇ ), and the terminal device determines that the transmission state of the RF chain corresponding to the second port configuration is the second set (for example, the first set is ⁇ Tx state #1, Tx state #2, Tx state #4 ⁇ ); the terminal device determines that the intersection of the first set and the second set is the transmission state of the first RF chain (for example, Tx state #2) according to the first set and the second set, and determines that the transmission state in the first time unit is not the transmission state of the first RF chain, then the terminal device performs the first operation (or the transmission
  • the transmission states corresponding to the last port configuration of the terminal device in Mode 1 are Tx state #3 and Tx state #6, and the transmission states corresponding to the next port configuration are Tx state #1, Tx state #2, and Tx state #4. Therefore, in Mode 1, for the next port configuration, the terminal device needs to perform the first operation.
  • the terminal device If the transmission state of the RF chain during the last uplink transmission of the terminal device is to support 1-port transmission on carrier #1 of frequency band #A and carrier #3 of frequency band #C simultaneously (i.e., Tx state #2), at this time, the terminal device also needs to determine whether to perform the first operation based on the transmission state of the RF chain during the next uplink transmission.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 1-port transmission on carrier #1 of frequency band #A and carrier #2 of frequency band #B, the terminal device performs the first operation. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which simultaneous transmission can be performed on carrier #1 of frequency band #A and carrier #2 of frequency band #B, the terminal device performs the first operation. For example, Tx state #2 switches to Tx state #1.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 2-port transmission on carrier #1 of frequency band #A. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which 2-port transmission can be performed simultaneously on carrier #1 of frequency band #A, the terminal device determines to perform the first operation. For example, Tx state #2 switches to Tx state #4.
  • the above-mentioned method 2 can also be understood as, if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is Tx state #2, the terminal device also needs to combine the transmission state of the RF chain during the next uplink transmission (that is, the transmission state within the second time unit) to determine whether the first operation needs to be performed. As shown in Table 5 below, under method 2, the transmission state corresponding to the last port configuration of the terminal device is Tx state #2. If the terminal device determines that the transmission state corresponding to the next port configuration is Tx state #1 or Tx state #4, the terminal device performs the first operation at this time. It should be understood that method 2 in each of the following implementation schemes can be understood similarly.
  • the uplink transmission to be performed by the terminal device is "0P+0P+1P". It can also be understood that the last uplink transmission of the terminal device was 1-port transmission on carrier #1 of frequency band #A, and if the terminal device is about to perform 1-port transmission on carrier #3 of frequency band #C.
  • Table 6 The transmission status of the corresponding RF chain under this port configuration is shown in Table 6 below.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation if the terminal device is in a transmission state where it cannot simultaneously transmit on carrier #1 of frequency band #A and carrier #3 of frequency band #C during the last uplink transmission.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation. For example, if the transmission state of the RF chain during the last uplink transmission is Tx state #1, the terminal device performs the first operation.
  • the terminal device determines the switching behavior. Alternatively, it can be described as follows: if the transmission state of the RF chain during the last uplink transmission of the terminal device is to support 2-port transmission on carrier #3 of frequency band #C, the terminal device determines the switching behavior. Alternatively, it can be described as follows: if the transmission state of the RF chain during the last uplink transmission of the terminal device is to support 2-port transmission on carrier #3 of frequency band #C, the terminal device determines the switching behavior. Alternatively, it can be described as follows: if the terminal device is in a transmission state where 2-port transmission can be performed simultaneously on carrier #3 of frequency band #C during the last uplink transmission, the terminal device determines the switching behavior.
  • the terminal device determines that the carrier capable of simultaneous transmission of the terminal device is located in the first frequency band during the last uplink transmission, the terminal device performs the first operation. For example, when the transmission state of the RF chain is Tx state #4 during the last uplink transmission, the terminal device performs the first operation.
  • the above-mentioned method 1 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is not Tx state #2, then the terminal device can clearly know that it needs to perform the first operation. As shown in Table 7 below, the transmission states corresponding to the last port configuration of the terminal device under method 1 are Tx state #1 and Tx state #4, and the transmission states corresponding to the next port configuration are Tx state #2, Tx state #3, and Tx state #6. Therefore, in method 1, for the next port configuration, the terminal device needs to perform the first operation.
  • the terminal device needs to determine whether to perform the first operation based on the transmission state of the RF chain during the next uplink transmission. For example, if the transmission state of the RF chain during the last uplink transmission is Tx state #2, the terminal device needs to determine whether to perform the first operation based on the transmission state of the RF chain during the next uplink transmission.
  • the terminal device determines that the state of the RF chain at the next uplink transmission is to support 1-port transmission on carrier #2 of frequency band #B and carrier #3 of frequency band #C at the same time, the terminal device performs the first operation. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which it can simultaneously transmit on carrier #2 of frequency band #B and carrier #3 of frequency band #C, the terminal device performs the first operation. For example, when the transmission state of the RF chain at the next uplink transmission is Tx state #3, the terminal device performs the first operation.
  • the terminal device determines that the state of the RF chain at the next uplink transmission is to support simultaneous 2-port transmission on carrier #3 of frequency band #C. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which 2-port transmission can be performed simultaneously on carrier #3 of frequency band #C, the terminal device determines to perform the first operation. For example, when the transmission state of the RF chain at the next uplink transmission is Tx state #6, the terminal device performs the first operation.
  • the above-mentioned method 2 can also be understood as, if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is Tx state #2, the terminal device also needs to combine the transmission state of the RF chain during the next uplink transmission (that is, the transmission state within the second time unit) to determine whether the first operation needs to be performed. As shown in the following Table 8, under method 2, the transmission state corresponding to the last port configuration of the terminal device is Tx state #2. If the terminal device determines that the transmission state corresponding to the next port configuration is Tx state #3 or Tx state #6, the terminal device performs the first operation at this time.
  • the uplink transmission to be performed by the terminal device is "1P+0P+0P”. It can also be understood that if the last uplink transmission of the terminal device is 1-port transmission on carrier #2 of frequency band #B, the terminal device is about to perform 1-port transmission on carrier #1 of frequency band #A.
  • Table 9 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation if the terminal device is in a transmission state where it cannot simultaneously transmit on carrier #1 of frequency band #A and carrier #2 of frequency band #B during the last uplink transmission.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • Tx state #3 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of band #B and carrier #3 of band #C during the last uplink transmission, the terminal device performs the first operation.
  • Tx state #3 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of band #B and carrier #3 of band #C during the last uplink transmission, the terminal device performs the first operation.
  • Tx state #3 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of band #B and carrier #3 of band #C during the last uplink transmission, the terminal device performs the first operation.
  • Tx state #3 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of band #B and carrier #3 of band #C during the last uplink transmission, the terminal device performs the first
  • the terminal device determines the switching behavior. Or it can also be described as follows: if the transmission state of the RF chain during the last uplink transmission of the terminal device is to support 2-port transmission on carrier #2 of frequency band #B, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device was in a transmission state capable of simultaneous 2-port transmission on carrier #2 of frequency band #B during the last uplink transmission, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device determines that the terminal device was in a state where the carrier capable of simultaneous transmission was located in the second frequency band during the last uplink transmission, the terminal device performs the first operation. For example, Tx state #5 ⁇ Tx state #1, Tx state #5 ⁇ Tx state #2, Tx state #5 ⁇ Tx state #4.
  • the above method 1 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is not Tx state #1, the terminal device can clearly need to perform the first operation.
  • the following table 10 shows the transmission state corresponding to the last uplink transmission and the transmission state corresponding to the downlink and uplink transmission in method 1.
  • the terminal device If the transmission state of the RF chain during the last uplink transmission of the terminal device is to support simultaneous 1-port transmission on carrier #1 of frequency band #A and carrier #2 of frequency band #B, at this time, the terminal device also needs to determine whether to perform the first operation based on the transmission state of the RF chain during the next uplink transmission.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 1-port transmission on carrier #1 of frequency band #A and carrier #3 of frequency band #C. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which simultaneous transmission can be performed on carrier #1 of frequency band #A and carrier #3 of frequency band #C, the terminal device performs the first operation. For example, Tx state #1 ⁇ Tx state #2.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 2-port transmission on carrier #1 of frequency band #A. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which 2-port transmission can be performed simultaneously on carrier #1 of frequency band #A, the terminal device determines to perform the first operation. For example, Tx state #1 ⁇ Tx state #4.
  • the above-mentioned method 2 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is Tx state #1, the terminal device also needs to combine the transmission state of the RF chain during the next uplink transmission (i.e., the transmission state within the second time unit) to determine whether the first operation needs to be performed.
  • the following table 11 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the uplink transmission to be performed by the terminal device is "0P+1P+0P”. It can also be understood that if the last uplink transmission of the terminal device is 1-port transmission on carrier #1 of frequency band #A, the terminal device is about to perform 1-port transmission on carrier #2 of frequency band #B.
  • the following table 12 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation if the terminal device is in a transmission state where it cannot simultaneously transmit on carrier #1 of frequency band #A and carrier #2 of frequency band #B during the last uplink transmission.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • Tx state #2 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of frequency band #B and carrier #3 of frequency band #C during the last uplink transmission, the terminal device performs the first operation.
  • Tx state #2 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of frequency band #B and carrier #3 of frequency band #C during the last uplink transmission, the terminal device performs the first operation.
  • Tx state #2 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of frequency band #B and carrier #3 of frequency band #C during the last uplink transmission, the terminal device performs the first operation.
  • Tx state #2 ⁇ Tx state #1 if the terminal device is in a transmission state that can simultaneously perform 1-port transmission on carrier #2 of frequency band #B and carrier #3 of frequency band #C during the last uplink
  • the terminal device determines the switching behavior. Or it can also be described as follows: if the transmission state of the RF chain during the last uplink transmission of the terminal device is to support 2-port transmission on carrier #2 of frequency band #B, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device was in a transmission state capable of simultaneous 2-port transmission on carrier #2 of frequency band #B during the last uplink transmission, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device determines that the terminal device was in a carrier capable of simultaneous transmission in the first frequency band during the last uplink transmission, the terminal device performs the first operation. For example, Tx state #4 ⁇ Tx state #1. For another example, Tx state #4 ⁇ Tx state #3. For another example, Tx state #4 ⁇ Tx state #5.
  • the above method 1 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is not Tx state #1, the terminal device can clearly need to perform the first operation.
  • the following table 13 shows the transmission state corresponding to the last uplink transmission and the transmission state corresponding to the downlink and uplink transmission in method 1.
  • the terminal device If the transmission state of the RF chain during the last uplink transmission of the terminal device is to support simultaneous 1-port transmission on carrier #1 of frequency band #A and carrier #2 of frequency band #B, at this time, the terminal device also needs to determine whether to perform the first operation based on the transmission state of the RF chain during the next uplink transmission.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 1-port transmission on carrier #2 of frequency band #B and carrier #3 of frequency band #C. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which simultaneous transmission can be performed on carrier #2 of frequency band #B and carrier #3 of frequency band #C, the terminal device performs the first operation. For example, Tx state #1 ⁇ Tx state #3.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 2-port transmission on carrier #2 of frequency band #B, the terminal device performs the first operation. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which 2-port transmission can be performed simultaneously on carrier #2 of frequency band #B, the terminal device determines to perform the first operation. For example, Tx state #1 ⁇ Tx state #5.
  • the above-mentioned method 2 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is Tx state #1, the terminal device also needs to combine the transmission state of the RF chain during the next uplink transmission (i.e., the transmission state within the second time unit) to determine whether the first operation needs to be performed.
  • the following table 14 shows the transmission state corresponding to the last uplink transmission and the transmission state corresponding to the downlink and uplink transmission in method 2.
  • the terminal device's upcoming uplink transmission Input is "0P+1P+0P”. It can also be understood that if the terminal device's last uplink transmission was 1-port transmission on carrier #3 of band #C, the terminal device is about to perform 1-port transmission on carrier #2 of band #B.
  • the following table 15 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation if the terminal device is in a transmission state where it cannot simultaneously transmit on carrier #2 of frequency band #B and carrier #3 of frequency band #C during the last uplink transmission.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation. Or it can also be described as follows: if the transmission state of the RF chain during the last uplink transmission of the terminal device is to support simultaneous 1-port transmission on carrier #1 of band #A and carrier #3 of band #C, the terminal device performs the first operation. Or it can also be described as follows: if the terminal device is in a transmission state that supports simultaneous 1-port transmission on carrier #1 of band #A and carrier #3 of band #C during the last uplink transmission, the terminal device performs the first operation. For example, Tx state #2 ⁇ Tx state #1. For another example, Tx state #2 ⁇ Tx state #3. For another example, Tx state #2 ⁇ Tx state #5.
  • the terminal device determines the switching behavior. Or it can also be described as follows: if the transmission state of the RF chain during the last uplink transmission of the terminal device is to support 2-port transmission on carrier #3 of frequency band #C, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device was in a transmission state capable of simultaneous 2-port transmission on carrier #3 of frequency band #C during the last uplink transmission, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device determines that the terminal device was in a carrier capable of simultaneous transmission in the third frequency band during the last uplink transmission, the terminal device performs the first operation. For example, Tx state #6 ⁇ Tx state #1. For another example, Tx state #6 ⁇ Tx state #3. For another example, Tx state #6 ⁇ Tx state #5.
  • the above method 1 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is not Tx state #3, the terminal device can clearly know that it needs to perform the first operation.
  • the following table 16 shows the transmission state corresponding to the last uplink transmission and the transmission state corresponding to the downlink and uplink transmission in method 1.
  • the terminal device If the transmission state of the RF chain during the last uplink transmission of the terminal device is to support simultaneous 1-port transmission on carrier #1 of frequency band #A and carrier #3 of frequency band #C, at this time, the terminal device also needs to determine whether to perform the first operation based on the transmission state of the RF chain during the next uplink transmission.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 1-port transmission on carrier #1 of frequency band #A and carrier #3 of frequency band #C, the terminal device performs the first operation. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which simultaneous transmission can be performed on carrier #1 of frequency band #A and carrier #3 of frequency band #C, the terminal device performs the first operation.
  • Tx state #3 Tx state #1.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 2-port transmission on carrier #2 of frequency band #B, the terminal device performs the first operation. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which 2-port transmission can be performed simultaneously on carrier #2 of frequency band #B, the terminal device determines to perform the first operation. For example, Tx state #3 ⁇ Tx state #5.
  • the above method 2 can also be understood as follows: if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is Tx state #3, the terminal device also needs to combine the transmission state of the RF chain during the next uplink transmission (that is, the transmission state within the second time unit) to determine
  • the following table 17 shows the transmission status corresponding to the last uplink transmission and the transmission status corresponding to the downlink and uplink transmission in mode 2.
  • the present application proposes: when the port of the last uplink transmission of the terminal device is configured to perform uplink transmission of port 1 or port 2 on one frequency band, and the port of the next uplink transmission is configured to perform uplink transmission of port 1 on another frequency band, it can also be understood that when the last uplink transmission and the next uplink transmission do not have a shared frequency band (overlapped band), the terminal device can clearly determine whether switching (or whether data transmission needs to be interrupted) is required under the port configuration in this situation, so as to ensure the transmission performance of the uplink data.
  • the uplink transmission to be performed by the terminal device is "0P+0P+1P". It can also be understood that if the last uplink transmission of the terminal device is 1-port transmission on carrier #2 of frequency band #B, the terminal device is about to perform 1-port transmission on carrier #3 of frequency band #C.
  • the following table 18 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation if the terminal device is in a transmission state where it cannot simultaneously transmit on carrier #2 of frequency band #B and carrier #3 of frequency band #C during the last uplink transmission.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • the terminal device performs the first operation.
  • Tx state #1 ⁇ Tx state #3 For another example, Tx state #1 ⁇ Tx state #2.
  • the terminal device determines the switching behavior. Or it can also be described as follows: if the transmission state of the RF chain during the last uplink transmission of the terminal device is to support 2-port transmission on carrier #2 of frequency band #B, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device was in a transmission state capable of simultaneous 2-port transmission on carrier #2 of frequency band #B during the last uplink transmission, the terminal device determines the switching behavior. Or it can also be described as follows: if the terminal device determines that the terminal device was in a state where the carrier capable of simultaneous transmission was located in the second frequency band during the last uplink transmission, the terminal device performs the first operation. For example, Tx state #5 ⁇ Tx state #3. For another example, Tx state #5 ⁇ Tx state #2. For another example, Tx state #5 ⁇ Tx state #6.
  • the above method 1 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is not Tx state #2, the terminal device can clearly know that it needs to perform the first operation.
  • the following table 19 shows the transmission state corresponding to the last uplink transmission and the transmission state corresponding to the downlink and uplink transmission in method 1.
  • the terminal device also needs to determine whether to perform the first operation based on the transmission status of the RF chain during the next uplink transmission.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 1-port transmission on carrier #2 of frequency band #B and carrier #3 of frequency band #C. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which simultaneous transmission can be performed on carrier #2 of frequency band #B and carrier #3 of frequency band #C, the terminal device performs the first operation. For example, Tx state #3 ⁇ Tx state #2.
  • the terminal device determines that the state of the RF chain during the next uplink transmission is to support simultaneous 2-port transmission on carrier #3 of frequency band #C. It can also be described as follows: if the terminal device determines that the next uplink transmission is in a transmission state in which 2-port transmission can be performed simultaneously on carrier #3 of frequency band #C, the terminal device determines to perform the first operation. For example, Tx state #3 ⁇ Tx state #6.
  • the above-mentioned method 2 can also be understood as that if the terminal device determines that the transmission state of the RF chain during the previous uplink transmission is Tx state #3, the terminal device also needs to combine the transmission state of the RF chain during the next uplink transmission (i.e., the transmission state within the second time unit) to determine whether the first operation needs to be performed.
  • the following table 20 shows the transmission state corresponding to the last uplink transmission and the transmission state corresponding to the downlink and uplink transmission in method 2.
  • the present application proposes that the terminal device can clarify the operation status and ensure the transmission performance of the uplink data based on the port configuration of the last uplink transmission, the port configuration of the next uplink transmission, and the transmission status of the last uplink transmission.
  • the terminal device also needs to combine the transmission status of the next uplink transmission to clarify the operation status, thereby ensuring the transmission performance of the uplink data.
  • the port configuration of the last uplink transmission of the terminal device is "0P+1P+1P"
  • the port configuration of the upcoming uplink transmission of the terminal device is "1P+0P+0P” or "2P+0P+0P”.
  • the terminal device performs the first operation. For example, Tx state #3 ⁇ Tx state #4.
  • Table 21 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the present application proposes: when the transmission state corresponding to the port configuration of the last uplink transmission of the terminal device is to perform uplink transmission of port 1 on two different frequency bands respectively, and the transmission state corresponding to the port configuration of the next uplink transmission is to perform uplink transmission of port 2 on another frequency band. That is, when the last uplink transmission and the next uplink transmission do not have a shared frequency band (overlapped band), the terminal device can clarify the operation state and ensure the transmission performance of the uplink data.
  • the port configuration of the last uplink transmission of the terminal device is "1P+0P+0P" or "2P+0P+0P"
  • the port configuration of the upcoming uplink transmission of the terminal device is "0P+1P+1P”.
  • the terminal device performs the first operation. For example, Tx state #4 ⁇ Tx state #3.
  • Table 22 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the above schemes D1 and D2 can also be understood as that the second port configuration corresponds to at least one transmission state, wherein if the at least one transmission state is different from the at least one transmission state corresponding to the first port configuration, the terminal device performs the first operation.
  • the following implementation schemes E1, E2, F1, F2, G1, and G2 can also be understood similarly.
  • the port configuration of the last uplink transmission of the terminal device is "0P+0P+1P" or "0P+0P+2P"
  • the port configuration of the upcoming uplink transmission of the terminal device is "1P+1P+0P”.
  • the terminal device performs the first operation. For example, Tx state #2 ⁇ Tx state #1.
  • Table 23 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the present application proposes that: when the transmission state corresponding to the port configuration of the last uplink transmission of the terminal device is uplink transmission of 2 ports on one frequency band, and the transmission state corresponding to the port configuration of the next uplink transmission is uplink transmission of 1 port on two other different frequency bands. That is, when the last uplink transmission and the next uplink transmission do not have a shared frequency band (overlapped band), the terminal device can clearly understand the operation state and ensure the transmission performance of the uplink data.
  • the port configuration of the last uplink transmission of the terminal device is "1P+1P+0P"
  • the port configuration of the upcoming uplink transmission of the terminal device is "0P+0P+1P” or "0P+0P+2P”.
  • the terminal device performs the first operation. For example, Tx state #1 ⁇ Tx state #2.
  • Tx state #1 ⁇ Tx state #3 For example, Tx state #1 ⁇ Tx state #6.
  • Table 24 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the port configuration of the last uplink transmission of the terminal device is "1P+0P+1P" or "0P+1P+1P"
  • the port configuration of the upcoming uplink transmission of the terminal device is "1P+1P+0P”.
  • the terminal device performs the first operation. For example, Tx state #2 ⁇ Tx state #1.
  • Table 25 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the port configuration of the last uplink transmission of the terminal device is "1P+1P+0P”
  • the port configuration of the upcoming uplink transmission of the terminal device is "1P+0P+1P” or "0P+1P+1P”.
  • the terminal device performs the first operation. For example, Tx state #1 ⁇ Tx state #2.
  • the following table 26 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the present application proposes that: when the transmission state corresponding to the port configuration of the last uplink transmission of the terminal device is to perform uplink transmission of one port on two different frequency bands respectively, the transmission state corresponding to the port configuration of the next uplink transmission is to perform uplink transmission of one port on two different frequency bands respectively, and one of the frequency bands used by the transmission state corresponding to the port configuration of the last uplink transmission and the frequency band used by the transmission state corresponding to the port configuration of the next uplink transmission is shared.
  • the terminal device can clearly understand the operating state and ensure the transmission performance of the uplink data.
  • Table 27 shows possible Tx states when the terminal device performs uplink switching on four frequency bands. As shown in Table 27, there are 10 Tx states in total.
  • the port configuration of the last uplink transmission of the terminal device is "1P+1P+0P+0P”
  • the port configuration of the upcoming uplink transmission of the terminal device is "0P+0P+1P+1P”. It can also be understood that if the last uplink transmission of the terminal device was 1-port transmission on carrier #1 of frequency band #A and carrier #2 of frequency band #B at the same time; the uplink transmission to be performed by the terminal device is 1-port transmission on carrier #3 of frequency band #C and carrier #4 of frequency band #D at the same time, then the terminal device performs the first operation. For example, Tx state #5 ⁇ Tx state #10.
  • the following Table 28 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the port configuration of the last uplink transmission of the terminal device is "0P+0P+1P+1P"
  • the port configuration of the upcoming uplink transmission of the terminal device is "1P+1P+0P+0P”. It can also be understood that if the last uplink transmission of the terminal device was 1-port transmission on carrier #3 of band #C and carrier #4 of band #D at the same time; the uplink transmission to be performed by the terminal device is 1-port transmission on carrier #1 of band #A and carrier #2 of band #B at the same time, then the terminal device performs the first operation. For example, Tx state #10 ⁇ Tx state #5.
  • Table 29 shows the transmission state corresponding to the last uplink transmission port configuration and the transmission state corresponding to the next uplink transmission port configuration.
  • the present application proposes that: when the transmission state corresponding to the port configuration of the last uplink transmission of the terminal device is to perform uplink transmission of one port on two different frequency bands respectively, the transmission state corresponding to the port configuration of the next uplink transmission is to perform uplink transmission of one port on two other different frequency bands respectively, and the frequency band used by the transmission state corresponding to the port configuration of the last uplink transmission and the frequency band used by the transmission state corresponding to the port configuration of the next uplink transmission do not share a common frequency band.
  • the terminal device can clearly understand the operating state and ensure the transmission performance of the uplink data.
  • uplink switching between two frequency bands there is no definition for uplink switching between two frequency bands (for example, frequency band #A and frequency band #B).
  • the port configuration of the last uplink transmission is "2P+0P”
  • the port configuration of the terminal device's upcoming uplink transmission is "0P+2P”
  • when uplink switching is currently performed on 2 frequency bands if the port configuration of the terminal device's last uplink transmission is "2P+0P”, and the port configuration of the terminal device's upcoming uplink transmission is "0P+2P", what operations need to be performed.
  • the terminal device determines that the uplink transmission is a switching uplink transmission or a single uplink transmission.
  • the terminal device since the transmission state of the RF chain of the terminal device's uplink transmission is limited, based on the solution provided in the present application, in a scenario where the terminal device needs to switch the transmission state on at least three frequency bands or at least three carriers, the terminal device can clearly or explicitly understand the operating state, thereby correctly switching the transmission state and ensuring the transmission performance of the uplink data.
  • the method further includes step 210, in which the network device sends a third RRC signaling to the terminal device.
  • the terminal device receives the third RRC signaling from the network device.
  • the third RRC signaling can indicate to the terminal device that one RF chain transmission or two RF chain transmissions are supported on a certain frequency band (or on a carrier of a certain frequency band).
  • the third RRC signaling can assist the terminal device in determining whether the transmission state needs to be switched based on the second port configuration.
  • the third RRC signaling can be configured for a cell (per cell). That is, it is configured for an uplink carrier or an uplink and downlink carrier pair.
  • the third RRC signaling can also be configured for a frequency band (per band).
  • the third RRC signaling can be uplinkTxSwitching-DualUL-TxState, or MultiBandUplinkTxSwitching-DualUL-TxState, where multiband is at least three bands.
  • supporting one RF chain transmission or two RF chain transmissions on a certain frequency band can also be understood as: supporting 1Tx or supporting 2Tx; or, the transmission performed is 1Tx transmission or 2Tx transmission.
  • the "next uplink transmission state" (which can also be understood as the transmission state corresponding to the next uplink transmission port configuration) mentioned in the aforementioned schemes A1, A2, B1, B2, C1, and C2 can be determined by combining the third RRC signaling and the next uplink transmission port configuration. Specifically, after determining the next uplink transmission port configuration, the terminal device jointly determines the transmission state corresponding to the next uplink transmission port configuration according to the support of one RF chain transmission or two RF chain transmissions on a certain frequency band indicated by the third RRC signaling.
  • next uplink transmission port configuration is band C (or a certain carrier of band C) 1port
  • band C or a certain carrier of band C
  • band C or a certain carrier of band C
  • band C or a certain carrier of band C
  • band C 2Tx it is determined that there is band C 2Tx in the transmission state corresponding to the next uplink transmission port configuration.
  • the terminal device needs to combine predefined rules to determine the next uplink transmission state. For details about the “predefined rules”, please refer to the description in step 211 .
  • a frequency band may also be understood as a carrier of the frequency band.
  • the terminal device cannot clearly determine whether it needs to switch the transmission state based on the third RRC signaling. For example, if the port configuration of the last uplink transmission of the terminal device is "0P+0P+1P", the port configuration of the uplink transmission to be performed by the terminal device is "1P+0P+0P". It can be seen from the aforementioned Table 3 that the configuration of "0P+0P+1P" corresponds to Tx state #2, Tx state #3, and Tx state #6, and the configuration of "1P+0P+0P" corresponds to Tx state #1, Tx state #2, and Tx state #4. Assume that the last transmission state of the terminal device is Tx state #2 (1T+0T+1T).
  • the terminal device may not switch the transmission state (remain in Tx state #2 for uplink transmission), or may switch the transmission state (Tx state #2 ⁇ Tx state #1).
  • the method further includes step 211, in which the terminal device determines a switching time for uplink transmission.
  • the terminal device can determine the need to switch the uplink transmission state during uplink transmission based on the third RRC signaling, and can also clarify how to switch between frequency bands, and determine the switching time of the uplink transmission based on the switching between frequency bands.
  • the terminal device cannot determine whether the uplink transmission state needs to be switched during uplink transmission based on the third RRC signaling. At this time, based on the various technical solutions proposed in this application, the terminal device can clearly determine the operating state, that is, whether to switch the last transmission state. However, the terminal device may still not be able to clearly determine how to switch between frequency bands. At this time, the terminal device can also determine how to switch between frequency bands during uplink transmission in combination with predefined rules, thereby determining the switching time of the uplink transmission.
  • the predefined rule may be predefined by a protocol.
  • the predefined rule may be sent by a network device to a terminal device.
  • the network device may send a fourth RRC signaling to the terminal device. The fourth RRC is used to configure the predefined rule for the terminal device.
  • the predefined rule may be to specify the priority of the three frequency bands when the uplink switching is performed.
  • the carrier corresponding to the frequency band with a higher switching priority is selected for switching.
  • the priority of switching between frequency bands is from high to low as frequency band #A, frequency band #B, and frequency band #C.
  • the priority of switching between frequency bands may depend on the value of the frequency band index (band index).
  • the priority of switching between frequency bands from high to low may refer to the value of the frequency band index from high to low.
  • the terminal device selects the carrier with the highest frequency band index in the frequency band in the first time unit to switch the RF chain.
  • the priority of switching between frequency bands from high to low may refer to the value of the frequency band index from low to high. Accordingly, the terminal device selects the carrier with the lowest frequency band index in the frequency band in the first time unit to switch the RF chain.
  • the priority of switching between frequency bands from high to low may refer to the value of the serving cell index from high to low. Accordingly, the terminal device selects the carrier with the highest cell index in the serving cell in the first time unit to switch the RF chain.
  • the priority of switching between frequency bands from high to low may refer to the value of the serving cell index from low to high. Accordingly, the terminal device selects the carrier with the lowest cell index in the serving cell in the first time unit to switch the RF chain.
  • the predefined rules may be to specify the priorities of the four frequency bands during uplink switching.
  • the priorities of switching between the frequency bands are, from high to low, frequency band #A, frequency band #B, frequency band #C, and frequency band #D.
  • the priority of switching between frequency bands may depend on the value of the frequency band index.
  • the priority of switching between frequency bands from high to low may refer to the value of the frequency band index from high to low.
  • the priority of switching between frequency bands from high to low may refer to the value of the frequency band index from low to high.
  • band index can be a band identifier.
  • the identifier is an integer value of 0 to N (N is an integer greater than 0). It can also be the n value of n band, or the m value of m band.
  • the terminal device can clearly understand the operating status.
  • the terminal device switches from band #A 1T and band #C 1T to band #B 1T and band #D 1T, it can have two options: (1) band #A ⁇ band #B, in this case band #C ⁇ band #D; (2) band #A ⁇ band #D, in this case band #B ⁇ band #C.
  • the terminal device cannot determine whether to select the maximum switching time in ⁇ band pair #1 (A, B), band pair #9 (C, D) ⁇ , or the maximum switching time in ⁇ band pair #3 (A, D), band pair #5 (B, C) ⁇ . Based on this problem, the present application proposes the following two implementation methods:
  • the network device may not indicate how to switch between frequency bands.
  • the terminal device may select the maximum switching time in ⁇ frequency band pair #1, frequency band pair #9, frequency band pair #3, frequency band pair #5 ⁇ and determine the maximum switching time as the switching time. For example, the switching between the two frequency bands in frequency band pair #1 requires 35 microseconds, the switching between the two frequency bands in frequency band pair #9 requires 40 microseconds, the switching between the two frequency bands in frequency band pair #3 requires 80 microseconds, and the switching between the two frequency bands in frequency band pair #5 requires 120 microseconds. In this case, the terminal device determines the uplink switching time to be 120 microseconds.
  • the terminal device determines a predefined rule.
  • the rule is that the priority of frequency band switching when switching between four frequency bands is: the frequency bands before switching are A, B, C, D from high to low, and the frequency bands after switching are A, B, C, D from high to low.
  • the terminal device switches from frequency band #A (1T) + frequency band #C (1T) ⁇ frequency band #B (1T) + frequency band #D (1T)
  • the frequency band before switching is first selected as frequency band #A
  • the frequency band after switching is first selected as frequency band #B, that is, determining frequency band #A ⁇ frequency band #B.
  • the terminal device can select the maximum value of the switching time in ⁇ frequency band pair #1 (A, B), frequency band pair #9 (C, D) ⁇ , that is, determine the switching time to be 40 microseconds.
  • the network device may send ⁇ frequency band index before switching, frequency band index after switching ⁇ to the terminal device.
  • the network device sends various possible frequency band pairs as shown in Table 30. The order followed is the switching preference order.
  • the terminal device determines how to switch between frequency bands based on the frequency band pairs sent by the terminal device.
  • the terminal device can determine how to switch between frequency bands during uplink transmission based on the above-mentioned "predefined rules”. After the terminal device determines the specific switching method between frequency bands during uplink transmission, it can further determine the switching time of uplink transmission.
  • the switching time may be indicated to the terminal device by the network device through RRC signaling. In another possible implementation, the switching time may also be the capability of the terminal device itself. The terminal device indicates to the network device through capability reporting. In another possible implementation, the switching time may also be pre-defined or pre-configured to any one of the network device and the terminal device.
  • the switching time may be a fixed value.
  • the switching time may be any value in a set consisting of 35 microseconds, 140 microseconds, 210 microseconds or 280 microseconds.
  • the switching time may be any value in a set consisting of 35 microseconds, 140 microseconds or 210 microseconds.
  • the switching time between different frequency bands may be different.
  • Table 29 shows the correspondence between band pairs when the terminal device supports uplink transmission switching between four frequency bands. The correspondence in Table 29 may be sent to the terminal device by the network device through RRC signaling. For example, if the port configuration was "1P+1P+0P" (Tx state #1) during the last uplink transmission, if the port configuration for the next uplink transmission is "1P+0P+1P" (Tx state #2). At this time, the terminal device can switch from band #A to band #C, and from band #B to band #A. In this implementation, before introducing the terminal device to determine the switching time, the working status of the RF chain is first introduced below.
  • the operation performed by the terminal device at this time is: assuming that the terminal device supports uplink switching on at least three frequency bands, when switching on the carrier of the frequency band that needs to be switched (referred to as carrier #1), during the switching time, the terminal device does not expect to perform data transmission on carrier #1 of the frequency band; on the carrier of the frequency band that does not need to be switched (referred to as carrier #2), the uplink transmission of carrier #2 is not affected, that is, during the switching time of carrier #1, carrier #2 can still perform uplink transmission normally.
  • the terminal device does not expect to perform data transmission on the carrier switching pair (for example, from carrier #1 to carrier #3) involved in the at least three carriers (carrier #1, carrier #2, carrier #3) related to the switching on the at least three frequency bands.
  • carrier #2 since no RF chain switching is involved, the terminal device can still perform data transmission.
  • the frequency band or carrier where the switching time is located can be configured through the fifth RRC signaling.
  • the frequency band or carrier where the switching time is located is configured as the carrier before switching or the carrier after switching. Then in the switch from carrier #1 to carrier #3, when the frequency band or carrier where the switching time is located is configured as the carrier before switching, the switching time is configured to use the tail of carrier #1; when the frequency band or carrier where the switching time is located is configured as the carrier after switching, the switching time is configured to use the head of carrier #2.
  • the frequency band or carrier where the switching time is configured is configured as the carrier before switching or the carrier after switching or both the carrier before switching and the carrier after switching (part of it is located at the carrier before switching and part of it is located at the carrier after switching). Then, in the switch from carrier #1 to carrier #3, when the frequency band or carrier where the switching time is located is configured as the carrier before switching, the switching time is configured to use the tail of carrier #1; when the frequency band or carrier where the switching time is located is configured as the carrier after switching, the switching time is configured to use the head of carrier #2; when the frequency band or carrier where the switching time is located is configured as both the carrier before switching and the carrier after switching, the switching time is configured to use the tail of carrier #1 and the head of carrier #2.
  • the frequency band or carrier where the switching time is located can also be configured by pre-regulation.
  • a frequency band or carrier sequence is specified as the preferred sequence of the frequency band or carrier where the switching time is configured. This sequence can be understood as a priority rule.
  • the priority rule from band A to band C is band #A, band #B, band #C
  • the switching time should use the tail of the carrier where band #A is located.
  • band #A to band #D When the priority rule from band #A to band #D is band #A, band #B, band #C, band #D, for switching from band #A and band #C to band #B and band #D, if the switching is from band #A to band #B, and from band #C to band #D, the switching time should use the tail of the carrier where band #A and band #C are located.
  • band #A to band #D When the priority rule from band #A to band #D is band #A, band #C #B, band #C, band #D, for band #A and band #C switching to band #B and band #D, if the switching is from band #A to band #D, and from band #C to band #B, the switching time should use the tail of the carrier where band #A is located and the head of the carrier where band #B is located.
  • the carrier or frequency band where the physical uplink control channel (PUCCH) is located should be configured as the carrier or frequency band where the switching time is located as a low priority. Because PUCCH can be used as a long format and can occupy a time slot from the beginning to the end, and PUCCH should be reliably transmitted as a high priority. Therefore, if the carrier before switching or the carrier after switching indicated by the fifth RRC signaling is the same carrier as the carrier where the PUCCH is located, the UE does not expect to apply the switching time on the carrier where the PUCCH is located.
  • PUCCH physical uplink control channel
  • the switching time should occupy the frequency band after switching (that is, frequency band #D). That is, the carrier before switching indicated by the fifth RRC signaling is not applicable.
  • the switching time should occupy the frequency band before switching (i.e., frequency band #D). That is, the carrier before switching indicated by the fifth RRC signaling is applicable.
  • one or more RRC signalings in the first RRC signaling to the fifth RRC signaling may all be located in one RRC signaling and occupy unused information elements; or may be partially located in one RRC signaling and occupy unused information elements; or each may be a different RRC signaling.
  • the first RRC signaling to the fifth RRC signaling may be sent in the same message.
  • the message contains multiple information blocks, in which case the first RRC signaling to the fifth RRC signaling may be each information block in the message.
  • the operation performed by the terminal device at this time is: assuming that the terminal device supports uplink switching on at least three frequency bands, when switching on the carrier of the frequency band that needs to be switched (recorded as carrier #3), during the switching time, the terminal device does not expect to transmit data on any carrier of the at least three frequency bands; or, during the switching time, the terminal device does not expect to transmit data on the at least three carriers related to the switching on the at least three frequency bands (for example, carrier #1, carrier #2, carrier #3); or, during the switching time, the terminal device does not expect to transmit data on the carrier switching pair (for example, from carrier #1 to carrier #3) involved in the at least three carriers related to the switching on the at least three frequency bands (carrier #1, carrier #2, carrier #3) and the carrier not involving the RF chain switching. Based on the working status of the RF chain introduced above, the terminal device can
  • the switching time can be determined as the time required for the frequency band pair with the longer switching time when the two frequency band pairs are switched. For example, if it takes 140 microseconds to switch from frequency band #A to frequency band #C and 200 microseconds to switch from frequency band #B to frequency band #A, the terminal device can determine the switching time to be 200 microseconds.
  • the switching time can be determined as the sum of the time required for switching the two frequency bands. For example, at this time, the terminal device can determine that the switching time is 140 microseconds + 200 microseconds, which is equal to 340 microseconds.
  • Each band pair is interrupted within the value corresponding to its own switching period without interfering with each other.
  • the value corresponding to the switching period of one band pair e.g., band pair #1
  • the value corresponding to the switching period of another band pair e.g., band pair #5
  • each band pair can switch within its corresponding switching time without interfering with each other.
  • step 211 may be placed before step 209 .
  • the method further includes step 212, in which the network device determines the switching time of the uplink transmission of the terminal device, and schedules resources for the uplink transmission for the terminal device according to the switching time.
  • step 212 after the terminal device determines the switching time, it can report the switching time to the network device.
  • the network device may determine the switching time of the uplink transmission of the terminal device according to the first port configuration, the second port configuration and the third RRC signaling (in some cases, it may also be necessary to combine with the "predefined rule"), and call the resources for uplink transmission for the terminal device based on the switching time.
  • the specific implementation method of the network device determining the switching time of the uplink transmission of the terminal device can refer to the description of the terminal device determining the switching time of the uplink transmission in step 211.
  • the network device can reserve switching time for the terminal device. For example, uplink switching is performed on the last four symbols of a time slot, or on the first four symbols of the next time slot. For example, based on the switching time, the network device can schedule the terminal device to transmit uplink data from the first symbol of time slot #2 (at this time, the corresponding terminal device performs uplink switching on the last four symbols of time slot #1). Alternatively, based on the switching time, the network device can schedule the terminal device to transmit uplink data from the fifth symbol of time slot #2 (At this time, the corresponding terminal device performs uplink switching on the first four symbols of time slot #1).
  • step 212 may be included in step 205 and/or step 207 .
  • the method further includes step 213, in which the terminal device transmits data on resources scheduled by the network device.
  • the terminal device when the terminal device cannot switch uplink in time on the time slot scheduled by the network device (the network device can schedule the terminal device to transmit data through frequency band #D starting from the first symbol of time slot #2), the terminal device punctures the uplink data.
  • the network device can detect according to the number of uplink symbols originally scheduled, or according to the number of symbols that may be reduced. For the latter, a mask or wrapping can be added to the uplink demodulation reference signal (UL DMRS), and the mask or wrapping information indicates the number of symbols currently reduced, so that the network device can perform corresponding detection according to the reduced number of symbols. For example, the network device schedules uplink transmission of thirteen symbols.
  • the switching delay of the terminal device needs to occupy one more symbol, that is, when the terminal device finds that the delay of one symbol for switching between frequency bands is not enough, the terminal device punctures more symbols.
  • the terminal device uplink transmission can be encoded according to ten symbols.
  • the network device can detect that the energy of the first four symbols is 0, and preferentially decode according to ten symbols, or can decode according to eleven symbols, twelve symbols, or thirteen symbols multiple times.
  • the network device can directly detect according to thirteen symbols, losing some accuracy, but this will not have a significant impact on the performance of low-order modulation and coding schemes (MCS) (e.g., non-256 quadrature amplitude modulation (QAM)).
  • MCS modulation and coding schemes
  • QAM quadrature amplitude modulation
  • the terminal device and the network device can determine the uplink switching time of the terminal device's uplink transmission.
  • the network device can call the resources for the uplink transmission for the terminal device based on the switching time.
  • the terminal device can transmit uplink data on the resources scheduled by the network device based on the switching time, thereby ensuring the performance of the uplink transmission.
  • step 201 can be performed simultaneously with step 203, that is, the network device sends the first RRC signaling and the second RRC signaling to the terminal device at the same time.
  • step 205 can be performed simultaneously with step 207, that is, the network device sends the first information and the second information to the terminal device at the same time.
  • step 203 can be located before step 201, that is, the network device first sends the second RRC signaling to the terminal device, and then sends the first RRC signaling to the terminal device.
  • step 210 can be located before step 205.
  • pre-defined in the present application can be understood as defined, pre-defined, stored, pre-stored, pre-negotiated, pre-configured, solidified, or pre-burned.
  • each node such as a terminal device, a network device, includes a hardware structure and/or software module corresponding to each function in order to realize the above functions.
  • each node such as a terminal device, a network device
  • each node includes a hardware structure and/or software module corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.
  • the terminal device and the network device can be divided into functional modules according to the above method example.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or software functional modules. It should be noted that in the embodiment of the present application, The division of modules is schematic and is only a logical function division. There may be other division methods in actual implementation. The following is an example of dividing each functional module according to each function.
  • Fig. 3 is a schematic block diagram of a communication device 100 provided in an embodiment of the present application. As shown in the figure, the device 100 may include: a transceiver unit 110 and a processing unit 120.
  • the apparatus 100 may be a terminal device in the above method embodiment, or a chip for implementing the functions of the terminal device in the above method embodiment. It should be understood that the apparatus 100 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the apparatus 100 may perform the steps corresponding to the terminal device in the method 200 of the embodiment of the present application.
  • the processing unit is used to determine a first port configuration, the first port configuration is used for a first uplink transmission, wherein the terminal device supports uplink switching on at least three frequency bands or at least three carriers; the processing unit is used to determine a second port configuration, the second port configuration is used for a second uplink transmission, the first uplink transmission is earlier than the second uplink transmission; according to the first port configuration and the second port configuration, the processing unit performs a first operation.
  • the processing unit performs a first operation according to the first port configuration and the second port configuration, including: the processing unit performs the first operation according to the first port configuration, the second port configuration, and a transmission status of the first uplink transmission.
  • the processing unit is used to determine that the transmission state corresponding to the first port configuration is a first set, and the transmission state corresponding to the second port configuration is a second set; the final processing unit is used to determine, based on the first set and the second set, that the intersection of the first set and the second set is the transmission state of the first RF chain, and the processing unit is used to determine that the first uplink transmission is not the first transmission state, and then the processing unit is used to perform a first operation.
  • the transceiver unit is used to receive a first radio resource control signaling from a network device, where the first radio resource control signaling indicates that the terminal device is configured as the first option or the second option.
  • the transceiver unit is used to receive a second wireless resource control signaling from a network device, wherein the second wireless resource control signaling indicates that the terminal device is configured to support uplink switching on three frequency bands, or the second wireless resource control signaling indicates that the terminal device is configured to support uplink switching on four frequency bands.
  • the device 100 may be a network device in the above method embodiment, or a chip for implementing the functions of the network device in the above method embodiment. It should be understood that the device 100 may correspond to the network device in the method 200 according to the embodiment of the present application, and the device 100 may perform the steps corresponding to the network device in the method 200 according to the embodiment of the present application.
  • the device 100 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a combined logic circuit and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • the device 100 can be specifically a terminal device or a network device in the above-mentioned embodiment, and can be used to execute the various processes and/or steps corresponding to the terminal device in the above-mentioned method embodiments. To avoid repetition, it will not be repeated here.
  • the apparatus 100 of each of the above schemes has the function of implementing the corresponding steps performed by the terminal device or the network device in the above method.
  • the function can be implemented by hardware, or by hardware executing the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor to respectively perform the transceiver operations and related processing operations in each method embodiment.
  • the transceiver unit 110 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 3 may be a terminal device or a network device in the aforementioned embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • FIG4 is a schematic block diagram of a communication device 200 provided in an embodiment of the present application.
  • the device 200 includes: at least one processor 220.
  • the processor 220 is coupled to the memory and is used to execute instructions stored in the memory to send signals and/or receive signals.
  • the device 200 also includes a memory 230 for storing instructions.
  • the device 200 also includes a transceiver 210, and the processor 220 controls the transceiver 210 to send signals and/or receive signals.
  • processor 220 and the memory 230 can be combined into one processing device, and the processor 220 is used to execute the program code stored in the memory 230 to implement the above functions.
  • the memory 230 can also be integrated into the processor 220, or independent of the processor. 220.
  • the transceiver 210 may include a transceiver (or receiver) and a transmitter (or transmitter).
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the transceiver 210 may also be a communication interface or an interface circuit.
  • the transceiver 210 in the device 200 may correspond to the transceiver unit 110 in the device 100
  • the processor 220 in the device 200 may correspond to the processing unit 120 in the device 200 .
  • the apparatus 200 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the processor 220 is used to execute the computer program or instructions stored in the memory 230 to implement the relevant operations of the wireless access network device in each method embodiment above. For example, the method performed by the terminal device in method 200.
  • the apparatus 200 is used to implement the operations performed by the network device in each of the above method embodiments.
  • the processor 220 is used to execute the computer program or instructions stored in the memory 230 to implement the relevant operations of the network device in each method embodiment above. For example, the method performed by the network device in method 200.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • the processor in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), a field-programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM synchronous-link DRAM
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous-link DRAM
  • DR RAM direct ram-bus RAM
  • the present application also provides a computer program product, on which a computer program code is stored.
  • the computer program code runs on a computer, the computer executes the method executed by the terminal device or the network device in method 200.
  • the present application also provides a computer-readable medium, which stores a program code.
  • the program code runs on a computer, the computer executes the method performed by the terminal device or the network device in the above embodiment.
  • the present application also provides a communication system, which includes a terminal device and a network device.
  • the terminal device is used to execute the steps corresponding to the terminal device in the above method 200
  • the network device is used to execute the steps corresponding to the network device in the above method 200.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that contains one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disc (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disc
  • the corresponding modules or units perform the corresponding steps.
  • the transceiver unit (transceiver) performs the steps of receiving or sending in the method embodiment, and other steps except sending and receiving can be performed by the processing unit (processor).
  • the functions of the specific units can refer to the corresponding method embodiments.
  • the processor can be one or more.
  • a component can be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program and/or a computer.
  • applications running on a computing device and a computing device can be components.
  • One or more components may reside in a process and/or an execution thread, and a component may be located on a computer and/or distributed between two or more computers.
  • these components may be executed from various computer-readable media having various data structures stored thereon.
  • Components may, for example, communicate through local and/or remote processes according to signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can essentially or in other words, the part that contributes or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or importance of the multiple objects.
  • first PDSCH and the second PDSCH can be the same physical channel or different physical channels, and such a name does not indicate the difference in the amount of information, content, priority or importance of the two physical channels.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item or similar expressions means one or more items, that is, any combination of these items, including any combination of single items or plural items.
  • at least one item of a, b, or c means: a, b, c, a and b, a and c, b and c, or a, b and c.
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种确定切换上行传输的方法和装置,终端设备可以根据上次上行传输的端口配置、下次上行传输的端口配置,使得终端设备可以明确操作状态,保障上行数据的传输性能。

Description

一种确定切换上行传输的方法和装置
本申请要求于2022年11月03日提交中国专利局、申请号为202211372734.3、申请名称为“一种确定切换上行传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体的,涉及一种确定切换上行传输的方法和装置。
背景技术
在诸如增补上行(supplementary UL,SUL)的场景中,终端设备需要在至少三个频带(例如,700MHz~800MHz、700MHz~900MHz、1.8GHz~2.1GHz、3.5GHz~4.9GHz,等等)上进行切换,从而保证数据传输的性能。然而,目前协议只定义了终端设备在2个频带上进行切换时,哪些情况下需要切换射频链的传输状态。当终端设备需要在至少三个频带上进行切换时,终端设备如何确定是否需要切换射频链的传输状态,成为一个需要解决的技术问题。
发明内容
本申请实施例提供一种确定切换上行传输的方法,可以使得终端设备明确操作状态,保障上行数据的传输性能。
第一方面,提供了一种确定切换上行传输的方法,该方法可以由终端设备(例如,用户设备)执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:终端设备确定第一端口配置,所述第一端口配置用于第一上行传输,其中,所述终端设备能够在至少三个频带或至少三个载波上进行上行切换;所述终端设备确定第二端口配置,所述第二端口配置用于第二上行传输,所述第一上行传输早于所述第二上行传输;根据所述第一端口配置、所述第二端口配置,所述终端设备执行第一操作;其中,所述终端设备执行第一操作包括以下至少一项:所述终端设备不期望在从所述第一上行传输到所述第二上行传输的切换时间内进行上行传输,或者;所述终端设备确定进行所述第二上行传输时改变传输状态,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输需要切换,或者;所述终端设备确定在进行所述第二上行传输之前进行切换,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输的切换时间,或者;所述终端设备确定在从所述第一上行传输到所述第二上行传输的切换时间内不进行上行传输。
本申请中,第一上行传输可以为多个,分别对应不同的载波。相应地,第一端口配置可以为多个。第一端口配置为相应于第一上行传输的端口配置。例如,第一端口配置与第一上行传输可以为一一对应。
同样,第二上行传输也可以为多个,分别对应不同的载波。相应地,第二端口配置可以为多个。第二端口配置为相应于第二上行传输的端口配置。例如,第二端口配置与第二上行传输可以为一一对应。
在一种可能的实现方式中,所述至少一个第一上行传输中的多个第一上行传输对应一个第一端口配置;同样,所述至少一个第二上行传输中的多个第二上行传输对应一个第二端口配置。
需要说明的,这些不同的载波,可以是同频段的,也可以是不同频段的。
本申请中,所述终端设备能够在至少三个频带上进行上行切换,可以理解为:所述终端设备通过能力信息上报,支持在至少三个频带上进行上行切换;或者,所述终端设备通过接收第二RRC信令,确定至少三个频带上进行上行切换。
也可以理解为,该方法包括:终端设备确定至少一个第一端口配置,所述至少一个第一端口配置用于至少一个第一上行传输,其中,所述终端设备能够在至少三个频带或至少三个载波上进行上行切换;所述终端设备确定至少一个第二端口配置,所述至少一个第二端口配置用于至少一个第二上行传输,所述第一上行传输早于所述第二上行传输;根据所述第一端口配置、所述第二端口配置,所述终端设备执行第一操作;其中,所述终端设备执行第一操作包括以下至少一项:所述终端设备不期望在从所述第一上行传输到所述第二上行传输的切换时间内进行上行传输,或者;所述终端设备确定进行所述第二上行 传输时改变传输状态,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输需要切换,或者;所述终端设备确定在进行所述第二上行传输之前进行切换,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输的切换时间,或者;所述终端设备确定在从所述第一上行传输到所述第二上行传输的切换时间内不进行上行传输。
本申请中,“至少一个”可以理解为,一个或者多个。
本申请中,“终端设备确定至少一个第一端口配置”,也可以理解为:终端设备接收第一信息,所述第一信息包含至少一个第一端口配置,所述至少一个第一端口配置中的每个第一端口配置用于终端设备在第一时间单元内进行第一上行传输。或者,所述至少一个第一端口配置中的每个第一端口配置用于终端设备在第一时间单元内进行的第一上行传输。或者,所述至少一个第一端口配置中的每个第一端口配置用于终端设备在第一时间单元内的第一上行传输。或者,所述至少一个第一端口配置中的每个第一端口配置用于终端设备的第一上行传输。其中,所述第一信息可以为通过下行控制信息(downlink control information,DCI)结合无线资源控制(radio resource control,RRC)信令下发,或者只通过DCI信令下发,或者只通过RRC信令下发,不予限定。
本申请中,“终端设备确定至少一个第二端口配置”,也可以理解为:终端设备接收第二信息,所述第二信息包含至少一个第二端口配置,所述至少一个第二端口配置中的每个第二端口配置用于终端设备在第二时间单元内进行第二上行传输。或者,所述至少一个第二端口配置中的每个第二端口配置用于终端设备在第二时间单元内进行的第二上行传输。或者,所述至少一个第二端口配置中的每个第二端口配置用于终端设备在第二时间单元内的第二上行传输。或者,所述至少一个第二端口配置中的每个第二端口配置用于终端设备的第二上行传输。其中,所述第二信息可以为通过DCI结合RRC信令下发,或者只通过DCI信令下发,或者只通过RRC信令下发,不予限定。
本申请中,“所述第一上行传输早于所述第二上行传输”,也可以理解为,第一上行传输为第二上行传输之前的上行传输。其中,第一上行传输为第一时间单元的上行传输,第二上行传输为第二时间单元的上行传输。第一时间单元提前于第二时间单元。
本申请中,“不期望”,也可以理解为“不被期望”。
本申请中,“所述终端设备确定进行所述第二上行传输时改变传输状态”,也可以理解为,“所述终端设备确定进行所述第二上行传输时传输状态发生变化或转换”。
本申请中,一个第一端口配置可以配置至少一个第一上行传输,或者,一个第一端口配置也可以同时配置两个第一上行传输。
在一种可能的实现方式中,所述至少一个第一端口配置与所述至少一个第一上行传输一一对应,所述至少一个第二端口配置与所述至少一个第二上行传输一一对应。
在一种可能的实现方式中,所述至少三个频带与至少三个载波一一对应,所述至少三个载波分别位于所述至少三个频带。
本申请中,“第一载波”可以理解为是,第一频带的载波,或者,属于第一频带的载波,或者,位于第一频带的载波,或者,包含于第一频带的载波。同样的,“第二载波”可以理解为是,第二频带的载波,或者,属于第二频带的载波,或者,位于第二频带的载波,或者,包含于第二频带的载波。“第三载波”、“第四载波”也可以类似理解,不再一一说明。
本申请中,对于三个频带,例如可以是第一频带(例如,频带#A)、第二频带(例如,频带#B)、第三频带(例如,频带#C)。对于四个频带例如可以是第一频带(例如,频带#A)、第二频带(例如,频带#B)、第三频带(例如,频带#C)、第四频带(例如,频带#D)。对于三个载波,例如可以是第一载波(载波#1)、第二载波(载波#2)、第三载波(载波#3)。对于第四载波例如可以是,例如可以是第一载波(载波#1)、第二载波(载波#2)、第三载波(载波#3)、第四载波(载波#4)。
本申请中,对于三个频带,以第一载波属于或包含于第一频带,第二载波属于或包含于第二频带,第三载波属于或包含于第三频带作为示例。对于四个频带,以第一载波属于或包含于第一频带,第二载波属于或包含于第二频带,第三载波属于或包含于第三频带,第四载波属于或包含于第四频带作为示例。但本申请不限于此。对于三个频带,可以有四个载波或者五个载波,其中,一个频带可以含有多个载波。频带与载波一一对应的含义为:每个频带至少包含一个载波。
换句话说,上述技术方案也可以理解为,终端设备确定在第一时间单元内进行第一上行传输的第一端口配置,其中,所述终端设备支持在至少三个频带或至少三个载波上进行上行切换;所述终端设备确 定在第二时间单元内进行第二上行传输的第二端口配置,所述第一时间单元早于所述第二时间单元;根据所述第一端口配置、所述第二端口配置,所述终端设备执行第一操作;其中,所述终端设备执行第一操作包括以下至少一项:所述终端设备不期望在从所述第一上行传输到所述第二上行传输之间切换所需的切换时间内进行上行数据传输,或者;所述终端设备确定在所述第二时间单元内进行所述第二上行传输时切换射频链的传输状态,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输需要切换,或者;所述终端设备确定在进行所述第二上行传输之前进行切换,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输之间切换所需的切换时间,或者;所述终端设备确定在从所述第一上行传输到所述第二上行传输之间切换所需的切换时间内不进行上行数据传输。
本申请中,“终端设备执行第一操作”还可以理解为:终端设备不期望在从第一上行传输到第二上行传输之间切换所需的切换时间内,在至少三个载波上进行上行数据传输,其中,至少三个载波分别属于至少三个频带(即,至少三个载波与至少三个频带是一一对应的关系);或者,终端设备确定在从第一上行传输到第二上行传输之间切换所需的切换时间内,在至少三个载波上不进行上行数据传输,其中,至少三个载波分别属于至少三个频带。
上述描述中,“终端设备的传输状态”可以理解为,终端设备在第一时间单元内的传输状态。或者,对应于第一端口配置,终端设备的传输状态。
本申请中,“上行数据”可以包括至少以下一项:物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)或上行信号(例如,探测参考信号(sounding reference signal,SRS))。
本申请中,第一频带的第一载波,也可以直接替换为第一载波。相应地,第二频带的第二载波,也可以直接替换为第二载波。相应地,第三频带的第三载波,也可以直接替换为第三载波。相应地,第四频带的第四载波,也可以直接替换为第四载波。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输或者2端口传输,如果所述第一端口配置为所述终端设备在第二频带的第二载波上的所述第一上行传输和第三频带的第三载波上的所述第一上行传输分别为1端口传输,则所述终端设备执行第一操作。
本申请中,“所述第二端口配置为…传输”,也可以理解为:“当所述第二端口配置为…传输时”。
基于上述技术方案,本申请中提出如果上次端口配置为“0P+1P+1P”,下次端口配置为“2P+0P+0P”或者“1P+0P+0P”时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输和第二频带的第二载波上的所述第二上行传输上分别为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输或者2端口传输,则所述终端设备执行第一操作。
基于上述技术方案,本申请中提出如果上次端口配置为“0P+0P+1P”、“0P+0P+2P”,下次端口配置为“1P+1P+0P”时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输和第二频带的第二载波上的所述第二上行传输分别为1端口传输,如果第一端口配置为所述终端设备在所述第一频带的第一载波上的所述第一上行传输和第三频带的第三载波上的所述第一上行传输分别为1端口的上行传输,则所述终端设备执行第一操作,或者;如果第一端口配置为所述终端设备在所述第二频带的第二载波上的所述第一上行传输和第三频带的第三载波上的所述第一上行传输分别为1端口传输,则所述终端设备执行第一操作。
基于上述技术方案,本申请中提出如果上次端口配置为“1P+0P+1P”、“0P+1P+1P”,下次端口配置为“1P+1P+0P”时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输和第二频带的第二载波上的所述第二上行传输分别为1端口的传输,如果第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输和第四频带的第四载波上的所述第一上行传输分别为1端口传输,则所述终端设备执行第一操作。
基于上述技术方案,本申请中提出如果上次端口配置为“1P+1P+0P+0P”,下次端口配置为“0P+0P+1P+0P”时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第二频带的第二载波上的所述第二上行传输为2端口的传输,如果第一端口配置为所述终端设备在第一频带的第一载波上的所述第一上行传输为2端口传输,则所述终端设备执行第一操作。
基于上述技术方案,本申请中提出如果上次端口配置为“2P+0P”,下次端口配置为“0P+2P”时,终端设备需要执行第一操作。
由于终端设备上行传输的射频链的传输状态有限,基于本申请提供的方案,在终端设备在至少三个频带或三个载波上需要切换传输状态的场景中,终端设备能够清晰或者这明确操作状态,从而正确的进行传输状态的切换,保障上传数据的传输性能。
在一种可能的实现方式中,根据所述第一端口配置、所述第二端口配置,所述终端设备执行第一操作,包括:根据所述第一端口配置、所述第二端口配置,以及所述第一时间单元内的传输状态,所述终端设备执行第一操作。
基于上述技术方案,本申请中,终端设备可以根据上次上行传输的端口配置、下次上行传输的端口配置,以及上次上行传输的传输状态,使得终端设备可以明确操作状态,保障上行数据的传输性能。
在一种可能的实现方式中,该方法还包括:所述终端设备确定所述第一端口配置对应的射频链的传输状态为第一集合,所述第二端口配置对应的射频链的传输状态为第二集合;所述终端设备根据所述第一集合和所述第二集合,确定所述第一集合与所述第二集合的交集为第一射频链的传输状态,并且确定所述第一时间单元内的传输状态不是所述第一射频链的传输状态,则所述终端设备执行第一操作。
上述“确定所述第一时间单元内的传输状态不是所述第一射频链的传输状态”也可以理解为,“确定所述第一时间单元内的传输状态不包含所述第一射频链的传输状态”。
或者,上述实现方式也可以理解为:该第一射频链的传输状态不被包含于第一时间单元内的传输状态,或者第一时间单元内的传输状态不包含该第一射频链的传输状态,或者该第一射频链的传输状态与第一时间单元内的传输状态交集为空。
本申请中,考虑到,在一些端口配置下对应的射频链的传输状态有一个或者多个,此时,上次端口配置和下次端口配置对应的传输状态可能有相同的,终端设备无法明确操作状态。基于此,本申请提出,如果终端设备上次上行传输的状态与下次上行传输端口配置对应的一个或者多个传输状态不同,则终端设备执行第一操作。基于上述技术方案,可以使得终端设备明确操作状态,保障上行数据传输的性能。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为不支持同时在所述第一频带的第一载波上和所述第三频带的第三载波上分别进行1端口传输,则所述终端设备执行第一操作。
上述实现方式也可以描述为:所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在第二频带的第二载波上支持1端口传输;或者,所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,则所述终端设备执行第一操作。
基于上述技术方案,本申请中提出如果上次端口配置为“0P+0P+1P”,下次端口配置为“1P+0P+0P”,且上次传输状态不是Tx状态#2时,或者上次传输状态为Tx状态#3时,或者上次传输状态为Tx状态#6时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第二频带的第二载波上的所述第一上行传输为1端口传输,且所述传输状态为不支持同时在所述第一频带的第一载波上和所述第二频带的第二载波上分别进行1端口传输,则所述终端设备执行第一操作。
上述实现方式也可以描述为,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第二频带的第二载波上的所述第一上行传输为1端口传输,且所述传输状态为支持在第三频带的第三载波上支持1端口传输;或者,所述传输状态为在所述第二频带的第二载波上支持2端口传输,则所述终端设备执行第一操作。
基于上述技术方案,本申请中提出如果上次端口配置为“0P+1P+0P”,下次端口配置为“1P+0P+0P”,且上次传输状态不是Tx状态#1时,或者上次传输状态为Tx状态#3时,或者上次传输状 态为Tx状态#5时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第二频带的第二载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为不支持同时在所述第二频带的第二载波上和所述第三频带的第三载波上分别进行1端口传输,则所述终端设备执行第一操作。
上述实现方式也可以描述为,所述第二端口配置为所述终端设备在第二频带的载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为支持在第一频带的第一载波上支持1端口传输;或者,所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,则所述终端设备执行第一操作。
基于上述技术方案,本申请中提出如果上次端口配置为“0P+0P+1P”,下次端口配置为“0P+1P+0P”,且上次传输状态不是Tx状态#3时,或者上次传输状态为Tx状态#2时,或者上次传输状态为Tx状态#6时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,则终端设备确定切换射频链的传输状态。
基于上述技术方案,本申请中提出如果上次端口配置为“0P+0P+1P”,下次端口配置为“1P+0P+0P”,且上次传输状态为Tx状态#6时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置为所述终端设备在第二频带的第二载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,则终端设备确定切换射频链的传输状态。
基于上述技术方案,本申请中提出如果上次端口配置为“0P+0P+1P”,下次端口配置为“0P+1P+0P”,且上次传输状态为Tx状态#6时,终端设备需要执行第一操作。
在一种可能的实现方式中,所述第二端口配置对应至少一个传输状态,其中,如果所述至少一个传输状态不同于所述第一端口配置对应的至少一个传输状态,则所述终端设备执行第一操作。
基于上述技术方案,本申请提出,如果下次端口配置对应的至少一个传输状态不同与上次端口配置对应的至少一个传输状态,则终端设备需要执行第一操作,从而使得终端设备明确操作状态,保障上行数据的传输性能。
在一种可能的实现方式中,所述方法还包括:所述终端设备接收来自网络设备的第一无线资源控制信令,所述第一无线资源控制信令指示所述终端设备被配置为第一选项或第二选项,其中,所述第一选项表示所述终端设备被配置为切换上行链路传输,所述第二选项表示所述终端设备被配置为双上行链路传输。
基于上述技术方案,本申请中网络设备可以将终端设备配置为是切换上行链路传输还是双上行链路传输,从而使得终端设备可以在至少三个频带或至少三个载波上进行上行切换。
在一种可能的实现方式中,该方法还包括:所述终端设备接收来自网络设备的第二无线资源控制信令,所述第二无线资源控制信令指示所述终端设备被配置为支持在三个频带上进行上行切换,或者,所述第二无线资源控制信令指示所述终端设备被配置为支持在四个频带上进行上行切换。
基于上述技术方案,本申请中,网络设备可以将终端设备配置为支持在至少三个频带上进行上行切换,基于具体的应用场景,使得终端设备可以在多个频带上灵活切换。
在一种可能的实现方式中,所述方法还包括:所述终端设备接收来自网络设备的第三RRC信令,所述第三RRC信令指示所述终端设备在至少一个频带上传输1个射频链或者2个射频链;所述终端设备根据所述第一端口配置、所述第二端口配置以及所述第三RRC信令,确定进行上行传输的切换时间。
在一种可能的实现方式中,所述方法还包括:所述终端设备根据所述第一端口配置、所述第二端口配置以及所述第三RRC信令,确定进行上行传输的切换时间,包括:所述终端设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令以及预定义的规则,确定进行上行传输的切换时间。
基于上述技术方案,本申请中,终端设备可以明确操作状态,进一步的,终端设备可以根据第三信 令确定上行传输时频带具体是如何切换的,从而确定上行传输的切换时间。
在一种可能的实现方式中,所述预定义的规则包括以下至少一项:如果终端设备支持在3个频带上进行上行切换,预定义的规则可以为规定上行切换时这3个频带的优先级、如果终端设备支持在4个频带上进行上行切换时,预定义的规则可以为规定上行切换时这4个频带的优先级。
在一种可能的实现方式中,所述终端设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令以及预定义的规则,确定所述终端设备进行上行传输的切换时间,包括:所述网络设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令、所述预定义的规则以及射频链的工作方式,确定述终端设备进行上行传输的切换时间。
本申请中,射频链的工作方式,可以理解为,所述射频链中的每个射频链可以独立工作,或者,所述射频链中的每个射频链不能独立工作。
在一种可能的实现方式中,所述方法还包括接收来自网络设备的第五RRC信令,所述第五RRC信令用于配置所述切换时间所在的频带或载波。
在一种可能的实现方式中,所述切换时间所在的频带或载波可以为切换前的频带或载波;在另一种可能的实现方式中,所述切换时间所在的频带或者载波可以为切换后的频带或载波。
在一种可能的实现方式中,所述方法还包括:所述终端设备根据所述切换时间,在所述网络设备调度的资源上进行上行数据的传输。
基于上述技术方案,本申请中,终端设备可以根据切换时间,在网络设备调度的资源上进行上传数据的传输,从而保障上行数据的传输性能。
在一种可能的实现方式中,当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在第六载波上的第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:所述至少两个第一上行传输分别到所述第二上行传输所对应的至少两个切换时间。
例如,所述至少两个不同的第五载波与所述至少两个第一上行传输一一对应。
需要说明的是,本申请中,第五载波或第六载波为泛指的载波名称,可以理解为,第五载波或第六载波包含第一载波~第四载波(例如,载波#1~载波#4)中任意载波。或者,也可以理解为,第五载波或第六载波为第一载波~第四载波(例如,载波#1~载波#4)中任意载波。第五频带或第六频带为泛指的频带名称,可以理解为,第五频带或第六频带包含第一频带~第四频带(例如,频带#A~频带#D)中任意频带。或者,也可以理解为,第五频带或第六频带包含第一频带~第四频带(例如,频带#A~频带#D)中任意频带。
本申请中,“两个不同的第五载波”例如可以理解为,该两个不同的第五载波为,第一载波~第四载波(例如,载波#1~载波#4)中任意两个不同的载波。例如,“两个不同的第五载波”可以指的是,第一载波(例如,载波#1)、第二载波(例如,载波#2)。又例如,“两个不同的第五载波”可以是第三载波(例如,载波#3)、第四载波(例如,载波#4)。再例如,“两个不同的第五载波”可以是第一载波(例如,载波#1)、第三载波(例如,载波#3),等等。上述说明同样适用于第六载波,即对于“两个不同的第六载波”也可类似理解。
本申请中,“第六载波”可以理解为是与两个不同的第五载波不同的载波。例如,当该两个不同的第五载波为,第一载波~第四载波中任意两个不同的载波时,“第六载波”可以是第一载波~第四载波中剩余两个载波中的任意一个载波。例如,如果“两个不同的第五载波”指的是,第一载波、第二载波时,“第六载波”可以是第三载波或者第四载波。又例如,如果“两个不同的第五载波”是第三载波、第四载波时,“第六载波”可以是第一载波或者第二载波。再例如,如果“两个不同的第五载波”是第一载波、第三载波时,“第六载波”可以是第二载波或者第四载波,等等。上述说明同样适用于第五载波。例如,“第五载波”可以理解为是与两个不同的第六载波不同的载波。
同样的,本申请中,“两个不同的第五频带”可以理解为,该两个不同的第五频带为,第一频带~第四频带中任意两个不同的频带。例如,“两个不同的第五频带”可以指的是,第一频带(例如,频带#A)、第二频带(例如,频带#B)。又例如,“两个不同的第五频带”可以是第三频带(例如,频带#C)、第四频带(例如,频带#D)。再例如,“两个不同的第五频带”可以是第一频带(例如,频带#A)、第三频带(例如,频带#C),等等。上述说明同样适用于第六频带,即对于“两个不同的第六频带”也可类似理解。。
本申请中,“第六频带”可以理解为是与两个不同的第五频带不同的频带。例如,当该两个不同的第五频带为,第一频带~第四频带中任意两个不同的频带时,“第六频带”可以是第一频带~第四频带中剩余两个频带中的任意一个频带。例如,如果“两个不同的第五频带”指的是,第一频带、第二频带时,“第六频带”可以是第三频带或者第四频带。又例如,如果“两个不同的第五频带”是第三频带、第四频带时,“第六频带”可以是第一频带或者第二频带。再例如,如果“两个不同的第五频带”是第一频带、第三频带时,“第六频带”可以是第二频带或者第四频带,等等。上述说明同样适用于第五频带。例如,“第五载频带”可以理解为是与两个不同的第频带不同的频带。
基于上述技术方案,本申请中,切换时间可以为从两个不同的载波的1T+1T的两个第一上行传输切换到另外一个载波的2T的两个第二上行传输所对应的两个切换时间。
在一种可能的实现方式中,当所述第一上行传输为在第五载波上的第一上行传输,且所述第二上行传输为在至少两个不同的第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:从所述第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
例如,所述至少两个不同的第六载波与所述至少两个第二上行传输一一对应。
在一种可能的实现方式中,所述至少两个不同的第五载波中的每个第五载波与所述第六载波不同,和/或;所述至少两个不同的第六载波中的每个第六载波与所述第五载波不同。
基于上述技术方案,本申请中,切换时间可以为从一个载波的2T的两个第一上行传输的切换到另外两个不同的载波的1T+1T的两个第二上行传输所对应的两个切换时间。
在一种可能的实现方式中,当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在至少两个不同第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:从所述至少两个第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
在一种可能的实现方式中,所述至少两个不同的第五载波与所述至少两个第一上行传输一一对应,所述至少两个不同的第六载波与所述至少两个第二上行传输一一对应。
在一种可能的实现方式中,所述至少两个第五载波中的每个第五载波与所述至少两个第六载波中的每个第六载波不同,或者;所述至少两个第五载波中的一个第五载波与所述至少两个第六载波中的一个第六载波相同。
基于上述技术方案,本申请中,切换时间可以为两个第一上行传输分别到两个第二上行所对应的两个切换时间。其中,第一上行传输和第二上行传输可以共用一个载波,第一上行传输和第二上行传输也可以不共用载波。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,所述终端设备不期望在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
本申请中,“频带切换对”中包括的频带为不同的频带。例如,频带切换对中包括的一个第五频带和一个第六频带是不同的频带。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,所述终端设备确定在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内不进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联。
基于上述技术方案,本申请中,切换时间可以指的是涉及切换的载波的时间。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带,所述第二上行传输包括至少一个第六频带,所述切换时间,包括以下至少一项:从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间中的最大值,或者;从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间的和,或者;从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间,其中,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
在一种可能的实现方式中,如果第一上行传输包括至少两个第五频带时,所述至少两个第五频带中的每个第五频带不同,如果第一上行传输包括至少两个第六频带时,所述至少两个第六频带中的每个第六频带不同;其中,所述至少两个第五频带中的一个第五频带与所述至少两个第六频带中的一个第六频带相同,或者,所述每个第五频带与所述每个第六频带不同。
在一种可能的实现方式中,所述至少一个频带切换对的切换时间为所述至少一个频带切换对各自对应的切换时间。
基于上述技术方案,本申请中,切换时间可以灵活确定。
第二方面,提供了一种确定切换上行传输的方法,该方法可以由终端设备(例如,用户设备)执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法对应的有益效果可以参照前述第一方面中各个实现方式对应的有益效果。
该方法包括:终端设备确定在第一时间单元内进行第一上行传输的第一端口配置,其中,所述终端设备支持在至少三个频带或至少三个载波上进行上行切换;所述终端设备确定在第二时间单元内进行第二上行传输的第二端口配置,所述第一时间单元早于所述第二时间单元;所述终端设备确定第一条件是否满足;如果所述终端设备确定满足所述第一条件,则所述终端设备执行第一操作,所述第一操作包括下述至少一项:
所述终端设备不期望在从所述第一上行传输到所述第二上行传输之间切换所需的切换时间内进行上行数据传输,或者;所述终端设备确定在所述第二时间单元内进行所述第二上行传输时切换射频链的传输状态,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输需要切换,或者;所述终端设备确定在进行所述第二上行传输之前进行切换,或者;所述终端设备确定从所述第一上行传输到所述第二上行传输之间切换所需的切换时间,或者;所述终端设备确定在从所述第一上行传输到所述第二上行传输之间切换所需的切换时间内不进行上行数据传输;
其中,第一条件至少包括以下一项:
所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为不支持同时在所述第一频带的第一载波上和所述第三频带的第三载波上分别进行1端口传输,或者;
所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在第二频带的第二载波上支持1端口传输,或者,所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,或者;
所述第二端口配置为所述终端设备在第二频带的第二载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为不支持同时在所述第二频带的第二载波上和所述第三频带的第三载波上分别进行1端口传输,或者;
所述第二端口配置为所述终端设备在第二频带的载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为支持在第一频带的第一载波上支持1端口传输;或者,所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,或者;
所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,或者;
所述第二端口配置为所述终端设备在第二频带的第二载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在所述第三频带的第三载波上支持2端口传输,或者;
所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输为1端口传输或者2端口传输,如果所述第一端口配置为所述终端设备在第二频带的第二载波上的所述第一上行传输和第三频带的第三载波上的所述第一上行传输分别为1端口传输,或者;
所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输和第二频带的第二 载波上的所述第二上行传输上分别为1端口传输,如果所述第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输为1端口传输或者2端口传输,或者;
所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输和第二频带的第二载波上的所述第二上行传输分别为1端口传输,如果第一端口配置为所述终端设备在所述第一频带的第一载波上的所述第一上行传输和第三频带的第三载波上的所述第一上行传输分别为1端口的上行传输,则所述终端设备执行第一操作,或者;如果第一端口配置为所述终端设备在所述第二频带的第二载波上的所述第一上行传输和第三频带的第三载波上的所述第一上行传输分别为1端口传输,或者;
所述第二端口配置为所述终端设备在第一频带的第一载波上的所述第二上行传输和第二频带的第二载波上的所述第二上行传输分别为1端口的传输,如果第一端口配置为所述终端设备在第三频带的第三载波上的所述第一上行传输和第四频带的第四载波上的所述第一上行传输分别为1端口传输,或者;
所述第二端口配置为所述终端设备在第二频带的第二载波上的所述第二上行传输为2端口的传输,如果第一端口配置为所述终端设备在第一频带的第一载波上的所述第一上行传输为2端口传输,或者;
在一种可能的实现方式中,所述方法还包括:所述终端设备接收来自网络设备的第一无线资源控制信令,所述第一无线资源控制信令指示所述终端设备被配置为第一选项或第二选项,其中,所述第一选项表示所述终端设备被配置为切换上行链路传输,所述第二选项表示所述终端设备被配置为双上行链路传输。
在一种可能的实现方式中,所述终端设备接收来自网络设备的第二无线资源控制信令,所述第二无线资源控制信令指示所述终端设备被配置为支持在三个频带上进行上行切换,或者,所述第二无线资源控制信令指示所述终端设备被配置为支持在四个频带上进行上行切换。
在一种可能的实现方式中,所述方法还包括:所述终端设备接收来自网络设备的第三RRC信令,所述第三RRC信令指示所述终端设备在至少一个频带上传输1个射频链或者2个射频链;所述终端设备根据所述第一端口配置、所述第二端口配置以及所述第三RRC信令,确定进行上行传输的切换时间或者确定执行第一操作。
在一种可能的实现方式中,所述方法还包括:所述终端设备接收来自网络设备的第三RRC信令,所述第三RRC信令指示所述终端设备在至少一个频带上传输1个射频链或者2个射频链;所述终端设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令,以及预定义的规则,确定进行上行传输的切换时间或者确定执行第一操作。
在一种可能的实现方式中,所述预定义的规则包括以下至少一项:如果终端设备支持在3个频带上进行上行切换,预定义的规则可以为规定上行切换时这3个频带的优先级、如果终端设备支持在4个频带上进行上行切换时,预定义的规则可以为规定上行切换时这4个频带的优先级。
在一种可能的实现方式中,所述终端设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令以及预定义的规则,确定所述终端设备进行上行传输的切换时间,包括:所述网络设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令、所述预定义的规则以及射频链的工作方式,确定述终端设备进行上行传输的切换时间。
本申请中,射频链的工作方式,可以理解为,所述射频链中的每个射频链可以独立工作,或者,所述射频链中的每个射频链不能独立工作。
在一种可能的实现方式中,所述方法还包括接收来自网络设备的第五RRC信令,所述第五RRC信令用于配置所述切换时间所在的频带或载波。
在一种可能的实现方式中,所述切换时间所在的频带或载波可以为切换前的频带或载波;在另一种可能的实现方式中,所述切换时间所在的频带或者载波可以为切换后的频带或载波。
在一种可能的实现方式中,所述方法还包括:所述终端设备根据所述切换时间,在所述网络设备调度的资源上进行上行数据的传输。
在一种可能的实现方式中,当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在第六载波上的第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:所述至少两个第一上行传输分别到所述第二上行传输所对应的至少两个切换时间。
在一种可能的实现方式中,当所述第一上行传输为在第五载波上的第一上行传输,且所述第二上行传输为在至少两个不同的第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二 上行传输的切换时间为:从所述第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
例如,所述至少两个不同的第六载波与所述至少两个第二上行传输一一对应。
在一种可能的实现方式中,所述至少两个不同的第五载波中的每个第五载波与所述第六载波不同,和/或;所述至少两个不同的第六载波中的每个第六载波与所述第五载波不同。
在一种可能的实现方式中,当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在至少两个不同第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:从所述至少两个第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
在一种可能的实现方式中,所述至少两个不同的第五载波与所述至少两个第一上行传输一一对应,所述至少两个不同的第六载波与所述至少两个第二上行传输一一对应。
在一种可能的实现方式中,所述至少两个第五载波中的每个第五载波与所述至少两个第六载波中的每个第六载波不同,或者;所述至少两个第五载波中的一个第五载波与所述至少两个第六载波中的一个第六载波相同。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,所述终端设备不期望在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
本申请中,“频带切换对”中包括的频带为不同的频带,例如,频带切换对中包括的一个第五频带和一个第六频带是不同的频带。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,所述终端设备确定在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内不进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带,所述第二上行传输包括至少一个第六频带,所述切换时间,包括以下至少一项:从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间中的最大值,或者;从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间的和,或者;从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间,其中,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
在一种可能的实现方式中,如果第一上行传输包括至少两个第五频带时,所述至少两个第五频带中的每个第五频带不同,如果第一上行传输包括至少两个第六频带时,所述至少两个第六频带中的每个第六频带不同;其中,所述至少两个第五频带中的一个第五频带与所述至少两个第六频带中的一个第六频带相同,或者,所述每个第五频带与所述每个第六频带不同。
在一种可能的实现方式中,所述至少一个频带切换对的切换时间为所述至少一个频带切换对各自对应的切换时间。
第三方面,提供了一种确定切换上行传输的方法,该方法可以由网络设备(例如,基站)执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:网络设备向终端设备发送第一信息,该第一信息指示终端设备在第一时间单元内进行第一上行传输的第一端口配置;所述网络设备向所述终端设备发送第二信息,所述第二信息指示所述终端设备在第二时间单元内进行第二上行传输的第二端口配置;所述网络设备向所述终端设备发送第三RRC信令,所述第三RRC信令指示所述终端设备在至少一个频带上传输1个射频链或者2个射频链;所述网络设备根据所述第一端口配置、所述第二端口配置以及所述第三RRC信令,确定所述终端设备进行上行传输的切换时间。
在一种可能的实现方式中,所述网络设备根据所述第一端口配置、所述第二端口配置以及所述第三RRC信令,确定所述终端设备进行上行传输的切换时间,包括:所述网络设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令以及预定义的规则,确定所述终端设备进行上行传输的切换时间。
在一种可能的实现方式中,所述预定义的规则包括以下至少一项:如果终端设备支持在3个频带上进行上行切换,预定义的规则可以为规定上行切换时这3个频带的优先级、如果终端设备支持在4个频带上进行上行切换时,预定义的规则可以为规定上行切换时这4个频带的优先级。
在一种可能的实现方式中,所述网络设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令以及预定义的规则,确定所述终端设备进行上行传输的切换时间,包括:所述网络设备根据所述第一端口配置、所述第二端口配置、所述第三RRC信令、所述预定义的规则以及射频链的工作方式,确定述终端设备进行上行传输的切换时间。
本申请中,射频链的工作方式,可以理解为,所述射频链中的每个射频链可以独立工作,或者,所述射频链中的每个射频链不能独立工作。
在一种可能的实现方式中,所述方法还包括接收来自网络设备的第五RRC信令,所述第五RRC信令用于配置所述切换时间所在的频带或载波。
在一种可能的实现方式中,所述切换时间所在的频带或载波可以为切换前的频带或载波;在另一种可能的实现方式中,所述切换时间所在的频带或者载波可以为切换后的频带或载波。
在一种可能的实现方式中,所述方法还包括:所述网络设备根据所述切换时间为所述终端设备配置用于上行传输的资源。
在一种可能的实现方式中,当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在第六载波上的第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:所述至少两个第一上行传输分别到所述第二上行传输所对应的至少两个切换时间。
在一种可能的实现方式中,当所述第一上行传输为在第五载波上的第一上行传输,且所述第二上行传输为在至少两个不同的第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:从所述第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
例如,所述至少两个不同的第六载波与所述至少两个第二上行传输一一对应。
在一种可能的实现方式中,所述至少两个不同的第五载波中的每个第五载波与所述第六载波不同,和/或;所述至少两个不同的第六载波中的每个第六载波与所述第五载波不同。
在一种可能的实现方式中,当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在至少两个不同第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:从所述至少两个第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
在一种可能的实现方式中,所述至少两个不同的第五载波与所述至少两个第一上行传输一一对应,所述至少两个不同的第六载波与所述至少两个第二上行传输一一对应。
在一种可能的实现方式中,所述至少两个第五载波中的每个第五载波与所述至少两个第六载波中的每个第六载波不同,或者;所述至少两个第五载波中的一个第五载波与所述至少两个第六载波中的一个第六载波相同。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,所述终端设备不期望在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
本申请中,“频带切换对”中包括的频带为不同的频带,例如,频带切换对中包括的一个第五频带和一个第六频带是不同的频带。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,所述终端设备确定在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内不进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联。
在一种可能的实现方式中,所述第一上行传输包括至少一个第五频带,所述第二上行传输包括至少一个第六频带,所述切换时间,包括以下至少一项:从所述第一上行传输到所述第二上行传输所涉及的 至少一个频带切换对各自对应的切换时间中的最大值,或者;从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间的和,或者;从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间,其中,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
在一种可能的实现方式中,如果第一上行传输包括至少两个第五频带时,所述至少两个第五频带中的每个第五频带不同,如果第一上行传输包括至少两个第六频带时,所述至少两个第六频带中的每个第六频带不同;其中,所述至少两个第五频带中的一个第五频带与所述至少两个第六频带中的一个第六频带相同,或者,所述每个第五频带与所述每个第六频带不同。
在一种可能的实现方式中,所述至少一个频带切换对的切换时间为所述至少一个频带切换对各自对应的切换时间。
第四方面,提供了一种通信装置,该装置用于执行上述第一方面至第二方面中任一方面中任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第二方面中任一方面任一种可能实现方式中的方法的单元和/或模块,如收发单元和/或处理单元。
在一种实现方式中,该装置为终端设备。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于终端设备的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第五方面,提供了一种通信装置,该装置用于执行上述第三方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第三方面任一种可能实现方式中的方法的单元和/或模块,如收发单元和/或处理单元。
在一种实现方式中,该装置为网络设备。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于网络设备的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供了一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第二方面中任一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为终端设备。
在另一种实现方式中,该装置为用于终端设备的芯片、芯片系统或电路。
第七方面,提供了一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第三方面中任一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为网络设备。
在另一种实现方式中,该装置为用于网络设备的芯片、芯片系统或电路。
第八方面,本申请提供一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第三方面中任一方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于收发器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第九方面,提供了一种处理设备,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过收发器接收信号,通过发射器发射信号,以执行第一方面至第三方面中任一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自收发器。其中,发射器和收发器可以统称为收发器。
上述第九方面中的处理设备可以是一个或多个芯片。该处理设备中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第三方面任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第三方面任一种可能实现方式中的方法。
第十二方面,提供一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统的设备执行上述第一方面至第三方面中任一方面中各实现方式中的方法。
第十三方面,提供一种通信系统,该通信系统包括所述终端设备和所述网络设备。所述终端设备用于执行上述第一方面至第二方面中任一方面中的任一种可能实现方法,所述网络设备用于执行上述第三方面中任一方面中的任一种可能实现的方法。
附图说明
图1是本申请适用的系统架构的示意图。
图2是本申请提出的一种确定切换上行传输方法200的示意性流程图。
图3是本申请提出的一种通信装置100的示意性框图。
图4是本申请提出的一种通信装置200的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例可应用的无线通信系统包括但不限于:全球移动通信(global system of mobile communication,GSM)系统、长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、LTE系统、先进的长期演进(LTE-Advanced,LTE-A)系统、下一代通信系统(例如,6G通信系统)、多种接入系统的融合系统,或演进系统。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户 终端或用户装置。例如,终端设备可以为用户设备(user equipment,UE),例如,手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备等。终端设备也可是工业控制(industrial control)中的无线终端、机器类型通信(machine type communication,MTC)终端、客户终端设备(customer premise equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
本申请实施例中所涉及到网络设备(例如,无线接入网设备)可以是终端设备通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)、宏基站或微基站、高频基站等。该无线接入网设备还可以为NR系统中的下一代基站(next generation node B,gNB),或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
应理解,图1示出的场景仅仅是本申请技术方案使用的一种场景示例,本申请并不排除在其它场景中也需要终端设备在多个频带之间进行切换,也就是说,本申请的技术方案可以应用于各种终端设备需要在多个频带之间进行切换的场景。
5G新空口(new radio,NR)系统中,网络设备(例如,基站)发射功率很大可以将无线电波传送到很远的距离。但是,终端设备发射功率很小,上行覆盖受限,因此上行传输的信号在到达网络设备时的接收信号强度可能不足以保证其覆盖性能。此外,还会出现上行频谱不够的问题,因此不可能依赖对数据的重传来保证其上行覆盖性能。
图1是本申请技术方案适用的一种场景示意图,如图1所示,目前NR引入增补上行(supplementary uplink,SUL)作为NR系统中上行覆盖不足时的备选。由于长期演进(long term evolution,LTE)的低频带通常具有更好的覆盖性能,SUL考虑的是从LTE所在较低频带(例如,700MHz、1.8GHz或2.1GHz)中使用载波用于NR上行链路的传输。目前已经确定终端设备在使用LTE频带进行NR传输时可与LTE上行链路时分双工(time division duplex,TDD)复用该频带。也就是说,当终端设备处于TDD中频带(2.6GHz、3.5GHz或4.9GHz)覆盖范围时,终端设备使用TDD中频带;当终端设备移动到TDD中频带(2.6GHz、3.5GHz或4.9GHz)覆盖范围之外时,终端设备在上行链路中可以采用LTE的低频带,这就增补了TDD中频带的上行覆盖短板,延伸了上行覆盖范围。当然,随着未来演进,终端设备在上行链路中也可以采用别的频带用作增补上行,进一步延伸上行覆盖范围。
也可以理解为,当终端设备在NR频带(band)(例如,2.6GHz)上传输上行数据时,可以从LTE所在较低频带(例如,700MHz/800MHz/900MHz、1.8GHz或2.1GHz)中使用载波用于NR上行传输,该载波可以理解为SUL频带。也就是说,在SUL的场景中,期望终端设备根据信道状态或者根据对应频带的负载状况,可以在700M/800M/900M、1.8G、2.1G、3.5G或4.9GHz等的多个频带上进行动态切换。
目前协议只定义了终端设备在两个频带上进行切换时,哪些情况下需要切换射频链的传输状态。当终端设备需要在至少三个频带上进行切换时,终端设备如何确定是否需要切换射频链的传输状态,成为一个需要解决的技术问题。
有鉴于此,本申请提供了一种确定切换上行传输的方法,当终端设备支持在至少三个频带上进行上行传切换时,可以使得终端设备明确是否需要切换当前射频链的传输状态,从而保障上行数据的传输性能。换句话说,基于本申请提供的方案,可以使得终端设备明确需要执行的操作,从而保障上行数据的传输性能。
本申请中“射频链”也可以替换为TX、传输链(Tx chain)、天线、射频、发射通道、发送端口、接收通道或者它们的任意组合,以下不再赘述。
应理解,本申请实施例中提到的“频带”(band)也可以理解为,“频段”、“频点”“频谱”。本申请中的分量载波(component carrier,CC)(也可以简称为“载波”),本申请中的载波可以理解为属于某个频带的载波。为了便于理解,本申请中,载波#1、载波#2、载波#3和载波#4分别代表不同频带中的不同的载波。本申请中,第一载波、第二载波、第三载波和第四载波分别代表不同频带中的不同的载波。
本申请中,发送射频链也可以理解为“发送”、“能发送”、“传输”或者“能传输”。相应的,发送射频链的数量可以理解为“发送的数量”、“能发送的数量”、“传输的数量”或者“能传输的数量”。发送射频链的数量还可以理解为“层数”、“天线层数”或“通道数”。
本申请中,“支持”也可以替代描述为“能支持”,或“被支持”,或“能被支持”;“同时”也可以替代描述为“能同时”。
本申请实施例中提到的“切换”(switch或switching)也可以理解为“转换”或“天线转换”或“射频转换”或“射频调整/重调整”;本申请实施例提到的“切换时间”,也可以理解为“载波切换时间”、“载波转换时间”、“载波转换周期(period或interval)”或“转换间隔(gap)”;本申请实施例提到的“切换时间”,还可以称之为“载波切换准备时间中的切换时间(switching time)”或者“切换准备提前量中的切换时间(switching time)”或者“切换时间段(switching period)”;本申请实施例提到的“切换时间”也可以称之为“切换时延”。
本申请中,“端口配置”,可以为端口数,端口号,层数,或流数;也可以为解调参考信号(demodulation reference sgnal,DMRS)端口,探测参考信号(sounding reference signal,SRS)端口,信道状态信息参考信号(channel state Information-reference signal,CSI-RS)端口,天线端口,或物理上行共享信道(physical uplink shared channel,PUSCH)端口/物理上行控制信道(physical uplink control channel,PUCCH)端口;还可以为DMRS端口数,SRS端口数,天线端口数,或PUSCH/PUCCH端口数等。这些信息可以为下行控制信息(downlink control information,DCI)所指示的;也可以是无线资源控制(radio resource control,RRC)信令指示的;还可以是DCI结合RRC信令所指示的。例如,可以为DCI所含的antenna port(s)所指示的;还可以为RRC信令里面的port(s)no或port index所指示的;还可以为DCI所含的antenna port(s)结合RRC信令所指示的,等等。
本申请中,“上行数据”可以包括至少以下一项:PUSCH、PUCCH或上行信号(例如,SRS)。
本申请中,假设终端设备支持在至少三个频带或至少三个载波进行上行切换。例如,终端设备可以在频带#A、频带#B、频带#C上进行切换。又例如,终端设备可以在频带#A、频带#B、频带#C、频带#D上进行频带切换。示例性的,频带#A可以是3.5GHz、频带#B可以是2.1GHz、频带#C可以是1.8GHz、频带#D可以是700MHz/800MHz/900MHz,等等。例如,终端设备可以在载波#1、载波#2、载波#3上行进行切换。再例如,终端设备可以在载波#1、载波#2、载波#3、载波#4上进行切换。
本申请中,“传输状态”、“状态”、“操作状态”、“端口配置对应的状态”、“射频链状态”、“射频链的传输状态”、与“Tx状态”,之间可以互相替换描述。本申请中,“1端口(port)传输”可以理解为“1天线端口传输”、“1端口上行传输”、“1天线端口上行传输”,等等。本申请中,“传输1个射频链”可以替代描述为“发送1个射频链”。
本申请中,在一种可能的实现方式中,“上次上行传输”可以替代描述为“先前上行传输”或“之前上行传输”,等等。“下次上行传输”也可以理解为“当前上行传输”或“目标上行传输”,等等。
在另一种可能的实现方式中,“上次上行传输”也可以理解为“当前上行传输”。“下次上行传输”可以替代描述为“即将进行的上行传输”或“目标上行传输”,等等。
在另一种可能的实现方式中,“上次上行传输”也可以理解为“第一个上行传输”或“第一上行传输”。“下次上行传输”可以替代描述为“第二个上行传输”或“第二上行传输”,等等。其中,“第一个上行传输”为“第二个上行传输”之前的一个上行传输;“第一上行传输”与“第二上行传输”相比,“第一上行传输”是之前的一个上行传输。
本申请中,“频带对”也可以理解为“频带切换对”。“频带切换对”可以理解为是切换前的频带—切换后的频带。例如,如果终端设备的上次上行传输为在频带#A和频带#B上分别进行1端口的上行传输,终端设备的下次上行传输为在频带#C和频带#D上分别进行1端口的上行传输。在一种可能的实现方式中,“频带切换对”为:频带#A→频带#C,频带#B→频带#D。在另一种可能的实现方式中,“频带切换对”为: 频带#A→频带#D,频带#B→频带#C。
需要说明的是,本申请提及的“频带对”、“频带切换对”指的是从所述第一上行传输到所述第二上行传输所涉及的频带切换对。
本申请中的“根据”也可以理解为“基于”。
本申请中,方法200中的各个实现方案可以结合使用,或者方法200中的各个实现方式也可以结合使用。
具体来说,目前,基站为终端设备指示数据传输时可以指示到端口配置,当终端设备需要在至少三个频带上进行切换时,一个或一种天线端口传输配置会存在处于多个射频链的传输状态。因此,在某些情况下,如果基站仅指示到端口配置,此时终端设备不确定是否需要切换当前射频链的传输状态,从而影响终端设备上行数据的传输性能。例如,如果当前端口配置与基站指示的下一个时隙终端设备的上行传输的端口配置,所对应的终端设备的射频链的传输状态是相同的,即相同的射频链的传输状态可以支持这两种端口配置,此时,终端设备不需要切换射频链的传输状态。又例如,当前端口配置与基站指示的下一个时隙终端设备的上行传输的端口配置,所对应的终端设备的射频链的传输状态发生变化,即多个射频链的传输状态下均支持基站指示的端口配置,此时可能也需要切换。还例如,当前端口配置与基站指示的下一个时隙终端设备的上行传输的端口配置,所对应的终端设备的射频链的传输状态可以是同一个状态,还可以是不同的状态,即多个射频链的传输状态下均支持基站指示的端口配置,当有别的信令指示下一个射频链的传输状态不是当前端口配置所对应的射频链的传输状态时,此时也需要切换。
本申请中,“所对应的”,也可以理解为“所在的”,“所处的”。
如前所述,当终端设备需要在至少三个频带上进行切换时,发送每个天线端口传输都会存在多个射频链的传输状态,下面以表格1为例具体说明。作为示例,下述表格1示出了如果终端设备支持在3个频带上进行上行切换时可能存在的射频链的传输状态,以及每个射频链的传输状态下支持的(“支持的”也可以理解为“对应的”)端口配置。
表格1
以Tx状态#1为例进行说明,Tx状态#1表示终端设备支持在频带#A(例如,频带#A的载波#1)和频带#B(例如,频带#B的载波#2)上分别传输1个射频链,在频带#C上没有射频链传输。从表格1中可以看出,在Tx状态#1下,终端设备可以支持3种端口配置,分别为:终端设备在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输、终端设备在频带#A的载波#1上进行1端口传输、终端设备在频带#B的载波#2上进行1端口传输。
本申请中,“进行1端口传输”,也可以理解为,终端设备在载波上的传输为1端口传输,或者,在载波上进行1端口传输。
本申请中,“分别传输1个射频链”,也可以理解为,“分别以1个射频链进行传输”。
再以Tx状态#6为例进行说明,Tx状态#6表示终端设备支持在频带#C(例如,频带#C的载波#3)上传输2个射频链。从表格1中可以看出,在Tx状态#6下,终端设备可以支持2种端口配置,分别为:终端设备在频带#C的载波#3上进行2端口传输、终端设备在频带#C的载波#3上进行1端口传输。应理解,表格1中其他射频链的传输状态可以参照Tx状态#1和Tx状态#6进行理解,不再一一举例说明。
例如,如果终端设备之前的上行传输的端口配置为“0P+0P+1P”,终端设备即将进行的上行传输为“1P+0P+0P”,此时,可以对表格1重新整理,得到表格2。从表格2中可以看出,“0P+0P+1P”的端口配置对应终端设备的Tx状态#2、Tx状态#3、Tx状态#6,“1P+0P+0P”的端口配置对应终端设备的Tx状态#1、Tx状态#2、Tx状态#4。由于每种端口配置都可以对应多种射频链的传输状态,并且,在上述示例中Tx状态#2同时支持“0P+0P+1P”和“1P+0P+0P”的端口配置。因此,在上述端口配置下,终端设备不确定是否需要切换当前射频链的传输状态,换句话说,在上述端口配置下,终端设备需要执行的操作都是不清 楚的,从而会影响终端设备上行数据的传输性能。
表格2
类似的,如果终端设备之前的上行传输的端口配置为“0P+1P+0P”,终端设备即将进行的上行传输为“1P+0P+0P”,或者,如果终端设备之前的上行传输的端口配置为“0P+0P+1P”,终端设备即将进行的上行传输为“0P+1P+0P”也会出现上述问题。
需要说明的是,上述表格2中“上次端口配置”和“下次端口配置”中的各种具体的配置方式还可以互换。例如,在一些实现方式中,“上次端口配置”可以为“1P+0P+0P”,对应的,“下次端口配置”可以为“0P+0P+1P”。或者,“上次端口配置”可以为“1P+0P+1P”,对应的,“下次端口配置”可以为“0P+1P+0P”。或者,“上次端口配置”可以为“0P+1P+0P”,对应的,“下次端口配置”可以为“0P+0P+1P”。此时,同样也存在上述问题。
针对该问题,下述实施例中提供了一种确定切换上行传输方法,可以使得终端设备明确需要执行的操作,从而保障上行数据传输性能。下面对本申请提供的技术方案进行详细说明。
图2是本申请提供的一种确定切换上行传输方法200的示意性流程图。下面对图2所示的各步骤进行说明。需要说明的是,图2中用虚线表示的步骤是可选的,在后文中不多赘述。该方法包括:
可选的,步骤201,网络设备向终端设备发送第一无线资源控制信令(radio resource control,RRC)。
该第一RRC信令指示第一选项或第二选项中至少一项。即,该第一RRC信令指示该终端设备被配置为第一选项或第二选项或第三选项中至少一项。
作为一种实施例,该第一RRC信令指示终端设备被配置为第二选项或第三选项。
其中,第二选项表示所述终端设备为双上行链路传输(dual uplink,dual UL)或并发上行传输(concurrent UL,或1Tx+1Tx)。也可以理解为,终端设备可以使用双通道进行上行传输。第一选项表示所述终端设备为切换上行链路传输(switched uplink)或单上行链路传输(single uplink)。第三选项表示所述终端设备为既有切换上行链路传输,又有双上行链路传输(switched uplink and dual uplink)。
本申请中,“上行链路传输”,也可以理解为“上行传输”。“切换上行链路传输”也可以理解为:“切换上行”,或“切换传输”。“双上行链路传输”也可以理解为:“双上行”或“并发传输”。
步骤202,终端设备确定上行传输为双上行链路传输或者并发上行传输。
例如,在一种可能的实现方式中,终端设备可以接收来自网络设备的第一RRC信令,并根据第一RRC信令确定上行传输为双上行链路传输或者并发上行传输。
可选的,包括步骤203,网络设备向终端设备发送第二RRC信令。
该第二RRC信令指示终端设备被配置为在至少三个频带或至少三个载波上进行上行切换。该第二RRC信令可以指示能够进行上行传输切换的至少三个频带,或者,该第二RRC信令可以指示能够进行上行传输切换的至少三个载波。可选的,该第二RRC信令还可以指示至少三个频带(或至少三个载波)上分别支持的射频链个数或最大射频链个数。其中,射频链个数可以是per band配置的,还可以是针对一个频带per serving cell配置的。
应理解,本申请中,步骤201和步骤203可以同时执行。此时,第一RRC信令和第二RRC信令可以在同一条消息(例如,第一消息)中发送。也可以理解为,第一消息中包含两个信息块,分别为第一 RRC信令和第二RRC信令。
例如,第二RRC信令指示终端设备被配置为在三个频带上进行上行切换。又例如,第二RRC信令指示终端设备被配置为在四个频带上进行上行切换。例如,第二RRC信令指示终端设备被配置为在三个载波上进行上行切换。又例如,第二RRC信令指示终端设备被配置为在四个载波上进行上行切换。
例如,第二RRC信令指示终端设备在2.6G Hz频段,4.9G Hz频段,F频段分别进行2Tx传输。具体的,可以为2.6G Hz 160MHz@2T+4.9G 160MHz@2T+F 30MHz@2T。又例如,第二RRC信令指示终端设备在2.6G Hz频段,4.9G Hz频段分别进行2Tx传输,并且在F频段和A频段分别进行1Tx传输。具体的,可以为FSA 2.6G 160MHz@2T+4.9G 160MHz@2T+(F 30MHz@1T+A 15MHz@1T)。
步骤204,终端设备确定在至少三个频带或至少三个载波上进行上行切换。
例如,在一种可能的实现方式中,终端设备接收来自网络设备的第二RRC信令,并根据第二RRC信令确定可以在三个频带或至少三个载波上进行上行切换。又例如,在另一种可能的实现方式中,终端设备接收来自网络设备的第二RRC信令,并根据第二RRC信令确定可以在四个频带或至少四个载波上进行切换。
终端设备在两次相邻的切换之间需要确保至少间隔500微秒,或者14个符号且子载波间隔为30KHz。终端设备可以通过能力上报信息上报该间隔要求。通常在三频带或四频带各个频带的射频链总和大于某个门限值时,上报该间隔要求。例如,该门限值为5Tx。上述第二RRC信令指示终端设备在2.6G Hz频段,4.9G Hz频段,F频段分别进行2Tx传输。这三个频段共有6Tx传输,如果UE能力为只能在5Tx传输之内进行动态上行传输切换,即,那么终端设备需要上报该间隔要求。又例如,第二RRC信令指示终端设备在2.6G Hz频段,4.9G Hz频段分别进行2Tx传输,并且在F频段和A频段分别进行1Tx传输。这四个频段共有6Tx传输,如果终端设备能力为只能在5Tx传输之内进行动态上行传输切换,即,那么终端设备需要上报该间隔要求。因此,确保在超出终端设备动态切换的传输能力时,仍然能够进行多频段之间的有效切换。可选的,终端设备可以上报更保守的能力值,例如,在两次相邻的切换之间需要确保至少间隔1000微秒,或者14个符号且子载波间隔为15KHz。终端设备在通过能力上报信息上报该间隔要求的同时,可以上报允许的门限值。该门限值为在三频带或四频带之间进行动态上行传输的载波切换时支持的各个频带的射频链总和最大值。
可选的,步骤205,网络设备向终端设备发送第一信息。
该第一信息指示终端设备在第一时间单元内进行第一上行传输的第一端口配置。
本申请中,第一信息包含至少一个第一端口配置。所述至少一个第一端口配置中的每个第一端口配置用于终端设备在第一时间单元内进行第一上行传输。或者,所述至少一个第一端口配置中的每个第一端口配置用于终端设备在第一时间单元内进行的第一上行传输。或者,所述至少一个第一端口配置中的每个第一端口配置用于终端设备在第一时间单元内的第一上行传输。或者,所述至少一个第一端口配置中的每个第一端口配置用于终端设备的第一上行传输。其中,所述第一信息可以为通过下行控制信息(downlink control information,DCI)结合无线资源控制(radio resource control,RRC)信令下发,或者只通过DCI信令下发,或者只通过RRC信令下发,不予限定。
步骤206,终端设备确定第一端口配置。
本申请中,第一端口配置用于第一上行传输。
本申请中,第一端口配置可以有一个或者多个,第一上行传输也可以有一个或者多个。并且,至少一个第一端口配置用于至少一个第一上行传输。至少一个第一上行传输与至少一个第一端口配置一一对应。
例如,终端设备确定在第一时间单元内进行至少一个第一上行传输的至少一个第一端口配置。
例如,在一种可能的实现方式中,终端设备可以接收来自网络设备的第一信息,并确定在第一时间单元内进行第一上行传输的第一端口配置。
步骤206也可以理解为,终端设备确定上次或当前上行传输时的端口配置。
可选的,步骤207,网络设备向终端设备发送第二信息。
该第二信息指示终端设备在第二时间单元内进行第二上行传输的第二端口配置。
本申请中,第二信息包含至少一个第二端口配置。所述至少一个第二端口配置中的每个第二端口配置用于终端设备在第二时间单元内进行第二上行传输。或者,所述至少一个第二端口配置中的每个第二端口配置用于终端设备在第二时间单元内进行的第二上行传输。或者,所述至少一个第二端口配置中的 每个第二端口配置用于终端设备在第二时间单元内的第二上行传输。或者,所述至少一个第二端口配置中的每个第二端口配置用于终端设备的第二上行传输。其中,所述第二信息可以为通过DCI结合RRC信令下发,或者只通过DCI信令下发,或者只通过RRC信令下发,不予限定。
应理解,本申请中,步骤205和步骤207可以同时执行。又例如,步骤201、步骤203、步骤205和步骤207以同时执行。此时,具体的实现方式可以参照步骤203中的相关描述,不再赘述。还可以理解为:步骤201、步骤203、步骤205和步骤207中任一项执行顺序不受限制。
步骤208,终端设备确定第二端口配置。
本申请中,第二端口配置用于第二上行传输。
本申请中,第二端口配置可以有一个或者多个,第二上行传输也可以有一个或者多个。并且,至少二个第一端口配置用于至少二个第一上行传输。至少二个第一上行传输与至少一个第二端口配置一一对应。
例如,终端设备确定在第二时间单元内进行至少一个第二上行传输的至少一个第二端口配置。
例如,在一种可能的实现方式中,终端设备可以接收来自网络设备的第二信息,并确定在第二时间单元内进行第二上行传输的第二端口配置。
步骤208也可以理解为,终端设备确定当前或下次上行传输时的端口配置。
当步骤206为终端设备确定上次上行传输时的端口配置,相应地,步骤208为终端设备确定当前上行传输时的端口配置。当步骤206为终端设备确定当前上行传输时的端口配置,相应地,步骤208为终端设备确定下次上行传输时的端口配置。
当然,也可以理解为:当步骤206为终端设备确定上次上行传输时的端口配置,相应地,步骤208为终端设备确定下次上行传输时的端口配置。其中,“上次”和“下次”上行传输为相邻的两次上行传输,或者在时间轴上有前后顺序的两次上行传输。
本申请中,第一时间单元早于第二时间单元,可以理解为:第一时间单元与第二时间单元为有前后顺序的时间单元,或者,第一时间单元为之前的时间单元。即,相对第二时间单元,第一时间单元为较早的时间单元。具体的,第一时间单元与第二时间单元可以为相邻的时间单元。具体的,第一时间单元与第二时间单元还可以不相邻,只是第一时间单元为第二时间单元之前的时间单元。总之,第一上行传输为第二上行传输之前的上行传输。本申请对此不作限制。
本申请中,“时间单元”例如可以是一个或多个无线帧,一个或多个子帧,一个或多个时隙,一个或多个微时隙,一个或多个符号等。其中,符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、离散傅里叶变换扩频的正交频分复用(discrete fourier transform spread spectrum orthogonal frequency division multiplexing,DFT-S-OFDM)符号等。时间单元还可以是1秒(second,简称“s”)或多秒,1毫秒(millisecond,简称“ms”)或多毫秒等。例如,第一时间单元为时隙#1,第二时间单元为时隙#2。又例如,第一时间单元可以是时隙#3中的第二个符号,第二时间单元可以是时隙#4中的第四个符号,等等。
步骤209,根据第一端口配置、第二端口配置,终端设备执行第一操作,或者;根据第一端口配置、第二端口配置,以及第一上行传输的传输状态,终端设备执行第一操作。
步骤209也可以理解为,根据上次上行传输时的端口配置、下次上行传输时的端口配置(某些情况下,还需要结合上次上行传输状态),终端设备执行第一操作。
本申请中,“终端设备执行第一操作”可以替代描述为下述中的一种。例如,终端设备不期望在从第一上行传输到第二上行传输之间切换所需的切换时间内进行上行数据传输。又例如,终端设备不期望在从第一上行传输到第二上行传输之间切换所需的切换时间内,在至少三个载波上进行上行数据传输,其中,至少三个载波分别属于(“属于”也可以理解为“位于”)至少三个频带(即,至少三个载波与至少三个频带是一一对应的关系)。再例如,终端设备确定在第二时间单元内进行第二上行传输时切换射频链的传输状态。例如,终端设备确定从第一上行传输到第二上行传输需要切换。又例如,终端设备确定在进行第二上行传输之前进行切换。例如,终端设备确定从第一上行传输到第二上行传输之间切换所需的切换时间。又例如,终端设备确定在从第一上行传输到第二上行传输之间切换所需的切换时间内不进行上行数据传输。再例如,终端设备确定在从第一上行传输到第二上行传输之间切换所需的切换时间内,在至少三个载波上不进行上行数据传输,其中,至少三个载波分别属于至少三个频带。
再例如,终端设备确定在从第一上行传输到第二上行传输之间切换所需的切换时间内,在至少三个 载波中涉及切换的载波上不进行上行数据传输。其中,终端设备在至少三个载波中不涉及切换的载波上进行上行数据传输。根据终端设备能力,当终端设备支持在一个射频链切换过程中,另一个射频链能独立操作,不受对方影响时,终端设备可以只在涉及切换的载波上不进行上行数据传输。
再例如,终端设备确定在从第一上行传输到第二上行传输之间切换所需的切换时间内,在至少三个载波中涉及切换的载波上的相应切换时间内不进行上行数据传输。其中,终端设备在至少三个载波中不涉及切换的载波上进行上行数据传输。根据终端设备能力,当终端设备支持在一个射频链切换过程中,另一个射频链能独立操作,不受对方影响时,终端设备可以只在涉及切换的载波上的相应切换时间内不进行上行数据传输。下面举例说明:
作为一个示例,当终端设备从频带#A的载波切换到频段#B的载波需要第一切换时间,从频带C的载波切换到频段#D的载波需要第二切换时间。当终端设备从频带#A的1端口(port)传输,以及频带#C的1端口传输,切换到频带#B的1端口传输和频带#D的1端口传输时,如果切换是从频带#A到频带#B,且从频带#C到频带#D,那么终端设备在从频带#A的载波到频带#B的载波的第一切换时间内,不进行上行传输;且终端设备在从频带#C的载波到频带#D的载波的第二切换时间内,也不进行上行传输。第一切换时间和第二切换时间可以是相同的值,还可以是不同的值。当第一切换时间和第二切换时间不同时,在两者相差的时间范围内,有一个射频链能进行传输,另一个射频链不能进行传输。例如,第一切换时间大于第二切换时间,那么终端设备在从频带A的载波到频带#B的载波切换还没完成时,终端设备已经完成从频带#C的载波到频带#D的载波的切换,因此可以更早开始频带#D的载波上的上行传输。
作为另一个示例,当终端设备从频带#A的载波切换到频段#B的载波需要第一切换时间,从频带#C的载波切换到频段#D的载波需要第二切换时间,当从频带#A的载波切换到频段#D的载波需要第三切换时间,从频带#C的载波切换到频段#B的载波需要第四切换时间。当终端设备从频带#A的1端口(port)传输,以及频带#C的1端口传输,切换到频带#B的1端口传输和频带#D的1端口传输时,如果切换是从频带#A到频带#D,且从频带#C到频带#B,那么终端设备在从频带#A的载波到频带#D的载波的第三切换时间内,不进行上行传输;且终端设备在从频带#C的载波到频带#B的载波的第四切换时间内,也不进行上行传输。第三切换时间和第四切换时间可以是相同的值,还可以是不同的值。当第三切换时间和第四切换时间不同时,在两者相差的时间范围内,有一个射频链能进行传输,另一个射频链不能进行传输。例如,第三切换时间大于第四切换时间,那么终端设备在从频带#A的载波到频带#D的载波切换还没完成时,终端设备已经完成从频带#C的载波到频带#B的载波的切换,因此可以更早开始频带#B的载波上的上行传输。
作为又一个示例,当终端设备从频带#A的载波切换到频段#B的载波需要第一切换时间,从频带#C的载波切换到频段#D的载波需要第二切换时间,当从频带#A的载波切换到频段#D的载波需要第三切换时间,从频带#C的载波切换到频段#B的载波需要第四切换时间。当终端设备从频带#A的1端口(port)传输,以及频带#C的1端口传输,切换到频带#B的1端口传输和频带#D的1端口传输时,如果无法确定切换是从频带#A到频带#D,且从频带#C到频带#B,还是从频带#A到频带#B,且从频带#C到频带#D,那么终端设备在Max{第一切换时间,第二切换时间,第三切换时间,第四切换时间}内,不进行上行传输。即,终端设备在上述四个切换时间的最大值内不进行上行传输。网络设备在进行上行调度传输时,也根据该原则,在Max{第一切换时间,第二切换时间,第三切换时间,第四切换时间}内,不进行上行调度传输。
本申请中,终端设备确定第一条件是否满足,如果所述终端设备确定满足第一条件,则终端设备执行第一操作。其中,该“第一条件”至少包括下述各种实现方案中任意一种实现方案中的任一种可能的实现方式。
或者,也可以理解为,根据第一端口配置、第二端口配置(某些情况下,还需要结合第一时间单元内的传输状态),终端设备执行第一操作,具体可以包括以下方案,下面具体介绍本实施例的各种实现方案。
需要说明的是,下述方案D1、D2、F1、F2、G1、G2中,根据第一端口配置、第二端口配置,终端设备便可以明确需要执行第一操作。下述方案A1、A2、B1、B2、C1、C2中,根据第一端口配置、第二端口配置以及第一时间单元内的传输状态,终端设备可以明确需要执行第一操作。
本申请中,以第一频带的第一载波(例如,频带#A的载波#1),第二频带的第二载波(例如,频带#B的载波#2),第三频带的第三载波(例如,频带#C的载波#3),第频带的第四载波(例如,频带#D 的载波#4)为例进行说明。
方案A1
作为一个示例,如果终端设备上次上行传输的端口配置为“0P+0P+1P”,终端设备即将进行的上行传输为“1P+0P+0P”。也可以理解为,如果终端设备上次上行传输是在频带#C的载波#3上进行1端口传输,终端设备即将在频带#A的载波#1上进行1端口传输。该端口配置下对应的射频链的传输状态参见下述表格3所示。
表格3
在该端口配置下具体可以有以下两种实现方式:
方式1
如果终端设备上次上行传输时射频链的传输状态为不支持同时在频带#A的载波#1上和频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于频带#A的载波#1上和频带#C的载波#3上不能同时传输的传输状态时,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#B的载波#2上进行1端口传输的传输状态,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上和频带#C的载波#3上分别支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#B的载波#2上和频带#C的载波#3上能同时进行1端口传输的传输状态,则终端设备执行第一操作。
例如,上次上行传输的传输状态为Tx状态#3,根据下次端口配置,此时,终端设备都需要执行第一操作。例如,Tx状态#3切换到Tx状态#1。又例如,Tx状态#3切换到Tx状态#2。再例如,Tx状态#3切换到Tx状态#4
或者还可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#C的载波#3上支持2端口传输,则终端设备确定切换行为。或者还可以描述为,如果终端设备上次上行传输时处于频带#C的载波#3上能同时进行2端口传输的传输状态,则终端设备执行第一操作。或者,也可以描述为,如果终端设备确定上次上行传输时终端设备设备处于能同时传输的载波位于第三频带时,则终端设备执行第一操作。例如,上次上行传输的传输状态为Tx状态#6,根据下次端口配置,此时,终端设备都需要执行第一操作。例如,Tx状态#6切换到Tx状态#1。又例如,Tx状态#6切换到Tx状态#2。再例如,Tx状态#6切换到Tx状态#4。
上述描述的不同方式(或者说类似性的描述)也适用于本申请任何其他实施例。
上述方式1也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态不是Tx状态#2,此时终端设备便可以明确需要执行第一操作。换句话说,方式1也可以理解为,终端设备确定第一端口配置对应的射频链的传输状态为第一集合(例如,该第一集合为{Tx状态#2、Tx状态#3、Tx状态#6}),终端设备确定第二端口配置对应的射频链的传输状态为第二集合(例如,该第一集合为{Tx状态#1、Tx状态#2、Tx状态#4});终端设备根据第一集合和第二集合,确定第一集合与第二集合的交集为第一射频链的传输状态(例如,Tx状态#2),并且确定第一时间单元内的传输状态不是该第一射频链的传输状态,则所述终端设备执行第一操作(或者该第一射频链的传输状态不被包含于第一时间单元内的传输状态,或者第一时间单元内的传输状态不包含该第一射频链的传输状态,或者该第一射频链的传输状态与第一时间单元内的传输状态交集为空)。应理解,下述各个实现方案中的方式1都可以类似理解。
如下述表格4所示,方式1下终端设备上次端口配置对应的传输状态为Tx状态#3、Tx状态#6,下次端口配置对应的传输状态为Tx状态#1、Tx状态#2、Tx状态#4。因此,在方式1中针对下次端口配置,终端设备都需要执行第一操作。
表格4

方式2
如果终端设备上次上行传输时射频链的传输状态为支持同时在频带#A的载波#1上和频带#C的载波#3上分别进行1端口传输(即,Tx状态#2),此时,终端设备还需要根据下次上行传输时射频链的传输状态才能确定是否执行第一操作。
例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#A的载波#1上和在频带#B的载波#2上分别进行1端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#A的载波#1上和在频带#B的载波#2上能同时传输的传输状态时,则终端设备执行第一操作。例如,Tx状态#2切换到Tx状态#1。
又例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#A的载波#1上同时进行2端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#A的载波#1上能同时进行2端口传输的传输状态时,则终端设备确定执行第一操作。例如,Tx状态#2切换到Tx状态#4。
上述方式2也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态是Tx状态#2,此时终端设备还需要结合下次上行传输时射频链的传输状态(即,第二时间单元内的传输状态),从而确定是否需要执行第一操作。如下述表格5所示,方式2下终端设备上次端口配置对应的传输状态为Tx状态#2,如果终端设备判断下次端口配置对应的传输状态为Tx状态#1、Tx状态#4,则此时终端设备执行第一操作。应理解,下述各个实现方案中的方式2都可以类似理解。
表格5
方案A2
作为一个示例,如果终端设备上次上行传输的端口配置为“1P+0P+0P”,终端设备即将进行的上行传输为“0P+0P+1P”。也可以理解为,终端设备上次上行传输为在频带#A的载波#1上进行1端口传输,如果终端设备即将在频带#C的载波#3上进行1端口传输。该端口配置下对应的射频链的传输状态参见下述表格6所示。
表格6
在该端口配置下具体可以有以下两种实现方式:
方式1
如果终端设备上次上行传输时射频链的传输状态为不支持同时在频带#A的载波#1上和频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于频带#A的载波#1上和频带#C的载波#3上不能同时传输的传输状态时,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#B的载波#2上进行1端口传输的传输状态,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上和频带#C的载波#3上分别支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#B的载波#2上和频带#C的载波#3上能同时进行1端口传输的传输状态,则终端设备执行第一操作。例如,上次上行传输时射频链的传输状态为Tx状态#1,则终端设备执行第一操作。
或者还可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#C的载波#3上支持2端口传输,则终端设备确定切换行为。或者还可以描述为,如果终端设备上次上行传输时处于频带#C的载波#3上能同时进行2端口传输的传输状态,则终端设备确定切换行为。或者,也可以描述为,如果终 端设备确定上次上行传输时终端设备设备处于能同时传输的载波位于第一频带时,则终端设备执行第一操作。例如,上次上行传输时射频链的传输状态为Tx状态#4,则终端设备执行第一操作。
上述方式1也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态不是Tx状态#2,此时终端设备便可以明确需要执行第一操作。如下述表格7所示,方式1下终端设备上次端口配置对应的传输状态为Tx状态#1、Tx状态#4,下次端口配置对应的传输状态为Tx状态#2、Tx状态#3、Tx状态#6。因此,在方式1中针对下次端口配置,终端设备都需要执行第一操作。
表格7
方式2
如果终端设备上次上行传输时射频链的传输状态为支持同时在频带#A的载波#1上和频带#C的载波#3上分别进行1端口传输,此时,终端设备还需要根据下次上行传输时射频链的传输状态才能确定是否执行第一操作。例如,上次上行传输时射频链的传输状态为Tx状态#2,则终端设备需要根据下次上行传输时射频链的传输状态才能确定是否执行第一操作。
例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#B的载波#2上和在频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#B的载波#2上和在频带#C的载波#3上能同时传输的传输状态时,则终端设备执行第一操作。例如,下次上行传输时射频链的传输状态为Tx状态#3,则终端设备执行第一操作。
又例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#C的载波#3上同时进行2端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#C的载波#3上能同时进行2端口传输的传输状态时,则终端设备确定执行第一操作。例如,下次上行传输时射频链的传输状态为Tx状态#6,则终端设备执行第一操作。
上述方式2也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态是Tx状态#2,此时终端设备还需要结合下次上行传输时射频链的传输状态(即,第二时间单元内的传输状态),从而确定是否需要执行第一操作。如下述表格8所示,方式2下终端设备上次端口配置对应的传输状态为Tx状态#2,如果终端设备判断下次端口配置对应的传输状态为Tx状态#3、Tx状态#6,则此时终端设备执行第一操作。
表格8
方案B1
作为一个示例,如果终端设备上次上行传输的端口配置为“0P+1P+0P”,终端设备即将进行的上行传输为“1P+0P+0P”。也可以理解为,如果终端设备上次上行传输是在频带#B的载波#2上进行1端口传输,终端设备即将在频带#A的载波#1上进行1端口传输。下述表格9示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格9
在该端口配置下具体可以有以下两种实现方式:
方式1
如果终端设备上次上行传输时射频链的传输状态为不支持同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于频带#A的载波#1上和频带#B的载波#2上不能同时传输的传输状态时,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#C的载波#3上支持1 端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#C的载波#3上进行1端口传输的传输状态,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上和频带#C的载波#3上分别支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#B的载波#2上和频带#C的载波#3上能同时进行1端口传输的传输状态,则终端设备执行第一操作。例如,Tx状态#3→Tx状态#1。又例如,Tx状态#3→Tx状态#2。再例如,Tx状态#3→Tx状态#4。
或者还可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上支持2端口传输,则终端设备确定切换行为。或者还可以描述为,如果终端设备上次上行传输时处于频带#B的载波#2上能同时进行2端口传输的传输状态,则终端设备确定切换行为。或者,也可以描述为,如果终端设备确定上次上行传输时终端设备设备处于能同时传输的载波位于第二频带时,则终端设备执行第一操作。例如,Tx状态#5→Tx状态#1、Tx状态#5→Tx状态#2、Tx状态#5→Tx状态#4。
上述方式1也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态不是Tx状态#1,此时终端设备便可以明确需要执行第一操作。下述表格10示出了方式1中上次上行传输对应的传输状态和下行上行传输对应的传输状态。
表格10
方式2
如果终端设备上次上行传输时射频链的传输状态为支持同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输,此时,终端设备还需要根据下次上行传输时射频链的传输状态才能确定是否执行第一操作。
例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#A的载波#1上和在频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#A的载波#1上和在频带#C的载波#3上能同时传输的传输状态时,则终端设备执行第一操作。例如,Tx状态#1→Tx状态#2。
又例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#A的载波#1上同时进行2端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#A的载波#1上能同时进行2端口传输的传输状态时,则终端设备确定执行第一操作。例如,Tx状态#1→Tx状态#4。
上述方式2也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态是Tx状态#1,此时终端设备还需要结合下次上行传输时射频链的传输状态(即,第二时间单元内的传输状态),从而确定是否需要执行第一操作。下述表格11示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格11
方案B2
作为一个示例,如果终端设备上次上行传输的端口配置为“1P+0P+0P”,终端设备即将进行的上行传输为“0P+1P+0P”。也可以理解为,如果终端设备上次上行传输是在频带#A的载波#1上进行1端口传输,终端设备即将在频带#B的载波#2上进行1端口传输。下述表格12示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格12
在该端口配置下具体可以有以下两种实现方式:
方式1
如果终端设备上次上行传输时射频链的传输状态为不支持同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于频带#A的载波#1上和频带#B的载波#2上不能同时传输的传输状态时,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#C的载波#3上支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#C的载波#3上进行1端口传输的传输状态,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上和频带#C的载波#3上分别支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#B的载波#2上和频带#C的载波#3上能同时进行1端口传输的传输状态,则终端设备执行第一操作。例如,Tx状态#2→Tx状态#1。又例如,Tx状态#2→Tx状态#3。再例如,Tx状态#2→Tx状态#5。
或者还可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上支持2端口传输,则终端设备确定切换行为。或者还可以描述为,如果终端设备上次上行传输时处于频带#B的载波#2上能同时进行2端口传输的传输状态,则终端设备确定切换行为。或者,也可以描述为,如果终端设备确定上次上行传输时终端设备设备处于能同时传输的载波位于第一频带时,则终端设备执行第一操作。例如,Tx状态#4→Tx状态#1。又例如,Tx状态#4→Tx状态#3。再例如,Tx状态#4→Tx状态#5。
上述方式1也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态不是Tx状态#1,此时终端设备便可以明确需要执行第一操作。下述表格13示出了方式1中上次上行传输对应的传输状态和下行上行传输对应的传输状态。
表格13
方式2
如果终端设备上次上行传输时射频链的传输状态为支持同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输,此时,终端设备还需要根据下次上行传输时射频链的传输状态才能确定是否执行第一操作。
例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#B的载波#2上和在频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#B的载波#2上和在频带#C的载波#3上能同时传输的传输状态时,则终端设备执行第一操作。例如,Tx状态#1→Tx状态#3。
又例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#B的载波#2上同时进行2端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#B的载波#2上能同时进行2端口传输的传输状态时,则终端设备确定执行第一操作。例如,Tx状态#1→Tx状态#5。
上述方式2也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态是Tx状态#1,此时终端设备还需要结合下次上行传输时射频链的传输状态(即,第二时间单元内的传输状态),从而确定是否需要执行第一操作。下述表格14示出了方式2中上次上行传输对应的传输状态和下行上行传输对应的传输状态。
表格14
方案C1
作为一个示例,如果终端设备上次上行传输的端口配置为“0P+0P+1P”,终端设备即将进行的上行传 输为“0P+1P+0P”。也可以理解为,如果终端设备上次上行传输是在频带#C的载波#3上进行1端口传输,终端设备即将在频带#B的载波#2上进行1端口传输。下述表格15示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格15
在该端口配置下具体可以有以下两种实现方式:
方式1
如果终端设备上次上行传输时射频链的传输状态为不支持同时在频带#B的载波#2上和频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于频带#B的载波#2上和频带#C的载波#3上不能同时传输的传输状态时,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#A的载波#1上支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#A的载波#1上能进行1端口传输的传输状态,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为支持同时在频带#A的载波#1和频带#C的载波#3上同时进行1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#A的载波#1和频带#C的载波#3上能同时进行1端口传输的传输状态,则终端设备执行第一操作。例如,Tx状态#2→Tx状态#1。又例如,Tx状态#2→Tx状态#3。再例如,Tx状态#2→Tx状态#5。
或者还可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#C的载波#3上支持2端口传输,则终端设备确定切换行为。或者还可以描述为,如果终端设备上次上行传输时处于频带#C的载波#3上能同时进行2端口传输的传输状态,则终端设备确定切换行为。或者,也可以描述为,如果终端设备确定上次上行传输时终端设备设备处于能同时传输的载波位于第三频带时,则终端设备执行第一操作。例如,Tx状态#6→Tx状态#1。又例如,Tx状态#6→Tx状态#3。再例如,Tx状态#6→Tx状态#5。
上述方式1也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态不是Tx状态#3,此时终端设备便可以明确需要执行第一操作。下述表格16示出了方式1中上次上行传输对应的传输状态和下行上行传输对应的传输状态。
表格16
方式2
如果终端设备上次上行传输时射频链的传输状态为支持同时在频带#A的载波#1上和频带#C的载波#3上分别进行1端口传输,此时,终端设备还需要根据下次上行传输时射频链的传输状态才能确定是否执行第一操作。
例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#A的载波#1上和在频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#A的载波#1上和在频带#C的载波#3上能同时传输的传输状态时,则终端设备执行第一操作。
例如,Tx状态#3→Tx状态#1。
又例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#B的载波#2上同时进行2端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#B的载波#2上能同时进行2端口传输的传输状态时,则终端设备确定执行第一操作。例如,Tx状态#3→Tx状态#5。
上述方式2也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态是Tx状态#3,此时终端设备还需要结合下次上行传输时射频链的传输状态(即,第二时间单元内的传输状态),从而确 定是否需要执行第一操作。下述表格17示出了方式2中上次上行传输对应的传输状态和下行上行传输对应的传输状态。
表格17
基于上述方案A1、B1、C1,本申请中提出:当终端设备的上次上行传输的端口配置为在一个频带上进行1端口或者2端口的上行传输,并且下次上行传输的端口配置为在另外一个频带上进行1端口的上行传输时,也可以理解为,上次上行传输与下次上行传输没有共用的频带(overlapped band)时,可以使得终端设备在该情况的端口配置下,明确是否需要切换(或者,是否需要中断数据传输),保障上行数据的传输性能。
方案C2
作为一个示例,如果终端设备上次上行传输的端口配置为“0P+1P+0P”,终端设备即将进行的上行传输为“0P+0P+1P”。也可以理解为,如果终端设备上次上行传输是在频带#B的载波#2上进行1端口传输,终端设备即将在频带#C的载波#3上进行1端口传输。下述表格18示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格18
在该端口配置下具体可以有以下两种实现方式:
方式1
如果终端设备上次上行传输时射频链的传输状态为不支持同时在频带#B的载波#2上和频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于频带#B的载波#2上和频带#C的载波#3上不能同时传输的传输状态时,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#A的载波#1上支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#A的载波#1上能进行1端口传输的传输状态,则终端设备执行第一操作。
或者也可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上和频带#C的载波#3上分别支持1端口传输,则终端设备执行第一操作。或者也可以描述为,如果终端设备上次上行传输时处于在频带#B的载波#2上和频带#C的载波#3上能同时进行1端口传输的传输状态,则终端设备执行第一操作。例如,Tx状态#1→Tx状态#3。又例如,Tx状态#1→Tx状态#2。再例如,Tx状态#1→Tx状态#6。
或者还可以描述为,如果终端设备上次上行传输时射频链的传输状态为在频带#B的载波#2上支持2端口传输,则终端设备确定切换行为。或者还可以描述为,如果终端设备上次上行传输时处于频带#B的载波#2上能同时进行2端口传输的传输状态,则终端设备确定切换行为。或者,也可以描述为,如果终端设备确定上次上行传输时终端设备设备处于能同时传输的载波位于第二频带时,则终端设备执行第一操作。例如,Tx状态#5→Tx状态#3。又例如,Tx状态#5→Tx状态#2。再例如,Tx状态#5→Tx状态#6。
上述方式1也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态不是Tx状态#2,此时终端设备便可以明确需要执行第一操作。下述表格19示出了方式1中上次上行传输对应的传输状态和下行上行传输对应的传输状态。
表格19
方式2
如果终端设备上次上行传输时射频链的传输状态为支持同时在频带#A的载波#1上和频带#C的载波 #3上分别进行1端口传输,此时,终端设备还需要根据下次上行传输时射频链的传输状态才能确定是否执行第一操作。
例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#B的载波#2上和在频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#B的载波#2上和在频带#C的载波#3上能同时传输的传输状态时,则终端设备执行第一操作。例如,Tx状态#3→Tx状态#2。
又例如,如果终端设备确定下次上行传输时射频链的状态为支持同时在频带#C的载波#3上同时进行2端口传输,则终端设备执行第一操作。也可以描述为,如果终端设备确定下次上行传输时处于在频带#C的载波#3上能同时进行2端口传输的传输状态时,则终端设备确定执行第一操作。例如,Tx状态#3→Tx状态#6。
上述方式2也可以理解为,如果终端设备确定之前上行传输时的射频链的传输状态是Tx状态#3,此时终端设备还需要结合下次上行传输时射频链的传输状态(即,第二时间单元内的传输状态),从而确定是否需要执行第一操作。下述表格20示出了方式2中上次上行传输对应的传输状态和下行上行传输对应的传输状态。
表格20
基于上述技术方案,本申请中提出了终端设备可以根据上次上行传输的端口配置、下次上行传输的端口配置,以及上次上行传输的传输状态,从而可以明确操作状态,保障上行数据的传输性能。在某些情况下,终端设备还需要再结合下次上行传输的传输状态才能明确操作状态,从而保障上行数据的传输性能。
方案D1
作为一个示例,如果终端设备上次上行传输的端口配置为“0P+1P+1P”,终端设备即将进行的上行传输的端口配置为“1P+0P+0P”或者“2P+0P+0P”。也可以理解为,如果终端设备上次上行传输是同时在频带#B的载波#2上和频带#C的载波#3上分别进行1端口传输;终端设备即将在频带#A的载波#1上进行1端口传输,或者,终端设备即将在频带#A的载波#1上同时进行2端口传输,则终端设备执行第一操作。例如,Tx状态#3→Tx状态#4。下述表格21示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格21
基于上述方案D1,本申请中提出:当终端设备的上次上行传输的端口配置对应的传输状态为在两个不同的频带上分别进行1端口的上行传输,并且下次上行传输的端口配置对应的传输状态为在另外一个频带上进行2端口的上行传输时。即上次上行传输与下次上行传输没有共用的频带(overlapped band)时,可以使得终端设备明确操作状态,保障上行数据的传输性能。
方案D2
作为一个示例,如果终端设备上次上行传输的端口配置为“1P+0P+0P”或者“2P+0P+0P”,终端设备即将进行的上行传输的端口配置为“0P+1P+1P”。也可以理解为,如果终端设备上次上行传输是在频带#A的载波#1上进行1端口传输,或者,终端设备即将在频带#A的载波#1上同时进行2端口传输;终端设备即将进行的上行传输为同时在频带#B的载波#2上和频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。例如,Tx状态#4→Tx状态#3。下述表格22示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格22
上述方案D1、方案D2也可以理解为,第二端口配置对应至少一个传输状态,其中,如果该至少一个传输状态不同于第一端口配置对应的至少一个传输状态,则终端设备执行第一操作。下述实现方案E1、E2、F1、F2、G1、G2,也可以类似理解。
方案E1
作为一个示例,如果终端设备上次上行传输的端口配置为“0P+0P+1P”或者“0P+0P+2P”,终端设备即将进行的上行传输的端口配置为“1P+1P+0P”。也可以理解为,如果终端设备上次上行传输是在频带#C的载波#3上进行1端口传输,或者,终端设备上次上行传输时在频带#C的载波#3上同时进行2端口传输;终端设备即将进行的上行传输为同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输,则终端设备执行第一操作。例如,Tx状态#2→Tx状态#1。又例如,Tx状态#3→Tx状态#1。在例如,Tx状态#6→Tx状态#1。下述表格23示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格23
基于上述方案E1,本申请中提出:当终端设备的上次上行传输的端口配置对应的传输状态为在一个频带上进行2端口的上行传输时,并且下次上行传输的端口配置对应的传输状态为在另外两个不同的频带上分别进行1端口的上行传输。即上次上行传输与下次上行传输没有共用的频带(overlapped band)时,可以使得终端设备明确操作状态,保障上行数据的传输性能。
方案E2
作为一个示例,如果终端设备上次上行传输的端口配置为“1P+1P+0P”,终端设备即将进行的上行传输的端口配置为“0P+0P+1P”或者“0P+0P+2P”。也可以理解为,如果终端设备上次上行传输是同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输;终端设备即将进行的上行传输在频带#C的载波#3上进行1端口传输,或者,终端设备即将在频带#C的载波#3上同时进行2端口传输,则终端设备执行第一操作。例如,Tx状态#1→Tx状态#2。例如,Tx状态#1→Tx状态#3。例如,Tx状态#1→Tx状态#6。下述表格24示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格24
方案F1
作为一个示例,如果终端设备上次上行传输的端口配置为“1P+0P+1P”或者“0P+1P+1P”,终端设备即将进行的上行传输的端口配置为“1P+1P+0P”。也可以理解为,如果终端设备上次上行传输是同时在频带A的载波#1上和频带#B的载波#2上分别进行1端口传输,或者,终端设备上次上行传输是同时在频带#B的载波#2上和频带#C的载波#3上分别进行1端口传输;终端设备即将进行的上行传输为同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输,则终端设备执行第一操作。例如,Tx状态#2→Tx状态#1。又例如,Tx状态#3→Tx状态#1。下述表格25示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格25
方案F2
作为一个示例,如果终端设备上次上行传输的端口配置为“1P+1P+0P”,终端设备即将进行的上行传输的端口配置为“1P+0P+1P”或者“0P+1P+1P”。也可以理解为,如果终端设备上次上行传输是同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输;终端设备即将进行的上行传输为同时在频带A的载波#1上和频带#B的载波#2上分别进行1端口传输,或者,终端设备上次上行传输是同时在频带#B的载波#2上和频带#C的载波#3上分别进行1端口传输,则终端设备执行第一操作。例如,Tx状态 #1→Tx状态#2。例如,Tx状态#31→Tx状态#3。下述表格26示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格26
基于上述方案F1、F2,本申请中提出:当终端设备的上次上行传输的端口配置对应的传输状态为在两个不同的频带上分别进行1端口的上行传输,下次上行传输的端口配置对应的传输状态为在两个不同的频带上分别进行1端口的上行传输,并且上次上行传输的端口配置对应的传输状态使用的频带与下次上行传输的端口配置对应的传输状态使用的频带其中有1个频带是共用的。此时,可以使得终端设备明确操作状态,保障上行数据的传输性能。
方案G1
本方案中,假设终端设备支持在4个频带上进行上行切换,下述表格27示出了终端设备在4个频带上进行上行切换时可能的Tx状态。如表格27所示,共有10种Tx状态。
表格27
作为一个示例,如果终端设备上次上行传输的端口配置为“1P+1P+0P+0P”,终端设备即将进行的上行传输的端口配置为“0P+0P+1P+1P”。也可以理解为,如果终端设备上次上行传输是同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输;终端设备即将进行的上行传输为同时在频带#C的载波#3上和频带#D的载波#4上分别进行1端口传输,则终端设备执行第一操作。例如,Tx状态#5→Tx状态#10。下述表格28示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格28
方案G2
作为一个示例,如果终端设备上次上行传输的端口配置为“0P+0P+1P+1P”,终端设备即将进行的上行传输的端口配置为“1P+1P+0P+0P”。也可以理解为,如果终端设备上次上行传输是同时在频带#C的载波#3上和频带#D的载波#4上分别进行1端口传输;终端设备即将进行的上行传输为同时在频带#A的载波#1上和频带#B的载波#2上分别进行1端口传输,则终端设备执行第一操作。例如,Tx状态#10→Tx状态#5。下述表格29示出了上次上行传输端口配置对应的传输状态和下次上行传输端口配置对应的传输状态。
表格29
基于上述方案G1、G2,本申请中提出:当终端设备的上次上行传输的端口配置对应的传输状态为在两个不同的频带上分别进行1端口的上行传输,下次上行传输的端口配置对应的传输状态为在另外两个不同的频带上分别进行1端口的上行传输,并且上次上行传输的端口配置对应的传输状态使用的频带与下次上行传输的端口配置对应的传输状态使用的频带没有共用的频带。此时,可以使得终端设备明确操作状态,保障上行数据的传输性能。
另外,针对目前在2个频带(例如,频带#A、频带#B)上进行上行切换时没有定义,如果终端设备 上次上行传输的端口配置为“2P+0P”,终端设备即将进行的上行传输的端口配置为“0P+2P”,需要执行什么操作。本申请中,进一步定义针对目前在2个频带上进行上行切换时,如果终端设备上次上行传输的端口配置为“2P+0P”,终端设备即将进行的上行传输的端口配置为“0P+2P”需要执行什么操作。也可以理解为,如果终端设备上次上行传输是同时在频带#A的载波#1同时进行2端口传输;终端设备即将进行的上行传输为同时在频带#B的载波#2上同时进行2端口传输,则终端设备在两个载波中的任何一个上的持续时间内都不会进行传输。也可以理解为,此时终端设备执行第一操作。需要说明的是,在该情况下时,步骤201中的第一RRC信令中指示的是第一选项。步骤202中,终端设备确定上行传输为切换上行链路传输或单上行链路传输。
基于上述技术方案,由于终端设备上行传输的射频链的传输状态有限,基于本申请提供的方案,在终端设备在至少三个频带或至少三个载波上需要切换传输状态的场景,终端设备能够清晰或者这明确操作状态,从而正确的进行传输状态的切换,保障上行数据的传输性能。
可选的,还包括步骤210,网络设备向终端设备发送第三RRC信令。
对应的,终端设备接收来自网络设备的第三RRC信令。
本申请中,第三RRC信令可以向终端设备指示某个频带上(或者某个频带的载波上)支持一个射频链传输或者两个射频链传输。第三RRC信令可以辅助终端设备判断基于第二端口配置,是否需要切换传输状态。第三RRC信令可以是针对一个小区(per cell)进行配置的。即,对于一个上行载波或一个上下行载波对,进行配置的。第三RRC信令还可以是针对一个频段(per band)进行配置的。具体的,第三RRC信令可以为uplinkTxSwitching-DualUL-TxState,或者MultiBandUplinkTxSwitching-DualUL-TxState,其中multiband为至少三个band。
其中,某个频带上(或者某个频带的载波上)支持一个射频链传输或者两个射频链传输,也可以理解为:支持1Tx或者支持2Tx;或者,所进行的传输为1Tx传输或者2Tx传输。
本申请中,例如,前述方案A1、A2、B1、B2、C1、C2中提到的“下次上行传输状态”(也可以理解为,下次上行传输端口配置对应的传输状态)例如是可以通过结合第三RRC信令和下次上行传输端口配置所确定的。具体的,终端设备在确定下次上行传输端口配置后,根据第三RRC信令所指示的某个频带上的支持一个射频链传输或者两个射频链传输,联合确定下次上行传输端口配置对应的传输状态。具体的,当下次上行传输端口配置为band C(或band C的某载波)1port,如果band C(或band C的某载波)支持的为1Tx,那么确定下次上行传输端口配置对应的传输状态中有band C 1Tx。如果band C(或band C的某载波)支持的为2Tx,那么确定下次上行传输端口配置对应的传输状态中有band C 2Tx。又例如,在一些情况中,终端设备还需再结合预定义的规则才能判断出下次上行传输状态。关于“预定义的规则”可以参见步骤211中的说明。
本申请中,频带也可以理解为频带的载波。
然而,某些情况下,终端设备基于第三RRC信令也无法清晰的确定是否需要切换传输状态。示例性,如果终端设备上次上行传输的端口配置为“0P+0P+1P”,终端设备即将进行的上行传输的端口配置为“1P+0P+0P”。从前述表格3中可以看到,“0P+0P+1P”的配置对应Tx状态#2、Tx状态#3、Tx状态#6,“1P+0P+0P”的配置对应Tx状态#1、Tx状态#2、Tx状态#4,假设终端设备上次传输状态为Tx状态#2(1T+0T+1T)。假设第三信令指示终端设备在频带#A上传输1个射频链,在下次上行传输的端口配置为“1P+0P+0P”这种指示适合Tx状态#2(1T+0T+1T)、Tx状态#1(1T+1T+0T),此时终端设备无法确定是否需要切换传输状态。按照网络设备第三RRC信令的指示,终端设备可以不切换传输状态(保持在Tx状态#2进行上行传输),也可以切换传输状态(Tx状态#2→Tx状态#1)。基于本申请提出的上述各种实现方案可以避免该问题,使得终端设备可以明确操作状态(即,是否切换上行传输状态),保障上行数据传输的性能。
可选的,还包括步骤211,终端设备确定上行传输的切换时间。
在一种可能的实现方式中,终端设备可以根据第三RRC信令确定上行传输时需要切换上行传输状态,并且还可以明确频带之间具体是如何切换的,并基于频带之间的切换,确定上行传输的切换时间。
在另一种可能的实现方式中,终端设备根据第三RRC信令无法确定上行传输时是否需要切换上行传输状态,此时,基于本申请提出的上述各种技术方案,使得终端设备可以明确操作状态,即是否切换上次传输状态。然而,终端设备可能还是无法明确频带之间具体是如何切换的。此时,终端设备还可以再结合预定义的规则确定上行传输时,频带之间具体是如何切换的,从而确定上行传输的切换时间。例如, 该预定义的规则可以是协议预定义的。又例如,该预定义的规则可以是网络设备发送给终端设备的。例如,网络设备可以向终端设备发送第四RRC信令。第四RRC用于为终端设备配置该预定义的规则。
下面对上述的“预定义规则”进行说明。
示例性的,如果终端设备支持在3个频带上进行上行切换,预定义的规则可以为规定上行切换时这3个频带的优先级。当终端设备确定切换时,选择切换优先级较高的频带所对应的载波进行切换。例如,3个频带上进行上行切换时,频带之间切换的优先级从高到低依次为频带#A、频带#B、频带#C。又例如,频带之间切换的优先级可以依赖于频带索引(band index)的值。例如,频带之间切换的优先级从高到低可以指的是频带索引的值从高到低。相应地,终端设备选择第一时间单元内所在的频带中频带索引最高的载波进行射频链的切换。又例如,频带之间切换的优先级从高到低可以指的是频带索引的值从低到高。相应地,终端设备选择第一时间单元内所在的频带中频带索引最低的载波进行射频链的切换。又例如,频带之间切换的优先级从高到低可以指的是serving cell索引的值从高到低。相应地,终端设备选择第一时间单元内所在的serving cell中cell索引最高的载波进行射频链的切换。又例如,频带之间切换的优先级从高到低可以指的是serving cell索引的值从低到高。相应地,终端设备选择第一时间单元内所在的serving cell中cell索引最低的载波进行射频链的切换。
示例性的,如果终端设备支持在4个频带上进行上行切换时,预定义的规则可以为规定上行切换时这4个频带的优先级。例如,4个频带之间进行上行切换时,频带之间切换的优先级从高到低依次为频带#A、频带#B、频带#C、频带#D。又例如,频带之间切换的优先级可以依赖于频带索引的值。例如,频带之间切换的优先级从高到低可以指的是频带索引的值从高到低。又例如,频带之间切换的优先级从高到低可以指的是频带索引的值从低到高。
需要说明的的,上述频带索引(band index)可以是频带标识。例如,该标识为0~N(N为大于0的整数)的整数值。还可以是n band的n值,或m band的m值。
例如,假设终端设备支持在4个频带上进行上行切换,基于本申请提供的方案,可以使得终端设备明确操作状态。然而,终端设备在从频带#A 1T和频带#C的1T向频带#B的1T和频带#D的1T切换时,可以有两种选择:(1)频带#A→频带#B,此时频带#C→频带#D;(2)频带#A→频带#D,此时频带#B→频带#C。此时,如果网络设备不向终端设备具体指示频带之间到底如何切换,终端设备也无法确定到底该如何进行频带切换,从而也无法确定切换时间。例如,终端设备无法确定选择{频带对#1(A,B),频带对#9(C,D)}中切换时间的最大值,还是选{频带对#3(A,D),频带对#5(B,C)}中切换时间的最大值。基于该问题,本申请提出下述两种实现方式:
在一种可能的实现方式中,网络设备可以不用指示频带之间具体应该如何切换,此时,终端设备可以在{频带对#1、频带对#9、频带对#3、频带对#5}中选择切换时间最大值,将该最大值确定为切换时间。例如,频带对#1中的两个频带之间的切换需要35微秒,频带对#9中的两个频带之间的切换需要40微秒,频带对#3中的两个频带之间的切换需要80微秒,频带对#5中的两个频带之间的切换需要120微秒,此时,终端设备确定上行切换时间为120微秒。
在另一种可能的实现方式中,终端设备确定预定义的规则,例如,该规则为4个频带之间切换时频带切换的优先级为:切换前频带从高到低为A、B、C、D,切换后的频带从高到低为A、B、C、D。此时,终端设备进行从频带#A(1T)+频带#C(1T)→频带#B(1T)+频带#D(1T)的切换时,切换前的频带中首先选则频带#A,切换后的频带首先选则频带#B,即确定频带#A→频带#B。然后,继续确定切换前的频带为频带#C,切换后的频带为频带#D,即确定频带#C→频带#D。此时,终端设备可以在{频带对#1(A,B),频带对#9(C,D)}中选择切换时间的最大值,即确定切换时间为40微秒。
在又一种可能的的实现方式中,网络设备可以向终端设备发送{切换前的频带索引,切换后的频带索引},例如,网络设备下发各种可能频带对如表格30所示,依循的顺序就是切换优选顺序,终端设备基于终端设备下发的频带对,确定频带之间是如何切换的。
表格30

本申请中,终端设备可以基于上述“预定义的规则”确定上行传输时频带之间具体是如何切换的。在终端设备确定上行传输时频带之间的具体切换方式后,可以进一步确定上行传输的切换时间。
在一种可能的实现方式中,切换时间可以由网络设备通过RRC信令指示给终端设备。在另一种可能的实现方式中,切换时间也可以是终端设备自身的能力。由终端设备通过能力上报指示给网络设备。在另一种可能的实现方式中,切换时间还可以是预先规定或者预先配置给网络设备和终端设备中任何一者的。
例如,该切换时间可以是一个固定的值。例如该切换时间可以是35微秒,140微秒,210微秒或者280微秒这个四个值组成的集合中的任意一个值,又例如,该切换时间可以是35微秒,140微秒,或者210微秒这个三个值组成的集合中的任意一个值。
在另一种可能的实现方式中,不同频带之间的切换时间可以不同。表格29示出了终端设备支持在4个频带之间进行上行传输切换时,频带对(band pair)的对应关系。表格29中的对应关系可以是网络设备通过RRC信令发送给终端设备的。例如,上次上行传输时端口配置为“1P+1P+0P”(Tx状态#1),如果下次上行传输端口配置为“1P+0P+1P”(Tx状态#2)。此时,终端设备可以从频带#A切换到频带#C,从频带#B切换到频带#A。该实现方式中,在介绍终端设备确定切换时间之前,下面首先介绍一下射频链的工作状态。
方式A
如果终端设备的两个射频链可以独立工作,即一个射频链被打断进行射频链调谐/调整/重调整(RF chain tuning/retuning)时,另一个射频链可以不受影响仍然可以正常进行上行传输,此时终端设备执行的操作为:假设终端设备支持在至少三个频带上进行上行切换,在需要进行切换的频带的载波(记为,载波#1)上切换时,在该切换时间内,终端设备不期望在该频带的载波#1上进行数据传输;在不需要进行切换的频带的载波上(记为,载波#2),该载波#2的上行传输不受影响,即,在载波#1的切换时间内,载波#2可以仍然可以正常进行上行传输。或者,在该切换时间内,终端设备不期望在该至少3个频带上该切换相关的这至少三个载波(载波#1,载波#2,载波#3)所涉及的载波切换对(例如,从载波#1到载波#3)上进行数据传输。在载波#2上,由于不涉及射频链切换,终端设备仍然可以进行数据传输。
本申请中,切换时间所在的频段或载波可以通过第五RRC信令进行配置。例如,切换时间所在的频段或载波被配置为切换前载波或切换后载波。那么从载波#1到载波#3的切换中,当切换时间所在的频段或载波被配置为切换前载波时,切换时间被配置来使用载波#1的尾部;当切换时间所在的频段或载波被配置为切换后载波时,切换时间被配置来使用载波#2的头部。又例如,切换时间配置所在的频段或载波被配置为切换前载波或切换后载波或既有切换前载波又有切换后载波(部分位于切换前载波,部分位于切换后载波)。那么从载波#1到载波#3的切换中,当切换时间所在的频段或载波被配置为切换前载波时,切换时间被配置来使用载波#1的尾部;当切换时间所在的频段或载波被配置为切换后载波时,切换时间被配置来使用载波#2的头部;当切换时间所在的频段或载波被配置为既有切换前载波又有切换后载波时,切换时间被配置来使用载波#1的尾部和载波#2的头部。
本申请中,切换时间所在的频段或载波还可以通过预先规定进行配置。例如,规定一个频段或载波顺序作为切换时间配置所在的频段或载波的优选顺序。该顺序可以理解为优先级规则。当频段A到频段C的优先级规则为频段#A,频段#B,频段#C时,当从频段#A切换到频段#C,切换时间应该使用频段#A所在的载波的尾部。当频段#A到频段#D的优先级规则为频段#A,频段#B,频段#C,频段#D时,对于频段#A和频段#C切换到频段#B和频段#D,如果切换是从频段#A到频段#B,且从频段#C到频段#D,切换时间应该使用频段#A和频段#C所在的载波的尾部。当频段#A到频段#D的优先级规则为频段#A,频段 #B,频段#C,频段#D时,对于频段#A和频段#C切换到频段#B和频段#D,如果切换是从频段#A到频段#D,且从频段#C到频段#B,切换时间应该使用频段#A所在的载波的尾部以及频段#B所在的载波的头部。
作为一个实施例,物理上行控制信道(physical uplink control channel,PUCCH)所在载波或频段应该作为低优先级被配置为切换时间所在的载波或频段。因为考虑PUCCH可以作为长格式,可以从头部到尾部占据一个时隙,且PUCCH应该被作为高优先级进行可靠传输。因此,上述第五RRC信令所指示的切换前载波或切换后载波如果与PUCCH所在载波为一个载波,UE不期望在PUCCH所在载波上适用切换时间。例如,如果第五RRC信令所指示的是切换前载波,切换是从频段#A载波的PUCCH到频段#D载波的PUSCH,那么这种切换情形下,切换时间应占用切换后频段(即频段#D)。即上述第五RRC信令所指示的切换前载波不适用。又例如,如果第五RRC信令所指示的是切换前载波,切换是从频段#D载波的PUSCH到频段#A载波的PUCCH,那么这种切换情形下,切换时间应占用切换前频段(即频段#D)。即上述第五RRC信令所指示的切换前载波适用。
本申请中,第一RRC信令~第五RRC信令中一个或多个RRC信令可以都位于一个RRC信令中,并占用不用的信息元;也可以部分位于一个RRC信令中,并占用不用的信息元;还可以是每个都是不同的RRC信令。例如,第一RRC信令~第五RRC信令可以在同一条消息中下发。例如,该消息中包含多个信息块,此时第一RRC信令~第五RRC信令可以为该消息中的各个信息块。
方式B
如果终端设备的两个射频链不能独立工作,即一个射频链被打断进行射频链调谐时,另一个射频链不能正常进行上行传输,此时终端设备执行的操作为:假设终端设备支持在至少三个频带上进行上行切换,在需要进行切换的频带的载波(记为,载波#3)上切换时,在该切换时间内,终端设备不期望在该至少3个频带的任何一个载波上进行数据传输;或者,在该切换时间内,终端设备不期望在该至少3个频带上该切换相关的这至少三个载波(例如,载波#1,载波#2,载波#3)上进行数据传输;或者,在该切换时间内,终端设备不期望在该至少3个频带上该切换相关的这至少三个载波(载波#1,载波#2,载波#3)所涉及的载波切换对(例如,从载波#1到载波#3)和不涉及射频链切换的载波上进行数据传输。基于上述介绍的射频链的工作状态,终端设备可以通过以下三种方式确定切换时间。
方式1
如果终端设备支持射频链可以并行切换(即,两个频带对同时切换)则可以将切换时间确定为,两个频带对切换时,切换时间较长的那个频带对需要的时间。例如,从频带#A切换到频带#C需要140微秒,从频带#B切换到频带#A需要200微秒,则终端设备可以确定切换时间为200微秒。
方式2
如果终端设备不支持射频链并行切换只能串行切换时,此时可以将切换时间确定为两个频带对切换所需要的时间的和。例如,此时,则终端设备可以确定切换时间为140微秒+200微秒等于340微秒。
方式3
每个频带对在各自swtiching period对应的值内进行中断,互不干扰。例如,一个频带对(例如,频带对#1)的switching period对应的值为35微秒,另一个频带对(例如,频带对#5)的switching period对应的值为140微秒。此时,各个频带对可以在各自对应的切换时间内进行切换,互相不影响。
本申请中,步骤211可以位于步骤209之前。
可选的,还包括步骤212,网络设备终端设备的上行传输的切换时间,并根据该切换时间为终端设备调度用于上行传输的资源。
在一种可能的实现方式中,在步骤212中,终端设备确定好切换时间后,可以向网络设备上报该切换时间。
在另一种可能的实现方式中,网络设备可以根据第一端口配置、第二端口配置和第三RRC信令(某些情况下,可能还需要再结合“预定义的规则”)确定终端设备的上行传输的切换时间,并基于该切换时间为终端设备调用用于上行传输的资源。具体的,网络设备确定终端设备的上行传输的切换时间的具体实现方式,可以参照步骤211中终端设备确定上行传输的切换时间的描述。
例如,网络设备在调度资源时可以为终端设备预留出切换时间。例如,在一个时隙的后面四个符号上进行上行切换,或者在下一个时隙的前四个号上进行上行切换。例如,网络设备基于切换时间,可以为终端设备调度从时隙#2第一个符号传输上行数据(此时,对应终端设备在时隙#1的后面四个符号上进行上行切换)。或者,网络设备基于切换时间,可以为终端设备调度从时隙#2第五个符号传输上行数据 (此时,对应终端设备在时隙#1的前四个符号上进行上行切换)。
本申请中,步骤212可以包含于步骤205和/或步骤207中。
可选的,还包括步骤213,终端设备在网络设备调度的资源上传输数据。
例如,当终端设备在网络设备调度的时隙上无法及时上行切换时(网络设备可以为终端设备调度从时隙#2第一个符号开始通过频段#D传输数据),终端设备对上行数据进行打孔(puncture)。此时,网络设备可以按照原来调度的上行符号个数进行检测,也可以按照可能减少的符号数来检测。对于后者,可以在上行解调参考信号(UL DMRS)上增加掩码(mask)或加绕,通过该mask或加绕信息指示目前减少的符号个数,从而使得网络设备能根据减少的符号数来进行对应的检测。例如,网络设备调度上行传输十三个符号,当终端设备的切换时延还需要多占一个符号时,即终端设备发现一个符号用于频带之间切换的时延不够时,终端设备对更多的符号进行打孔。
可选的,终端设备上行传输可以按照十个符号去编码。可选的,网络设备可以检测前四个符号能量为0,优先按照十个符号译码,或者可以按照甚至十一个符号,十二个符号,十三个符号多次译码。例如,网络设备可以直接根据十三个符号去检测,损失部分精确度,但这对于低阶调制编码策略(modulation and coding scheme,MCS)(例如,非256正交幅度调制(quadrature amplitude modulation,QAM))来说性能影响不会很大。
基于上述步骤210~步骤213,终端设备和网络设备都可以确定出终端设备上行传输的上行切换时间,网络设备可以基于该切换时间为终端设备调用用于上行传输的资源,终端设备可以基于该切换时间在网络设备调度的资源上传输上行数据,从而保障上行传输的性能。
可以理解,本申请实施例中的方法200中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据方法200中的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。例如,方法200中,步骤201可以与步骤203可以同时进行,即网络设备向终端设备同时发送第一RRC信令和第二RRC信令。又例如,方法200中,步骤205可以与步骤207可以同时进行,即网络设备向终端设备同时发送第一信息和第二信息。又例如,方法200中,步骤203可以位于步骤201之前,即网络设备先向终端设备发送第二RRC信令,再向终端设备发送第一RRC信令。又例如,步骤210可以位于步骤205之前。
应该理解,本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
可以理解,在本申请中,“在…情况下”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端设备、网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对 模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图3是本申请实施例提供的通信装置100的示意性框图。如图所示,该装置100可以包括:收发单元110和处理单元120。
在一种可能的设计中,该装置100可以是上文方法实施例中的终端设备,也可以是用于实现上文方法实施例中终端设备的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法200中的终端设备,该装置100可以执行本申请实施例的方法200的终端设备所对应的步骤。
在一种可能的实现方式中,处理单元用于确定第一端口配置,所述第一端口配置用于第一上行传输,其中,所述终端设备支持在至少三个频带或至少三个载波上进行上行切换;所述处理单元用于确定第二端口配置,所述第二端口配置用于第二上行传输,所述第一上行传输早于所述第二上行传输;根据所述第一端口配置、所述第二端口配置,所述处理单元执行第一操作。
在一种可能的实现方式中,根据所述第一端口配置、所述第二端口配置,所述处理单元执行第一操作,包括:根据所述第一端口配置、所述第二端口配置,以及所述第一上行传输的传输状态,所述处理单元执行第一操作。
在一种可能的实现方式中,处理单元用于确定所述第一端口配置对应的传输状态为第一集合,所述第二端口配置对应的传输状态为第二集合;所述终处理单元用于根据所述第一集合和所述第二集合,确定所述第一集合与所述第二集合的交集为第一射频链的传输状态,并且处理单元用于确定所述第一上行传输不是所述第一传输状态,则所述处理单元用于执行第一操作。
在一种可能的实现方式中,所述收发单元用于接收来自网络设备的第一无线资源控制信令,所述第一无线资源控制信令指示所述终端设备被配置为第一选项或第二选项。
在一种可能的实现方式中,所述收发单元用于接收来自网络设备的第二无线资源控制信令,所述第二无线资源控制信令指示所述终端设备被配置为支持在三个频带上进行上行切换,或者,所述第二无线资源控制信令指示所述终端设备被配置为支持在四个频带上进行上行切换。
在一种可能的设计中,该装置100可以是上文方法实施例中的网络设备,也可以是用于实现上文方法实施例中网络设备的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法200中的网络设备,该装置100可以执行本申请实施例的方法200中的网络设备所对应的步骤。
还应理解,这里的装置100以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置100可以具体为上述实施例中的终端设备或者网络设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置100具有实现上述方法中终端设备或者网络设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元110还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图3中的装置可以是前述实施例中的终端设备或网络设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图4是本申请实施例提供的通信装置200的示意性框图。如图所示,该装置200包括:至少一个处理器220。该处理器220与存储器耦合,用于执行存储器中存储的指令,以发送信号和/或接收信号。可选地,该设备200还包括存储器230,用于存储指令。可选的,该设备200还包括收发器210,处理器220控制收发器210发送信号和/或接收信号。
应理解,上述处理器220和存储器230可以合成一个处理设备,处理器220用于执行存储器230中存储的程序代码来实现上述功能。具体实现时,该存储器230也可以集成在处理器220中,或者独立于处理器 220。
还应理解,收发器210可以包括收发器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器210有可以是通信接口或者接口电路。
具体地,该设备200中的收发器210可以对应于设备100中的收发单元110,该设备200中的处理器220可对应于设备200中的处理单元120。
作为一种方案,该装置200用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器220用于执行存储器230存储的计算机程序或指令,以实现上文各个方法实施例中无线接入网设备的相关操作。例如,方法200中的终端设备执行的方法。
作为另一种方案,该装置200用于实现上文各个方法实施例中由网络设备执行的操作。
例如,处理器220用于执行存储器230存储的计算机程序或指令,以实现上文各个方法实施例中网络设备的相关操作。例如,方法200中的网络设备执行的方法。
应理解,各收发器、处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品上存储有计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法200中由终端设备或者网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述实施例中由终端设备或者网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统包括终端设备和网络设备。该终端设备用于执行上述方法200中终端设备对应的步骤,该网络设备用于执行上述方法200中网络设备对应的步骤。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程设备。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中,由相应的模块或单元执行相应的步骤,例如收发单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
还应理解,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一PDSCH和第二PDSCH,可以是同一个物理信道,也可以是不同的物理信道,且,这种名称也并不是表示这两个物理信道的信息量大小、内容、优先级或者重要程度等的不同。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一项(个)”或其类似表达,是指一项(个)或多项(个),即这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种确定切换上行传输的方法,其特征在于,包括:
    终端设备确定第一端口配置,所述第一端口配置用于第一上行传输,其中,所述终端设备能够在至少三个频带或至少三个载波上进行上行切换;
    所述终端设备确定第二端口配置,所述第二端口配置用于第二上行传输,所述第一上行传输早于所述第二上行传输;
    根据所述第一端口配置、所述第二端口配置,所述终端设备执行第一操作;
    其中,所述终端设备执行第一操作包括以下至少一项:
    所述终端设备不期望在从所述第一上行传输到所述第二上行传输的切换时间内进行上行传输,或者;
    所述终端设备确定进行所述第二上行传输时改变传输状态,或者;
    所述终端设备确定从所述第一上行传输到所述第二上行传输需要切换,或者;
    所述终端设备确定在进行所述第二上行传输之前进行切换,或者;
    所述终端设备确定从所述第一上行传输到所述第二上行传输的切换时间,或者;
    所述终端设备确定在从所述第一上行传输到所述第二上行传输的切换时间内不进行上行传输。
  2. 根据权利要求1所述的方法,其特征在于,至少三个频带与至少三个载波一一对应,所述至少三个载波分别位于所述至少三个频带。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二端口配置对应至少一个传输状态,其中,如果所述至少一个传输状态不同于所述第一端口配置对应的至少一个传输状态,则所述终端设备执行第一操作。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第二端口配置为所述终端设备在第一载波上的所述第二上行传输为1端口传输或者2端口传输,
    如果所述第一端口配置为所述终端设备在第二载波上的所述第一上行传输和第三载波上的所述第一上行传输分别为1端口传输,则所述终端设备执行第一操作。
  5. 根据权利要求1或2的方法,其特征在于,所述第二端口配置为所述终端设备在第一载波上的所述第二上行传输和第二载波上的所述第二上行传输上分别为1端口传输,
    如果所述第一端口配置为所述终端设备在第三载波上的所述第一上行传输为1端口传输或者2端口传输,则所述终端设备执行第一操作。
  6. 根据权利要求1或2所述的方法,其特征在于,所述第二端口配置为所述终端设备在第一载波上的所述第二上行传输和第二载波上的所述第二上行传输分别为1端口传输,
    如果第一端口配置为所述终端设备在所述第一载波上的所述第一上行传输和第三载波上的所述第一上行传输分别为1端口的上行传输,则所述终端设备执行第一操作,或者;
    如果第一端口配置为所述终端设备在所述第二载波上的所述第一上行传输和第三载波上的所述第一上行传输分别为1端口传输,则所述终端设备执行第一操作。
  7. 根据权利要求1或2所述的方法,其特征在于,所述第二端口配置为所述终端设备在第一载波上的所述第二上行传输和第二载波上的所述第二上行传输分别为1端口的传输,
    如果第一端口配置为所述终端设备在第三载波上的所述第一上行传输和第四载波上的所述第一上行传输分别为1端口传输,则所述终端设备执行第一操作。
  8. 根据权利要求1或2所述的方法,其特征在于,所述第二端口配置为所述终端设备在第二载波上的所述第二上行传输为2端口的传输,
    如果第一端口配置为所述终端设备在第一载波上的所述第一上行传输为2端口传输,则所述终端设备执行第一操作。
  9. 根据权利要求1或2所述的方法,其特征在于,根据所述第一端口配置、所述第二端口配置,所述终端设备执行第一操作,包括:
    根据所述第一端口配置、所述第二端口配置,以及所述第一上行传输的传输状态,所述终端设备执行第一操作。
  10. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述第一端口配置对应的传输状态为第一集合,所述第二端口配置对应的传输状态为第二集合;
    所述终端设备根据所述第一集合和所述第二集合,确定所述第一集合与所述第二集合的交集为第一传输状态,并且确定所述第一上行传输的传输状态不是所述第一传输状态,则所述终端设备执行第一操作。
  11. 根据权利要求1、2、9、10中任一项所述的方法,其特征在于,所述第二端口配置为所述终端设备在第一载波上的所述第二上行传输为1端口传输,
    如果所述第一端口配置为所述终端设备在第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在第二载波上支持1端口传输,或者,所述终端设备的传输状态为在第三载波上支持2端口传输,则所述终端设备执行第一操作。
  12. 根据权利要求1、2、9、10中任一项所述的方法,其特征在于,所述第二端口配置为所述终端设备在第一载波上的所述第二上行传输为1端口传输,
    如果所述第一端口配置为所述终端设备在第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为不支持同时在所述第一载波上和所述第三载波上分别进行1端口传输,则所述终端设备执行第一操作。
  13. 根据权利要求1、2、9、10中任一项所述的方法,其特征在于,
    所述第二端口配置为所述终端设备在第一载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在所述第三载波上支持2端口传输,则终端设备确定执行第一操作,或者;
    所述第二端口配置为所述终端设备在第二载波上的所述第二上行传输为1端口传输,如果所述第一端口配置为所述终端设备在第三载波上的所述第一上行传输为1端口传输,且所述终端设备的传输状态为在所述第三载波上支持2端口传输,则终端设备确定执行第一操作。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,
    当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在第六载波上的第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:所述至少两个第一上行传输分别到所述第二上行传输所对应的至少两个切换时间。
  15. 根据权利要求1至13中任一项所述的方法,其特征在于,
    当所述第一上行传输为在第五载波上的第一上行传输,且所述第二上行传输为在至少两个不同的第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:从所述第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述至少两个不同的第五载波中的每个第五载波与所述第六载波不同,和/或;
    所述至少两个不同的第六载波中的每个第六载波与所述第五载波不同。
  17. 根据权利要求1至13中任一项所述的方法,其特征在于,
    当所述第一上行传输为在至少两个不同的第五载波上的至少两个第一上行传输,且所述第二上行传输为在至少两个不同第六载波上的至少两个第二上行传输时,所述从所述第一上行传输到所述第二上行传输的切换时间为:从所述至少两个第一上行传输分别到所述至少两个第二上行传输所对应的至少两个切换时间。
  18. 根据权利要求17所述的方法,其特征在于,
    所述至少两个第五载波中的每个第五载波与所述至少两个第六载波中的每个第六载波不同,或者;
    所述至少两个第五载波中的一个第五载波与所述至少两个第六载波中的一个第六载波相同。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,
    所述终端设备不期望在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
  20. 根据权利要求1至18中任一项所述的方法,其特征在于,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,
    所述终端设备确定在从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对的切换时间内不进行相应载波上的上行传输,其中,所述相应载波与所述至少一个频带切换对关联,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述第一上行传输包括至少一个第五频带的上行传输,所述第二上行传输包括至少一个第六频带的上行传输,
    所述切换时间,包括以下至少一项:
    从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间中的最大值,或者;
    从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间的和,或者;
    从所述第一上行传输到所述第二上行传输所涉及的至少一个频带切换对各自对应的切换时间,
    其中,所述至少一个频带切换对中的每个频带切换对包括一个第五频带和一个第六频带。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,
    如果所述第一上行传输包括至少两个第五频带的上行传输时,所述至少两个第五频带中的每个第五频带不同,如果所述第一上行传输包括至少两个第六频带的上行传输时,所述至少两个第六频带中的每个第六频带不同;
    其中,所述至少两个第五频带中的一个第五频带与所述至少两个第六频带中的一个第六频带相同,或者,所述每个第五频带与所述每个第六频带不同。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,所述至少一个频带切换对的切换时间为所述至少一个频带切换对各自对应的切换时间。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第一无线资源控制信令,所述第一无线资源控制信令指示所述终端设备被配置为第一选项或第二选项,其中,所述第一选项表示所述终端设备被配置为切换上行链路传输,所述第二选项表示所述终端设备被配置为双上行链路传输。
  25. 根据权利要求1至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第二无线资源控制信令,所述第二无线资源控制信令指示所述终端设备被配置为支持在三个频带上进行上行切换,或者,所述第二无线资源控制信令指示所述终端设备被配置为支持在四个频带上进行上行切换。
  26. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器中的所述计算机程序或指令,使得权利要求1至25中任一项所述的方法被执行。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至25中任意一项所述的方法。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至25中任一项所述的方法的指令。
PCT/CN2023/129348 2022-11-03 2023-11-02 一种确定切换上行传输的方法和装置 WO2024094126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211372734.3A CN117998616A (zh) 2022-11-03 2022-11-03 一种确定切换上行传输的方法和装置
CN202211372734.3 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024094126A1 true WO2024094126A1 (zh) 2024-05-10

Family

ID=90894045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129348 WO2024094126A1 (zh) 2022-11-03 2023-11-02 一种确定切换上行传输的方法和装置

Country Status (2)

Country Link
CN (1) CN117998616A (zh)
WO (1) WO2024094126A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154832A1 (en) * 2021-01-15 2022-07-21 Qualcomm Incorporated Coherent uplink (ul) multiple-input multiple-output (mimo)
CN115119312A (zh) * 2021-03-23 2022-09-27 华为技术有限公司 一种通信方法及装置
CN115190591A (zh) * 2021-04-02 2022-10-14 中国电信股份有限公司 上行数据的传输方法、装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154832A1 (en) * 2021-01-15 2022-07-21 Qualcomm Incorporated Coherent uplink (ul) multiple-input multiple-output (mimo)
CN115119312A (zh) * 2021-03-23 2022-09-27 华为技术有限公司 一种通信方法及装置
CN115190591A (zh) * 2021-04-02 2022-10-14 中国电信股份有限公司 上行数据的传输方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Discussion on Rel-17 UL switching", 3GPP DRAFT; R1-2104652, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210519 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010903 *

Also Published As

Publication number Publication date
CN117998616A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
EP3606126A1 (en) Method and device for transmitting uplink channels, and method and device for transmitting downlink channels
CN117014020B (zh) 通信方法及装置
JP6900501B2 (ja) データ伝送方法、端末機器及びネットワーク機器
US11962387B2 (en) Wireless communication method and apparatus
JP2022511296A (ja) 構成情報の伝送方法および端末機器
US8494453B2 (en) Method of handling measurement and related communication device
US20220052819A1 (en) Communication method and communications apparatus
US20220352923A1 (en) Frequency hopping methods, electronic device, and storage medium
CN116783968A (zh) 无线通信中的增强型物理上行链路共享信道传输
CN114071745A (zh) 一种无线接入的方法以及装置
WO2019214660A1 (zh) 通信方法和通信装置
US20200374887A1 (en) Channel transmission method and apparatus, and computer storage medium
WO2019174055A1 (zh) 通信方法和通信装置
WO2024094126A1 (zh) 一种确定切换上行传输的方法和装置
CN113207137B (zh) 一种测量控制方法、终端设备及网络设备
WO2023185409A1 (zh) 通信方法和装置
WO2023174141A1 (zh) 通信方法和装置
CN114642029A (zh) 通信方法及装置
US20240080829A1 (en) Multiple carrier transmission techniques
US20240032124A1 (en) Component carrier conflict management at a wireless communication device with multiple subscriptions
WO2020030074A1 (zh) 通信方法和通信装置
CN116528164A (zh) 确定切换时间位置的方法及相关装置
CN117812737A (zh) 通信方法及通信装置
CN116250199A (zh) 一种通信方法及装置
CN115942487A (zh) 资源配置方法和通信装置