WO2023185409A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2023185409A1
WO2023185409A1 PCT/CN2023/080412 CN2023080412W WO2023185409A1 WO 2023185409 A1 WO2023185409 A1 WO 2023185409A1 CN 2023080412 W CN2023080412 W CN 2023080412W WO 2023185409 A1 WO2023185409 A1 WO 2023185409A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
information
terminal device
state
switching
Prior art date
Application number
PCT/CN2023/080412
Other languages
English (en)
French (fr)
Inventor
张莉莉
戴喜增
罗青全
刘江华
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185409A1 publication Critical patent/WO2023185409A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the field of communication, and more specifically, to a communication method and device.
  • the terminal device transmits the radio frequency chain status on time slot #1 to state #1 (for example, state #1 is used on channel #1 Band #A, using band #2 on channel #2), two downlink control information (DCI) may be received on time slot #2, indicating the frequency band used when the terminal device switches to state #2 (For example, DCI#1 indicates the use of frequency band #A, and DCI#2 indicates the use of frequency band #C).
  • state #1 for example, state #1 is used on channel #1 Band #A, using band #2 on channel #2
  • DCI downlink control information
  • the terminal device may process the first downlink control information first and then process the second control information.
  • the terminal device may refer to the state #1 before switching and default to the frequency band indicated by the downlink control information.
  • the terminal device still uses frequency band #A on channel #1, uses frequency band #C on channel #2, and starts configuring channel parameters.
  • channel #2 of the terminal device may not support the use of frequency band #C.
  • the terminal device needs to cancel the previously configured channel parameters and reconfigure the channel parameters, thereby increasing the processing delay of the terminal device. Therefore, how to avoid the reconfiguration of the frequency bands corresponding to the above channels and reduce the processing delay of the terminal equipment has become an urgent problem to be solved.
  • Embodiments of the present application provide a communication method and device that instructs terminal equipment through network equipment the frequency band and/or carrier before switching and the frequency band and/or carrier after switching, so that the terminal equipment can clearly know which frequency band and/or carrier to interrupt.
  • the carrier is switched to the target frequency band and/or carrier, which avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reduces the processing delay of the terminal device, and improves data transmission performance.
  • the first aspect provides a communication method, which can be executed by a terminal device (for example, user equipment), or can also be executed by a component of the terminal device (for example, a chip or a circuit), which is not limited.
  • a terminal device for example, user equipment
  • a component of the terminal device for example, a chip or a circuit
  • the method includes: a terminal device receives first information from a network device, the first information includes N information blocks, the N information blocks include a j-th information block, the j-th information block includes a first field, and the first field is used for Indicates the frequency band and/or carrier after the terminal equipment switches, the jth information block is associated with the frequency band and/or carrier before the terminal equipment switches, and the N is a positive integer; the terminal equipment, according to the first information, Uplink data is transmitted on the switched frequency band and/or carrier.
  • the j-th information block is associated with the frequency band and/or carrier before the terminal equipment switches
  • the network device can use RRC signaling to convert each of the N information blocks into
  • the corresponding relationship with the frequency band and/or carrier is configured to the terminal device; or the corresponding relationship between each information block in the N information and the frequency band and/or carrier is preset Defined. For example, the correspondence between the positions of N information blocks and N frequency bands before switching and/or carriers before switching.
  • frequency band and/or carrier before switching can also be understood as the frequency band and/or frequency band currently being used by the terminal equipment, or it can also be understood as “source frequency band and/or carrier”; “frequency band after switching” and/or carrier” may also be understood as “target frequency band and/or carrier”.
  • each "field” mentioned can be used to indicate various contents, and it can also be understood that the information (for example, bits) carried in the field is used to indicate the corresponding content.
  • the "field” in this application can also be understood as "identification information”.
  • the terminal device receives the first information from the network device, the first information includes N information blocks, and the terminal device determines the first information block from the N information blocks.
  • the first information block includes a first identifier, and the first identifier is used to indicate the target frequency band and/or carrier.
  • the terminal device determines the source frequency band and/or carrier according to the position of the first information block in the N information blocks.
  • the terminal device Switch the source band and/or carrier to the target band and/or carrier.
  • each information block in the first information can be implicitly associated with the frequency band and/or carrier before the terminal device is switched, and the first field in each information block can be used to indicate the frequency band and/or carrier after the switch.
  • Frequency band and/or carrier allows the terminal device to clearly interrupt which frequency band/carrier and switch to the target frequency band/carrier, avoiding the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reducing the processing delay of the terminal device, and improving data transmission performance.
  • the j-th information block further includes a second field, the second field is used to indicate a time offset between the first information and its scheduled uplink data, the Uplink data is transmitted on the switched frequency band and/or carrier.
  • time offset can also be a time slot offset or a symbol offset, or a time slot offset and a symbol offset.
  • the "uplink data” can also be understood to mean that the uplink data is located in the frequency band and/or carrier after switching. That is, the terminal equipment may transmit the uplink data in the switched frequency band and/or carrier.
  • the terminal device can determine which time slot or which symbols to use the switched frequency band/carrier to send uplink data through the first information, so that after completing the status switch, the terminal device can transmit uplink data according to the second field Indicates to receive data on a specific time slot. This can prevent the terminal device from receiving data before completing the switching between states, thereby improving the data transmission performance.
  • the method further includes: the terminal device sending sixth information to the network device, the sixth information being used by the network device to determine the first information, wherein: The sixth information includes a corresponding relationship between at least one channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the first state of the terminal device. Switching correspondence between frequency bands when switching between Support a second number of transmitting radio frequency chains for the frequency band of the terminal device on the second frequency band group; and/or the sixth information at least includes when the terminal device switches between the first state and the second state.
  • the first state is that the frequency band of the terminal equipment on the first frequency band group supports a first number of transmitting radio frequency chains
  • the second state is that the frequency band of the terminal equipment on the second frequency band group A second number of transmitting radio frequency chains is supported; and/or the sixth information at least includes a switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • the "frequency band on the first frequency band group” can also be understood as at least one first frequency band
  • the "second frequency band” "Frequency band on the segment group” can also be understood as at least one second frequency band.
  • the first state can be understood as the terminal device supports the first number of transmitting radio frequency chains on at least one first frequency band
  • the second state can be understood as , the terminal device supports a second number of transmitting radio frequency chains on at least one second frequency band.
  • the switching correspondence between the frequency bands can be understood as: the terminal equipment switches from the first first frequency band to the first second frequency band. switch between. Specifically, it can be understood as: corresponding switching from the first first frequency band to the first second frequency band, or corresponding switching from the second first frequency band to the second second frequency band, and so on.
  • the terminal device reports the switching delay between the first state and the second state. It can also be understood that the terminal device can switch between the first state and the second state, that is, the first state is implicitly indicated. The corresponding relationship between switching between the second state and the second state.
  • the terminal device can report the frequency bands supported by each channel to the network device, or the switching correspondence between the corresponding frequency bands when switching between various states, so that the network device can clearly instruct the terminal device Which frequency band should be switched to the target frequency band avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reduces the processing delay of the terminal device, and improves data transmission performance.
  • the terminal device can also report the switching delay required when switching between various states, so that the network device can determine the scheduled uplink data.
  • the second aspect provides a communication method, which can be executed by a terminal device (for example, user equipment), or can also be executed by a component of the terminal device (for example, a chip or a circuit), which is not limited.
  • a terminal device for example, user equipment
  • a component of the terminal device for example, a chip or a circuit
  • the method includes: the terminal device receives second information from the network device, the second information includes M information blocks, the kth information block among the M information blocks is associated with the frequency band pair of the terminal device, Wherein, the frequency band pair includes a frequency band before switching by the terminal equipment and a frequency band after switching by the terminal equipment, and M is a positive integer; according to the second information, the terminal equipment switches in the frequency band after switching Transmit uplink data.
  • the terminal device receives the second information from the network device, the second information includes M information blocks, the terminal device determines the first information block from the M information blocks, and the terminal device determines the first information block according to the first The position of the information block in the M information blocks determines the frequency band pair, and the terminal device switches the source frequency band to the target frequency band based on the determined frequency band pair.
  • each information block in the M pieces of information may correspond to the index of a frequency band pair.
  • the first information block corresponds to band pair #1
  • the second information block corresponds to band pair #2, and so on.
  • the corresponding relationship between the frequency band pair and each information block in the M pieces of information may be sent by the network device to the terminal device through RRC signaling, or may be predefined.
  • the network device may configure the corresponding relationship between the position of each information block in the M pieces of information and the frequency band pair to the terminal device through RRC signaling.
  • each information block in the second information can be implicitly associated with a frequency band pair, that is, the frequency band before switching and the frequency band after switching, so that the terminal device can clearly interrupt which frequency band/carrier and switch to
  • the target frequency band/carrier avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reduces the processing delay of the terminal device, and improves data transmission performance.
  • the k-th information block further includes a third field, where the third field is used to indicate the carrier after switching by the terminal device.
  • each information block in the second information may also indicate the switched carrier. That is, the terminal device can clearly switch to which frequency band carrier, which reduces the processing delay of the terminal device and improves data transmission performance.
  • the k-th information block includes a second field, and the second field is used to indicate The time offset between the second information and its scheduled uplink data, which is transmitted on the switched frequency band or carrier.
  • the terminal device can determine which time slot or which symbols to use the switched frequency band/carrier to send uplink data through the second information, so that after completing the state switch, the terminal device can transmit uplink data according to the second field Indicates to receive data on a specific time slot. This can prevent the terminal device from receiving data before completing the switching between states, thereby improving the data transmission performance.
  • the method further includes: the terminal device sending sixth information to the network device, the sixth information being used by the network device to determine the second information, wherein: The sixth information includes a corresponding relationship between at least one channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the first channel of the terminal device.
  • the first state is that the frequency band of the terminal device on the first frequency band group supports a first number of transmitting radio frequency chains
  • the second state The state is that the frequency band of the terminal device on the second frequency band group supports a second number of transmitting radio frequency chains; and/or the sixth information at least includes when the terminal device switches between the first state and the second state.
  • the terminal device can report the frequency bands supported by each channel to the network device, or the switching correspondence between the corresponding frequency bands when switching between various states, so that the network device can clearly instruct the terminal device Which frequency band should be switched to the target frequency band avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reduces the processing delay of the terminal device, and improves data transmission performance.
  • the terminal device can also report the switching delay required when switching between various states, so that the network device can determine the scheduled uplink data.
  • a communication method is provided, which method can be executed by a terminal device (for example, user equipment), or can also be executed by a component of the terminal device (for example, a chip or a circuit), which is not limited.
  • the method includes: the terminal device receives third information from the network device, the third information includes a first field, the first field is used to indicate the frequency band and/or carrier after switching by the terminal device, wherein before switching, The frequency band and/or carrier are determined by the terminal device according to preset rules, or the frequency band and/or carrier before switching are indicated by the network device; the terminal device determines the frequency band and/or carrier before switching according to the third information.
  • the data is transmitted on the subsequent frequency band and/or carrier.
  • the third information can clearly indicate the frequency band and/or carrier after switching, and can explicitly or implicitly indicate the frequency band and/or carrier before switching, so that the terminal device can clearly interrupt which frequency band /carrier and switches to the target frequency band/carrier, avoiding the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reducing the processing delay of the terminal device, and improving data transmission performance.
  • the third information further includes a second field, the second field is used to indicate a time offset between the third information and its scheduled uplink data, and the data is Transmit on the switched frequency band and/or carrier.
  • the terminal device can determine which time slot or which symbols to use the switched frequency band/carrier to send uplink data through the third information, so that after completing the state switching, the terminal device can transmit uplink data according to the second field Indicates to receive data on a specific time slot. It can avoid the terminal device not completing switching between states. Just receive data and improve the data transmission performance.
  • the third information further includes a fourth field, the fourth field is used to indicate the second table in which the time offset is located, or the fourth field is used to indicate The index or position of the time offset in the first table.
  • the network device can indicate the location of the time offset, and the terminal device can determine the time slot for sending data based on the instruction of the network device.
  • the method further includes: the terminal device sending sixth information to the network device, the sixth information being used by the network device to determine the second information, wherein: The sixth information includes a corresponding relationship between at least one channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the first channel of the terminal device.
  • the first state is that the frequency band of the terminal device on the first frequency band group supports a first number of transmitting radio frequency chains
  • the second state The state is that the frequency band of the terminal device on the second frequency band group supports a second number of transmitting radio frequency chains; and/or the sixth information at least includes when the terminal device switches between the first state and the second state.
  • the first state is that the frequency band of the terminal equipment on the first frequency band group supports a first number of transmitting radio frequency chains
  • the second state is that the frequency band of the terminal equipment on the second frequency band group A second number of transmitting radio frequency chains is supported; and/or the sixth information at least includes a switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • the terminal device can report the frequency bands supported by each channel to the network device, or the switching correspondence between the corresponding frequency bands when switching between various states, so that the network device can clearly instruct the terminal device Which frequency band should be switched to the target frequency band avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reduces the processing delay of the terminal device, and improves data transmission performance.
  • the fourth aspect provides a communication method, which can be executed by a terminal device (for example, user equipment), or can also be executed by a component of the terminal device (for example, a chip or a circuit), which is not limited.
  • a terminal device for example, user equipment
  • a component of the terminal device for example, a chip or a circuit
  • the method includes: the terminal device receives fourth information from the network device, the fourth information includes a fifth field, the fifth field is used to indicate the first frequency band after the terminal device switches, the fourth information also Includes a sixth field, the sixth field is used to instruct the terminal device to receive fifth information, the fifth information is used to indicate the second frequency band after the terminal device switches; the terminal device according to the fourth information and the fifth information, transmit uplink data on the frequency band after switching; or, the fourth information also includes a seventh field, the seventh field is used to indicate the lag time for the fifth field to take effect, so The terminal device transmits uplink data on the switched frequency band according to the fourth information.
  • lag time can also be understood as “time window”, “time period” or “time offset”.
  • the network device can instruct the terminal device to wait for the fifth information after receiving the fourth message, and jointly determine the frequency band before switching and the frequency band after switching based on the fourth information and the fifth information.
  • the first frequency band after switching indicated in the fourth information has an effective lag time, that is, the terminal device will not configure parameters immediately after receiving the fourth information, and while the terminal device is waiting, the network device will also send a fifth information, and finally the terminal device can jointly determine the frequency band before switching and the frequency band after switching based on the fourth information and the fifth information. This allows the terminal device to clearly interrupt which frequency band/carrier and switch to the target frequency band/carrier, avoiding the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reducing the processing delay of the terminal device, and improving data transmission performance.
  • the method further includes: the terminal device sending sixth information to the network device, the sixth information being used by the network device to determine The second information, which , the sixth information includes the corresponding relationship between at least one channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the terminal device
  • the first state is that the frequency band of the terminal device on the first frequency band group supports the first number of transmitting radio frequency chains
  • the second state is that the frequency band of the terminal equipment on the second frequency band group supports a second number of transmitting radio frequency chains
  • the sixth information at least includes the state of the terminal equipment between the first state and the second state.
  • the first state is that the frequency band of the terminal device on the first frequency band group supports the first number of transmitting radio frequency chains
  • the second state is that the terminal device supports the first number of transmitting radio frequency chains in the second frequency band
  • the frequency bands on the group support a second number of transmitting radio frequency chains; and/or the sixth information at least includes the switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • the terminal device can report the frequency bands supported by each channel to the network device, or the switching correspondence between the corresponding frequency bands when switching between various states, so that the network device can clearly instruct the terminal device Which frequency band should be switched to the target frequency band avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reduces the processing delay of the terminal device, and improves data transmission performance.
  • the terminal device can also report the switching delay required when switching between various states, so that the network device can determine the scheduled uplink data.
  • the fifth aspect provides a communication method, which can be executed by a network device (for example, a base station), or can also be executed by a component of the network device (for example, a chip or a circuit), which is not limited.
  • a network device for example, a base station
  • a component of the network device for example, a chip or a circuit
  • the beneficial effects corresponding to the technical solution on the network side and the beneficial effects corresponding to the device can be referred to the description of the beneficial effects on the terminal side, and will not be described again here.
  • the method includes: the network device determines first information, the first information includes N information blocks, the jth information block among the N information blocks includes a first field, and the first field is used to indicate the terminal device The frequency band and/or carrier after switching, the jth information block is associated with the frequency band and/or carrier before switching by the terminal device, and N is a positive integer; the network device sends the jth information block to the terminal device. a message.
  • the j-th information block further includes a second field, the second field is used to indicate a time offset between the first information and its scheduled uplink data, the Uplink data is transmitted on the switched frequency band and/or carrier.
  • the method further includes: the network device receiving sixth information from the terminal device, the sixth information being used by the network device to determine the first information, wherein, The sixth information includes a corresponding relationship between at least one channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the frequency band of the terminal device in the first When switching between a first state and a second state, the switching correspondence relationship between frequency bands, the first state is that the frequency band of the terminal device on the first frequency band group supports a first number of transmitting radio frequency chains, and the third state
  • the second state means that the frequency band of the terminal equipment on the second frequency band group supports a second number of transmitting radio frequency chains; and/or the sixth information at least includes the terminal equipment performing operations between the first state and the second state.
  • the first state is that the frequency band of the terminal equipment on the first frequency band group supports the first number of transmitting radio frequency chains
  • the second state is that the terminal equipment is on the second frequency band group
  • the frequency band supports a second number of transmitting radio frequency chains
  • the sixth information at least includes the switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • a sixth aspect provides a communication method, which may be executed by a network device (eg, a base station), or may be executed by a component of the network device (eg, a chip or a circuit), which is not limited.
  • a network device eg, a base station
  • a component of the network device eg, a chip or a circuit
  • the method includes: the network device determines second information, the second information includes M information blocks, and the M information blocks
  • the k-th information block in the information block is associated with a frequency band pair of the terminal device, wherein the frequency band pair includes the frequency band before the terminal device switches and the frequency band after the terminal device switches, and the M is a positive integer;
  • the network device sends the second information to the terminal device.
  • the k-th information block further includes a third field, where the third field is used to indicate the carrier after switching by the terminal device.
  • the k-th information block includes a second field, the second field is used to indicate a time offset between the second information and its scheduled uplink data, and the uplink Data is transmitted on the switched frequency band or carrier.
  • the method further includes: the network device receiving sixth information from the terminal device, the sixth information being used by the network device to determine the second information, wherein, The sixth information includes a corresponding relationship between at least one channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the frequency band of the terminal device in the first When switching between a first state and a second state, the switching correspondence relationship between frequency bands, the first state is that the frequency band of the terminal device on the first frequency band group supports a first number of transmitting radio frequency chains, and the third state
  • the second state means that the frequency band of the terminal equipment on the second frequency band group supports a second number of transmitting radio frequency chains; and/or the sixth information at least includes the terminal equipment performing operations between the first state and the second state.
  • the first state is that the frequency band of the terminal equipment on the first frequency band group supports the first number of transmitting radio frequency chains
  • the second state is that the terminal equipment is on the second frequency band group
  • the frequency band supports a second number of transmitting radio frequency chains
  • the sixth information at least includes the switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • a seventh aspect provides a communication method, which may be executed by a network device (eg, a base station), or may be executed by a component of the network device (eg, a chip or a circuit), which is not limited.
  • a network device eg, a base station
  • a component of the network device eg, a chip or a circuit
  • the method includes: third information determined by the network device, the third information including a first field used to indicate the frequency band and/or carrier after the terminal device switches, wherein the frequency band and/or carrier before switching
  • the carrier is determined by the terminal device according to preset rules, or the frequency band and/or carrier before switching is indicated by the network device; the network device sends the third information to the terminal device.
  • the third information further includes a second field, the second field is used to indicate a time offset between the third information and its scheduled uplink data, and the data is Transmit on the switched frequency band and/or carrier.
  • the third information further includes a fourth field, the fourth field is used to indicate the second table in which the time offset is located, or the fourth field is used to indicate The index or position of the time offset in the first table.
  • the method further includes: the network device receiving sixth information from the terminal device, the sixth information being used by the network device to determine the third information, wherein, The sixth information includes a corresponding relationship between at least one channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the frequency band of the terminal device in the first When switching between a first state and a second state, the switching correspondence relationship between frequency bands, the first state is that the frequency band of the terminal device on the first frequency band group supports a first number of transmitting radio frequency chains, and the third state
  • the second state means that the frequency band of the terminal equipment on the second frequency band group supports a second number of transmitting radio frequency chains; and/or the sixth information at least includes the terminal equipment performing operations between the first state and the second state.
  • the first state is that the terminal device supports the first number of frequency bands on the first frequency band group of transmitting radio frequency chains
  • the second state is that the frequency band of the terminal device on the second frequency band group supports a second number of transmitting radio frequency chains
  • the sixth information at least includes the terminal device receiving data from at least one When the first frequency band is switched to at least one second frequency band, the switching correspondence between the frequency bands.
  • An eighth aspect provides a communication method, which can be executed by a network device (for example, a base station), or can also be executed by a component of the network device (for example, a chip or a circuit), which is not limited.
  • a network device for example, a base station
  • a component of the network device for example, a chip or a circuit
  • the method includes: the network device determines fourth information, the fourth information includes a fifth field, the fifth field is used to indicate the first frequency band after the terminal device switches, the fourth information also includes a sixth field , the sixth field is used to instruct the terminal device to receive the fifth information, and the fifth information is used to indicate the second frequency band after the terminal device switches; or the fourth information also includes a seventh field, the The seventh field is used to indicate the lag time for the fifth field to take effect, wherein the terminal device receives fifth information within the time period, and the fifth information is used to indicate the second frequency band after the terminal device switches; The network device sends the fourth information and the fifth information to the terminal device.
  • the network device receives sixth information from the terminal device, and the sixth information is used by the network device to determine the fourth information, wherein the sixth information includes The corresponding relationship between at least one channel of the terminal device and a frequency band, where the frequency band is a frequency band supported by the at least one channel; and/or the sixth information at least includes the status of the terminal device in the first state and the second state.
  • the first state is that the terminal device supports a first number of transmitting radio frequency chains in the frequency band of the first frequency band group
  • the second state is that the terminal device supports a first number of transmitting radio frequency chains.
  • the frequency band of the device on the second frequency band group supports a second number of transmitting radio frequency chains; and/or the sixth information at least includes the switching delay when the terminal device switches between the first state and the second state.
  • the first state is that the frequency band of the terminal equipment on the first frequency band group supports a first number of transmitting radio frequency chains
  • the second state is that the frequency band of the terminal equipment on the second frequency band group supports a second number
  • the sixth information at least includes the switching correspondence between the frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • a communication device which is used to perform the method in any of the possible implementation manners of the first to fourth aspects.
  • the device may include units and/or modules for performing the method in any possible implementation of the first to fourth aspects, such as a transceiver unit and/or a processing unit.
  • the device is a terminal device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit for a terminal device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device which is used to perform the method in any of the possible implementation manners of the fifth to eighth aspects.
  • the device may include units and/or modules for performing the method in any possible implementation of the fifth aspect to the eighth aspect, such as a transceiver unit and/or a processing unit.
  • the device is a network device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, system on a chip, or circuit for network equipment.
  • the communication unit can be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit;
  • the processing unit can be It is at least one processor, processing circuit or logic circuit, etc.
  • a communication device which device includes: at least one processor for executing computer programs or instructions stored in a memory to execute any one of the above-mentioned first to fourth aspects. Methods in possible implementations.
  • the device further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the device is a terminal device.
  • the device is a chip, a chip system or a circuit for a terminal device.
  • a communication device in a twelfth aspect, includes: at least one processor for executing computer programs or instructions stored in a memory to perform any possibility of any one of the above fifth to eighth aspects. Methods in the implementation.
  • the device further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the device is a network device.
  • the device is a chip, system on a chip, or circuit for network equipment.
  • the present application provides a processor, including: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementations of any one of the first to eighth aspects. .
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a transceiver.
  • the signal output by the output circuit may be, for example, but not limited to, output to a transmitter and transmitted by the transmitter, and the input circuit and the output A circuit may be the same circuit that functions as an input circuit and an output circuit at different times.
  • the embodiments of this application do not limit the specific implementation methods of the processor and various circuits.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a transceiver and transmit signals through a transmitter to execute the method in any possible implementation manner of any one of the first to eighth aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the arrangement of the memory and the processor.
  • ROM read-only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can be from the transceiver.
  • the transmitter and transceiver can be collectively referred to as transceiver.
  • the processing device in the fourteenth aspect above may be one or more chips.
  • the processor in the processing device can be implemented by hardware or software.
  • the processor can be a logic circuit, an integrated circuit, etc.;
  • the processor can be a general processor, which is implemented by reading software codes stored in a memory, and the memory can Integrated in the processor, it can be located outside the processor and exist independently.
  • a computer-readable storage medium stores a program code for device execution.
  • the program code includes a program code for executing any of the possible implementations of the above-mentioned first to eighth aspects. Methods.
  • a sixteenth aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute the method in any of the possible implementation modes of the first to eighth aspects.
  • a seventeenth aspect provides a chip system, including a processor for calling and running a computer program from a memory, so that a device installed with the chip system executes each implementation of any one of the above-mentioned first to eighth aspects. method within the method.
  • An eighteenth aspect provides a communication system, which includes the terminal device and the network device.
  • the terminal device is configured to perform any possible implementation method in any one of the above first to fourth aspects
  • the network device is configured to perform any one of the above fifth to eighth aspects. One possible way to do it.
  • Figure 1 is a schematic diagram of a scenario applicable to this application.
  • Figure 2 is a schematic flow chart of the communication method 200 provided by this application.
  • FIG. 3 is a schematic diagram of information blocks in the first information provided by this application.
  • FIG. 4 is a schematic diagram of information blocks in the second information provided by this application.
  • FIG. 5 is a schematic diagram of the third information provided by this application.
  • FIG. 6 is a schematic block diagram of the communication device 100 provided by this application.
  • FIG. 7 is a schematic block diagram of the communication device 200 provided by this application.
  • Wireless communication systems applicable to the embodiments of this application include but are not limited to: global system of mobile communication (GSM) system, long term evolution (long term evolution, LTE) frequency division duplex (FDD) system , LTE time division duplex (TDD), LTE system, advanced long-term evolution (LTE-Advanced, LTE-A) system, next-generation communication system (for example, 6G communication system), integration of multiple access systems system, or evolving system.
  • GSM global system of mobile communication
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE system LTE system
  • LTE-Advanced, LTE-A advanced long-term evolution
  • next-generation communication system for example, 6G communication system
  • integration of multiple access systems system or evolving system.
  • MTC machine type communication
  • LTE-M long term evolution-machine
  • D2D device to device
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • V2X, X can represent anything).
  • the V2X can include: vehicle to vehicle (V2V) communication, where the vehicle and infrastructure(vehicle to infrastructure, V2I) communication, communication between vehicles and pedestrians (vehicle to pedestrian, V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • V2V vehicle to vehicle
  • V2I vehicle and infrastructure(vehicle to infrastructure, V2I) communication
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the terminal equipment involved in the embodiments of this application may include various access terminals, mobile devices, user terminals or user devices with wireless communication functions.
  • the terminal device can be a user equipment (UE), such as a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, etc.
  • UE user equipment
  • VR virtual reality
  • AR augmented reality
  • Terminal equipment can also be wireless terminals in industrial control (industrial control), machine type communication (MTC) terminals, customer premise equipment (CPE), and wireless terminals in self-driving (self-driving) , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities Equipment, computing equipment or other processing equipment connected to wireless modems, vehicle-mounted equipment, wearable devices, terminal equipment in 5G networks or terminal equipment in future evolved public land mobile communications networks (public land mobile network, PLMN), etc.
  • industrial control industrial control
  • MTC machine type communication
  • CPE customer premise equipment
  • self-driving self-driving
  • wireless terminals in remote medical wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ), cellular phones, cordless phones, session
  • the network device (for example, a wireless access network device) involved in the embodiment of the present application may be an access device through which a terminal device wirelessly accesses the mobile communication system.
  • the wireless access network equipment may be: a base station, an evolved node B (eNB), a home base station, an access point (AP) in a wireless fidelity (WiFi) system, or a wireless relay Node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), macro base station or micro base station, high-frequency base station, etc.
  • the wireless access network equipment can also be a next generation base station (next generation node B, gNB) in the NR system, or it can also be a component or part of the equipment that constitutes the base station, such as a convergence unit (central unit, CU), distributed Unit (distributed unit, DU) or baseband unit (baseband unit, BBU), etc.
  • gNB next generation base station
  • DU distributed Unit
  • BBU baseband unit
  • wireless access network equipment is referred to as network equipment. If there is no special explanation, in this application, network equipment refers to wireless access network equipment.
  • the network device may refer to the network device itself, or it may be a chip used in the network device to complete the wireless communication processing function.
  • network equipment e.g., base stations
  • the transmit power of the terminal equipment is very small and the uplink coverage is limited. Therefore, the received signal strength of the uplink transmitted signal when it reaches the network equipment may not be enough to guarantee its coverage performance.
  • FIG 1 is a schematic diagram of a scenario applicable to the technical solution of this application.
  • SUL supplementary uplink
  • LTE long term evolution
  • terminal equipment can communicate with the LTE uplink time division duplex (time division duplex) when using the LTE frequency band for NR transmission.
  • division duplex (TDD) multiplexes the frequency band.
  • the terminal device when the terminal device is in the TDD mid-frequency band (2.6GHz, 3.5GHz or 4.9GHz) coverage, the terminal device uses the TDD mid-frequency band; when the terminal device moves to the TDD mid-frequency band (2.6GHz, 3.5GHz or 4.9GHz)
  • the terminal equipment can use the LTE low-frequency band in the uplink, which supplements the uplink coverage shortcomings of the TDD mid-frequency band and extends the uplink coverage.
  • terminal equipment can also use other frequency bands in the uplink to supplement the uplink, further extending the uplink coverage.
  • the terminal device transmits uplink data on the NR frequency band (band) (for example, 2.6GHz), it can be used from the lower frequency band where LTE is located (for example, 700MHz/800MHz/900MHz, 1.8GHz or 2.1GHz)
  • the carrier is used for NR uplink transmission, and this carrier can be understood as the SUL frequency band. That is to say, in the SUL scenario, it is expected that the terminal equipment can switch between multiple frequency bands such as 700M/800M/900M, 1.8G, 2.1G, 3.5G or 4.9GHz according to the channel status or the load condition of the corresponding frequency band. Perform dynamic switching.
  • Switching delay of phase locked loop Generally speaking, it takes about 300 microseconds for the phase locked loop to re-lock on a frequency band. Specifically, if the phase-locked loop of one frequency band is turned off, re-locked to another frequency band, or a new phase-locked loop is turned on, such a switching delay is required.
  • the transmitting channel can work in the following manner, but is not limited to the following: the transmitting channel can receive the baseband signal from the baseband chip, and perform radio frequency processing (such as upconversion, amplification and filtering) on the baseband signal to obtain the radio frequency signal. , and finally radiate the radio frequency signal into space through the antenna.
  • the transmit channel may include an antenna switch, an antenna tuner, a low noise amplifier (LNA), a power amplifier (PA), a mixer, a local oscillator (LO), and Electronic devices such as filters can be integrated into one or more chips as needed.
  • the antenna can sometimes be considered part of the transmission channel.
  • radio frequency chain can also be replaced by T
  • the “band” mentioned in the embodiments of this application can also be understood as “frequency band”, “frequency point” and “spectrum”.
  • the “frequency band” in this application can also be understood as a component carrier (CC) (which can also be referred to as a “carrier” for short), that is, the technical solution of this application is also fully applicable to the “carrier”.
  • CC component carrier
  • the “frequency band” is mainly used as an example for description.
  • sending radio frequency chain can also be understood as “sending”, “capable of sending”, “transmitting” or “capable of transmitting”.
  • the number of sending radio frequency chains can be understood as “the number of sending”, “the number that can be sent”, “the number of transmissions” or “the number that can be transmitted”.
  • the number of transmitting radio frequency chains can also be understood as the "number of layers", “number of antenna layers” or “number of channels”.
  • the "switch” mentioned in the embodiments of this application can also be understood as “switching”; the “switching delay” mentioned in the embodiments of this application can also be understood as “carrier switching delay”, “carrier switching time””Delay”,”carrier switching period (period or interval)” or “switching interval (gap)”; the “switching delay” mentioned in the embodiment of this application can also be called “switching time in the carrier switching preparation time ( switching time)” or “switching preparation in advance “Switching time (switching time)” in the measurement.
  • the network device when the network device performs uplink scheduling, it will perform corresponding scheduling processing based on the switching delay.
  • N2 can be understood as the uplink processing delay or uplink preparation delay), which will not be described in detail below.
  • channel #1 may support frequency band #A and frequency band #C
  • channel #2 may support frequency band #A and frequency band #B.
  • the terminal device transmits the radio frequency chain status on time slot #1 to state #1 (for example, state #1 is using frequency band # on channel #1 A, using frequency band #2 on channel #2), two downlink control information (DCI) may be received on time slot #2, indicating the frequency band used when the terminal device switches to state #2.
  • DCI#1 indicates the use of frequency band #A
  • DCI#2 indicates the use of frequency band #C.
  • the terminal device may process the first downlink control information first and then process the second control information.
  • the terminal device may refer to the state #1 before switching and default to the frequency band indicated by the downlink control information.
  • the terminal device still uses frequency band #A on channel #1, uses frequency band #C on channel #2, and starts configuring channel parameters.
  • channel #2 of the terminal device may not support the use of frequency band #C.
  • the terminal device needs to cancel the previously configured channel parameters and reconfigure the channel parameters, thereby increasing the processing delay of the terminal device. It should be understood that the above scenario is only an example of this application. When the terminal device switches between various states, there are many such scenarios, and I will not analyze them one by one here.
  • the present application provides a communication method that indicates to the terminal device through the network device the frequency band and/or carrier before switching and the frequency band and/or carrier after switching, so that the terminal device can clearly know which frequency band/carrier is interrupted and Switching to the target frequency band/carrier avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device, reduces the processing delay of the terminal device, and improves data transmission performance.
  • the “correspondence relationship”, “association relationship”, etc. mentioned in this application can be configured by the network device to the terminal device through radio resource control (RRC) signaling, or can be understood as predetermined rules.
  • RRC radio resource control
  • Figure 2 is a communication method 200 provided by this application.
  • the method 200 illustrates the steps of a specific embodiment of the technical solution of this application from the perspective of interaction between a terminal device and a network device. Each step shown in Figure 2 will be described below.
  • Step 201 The terminal device sends sixth information to the network device.
  • the sixth information may include a correspondence between each channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by each channel.
  • each channel supports transmission on two frequency bands; for another example, each channel supports transmission on three frequency bands, etc.
  • This application does not limit the number of channels, and the number of frequency bands supported by each channel is also not limited. Not limited.
  • the terminal device can report that channel #1 supports frequency band #A and frequency band #C, and channel #2 supports frequency band #A and frequency band #B.
  • the terminal device can report that channel #1 supports frequency band #A and frequency band #D, channel #2 supports frequency band #A and frequency band #B, channel #3 supports frequency band #B and frequency band #C, and channel #4 supports frequency band #A. , Band #C, etc.
  • the frequency band supported by each channel can be understood as each channel supporting data transmission in this frequency band.
  • the sixth information includes the switching correspondence between frequency bands when the terminal device switches between various states (for example, the first state and the second state).
  • the first state is that the frequency band of the terminal device on the first frequency band group supports a first number of transmitting radio frequency chains
  • the second state is that the frequency band of the terminal device on the second frequency band group supports a second number of transmitting radio frequency chains.
  • the "frequency band on the first frequency band group” can also be understood as at least one first frequency band
  • the "frequency band on the second frequency band group” can also be understood as at least one second frequency band.
  • the first state can be understood as: the terminal device supports a first number of transmitting radio frequency chains on at least one first frequency band
  • the second state can be understood as: the terminal device supports a second number of transmitting radio frequency chains on at least one second frequency band.
  • RF chain
  • channel #1 of the terminal device supports frequency band #A and frequency band #C
  • channel #2 supports frequency band #A and frequency band #B.
  • state #4 an example of the first state
  • T transmits an RF chain on channel #2 using band #B (an example of the second band)
  • state #5 an example of the second state
  • band #C an example of the second state
  • One RF chain is sent using band #A (another example of a second band) on channel #2.
  • the terminal device can report to the network device that the channel #1 is switched from frequency band #A to frequency band #C, and the channel #2 is switched from frequency band #B to frequency band #A.
  • Table 1 For example, see Table 1.
  • state #1 (an example of the first state) is that the terminal uses band #B on channel #2 (e.g., there are two transmit RF chains on channel #2), state #4 (an example of the second state) Example) Send an RF chain for an end device on channel #1 using band #A and on channel #2 using band #B. Then the terminal device can report to the network device that channel #2 is switched from frequency band #B to frequency band #B (at this time, it can also be understood as no need to switch), and the frequency band used on channel #1 is switched to frequency band #A (which can be understood as , the RF chain has not yet been transmitted on channel #1 before switching). For example, see Table 2.
  • the sixth information includes the corresponding switching delay when the terminal device switches between various states (for example, the first state and the second state).
  • the terminal device may switch between state #4 and state #5 with a switching delay of #1.
  • Switching delay #1 can be 38 microseconds, 140 microseconds, 210 microseconds, 280 microseconds, 500 microseconds, or 1 millisecond, etc.
  • the terminal device may report the switching delay #2 required for switching between state #1 and state #5.
  • Switching delay #2 can be 38 microseconds, 140 microseconds, 280 microseconds, 210 microseconds, 280 microseconds, 500 microseconds, or 1 millisecond, etc.
  • the terminal device reports the switching delay #2 required to switch between state #1 and state #5, it can also be understood that it implicitly indicates the corresponding switching relationship between state #1 and state #5, that is, the state Corresponding switching can be performed between state #1 and state #5.
  • the sixth information may include the terminal device switching from at least one first frequency band to When there is at least one second frequency band, the switching correspondence between frequency bands.
  • the terminal device may report switching from the first first frequency band to the first second frequency band, and/or switching from the second first frequency band to the second second frequency band.
  • the terminal device can report switching from frequency band #A to frequency band #C, and switching from frequency band #B to frequency band #A.
  • the terminal device can also report the switching delay required to switch from the default state or the fallback state to the new frequency band. At this time, it is considered that after the terminal device completes transmission in the current frequency band, it can also fall back to the frequency band corresponding to the default state/fallback state.
  • the switching delay may be 35 microseconds. Falling back to the frequency band corresponding to the default state/fallback state means that the phase-locked loop is locked to the frequency band corresponding to the default state/fallback state.
  • the default state/fallback state may be predefined, or the network device may be preconfigured. In this application, pre-configuration can be understood as network device configuration through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal device can also report to retain the original status. That is, it will not go from the state where the network device schedules transmission to the fallback state, but will only continue to reside in the state indicated by the base station.
  • Step 202 The network device receives the sixth information sent by the terminal device and determines the first information.
  • the terminal device may determine the frequency band and/or carrier before the terminal device switches and the frequency band and/or carrier after the switch according to the sixth information reported by the terminal device. For example, as shown in Table 1, the terminal device can report to the network device a switch from frequency band #A to frequency band #C on channel #1, and a switch from frequency band #B to frequency band #A on channel #2.
  • the network device can determine that the terminal device should interrupt the current transmission from Band #B and turn to Band # A for target transmission; it can also be determined that the terminal device should interrupt the current transmission from frequency band #A and switch to frequency band #C for target transmission. Therefore, the frequency band before switching is frequency band #B, and the frequency band after switching is frequency band #A; and the frequency band before switching is frequency band #A, and the frequency band after switching is frequency band #C.
  • the default state is band #A. If the time interval between the current state and the next state is greater than or equal to a time length, the terminal device enters the default state.
  • the time length may be predefined, for example, the time length of two time slots (slots) or the time length of one slot.
  • the first information includes at least one information block (for example, N information blocks, N is an integer greater than 0), wherein each information block can be associated with the frequency band and/or carrier before the terminal device switches. It can also be understood that each information block can be implicitly associated with the frequency band and/or carrier before the terminal device is switched.
  • the first information block may correspond to the lowest frequency band index and/or carrier index, and in turn, the Nth information block may correspond to the highest frequency band index and/or carrier index.
  • the first information block may correspond to the highest frequency band index and/or carrier index, and in turn, the Nth information block may correspond to the lowest frequency band index and/or carrier index.
  • the lowest frequency band index and/or carrier index and the highest frequency band index and/or carrier index may be for the frequency band and/or carrier currently used by the terminal device.
  • the frequency bands currently used by the terminal device are n28 and n43
  • the lowest frequency band index is the frequency band index corresponding to frequency band n28
  • the highest frequency band index is the frequency band index corresponding to frequency band n43.
  • the carriers currently used by the terminal equipment are serving cells (serving cell) #3 and serving cell #5, then the lowest carrier index is the index 3 corresponding to the carrier serving cell #3, and the highest carrier index is the carrier serving cell Index 5 corresponding to #5.
  • the first information block may correspond to the terminal frequency band #1
  • the second information block may correspond to the frequency band #3.
  • the frequency band currently used by the terminal device is frequency band #28, Band #36, for example, the first information block may correspond to band #28, the second information block may correspond to band #36, and so on.
  • the first information block may correspond to carrier #3 on frequency band #1 by default
  • the second information block may correspond to carrier #3 on frequency band #1 by default.
  • the block may default to carrier #1 on band #2, and so on.
  • an entire index can be compiled for the carriers in each frequency band. Assume that each frequency band can support four carriers, then there can be 12 carriers on frequency band #1 ⁇ frequency band #3. Assume that carrier #1 ⁇ carrier 4 are the carriers on frequency band #1, and carrier #5 ⁇ carrier # 8 is the carrier on frequency band #2, and carrier #9 to carrier #12 are the carriers on frequency band #4. At this time, the first information block may correspond to carrier #1, the second information block may correspond to carrier #2, the third information block may correspond to carrier #3, the tenth information block may correspond to carrier #10, and so on. It can also be understood that at this time, through the corresponding relationship between the information block and the carrier, the frequency band after switching can also be implicitly indicated.
  • each information block may also correspond to a carrier set.
  • the carrier set can be understood as dividing 32 carriers into P (P is an integer greater than 0) sets or groups, and each information block corresponds to the index of a carrier set or the index of a carrier group.
  • the first information may include at least one information block, where each information block includes field #1 (an example of the first field), where field #1 is used to indicate the switched frequency band and/or carrier.
  • field #1 includes a 1-bit first indication, and the 1-bit first indication is used to indicate whether to trigger switching from the current frequency band and/or carrier (indication on whether switch this band/CC).
  • Field #1 may also include a second indication (the second indication may occupy 3 bits, for example), and the second indication is used to indicate the frequency band and/or carrier after switching (switch to band/CC).
  • the second indication may indicate the frequency band index of the switched frequency band (switch to band index/CC index).
  • the second indication may indicate that the switched frequency band is frequency band #3.
  • the second indication may indicate the carrier of the switched frequency band (for example, carrier #1 of frequency band #4).
  • the second indication may indicate the switched carrier, for example, the switched carrier is carrier #11 (as mentioned above, in this case, the switched frequency band may be implicitly indicated to be frequency band #3).
  • each information block may also include field #2 (an example of the second field), which is used to indicate the time offset between the first information and its scheduled uplink data.
  • field #2 can be used to indicate K2' or K1'.
  • the network device can determine the uplink data scheduling for the terminal device (for example, determine K2') based on the switching delay between various states reported by the terminal device, so that after completing the state switching, the terminal device follows the instructions in field #2 Receive data on specific time slots or symbols. This can prevent the terminal device from receiving data before completing the switching between states, thereby improving the data transmission performance.
  • time offset may also be a “time slot offset” or a “symbol offset”, or may be a “time slot offset” and a “symbol offset”.
  • K2 is the delay in scheduling uplink data transmission (can also be called: data processing time or data preparation time)
  • K1 is the delay from scheduling the physical downlink shared channel (PDSCH) to the feedback physical uplink control channel (physical uplink control channel, PUCCH).
  • PDSCH physical downlink shared channel
  • PUCCH physical uplink control channel
  • K2' may be, for example, the existing K2 plus the phase-locked loop locking time.
  • K1' may be, for example, the existing K1 plus the phase-locked loop locking time.
  • K2' is greater than or equal to the time of three time slots or the time of four time slots.
  • a separate table can be defined for K2' (for example, the table of K2 in the existing agreement is recorded as the "first table”, and the table of K2' in this application can be recorded as the "second table”).
  • K2’ is different from the values listed in the existing K2 table.
  • the network device indicates K2’ to the terminal device, it needs the table index indication and the value indication of K2’. It can also be understood that the second form needs to be instructed at this time.
  • the value of K2’ can be added to the current K2 table.
  • the bits can be extended, in which case the table index indication is not needed.
  • each information block also contains at least one item of scheduling information such as modulation and coding strategy offset (MCS offset), transmission power control (TPC), etc., indicating the frequency band/carrier of the terminal device after switching. transmission rate on.
  • MCS offset modulation and coding strategy offset
  • TPC transmission power control
  • the network device may refer to the MCS information and TPC information of the current frequency band/carrier to indicate the MCS information and TPC information of the target frequency band/carrier after switching, etc.
  • the first information may not contain any scheduling information (such as MCS offset and TPC).
  • scheduling information such as MCS offset and TPC.
  • the first information needs to be used in conjunction with the DCI scheduled to transmit uplink data on the target frequency band/carrier to complete the uplink data transmission of the target frequency band/carrier.
  • the first information is only used to indicate which frequency band/carrier transmission is interrupted by the switching and the frequency band/carrier after the switching, and is not used for scheduling instructions.
  • each information block may correspond to the frequency band and/or carrier currently locked or parked by the phase-locked loop.
  • it can correspond to the number of the frequency band and/or carrier ("number” can also be understood as "index”) from low to high, or it can correspond to the number of the frequency band/carrier from high to low (wherein, Figure 3 Fields shown with dashed lines are optional).
  • the above-mentioned first information may be group common downlink control information (group common DCI) (that is, at this time, one or more terminals can determine the frequency band/carrier after switching based on the DCI), and the redundancy check of the DCI
  • group common DCI group common downlink control information
  • CRC cyclic redundancy check
  • PUSCH-switch-RNTI new physical uplink shared channel switching wireless network temporary identifier
  • the new physical uplink shared channel switching wireless network temporary identifier is configured by the network device through RRC signaling.
  • Step 203 The network device sends the first information to the terminal device.
  • network devices can send group common DCI to end devices.
  • Step 204 The terminal device receives the first information sent by the network device, and transmits uplink data on the switched frequency band/carrier according to the first information.
  • the first information received by the terminal equipment includes two information blocks.
  • the first information The block corresponds to band #18, and the second information block corresponds to band #20.
  • the first information block includes field #1, the first indication in field #1 indicates switching from the current frequency band (i.e., "indication on whether switch this band" is "1"), the second indication in field #1 Indicates that the switched frequency band is frequency band #16.
  • the second information block also includes field #1.
  • the first indication in field #1 indicates switching from the current frequency band
  • the second indication in field #1 indicates that the frequency band after switching is frequency band #18. That is, the terminal device may switch from frequency band #18 and frequency band #20 (for example, the fourth state) to frequency band #16 and frequency band #18 (for example, the fifth state).
  • the terminal device currently uses carrier #12 (e.g., implicit corresponding frequency band #3) in channel #1 and carrier #25 (e.g., implicit corresponding frequency band #7) in channel #2 to transmit uplink data.
  • the first information received by the terminal device includes two information blocks, the first information block corresponds to carrier #12, and the second information block corresponds to carrier #25.
  • the first information block includes field #1, the first indication in field #1 indicating switching from the current carrier (i.e., "indication on whether switch CC" is "1"), and the second indication in field #1 , indicating that the switched carrier is frequency band #13 (for example, implicitly corresponding to frequency band #4).
  • the second information block also includes field #1.
  • the first indication in field #1 indicates switching from the current carrier
  • the second indication in field #1 indicates that the carrier after switching is carrier #10 (for example, implicit corresponds to band #3). That is, the terminal device may switch from carrier #12 and carrier #25 (for example, the fourth state) to carrier #13 and carrier #10 (for example, the fifth state).
  • the terminal device can determine which frequency band and/or carrier needs to be interrupted through the first information and specify the frequency band and/or carrier after switching, thereby avoiding the problem of reconfiguring the frequency band corresponding to the channel of the terminal device and reducing the time required. extension.
  • field #2 may instruct the terminal device to send data on the third symbol of the second time slot. , that is, data can be transmitted using frequency band #16 and frequency band #18 starting from the third symbol of time slot #2.
  • the terminal device can determine which time slot or which symbols to use the switched frequency band/carrier to send uplink data through the first information, so that after completing the state switch, the terminal device can transmit uplink data at a specific time according to the instructions of field #2. receive data on the slot. This can prevent the terminal device from receiving data before completing the switching between states, thereby improving the data transmission performance.
  • Method 300 illustrates specific embodiment steps of the technical solution of this application from the perspective of interaction between terminal equipment and network equipment. The steps of method 300 are similar to the steps of method 200.
  • the specific flow diagram can be Refer to FIG. 2 for understanding, and the steps of the method 300 will be described below without repeated illustration.
  • Step 301 The terminal device sends sixth information to the network device.
  • the sixth information may include a correspondence between each channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by each channel.
  • the sixth information includes the switching correspondence between frequency bands when the terminal device switches between various states (for example, the first state and the second state).
  • the sixth information may include the switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • the sixth information includes the corresponding switching delay when the terminal device switches between various states (for example, the first state and the second state).
  • the terminal device can also report the switching delay required to switch from the default state or the fallback state to the new frequency band.
  • the terminal device can also report to retain the original status. That is, it will not go from the state where the network device schedules transmission to the fallback state, but will only continue to reside in the state indicated by the base station.
  • step 201 in method 200 for understanding, and details will not be described again here.
  • Step 302 The network device receives the sixth information sent by the terminal device, and determines the second information based on the sixth information.
  • the second information includes at least one information block (for example, M information blocks, M is an integer greater than 0.), each information block is associated with a band pair of the terminal device, wherein, the The frequency band pair includes the frequency band before the terminal device is switched and the frequency band after the terminal device is switched.
  • This "frequency band pair" can be understood as ⁇ the frequency band before switching (switch from band)—switched frequency band (switch to band) ⁇ . It can also be understood that each information block is implicitly associated with the frequency band before the terminal device is switched and the frequency band after the switch.
  • a first information block may correspond to frequency band pair #1
  • a second information block may correspond to frequency band pair #2
  • a third information block may correspond to frequency band pair #3, and so on.
  • Table 3 shows the frequency band pairs when the terminal device supports three frequency bands.
  • each information block can implicitly correspond to the frequency band before switching and the frequency band after switching, and the terminal device can learn which frequency band needs to be interrupted and the frequency band after switching according to each information block.
  • Table 3 can be configured by the network device through RRC signaling, or it can be predefined.
  • each information block includes a 1-bit third indication, and the 1-bit third indication is used to indicate whether to trigger switching from the current frequency band pair (indication on whether switch this bandpair).
  • each information block may also include field #3 (an example of the third field), where field #3 is used to indicate the carrier after switching.
  • field #3 is used to indicate the carrier after switching.
  • the index of the switched carrier may be indicated (e.g., switch to CC index).
  • the first information block corresponds to frequency band pair #1
  • field #3 may further indicate that the switched carrier is carrier #1 on frequency band #B
  • the second information block corresponds to frequency band pair #2
  • field #3 on the second information block may further indicate that the switched carrier is carrier #4 on frequency band #C, and so on.
  • each information block also includes field #2 (an example of the second field), which is used to indicate the time offset between the first information and its scheduled uplink data.
  • field #2 an example of the second field
  • field #2 please refer to the description in step 202 of method 200, which will not be described again here.
  • each information block also contains at least one item of scheduling information such as modulation and coding strategy offset (MCS offset), transmission power control (TPC), etc., indicating the frequency band/carrier of the terminal device after switching. transmission rate on.
  • MCS offset modulation and coding strategy offset
  • TPC transmission power control
  • the network device may refer to the MCS information and TPC information of the current frequency band/carrier to indicate the MCS information and TPC information of the target frequency band/carrier after switching, etc.
  • each information block does not contain any scheduling information (such as MCS offset and TPC).
  • scheduling DCI of the target frequency band/carrier needs to be combined. That is, the second information needs to be used in conjunction with the DCI scheduled to transmit uplink data on the target frequency band/carrier to complete the uplink data transmission of the target frequency band/carrier. It can also be understood that at this time, the second information is only used to indicate which frequency band/carrier transmission is interrupted by the switching and the frequency band/carrier after the switching, and is not used for scheduling instructions.
  • each information block can correspond to a frequency band pair.
  • number can also be understood as “index”
  • index corresponds in order from low to high, or may correspond to the number of the frequency band pair in order from high to low.
  • the above-mentioned second information may be group common downlink control information (group common DCI), and the CRC of the DCI may be wrapped by a new physical uplink shared channel switching radio network temporary identifier (PUSCH-switch-RNTI).
  • group common DCI group common downlink control information
  • PUSCH-switch-RNTI new physical uplink shared channel switching radio network temporary identifier
  • Step 303 The network device sends the second information to the terminal device.
  • network devices can send group common DCI to end devices.
  • Step 304 The terminal device receives the second information sent by the network device, and transmits uplink data on the switched frequency band according to the second information.
  • the terminal device receives the second information.
  • the second information includes two information blocks.
  • the first information block corresponds to frequency band pair #1.
  • frequency band pair #1 indicates that the frequency band before switching is frequency band #18 and the frequency band after switching is frequency band #. 16.
  • the terminal device determines to switch from frequency band #18 to frequency band #16.
  • the second information block corresponds to frequency band pair #2, and frequency band pair #2 indicates that the frequency band before switching is frequency band #20, and the frequency band after switching is frequency band #18.
  • the third indication of 1 bit in the second information block (indication on whether switch this band pair) is 1, then the terminal device determines to switch from frequency band #20 to frequency band #18. That is, the terminal device may switch from frequency band #18 and frequency band #20 (for example, the fourth state) to frequency band #16 and frequency band #18 (for example, the fifth state).
  • field #3 indicates that the carrier switched by the terminal device is carrier #1. That is, the terminal device may determine to transmit uplink data on carrier #1 on the switched frequency band #16.
  • the second information block includes field #3, and field #3 indicates that the carrier after the terminal device switches is carrier #3. That is, the terminal device may determine to transmit uplink data on carrier #3 on the switched frequency band #18.
  • the terminal device can determine which frequency band needs to be interrupted and specify the frequency band or carrier after switching through the second information, thereby avoiding the problem of reconfiguring the frequency band corresponding to the channel of the terminal device and reducing the delay.
  • field #2 may instruct the terminal device to send data on the third symbol of the second time slot. , that is, data can be transmitted using frequency band #16 and frequency band #18 starting from the third symbol of time slot #2.
  • the terminal device can determine which time slot or which symbols to use the switched frequency band/carrier to send uplink data through the second information, so that after completing the state switch, the terminal device can transmit uplink data at a specific time according to the instructions of field #2. receive data on the slot. This can prevent the terminal device from receiving data before completing the switching between states, thereby improving the data transmission performance.
  • Method 400 illustrates specific embodiment steps of the technical solution of this application from the perspective of interaction between terminal equipment and network equipment. The steps of method 400 are similar to the steps of method 200.
  • the specific flow diagram can be For understanding, refer to FIG. 2 and the steps of the method 400 will be described below without repeated illustration.
  • Step 401 The terminal device sends sixth information to the network device.
  • the sixth information may include a correspondence between each channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by each channel.
  • the sixth information includes the status of the terminal device in each state (for example, the first state and When switching between the second state), the switching correspondence between frequency bands.
  • the sixth information includes the corresponding switching delay when the terminal device switches between various states (for example, the first state and the second state).
  • the sixth information may include the switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • the terminal device can also report the switching delay required to switch from the default state or the fallback state to the new frequency band.
  • the terminal device can also report to retain the original status. That is, it will not go from the state where the network device schedules transmission to the fallback state, but will only continue to reside in the state indicated by the base station.
  • step 201 in the method 200 for understanding which will not be described again here.
  • Step 402 The network device receives the sixth information sent by the terminal device, and determines the third information based on the sixth information.
  • the third information includes field #1 (an example of the first field).
  • Field #1 (for example, "switch from band/CC index") is used to indicate the frequency band and/or carrier after the terminal device switches.
  • field #1 indicates that the frequency band switched by the terminal device is frequency band #10.
  • field #1 indicates that the carrier after switching by the terminal device is carrier #17 (at this time, the frequency band after switching can be implicitly determined based on the carrier.
  • field #1 may explicitly indicate the switched frequency band and implicitly associate with the switched carrier.
  • field #1 indicates that the switched frequency band of the terminal device is frequency band #10, and the default association switched carrier is carrier #4 on frequency band #10, and so on.
  • the third information also includes field #8 ("switch to band/CC") used to indicate the frequency band and/or carrier after switching (for example, field #8 can be used to indicate the frequency band after switching). and/or carrier ("switchto band/CC index”)).
  • switch to band/CC used to indicate the frequency band and/or carrier after switching
  • carrier for example, carrier can be used to indicate the frequency band after switching
  • switchto band/CC index used to indicate the frequency band after switching
  • switchto band/CC index carrier
  • the specific implementation method can be understood with reference to the implementation of the above field #1 indicating the frequency band before the terminal device switches, and will not be described again here.
  • the frequency band and/or carrier before switching may be determined by the terminal device based on preset rules.
  • the preset rule is: start interrupting transmission from the frequency band and/or carrier where the terminal device is located according to the lowest index in the corresponding index; or, start interrupting transmission from the frequency band and/or carrier where the terminal device is located according to the highest index in the corresponding index. transmission.
  • the preset rule is: sort the frequency band and/or carrier where the terminal equipment is located in ascending order according to the corresponding index, starting from the lowest, and select interrupt transmission in sequence; or, start from the frequency band and/or carrier where the terminal equipment is located, according to the corresponding index.
  • the corresponding indexes are arranged in descending order, starting from the highest, and are selected for interrupt transmission.
  • switch from band can indicate the lower/higher frequency band currently resident through 0/1, or indicate the band index.
  • UL/SUL 1bit or padding bit can be reused.
  • switch to band index/CC index can also indicate the lower/higher one in the remaining frequency bands among the multiple configured frequency bands except the currently resident frequency band through 0/1, or indicate band index/CC index, You can also reuse UL/SUL 1bit or stuffing bit.
  • the corresponding relationship between switch from band/CC and switch to band/CC can be configured through RRC signaling, or it can be predefined, which can be understood by referring to Table 3 above.
  • the third information may indicate the value of the switching correspondence index in the configuration.
  • the carrier before switching (for example, switch from CC index) does not need to be explicitly indicated and can be implicitly known through the frequency band before switching (switch from band index). For example, it may be predetermined to switch from carrier #2 on frequency band #1, or to switch from carrier #1 on frequency band #2, and so on.
  • the carrier after switching (switch to CC index), for example, can be through the carrier indicator domain (carrier indicator) scheduled across carriers. field,CIF) indication.
  • the third information may also include field #2 (an example of the second field) used to indicate the time offset between the first information and its scheduled uplink data.
  • field #2 an example of the second field
  • the third information may also include field #4, which is used to indicate the position of the time offset.
  • field #4 can be used to indicate the second table in which the time offset is located (that is, a second table can be redesigned for K2'), or the field #4 can be used to indicate that the time offset is in The index or position in the first table (at this time, bits can be extended in the existing K2 table (denoted as "first table") to indicate K2').
  • the third information also includes at least one of scheduling information such as modulation and coding strategy offset (MCS offset), transmission power control (TPC), etc., indicating that the terminal equipment is on the frequency band/carrier after switching. transmission rate.
  • scheduling information such as modulation and coding strategy offset (MCS offset), transmission power control (TPC), etc.
  • MCS offset modulation and coding strategy offset
  • TPC transmission power control
  • the network device may refer to the MCS information and TPC information of the current frequency band/carrier to indicate the MCS information and TPC information of the target frequency band/carrier after switching, etc.
  • the third information does not include any scheduling information (such as MCS offset and TPC). In this case, it needs to be combined with the scheduling DCI of the target frequency band/carrier. That is, the second information needs to be used in conjunction with the DCI scheduled to transmit uplink data on the target frequency band/carrier to complete the uplink data transmission of the target frequency band/carrier. It can also be understood that at this time, the second information is only used to indicate which frequency band/carrier transmission is interrupted by the switching and the frequency band/carrier after the switching, and is not used for scheduling instructions.
  • Figure 5 shows fields that the third information may contain.
  • the above third information may be dynamically scheduled downlink control information (for example, DCI 0_1), and may be wrapped by the existing physical uplink shared channel switching radio network temporary identifier (PUSCH-switch-RNTI).
  • PUSCH-switch-RNTI physical uplink shared channel switching radio network temporary identifier
  • the second table needs to be indicated in the third information. This is because using the existing RNTI scrambling method, the terminal device cannot determine that the delay contained in it is the delay in the second table through this descrambling method. Therefore, it is necessary to The second form is clearly indicated.
  • the third information may also include multiple information blocks.
  • Each information block may include field #1 (that is, indicating the frequency band and/or carrier before switching), and each information block may also include a field #1.
  • #8 that is, indicating the frequency band and/or carrier after switching
  • MCS offset modulation and coding strategy offset
  • TPC transmission power control
  • each information block does not include any scheduling information.
  • the third information can be compressed downlink control information (compact DCI) (DCI 0_0), and can be scrambled by the new RNTI.
  • Step 403 The network device sends third information to the terminal device.
  • the network device can send dynamically scheduled DCI to the terminal device, or the network device can send compact DCI to the field device.
  • Step 404 The terminal device receives the third information sent by the network device, and transmits uplink data on the switched frequency band according to the third information.
  • the network device can send two third pieces of information at the same time, assuming that the terminal device currently uses frequency band #18 in channel #1 and uses frequency band #20 in channel #2. Assume that the first third information indicates that the frequency band before switching is frequency band #18 and that the frequency band after switching is frequency band #16. The second third information indicates that the frequency band before switching is frequency band #20 and that the frequency band after switching is frequency band #18. . Then the terminal device switches the frequency band in channel #1 to frequency band #16 according to the instruction of the third information, and switches the frequency band in channel #2 Switch the frequency band in to frequency band #18. That is, the terminal device may switch from frequency band #18 and frequency band #20 (for example, the fourth state) to frequency band #16 and frequency band #18 (for example, the fifth state).
  • the terminal device may switch from frequency band #18 and frequency band #20 (for example, the fourth state) to frequency band #16 and frequency band #18 (for example, the fifth state).
  • the third information also includes a location indication of K2', for example, the second table where K2' is located, and the terminal device can determine K2' based on the indication.
  • the terminal device can determine which frequency band needs to be interrupted and specify the frequency band or carrier after switching through the third information, thereby avoiding the problem of reconfiguring the frequency band corresponding to the channel of the terminal device and reducing the delay.
  • field #2 may instruct the terminal device to send data on the third symbol of the second time slot.
  • frequency band #16 and frequency band #18 can be used to transmit uplink data starting from the third symbol of time slot #2.
  • the terminal device can determine which time slot or which symbols to use the switched frequency band/carrier to send uplink data through the third information, so that after completing the status switch, the terminal device can transmit uplink data at a specific time according to the instructions of field #2. receive data on the slot. This can prevent the terminal device from receiving data before completing the switching between states, thereby improving the data transmission performance.
  • Method 500 illustrates specific embodiment steps of the technical solution of this application from the perspective of interaction between terminal equipment and network equipment. The steps of method 500 are similar to the steps of method 200.
  • the specific flow diagram can be Refer to FIG. 2 for understanding, and the steps of the method 500 will be described below without repeated illustration.
  • Step 501 The terminal device sends sixth information to the network device.
  • the sixth information may include a correspondence between each channel of the terminal device and a frequency band, and the frequency band is a frequency band supported by each channel.
  • the sixth information includes the switching correspondence between frequency bands when the terminal device switches between various states (for example, the first state and the second state).
  • the sixth information includes the corresponding switching delay when the terminal device switches between various states (for example, the first state and the second state).
  • the sixth information may include the switching correspondence between frequency bands when the terminal device switches from at least one first frequency band to at least one second frequency band.
  • the terminal device can also report the switching delay required to switch from the default state or the fallback state to the new frequency band.
  • the terminal device can also report to retain the original status. That is, it will not go from the state where the network device schedules transmission to the fallback state, but will only continue to reside in the state indicated by the base station.
  • step 201 in method 200 which will not be described again here.
  • Step 502 The network device receives the sixth information sent by the terminal device, and determines the fourth information based on the sixth information.
  • the fourth information includes field #5 (an example of the fifth field), and field #5 can be used to indicate the first frequency band after the terminal device switches.
  • the fourth information also includes field #6 (an example of the sixth field).
  • Field #6 is used to instruct the terminal device to receive fifth information.
  • the fifth information is used to instruct the terminal device to switch.
  • the fourth information may be dynamically scheduled DCI, and a new bit may be added to the existing DCI0_1 or DCI0_0.
  • the new bit occupies 1 bit.
  • Coordinatd scheduling can be understood as needing to wait for another DCI to be parsed before determining the corresponding channel transmission of the band/CC scheduled by the DCI, so that the terminal device can be based on Corresponding channel parameter configuration is performed based on the complete transmission combination status of the target time slot, thereby reducing reconfiguration problems caused by channel configuration errors. If the new bit is 0, it means that no other DCI for the same terminal device needs to be coordinated and scheduled in this time slot, so the corresponding channel parameters can be opened immediately for configuration.
  • the terminal device may determine the frequency band/carrier before switching and the frequency band/carrier after switching according to the instructions of the fourth information and the fifth information.
  • the fourth information can indicate that there are other DCIs to be detected in this time slot, so that after the terminal device obtains the first DCI, it needs to wait for the information of the second DCI, and determines whether it is based on the two DCIs.
  • the transmission combination status of the target time slot that is scheduled for transmission so there is no need to configure parameters on non-corresponding channels to avoid parameter reconfiguration problems.
  • the fourth information also includes field #7 (an example of the seventh field).
  • Field #7 is used to indicate the lag time for field #5 to take effect, wherein the network device can
  • the fifth information is received within the band, and the fifth information is used to indicate the second frequency band after the terminal device switches.
  • a time period can be the number of symbols or the number of time slots. For example, a time is three symbols, or a time slot.
  • lag time can also be understood as “time window”, “time period”, “switching duration”, or “time offset”.
  • the “delay time” may be preconfigured by the base station through RRC signaling.
  • the fourth information may be dynamically scheduled DCI, for example, a new bit may be added to the existing DCI0_1 or DCI0_0.
  • the new bit is used to indicate the starting time when the DCI takes effect.
  • the effective starting time means that the corresponding channel parameter configuration can only be performed from the effective starting time after receiving the DCI.
  • the effective starting time may be indicated by indexes of multiple time windows.
  • the time window can also be understood as the lag time or switching duration.
  • the time window may be pre-configured by the base station through RRC signaling.
  • the network device may send fifth information to the terminal device within the time window.
  • the terminal device may determine the frequency band/carrier before switching and the frequency band/carrier after switching according to the instructions of the fourth information and the fifth information.
  • the network device indicates through the fourth information the starting time to configure the channel parameters after parsing the DCI detected in this time slot, so that the terminal device does not need to rush to configure the channel parameters after obtaining the first DCI, and can
  • the second DCI is obtained before the starting time, and the transmission combination status of the target time slot scheduled for transmission is comprehensively determined based on the two DCIs. Therefore, there is no need to configure parameters on non-corresponding channels to avoid parameter reconfiguration problems. .
  • Step 503 The network device sends fourth information and fifth information to the terminal device.
  • the network device may send dynamically scheduled fourth information and fifth information to the terminal device.
  • Step 504 The terminal device receives the fourth information and the fifth information sent by the network device, and transmits uplink data on the switched frequency band according to the fourth information and the fifth information.
  • the end device is currently using band #18 in channel #1 and band #20 in channel #2.
  • the terminal equipment receives the fourth information on time slot #2.
  • the terminal equipment determines that the switched frequency band is frequency band #18 based on the fourth information, and determines that it needs to receive another fifth information on time slot #2. It needs to receive the fourth information based on the fourth information. Together with the fifth information, the frequency band after switching is determined.
  • the terminal device continues to receive the fifth information on time slot #2, and the fifth information indicates that the frequency band after the terminal device switches is frequency band #16. Assume that the end device supports band #18 and band #16 on channel #1 and band #20 and band #18 on channel #2.
  • the terminal device can determine based on the fourth information and the fifth information that channel #1 needs to be Switch band #18 on channel #2 to band #16 (e.g., fourth state), and switch band #20 on channel #2 to band #18 (e.g., fifth state).
  • the terminal equipment receives the fourth information on the first symbol of time slot #2.
  • the terminal equipment determines that the frequency band after switching is frequency band #18 based on the fourth information, and determines that the configuration needs to start on the tenth symbol of time slot #2. Parameters on channel #1.
  • the terminal device receives the fifth information between the second symbol and the ninth symbol of time slot #2, and the terminal device determines that the switched frequency band is frequency band #16 based on the fifth information.
  • the terminal device can determine based on the fourth information and the fifth information that it is necessary to switch frequency band #18 on channel #1 to frequency band #16 (for example, the fourth state), and to switch frequency band #20 on channel #2 to frequency band #18 (e.g., fifth state).
  • the terminal device can determine which frequency band needs to be interrupted and specify the frequency band or carrier after switching through the fourth information and the fifth information. This avoids the problem of reconfiguring the frequency band corresponding to the channel of the terminal device and reduces the time delay. Improved data transfer.
  • the fourth information or the fifth information also includes field #2.
  • the terminal device is currently receiving the fourth information on time slot #2, and the fourth information includes field #2.
  • Field #2 may indicate that the terminal device sends data on the third symbol of the third time slot, that is, the terminal device may send data on the third symbol of the third time slot.
  • the third symbol of slot #3 begins to use frequency band #16 and frequency band #18 to transmit data.
  • the terminal device is currently receiving the fifth information on time slot #2, and the fifth information includes field #2.
  • Field #2 may instruct the terminal device to send data on the third symbol of the third time slot, that is, it may be from The third symbol of time slot #3 starts transmitting data using frequency band #16 and frequency band #18.
  • the terminal device can determine which time slot or which symbols to use the switched frequency band/carrier to send uplink data through the fourth information or the fifth information, so that after completing the status switch, the terminal device follows the instructions in field #2 Receive data on a specific time slot. This can prevent the terminal device from receiving data before completing the switching between states, thereby improving the data transmission performance.
  • pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-firing.
  • each node such as a terminal device and a network device, includes a corresponding hardware structure and/or software module to perform each function.
  • each node such as a terminal device and a network device
  • each node includes a corresponding hardware structure and/or software module to perform each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the terminal device and the network device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module according to each function.
  • FIG. 6 is a schematic block diagram of a communication device 100 provided by an embodiment of the present application. As shown in the figure, the device 100 may include: a transceiver unit 110 and a processing unit 120.
  • the device 100 may be the terminal device in the above method embodiment, or may be a chip used to implement the functions of the terminal device in the above method embodiment. It should be understood that the device 100 may correspond to the terminal device in the methods 200 to 500 according to the embodiment of the present application, and the device 100 may perform steps corresponding to the terminal device in the methods 200 to 500 of the embodiment of the present application.
  • the transceiver unit is configured to receive first information
  • the processing unit is configured to control the transceiver unit to transmit uplink data on the switched frequency band and/or carrier according to the first information.
  • the transceiver unit is used to send sixth information.
  • the transceiver unit is configured to receive second information
  • the processing unit is configured to control the transceiver unit to transmit uplink data on the switched frequency band and/or carrier according to the second information.
  • the transceiver unit is configured to receive second information
  • the processing unit is configured to control the transceiver unit to transmit uplink data on the switched frequency band and/or carrier according to the second information.
  • the transceiver unit is configured to receive third information
  • the processing unit is configured to control the transceiver unit to transmit uplink data on the switched frequency band and/or carrier according to the third information.
  • the transceiver unit is configured to receive fourth information
  • the processing unit is configured to control the transceiver unit to receive fifth information according to the fourth information
  • the processing unit is configured to control the transceiver unit to receive fifth information according to the fourth information and
  • the fifth information transmits uplink data on the switched frequency band and/or carrier.
  • the device 100 may be the network device in the above method embodiment, or may be a chip used to implement the functions of the terminal device in the above method embodiment. It should be understood that the device 100 may correspond to the network device in the methods 200 to 500 according to the embodiment of the present application, and the device 100 may perform steps corresponding to the network devices in the method 200 to 500 of the embodiment of the present application.
  • the processing unit is used to determine the first information
  • the transceiver unit is used to send the first information
  • the processing unit is used to determine the second information
  • the transceiver unit is used to send the second information
  • the processing unit is used to determine the third information
  • the transceiver unit is used to send the third information
  • the processing unit is configured to determine the fourth information and the fifth information
  • the transceiving unit is configured to send the fourth information and the fifth information
  • the device 100 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the apparatus 100 can be specifically a terminal device or a network device in the above embodiments, and can be used to execute various processes corresponding to the terminal device in the above method embodiments and/or To avoid repetition, the steps will not be repeated here.
  • the apparatus 100 of each of the above solutions has the function of realizing the corresponding steps performed by the terminal device or the network device in the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 110 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 6 may be the terminal device or network device in the aforementioned embodiment, or it may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • Figure 7 is a schematic block diagram of a communication device 200 provided by an embodiment of the present application.
  • the device 200 includes: at least one processor 220.
  • the processor 220 is coupled to the memory and is used to execute instructions stored in the memory to send signals and/or receive signals.
  • the device 200 also includes a memory 230 for storing instructions.
  • the device 200 also includes a transceiver 210, and the processor 220 controls the transceiver 210 to send signals and/or receive signals.
  • processor 220 and the memory 230 can be combined into one processing device, and the processor 220 is used to execute the program code stored in the memory 230 to implement the above functions.
  • the memory 230 may also be integrated in the processor 220 or independent of the processor 220 .
  • the transceiver 210 may include a transceiver (or receiver) and a transmitter (or transmitter).
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the transceiver 210 may be a communication interface or an interface circuit.
  • the transceiver 210 in the device 200 may correspond to the transceiver unit 110 in the device 100
  • the processor 220 in the device 200 may correspond to the processing unit 120 in the device 200 .
  • the device 200 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the processor 220 is configured to execute computer programs or instructions stored in the memory 230 to implement related operations of the radio access network equipment in each of the above method embodiments.
  • the method is executed by the terminal device in any one of the embodiments shown in methods 200 to 500.
  • the apparatus 200 is used to implement the operations performed by the network device in each of the above method embodiments.
  • the processor 220 is used to execute computer programs or instructions stored in the memory 230 to implement the above methods.
  • the method is performed by the network device in any one of the embodiments shown in methods 200 to 500.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct ram-bus RAM direct ram-bus RAM
  • the present application also provides a computer program product.
  • the computer program product stores computer program code.
  • the computer program code When the computer program code is run on a computer, the computer is caused to execute methods 200 to 500.
  • the method is executed by a terminal device or a network device in any of the embodiments.
  • the present application also provides a computer-readable medium.
  • the computer-readable medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the steps in the above embodiment.
  • the present application also provides a communication system, which includes a terminal device and a network device.
  • the terminal device is used to perform the steps corresponding to the terminal device in the above methods 200 to 500
  • the network device is used to perform the steps corresponding to the network device in the above methods 200 to 500.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • transceiver performs the steps of receiving or sending in the method embodiment. Other steps except sending and receiving may be performed by the processing unit (processing unit). device) execution.
  • processing unit processing unit
  • device execution.
  • processors There can be one or more processors.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer software product is stored in a storage medium and includes a number of instructions to A computer device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • first and second mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or otherwise of multiple objects. importance, etc.
  • first PDSCH and the second PDSCH can be the same physical channel or different physical channels, and this name does not indicate the information size, content, priority or importance of the two physical channels. The degree is different.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • At least one item (item) or similar expressions thereof refers to one item (item) or multiple items (items), that is, any combination of these items (items), including any combination of single item (items) or plural items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c.
  • a corresponds to B means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法和装置,网络设备通过指示终端设备切换前的频段和/或载波,以及切换后的频段和/或载波,使得终端设备可以明确获知打断哪个频段和/或载波并且切换到目标频带和/或载波,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。

Description

通信方法和装置
本申请要求于2022年3月31日提交中国专利局、申请号为202210346423.3、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法和装置。
背景技术
目前,终端设备在各个状态之间进行切换时,可能会出现如下场景:例如,终端设备在时隙#1上发送射频链的状态为状态#1(例如,状态#1为通道#1上使用频段#A,通道#2上使用频段#2),在时隙#2上可能会接收到两个下行控制信息(downlink control information,DCI),指示终端设备切换到状态#2上时使用的频段(例如,DCI#1指示使用频段#A,DCI#2指示使用频段#C)。
由于终端设备不可能同时处理两个下行控制信息,例如,终端设备可能会先处理第一个下行控制信息,然后再处理第二控制信息。此时,终端设备可能会参照切换前的状态#1默认对应下行控制信息指示的频段。例如,终端设备在通道#1上仍然使用频段#A,在通道#2上使用频段#C,并且开始进行配置通道参数。然而,终端设备的通道#2可能不支持使用频段#C,此时,终端设备需要撤销之前配置的通道参数,并且重新配置通道参数,由此增加了终端设备的处理时延。因此,如何避免上述通道对应的频段重配置,减小终端设备的处理时延,成为亟待解决的问题。
发明内容
本申请实施例提供一种通信方法和装置,通过网络设备向终端设备指示切换前的频段和/或载波、切换后的频段和/或载波,使得终端设备可以明确获知打断哪个频段和/或载波并且切换到目标频带和/或载波,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。
第一方面,提供了一种通信方法,该方法可以由终端设备(例如,用户设备)执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:终端设备接收来自网络设备的第一信息,第一信息包括N个信息块,N个信息块包括第j个信息块,第j个信息块包括第一字段,第一字段用于指示所述终端设备切换后的频段和/或载波,第j个信息块与所述终端设备切换前的频段和/或载波相关联,所述N为正整数;终端设备根据第一信息,在切换后的频段和/或载波上传输上行数据。
应理解,本申请中“第j个信息块与所述终端设备切换前的频段和/或载波相关联”也可以理解为,网络设备可以通过RRC信令将N个信息块中每个信息块与频段和/或载波的对应关系配置给终端设备;或者N个信息中每个信息块与频段和/或载波的对应关系是预 定义的。例如,N个信息块的位置与N个切换前的频段和/或切换前载波的对应关系。
本申请中,“切换前的频段和/或载波”也可以理解为,终端设备当前正在使用的频段和/或频段,或者也可以理解为“源频段和/或载波”;“切换后的频段和/或载波”也可以理解为“目标频段和/或载波”。
本申请中,提到的各个“字段”可以用于指示各种内容,也可以理解为该字段中承载的信息(例如,比特)用于指示相应的内容。本申请中的“字段”,也可以理解为“标识信息”。
换句话说,上述技术方案,也可以理解为,终端设备接收来自网络设备的第一信息,该第一信息包括N个信息块,该终端设备从N个信息块中确定第一信息块,该第一信息块中包括第一标识,所述第一标识用于指示目标频段和/或载波,终端设备根据第一信息块在N个信息块中的位置确定源频段和/或载波,终端设备将源频段和/或载波切换到目标频段和/或载波。
基于上述技术方案,本申请中,通过第一信息中的每个信息块可以隐性关联终端设备切换前的频段和/或载波,并且可以通过每个信息块中的第一字段指示切换后的频段和/或载波,使得终端设备明确打断哪个频段/载波并且切换到目标频带/载波,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。
在一种可能的实现方式中,所述第j个信息块还包括第二字段,所述第二字段用于指示所述第一信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段和/或载波上传输。
本申请中,该“时间偏移量”还可以是时隙偏移量或者符号偏移量,也可以是时隙偏移量和符号偏移量。
本申请中,该“上行数据”也可以理解为,该上行数据位于切换后的频段和/或载波。即,所述终端设备可以在所述切换后的频段和/或载波传输所述上行数据。
基于上述技术方案,本申请中,终端设备通过第一信息可以确定在哪个时隙或者哪些符号上使用切换后的频段/载波发送上行数据,使得终端设备在完成状态切换之后,按照第二字段的指示在特定的时隙上接收数据。可以避免终端设备还没有完成状态之间的切换就接收数据,提高了数据传输性能。
在一种可能的实现方式中,该方法还包括:所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第一信息,其中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
本申请中,该“第一频段组上的频段”也可以理解为至少一个第一频段,该“第二频 段组上的频段”也可以理解为至少一个第二频段。此时,第一状态可以理解为,终端设备在至少一个第一频段上支持第一数量的发送射频链,第二状态可以理解为,终端设备在至少一个第二频段上支持第二数量的发送射频链。
本申请中,终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系,可以理解为,终端设备从第一个第一频段到第一个第二频段之间的切换。具体的,可以理解为:从第一个第一频段到第一个第二频段的对应切换,或者,从第二个第一频段到第二个第二频段的对应切换,等等。
本申请中,终端设备上报第一状态与第二状态之间的切换时延,也可以理解为,终端设备可以在第一状态与第二状态之间进行切换,即隐性指示了第一状态与第二状态之间的切换对应关系。
基于上述技术方案,本申请中,终端设备可以向网络设备上报每个通道支持的频段,或者各个状态之间进行切换时对应的频段之间的切换对应关系,从而可以使得网络设备明确指示终端设备应该从哪个频段切换到目标频段,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。并且终端设备还可以上报各个状态之间进行切换时需要的切换时延,使得网络设备可以确定调度的上行数据。
第二方面,提供了一种通信方法,该方法可以由终端设备(例如,用户设备)执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:终端设备接收来自网络设备的第二信息,所述第二信息包括M个信息块,所述M个信息块中的第k个信息块与所述终端设备的频段对相关联,其中,所述频段对包括所述终端设备切换前的频段以及所述终端设备切换后的频段,所述M为正整数;所述终端设备根据所述第二信息,在所述切换后的频段上传输上行数据。
上述技术方案,也可以理解为,终端设备接收来自网络设备的第二信息,该第二信息包括M个信息块,该终端设备从M个信息块中确定第一信息块,终端设备根据第一信息块在M个信息块中的位置确定频段对,终端设备根据确定的频段对,将源频段切换到目标频段。例如,M个信息中的每个信息块可以对应一个频段对的索引。例如,第一个信息块对应频段对#1,第二个信息块对应频段对#2,等等。其中,频段对和M个信息中每个信息块的对应关系可以是网络设备通过RRC信令发送给终端设备的,或者可以是预定义的。例如,网络设备可以将M个信息中每个信息块的位置与频段对的对应关系通过RRC信令配置给终端设备。
基于上述技术方案,本申请中,通过第二信息中的每个信息块可以隐性关联频段对,即切换前的频段以及切换后的频段,使得终端设备明确打断哪个频段/载波并且切换到目标频带/载波,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。
在一种可能的实现方式中,所述第k个信息块还包括第三字段,所述第三字段用于指示所述终端设备切换后的载波。
基于上述技术方案,本申请中,第二信息中的每个信息块还可以指示切换后的载波。即,终端设备可以明确切换到哪个频段的载波上,减少了终端设备的处理时延,提高数据传输性能。
在一种可能的实现方式中,所述第k个信息块包括第二字段,所述第二字段用于指示 所述第二信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段或载波上传输。
基于上述技术方案,本申请中,终端设备通过第二信息可以确定在哪个时隙或者哪些符号上使用切换后的频段/载波发送上行数据,使得终端设备在完成状态切换之后,按照第二字段的指示在特定的时隙上接收数据。可以避免终端设备还没有完成状态之间的切换就接收数据,提高了数据传输性能。
在一种可能的实现方式中,所述方法还包括:所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第二信息,其中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
基于上述技术方案,本申请中,终端设备可以向网络设备上报每个通道支持的频段,或者各个状态之间进行切换时对应的频段之间的切换对应关系,从而可以使得网络设备明确指示终端设备应该从哪个频段切换到目标频段,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。并且终端设备还可以上报各个状态之间进行切换时需要的切换时延,使得网络设备可以确定调度的上行数据。
第三方面,提供了一种通信方法,该方法可以由终端设备(例如,用户设备)执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:终端设备接收来自网络设备的第三信息,所述第三信息包括第一字段,所述第一字段用于指示所述终端设备切换后的频段和/或载波,其中,切换前的频段和/或载波为所述终端设备根据预设的规则确定的,或者,切换前的频段和/或载波为网络设备指示的;所述终端设备根据所述第三信息,在所述切换后的频段和/或载波上传输所述数据。
基于上述技术方案,本申请中,第三信息可以明确指示切换后的频段和/或载波,并且可以显性或者隐性的指示切换前的频段和/或载波,使得终端设备明确打断哪个频段/载波并且切换到目标频带/载波,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。
在一种可能的实现方式中,所述第三信息还包括第二字段,所述第二字段用于指示所述第三信息与其调度的上行数据之间的时间偏移量,所述数据用于在所述切换后的频段和/或载波上进行传输。
基于上述技术方案,本申请中,终端设备通过第三信息可以确定在哪个时隙或者哪些符号上使用切换后的频段/载波发送上行数据,使得终端设备在完成状态切换之后,按照第二字段的指示在特定的时隙上接收数据。可以避免终端设备还没有完成状态之间的切换 就接收数据,提高了数据传输性能。
在一种可能的实现方式中,所述第三信息还包括第四字段,所述第四字段用于指示所述时间偏移量所在的第二表格,或者,所述第四字段用于指示所述时间偏移量在第一表格中的索引或位置。
基于上述技术方案,本申请中,网络设备可以指示时间偏移量的位置,终端设备可以基于网络设备的指示确定发送数据的时隙。
在一种可能的实现方式中,所述方法还包括:所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第二信息,其中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
基于上述技术方案,本申请中,终端设备可以向网络设备上报每个通道支持的频段,或者各个状态之间进行切换时对应的频段之间的切换对应关系,从而可以使得网络设备明确指示终端设备应该从哪个频段切换到目标频段,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。
第四方面,提供了一种通信方法,该方法可以由终端设备(例如,用户设备)执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:终端设备接收来自网络设备的第四信息,所述第四信息包括第五字段,所述第五字段用于指示所述终端设备切换后的第一频段,所述第四信息还包括第六字段,所述第六字段用于指示所述终端设备接收第五信息,所述第五信息用于指示所述终端设备切换后的第二频段;所述终端设备根据所述第四信息和所述第五信息,在切换后的频段上传输上行数据;或者,所述第四信息还包括第七字段,所述第七字段用于指示所述第五字段生效的滞后时间,所述终端设备根据所述第四信息,在切换后的频段上传输上行数据。
本申请中,“滞后时间”也可以理解为“时间窗”、“时间段”或者“时间偏移量”。
基于上述技术方案,本申请中,网络设备可以指示终端设备接收到第四消息后需要等待第五信息,根据第四信息和第五信息共同确定切换前的频段以及切换后的频段。或者,第四信息中指示的切换后的第一频段存在一个生效滞后时间,即终端设备接收到第四信息后不会立即进行参数配置,在终端设备等待的期间,网络设备还会发送第五信息,最终终端设备可以基于第四信息和第五信息共同确定切换前的频段以及切换后的频段。使得终端设备明确打断哪个频段/载波并且切换到目标频带/载波,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。
在一种可能的实现方式中,在一种可能的实现方式中,所述方法还包括:所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第二信息,其 中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
基于上述技术方案,本申请中,终端设备可以向网络设备上报每个通道支持的频段,或者各个状态之间进行切换时对应的频段之间的切换对应关系,从而可以使得网络设备明确指示终端设备应该从哪个频段切换到目标频段,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。并且终端设备还可以上报各个状态之间进行切换时需要的切换时延,使得网络设备可以确定调度的上行数据。
第五方面,提供了一种通信方法,该方法可以由网络设备(例如,基站)执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。
其中,网络侧技术方案对应的有益效果以及装置对应的有益效果可以参照终端侧的有益效果的描述,此处不再赘述。
该方法包括:网络设备确定第一信息,所述第一信息包括N个信息块,所述N个信息块中的第j个信息块包括第一字段,所述第一字段用于指示终端设备切换后的频段和/或载波,所述第j个信息块与所述终端设备切换前的频段和/或载波相关联,所述N为正整数;所述网络设备向所述终端设备发送第一信息。
在一种可能的实现方式中,所述第j个信息块还包括第二字段,所述第二字段用于指示所述第一信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段和/或载波上传输。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第一信息,其中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
第六方面,提供了一种通信方法,该方法可以由网络设备(例如,基站)执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:网络设备确定第二信息,所述第二信息包括M个信息块,所述M个信 息块中的第k个信息块与终端设备的频段对相关联,其中,所述频段对包括所述终端设备切换前的频段以及所述终端设备切换后的频段,所述M为正整数;所述网络设备向所述终端设备发送所述第二信息。
在一种可能的实现方式中,所述第k个信息块还包括第三字段,所述第三字段用于指示所述终端设备切换后的载波。
在一种可能的实现方式中,所述第k个信息块包括第二字段,所述第二字段用于指示所述第二信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段或载波上传输。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第二信息,其中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
第七方面,提供了一种通信方法,该方法可以由网络设备(例如,基站)执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:网络设备确定的第三信息,所述第三信息包括第一字段,所述第一字段用于指示终端设备切换后的频段和/或载波,其中,切换前的频段和/或载波为所述终端设备根据预设的规则确定的,或者,切换前的频段和/或载波为网络设备指示的;所述网络设备向所述终端设备发送所述第三信息。
在一种可能的实现方式中,所述第三信息还包括第二字段,所述第二字段用于指示所述第三信息与其调度的上行数据之间的时间偏移量,所述数据用于在所述切换后的频段和/或载波上进行传输。
在一种可能的实现方式中,所述第三信息还包括第四字段,所述第四字段用于指示所述时间偏移量所在的第二表格,或者,所述第四字段用于指示所述时间偏移量在第一表格中的索引或位置。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第三信息,其中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量 的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
第八方面,提供了一种通信方法,该方法可以由网络设备(例如,基站)执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法包括:网络设备确定第四信息,所述第四信息包括第五字段,所述第五字段用于指示所述终端设备切换后的第一频段,所述第四信息还包括第六字段,所述第六字段用于指示终端设备接收第五信息,所述第五信息用于指示所述终端设备切换后的第二频段;或者,所述第四信息还包括第七字段,所述第七字段用于指示所述第五字段生效的滞后时间,其中,终端设备在所述时间段内接收第五信息,所述第五信息用于指示所述终端设备切换后的第二频段;所述网络设备向所述终端设备发送所述第四信息和所述第五信息。
在一种可能的实现方式中,所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第四信息,其中,所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
第九方面,提供了一种通信装置,该装置用于执行上述第一方面至第四方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第四方面任一种可能实现方式中的方法的单元和/或模块,如收发单元和/或处理单元。
在一种实现方式中,该装置为终端设备。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于终端设备的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十方面,提供了一种通信装置,该装置用于执行上述第五方面至第八方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第五方面至第八方面任一种可能实现方式中的方法的单元和/或模块,如收发单元和/或处理单元。
在一种实现方式中,该装置为网络设备。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于网络设备的芯片、芯片系统或电路。当该装置为 用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十一方面,提供了一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第四方面中任一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为终端设备。
在另一种实现方式中,该装置为用于终端设备的芯片、芯片系统或电路。
第十二方面,提供了一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第五方面至第八方面任一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为网络设备。
在另一种实现方式中,该装置为用于网络设备的芯片、芯片系统或电路。
第十三方面,本申请提供一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第八方面中任一方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于收发器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十四方面,提供了一种处理设备,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过收发器接收信号,通过发射器发射信号,以执行第一方面至第八方面中任一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自收发器。其中,发射器和收发器可以统称为 收发器。
上述第十四方面中的处理设备可以是一个或多个芯片。该处理设备中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十五方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第八方面任一种可能实现方式中的方法。
第十六方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第八方面任一种可能实现方式中的方法。
第十七方面,提供一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统的设备执行上述第一方面至第八方面中任一方面中各实现方式中的方法。
第十八方面,提供一种通信系统,该通信系统包括所述终端设备和所述网络设备。所述终端设备用于执行上述第一方面至第四方面中任一方面中的任一种可能实现方法,所述网络设备用于执行上述第五方面至第八方面中任一方面中的任一种可能实现的方法。
附图说明
图1是本申请适用的一种场景示意图。
图2是本申请提供的通信方法200的示意性流程图。
图3是本申请提供的第一信息中的信息块的示意图。
图4是本申请提供的第二信息中的信息块的示意图。
图5是本申请提供的第三信息的示意图。
图6是本申请提供的通信装置100的示意性框图。
图7是本申请提供的通信装置200的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例可应用的无线通信系统包括但不限于:全球移动通信(global system of mobile communication,GSM)系统、长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、LTE系统、先进的长期演进(LTE-Advanced,LTE-A)系统、下一代通信系统(例如,6G通信系统)、多种接入系统的融合系统,或演进系统。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle  to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的接入终端、移动设备、用户终端或用户装置。例如,终端设备可以为用户设备(user equipment,UE),例如,手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备等。终端设备也可是工业控制(industrial control)中的无线终端、机器类型通信(machine type communication,MTC)终端、客户终端设备(customer premise equipment,CPE)、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
本申请实施例中所涉及到网络设备(例如,无线接入网设备)可以是终端设备通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)、宏基站或微基站、高频基站等。该无线接入网设备还可以为NR系统中的下一代基站(next generation node B,gNB),或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
应理解,图1示出的场景仅仅是本申请技术方案使用的一种场景示例,本申请并不排除在其它场景中也需要终端设备在多个频带之间进行切换,也就是说,本申请的技术方案可以应用于各种终端设备需要在多个频带之间进行切换的场景。
5G新空口(new radio,NR)系统中,网络设备(例如,基站)发射功率很大可以将无线电波传送到很远的距离。但是,终端设备发射功率很小,上行覆盖受限,因此上行传输的信号在到达网络设备时的接收信号强度可能不足以保证其覆盖性能。此外,还会出现上行频谱不够的问题,因此不可能依赖对数据的重传来保证其上行覆盖性能。
图1是本申请技术方案适用的一种场景示意图,如图1所示,目前NR引入增补上行(supplementary uplink,SUL)作为NR系统中上行覆盖不足时的备选。由于长期演进(long term evolution,LTE)的低频带通常具有更好的覆盖性能,SUL考虑的是从LTE所在较低频带(例如,700MHz、1.8GHz或2.1GHz)中使用载波用于NR上行链路的传输。目前已经确定终端设备在使用LTE频带进行NR传输时可与LTE上行链路时分双工(time  division duplex,TDD)复用该频带。也就是说,当终端设备处于TDD中频带(2.6GHz、3.5GHz或4.9GHz)覆盖范围时,终端设备使用TDD中频带;当终端设备移动到TDD中频带(2.6GHz、3.5GHz或4.9GHz)覆盖范围之外时,终端设备在上行链路中可以采用LTE的低频带,这就增补了TDD中频带的上行覆盖短板,延伸了上行覆盖范围。当然,随着未来演进,终端设备在上行链路中也可以采用别的频带用作增补上行,进一步延伸上行覆盖范围。
也可以理解为,当终端设备在NR频带(band)(例如,2.6GHz)上传输上行数据时,可以从LTE所在较低频带(例如,700MHz/800MHz/900MHz、1.8GHz或2.1GHz)中使用载波用于NR上行传输,该载波可以理解为SUL频带。也就是说,在SUL的场景中,期望终端设备根据信道状态或者根据对应频带的负载状况,可以在700M/800M/900M、1.8G、2.1G、3.5G或4.9GHz等的多个频带之间进行动态切换。
为了便于理解本申请的技术方案,下面对本申请涉及到的几个专业术语进行简单的说明。
锁相环(phase locked loop,PLL)的切换时延:通常来说,锁相环重新锁定在一个频带上需要约300微秒。具体来说,一个频带的锁相环关了,重新锁到其他的频带上,或者开启一个新的锁相环,都需要这样的切换时延。
发射通道(transmitter,TX):可以称为“射频(radio frequency,RF)发射通道”,也可以简称为“发射通道”。在本申请中,发射通道可以是按照如下方式工作的,但不仅限于如下方式:发射通道可接收来自基带芯片的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。例如,发射通道可以包括天线开关、天线调谐器、低噪声放大器(low noise amplifier,LNA)、功率放大器(power amplifier,PA)、混频器(mixer)、本地振荡器(local oscillator,LO)和滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是发射通道的一部分。
本申请的下述实施例中提及的“通道”也可以理解为“射频链”。本申请中射频链也可以替换为TX、天线、射频、发射通道、发送端口、接收通道或者它们的任意组合,以下不再赘述。
应理解,本申请实施例中提到的“频段”(band)也可以理解为,“频带”、“频点”“频谱”。也可以将本申请中的“频带”理解为分量载波(component carrier,CC)(也可以简称为“载波”),即本申请的技术方案对“载波”也是完全适用的。本申请的下述实施例中主要是以“频段”为例进行描述的。
本申请中,发送射频链也可以理解为“发送”、“能发送”、“传输”或者“能传输”。相应的,发送射频链的数量可以理解为“发送的数量”、“能发送的数量”、“传输的数量”或者“能传输的数量”。发送射频链的数量还可以理解为“层数”、“天线层数”或“通道数”。
本申请实施例中提到的“切换”(switch)也可以理解为“转换”;本申请实施例提到的“切换时延”,也可以理解为“载波切换时延”、“载波转换时延”、“载波转换周期(period或interval)”或“转换间隔(gap)”;本申请实施例提到的“切换时延”,还可以称之为“载波切换准备时间中的切换时间(switching time)”或者“切换准备提前 量中的切换时间(switching time)”。对应的,网络设备在进行上行调度时,会根据切换时延,进行相应的调度处理,具体可以理解为设置N2(N2可以理解为,上行处理时延或上行准备时延),以下不再赘述。
终端设备的各个通道支持的频段不完全相同,例如通道#1可能支持频段#A、频段#C,通道#2可能支持频段#A、频段#B。终端设备在各个状态之间进行切换时,可能会出现如下场景:例如,终端设备在时隙#1上发送射频链的状态为状态#1(例如,状态#1为通道#1上使用频段#A,通道#2上使用频段#2),在时隙#2上可能会接收到两个下行控制信息(downlink control information,DCI),指示终端设备切换到状态#2上时使用的频段。例如,DCI#1指示使用频段#A,DCI#2指示使用频段#C。由于终端设备不可能同时处理两个下行控制信息,例如,终端设备可能会先处理第一个下行控制信息,然后再处理第二控制信息。此时,终端设备可能会参照切换前的状态#1默认对应下行控制信息指示的频段。例如,终端设备在通道#1上仍然使用频段#A,在通道#2上使用频段#C,并且开始进行配置通道参数。然而,终端设备的通道#2可能不支持使用频段#C,此时,终端设备需要撤销之前配置的通道参数,并且重新配置通道参数,由此增加了终端设备的处理时延。应理解上述场景仅仅是本申请的一个示例,终端设备在各个状态之间进行切换时,此类的场景还有很多,此处不再一一举例分析。
有鉴于此,本申请提供一种通信方法,通过网络设备向终端设备指示切换前的频段和/或载波、切换后的频段和/或载波,使得终端设备可以明确获知打断哪个频段/载波并且切换到目标频带/载波,避免了终端设备的通道对应的频段重配置的问题,减少了终端设备的处理时延,提高数据传输性能。
需要说明的是,本申请中提及到的“关联”、“对应”、“隐性对应”之间可以互相替换。本申请中提到的“根据”均可以理解为“基于”。
本申请提到的“对应关系”、“关联关系”等都可以是网络设备通过无线资源控制(radio resource control,RRC)信令向终端设备配置的,或者可以理解为是预定的规则。
图2是是本申请提供的通信方法200,方法200从终端设备与网络设备交互的角度示例了本申请技术方案的具体实施例步骤,下面对图2所示的各步骤进行说明。
步骤201,终端设备向网络设备发送第六信息。
在一种可能的实现方式中,第六信息可以包括终端设备的各个通道与频段的对应关系,该频段为各个通道支持的频段。例如,每个通道支持在两个频段上传输;又例如,每个通道支持在三个频段上传输,等等,本申请对通道的个数不予限定,对每个通道支持的频段数量也不予限定。
作为一个示例,终端设备可以上报通道#1支持频段#A、频段#C,通道#2支持频段#A、频段#B。又例如,终端设备可以上报通道#1支持频段#A、频段#D,通道#2支持频段#A、频段#B,通道#3支持频段#B、频段#C,通道#4支持频段#A、频段#C,等等。
本申请中,各个通道支持的频段,可以理解为各个通道支持在该频段上的数据传输。
在另一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与第二状态)之间进行切换时,频段之间的切换对应关系。例如,第一状态为终端设备在第一频段组上的频段支持第一数量的发送射频链,第二状态为终端设备在第二频段组上的频段支持第二数量的发送射频链。
本申请中,该“第一频段组上的频段”也可以理解为至少一个第一频段,该“第二频段组上的频段”也可以理解为至少一个第二频段。此时,第一状态可以理解为,终端设备在至少一个第一频段上支持第一数量的发送射频链,第二状态可以理解为,终端设备在至少一个第二频段上支持第二数量的发送射频链。
假设终端设备的通道#1支持频段#A、频段#C,通道#2支持频段#A、频段#B。作为一个示例,假设状态#4(第一状态的示例)为终端设备在通道#1上使用频段#A(第一频段的示例)发送一个射频链(“射频链”也可记为“TX”),在通道#2上使用频段#B(第二频段的一个示例)发送一个射频链,状态#5(第二状态的示例)为终端设备在通道#1上使用频段#C(第一频段的另一个示例)发送一个射频链,在通道#2上使用频段#A(第二频段的另一个示例)发送一个射频链。则终端设备可以向网络设备上报通道#1上从频段#A切换到频段#C,通道#2上从频段#B切换到频段#A。例如,表格1所示。
表格1
作为另一个示例,假设状态#1(第一状态的示例)为终端在通道#2上使用频段#B(例如,通道#2上有两个发送射频链),状态#4(第二状态的示例)为终端设备在通道#1上使用频段#A发送一个射频链,在通道#2上使用频段#B发送一个射频链。则终端设备可以向网络设备上报通道#2上从频段#B切换到频段#B(此时,也可以理解为,不用切换),通道#1上使用的频段切换到频段#A(可以理解为,在切换前通道#1上还没有发送射频链)。例如,表格2所示。
表格2
在又一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与第二状态)之间进行切换时,对应的切换时延。
作为一个示例,例如,终端设备可以上状态#4和状态#5之间进行切换需要的切换时延#1。切换时延#1可以是38微秒、140微秒、210微秒、280微秒、500微秒或者1毫秒,等等。又例如,终端设备可以上报状态#1和状态#5之间进行切换需要的切换时延#2。切换时延#2可以是38微秒、140微秒、280微秒、210微秒、280微秒、500微秒或者1毫秒,等等。当终端设备上报状态#1和状态#5之间进行切换需要的切换时延#2时,也可以理解为,隐含地指示了状态#1和状态#5之间的对应切换关系,即状态#1和状态#5之间能进行对应的切换。
在另一种可能的实现方式中,第六信息可以包括终端设备从至少一个第一频段切换到 至少一个第二频段时,频段之间的切换对应关系。
作为一个示例,终端设备可以上报从第一个第一频段切换到第一个第二频段,和/或,从第二个第一频段切换到第二个第二频段。参见表格1,例如,终端设备可以上报从频段#A切换到频段#C,从频段#B切换到频段#A。
在又一种可能的实现方式中,终端设备还可以上报从缺省状态或者回退状态切换到新的频带所需要的切换时延。此时,考虑到终端设备通过当前频段下完成传输后,还可以回退到缺省状态/回退状态所对应的频带下。例如,该切换时延可以为35微秒。回退到缺省状态/回退状态所对应的频带,表示锁相环锁定到缺省状态/回退状态所对应的频带。本申请中,缺省状态/回退状态可以是预定义的,或者网络设备预先配置的。本申请中,预先配置可以理解为网络设备通过无线资源控制(radio resource control,RRC)信令配置。
在另一种可能的实现方式中,终端设备还可以上报保留原来的状态。即,不会从网络设备调度传输的状态转到回退状态,只会在基站指示的状态上继续驻留。
步骤202,网络设备接收终端设备发送的第六信息,并确定第一信息。
例如,终端设备可以根据终端设备上报的第六信息,确定终端设备切换前的频段和/或载波、切换后的频段和/或载波。例如,表格1所示,终端设备可以向网络设备上报通道#1上从频段#A切换到频段#C,通道#2上从频段#B切换到频段#A。如果当前状态为频段#A 1Tx,和频段#B 1Tx,下一状态期望为频段#A 1Tx,和频段#C 1Tx,则网络设备可以确定终端设备应从频段#B打断当前传输,转向频段#A进行目标传输;还可以确定终端设备应从频段#A打断当前传输,转向频段#C进行目标传输。因此,切换前的频段为频段#B,切换后的频段为频段#A;以及切换前的频段为频段#A,切换后的频段为频段#C。
又例如,缺省状态为频段#A。如果当前状态与下一状态之间的时间间隔大于等于一个时间长度,终端设备进入缺省状态。可选的,该时间长度可以为预定义的,例如,为两个时隙(slot)的时长或者一个slot的时长。当下一状态期望为频段#A 1Tx,和频段#C 1Tx,则可以确定终端设备应从频段#A保留1Tx进行目标1Tx传输,并打断1Tx转向频段#C进行目标1Tx传输。
第一信息中包括至少一个信息块(block)(例如,N个信息块,N为大于0的整数),其中,每个信息块可以关联终端设备切换前的频段和/或载波。也可以理解为,每个信息块可以隐性关联终端设备切换前的频段和/或载波。第一个信息块可以对应最低的频段索引和/或载波索引,依次,第N个信息块可以对应最高的频带索引和/或载波索引。又例如,第一个信息块可以对应最高的频段索引和/或载波索引,依次,第N个信息块可以对应最低的频段索引和/或载波索引。
本申请中,最低的频段索引和/或载波索引,最高的频段索引和/或载波索引,可以是针对终端设备当前所使用的频段和/或载波而言。例如,终端设备当前所使用的频段为n28和n43,则最低的频段索引为频段n28所对应的频段索引,最高的频段索引为频段n43所对应的频段索引。又例如,终端设备当前所使用的载波为服务小区(serving cell)#3和serving cell#5,则最低的载波索引为载波serving cell#3所对应的索引3,最高的载波索引为载波serving cell#5所对应的索引5。
示例性的,假设终端设备当前使用的频段为频段#1、频段#3,则第一个信息块可以对应终端频段#1,第二个信息块可以对应频段#3。假设,终端设备当前使用的频段为频段#28、 频段#36,例如,第一个信息块可以对应频段#28,第二个信息块可以对应频段#36,等等。
示例性的,假设终端设备当前使用的频段#1上的载波#3、频段#2上的载波#1,则第一个信息块可以默认对应频段#1上的载波#3,第二个信息块可以默认对应频段#2上的载波#1,等等。
示例性的,在一种实现方式中,可以对各个频段上的载波整体编一个索引。假设,每个频段上均可以支持四个载波,则频段#1~频段#3上的载波可以有12个,假设载波#1~载波4为频段#1上的载波,载波#5~载波#8为频段#2上的载波,载波#9~载波#12为频段#4上的载波。此时,第一个信息块可以对应载波#1,第二个信息块可以对应载波#2,第三个信息块可以对应载波#3,第十个信息块可以对应载波#10,等等。也可以理解为,此时通过信息块和载波的对应关系,也可以隐性指示切换后的频段。
示例性的,每个信息块还可以对应一个载波集合。其中,载波集合可以理解为将32个载波分成P(P为大于0的整数)个集合或者组,每个信息块对应一个载波集合的索引(index)或者载波组的索引。
具体的,本领域技术人员可以根据实际情况设计每个信息块关联频段和/或载波,不申请不予限定。
第一信息可以包括至少一个信息块,其中,每个信息块包括字段#1(第一字段的示例),其中,字段#1用于指示切换后的频段和/或载波。
在一种实现方式中,字段#1中包括1比特第一指示,该1比特的第一指示用于指示是否从当前的频段和/或载波触发切换(indication on whether switch this band/CC)。字段#1中还可以包括第二指示(第二指示,例如可以占用3比特),第二指示用于指示切换后的频段和/或载波(switch to band/CC)。例如,第二指示可以指示切换后频段的频段索引(switch to band index/CC index)。例如,第二指示可以指示切换后的频段为频段#3。又例如,第二指示可以指示切换后的频段的载波(例如,为频段#4的载波#1)。再例如,第二指示可以指示切换后的载波,例如,切换后的载波为载波#11(如前所述,此时可以隐式指示切换后的频段为频段#3)。
可选的,每个信息块还可以包括字段#2(第二字段的示例),用于指示第一信息与其调度的上行数据之间的时间偏移量。也可以理解为,字段#2可以用于指示K2’或K1’。例如,网络设备可以根据终端设备上报的各个状态之间的切换时延,为终端设备确定上行数据的调度(例如,确定K2’),使得终端设备在完成状态切换之后,按照字段#2的指示在特定的时隙或者符号上接收数据。可以避免终端设备还没有完成状态之间的切换就接收数据,提高了数据传输性能。
本申请中,该“时间偏移量”还可以是“时隙偏移量”或者“符号偏移量”,也可以是“时隙偏移量”和“符号偏移量”。
其中,K2为调度上行数据传输的时延(也可以称为:数据处理时间或数据准备时间),K1为从调度物理下行共享信道(physical downlink shared channel,PDSCH)到反馈物理上行控制信道(physical uplink control channel,PUCCH)之间的时延。具体的,有关K2的说明可以参照第三代移动通信伙伴项目(the 3rd generation partner project,3GPP)中技术规范(technical specification,TS)38.214进行理解,有关K1的说明可以参照3GPP中的技术规范TS38.213,本申请中不再具体说明。
本申请中的,K2’例如可以是在现有K2的基础上加上锁相环锁定时间。同样的,K1’例如可以是在现有K1的基础上加上锁相环锁定时间。例如,K2’大于或等于三个时隙的时间或四个时隙的时间。
作为一个示例,可以为K2’单独定义一张表格(例如,现有协议中K2的表格记为“第一表格”,本申请中K2’的表格可以记为“第二表格”)。其中K2’不同于现有的K2表格中所列举的值。网络设备给终端设备指示K2’时,需要表格索引指示以及K2’的值指示。也可以理解为,此时需要指示第二表格。作为另一个示例,可以在目前K2表格的基础上再额外增加K2’的值。例如可以扩展比特位,此时不需要表格索引指示。
可选的,每个信息块还包含调制编码策略偏移(MCS offset)、传输功率控制(transmit power control,TPC)等调度信息中的至少一项,指示终端设备的在切换后的频段/载波上的传输速率。例如,网络设备可以参考当前的频段/载波的MCS信息、TPC信息,指示切换后的目标频段/载波的MCS信息、TPC信息等。
可选的,该第一信息上可以不包含任何调度信息(如MCS offset以及TPC),这种情形下需要同时结合目标频段/载波的调度DCI。即,第一信息需要与调度在目标频段/载波上传输上行数据的DCI联合使用才可以完成目标频段/载波的上行数据传输。也可以理解为,此时第一信息只用来指示该切换是打断哪个频段/载波传输以及切换后的频段/载波,不用于进行调度指示。
如图3所示,每个信息块可以对应当前锁相环所锁定或驻留的频段和/或载波。例如,可以与频段和/或载波的编号(“编号”也可以理解为“索引”)从低到高依次对应,或者,可以与频段/载波的编号从高到低依次对应(其中,图3中虚线示出的字段表示可选的)。
例如,上述第一信息可以是组公共下行控制信息(group common DCI)(即,此时一个或者多个终端都可以基于该DCI确定切换后的频段/载波),并且该DCI的冗余校验码(cyclic redundancy check,CRC)通过新的物理上行共享信道切换无线网络临时标识(PUSCH-switch-RNTI)加绕。新的物理上行共享信道切换无线网络临时标识为网路设备通过RRC信令配置的。此时,第一信息中不用指示第二表格,这是由于采用新的RNTI加扰,终端设备可以通过解该RNTI便可以默认确定其中所含的时延为第二表格中的时延。
步骤203,网络设备向终端设备发送第一信息。
例如,网络设备可以向终端设备发送group common DCI。
步骤204,终端设备接收网络设备发送的第一信息,并根据第一信息在切换后的频段/载波上传输上行数据。
作为一个示例,假设终端设备当前在通道#1中使用频段#18,在通道#2中使用频段#20传输上行数据,终端设备接收到的第一信息中包括两个信息块,第一个信息块对应频段#18,第二个信息块对应频段#20。第一个信息块中包括字段#1,字段#1中的第一指示,指示从当前频段进行切换(即,“indication on whether switch this band”为“1”),字段#1中的第二指示,指示切换后的频段为频段#16。类似的,第二个信息块中也包括字段#1,字段#1中的第一指示,指示从当前频段进行切换,字段#1中的第二指示,指示切换后的频段为频段#18。即,终端设备可以从频段#18和频段#20(例如,第四状态),切换到频段#16和频段#18(例如,第五状态)。
作为另一个示例,假设终端设备当前在通道#1中使用载波#12(例如,隐性对应频段#3),在通道#2中使用载波#25(例如,隐性对应频段#7)传输上行数据。终端设备接收到的第一信息中包括两个信息块,第一个信息块对应载波#12,第二个信息块对应载波#25。第一个信息块中包括字段#1,字段#1中的第一指示,指示从当前载波进行切换(即,“indication on whether switch CC”为“1”),字段#1中的第二指示,指示切换后的载波为频段#13(例如,隐性对应频段#4)。类似的,第二个信息块中也包括字段#1,字段#1中的第一指示,指示从当前载波进行切换,字段#1中的第二指示,指示切换后的载波为载波#10(例如,隐性对应频段#3)。即,终端设备可以从载波#12和载波#25(例如,第四状态),切换到载波#13和载波#10(例如,第五状态)。
本申请中,终端设备可以通过第一信息,确定需要打断哪个频段和/或载波并且明确切换后的频段和/或载波,避免了终端设备的通道对应的频段重配置的问题,减少了时延。
可选的,如果第一信息中还包括字段#2,例如,终端设备当前在时隙#1上接收第一信息,字段#2可以指示终端设备在第二时隙的第三符号上发送数据,即,可以从时隙#2的第三符号开始使用频段#16、频段#18发送数据。
本申请中,终端设备通过第一信息可以确定在哪个时隙或者哪些符号上使用切换后的频段/载波发送上行数据,使得终端设备在完成状态切换之后,按照字段#2的指示在特定的时隙上接收数据。可以避免终端设备还没有完成状态之间的切换就接收数据,提高了数据传输性能。
本申请还提供的另一通信方法300,方法300从终端设备与网络设备交互的角度示例了本申请技术方案的具体实施例步骤,方法300的步骤与方法200的步骤类似,具体的流程示意图可以参照图2进行理解,不再重复示出,下面对方法300的步骤进行说明。
步骤301,终端设备向网络设备发送第六信息。
在一种可能的实现方式中,第六信息可以包括终端设备的各个通道与频段的对应关系,该频段为各个通道支持的频段。
在另一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与第二状态)之间进行切换时,频段之间的切换对应关系。
在另一种可能的实现方式中,第六信息可以包括终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
在又一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与第二状态)之间进行切换时,对应的切换时延。
在又一种可能的实现方式中,终端设备还可以上报从缺省状态或者回退状态切换到新的频带所需要的切换时延。
在另一种可能的实现方式中,终端设备还可以上报保留原来的状态。即,不会从网络设备调度传输的状态转到回退状态,只会在基站指示的状态上继续驻留。
具体的,可以参照方法200中的步骤201中的描述进行理解,此处不再赘述。
步骤302,网络设备接收终端设备发送的第六信息,并根据第六信息确定第二信息。
本实施例中,第二信息包括至少一个信息块(例如,M个信息块,M为大于0的整数。),每个信息块与终端设备的频段对(band pair)相关联,其中,该频段对包括终端设备切换前的频段以及终端设备切换后的频段。该“频段对”可以理解为{切换前的频段 (switch from band)—切换后的频段(switch to band)}。也可以理解为,每个信息块隐性关联终端设备切换前的频段以及切换后的频段。
作为一个示例,第一个信息块可以对应频段对#1,第二个信息块可以对应频段对#2,第三个信息块可以对应频段对#3,等等。假设,终端设备支持在三个频段(例如,频段#A、频段#B、频段#C)上进行数据传输,则频段对可以有3×2=6个。假设,终端设备支持在四个频段(例如,频段#A、频段#B、频段#C、频段#D)上进行数据传输,则频段对可以有4×3=12个。例如,表格3示出了终端设备支持三个频段时,频段对的情况。也就是说,本实施例中每个信息块可以隐性的对应切换前的频段和切换后的频段,终端设备可以根据每个信息块获知需要打断哪个频段以及切换后的频段。表格3可以为网络设备通过RRC信令配置的,或者预定义的。
表格3
在一种实现方式中,每个信息块中包括1比特第三指示,该1比特的第三指示用于指示是否从当前的频段对触发切换(indication on whether switch this bandpair)。
可选的,每个信息块中还可以包括字段#3(第三字段的示例),字段#3用于指示切换后的载波。例如,可以指示切换后的载波的索引(例如,switch to CC index)。
例如,第一个信息块对应频段对#1,字段#3还可以进一步指示切换后的载波为频段#B上的载波#1。又例如,第二个信息块对应频段对#2,第二信息块上的字段#3可以进一步指示切换后的载波为,频段#C上的载波#4,等等。
可选的,每个信息块中还包括字段#2(第二字段的示例),用于指示第一信息与其调度的上行数据之间的时间偏移量。具体的,关于字段#2的理解可以参照方法200中的步骤202中的描述,此处不再赘述。
可选的,每个信息块还包含调制编码策略偏移(MCS offset)、传输功率控制(transmit power control,TPC)等调度信息中的至少一项,指示终端设备的在切换后的频段/载波上的传输速率。例如,网络设备可以参考当前的频段/载波的MCS信息、TPC信息,指示切换后的目标频段/载波的MCS信息、TPC信息等。
可选的,每个信息块上不包含任何调度信息(如MCS offset以及TPC),这种情形下需要同时结合目标频段/载波的调度DCI。即,第二信息需要与调度在目标频段/载波上传输上行数据的DCI联合使用才可以完成目标频段/载波的上行数据传输。也可以理解为,此时第二信息只用来指示该切换是打断哪个频段/载波传输以及切换后的频段/载波,不用于进行调度指示。
如图4所示,每个信息块可以对应一个频段对。例如,可以与频段对的编号(“编号” 也可以理解为“索引”)从低到高依次对应,或者,可以与频段对的编号从高到低依次对应。
例如,上述第二信息可以是组公共下行控制信息(group common DCI),并且该DCI的CRC可以通过新的物理上行共享信道切换无线网络临时标识(PUSCH-switch-RNTI)加绕。此时,第二信息中不用指示第二表格,这是由于采用新的RNTI加扰,终端设备可以通过解该RNTI便可以默认确定其中所含的时延为第二表格中的时延。
步骤303,网络设备向终端设备发送第二信息。
例如,网络设备可以向终端设备发送group common DCI。
步骤304,终端设备接收网络设备发送的第二信息,并根据第二信息在切换后的频段上传输上行数据。
作为一个示例,假设终端设备当前在通道#1中使用频段#18,在通道#2中使用频段#20。终端设备接收到第二信息,第二信息包括两个信息块,第一个信息块对应频段对#1,假设频段对#1指示切换前的频段为频段#18,切换后的频段为频段#16。例如,第一个信息块中1比特的第三指示(indication on whether switch this band pair)为1,则终端设备确定从频段#18切换到频段#16。同样的,第二个信息块对应频段对#2,频段对#2指示切换前的频段为频段#20,切换后的频段为频段#18。第二个信息块中1比特的第三指示(indication on whether switch this band pair)为1,则终端设备确定从频段#20切换到频段#18。即,终端设备可以从频段#18和频段#20(例如,第四状态),切换到频段#16和频段#18(例如,第五状态)。
进一步的,如果第一个信息块中还包括字段#3,字段#3指示终端设备切换后的载波为载波#1。即,终端设备可以确定在切换后的频段#16上的载波#1上传输上行数据。又例如,第二个信息块中包括字段#3,字段#3指示终端设备切换后的载波为载波#3。即,终端设备可以确定在切换后的频段#18上的载波#3上传输上行数据。
本申请中,终端设备可以通过第二信息,确定需要打断哪个频段并且明确切换后的频段或载波,避免了终端设备的通道对应的频段重配置的问题,减少了时延。
可选的,如果第二信息中还包括字段#2,例如,终端设备当前在时隙#1上接收第一信息,字段#2可以指示终端设备在第二时隙的第三符号上发送数据,即,可以从时隙#2的第三符号开始使用频段#16、频段#18发送数据。
本申请中,终端设备通过第二信息可以确定在哪个时隙或者哪些符号上使用切换后的频段/载波发送上行数据,使得终端设备在完成状态切换之后,按照字段#2的指示在特定的时隙上接收数据。可以避免终端设备还没有完成状态之间的切换就接收数据,提高了数据传输性能。
本申请还提供的另一通信方法400,方法400从终端设备与网络设备交互的角度示例了本申请技术方案的具体实施例步骤,方法400的步骤与方法200的步骤类似,具体的流程示意图可以参照图2进行理解,不再重复示出,下面对方法400的步骤进行说明。
步骤401,终端设备向网络设备发送第六信息。
在一种可能的实现方式中,第六信息可以包括终端设备的各个通道与频段的对应关系,该频段为各个通道支持的频段。
在另一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与 第二状态)之间进行切换时,频段之间的切换对应关系。
在又一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与第二状态)之间进行切换时,对应的切换时延。
在另一种可能的实现方式中,第六信息可以包括终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
在又一种可能的实现方式中,终端设备还可以上报从缺省状态或者回退状态切换到新的频带所需要的切换时延。
在另一种可能的实现方式中,终端设备还可以上报保留原来的状态。即,不会从网络设备调度传输的状态转到回退状态,只会在基站指示的状态上继续驻留。
具体的,可以参照方法200中的步骤201中的说明进行理解,此处不再赘述。
步骤402,网络设备接收终端设备发送的第六信息,并根据第六信息确定第三信息。
本实施例中,第三信息包括字段#1(第一字段的示例),字段#1(例如,“switchfrom band/CC index”)用于指示终端设备切换后的频段和/或载波。例如,字段#1指示终端设备切换后的频段为频段#10。又例如,字段#1指示终端设备切换后的载波为载波#17(此时,根据载波可以隐性确定切换后的频段,具体的理解可以参见方法200中的步骤202的描述)。再例如,字段#1可以显性指示切换后的频段并且隐性关联切换后的载波。例如,字段#1指示终端设备切换后的频段为频段#10,并且默认关联切换后的载波为频段#10上的载波#4,等等。
在一种可能的实现方式中,第三信息还包括字段#8(“switchto band/CC”)用于指示切换后的频段和/或载波(例如,字段#8可以用于指示切换后的频段和/或载波(“switchto band/CC index”))。具体的实现方式可以参照上述字段#1指示终端设备切换前的频段的实现进行理解,此处不再赘述。
在另一种可能的实现方式中,切换前的频段和/或载波可以是终端设备基于预设的规则确定的。例如,预设的规则为:从终端设备所在频段和/或载波按相应索引中最低的开始进行打断传输;或者,从终端设备所在频段和/或载波按相应索引中最高的开始进行打断传输。又例如,预设的规则为:从终端设备所在频段和/或载波按相应索引进行升序排列,从其中最低的开始,依次选择进行打断传输;或者,从终端设备所在频段和/或载波按相应索引进行降序排列,从其中最高的开始,依次选择进行打断传输。
上述“switch from band”可以通过0/1指示目前驻留的频段中较低的/较高的,或者指示band index。例如,可以复用UL/SUL 1bit或填充位(padding bit)。上述,switch to band index/CC index也可以通过0/1指示配置的多个频段中除了目前驻留的频段,在剩余的频段中较低的/较高的,或者指示band index/CC index,也可以复用UL/SUL 1bit或填充位。
可选的,switch from band/CC与switch to band/CC的对应关系可以通过RRC信令进行配置,或者也可以是预定义的,可以参照上述表格3进行理解。此时,第三信息可以指示该配置中的切换对应关系索引的值。
在一种可能的实现方式中,例如,切换前的载波(例如,switch from CC index)不需要显性指示,可以通过切换前的频段(switch from band index)隐性获知。例如,可以预先规定从频段#1上的载波#2进行切换,或者,从频段#2上的载波#1进行切换等等。切换后的载波(switch to CC index),例如,可以通过跨载波调度的载波指示域(carrier indicator  field,CIF)指示。
可选的,第三信息中还可以包括字段#2(第二字段的示例)用于指示第一信息与其调度的上行数据之间的时间偏移量。具体的,关于字段#2的理解可以参照方法200中的步骤202中的描述,此处不再赘述。进一步的,如果第三信息包括字段#2,此时,第三信息还可以包括字段#4,用于指示时间偏移量的位置。例如,字段#4可以用于指示所述时间偏移量所在的第二表格(即,可以为K2’重新设计一个第二表格),或者,所述字段#4用于指示时间偏移量在第一表格中的索引或位置(此时,可以在现有的K2表格(记为“第一表格”)中扩充比特位来指示K2’)。
可选的,第三信息还包含调制编码策略偏移(MCS offset)、传输功率控制(transmit power control,TPC)等调度信息中的至少一项,指示终端设备的在切换后的频段/载波上的传输速率。例如,网络设备可以参考当前的频段/载波的MCS信息、TPC信息,指示切换后的目标频段/载波的MCS信息、TPC信息等。
可选的,第三信息不包含任何调度信息(如MCS offset以及TPC),这种情形下需要同时结合目标频段/载波的调度DCI。即,第二信息需要与调度在目标频段/载波上传输上行数据的DCI联合使用才可以完成目标频段/载波的上行数据传输。也可以理解为,此时第二信息只用来指示该切换是打断哪个频段/载波传输以及切换后的频段/载波,不用于进行调度指示。图5示出了第三信息可能包含的字段。
例如,上述第三信息可以是动态调度的下行控制信息(例如,DCI 0_1),并且可以通过现有的物理上行共享信道切换无线网络临时标识(PUSCH-switch-RNTI)加绕。此时,第三信息中需要指示第二表格,这是因为使用现有的RNTI加绕,终端设备通过该解扰方式无法确定其中所含的时延为第二表格中的时延,所以需要明确指示出第二表格。
本实施例中,第三信息也可以是包含多个信息块,每个信息块中包括字段#1(即,指示切换前的频段和/或载波),并且每个信息块中还可以包括字段#8(即,指示切换后的频段和/或载波),也可以理解为,本实施例中的信息块不会与切换前的频段和/或载波隐性关联,因此,切换前的频段和/或载波以及切换后的载波和/或索引均需要显性指示。可选的,每个信息块中还可以包括字段#2。可选的,每个信息块中还可以包括调制编码策略偏移(MCS offset)、传输功率控制(transmit power control,TPC)等调度信息中的至少一项。可选的,每个信息块中不包括任何调度信息。此时,第三信息可以是压缩下行控制信息(compact DCI)(DCI 0_0),并且可以通过新的RNTI加扰。
步骤403,网络设备向终端设备发送第三信息。
例如,网络设备可以向终端设备发送动态调度的DCI,或者,网络设备向字段设备发送compact DCI。
步骤404,终端设备接收网络设备发送的第三信息,并根据第三信息在切换后的频段上传输上行数据。
作为一个示例,以第三信息指示频段为例(对于第三信息指示载波的情况也可以类似理解)。例如,网络设备可以同时下发两个第三信息,假设终端设备当前在通道#1中使用频段#18,在通道#2中使用频段#20。假设第一个第三信息指示切换前的频段为频段#18,切换后的频段为频段#16,第二个第三信息指示切换前的频段为频段#20,切换后的频段为频段#18。则终端设备根据第三信息的指示将通道#1中的频段切换为频段#16,将通道#2 中的频段切换为频段#18。即,终端设备可以从频段#18和频段#20(例如,第四状态),切换到频段#16和频段#18(例如,第五状态)。
可选的,如果该DCI通过现有的RNTI加扰,则第三信息中还包括K2’的位置指示,例如,K2’所在的第二表格,终端设备可以根据该指示确定K2’。
本申请中,终端设备可以通过第三信息,确定需要打断哪个频段并且明确切换后的频段或载波,避免了终端设备的通道对应的频段重配置的问题,减少了时延。
可选的,如果第二信息中还包括字段#2,例如,终端设备当前在时隙#1上接收第一信息,字段#2可以指示终端设备在第二时隙的第三符号上发送数据,即,可以从时隙#2的第三符号开始使用频段#16、频段#18发送上行数据。
本申请中,终端设备通过第三信息可以确定在哪个时隙或者哪些符号上使用切换后的频段/载波发送上行数据,使得终端设备在完成状态切换之后,按照字段#2的指示在特定的时隙上接收数据。可以避免终端设备还没有完成状态之间的切换就接收数据,提高了数据传输性能。
本申请还提供的另一通信方法500,方法500从终端设备与网络设备交互的角度示例了本申请技术方案的具体实施例步骤,方法500的步骤与方法200的步骤类似,具体的流程示意图可以参照图2进行理解,不再重复示出,下面对方法500的步骤进行说明。
步骤501,终端设备向网络设备发送第六信息。
在一种可能的实现方式中,第六信息可以包括终端设备的各个通道与频段的对应关系,该频段为各个通道支持的频段。
在另一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与第二状态)之间进行切换时,频段之间的切换对应关系。
在又一种可能的实现方式中,第六信息包括终端设备在各个状态(例如,第一状态与第二状态)之间进行切换时,对应的切换时延。
在另一种可能的实现方式中,第六信息可以包括终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
在又一种可能的实现方式中,终端设备还可以上报从缺省状态或者回退状态切换到新的频带所需要的切换时延。
在另一种可能的实现方式中,终端设备还可以上报保留原来的状态。即,不会从网络设备调度传输的状态转到回退状态,只会在基站指示的状态上继续驻留。
具体的,可以参照方法200中的步骤201,此处不再赘述。
步骤502,网络设备接收终端设备发送的第六信息,并根据第六信息确定第四信息。
本实施例中,第四信息包括字段#5(第五字段的示例),字段#5可以用于指示终端设备切换后的第一频段。
在一种可能的实现方式中,第四信息还包括字段#6(第六字段的示例),字段#6用于指示终端设备接收第五信息,该第五信息用于指示所述终端设备切换后的第二频段。
作为一个示例,第四信息可以为动态调度的DCI,可以在现有DCI0_1或DCI0_0中增加新的bit位。例如,新的bit位占据1bit。当新的bit位为“1”时,表示该时隙中还有针对同一终端设备的另一DCI需要协调调度。“协调调度”可以理解为,需要等待另一DCI解析后,再判定该DCI调度的band/CC的对应通道传输,从而使得终端设备能够根 据目标时隙的完整传输组合状态进行相应的通道参数配置,从而可以减小通道配置错误造成的重配问题。如果新的bit位为0时,表示该时隙中没有针对同一终端设备的别的DCI需要协调调度,因此可以即时开启相应的通道参数进行配置。
终端设备可以根据第四信息和第五信息的指示确定切换前的频段/载波,以及切换后的频段/载波。
基于上述技术方案,通过第四信息可以指示了本时隙上还有别的DCI待检测,从而使得终端设备获取第一个DCI后,需要等待第二个DCI的信息,基于两个DCI判断在被调度进行传输的目标时隙的传输组合状态,因此不需要在不对应的通道上进行参数配置,避免参数重配置问题。
在另一种可能的实现方式中,所述第四信息还包括字段#7(第七字段的示例),字段#7用于指示字段#5生效的滞后时间,其中,网络设备可以在一个时间段内接收第五信息,第五信息用于指示终端设备切换后的第二频段。可选的,一个时间段可以为符号个数或者时隙个数。例如,一个时间为三个符号,或者一个时隙。
本申请中,“滞后时间”也可以理解为是“时间窗”、“时间段”、“切换时长”、或者“时间偏移量”。例如,本申请中,“滞后时间”例如可以为基站通过RRC信令所预先配置的。
作为一个示例,第四信息可以为动态调度DCI,例如可以在现有DCI0_1或DCI0_0中增加新的bit位。新的bit位用于指示该DCI生效的起始时刻。其中,生效的起始时刻,表示收到该DCI后从该生效的起始时刻起才能进行对应的通道参数配置。例如,该生效的起始时刻可以是通过多个时间窗的索引指示。其中,时间窗也可以理解为滞后时间或切换时长。例如,时间窗可以是基站通过RRC信令预先配置的。例如,在该时间窗内网络设备可以向终端设备发送第五信息。
终端设备可以根据第四信息和第五信息的指示确定切换前的频段/载波,以及切换后的频段/载波。
基于上述技术方案,网络设备通过第四信息指示了本时隙检测到的DCI解析后进行通道参数配置的起始时刻,从而使得终端设备获取第一个DCI后可以不急于配置通道参数,能够在该起始时刻之前获取到第二个DCI,基于两个DCI综合判断在被调度进行传输的目标时隙的传输组合状态,因此不需要在不对应的通道上进行参数配置,避免参数重配置问题。
步骤503,网络设备向终端设备发送第四信息和第五信息。
例如,网络设备可以向终端设备发送动态调度第四信息和第五信息。
步骤504,终端设备接收网络设备发送的第四信息和第五信息,并根据第四信息和第五信息在切换后的频段上传输上行数据。
作为一个示例,假设终端设备当前在通道#1中使用频段#18,在通道#2中使用频段#20。终端设备在时隙#2上接收第四信息,终端设备根据第四信息确定切换后的频段为频段#18,并且确定在时隙#2上需要再接收一个第五信息,需要根据第四信息和第五信息共同确定切换后的频段。终端设备在时隙#2上继续接收第五信息,第五信息指示终端设备切换后的频段为频段#16。假设终端设备在通道#1上支持频段#18和频段#16,在通道#2上支持频段#20和频段#18。则终端设备可以根据第四信息和第五信息共同确定,需要将通道#1 上的频段#18切换到频段#16(例如,第四状态),将通道#2上的频段#20切换到频段#18(例如,第五状态)。
作为另一个示例,假设终端设备当前在通道#1中使用频段#18,在通道#2中使用频段#20。终端设备在时隙#2的第一个符号上接收第四信息,终端设备根据第四信息确定切换后的频段为频段#18,并且确定需要在时隙#2的第十个符号开始在配置通道#1上的参数。终端设备在时隙#2的第二个符号到第九个符号之间接收第五信息,终端设备根据第五信息确定切换后的频段为频段#16。则终端设备可以根据第四信息和第五信息共同确定,需要将通道#1上的频段#18切换到频段#16(例如,第四状态),将通道#2上的频段#20切换到频段#18(例如,第五状态)。
应理解,本实施例的方案同样适用于频段上载波之间的切换,此处不再示例。
本申请中,终端设备可以通过第四信息和第五信息,确定需要打断哪个频段并且明确切换后的频段或载波,避免了终端设备的通道对应的频段重配置的问题,减少了时延,提高了数据传输。
可选的,如果第四信息或第五信息中还包括字段#2。例如,终端设备当前在时隙#2上接收第四信息,第四信息中包括字段#2,字段#2可以指示终端设备在第三时隙的第三符号上发送数据,即,可以从时隙#3的第三符号开始使用频段#16、频段#18发送数据。又例如,终端设备当前在时隙#2上接收第五信息,第五信息中包括字段#2,字段#2可以指示终端设备在第三时隙的第三符号上发送数据,即,可以从时隙#3的第三符号开始使用频段#16、频段#18发送数据。
本申请中,终端设备通过第四信息或第五信息可以确定在哪个时隙或者哪些符号上使用切换后的频段/载波发送上行数据,使得终端设备在完成状态切换之后,按照字段#2的指示在特定的时隙上接收数据。可以避免终端设备还没有完成状态之间的切换就接收数据,提高了数据传输性能。
可以理解,本申请实施例中的方法200~方法500中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据方法200~方法500中的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
应该理解,本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
可以理解,在本申请中,“在…情况下”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这 三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端设备、网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图6是本申请实施例提供的通信装置100的示意性框图。如图所示,该装置100可以包括:收发单元110和处理单元120。
在一种可能的设计中,该装置100可以是上文方法实施例中的终端设备,也可以是用于实现上文方法实施例中终端设备的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法200~方法500中的终端设备,该装置100可以执行本申请实施例的方法200~方法500中的终端设备所对应的步骤。
在一种可能的实现方式中,收发单元用于接收来第一信息,处理单元用于根据所述第一信息控制收发单元在所述切换后的频段和/或载波上传输上行数据。
在一种可能的实现方式中,收发单元用于发送第六信息。
在一种可能的实现方式中,收发单元用于接收来第二信息,处理单元用于根据所述第二信息控制收发单元在所述切换后的频段和/或载波上传输上行数据。
在一种可能的实现方式中,收发单元用于接收来第二信息,处理单元用于根据所述第二信息控制收发单元在所述切换后的频段和/或载波上传输上行数据。
在一种可能的实现方式中,收发单元用于接收来第三信息,处理单元用于根据所述第三信息控制收发单元在所述切换后的频段和/或载波上传输上行数据。
在一种可能的实现方式中,收发单元用于接收来第四信息,处理单元用于根据所述第四信息控制收发单元接收第五信息,所述处理单元用于根据所述第四信息和第五信息在所述切换后的频段和/或载波上传输上行数据。
在一种可能的设计中,该装置100可以是上文方法实施例中的网络设备,也可以是用于实现上文方法实施例中终端设备的功能的芯片。应理解,该装置100可对应于根据本申请实施例的方法200~方法500中的网络设备,该装置100可以执行本申请实施例的方法200~方法500中的网络设备所对应的步骤。
在一种可能的实现方式中,处理单元用于确定第一信息,收发单元用于发送第一信息。
在一种可能的实现方式中,处理单元用于确定第二信息,收发单元用于发送第二信息。
在一种可能的实现方式中,处理单元用于确定第三信息,收发单元用于发送第三信息。
在一种可能的实现方式中,处理单元用于确定第四信息和第五信息,收发单元用于发送第四信息和第五信息。
还应理解,这里的装置100以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置100可以具体为上述实施例中的终端设备或者网络设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置100具有实现上述方法中终端设备或者网络设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元110还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图6中的装置可以是前述实施例中的终端设备或网络设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图7是本申请实施例提供的通信装置200的示意性框图。如图所示,该装置200包括:至少一个处理器220。该处理器220与存储器耦合,用于执行存储器中存储的指令,以发送信号和/或接收信号。可选地,该设备200还包括存储器230,用于存储指令。可选的,该设备200还包括收发器210,处理器220控制收发器210发送信号和/或接收信号。
应理解,上述处理器220和存储器230可以合成一个处理设备,处理器220用于执行存储器230中存储的程序代码来实现上述功能。具体实现时,该存储器230也可以集成在处理器220中,或者独立于处理器220。
还应理解,收发器210可以包括收发器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器210有可以是通信接口或者接口电路。
具体地,该设备200中的收发器210可以对应于设备100中的收发单元110,该设备200中的处理器220可对应于设备200中的处理单元120。
作为一种方案,该装置200用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器220用于执行存储器230存储的计算机程序或指令,以实现上文各个方法实施例中无线接入网设备的相关操作。例如,方法200~方法500中任意一个所示实施例中的终端设备执行的方法。
作为另一种方案,该装置200用于实现上文各个方法实施例中由网络设备执行的操作。
例如,处理器220用于执行存储器230存储的计算机程序或指令,以实现上文各个方法 实施例中网络设备的相关操作。例如,方法200~方法500中任意一个所示实施例中的网络设备执行的方法。
应理解,各收发器、处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品上存储有计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法200~方法500实施例中任意一个实施例中由终端设备或者网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述实施例中由 终端设备或者网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统包括终端设备和网络设备。该终端设备用于执行上述方法200~500中终端设备对应的步骤,该网络设备用于执行上述方法200~500中网络设备对应的步骤。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程设备。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中,由相应的模块或单元执行相应的步骤,例如收发单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
还应理解,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一PDSCH和第二PDSCH,可以是同一个物理信道,也可以是不同的物理信道,且,这种名称也并不是表示这两个物理信道的信息量大小、内容、优先级或者重要程度等的不同。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一项(个)”或其类似表达,是指一项(个)或多项(个),即这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信息,所述第一信息包括N个信息块,所述N个信息块中的第j个信息块包括第一字段,所述第一字段用于指示所述终端设备切换后的频段和/或载波,所述第j个信息块与所述终端设备切换前的频段和/或载波相关联,所述N为正整数;
    所述终端设备根据所述第一信息,在所述切换后的频段和/或载波上传输上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第j个信息块还包括第二字段,所述第二字段用于指示所述第一信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段和/或载波上传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第一信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  4. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第二信息,所述第二信息包括M个信息块,所述M个信息块中的第k个信息块与所述终端设备的频段对相关联,其中,所述频段对包括所述终端设备切换前的频段以及所述终端设备切换后的频段,所述M为正整数;
    所述终端设备根据所述第二信息,在所述切换后的频段上传输上行数据。
  5. 根据权利要求4所述的方法,其特征在于,所述第k个信息块还包括第三字段,所述第三字段用于指示所述终端设备切换后的载波。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第k个信息块包括第二字段,所述第二字段用于指示所述第二信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段或载波上传输。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第二信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  8. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第三信息,所述第三信息包括第一字段,所述第一字段用于指示所述终端设备切换后的频段和/或载波,其中,切换前的频段和/或载波为所述终端设备根据预设的规则确定的,或者,切换前的频段和/或载波为所述网络设备指示的;
    所述终端设备根据所述第三信息,在所述切换后的频段和/或载波上传输上行数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第三信息还包括第二字段,所述第二字段用于指示所述第三信息与其调度的上行数据之间的时间偏移量,所述数据用于在所述切换后的频段和/或载波上进行传输。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第三信息还包括第四字段,所述第四字段用于指示所述时间偏移量所在的第二表格,或者,所述第四字段用于指示所述时间偏移量在第一表格中的索引或位置。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第三信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  12. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第四信息,所述第四信息包括第五字段,所述第五字段用于指示所述终端设备切换后的第一频段,
    所述第四信息还包括第六字段,所述第六字段用于指示所述终端设备接收第五信息,所述第五信息用于指示所述终端设备切换后的第二频段;
    所述终端设备接收第五信息,所述第五信息用于指示所述终端设备切换后的第二频段;
    所述终端设备根据所述第四信息和所述第五信息,在切换后的频段上传输上行数据;或者,
    所述第四信息还包括第七字段,所述第七字段用于指示所述第五字段生效的滞后时间,
    所述终端设备根据所述第四信息,在切换后的频段上传输上行数据。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第六信息,所述第六信息用于所述网络设备确定所述第四信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  14. 一种通信方法,其特征在于,包括:
    网络设备确定第一信息,所述第一信息包括N个信息块,所述N个信息块中的第j个信息块包括第一字段,所述第一字段用于指示终端设备切换后的频段和/或载波,所述第j个信息块与所述终端设备切换前的频段和/或载波相关联,所述N为正整数;
    所述网络设备向所述终端设备发送第一信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第j个信息块还包括第二字段,所述第二字段用于指示所述第一信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段和/或载波上传输。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第一信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换 时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  17. 一种通信方法,其特征在于,包括:
    网络设备确定第二信息,所述第二信息包括M个信息块,所述M个信息块中的第k个信息块与终端设备的频段对相关联,其中,所述频段对包括所述终端设备切换前的频段以及所述终端设备切换后的频段,所述M为正整数;
    所述网络设备向所述终端设备发送所述第二信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第k个信息块还包括第三字段,所述第三字段用于指示所述终端设备切换后的载波。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第k个信息块包括第二字段,所述第二字段用于指示所述第二信息与其调度的上行数据之间的时间偏移量,所述上行数据在所述切换后的频段或载波上传输。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第二信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  21. 一种通信方法,其特征在于,包括:
    网络设备确定的第三信息,所述第三信息包括第一字段,所述第一字段用于指示终端设备切换后的频段和/或载波,其中,切换前的频段和/或载波为所述终端设备根据预设的规则确定的,或者,切换前的频段和/或载波为网络设备指示的;
    所述网络设备向所述终端设备发送所述第三信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第三信息还包括第二字段,所述第二字段用于指示所述第三信息与其调度的上行数据之间的时间偏移量,所述数据用于在所述切换后的频段和/或载波上进行传输。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第三信息还包括第四字段,所述第四字段用于指示所述时间偏移量所在的第二表格,或者,所述第四字段用于指示所述时间偏移量在第一表格中的索引或位置。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第三信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  25. 一种通信方法,其特征在于,包括:
    网络设备确定第四信息,所述第四信息包括第五字段,所述第五字段用于指示所述终端设备切换后的第一频段;
    所述第四信息还包括第六字段,所述第六字段用于指示终端设备接收第五信息,所述第五信息用于指示所述终端设备切换后的第二频段;或者,
    所述第四信息还包括第七字段,所述第七字段用于指示所述第五字段生效的滞后时间,
    所述网络设备向所述终端设备发送所述第四信息和所述第五信息。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第六信息,所述第六信息用于所述网络设备确定所述第四信息,其中,
    所述第六信息包括所述终端设备的至少一个通道与频段的对应关系,所述频段为所述至少一个通道支持的频段;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时,频段之间的切换对应关系,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备在第一状态与第二状态之间进行切换时的切换时延,所述第一状态为所述终端设备在第一频段组上的频段支持第一数量的发送射频链,所述第二状态为所述终端设备在第二频段组上的频段支持第二数量的发送射频链;和/或,
    所述第六信息至少包括所述终端设备从至少一个第一频段切换到至少一个第二频段时,频段之间的切换对应关系。
  27. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器中的所述计算机程序或指令,使得权利要求1至3,或者权利要求4至7,或者权利要求8至11,或者权利要求12至13,或者权利要求14至16,或者权利要求17至20,或者权利要求21至24,或者权利 要求25至26中任一项所述的方法被执行。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至3,或者权利要求4至7,或者权利要求8至11,或者权利要求12至13,或者权利要求14至16,或者权利要求17至20,或者权利要求21至24,或者权利要求25至26中任意一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至3,或者权利要求4至7,或者权利要求8至11,或者权利要求12至13,或者权利要求14至16,或者权利要求17至20,或者权利要求21至24,或者权利要求25至26中任意一项所述的方法。
PCT/CN2023/080412 2022-03-31 2023-03-09 通信方法和装置 WO2023185409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210346423.3A CN116939828A (zh) 2022-03-31 2022-03-31 通信方法和装置
CN202210346423.3 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185409A1 true WO2023185409A1 (zh) 2023-10-05

Family

ID=88198973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080412 WO2023185409A1 (zh) 2022-03-31 2023-03-09 通信方法和装置

Country Status (2)

Country Link
CN (1) CN116939828A (zh)
WO (1) WO2023185409A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577338A (zh) * 2014-10-17 2016-05-11 成都鼎桥通信技术有限公司 非对称上行载波聚合中主辅载波的切换方法及装置
CN108810944A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 上行载波切换的方法、网络设备和终端设备
CN109392142A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 载波切换和信息发送方法,以及装置
WO2021208052A1 (en) * 2020-04-17 2021-10-21 Qualcomm Incorporated Uplink transmit switching across carrier aggregation component carriers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577338A (zh) * 2014-10-17 2016-05-11 成都鼎桥通信技术有限公司 非对称上行载波聚合中主辅载波的切换方法及装置
CN108810944A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 上行载波切换的方法、网络设备和终端设备
CN109392142A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 载波切换和信息发送方法,以及装置
WO2021208052A1 (en) * 2020-04-17 2021-10-21 Qualcomm Incorporated Uplink transmit switching across carrier aggregation component carriers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Configuration of SRS Carrier Switching", 3GPP TSG-RAN WG2 #110E TDOC, R2-2005072, 21 May 2020 (2020-05-21), XP051887512 *

Also Published As

Publication number Publication date
CN116939828A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
TWI687124B (zh) 使用使用者設備類型和能力指示之方法及其使用者設備
US11317398B2 (en) Semi-persistent scheduling for autonomous transmission activation and release
CN113038621B (zh) 在多个分量载波上对缓冲区状态报告的传输
KR102488273B1 (ko) 무선 통신 방법, 단말기 디바이스 및 네트워크 디바이스
US11962387B2 (en) Wireless communication method and apparatus
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2019214660A1 (zh) 通信方法和通信装置
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
CN114631347A (zh) 一种小区配置方法及装置、终端设备、网络设备
KR102602446B1 (ko) 사이드링크 카테고리를 결정하는 방법, 단말 장치와 네트워크 장치
US20230413087A1 (en) Flexible Downlink Control Signal Monitoring in Wireless Communications
KR20200138814A (ko) 데이터를 전송하는 방법, 단말기 및 네트워크 기기
WO2024067707A1 (zh) 一种通信方法和通信装置
CN116783968A (zh) 无线通信中的增强型物理上行链路共享信道传输
US20240322985A1 (en) Scheduling for Multiple PDSCH/PUSCH Operations
JP7429242B2 (ja) 測定管理方法及び装置、通信デバイス
US20220104252A1 (en) Method for monitoring control channel, terminal device and network device
US20200374887A1 (en) Channel transmission method and apparatus, and computer storage medium
US20220352923A1 (en) Frequency hopping methods, electronic device, and storage medium
US20220046587A1 (en) Interaction Of Multicast Band Width Part (BWP) With Multiple BWP
WO2023185409A1 (zh) 通信方法和装置
CN113207137B (zh) 一种测量控制方法、终端设备及网络设备
WO2023174141A1 (zh) 通信方法和装置
WO2024094126A1 (zh) 一种确定切换上行传输的方法和装置
CN114600511A (zh) 控制小区状态的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023777787

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023777787

Country of ref document: EP

Effective date: 20241008