WO2024093811A1 - 电池电量检测电路、电子设备和电量计量方法 - Google Patents

电池电量检测电路、电子设备和电量计量方法 Download PDF

Info

Publication number
WO2024093811A1
WO2024093811A1 PCT/CN2023/126993 CN2023126993W WO2024093811A1 WO 2024093811 A1 WO2024093811 A1 WO 2024093811A1 CN 2023126993 W CN2023126993 W CN 2023126993W WO 2024093811 A1 WO2024093811 A1 WO 2024093811A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
power metering
cell
voltage
Prior art date
Application number
PCT/CN2023/126993
Other languages
English (en)
French (fr)
Inventor
谭明达
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024093811A1 publication Critical patent/WO2024093811A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of electronic technology, and specifically relates to a battery power detection circuit, an electronic device and a power measurement method.
  • a dual-cell battery string meter is commonly used in the industry to measure the power of the dual-cell battery string.
  • the dual-string battery fuel meter has complex circuit and high cost.
  • the purpose of the embodiments of the present application is to provide a battery power detection circuit, an electronic device and a power measurement method, which can use a single-cell power meter to detect the power of a dual-cell battery.
  • an embodiment of the present application provides a battery power detection circuit, which is used to detect the power of N battery strings, wherein the N battery strings include N battery cells, and the N battery cells are connected in series, where N is an integer greater than 1;
  • the battery power detection circuit includes: a current sampling unit, N power metering units and (N-1) processing circuits, wherein the N power metering units are single-cell power metering units;
  • the current sampling unit is connected between the N battery cell strings and the N power metering units, and is used to obtain the current of the N battery cell strings and transmit it to the N power metering units;
  • the N power metering units correspond one-to-one to the N battery cells
  • the (N-1) processing circuits correspond one-to-one to the (N-1) positive electrodes of the N battery cells that are close to the N strings of battery cells;
  • the first end of the processing circuit is connected to the positive electrode of the corresponding battery cell, and the second end of the processing circuit is connected to the corresponding The negative electrode of the battery cell battery is connected, and the third end of the processing circuit is connected to the corresponding power metering unit, wherein the processing circuit transmits a third voltage to the corresponding power metering unit based on the difference between the first voltage and the second voltage, the first voltage is the voltage of the first end of the processing circuit, and the second voltage is the voltage of the second end of the processing circuit, and the power metering unit determines the power of the corresponding battery cell according to the third voltage and the current of the N series of battery cells;
  • the positive pole of the target battery cell is connected to the target power metering unit, and the target power metering unit determines the power of the target battery cell according to the voltage of the target battery cell and the current of the N series of battery cells.
  • the target battery cell is the battery cell in the N series of battery cells except the (N-1) battery cell
  • the target power metering unit is the power metering unit in the N power metering units except the (N-1) battery cell.
  • an embodiment of the present application provides an electronic device, which includes N strings of battery cells and a battery power detection circuit as described in the first aspect, wherein the N strings of battery cells include N battery cells connected in series, and N is an integer greater than 1.
  • an embodiment of the present application provides a power measurement method for the battery power detection circuit as described in the first aspect, the method comprising:
  • the total power of N battery strings is determined according to the power of the N battery cells, wherein the N battery strings include the N battery cells.
  • N battery cells in an N string of battery cells are connected in series, so that the voltage of the connection nodes between the N battery cells gradually increases.
  • the positive electrode of CELL 1 is connected to the negative electrode of CELL 2
  • the positive electrode of CELL 2 is connected to the negative electrode of CELL 3.
  • the voltage of the connection node between CELL 1 and CELL 2 is V1
  • the voltage of the connection node between CELL 2 and CELL 3 is V1+V2
  • the voltage of the positive electrode of CELL 3 is V1+V2+V3
  • V1 is the voltage of CELL 1
  • V2 is the voltage of CELL 2
  • V3 is the voltage of CELL 3.
  • the voltages of (N-1) battery cells are obtained respectively by connecting (N-1) processing circuits in parallel to the positive and negative electrodes of (N-1) battery cells, and the remaining battery cell is the battery cell closest to the ground terminal, and the voltage of the battery cell is equal to the positive electrode voltage of the battery cell.
  • N is equal to 3
  • one processing circuit can be connected in parallel to the positive and negative electrodes of CELL 2 to obtain the voltage V2 of CELL 2
  • another processing circuit can be connected in parallel to the positive and negative electrodes of CELL 3 to obtain the voltage V3 of CELL 3
  • the voltage of CELL 1 is equal to the voltage V1 of the connection node between CELL 1 and CELL 2.
  • the power of each corresponding battery cell can be measured based on the current and voltage of each corresponding battery cell, thereby determining the total power of the N battery strings based on the power of the N battery cells measured by the N power metering units.
  • FIG1 is a structural block diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG2 is a second structural block diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a circuit structure of a battery power detection circuit provided in an embodiment of the present application.
  • FIG4 is a third structural block diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG5 is a second circuit structure diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG6 is a fourth structural block diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG7 is a third circuit structure diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG8 is a fifth structural block diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG9 is a fourth circuit structure diagram of a battery power detection circuit provided in an embodiment of the present application.
  • FIG. 10 is a flow chart of an electricity metering method provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of this application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the data used in this way can be interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first”, “second”, etc. are generally of one type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally indicates that the objects associated with each other are in an "or” relationship.
  • the battery power detection circuit 10 provided in the present application can be used to detect the power of N battery cell strings 20, wherein the N battery cell strings 20 include N battery cell batteries 201 (i.e., the target battery cell battery, the second battery cell battery to the Nth battery cell battery), and the N battery cell batteries 201 are connected in series, and N is an integer greater than 1.
  • N battery cell batteries 201 i.e., the target battery cell battery, the second battery cell battery to the Nth battery cell battery
  • N battery cells are connected in series, so that the voltage of the connection node between the N battery cells gradually increases from the negative electrode (usually the ground terminal) of the N battery cell strings 20 to the positive electrode of the N battery cell strings 20.
  • the positive electrode of the battery cell (CELL) 1 is connected to the negative electrode of CELL2.
  • the voltage of the negative electrode of CELL1 can be equal to 0, that is, the negative electrode of CELL1 is grounded, and the voltage between CELL1 and CELL2 is V1, that is, the voltage of CELL1, and the voltage of the positive electrode of CELL2 is V1+V2, that is, the sum of the voltages of CELL1 and CELL2.
  • the battery power detection circuit 10 includes: a current sampling unit 11, N power metering units 12 (i.e., a target power metering unit, a first power metering unit to an (N-1)th power metering unit), and (N-1) processing circuits 13 (ie, the 1st processing circuit to the (N-1)th processing circuit), and the N power metering units 12 are single-cell power metering units.
  • N power metering units 12 i.e., a target power metering unit, a first power metering unit to an (N-1)th power metering unit
  • N-1) processing circuits 13 ie, the 1st processing circuit to the (N-1)th processing circuit
  • the current sampling unit 11 is connected between the N battery cell strings 20 and the N power metering units 12 , and the current sampling unit 11 is used to obtain the current of the N battery cell strings 20 and transmit it to the N power metering units 12 .
  • N power metering units 12 correspond one-to-one to N battery cells 201
  • (N-1) processing circuits 13 correspond one-to-one to (N-1) of the N battery cells 201 (i.e., the 2nd to Nth battery cells) that are close to the positive poles of the N strings of battery cells 20, a first end of the processing circuit 13 is connected to the positive pole of the corresponding battery cell 201, a second end of the processing circuit 13 is connected to the negative pole of the corresponding battery cell 201, and a third end of the processing circuit 13 is connected to the corresponding power metering unit 12, wherein the processing circuit 13 transmits a third voltage to the corresponding power metering unit 12 based on the difference between the first voltage and the second voltage, the first voltage is the voltage input to the first end of the processing circuit 13, and the second voltage is the voltage input to the second end of the processing circuit 13, and the power metering unit 12 determines the power of the corresponding battery cell 201 according to the third voltage and the current of the N strings of battery cells 20.
  • the positive pole of the target battery cell is connected to the target power metering unit, which determines the power of the target battery cell based on the voltage of the target battery cell and the current of the N battery cell strings 20.
  • the target battery cell is the battery cell other than the (N-1) battery cell 201 in the N battery cell strings 20, and the target power metering unit is the power metering unit other than the N-1 power metering units 12 in the N power metering units 12.
  • the power metering unit 12 corresponding to the processing circuit 13 can be understood as follows: the processing circuit 13 and the power metering unit 12 correspond to the same battery cell 201 .
  • the third voltage is the voltage difference between the positive and negative electrodes of the corresponding battery cell 201 , that is, the voltage of the battery cell 201 itself.
  • the above-mentioned (N-1) power metering units can be the single-cell power meter U3 in the embodiments shown in Figures 1 to 5, or the PMIC U5 in the embodiments shown in Figures 6 and 7, or the single-cell power meter U3 and the single-cell power meter U7 in the embodiments shown in Figures 8 and 9.
  • the voltage of the positive pole is equal to the sum of its own voltage and the voltage of other battery cells 201 located on the first side of the battery cell 201, wherein the first side is the side close to the negative pole of the N series of battery cells 20, such as the ground terminal. In this way, the voltage of the battery cell 201 cannot be detected from the positive pole of the (N-1) battery cell 201.
  • the processing circuit 13 is used to determine the voltage of the corresponding battery cell (i.e., the third voltage) based on the voltage difference between its first end and the second end, and transmit the third voltage to the corresponding power metering unit 12. At this time, the processing circuit 13 can supply energy to the power metering unit 12 based on the third voltage, and the power metering unit 12 can also use the third voltage as one of the bases for determining the power of the corresponding battery cell 201.
  • the voltage detected from the positive electrode of the target battery cell is the voltage of the target battery cell.
  • the voltage detected from the positive electrode of the target battery cell can be directly used as one of the bases for electricity metering.
  • the single-cell fuel gauge U2 can be powered by CELL1.
  • the positive pole of CELL1 is connected to the single-cell fuel meter U2
  • CELL1 is the target battery cell other than the (N-1) battery cell batteries 201 in the N battery cell strings 20
  • the target fuel metering unit i.e., the single-cell fuel meter U2 as shown in Figures 2 and 3
  • U2 can determine the fuel charge of CELL1 based on the voltage of CELL1 and the current of the N battery cell strings 20.
  • the target power metering unit can also be a power management chip (Power Management IC, PMIC) with an integrated power meter function.
  • PMIC Power Management IC
  • PMICs may integrate multiple functions such as charging, fuel gauge, and motor drive at the same time, while the fuel gauge function of some PMICs only supports monitoring the power of a single-cell battery.
  • electronic device manufacturers such as mobile phones
  • the common practice is to pair the dual-cell batteries with a dual-cell fuel gauge to monitor the power, and the fuel gauge function integrated in the PMIC will not be utilized.
  • the power meter function of the PMIC can be used to monitor the power level of N battery cells in series. At the same time, the number of power metering units in the battery power detection circuit can be reduced, thereby achieving the beneficial effect of simplifying the battery power detection circuit.
  • the power meter function of the PMIC can also be used as any one of the above-mentioned (N-1) power metering units.
  • N-1 the power meter function of the PMIC is used to measure the power of CELL2.
  • the power of the N battery cells can be transmitted to an external device, circuit or component, so that the external device, circuit or component can determine the total power of N strings of battery cells 20 based on the power of the N battery cells.
  • the battery power detection circuit 10 provided in the embodiment of the present application further includes: a processor 14 , which is connected to N power metering units 12 .
  • the processor 14 is used to determine the total power of N battery cell strings 20 according to the power of the N battery cell batteries 201 obtained by the N power metering units 12 .
  • the processor 14 may be a microcontroller unit (MCU) or a central processing unit (CPU) of an electronic device having a battery power detection circuit 10.
  • MCU microcontroller unit
  • CPU central processing unit
  • the first interface of the processor 14 is matched and connected with the second interfaces of the N power metering units 12;
  • the first interface and the second interface include at least one of the following:
  • Inter-Integrated Circuit I2C interface
  • SMBs system management bus
  • HDQ high-speed data queue
  • SPMI system power management interface
  • the processor 14 can be connected via any type of I2C, SMBUS, HDQ, SPMI, etc.
  • the communication interface is connected to the above-mentioned N power metering units 12 respectively to realize data transmission between the processor 14 and the N power metering units 12.
  • the N power metering units 12 transmit the power of the N battery cells 201 to the processor 14 through the above-mentioned communication interface, or the processor 14 can also send a reset signal, a switch control signal, etc. to at least one of the N power metering units 12 through the above-mentioned communication interface, which will not be elaborated here.
  • the second interfaces of the N electricity metering units 12 may use respective communication buses.
  • the second interfaces of the at least two power metering units 12 may use a common communication bus.
  • the processor 14 is connected to the at least two power metering units 12 through the same communication bus, wherein the N power metering units 21 include the at least two power metering units 12, and the at least two power metering units 12 have different device addresses.
  • the processor 14 is connected to N power metering units 12 through an I2C communication interface, as shown in FIG3 , if the I2C device addresses of U2 and U3 are different, the two can share a common I2C bus to connect to the processor U4.
  • a processor 14 connected to all power metering units 12 is provided in the battery power detection circuit 10 so that the processor 14 can determine the total power of N battery strings 20 according to the power of N battery cells 201 .
  • the processing circuit 13 includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4 and an operational amplifier U1, wherein the first resistor R1 and the second resistor R2 have the same resistance value, and the third resistor R3 and the fourth resistor R4 have the same resistance value;
  • the first resistor R1 and the second resistor R2 are connected in series between the positive electrode of the battery cell CELL2 corresponding to the processing circuit 13 and the ground terminal;
  • the third resistor R3 and the fourth resistor R4 are connected in series between the negative electrode of the cell battery CELL2 corresponding to the processing circuit 13 and the output end of the operational amplifier U1;
  • the non-inverting input terminal (i.e., the “+” terminal) of the operational amplifier U1 is connected between the first resistor R1 and the second resistor R2
  • the inverting input terminal (i.e., the “-” terminal) of the operational amplifier U1 is connected between the third resistor R3 and the fourth resistor R4, and the reference terminal of the operational amplifier U1 is grounded.
  • the power supply end of U1 may be connected to the output end of the N-cell battery string 20 , as shown in FIG3 , and the power supply voltage obtained by the power supply end of U1 from the N-cell battery string 20 is V1+V2.
  • the end of the first resistor R1 connected to the positive electrode of CELL2 can be used as the first end of the processing circuit 13
  • the end of the third resistor R3 connected to the negative electrode of CELL2 can be used as the second end of the processing circuit 13
  • the output end of the operational amplifier U1 can be used as the third end of the processing circuit 13.
  • the voltage of the in-phase input terminal of U1 is (V1+V2)/2
  • the voltage of the in-phase input terminal is the same as the voltage of the in-phase input terminal and is also (V1+V2)/2
  • V U1_+ V U1_-
  • V U1_OUT V2
  • the output terminal of U1 outputs a voltage having a value of V2.
  • circuit structure of the processing circuit 13 may also be other structures in addition to the processing circuit 13 shown in FIG3 . It is only necessary for the processing circuit 13 to be able to subtract the first voltage at its first end from the second voltage at its second end, and output the third voltage obtained after the subtraction through its third end. No specific limitation is made here.
  • the current sampling unit 11 includes a fifth resistor Rs, the first end of the fifth resistor Rs is connected to the negative electrode of the N battery cell strings 20 and the first current sampling ends of the N power metering units 12, and the second end of the fifth resistor Rs is connected to the current sampling ends of the N power metering units 12 and the negative electrode of the charging or power-consuming equipment corresponding to the N battery cell strings 20.
  • the above-mentioned fifth resistor Rs can be a high-precision sampling resistor, based on which N power metering units 12 can realize the current sampling function, for example: N power metering units 12 collect the charging current or discharging current of N strings of battery cells 20.
  • N power metering units 12 collect the charging current or discharging current of N battery cell strings 20 through sampling resistors, which can simplify the structural complexity of the current sampling unit 11 .
  • the battery power detection circuit 10 provided in the embodiment of the present application further includes: a temperature detection unit 15 for detecting the temperature of the N battery cells 201;
  • the temperature detection unit 15 is connected to N power metering units 12 , and the N power metering units 12 are respectively used to determine the power of the corresponding battery cell 201 according to the temperature and voltage of the corresponding battery cell 201 and the current of the N series of battery cells 20 .
  • the power of the battery cell 201 is also affected by temperature, for example, the lower the temperature, the greater the internal resistance of the battery cell 201.
  • the power metering unit 12 can also obtain the temperature of the corresponding battery cell 201 through the temperature detection unit 15, so as to determine the power of the battery cell 201 according to the three variables of the current, voltage and temperature of the battery cell 201, so that the accuracy of the power determined by the power metering unit 12 can be improved.
  • the number of the temperature detection units 15 is N, and the N temperature detection units 15 include N Thermistors, namely NTC1 and NTC2, are provided corresponding to CELL1, and NTC2 is provided corresponding to CELL2.
  • NTC1 is connected to the power metering unit 12 corresponding to CELL1, and NTC2 is connected to the power metering unit 12 corresponding to CELL2.
  • NTC1 and CELL1 are set correspondingly, NTC1 and CELL1 can be close to each other, or NTC1 is attached to the surface of CELL1, or NTC1 is embedded in CELL1, etc. In this way, the resistance value of NTC1 will change with the temperature change of CELL1, so that the power metering unit 12 can determine the temperature of CELL1 according to the value of the electrical signal of NTC1.
  • a temperature detection unit 15 may be provided to detect the temperature of the entire N battery cell strings 20 as the temperature of the N battery cell batteries 201 , which will not be elaborated herein.
  • N can also be greater than 2.
  • N can also be greater than 2.
  • N can also be greater than 2.
  • N can also be greater than 2.
  • the circuit structures of the two processing circuits 13 are the same as the circuit structure of the processing circuit 13 in the embodiment shown in FIG3.
  • the voltage across CELL1 is V1
  • the voltage across CELL2 is V2
  • the voltage across CELL3 is V3.
  • the voltage at the in-phase input terminal of U1 is (V1+V2)/2
  • the voltage at the inverting input terminal is the same as the voltage at the in-phase input terminal, which is also (V1+V2)/2
  • the voltage at the in-phase input terminal of U6 is (V1+V2+V3)/2
  • the voltage at the in-phase input terminal is the same as the voltage at the in-phase input terminal, which is also (V1+V2+V3)/2
  • N battery cells in an N string of battery cells are connected in series, so that the voltage of the connection nodes between the N battery cells gradually increases.
  • the positive electrode of CELL 1 is connected to the negative electrode of CELL 2
  • the positive electrode of CELL 2 is connected to the negative electrode of CELL 3
  • the voltage of the connection node between CELL 1 and CELL 2 is V1
  • the voltage of the connection node between CELL 2 and CELL 3 is V1+V2
  • the voltage of the positive electrode of CELL 3 is V1+V2+V3
  • V1 is the voltage of CELL 1
  • V2 is the voltage of CELL 2
  • V3 is the voltage of CELL 3.
  • the voltages of (N-1) battery cells are obtained respectively by connecting (N-1) processing circuits in parallel to the positive and negative electrodes of (N-1) battery cells.
  • the remaining battery cell is the battery cell closest to the ground terminal, and the voltage of the battery cell is equal to the positive electrode voltage of the battery cell.
  • N is equal to 3
  • one processing circuit can be connected in parallel to the positive and negative electrodes of CELL 2 to obtain the voltage V2 of CELL 2
  • another processing circuit can be connected in parallel to the positive and negative electrodes of CELL 3 to obtain the voltage V3 of CELL 3.
  • the voltage of CELL 1 is V2.
  • the voltage is equal to the voltage V1 of the connection node between CELL 1 and CELL 2.
  • the currents of the N battery cells connected in series are equal.
  • the power of each corresponding battery cell can be measured based on the current and voltage of each corresponding battery cell, so as to determine the total power of the N battery strings according to the power of the N battery cells measured by the N power metering units.
  • An embodiment of the present application also provides an electronic device, which may be a mobile phone, a tablet computer, a wearable device (such as a smart watch, smart glasses, etc.), or any other device having N strings of battery cells, wherein the N strings of battery cells include N battery cells connected in series, and N is an integer greater than 1, which is not specifically limited here.
  • an electronic device which may be a mobile phone, a tablet computer, a wearable device (such as a smart watch, smart glasses, etc.), or any other device having N strings of battery cells, wherein the N strings of battery cells include N battery cells connected in series, and N is an integer greater than 1, which is not specifically limited here.
  • the electronic device provided in the embodiments of the present application further comprises any one of the battery power detection circuits provided in the above embodiments.
  • the electronic device can use a single-cell fuel gauge with a simpler structure and lower cost to monitor the power of N strings of battery cells, which can reduce the overall structural complexity of the electronic device and reduce the production cost of the electronic device.
  • a single-cell fuel meter can be used to realize the power monitoring of these two types of batteries.
  • the equipment manufacturer can only import a single-cell fuel meter to realize the normalization of materials and thus reduce the expenditure on management costs.
  • the embodiment of the present application also provides a power measurement method, which can be applied to any battery power detection circuit provided in the embodiments shown in Figures 1 to 9.
  • the power measurement method may include the following steps:
  • Step 1001 obtaining the power of N battery cells output by N power metering units
  • Step 1002 determine the total power of N battery strings according to the power of the N battery cells, wherein the N battery strings include the N battery cells.
  • the processor 14 may execute the above steps 1001 and 1002 .
  • steps 1001 and 1002 may be executed by a processor in an electronic device having a battery power detection circuit 10, or by a device or circuit outside the battery power detection circuit, which is not specifically limited here.
  • the embodiments of the present application can achieve the same beneficial effects as any one of the battery power detection circuits provided in the embodiments shown in FIGS. 1 to 9 , which will not be described in detail herein.
  • the method further includes:
  • the internal state machine information may be information reflecting the internal state machine state of the power metering unit, and the metering parameters may be any parameters used to implement power metering, such as the monitored input or output voltage, current and other parameters of the battery cell.
  • each single-cell fuel meter is abnormal by comparing the internal state machine information and metering parameters of the two single-cell fuel meters, and reset the abnormal single-cell fuel meter in time to restore it to normal.
  • the method further includes:
  • the total power of the N battery cell strings is estimated based on the power obtained by the third power metering unit, wherein the third power metering unit is a power metering unit among the N power metering units that is in a normal working state.
  • an abnormal state such as hardware damage in the power metering unit, which may cause the power metering unit to be unable to accurately measure the battery cells.
  • the working states of N power metering units are independent of each other.
  • the total power consumption of N strings of battery cells can be estimated based on the power metering results of the corresponding battery cells by the power metering units in normal working state. For example, during the discharge of N strings of battery cells, the first power consumption of the corresponding battery cells measured by the power metering units in normal working state can be obtained, and the power consumption of the battery cells corresponding to the power metering units in abnormal working state can be regarded as equal to the first power consumption, and the total power consumption of the N strings of battery cells can be determined accordingly. In this way, the reliability of power metering can be improved.
  • the above embodiment method can be It can be implemented by means of software plus a necessary general hardware platform, or by hardware, but in many cases the former is a better implementation method.
  • the technical solution of the present application, or the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, disk, CD), and includes several instructions for enabling a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in each embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池电量检测电路(10)、电子设备和电量计量方法,电池电量检测电路(10)包括:电流采样单元(11)、N个单电芯电量计量单元(12)以及(N-1)个处理电路(13);电流采样单元(11)连接于N串电芯电池(20)与N个电量计量单元(12)之间,用于获取N串电芯电池(20)的电流后传输至N个电量计量单元(12);N个电量计量单元(12)与N个电芯电池(201)一一对应,(N-1)个处理电路(13)与N个电芯电池(201)中靠近N串电芯电池(20)的正极的(N-1)个一一对应;处理电路(13)基于对应的电芯电池(201)的正负极电压差,向对应的电量计量单元(12)传输该第三电压,电量计量单元(12)根据第三电压和电流确定电芯电池(201)的电量;目标电芯电池(201)的正极与目标电量计量单元(12)连接,目标电量计量单元(12)根据目标电芯电池(201)的电压和电流确定目标电芯电池(201)的电量,目标电芯电池(201)为N串电芯电池(20)中除(N-1)个电芯电池(201)之外的电芯电池,目标电量计量单元(12)为N个电量计量单元(12)中除(N-1)个电量计量单元(12)之外的电量计量单元。

Description

电池电量检测电路、电子设备和电量计量方法
相关申请的交叉引用
本申请主张在2022年11月1日在中国提交的中国专利申请No.202211356269.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于电子技术领域,具体涉及一种电池电量检测电路、电子设备和电量计量方法。
背景技术
随着大功率快充技术的快速普及,越来越多的智能手机产品使用了双串电芯电池,原因在于双串电芯电池的电压是单电芯电池的2倍,如果充入相同的电流,双串电芯电池的充电功率可以达到后者的2倍,从而大大缩短充电时长。
在相关技术中,为了能准确监测双串电芯电池的电量,行业内普遍使用双串电芯电量计来计量双串电芯电池的电量。
但是,相比技术成熟且结构简单的单电芯电量计,双串电芯电量计的电路复杂且成本昂贵。
发明内容
本申请实施例的目的是提供一种电池电量检测电路、电子设备和电量计量方法,能够使用单电芯电量计来检测双串电芯电池的电量。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种电池电量检测电路,该电池电量检测电路用于检测N串电芯电池的电量,所述N串电芯电池包括N个电芯电池,所述N个电芯电池串联,N为大于1的整数;
所述电池电量检测电路包括:电流采样单元、N个电量计量单元以及(N-1)个处理电路,所述N个电量计量单元为单电芯电量计量单元;
所述电流采样单元连接于所述N串电芯电池与所述N个电量计量单元之间,所述电流采样单元用于获取所述N串电芯电池的电流,并传输至所述N个电量计量单元;
所述N个电量计量单元与所述N个电芯电池一一对应,所述(N-1)个处理电路与所述N个电芯电池中靠近所述N串电芯电池的正极的(N-1)个一一对应;
所述处理电路的第一端与对应的电芯电池的正极连接,所述处理电路的第二端与对应 的电芯电池的负极连接,所述处理电路的第三端与对应的电量计量单元连接,其中,所述处理电路基于第一电压和第二电压之间的差值向对应的电量计量单元传输第三电压,所述第一电压为所述处理电路的第一端的电压,,所述第二电压为所述处理电路的第二端的电压,所述电量计量单元根据所述第三电压和所述N串电芯电池的电流确定对应的电芯电池的电量;
目标电芯电池的正极与目标电量计量单元连接,所述目标电量计量单元根据所述目标电芯电池的电压和所述N串电芯电池的电流确定所述目标电芯电池的电量,所述目标电芯电池为所述N串电芯电池中除所述(N-1)个电芯电池之外的电芯电池,所述目标电量计量单元为所述N个电量计量单元中除所述(N-1)个电量计量单元之外的电量计量单元。
第二方面,本申请实施例提供了一种电子设备,该电子设备包括N串电芯电池和如第一方面所述的电池电量检测电路,所述N串电芯电池包括N个电芯电池,所述N个电芯电池串联,N为大于1的整数。
第三方面,本申请实施例提供了一种电量计量方法,用于如第一方面所述的电池电量检测电路,该方法包括:
获取N个电量计量单元输出的N个电芯电池的电量;
根据所述N个电芯电池的电量确定N串电芯电池的总电量,其中,所述N串电芯电池包括所述N个电芯电池。
在本申请实施例中,N串电芯电池中的N个电芯电池串联,这样,N个电芯电池之间的连接节点的电压逐步升高,例如:假设电芯电池CELL 1、CELL 2和CELL 3串联时,CELL 1的正极与CELL 2的负极连接,CELL 2的正极与CELL 3的负极连接,则CELL 1与CELL 2之间的连接节点的电压为V1,CELL 2与CELL 3之间的连接节点的电压为V1+V2,CELL 3的正极的电压为V1+V2+V3,其中,V1为CELL 1的电压,V2为CELL 2的电压,V3为CELL 3的电压。本申请实施例中通过并联在(N-1)个电芯电池的正负极的(N-1)个处理电路来分别获取(N-1)个电芯电池的电压,剩余的1个电芯电池是最靠近接地端的一个电芯电池,该电芯电池的电压等于该电芯电池的正极电压。例如:假设N等于3,可以将1个处理电路并联在CELL 2的正负极,以获取CELL 2的电压V2,以及将另1个处理电路并联在CELL 3的正负极,以获取CELL 3的电压V3,CELL 1的电压则等于CELL 1与CELL 2之间的连接节点的电压V1。这样,再通过电流采样单元采集整个N串电芯电池的电流后,基于相互串联的N个电芯电池的电流相等,此时,利用N个适用于单电芯电量计量的电量计量单元,便可以分别基于各自对应的电芯电池的电流和电压,计量得到各自对应的电芯电池的电量,从而根据N个电量计量单元所计量得到的N个电芯电池的电量确定N串电芯电池的总电量。
附图说明
图1是本申请实施例提供的一种电池电量检测电路的结构框图之一;
图2是本申请实施例提供的一种电池电量检测电路的结构框图之二;
图3是本申请实施例提供的一种电池电量检测电路的电路结构示意图之一;
图4是本申请实施例提供的一种电池电量检测电路的结构框图之三;
图5是本申请实施例提供的一种电池电量检测电路的电路结构示意图之二;
图6是本申请实施例提供的一种电池电量检测电路的结构框图之四;
图7是本申请实施例提供的一种电池电量检测电路的电路结构示意图之三;
图8是本申请实施例提供的一种电池电量检测电路的结构框图之五;
图9是本申请实施例提供的一种电池电量检测电路的电路结构示意图之四;
图10是本申请实施例提供的一种电量计量方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的电池电量检测电路、电子设备和电量计量方法进行详细地说明。
请参阅图1,本申请提供的电池电量检测电路10可以用于检测N串电芯电池20的电量,其中,N串电芯电池20包括N个电芯电池201(即目标电芯电池、第2个电芯电池至第N个电芯电池),所述N个电芯电池201串联,N为大于1的整数。
如图1所示实施例中,以N等于2为例进行举例说明,在实施中N还可以大于2,例如N=3或4等,在此不作具体限定。
其中,N个电芯电池串联,这样,N个电芯电池之间的连接节点的电压由N串电芯电池20的负极(通常为接地端)至N串电芯电池20的正极逐步升高,如图1中所示,电芯电池(CELL)1的正极与CELL2的负极连接,此时,CELL1的负极的电压可以等于0,即CELL1的负极接地,CELL1与CELL2之间的电压为V1,即CELL1的电压,CELL2的正极的电压为V1+V2,即CELL1与CELL2的电压之和。
如图1和图3所示,电池电量检测电路10包括:电流采样单元11、N个电量计量单元12(即目标电量计量单元、第1个电量计量单元至第(N-1)个电量计量单元)以及(N-1) 个处理电路13(即第1个处理电路至第(N-1)个处理电路),所述N个电量计量单元12为单电芯电量计量单元。
其中,电流采样单元11连接于所述N串电芯电池20与所述N个电量计量单元12之间,所述电流采样单元11用于获取所述N串电芯电池20的电流,并传输至所述N个电量计量单元12。
N个电量计量单元12与N个电芯电池201一一对应,(N-1)个处理电路13与N个电芯电池201中靠近N串电芯电池20的正极的(N-1)个(即第2个电芯电池至第N个电芯电池)一一对应,处理电路13的第一端与对应的电芯电池201的正极连接,处理电路13的第二端与对应的电芯电池201的负极连接,处理电路13的第三端与对应的电量计量单元12连接,其中,处理电路13基于第一电压和第二电压之间的差值向对应的电量计量单元12传输第三电压,所述第一电压为处理电路13的第一端输入的电压,第二电压为处理电路13的第二端输入的电压,电量计量单元12根据第三电压和N串电芯电池20的电流确定对应的电芯电池201的电量。
目标电芯电池的正极与目标电量计量单元连接,目标电量计量单元根据所述目标电芯电池的电压和所述N串电芯电池20的电流确定目标电芯电池的电量,目标电芯电池为N串电芯电池20中除(N-1)个电芯电池201之外的电芯电池,目标电量计量单元为N个电量计量单元12中除N-1个电量计量单元12之外的电量计量单元。
其中,处理电路13对应的电量计量单元12可以理解为:处理电路13和电量计量单元12与同一个电芯电池201对应。
上述第三电压为对应的电芯电池201的正负极电压差,即为该电芯电池201自身的电压。
其中,上述(N-1)个电量计量单元可以是如图1至图5所示实施例中的单电芯电量计U3,或者如图6和图7所示实施例中的PMIC U5,或者如图8和图9所示实施例中的单电芯电量计U3和单电芯电量计U7。
对于靠近所述N串电芯电池20的正极的(N-1)个电芯电池201,如图1至图5所示实施例中的第2个电芯电池(CELL2),或者如图6和图7所示实施例中的第2个电芯电池(CELL2)和第3个电芯电池(CELL3),其正极的电压等于自身电压以及位于该电芯电池201的第一侧的其他电芯电池201的电压之和,其中,第一侧为靠近N串电芯电池20的负极的一侧,如接地端。这样,不能够从该(N-1)个电芯电池201的正极来检测该电芯电池201的电压。
本申请实施例中,利用处理电路13根据其第一端和第二端的电压差来确定对应的电芯电池的电压(即第三电压),并向对应的电量计量单元12传输该第三电压,此时,处理电路13既可以基于该第三电压实现对该电量计量单元12供能,电量计量单元12也可以将该第三电压作为确定对应的电芯电池201的电量的依据之一。
对于剩下的1个电芯电池201,即目标电芯电池(如图1至图7所示实施例中的CELL1), 从该目标电芯电池的正极检测到的电压即为该目标电芯电池的电压,此时,可以直接将从该目标电芯电池的正极检测到的电压作为电量计量的依据之一。
在实施中,单电芯电量计U2可以由CELL1供电。
如图2和图3所示,CELL1的正极与单电芯电量计U2连接,CELL1为所述N串电芯电池20中除所述(N-1)个电芯电池201之外的目标电芯电池,目标电量计量单元(即如图2和图3中所示的单电芯电量计U2)为所述N个电量计量单元12中除所述(N-1)个电量计量单元12之外的电量计量单元,U2可以根据CELL1的电压和所述N串电芯电池20的电流确定CELL1的电量。
当然,如图4和图5所示,上述目标电量计量单元还可以是集成有电量计功能的电源管理芯片(Power Management IC,PMIC)。
在相关技术中,PMIC中可能会同时集成充电、电量计、马达驱动等多种功能,而一些PMIC的电量计功能只支持监测单电芯电池的电量。当电子设备(如手机)厂商使用了这些PMIC,又出于实现大功率快充的目的使用双串电芯电池时,普遍的做法是为双串电芯电池搭配一个双串电芯电量计来监测电量,PMIC集成的电量计功能将得不到利用。
而本申请实施例中,对于N串电芯电池的电量监测,可以利用PMIC的电量计功能,同时,还能够减少电池电量检测电路中的电量计量单元的数量,达到简化电池电量检测电路的有益效果。
需要说明的是,除了可以复用上述PMIC的电量计功能作为目标电量计量单元之外,该PMIC的电量计功能还可以作为上述(N-1)个电量计量单元中的任一个,例如:如图6和图7所示,PMIC的电量计功能用于计量CELL2的电量。
在一种可能的实现方式中,在N个电量计量单元12计量得到N个电芯电池的电量之后,可以将该N个电芯电池的电量传输至外部的设备、电路或元器件,以使外部的设备、电路或元器件根据该N个电芯电池的电量来确定N串电芯电池20的总电量。
在另一种可能的实现方式中,如图2所述,本申请实施例提供的电池电量检测电路10还包括:处理器14,该处理器14与N个电量计量单元12连接。
其中,处理器14用于根据N个电量计量单元12得到的N个电芯电池201的电量,确定N串电芯电池20的总电量。
例如:处理器14可以是微控制单元(Microcontroller Unit,MCU)或者是具有电池电量检测电路10的电子设备的中央处理器(Central Processing Unit,CPU)等。
可选地,处理器14的第一接口与N个电量计量单元12的第二接口匹配连接;
所述第一接口和所述第二接口包括以下至少一项:
内置集成电路(Inter-Integrated Circuit,I2C)接口、系统管理总线(System Management Bus,SMBus)接口、高速数据队列(High-speed Data Queue,HDQ)接口、系统电源管理接口(System Power Management Interface,SPMI)。
本实施方式中,上述处理器14可以通过I2C、SMBUS、HDQ、SPMI等任意类型的 通信接口分别与上述N个电量计量单元12连接,以实现处理器14与N个电量计量单元12之间的数据传输,例如:N个电量计量单元12通过上述通信接口向处理器14传输N个电芯电池201的电量,或者处理器14也可以通过上述通信接口向N个电量计量单元12中的至少一个发送复位信号、开关控制信号等,在此不做赘述。
在一种可能的实现方式中,上述N个电量计量单元12的第二接口可以使用各自的通信总线。
在另一种可能的实现方式中,至少两个电量计量单元12的第二接口可以使用公共的通信总线。这样,处理器14通过同一通信总线与至少两个电量计量单元12连接,其中,所述N个电量计量单元21包括所述至少两个电量计量单元12,且所述至少两个电量计量单元12分别具有不同的器件地址。
例如:以处理器14通过I2C通信接口与N个电量计量单元12分别连接为例,如图3所示,如果U2和U3的I2C器件地址不相同则两者可以共用一路I2C总线连接到处理器U4。
本实施方式中,通过在电池电量检测电路10中设置与全部电量计量单元12连接的处理器14,以使该处理器14能够根据N个电芯电池201的电量,确定N串电芯电池20的总电量。
作为一种可选的实施方式,如图3所示,处理电路13包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4和运算放大器U1,所述第一电阻R1与所述第二电阻R2的阻值相等,所述第三电阻R3与所述第四电阻R4的阻值相等;
第一电阻R1与第二电阻R2串联在处理电路13对应的电芯电池CELL2的正极和接地端之间;
第三电阻R3与第四电阻R4串联在处理电路13对应的电芯电池CELL2的负极和所述运算放大器U1的输出端之间;
运算放大器U1的同相输入端(即“+”端)连接于第一电阻R1与第二电阻R2之间,运算放大器U1的反相输入端(即“-”端)连接于第三电阻R3与第四电阻R4之间,运算放大器U1的参考端接地。
在实施中,U1的电源端可以与N串电芯电池20的输出端连接,如图3所示,该U1的电源端从N串电芯电池20获取的电源电压为V1+V2。
其中,上述第一电阻R1的连接CELL2正极的一端可以作为处理电路13的第一端,第三电阻R3的连接CELL2负极的一端可以作为处理电路13的第二端,运算放大器U1的输出端可以作为处理电路13的第三端,U1的同相输入端电压为(V1+V2)/2,反相输入端电压与同相输入端电压相同也为(V1+V2)/2,输出端的电压则为(V1+V2)-V1=V2,至此,U1便实现了CELL2的正极电压V1+V2减去CELL2的负极电压V1,得到V2的减法功能。
具体地,如图3所示,假设CELL1两端的电压为V1,CELL2两端的电压为V2,运算放大器的同相输入端电压为VU1_+,反相输入端电压为VU1_-,输出端电压为VU1_OUT; 通过设置R1=R2,R3=R4,根据运算放大器“虚断”的原理,即同相输入端和反相输入端的输入电流始终为0,满足以下公式:

根据运算放大器“虚短”的原理,即同相输入端与反相输入端的电压相等,满足以下公式:
VU1_+=VU1_-
综合运算放大器的“虚断”和“虚短”原理,可以得到:
VU1_OUT=V2
也就是说,U1的输出端输出取值为V2的电压。
需要说明的是,在实施中,处理电路13的电路结构还可以是除了如图3所示的处理电路13之外的其他结构,仅需使该处理电路13能够实现将其第一端的第一电压与其第二端的第二电压进行相减,并通过其第三端输出相减后得到的第三电压即可,在此不作具体限定。
作为一种可选地实施方式,如图3所示,电流采样单元11包括第五电阻Rs,第五电阻Rs的第一端连接于N串电芯电池20的负极和N个电量计量单元12的第一电流采样端,第五电阻Rs的第二端连接于N个电量计量单元12的电流采样端和N串电芯电池20对应的充电或用电设备的负极。
其中,上述第五电阻Rs可以是高精度采样电阻,基于该电阻N个电量计量单元12可以实现电流采样功能,例如:N个电量计量单元12采集N串电芯电池20的充电电流或放电电流。
本实施方式中,N个电量计量单元12通过采样电阻来采集N串电芯电池20的充电电流或放电电流,可以简化电流采样单元11的结构复杂程度。
作为一种可选的实施方式,如图3所示,本申请实施例提供的电池电量检测电路10还包括:温度检测单元15,用于检测N个电芯电池201的温度;
温度检测单元15与N个电量计量单元12连接,N个电量计量单元12分别用于根据对应的电芯电池201的温度和电压,以及N串电芯电池20的电流,确定对应的电芯电池201的电量。
在一些实施方式中,电芯电池201的电量还受温度的影响,例如:温度越低,电芯电池201的内阻越大。此时,电量计量单元12还可以通过温度检测单元15获取对应的电芯电池201的温度,从而根据电芯电池201的电流、电压以及温度三个变量来确定该电芯电池201的电量,这样,可以提升电量计量单元12确定的电量的准确度。
可选地,如图3所述,温度检测单元15的数量为N个,N个温度检测单元15包括N 个热敏电阻,即NTC1和NTC2,NTC1与CELL1对应设置,NTC2与CELL2对应设置,且NTC1与CELL1对应的电量计量单元12连接,NTC2与CELL2对应的电量计量单元12连接。
其中,NTC1与CELL1对应设置,可以是NTC1与CELL1靠近,或者NTC1贴设于CELL1的表面,或者NTC1嵌入CELL1内部等,这样,NTC1的阻值会跟随CELL1的温度变化而变化,从而使得电量计量单元12能够根据NTC1的电信号的取值来确定CELL1的温度。
同理,上述NTC2与CELL2对应设置的含义和作用与上述NTC1与CELL1对应设置相同,在此不再赘述。
需要说明的是,在其他实施方式中,还可以设置一个温度检测单元15来检测整个N串电芯电池20的温度,来作为N个电芯电池201的温度,在此不作赘述。
此外,N还可以大于2,例如:如图8和图9所示实施例中,N=3,此时,3串电芯电池的电量计量过程与如图1至图7所示的双串电芯电池的电量计量过程相似,不同之处在于,基于3串电芯电池中电芯电池的数量增加了,与之对应的处理电路13、电量计量单元12(如图9中所示U2、U3和U7)、温度检测单元15(如图9中所示NTC1、NTC2和NTC3)的数量也相应的增加,且各个处理电路13的输入电平和输出电平也有所改变。
具体地,如图8和图9所示实施例中,2个处理电路13的电路结构与如图3所示实施例中的处理电路13的电路结构相同,此时,如图8和图9所示实施例中假设CELL1两端的电压为V1,CELL2两端的电压为V2,CELL3两端的电压为V3。与CELL2对应的处理电路13中,通过设置R1=R2,R3=R4,根据运算放大器“虚短虚断”的原理,U1的同相输入端电压为(V1+V2)/2,反相输入端电压与同相输入端电压相同也为(V1+V2)/2,输出端电压则为(V1+V2)-V1=V2,实现了减法功能。此外,与CELL3对应的处理电路13中,通过设置R5=R6,R7=R8,根据运算放大器“虚短虚断”的原理,U6的同相输入端电压为(V1+V2+V3)/2,反相输入端电压与同相输入端电压相同也为(V1+V2+V3)/2,输出端电压则为(V1+V2+V3)-(V1+V2)=V3,实现了减法功能。
在本申请实施例中,N串电芯电池中的N个电芯电池串联,这样,N个电芯电池之间的连接节点的电压逐步升高,例如:假设电芯电池CELL 1、CELL 2和CELL 3串联时,CELL 1的正极与CELL 2的负极连接,CELL 2的正极与CELL 3的负极连接,则CELL 1与CELL 2之间的连接节点的电压为V1,CELL 2与CELL 3之间的连接节点的电压为V1+V2,CELL 3的正极的电压为V1+V2+V3,其中,V1为CELL 1的电压,V2为CELL 2的电压,V3为CELL 3的电压。本申请实施例中通过并联在(N-1)个电芯电池的正负极的(N-1)个处理电路来分别获取(N-1)个电芯电池的电压,剩余的1个电芯电池是最靠近接地端的一个电芯电池,该电芯电池的电压等于该电芯电池的正极电压。例如:假设N等于3,可以将1个处理电路并联在CELL 2的正负极,以获取CELL 2的电压V2,以及将另1个处理电路并联在CELL 3的正负极,以获取CELL 3的电压V3,CELL 1的电 压则等于CELL 1与CELL 2之间的连接节点的电压V1。这样,再通过电流采样单元采集整个N串电芯电池的电流后,基于相互串联的N个电芯电池的电流相等,此时,利用N个适用于单电芯电量计量的电量计量单元,便可以分别基于各自对应的电芯电池的电流和电压,计量得到各自对应的电芯电池的电量,从而根据N个电量计量单元所计量得到的N个电芯电池的电量确定N串电芯电池的总电量。
本申请实施例还提供一种电子设备,该电子设备可以是手机、平板电脑、佩戴式设备(如:智能手表、智能眼镜等)等任意具有N串电芯电池的设备,其中,所述N串电芯电池包括N个电芯电池,所述N个电芯电池串联,N为大于1的整数,在此不作具体限定。
本申请实施例提供的电子设备还具有如上实施例中提供的任一种电池电量检测电路。
这样,利用本申请实施例提供的任一种电池电量检测电路,可以实现检测电子设备内的N串电芯电池的电量。
本申请实施例中,电子设备可以使用结构更加简单,成本更加低廉的单电芯电量计来实现对N串电芯电池的电量监测,能够降低电子设备的整体结构复杂程度,以及降低电子设备的生产成本。
值得提出的是,以双串电芯电池为例,同一个设备产商所生产的电子设备(如手机)有的会使用单电芯电池的,也有使用双串电芯电池的。在相关技术中,为了满足这两类电池的电量监测需求,该设备产商需要分别导入单电芯电量计和双串电芯电量计,由此增加了管理费用上的支出。
而本申请实施例中,可以使用单电芯电量计来实现这两类电池的电量监测,这样,设备产商可以只导入单电芯电量计,实现物料的归一化从而减少管理费用上的支出。
本申请实施例还提供一种电量计量方法,该方法可以应用于如图1至图9所示实施例中提供的任一种电池电量检测电路,如图10所示,该电量计量方法可以包括以下步骤:
步骤1001、获取N个电量计量单元输出的N个电芯电池的电量;
步骤1002、根据所述N个电芯电池的电量确定N串电芯电池的总电量,其中,所述N串电芯电池包括所述N个电芯电池。
本实施方式中,可以是处理器14执行上述步骤1001和步骤1002。
当然,在实际应用中,还可以是具有电池电量检测电路10的电子设备内的处理器执行上述步骤1001和步骤1002,或者是电池电量检测电路外部的设备或电路执行上述步骤1001和步骤1002,在此不作具体限定。
本申请实施例能够实现与如图1至图9所示实施例中提供的任一种电池电量检测电路相同的有益效果,在此不再赘述。
作为一种可选的实施方式,所述方法还包括:
获取所述N个电量计量单元的内部状态机信息和/或计量参数;
在根据所述N个电量计量单元的内部状态机信息和/或计量参数,确定第一电量计量 单元处于异常状态的情况下,向所述第一电量计量单元发送复位信息,其中,所述复位信息用于复位所述第一电量计量单元,所述N个电量计量单元包括所述第一电量计量单元。
其中,上述内部状态机信息可以是反映电量计量单元的内部状态机状态的信息,上述计量参数可以是用于实现电量计量的任意参数,例如:监测到的电芯电池输入或输出的电压、电流等参数。
在实施中,可能存在电量计量单元的内部状态机跑飞或者参数异常变化的情况,在相关技术中,对于当双串电芯电量计在正常工作过程中出现内部状态机跑飞或者参数异常变化等问题时,手机内的处理器往往很难快速识别出来,无法及时地复位电量计使其恢复正常。
而本申请实施例中,可以通过对比两个单电芯电量计的内部状态机信息和计量参数来判断各个单电芯电量计是否异常,并及时地复位异常的单电芯电量计,使其恢复正常。
作为一种可选的实施方式,所述方法还包括:
在所述N个电量计量单元中的第二电量计量单元处异常状态的情况下,根据第三电量计量单元获取的电量估计所述N串电芯电池的总电量,其中,所述第三电量计量单元为所述N个电量计量单元中的处于正常工作状态下的电量计量单元。
在实施中,可能存在电量计量单元出现硬件损坏等异常状态,从而导致该电量计量单元无法准确计量电芯电池的情况。
在相关技术中,当双串电芯电量计出现了硬件损坏导致无法工作时,双串电芯电池的电量就无法被有效地监控。
而本申请实施例中,基于N个电量计量单元的工作状态是相互独立的,当其中部分出现硬件损坏等导致其处于异常工作状态时,可以基于正常工作状态下的电量计量单元对对应的电芯电池的电量计量结果来推算N串电芯电池的总电量,例如:在N串电芯电池放电的过程中,可以获取正常工作的电量计量单元所计量到的其对应的电芯电池的第一耗电量,并将未正常工作的电量计量单元所对应的电芯电池的耗电量视为等于该第一耗电量,并据此确定N串电芯电池的总耗电量,这样,可以提高电量计量的可靠性。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和电子设备的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可 借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种电池电量检测电路,所述电池电量检测电路用于检测N串电芯电池的电量,所述N串电芯电池包括N个电芯电池,所述N个电芯电池串联,N为大于1的整数;
    所述电池电量检测电路包括:电流采样单元、N个电量计量单元以及(N-1)个处理电路,所述N个电量计量单元为单电芯电量计量单元;
    所述电流采样单元连接于所述N串电芯电池与所述N个电量计量单元之间,所述电流采样单元用于获取所述N串电芯电池的电流,并传输至所述N个电量计量单元;
    所述N个电量计量单元与所述N个电芯电池一一对应,所述(N-1)个处理电路与所述N个电芯电池中靠近所述N串电芯电池的正极的(N-1)个一一对应;
    所述处理电路的第一端与对应的电芯电池的正极连接,所述处理电路的第二端与对应的电芯电池的负极连接,所述处理电路的第三端与对应的电量计量单元连接,其中,所述处理电路基于第一电压和第二电压之间的差值向对应的电量计量单元传输第三电压,所述第一电压为所述处理电路的第一端的电压,所述第二电压为所述处理电路的第二端的电压,所述电量计量单元根据所述第三电压和所述N串电芯电池的电流确定对应的电芯电池的电量;
    目标电芯电池的正极与目标电量计量单元连接,所述目标电量计量单元根据所述目标电芯电池的电压和所述N串电芯电池的电流确定所述目标电芯电池的电量,所述目标电芯电池为所述N串电芯电池中除所述(N-1)个电芯电池之外的电芯电池,所述目标电量计量单元为所述N个电量计量单元中除所述(N-1)个电量计量单元之外的电量计量单元。
  2. 根据权利要求1所述的电池电量检测电路,其中,所述电池电量检测电路还包括:处理器,所述处理器与所述N个电量计量单元连接;
    所述处理器用于根据所述N个电量计量单元得到的所述N个电芯电池的电量,确定所述N串电芯电池的总电量。
  3. 根据权利要求1所述的电池电量检测电路,其中,所述处理电路包括第一电阻、第二电阻、第三电阻、第四电阻和运算放大器,所述第一电阻与所述第二电阻的阻值相等,所述第三电阻与所述第四电阻的阻值相等;
    所述第一电阻与所述第二电阻串联在所述处理电路对应的电芯电池的正极和接地端之间;
    所述第三电阻与所述第四电阻串联在所述处理电路对应的电芯电池的负极和所述运算放大器的输出端之间;
    所述运算放大器的同相输入端连接于所述第一电阻与所述第二电阻之间,所述运算放大器的反相输入端连接于所述第三电阻与所述第四电阻之间,所述运算放大器的参考端接地。
  4. 根据权利要求1所述的电池电量检测电路,其中,所述电流采样单元包括第五电阻,所述第五电阻的第一端连接于所述N串电芯电池的负极和所述N个电量计量单元的第一电流采样端,所述第五电阻的第二端连接于所述N个电量计量单元的第二电流采样端和所述N串电芯电池对应的充电或用电设备的负极。
  5. 根据权利要求1所述的电池电量检测电路,其中,所述电池电量检测电路还包括:温度检测单元,用于检测所述N个电芯电池的温度;
    所述温度检测单元与所述N个电量计量单元连接,所述N个电量计量单元分别用于根据对应的电芯电池的温度和电压,以及所述N串电芯电池的电流,确定对应的电芯电池的电量。
  6. 根据权利要求5所述的电池电量检测电路,其中,所述温度检测单元的数量为N个,所述N个温度检测单元包括N个热敏电阻,所述N个热敏电阻与所述N个电芯电池一一对应设置,且所述N个热敏电阻分别与对应同一个电芯电池的电量计量单元连接。
  7. 根据权利要求2所述的电池电量检测电路,其中,所述处理器的第一接口与所述N个电量计量单元的第二接口匹配连接;
    所述第一接口和所述第二接口包括以下至少一项:
    内置集成电路I2C接口、系统管理总线SMBus接口、高速数据队列HDQ接口、系统电源管理接口SPMI。
  8. 根据权利要求7所述的电池电量检测电路,其中,所述处理器通过同一通信总线与至少两个电量计量单元连接,其中,所述N个电量计量单元包括所述至少两个电量计量单元,且所述至少两个电量计量单元分别具有不同的器件地址。
  9. 根据权利要求1所述的电池电量检测电路,其中,所述N个电量计量单元中的至少一个电量计量单元为电源管理芯片PMIC。
  10. 一种电子设备,包括:N串电芯电池和如权利要求1至9中任一项所述的电池电量检测电路,所述N串电芯电池包括N个电芯电池,所述N个电芯电池串联,N为大于1的整数。
  11. 一种电量计量方法,用于如权利要求1至9中任一项所述的电池电量检测电路,所述方法包括:
    获取N个电量计量单元输出的N个电芯电池的电量;
    根据所述N个电芯电池的电量确定N串电芯电池的总电量,其中,所述N串电芯电池包括所述N个电芯电池。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    获取所述N个电量计量单元的内部状态机信息和/或计量参数;
    在根据所述N个电量计量单元的内部状态机信息和/或计量参数,确定第一电量计量单元处于异常状态的情况下,向所述第一电量计量单元发送复位信息,其中,所述复位信息用于复位所述第一电量计量单元,所述N个电量计量单元包括所述第一电量计量单元。
  13. 根据权利要求11所述的方法,其中,所述方法还包括:
    在所述N个电量计量单元中的第二电量计量单元处异常状态的情况下,根据第三电量计量单元获取的电量估计所述N串电芯电池的总电量,其中,所述第三电量计量单元为所述N个电量计量单元中的处于正常工作状态下的电量计量单元。
PCT/CN2023/126993 2022-11-01 2023-10-27 电池电量检测电路、电子设备和电量计量方法 WO2024093811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211356269.4A CN116027207A (zh) 2022-11-01 2022-11-01 电池电量检测电路、电子设备和电量计量方法
CN202211356269.4 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024093811A1 true WO2024093811A1 (zh) 2024-05-10

Family

ID=86071174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126993 WO2024093811A1 (zh) 2022-11-01 2023-10-27 电池电量检测电路、电子设备和电量计量方法

Country Status (2)

Country Link
CN (1) CN116027207A (zh)
WO (1) WO2024093811A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116027207A (zh) * 2022-11-01 2023-04-28 维沃移动通信有限公司 电池电量检测电路、电子设备和电量计量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011881A1 (en) * 2000-02-07 2001-08-09 Hitachi, Ltd. Power storage device and method of measuring voltage of storage battery
CN105785269A (zh) * 2014-12-22 2016-07-20 深圳市中兴微电子技术有限公司 一种电池电量计量系统及方法
US20170131358A1 (en) * 2015-11-05 2017-05-11 Samsung Electronics Co., Ltd. Fuel gauge system for measuring the amount of current in battery and portable electronic device including the same
JP2017156244A (ja) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 電池電圧検出装置
CN109642930A (zh) * 2016-09-13 2019-04-16 松下知识产权经营株式会社 管理装置以及蓄电系统
WO2021164475A1 (zh) * 2020-02-21 2021-08-26 Oppo广东移动通信有限公司 电量检测装置和方法、电子设备
CN114859258A (zh) * 2022-07-06 2022-08-05 荣耀终端有限公司 应用于多电池的电量计和电子设备
CN116027207A (zh) * 2022-11-01 2023-04-28 维沃移动通信有限公司 电池电量检测电路、电子设备和电量计量方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011881A1 (en) * 2000-02-07 2001-08-09 Hitachi, Ltd. Power storage device and method of measuring voltage of storage battery
CN105785269A (zh) * 2014-12-22 2016-07-20 深圳市中兴微电子技术有限公司 一种电池电量计量系统及方法
US20170131358A1 (en) * 2015-11-05 2017-05-11 Samsung Electronics Co., Ltd. Fuel gauge system for measuring the amount of current in battery and portable electronic device including the same
JP2017156244A (ja) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 電池電圧検出装置
CN109642930A (zh) * 2016-09-13 2019-04-16 松下知识产权经营株式会社 管理装置以及蓄电系统
WO2021164475A1 (zh) * 2020-02-21 2021-08-26 Oppo广东移动通信有限公司 电量检测装置和方法、电子设备
CN114859258A (zh) * 2022-07-06 2022-08-05 荣耀终端有限公司 应用于多电池的电量计和电子设备
CN116027207A (zh) * 2022-11-01 2023-04-28 维沃移动通信有限公司 电池电量检测电路、电子设备和电量计量方法

Also Published As

Publication number Publication date
CN116027207A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
WO2018196406A1 (zh) 多串电池组管理系统
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2024093811A1 (zh) 电池电量检测电路、电子设备和电量计量方法
CN103166289B (zh) 一种在充电时检测电池电压的移动终端和检测方法
CN102590609B (zh) 移动终端及测量移动终端功耗的方法
CN105429226A (zh) 大容量充放电电池管理系统
WO2010048873A1 (zh) 识别充电器类型的方法及装置
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2012060597A2 (ko) 배터리의 교환 시기 통보 장치 및 방법
WO2016112718A1 (zh) 锂电池组充放电保护板及锂电池组保护系统
WO2019109951A1 (zh) 便携式电能系统及电池包剩余电量测量方法
WO2020244604A1 (zh) 电路检测方法及装置、设备、存储介质
CN111913113A (zh) 电芯内短路识别方法、装置、存储介质及电子设备
WO2019117487A1 (ko) 전압 측정 장치 및 방법
WO2020189998A1 (ko) 배터리 뱅크 제어 장치 및 방법
WO2022065676A1 (ko) 배터리 저항 산출 장치 및 방법
CN103633705B (zh) 在充电时通过放电方式精确获取电池电压的终端和方法
CN203502567U (zh) 动力锂电池组充放电测试装置
CN210109275U (zh) 一种电池组故障检测及反馈电路
CN216351127U (zh) 一种应用于电池管理系统的单电源双向电流信号检测电路
US20230022867A1 (en) Smart battery device, and electronic device thereof
CN213069108U (zh) 电池组剩余电量测量电路
CN208127933U (zh) 信号采集电路及电池管理系统
WO2021030934A1 (zh) 电池包、测量电池电流的电路系统及测量电池电流的设备