WO2021030934A1 - 电池包、测量电池电流的电路系统及测量电池电流的设备 - Google Patents

电池包、测量电池电流的电路系统及测量电池电流的设备 Download PDF

Info

Publication number
WO2021030934A1
WO2021030934A1 PCT/CN2019/100964 CN2019100964W WO2021030934A1 WO 2021030934 A1 WO2021030934 A1 WO 2021030934A1 CN 2019100964 W CN2019100964 W CN 2019100964W WO 2021030934 A1 WO2021030934 A1 WO 2021030934A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
battery pack
circuit
control signal
resistance value
Prior art date
Application number
PCT/CN2019/100964
Other languages
English (en)
French (fr)
Inventor
胡章荣
姜敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/100964 priority Critical patent/WO2021030934A1/zh
Priority to CN201980080363.1A priority patent/CN113169385B/zh
Publication of WO2021030934A1 publication Critical patent/WO2021030934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/18Regulation of the charging current or voltage by variation of field due to variation of ohmic resistance in field circuit, using resistance switching in or out of circuit step by step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of battery management, and in particular to a battery pack, a circuit system for measuring battery current, and a device for measuring battery current.
  • the measurement of the battery power of an electronic device is of great significance to the battery itself and the user of the electronic device.
  • the measurement of the battery power of the electronic device can not only better protect the battery of the electronic device from overdischarge and overcharge, but also enable the user to Know the remaining power of the electronic device, and then estimate the available time of the electronic device, and save important data in time. Therefore, a coulomb meter (also called a fuel gauge) for measuring battery power has also become one of the standard modules of electronic equipment.
  • the coulomb counter calculates the charge and discharge current of the battery by collecting the voltage drop of the sampling resistor on the battery charge and discharge circuit, and then determines the battery power according to the charge and discharge current of the battery.
  • the resistance of the battery charging and discharging circuit will be designed to be as small as possible.
  • a small charging and discharging circuit resistance brings a major challenge to the coulomb counter to detect small currents.
  • the coulomb counter has a large function expansion space, which is limited by the condition that the resistance of the charge and discharge circuit is small, which makes it impossible for extended applications that require high precision measurement of small currents. achieve.
  • This application provides a battery pack, a circuit system for measuring battery current, and a device for measuring battery current, so as to improve the accuracy of battery current measurement.
  • the present application provides a battery pack including a control signal receiving end, an adjustable resistance circuit and a battery, and the adjustable resistance circuit is connected in series with the battery.
  • the control signal receiving end is used to receive the first control signal sent by the circuit system outside the battery pack;
  • the resistance adjustable circuit is used to adjust the resistance of the resistance adjustable circuit based on the first control signal received by the control signal receiving end value.
  • the resistance value of the adjustable resistance circuit in the battery pack can be adjusted under the control of the circuit system outside the battery pack, that is, the internal resistance of the battery pack is adjustable, and the output of the front and rear battery packs can be adjusted through the internal resistance of the battery pack.
  • the voltage and the resistance change before and after the adjustment of the internal resistance of the battery pack determine the current generated by the battery in the battery pack.
  • the accuracy of the current generated by the determined battery pack is higher. This scheme is especially suitable for accurate measurement of small currents.
  • the resistance value of the adjustable resistance circuit before adjustment (that is, the default resistance value of the adjustable resistance circuit) is usually a small value or even a minimum value.
  • the control signal is usually used to control the adjustable resistance circuit to increase the resistance value of the adjustable resistance circuit.
  • the adjustable resistance circuit includes at least one transistor, and the first control signal is used to control the at least one transistor to adjust the resistance value of the adjustable resistance circuit.
  • the at least one transistor may be a metal oxide semiconductor MOS tube, or may be a semiconductor device with different resistances in different working states, such as a triode or a thyristor.
  • At least one transistor in the resistance adjustable circuit may include a first transistor.
  • the first control signal is used to adjust the conduction degree of the first transistor during the battery discharge process to adjust the adjustable resistance.
  • the resistance value of the circuit may include a first transistor.
  • At least one transistor in the resistance adjustable circuit may include a first transistor and a second transistor connected in parallel, and the resistance value when the first transistor is turned on is different from the resistance value when the second transistor is turned on.
  • the first control signal is used to control the state of the first transistor and/or the state of the second transistor during the battery discharge process to adjust the resistance value of the adjustable resistance circuit.
  • the state of the first transistor and the state of the second transistor include On state or off state.
  • At least one transistor in the resistance adjustable circuit may also include a third transistor.
  • the first control signal is used to adjust the conduction degree of the third transistor during the battery charging process to adjust the resistance. Adjust the resistance value of the circuit.
  • At least one transistor in the resistance adjustable circuit includes a third transistor and a fourth transistor connected in parallel, and the resistance value when the third transistor is turned on is different from the resistance value when the fourth transistor is turned on.
  • the state of the third transistor and the state of the fourth transistor include conduction On or off state.
  • the resistance adjustable circuit further includes a protection circuit for generating at least one transistor control signal based on the first control signal, and the at least one transistor control signal can act on the at least one transistor in the resistance adjustable circuit.
  • the control terminal is used to control at least one transistor.
  • the present application also provides a circuit system for measuring battery current.
  • the circuit system includes a control circuit and a measurement circuit.
  • the processing circuit is used to send a first control signal to the battery pack, the first control signal is used to adjust the resistance value of the battery pack;
  • the measurement circuit is used to detect the first output voltage and the first output voltage of the battery pack before adjusting the resistance value of the battery pack.
  • the second output voltage of the battery pack after adjusting the resistance value of the battery pack;
  • the processing circuit is also used to: determine the output voltage generated by the battery pack according to the first output voltage, the second output voltage and the resistance value change caused by adjusting the resistance value of the battery pack Current.
  • the circuit system can control the resistance value of the battery pack, and determine the current generated by the battery pack according to the output voltage of the battery pack before and after the adjustment of the resistance value of the battery pack and the change in the resistance value of the battery pack.
  • the circuit system determines the accuracy of the current generated by the battery pack, especially for the small current generated by the battery pack.
  • the current generated by the battery pack is charging current or discharging current.
  • the current generated by the battery pack may be a discharge leakage current.
  • the measurement circuit is also used to detect the detection current generated by the battery pack; the processing circuit is specifically used to: when the detection current is less than the first threshold, send a first control signal to the battery pack, and according to the first output voltage , The second output voltage and the change in resistance value determine the current generated by the battery pack; the measuring circuit is specifically used to detect the first output voltage and the second output voltage when the detected current is less than the first threshold.
  • the current generated by the battery pack is the ratio of the difference between the first output voltage and the second output voltage to the change in the resistance value.
  • the measurement circuit is also used to detect the detection current generated by the battery pack; the processing circuit is also used to: when the detection current is greater than the second threshold, send a second control signal to the battery pack, and the second control signal is used for Adjust the resistance value of the battery pack; the measuring circuit is also used to detect the third output voltage of the battery pack before adjusting the resistance value of the battery pack when the detection current is greater than the second threshold value, and the second output voltage of the battery pack after adjusting the resistance value of the battery pack Four output voltages; the processing circuit is also used to determine the resistance value change caused by adjusting the resistance value of the battery pack according to the third output voltage, the fourth output voltage and the detection current.
  • the second control signal is the same as the first control signal, so that when the detection current is greater than the second threshold, the resistance value change caused by the resistance value of the battery pack is adjusted, and the battery is adjusted when the detection current is less than the first threshold.
  • the resistance value change caused by the resistance value of the bag is the same.
  • the measurement circuit includes a coulomb counter and a sampling resistor.
  • the first voltage detection terminal of the coulomb counter is used to connect with the first output terminal of the battery pack
  • the second voltage detection terminal of the coulomb counter is connected with the second output terminal of the battery pack
  • the first current detection terminal of the coulomb counter is connected with The second output terminal of the battery pack is connected with the first terminal of the sampling resistor
  • the second current detection terminal of the coulomb counter is connected with the second terminal of the sampling resistor.
  • this application also provides a device for measuring battery current, which includes the battery pack according to any one of the possible implementations of the first aspect, and any one of the possible implementations of the second aspect.
  • any device for measuring battery current provided above includes the battery pack according to the first aspect and the circuit system for measuring battery current according to the second aspect. Therefore, the beneficial effects that can be achieved are With reference to the beneficial effects of the battery pack provided in the first aspect and the circuit system for measuring battery current provided in the second aspect, details are not repeated here.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • 2A is one of the structural schematic diagrams of a battery pack provided by an embodiment of the application.
  • 2B is a second structural diagram of a battery pack provided by an embodiment of this application.
  • 3A is one of the schematic structural diagrams of a resistance adjustable circuit provided by an embodiment of the application.
  • 3B is the second structural diagram of a resistance adjustable circuit provided by an embodiment of the application.
  • 4A is the third structural diagram of a resistance adjustable circuit provided by an embodiment of this application.
  • 4B is the fourth structural diagram of a resistance adjustable circuit provided by an embodiment of this application.
  • FIG. 5 is a fifth structural diagram of a resistance adjustable circuit provided by an embodiment of this application.
  • 6A is a sixth structural diagram of a resistance adjustable circuit provided by an embodiment of this application.
  • 6B is a seventh structural diagram of a resistance adjustable circuit provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a circuit system for measuring battery current provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a measurement circuit provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a device for measuring battery current provided by an embodiment of the application.
  • the coulomb counter (also called fuel gauge) calculates the charge and discharge current of the battery by collecting the voltage drop on the battery charge and discharge circuit, and then determines the battery power according to the charge and discharge current of the battery.
  • the resistance of the battery charging and discharging circuit is usually small. Therefore, when the voltage detection accuracy of the coulomb counter remains unchanged, the smaller the resistance of the charging and discharging circuit is, the worse the current accuracy that the coulomb counter can detect.
  • the coulomb counter has a large function expansion space, which is limited by the condition that the resistance of the charge and discharge circuit is small, which makes it impossible for extended applications that require high precision measurement of small currents. achieve.
  • the present application provides a battery pack, a circuit system for measuring battery current, and a device for measuring battery current to improve the accuracy of battery current measurement, especially for small currents (for example, currents less than 10 mA).
  • a battery pack for example, a circuit system for measuring battery current
  • a device for measuring battery current to improve the accuracy of battery current measurement, especially for small currents (for example, currents less than 10 mA).
  • multiple refers to two or more; words such as “first” and “second” are only used for the purpose of distinguishing description, and cannot It is understood as indicating or implying relative importance, nor can it be understood as indicating or implying order.
  • the "connection” in this embodiment refers to electrical connection or electrical coupling.
  • FIG. 1 is a hardware architecture diagram of an electronic device provided by this application.
  • the electronic device may be a battery-powered device such as a mobile phone, a tablet computer, a smart wearable device, and a notebook computer.
  • the electronic device 100 It includes a battery pack 110, a coulomb counter 120, and an electric load 130.
  • the output terminal VBATT+ of the battery pack 110 is connected with the voltage detection terminal VBAT_P of the coulomb counter 120
  • the output terminal VBATT- of the battery pack 110 is connected with the voltage detection terminal VBAT_N of the coulomb counter 120
  • the output terminal VBATT- of the battery pack 110 is also connected with the sampling
  • the resistor R1 is connected in series, and the current sampling terminal SRP and the current sampling pin SRN of the coulomb counter 120 are respectively connected to the two ends of the sampling resistor R1.
  • the battery pack 110 includes a battery, a transistor, and a protection circuit.
  • the battery is connected in series with the transistor, and the protection circuit is used to control the state of the transistor to ensure the safety of charging and discharging of the battery.
  • the battery pack 110 may include one or more protection circuits.
  • the battery pack 110 includes two charge-discharge protection circuits to protect the battery in two levels during the charge-discharge process to improve The safety of the battery.
  • the transistor is used to adjust the resistance value of the battery pack 110 and is a resistance adjustable circuit.
  • the coulomb counter 120 samples the output voltage of the battery through the voltage detection terminal VBAT_P and the voltage detection terminal VBAT_N.
  • the coulomb counter 120 samples the voltage across the resistor R1 through the current sampling terminal SRP and the current sampling terminal SRN, according to the resistance value of the sampling resistor R1 and the sampling resistor
  • the voltage across R1 obtains the current generated by the battery.
  • the resistance of the sampling resistor R1 can be 2 milliohms (mohm).
  • the electrical load 130 is an electronic component in the electronic device 100 that needs to use the electrical energy provided by the battery pack 110 to achieve its functions, such as application processors, sensors (such as temperature sensors, gravity sensors, distance sensors, fingerprint sensors, etc.), display screens, Communication processor, radio frequency chip, etc. (not shown in Figure 1).
  • FIG. 2A is a battery pack 200 provided by an embodiment of the application.
  • the battery pack 200 may be applied to the electronic device 100 shown in FIG. 1.
  • the battery pack 200 includes a control signal receiving terminal 210, an adjustable resistance circuit 220, and a battery 230, and the adjustable resistance circuit 220 is connected in series with the battery 230.
  • the resistance adjustable circuit 220 can be connected in series with the negative electrode of the battery 230, as shown in FIG. 2A, or can be connected in series with the positive electrode of the battery 230, as shown in FIG. 2B.
  • the control signal receiving terminal 210 is configured to receive the first control signal sent by the circuit system outside the battery pack 200.
  • the adjustable resistance circuit 220 is used to adjust the resistance value of the adjustable resistance circuit 220 based on the first control signal received by the control signal receiving terminal 210.
  • the first control signal may be a digital signal or an analog signal, and a digital signal is used as an example for introduction in the following, but it is not used for limitation.
  • the resistance value of the adjustable resistance circuit 220 before adjustment (that is, the default resistance value of the adjustable resistance circuit 220) is usually a small value or even a minimum value.
  • the first control signal It is usually used to control the adjustable resistance circuit 220 to increase the resistance value of the adjustable resistance circuit 220.
  • the adjustable resistance circuit 220 includes at least one transistor, and the first control signal is used to control the at least one transistor to adjust the resistance value of the adjustable resistance circuit 220.
  • the at least one transistor may be a metal oxide semiconductor (MOS) field effect transistor (also called a MOS tube (including N-channel MOS tube and P-channel MOS tube)), or a triode (including PNP MOS transistors and NPN transistors), thyristors and other semiconductor devices with different resistances under different working conditions.
  • MOS metal oxide semiconductor
  • the types of the multiple transistors can be the same (for example, the multiple transistors are all MOS transistors) or different (for example, one of the multiple transistors is all MOS transistors, The other part is a triode).
  • At least one transistor in the resistance adjustable circuit 220 may include a first transistor M1.
  • the first control signal is used to adjust the first transistor during the discharging process of the battery 230.
  • the conduction degree of a transistor M1 is used to adjust the resistance value of the resistance adjustable circuit 220.
  • the resistance value of the first transistor M1 is different under different conduction degrees, therefore, the resistance value of the resistance adjustable circuit 220 can be adjusted by adjusting the conduction degree of the first transistor M1.
  • At least one transistor in the resistance adjustable circuit 220 may include a first transistor M1 and a second transistor M2 connected in parallel, and the resistance value when the first transistor M1 is turned on is the same as when the second transistor M2 is turned on.
  • the first control signal is used to control the state of the first transistor M1 and/or the state of the second transistor M2 during the discharging process of the battery 230 to adjust the resistance value of the adjustable resistance circuit 220, the first transistor The state of M1 and the state of the second transistor M2 include an on state or an off state.
  • the first control signal is used to control the first transistor M1 from conducting
  • the second transistor M2 remains in the on state
  • the first control signal is used to control the second transistor M2 to switch from the on state to the off state, and the first transistor M1 remains in the on state.
  • the first control signal is used to control the first transistor M1 to switch from the on state to the off state, and to control the second transistor M2 from off The state is switched to the on state, or the first control signal is used to control the second transistor M2 to switch from the off state to the on state, and the first transistor M1 remains in the on state; if the first transistor M1 is in the off state , The second transistor M2 is in the on state, the first control signal is used to control the first transistor M1 to switch from the off state to the on state, and to control the second transistor M2 to switch from the on state to the off state, or the first The control signal is used to control the first transistor M1 to switch from the off state to the on state, and the second transistor M2 keeps the on state unchanged.
  • the first control signal may also be used to adjust the first transistor M1 and the second transistor M1 during the discharging process of the battery 230.
  • the conduction degree of at least one of the second transistors M2 is used to adjust the resistance value of the resistance adjustable circuit 220, that is, in addition to adjusting the connection relationship to change the resistance value, the resistance value of the transistor itself can also be adjusted by controlling the gate of the transistor.
  • At least one transistor in the resistance adjustable circuit 220 may also include a third transistor M3.
  • the first control signal is used to adjust the third transistor during the charging process of the battery 230.
  • the conduction degree of the transistor M3 adjusts the resistance value of the resistance adjustable circuit 220.
  • At least one transistor in the resistance adjustable circuit 220 includes a third transistor M3 and a fourth transistor M4 connected in parallel, and the resistance value when the third transistor M3 is turned on is the same as that when the fourth transistor M4 is turned on.
  • the resistance values are different.
  • the first control signal is used to control the state of the third transistor M3 and/or the state of the fourth transistor M4 during the charging process of the battery 230 to adjust the resistance value of the resistance adjustable circuit 220, and the third transistor M3
  • the state of and the state of the fourth transistor M4 include an on state or an off state.
  • the resistance value of the adjustable resistance circuit 220 is adjusted before and after At least one of the third transistor M3 and the fourth transistor M4 is in a conducting state.
  • the first control signal is used to control the third transistor M3 from conducting
  • the fourth transistor M4 remains in the on state
  • the first control signal is used to control the fourth transistor M4 to switch from the on state to the off state, and the third transistor M3 remains in the on state.
  • the first control signal is used to control the third transistor M3 to switch from the on state to the off state, and to control the fourth transistor M4 from off The state is switched to the on state, or the first control signal is used to control the fourth transistor M4 to switch from the off state to the on state, and the third transistor M3 remains in the on state; if the third transistor M3 is in the off state , The fourth transistor M4 is in the on state, the first control signal is used to control the third transistor M3 to switch from the off state to the on state, and to control the fourth transistor M4 to switch from the on state to the off state, or the first The control signal is used to control the third transistor M3 to switch from the off state to the on state, and the fourth transistor M4 keeps the on state unchanged.
  • the first control signal may also be used to adjust the third transistor M3 and the fourth transistor M3 during the charging process of the battery 230.
  • the conduction degree of at least one of the fourth transistors M4 is used to adjust the resistance value of the resistance adjustable circuit 220, that is, in addition to adjusting the connection relationship to change the resistance value, the resistance value of the transistor itself can also be adjusted by controlling the gate of the transistor.
  • the battery pack 200 adjusts the resistance value of the resistance adjustable circuit 220 by adjusting the conduction degree of the first transistor M1, and the battery pack 200 can pass through the battery 230 during the charging process.
  • the conduction degree of the third transistor M3 is adjusted to adjust the resistance value of the adjustable resistance circuit 220, and the resistance value of the adjustable resistance circuit 220 can also be adjusted by controlling the state of the third transistor M3 and the state of the fourth transistor M4.
  • the battery pack 200 adjusts the resistance of the adjustable resistance circuit 220 by controlling the state of the first transistor M1 and the state of the second transistor M2.
  • the battery pack 200 can pass The conduction degree of the third transistor M3 is adjusted to adjust the resistance value of the adjustable resistance circuit 220, and the resistance value of the adjustable resistance circuit 220 can also be adjusted by controlling the state of the third transistor M3 and the state of the fourth transistor M4.
  • the adjustable resistance circuit 220 further includes a protection circuit 221 for generating at least one transistor control signal based on the first control signal, and the at least one transistor control signal can act on the control terminal of at least one transistor in the adjustable resistance circuit 220, respectively. To control at least one transistor.
  • the protection circuit 221 and the at least one transistor connected to the electrical protection circuit are hardware commonly used in battery-powered equipment, and can realize the function of the resistance adjustable circuit 220, basically without increasing the hardware cost, not only can save the cost of the battery pack 200 , Can also improve the universal applicability of the battery pack 200.
  • the battery pack 200 adjusts the resistance of the adjustable resistance circuit 220 by adjusting the conduction degree of the first transistor M1, which is a first MOS transistor.
  • the protection circuit 221 receives the first control signal through the control terminal CNT.
  • the protection circuit 221 is specifically configured to: receive the first control signal, and adjust the output signal of the discharge protection terminal DOUT from the first voltage signal to the second voltage signal according to the first signal; wherein, when the discharge protection terminal DOUT of the protection circuit 221 outputs When the signal of is the first voltage signal, the first MOS transistor is at the first degree of conduction, and when the signal output by the discharge protection terminal DOUT of the protection circuit 221 is the second voltage signal, the first MOS transistor is at the second degree of conduction, That is, the first MOS transistor is switched from the first degree of conduction to the second degree of conduction under the control of the second voltage signal.
  • the battery pack 200 adjusts the resistance value of the resistance adjustable circuit 220 by adjusting the state of the first transistor M1 and/or the state of the second transistor M2.
  • the gate of the first MOS tube is connected to the first discharge protection terminal DOUT1 of the protection circuit 221, and the gate of the second MOS tube is connected to the protection
  • the second discharge protection terminal DOUT2 of the circuit 221 is connected, and the protection circuit 221 receives the first control signal through the control terminal CNT.
  • the protection circuit 221 is specifically used to: receive a first control signal; when the first control signal is used to control the state of the first MOS transistor, output a first voltage signal according to the first control signal; when the first control signal is used to control the first control signal When the two MOS transistors are in the state, the second voltage signal is output according to the first control signal; when the first control signal is used to control the state of the first MOS transistor and the state of the second MOS transistor, the second voltage signal is output according to the first control signal A voltage signal and a second voltage signal; wherein the first voltage signal is used to adjust the state of the first MOS tube, and the second voltage signal is used to adjust the state of the second MOS tube; the first MOS tube and the second MOS tube are adjusted At least one of them is in a conducting state.
  • the battery pack 200 adjusts the resistance of the adjustable resistance circuit 220 by adjusting the conduction degree of the third transistor M3, which is a third MOS transistor.
  • the protection circuit 221 receives the first control signal through the control terminal CNT.
  • the protection circuit 221 is specifically configured to: receive the first control signal, and adjust the output signal of the charging protection terminal COUT from the third voltage signal to the fourth voltage signal according to the first signal; wherein, when the charging protection terminal COUT of the protection circuit 221 outputs When the signal of is the third voltage signal, the third MOS transistor is at the third degree of conduction.
  • the third MOS transistor When the signal output by the charge protection terminal COUT of the protection circuit 221 is the fourth voltage signal, the third MOS transistor is at the fourth degree of conduction. That is, the third MOS transistor is switched from the third degree of conduction to the fourth degree of conduction under the control of the fourth voltage signal.
  • the battery pack 200 adjusts the resistance of the adjustable resistance circuit 220 by adjusting the state of the third transistor M3 and/or the state of the fourth transistor M4, and the third transistor M3 is
  • the gate of the third MOS transistor is connected to the first charging protection terminal COUT1 of the protection circuit 221
  • the gate of the fourth MOS transistor is connected to the protection circuit 221.
  • the second charging protection terminal COUT2 is connected, and the protection circuit 221 receives the first control signal through the control terminal CNT.
  • the protection circuit 221 is specifically used to: receive a first control signal; when the first control signal is used to control the state of the third MOS transistor, output a third voltage signal according to the first control signal; when the first control signal is used to control the second In the state of the four MOS transistors, the fourth voltage signal is output according to the first control signal; when the first control signal is used to control the state of the third MOS transistor and the state of the fourth MOS transistor, the first control signal is output according to the first control signal.
  • Three voltage signals and a fourth voltage signal are used to adjust the state of the third MOS tube, and the fourth voltage signal is used to adjust the state of the fourth MOS tube; the third MOS tube and the fourth MOS tube are adjusted At least one of them is in a conducting state.
  • the resistance value of the resistance adjustable circuit 220 in the battery pack 200 can be adjusted under the control of the circuit system outside the battery pack 200, that is, the internal resistance of the battery pack 200 can be adjusted, and then the internal resistance of the battery pack 200 can be adjusted
  • the output voltage of the battery pack 200 before and after and the resistance change before and after the adjustment of the internal resistance of the battery pack 200 determine the current generated by the battery 230 in the battery pack 200.
  • the determined battery The accuracy of the current generated by the package is high.
  • an embodiment of the present application also provides a circuit system 700 for measuring battery current.
  • the circuit system 700 includes a processing circuit 710 and a measuring circuit 720.
  • the processing circuit 710 is used to send a first control signal to the battery pack, and the first control signal is used to adjust the resistance value of the battery pack;
  • the measurement circuit 720 is used to detect the first output of the battery pack before adjusting the resistance value of the battery pack Voltage and the second output voltage of the battery pack after adjusting the resistance value of the battery pack;
  • the processing circuit 710 is also used to: determine the battery according to the first output voltage, the second output voltage and the resistance value change caused by adjusting the resistance value of the battery pack The current generated by the package.
  • the battery pack may be any battery pack 200 provided in the above embodiments.
  • the current generated by the battery pack is charging current or discharging current. Further, the current generated by the battery pack may be a discharge leakage current.
  • the measurement circuit 720 is also used to detect the detection current generated by the battery pack; the processing circuit 710 is specifically used to: when the detection current is less than the first threshold, send a first control signal to the battery pack, and according to the first output voltage, the first control signal Second, the output voltage and the change in resistance value are used to determine the current generated by the battery pack; the measurement circuit 720 is specifically used to detect the first output voltage and the second output voltage when the detection current is less than the first threshold.
  • the first threshold value may be less than the minimum current that the measuring circuit 720 can detect.
  • the current generated by the battery pack is the ratio of the difference between the first output voltage and the second output voltage to the change in the resistance value.
  • U1 represents the first output voltage
  • U2 represents the second output voltage
  • ⁇ R represents the resistance value change before and after the resistance value adjustment of the battery pack.
  • the circuit system 700 works in the current detection state, because it is suitable for accurate detection of small currents. Further, the circuit system 700 also works in the resistance value determination state or the resistance calibration state. In this state, the measurement circuit 720 is also used to detect the detection current generated by the battery pack. At this time, the detection current is usually much greater than the accurate detection of small currents.
  • the small current value measured in the state; the processing circuit 710 is also used to: when the detected current is greater than the second threshold, send a second control signal to the battery pack, the second control signal is used to adjust the resistance value of the battery pack; the measurement circuit 720 , Is also used to detect the third output voltage of the battery pack before adjusting the resistance value of the battery pack when the detection current is greater than the second threshold, and the fourth output voltage of the battery pack after adjusting the resistance value of the battery pack; the processing circuit 710 also uses ⁇ : According to the third output voltage, the fourth output voltage and the detection current, determine the resistance value change caused by adjusting the resistance value of the battery pack.
  • the change in resistance value caused by adjusting the resistance of the battery pack when the detection current is greater than the second threshold is the same as the change in resistance caused by adjusting the resistance of the battery pack when the detection current is less than the first threshold.
  • the second threshold is usually greater than the first threshold.
  • a threshold, and the second threshold is less than the maximum current that the measurement circuit 720 can detect.
  • the second threshold may be equal to the first threshold, which is not limited in this embodiment.
  • U3 represents the third output voltage
  • U4 represents the fourth output voltage
  • I1 represents the detection current
  • the second control signal is the same as the first control signal, so that the resistance value change caused by adjusting the resistance value of the battery pack when the detection current is greater than the second threshold is the same as adjusting the resistance value of the battery pack when the detection current is less than the first threshold.
  • the change in resistance value caused by the same amount is the same as the resistance value of the battery pack when the detection current is less than the first threshold.
  • the measurement circuit 720 includes a coulomb counter 721 and a sampling resistor R1, which are similar to the coulomb counter and sampling resistor shown in FIG. 1.
  • the first voltage detection terminal VBATT1 of the coulomb counter 211 is used to connect to the first output terminal of the battery pack
  • the second voltage detection terminal VBATT2 of the coulomb counter 721 is connected to the second output terminal of the battery pack
  • the first voltage detection terminal VBATT2 of the coulomb counter 211 is connected to the second output terminal of the battery pack.
  • the current detection terminal SR1 is respectively connected to the second output terminal of the battery pack and the first terminal of the sampling resistor R1
  • the second current detection terminal SR2 of the coulomb counter 721 is connected to the second terminal of the sampling resistor R1.
  • the circuit system 700 can control the resistance value of the battery pack, and determine the current generated by the battery pack according to the output voltage of the battery pack before and after the adjustment of the resistance value of the battery pack and the change in the resistance value of the battery pack.
  • the accuracy of the current generated by the battery pack determined by the circuit system 700 is high, and online detection of the small current generated by the battery pack can be realized.
  • the embodiments of the present application also provide a device for measuring battery current.
  • the device 900 includes the battery pack 200 provided by any one of the foregoing possible implementations and any one of the foregoing possible implementations.
  • the circuit system 700 provided by the way.
  • the following uses the device 900 to detect small currents such as standby leakage current and shutdown leakage current as an example to describe in detail the working principle of the device 900 provided in the embodiment of the present application.
  • an application program (app) for detecting battery current may also be installed in the device 900, so that the user can detect the current generated by the battery pack in the device by running the application program.
  • the application program is used to drive the device 900 to perform the following operations.
  • the application program can be replaced by other types of computer software programs and executed by the processor in the device 900, such as a chip or an application processor.
  • a computer software program includes a large number of computer program instructions.
  • the computer program instructions can be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory include instructions A manufactured product of the device, which instructs the device to implement the function of driving the device 900 to perform current detection.
  • the computer-readable memory includes various types of volatile memory or non-volatile memory.
  • the device 900 specifically detects the standby leakage current through the following steps:
  • the device 900 is equipped with the standby leakage current detection flag and enters the standby state. In the standby state, the load of the device 900 is small, that is, the electrical current of the electrical load 130 is small, and the battery pack 200 only outputs a small amount of leakage current;
  • the device 900 detects and stores the current first output voltage U1;
  • the device 900 adjusts the resistance value of the resistance adjustable circuit 220.
  • the resistance value change amount before and after the resistance value adjustment of the resistance adjustable circuit 220 is ⁇ R.
  • the device 900 detects and stores the adjusted second output voltage U2 of the resistance adjustable circuit 220;
  • the device 900 can also calibrate ⁇ R through the following steps before detecting the standby leakage current, that is, enter the resistance value determination state:
  • the device 900 adjusts the detection current of the battery 230, and the adjusted detection current I1 of the battery 230 is greater than the second threshold. Compared with the standby state, at this time, that is, the electric current of the electric load 130 increases, which causes the discharge current of the battery pack 200 to increase, that is, greater than the second threshold.
  • the device 900 detects and stores the third output voltage U3 of the battery pack 200;
  • the device 900 adjusts the resistance value of the resistance adjustable circuit 220.
  • the amount of change before and after adjustment of the resistance value of the resistance adjustable circuit 220 is ⁇ R.
  • the device 900 detects and stores the fourth output voltage U4 of the battery pack 200 after the resistance value adjustment of the adjustable resistance circuit 220 and the detection current I1 of the battery 230; since the current is relatively large at this time, the measured value of I1 is accurate;
  • the device 900 specifically performs shutdown leakage current detection through the following steps:
  • the device 900 is configured with the standby leakage current detection flag and enters the shutdown state
  • the device detects and stores the current first output voltage U1 of the battery pack 200;
  • the device 900 adjusts the resistance value of the resistance adjustable circuit 220.
  • the resistance value change amount before and after the resistance value adjustment of the resistance adjustable circuit 220 is ⁇ R.
  • the device 900 detects and stores the second output voltage U2 of the battery pack 200 after the resistance value of the adjustable resistance circuit 220 is adjusted;
  • the device 900 can also calibrate ⁇ R through the above steps a-e before detecting the shutdown leakage current, which will not be repeated in this embodiment.
  • the above process is introduced by taking the low current detection of the leakage current as an example. It should be noted that the detection process of the low charge current or the high charge and discharge current detection process is similar to the above method, and will not be repeated in this embodiment.

Abstract

一种电池包、测量电池电流的电路系统及测量电池电流的设备,以提高电池电流的测量精度。该电池包包括:控制信号接收端、电池以及电阻可调电路。其中,控制信号接收端用于接收由电池包之外的电路系统发送的第一控制信号;电阻可调电路用于基于控制信号接收端接收的第一控制信号,调整电阻可调电路的电阻值。

Description

电池包、测量电池电流的电路系统及测量电池电流的设备 技术领域
本申请涉及电池管理技术领域,尤其涉及一种电池包、测量电池电流的电路系统及测量电池电流的设备。
背景技术
随着电子技术的蓬勃发展,智能手机等电子设备的数据处理能力不断增强,应用场景也越来越复杂,使得电子设备的耗电量也越来越大。电子设备的电池电量的测量对电池本身以及电子设备用户都具有重要的意义,电子设备的电池电量的测量不仅能够更好地保护电子设备的电池,防止其过放电以及过充电,还使得用户能够了解电子设备的剩余电量,进而可以估计电子设备的可使用时间,并及时地保存重要数据。因此,用于测量电池电量的库仑计(也叫电量计)也已成为电子设备的标配模块之一。
在实际应用中,库仑计通过采集电池充放电回路上采样电阻的压降来计算电池的充放电电流,进而根据电池的充放电电流确定电池的电量。但是,为了减小电池充放电过程中的能量损失,电池充放电回路的电阻会设计的尽量小,较小的充放电回路电阻给库仑计检测小电流带来重大挑战。另外,库仑计作为电子设备内部电压电流在线检测的重要模块,功能扩展空间较大,受限于充放电回路的电阻较小这一条件,导致对小电流精测精度要求较高的扩展应用无法实现。
发明内容
本申请提供了一种电池包、测量电池电流的电路系统及测量电池电流的设备,以提高电池电流的测量精度。
第一方面,本申请提供了一种电池包,该电池包包括控制信号接收端、电阻可调电路和电池,电阻可调电路与电池串联。其中,控制信号接收端,用于接收电池包之外的电路系统发送的第一控制信号;电阻可调电路,用于基于控制信号接收端接收的第一控制信号,调整电阻可调电路的电阻值。
通过上述方案,电池包中的电阻可调电路的电阻值可以在电池包外部的电路系统控制下进行调整,即电池包的内阻可调,进而可以通过电池包内阻调整前后电池包的输出电压以及电池包内阻调整前后的电阻变化量确定电池包中电池产生的电流,相对于现有技术中直接通过库仑计测量电池电流的方案,所确定的电池包产生的电流的精度较高。本方案尤其适用于小电流精确测量。
一种可能的实施方式中,为了减小电池包的功耗,电阻可调电路的电阻值在调整之前(即电阻可调电路的默认电阻值)通常为较小值,甚至最小值,第一控制信号通常用于控制电阻可调电路增大电阻可调电路的电阻值。
一种可能的实施方式中,电阻可调电路包括至少一个晶体管,第一控制信号用于控制至少一个晶体管以调整电阻可调电路的电阻值。其中,该至少一个晶体管可以为金属氧化物半导体MOS管,也可以为三极管、晶闸管等在不同工作状态下电阻不同的半导体器件。
一种可能的实施方式中,电阻可调电路中的至少一个晶体管可以包括第一晶体管,此 时,第一控制信号用于在电池放电过程中调整第一晶体管的导通程度来调整电阻可调电路的电阻值。
一种可能的实施方式中,电阻可调电路中的至少一个晶体管可以包括并联的第一晶体管和第二晶体管,第一晶体管导通时的电阻值与第二晶体管导通时的电阻值不同,此时,第一控制信号用于在电池放电过程中控制第一晶体管的状态和/或第二晶体管的状态来调整电阻可调电路的电阻值,第一晶体管的状态和第二晶体管的状态包括导通状态或截止状态。
一种可能的实施方式中,电阻可调电路中的至少一个晶体管也可以包括第三晶体管,此时,第一控制信号用于在电池充电过程中调整第三晶体管的导通程度来调整电阻可调电路的电阻值。
一种可能的实施方式中,电阻可调电路中的至少一个晶体管包括并联的第三晶体管和第四晶体管,第三晶体管导通时的电阻值与第四晶体管导通时的电阻值不同,此时,第一控制信号用于在电池充电过程中控制第三晶体管的状态和/或第四晶体管的状态来调整电阻可调电路的电阻值,第三晶体管的状态和第四晶体管的状态包括导通状态或截止状态。
一种可能的实施方式中,电阻可调电路还包括保护电路,用于基于第一控制信号生成至少一个晶体管控制信号,至少一个晶体管控制信号能够分别作用于电阻可调电路中的至少一个晶体管的控制端以控制至少一个晶体管。
第二方面,本申请还提供了一种测量电池电流的电路系统,该电路系统包括控制电路和测量电路。其中,处理电路,用于向电池包发送第一控制信号,第一控制信号用于调整电池包的电阻值;测量电路,用于检测调整电池包的电阻值前电池包的第一输出电压和调整电池包的电阻值后电池包的第二输出电压;处理电路还用于:根据第一输出电压、第二输出电压以及调整电池包的电阻值引起的电阻值变化量,确定电池包产生的电流。
通过上述方案,电路系统能够控制电池包的电阻值,根据电池包的电阻值调整前后电池包的输出电压以及电池包的电阻值变化量确定电池包产生的电流,相对于现有技术中直接通过库仑计测量电池电流的方案,电路系统所确定的电池包产生的电流的精度较高,尤其是针对电池包产生的小电流。
一个可能的实施方式中,电池包产生的电流为充电电流或放电电流。
一个可能的实施方式中,电池包产生的电流可以为放电漏电流。
一个可能的实施方式中,测量电路还用于检测电池包产生的检测电流;处理电路具体用于:在检测电流小于第一阈值时,向电池包发送第一控制信号,以及根据第一输出电压、第二输出电压以及电阻值变化量,确定电池包产生的电流;测量电路具体用于:在检测电流小于第一阈值时,检测第一输出电压和第二输出电压。
一个可能的实施方式中,电池包产生的电流是第一输出电压与第二输出电压之差与电阻值变化量的比值。
一个可能的实施方式中,测量电路还用于检测电池包产生的检测电流;处理电路还用于:在检测电流大于第二阈值时,向电池包发送第二控制信号,第二控制信号用于调整电池包的电阻值;测量电路,还用于在检测电流大于第二阈值时,检测调整电池包的电阻值前电池包的第三输出电压,和调整电池包的电阻值后电池包的第四输出电压;处理电路还用于:根据第三输出电压、第四输出电压以及检测电流,确定调整电池包的电阻值引起的电阻值变化量。
一个可能的实施方式中,第二控制信号与第一控制信号相同,以使检测电流大于第二阈值时调整电池包的电阻值引起的电阻值变化量,与检测电流小于第一阈值时调整电池包的电阻值引起的电阻值变化量相同。
一个可能的实施方式中,测量电路包括库仑计和采样电阻。其中,库仑计的第一电压检测端用于与电池包的第一输出端连接,库仑计的第二电压检测端与电池包的第二输出端连接,库仑计的第一电流检测端分别与电池包的第二输出端以及采样电阻的第一端连接,库仑计的第二电流检测端与采样电阻的第二端连接。
第三方面,本申请还提供了一种测量电池电流的设备,该设备包括上述第一方面中任意一种可能的实施方式所述的电池包,以及上述第二方面中任意一种可能的实施方式所述的测量电池电流的电路系统。
可以理解地,上述提供的任一种测量电池电流的设备包括上述第一方面所述的电池包以及上述第二方面所述的测量电池电流的电路系统,因此,其所能达到的有益效果可参考第一方面所提供的电池包以及第二方面所提供的测量电池电流的电路系统中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种电子设备的结构示意图;
图2A为本申请实施例提供的一种电池包的结构示意图之一;
图2B为本申请实施例提供的一种电池包的结构示意图之二;
图3A为本申请实施例提供的一种电阻可调电路的结构示意图之一;
图3B为本申请实施例提供的一种电阻可调电路的结构示意图之二;
图4A为本申请实施例提供的一种电阻可调电路的结构示意图之三;
图4B为本申请实施例提供的一种电阻可调电路的结构示意图之四;
图5为本申请实施例提供的一种电阻可调电路的结构示意图之五;
图6A为本申请实施例提供的一种电阻可调电路的结构示意图之六;
图6B为本申请实施例提供的一种电阻可调电路的结构示意图之七;
图7为本申请实施例提供的一种测量电池电流的电路系统的结构示意图;
图8为本申请实施例提供的一种测量电路的结构示意图;
图9为本申请实施例提供的一种测量电池电流的设备的结构示意图。
具体实施方式
库仑计(也叫电量计)通过采集电池充放电回路上的压降来计算电池的充放电电流,进而根据电池的充放电电流确定电池的电量。但是,电池充放电回路的电阻通常较小,因此,在库仑计电压检测精度不变的情况下,充放电回路的电阻越小,库仑计所能检测的电流精度越差。另外,库仑计作为电子设备内部电压电流在线检测的重要模块,功能扩展空间较大,受限于充放电回路的电阻较小这一条件,导致对小电流精测精度要求较高的扩展应用无法实现。
为了解决上述问题,本申请提供了一种电池包、测量电池电流的电路系统及测量电池电流的设备,以提高电池电流的测量精度,尤其是小电流(例如小于10mA的电流)的测 量精度。另外,需要理解的是,在本申请实施例的描述中,多个,是指两个或两个以上;“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本实施例中的“连接”指的是电性连接或电性耦合。
图1为本申请提供的一种电子设备的硬件架构图,该电子设备可以是手机、平板电脑、智能穿戴设备以及笔记本电脑等通过电池进行供电的设备,如图1所示,该电子设备100包括电池包110、库仑计120以及用电负载130。其中,电池包110的输出端VBATT+与库仑计120的电压检测端VBAT_P连接,电池包110的输出端VBATT-与库仑计120的电压检测端VBAT_N连接,电池包110的输出端VBATT-还与采样电阻R1串联,库仑计120的电流采样端SRP和电流采样管脚SRN分别与采样电阻R1的两端连接。
电池包110包括电池、晶体管和保护电路,其中,电池与晶体管串联,保护电路用于控制晶体管的状态,以保证电池的充放电安全。在具体实施中,电池包110可以包括一个或多个保护电路,例如,如图1所示,电池包110包括2个充放电保护电路,以对电池的充放电过程进行两级保护,以提高电池的安全性。晶体管则用于调整电池包110的电阻值,是一种电阻可调电路。
库仑计120通过电压检测端VBAT_P和电压检测端VBAT_N采样得到电池的输出电压,库仑计120通过电流采样端SRP和电流采样端SRN采样电阻R1两端的电压,根据采样电阻R1的阻值以及采样电阻R1两端的电压得到电池产生的电流,例如,采样电阻R1的阻值可以为2毫欧(mohm)。
用电负载130为电子设备100中需要利用电池包110提供的电能实现其功能的电子元器件,如应用处理器、传感器(如温度传感器、重力传感器、距离传感器以及指纹传感器等)、显示屏、通信处理器、以及射频芯片等(图1中未示出)。
图2A为本申请实施例提供的一种电池包200,电池包200可以应用于如图1所示的电子设备100。如图2A所示,电池包200包括:控制信号接收端210、电阻可调电路220和电池230,电阻可调电路220与电池230串联。其中,电阻可调电路220可以串联在电池230的负极,如图2A所示,也可以串联在电池230的正极,如图2B所示。控制信号接收端210,用于接收电池包200之外的电路系统发送的第一控制信号。电阻可调电路220,用于基于控制信号接收端210接收的第一控制信号,调整电阻可调电路220的电阻值,例如可参考图1中电池包110中晶体管,或者其也可以被其他类型的具有可变电阻值的器件所代替,例如可变电阻器,后续实施例仅以晶体管为例作介绍。需理解,所述第一控制信号可以是数字信号或模拟信号,后续以数字信号为例作介绍,但不用于限定。
进一步地,为了减小电池包200的功耗,电阻可调电路220的电阻值在调整之前(即电阻可调电路220的默认电阻值)通常为较小值,甚至最小值,第一控制信号通常用于控制电阻可调电路220增大电阻可调电路220的电阻值。
在一种具体实施中,电阻可调电路220包括至少一个晶体管,第一控制信号用于控制至少一个晶体管以调整电阻可调电路220的电阻值。其中,该至少一个晶体管可以为金属氧化物半导体(metal oxide semiconductor,MOS)场效应晶体管(也称为MOS管(包括N沟道MOS管和P沟道MOS管)),也可以为三极管(包括PNP性MOS管和NPN型三极管)、晶闸管等在不同工作状态下电阻不同的半导体器件。当电阻可调电路220包括多个晶体管时,该多个晶体管的类型可以相同(例如该多个晶体管均为MOS管),也可以不同(例如该多个晶体管中的一部均为MOS管,另一部分为三极管)。
其中,在电池230处于放电状态时,如图3A所示,电阻可调电路220中的至少一个晶体管可以包括第一晶体管M1,此时,第一控制信号用于在电池230放电过程中调整第一晶体管M1的导通程度,来调整电阻可调电路220的电阻值。第一晶体管M1在不同导通程度下的电阻值不同,因此,通过调整第一晶体管M1的导通程度可以调整电阻可调电路220的电阻值。
或者,如图3B所示,电阻可调电路220中的至少一个晶体管可以包括并联的第一晶体管M1和第二晶体管M2,第一晶体管M1导通时的电阻值与第二晶体管M2导通时的电阻值不同,此时,第一控制信号用于在电池230放电过程中控制第一晶体管M1的状态和/或第二晶体管M2的状态来调整电阻可调电路220的电阻值,第一晶体管M1的状态和第二晶体管M2的状态包括导通状态或截止状态。由于电池230放电时,第一晶体管M1以及第二晶体管M2中至少有一个处于导通状态,电池230的释放的电能才能被电池包200连接的外部电路获得,因此,电阻可调电路220的电阻值调整前后,第一晶体管M1以及第二晶体管M2中至少有一个处于导通状态。
其中,在第一晶体管M1以及第二晶体管M2中任意一个的状态调整之前,若第一晶体管M1以及第二晶体管M2均处于导通状态,第一控制信号用于控制第一晶体管M1从导通状态切换到关断状态,第二晶体管M2保持导通状态不变,或者,第一控制信号用于控制第二晶体管M2从导通状态切换到关断状态,第一晶体管M1保持导通状态不变;若第一晶体管M1处于导通状态,第二晶体管M1处于关断状态,第一控制信号用于控制第一晶体管M1从导通状态切换到关断状态,控制第二晶体管M2从关断状态切换到导通状态,或者,第一控制信号用于控制第二晶体管M2从关断状态切换到导通状态,第一晶体管M1保持导通状态不变;若第一晶体管M1处于关断状态,第二晶体管M2处于导通状态,第一控制信号用于控制第一晶体管M1从关断状态切换到导通状态,控制第二晶体管M2从导通状态切换到关断状态,或者,第一控制信号用于控制第一晶体管M1从关断状态切换到导通状态,第二晶体管M2保持导通状态不变。
另外,在电阻可调电路220中的至少一个晶体管可以包括并联的第一晶体管M1和第二晶体管M2的场景下,第一控制信号也可以用于在电池230放电过程中调整第一晶体管M1以及第二晶体管M2中至少一个的导通程度,来调整电阻可调电路220的电阻值,即除了调整连接关系来改变电阻值,晶体管本身的电阻值也可通过晶体管栅极的控制来调整。
在电池230处于充电状态时,如图4A所示,电阻可调电路220中的至少一个晶体管也可以包括第三晶体管M3,此时,第一控制信号用于在电池230充电过程中调整第三晶体管M3的导通程度来调整电阻可调电路220的电阻值。
或者,如图4B所示,电阻可调电路220中的至少一个晶体管包括并联的第三晶体管M3和第四晶体管M4,第三晶体管M3导通时的电阻值与第四晶体管M4导通时的电阻值不同,此时,第一控制信号用于在电池230充电过程中控制第三晶体管M3的状态和/或第四晶体管M4的状态来调整电阻可调电路220的电阻值,第三晶体管M3的状态和第四晶体管M4的状态包括导通状态或截止状态。由于电池230充电时,第三晶体管M3以及第四晶体管M4中至少有一个处于导通状态,电池230才能从电池包200连接的外部电路获得电能,因此,电阻可调电路220的电阻值调整前后,第三晶体管M3以及第四晶体管M4中至少有一个处于导通状态。
其中,在第三晶体管M3以及第四晶体管M4中任意一个的状态调整之前,若第三晶 体管M3以及第四晶体管M4均处于导通状态,第一控制信号用于控制第三晶体管M3从导通状态切换到关断状态,第四晶体管M4保持导通状态不变,或者,第一控制信号用于控制第四晶体管M4从导通状态切换到关断状态,第三晶体管M3保持导通状态不变;若第三晶体管M3处于导通状态,第四晶体管M4处于关断状态,第一控制信号用于控制第三晶体管M3从导通状态切换到关断状态,控制第四晶体管M4从关断状态切换到导通状态,或者,第一控制信号用于控制第四晶体管M4从关断状态切换到导通状态,第三晶体管M3保持导通状态不变;若第三晶体管M3处于关断状态,第四晶体管M4处于导通状态,第一控制信号用于控制第三晶体管M3从关断状态切换到导通状态,控制第四晶体管M4从导通状态切换到关断状态,或者,第一控制信号用于控制第三晶体管M3从关断状态切换到导通状态,第四晶体管M4保持导通状态不变。
另外,在电阻可调电路220中的至少一个晶体管可以包括并联的第三晶体管M3和第四晶体管M4的场景下,第一控制信号也可以用于在电池230充电过程中调整第三晶体管M3以及第四晶体管M4中至少一个的导通程度,来调整电阻可调电路220的电阻值,即除了调整连接关系来改变电阻值,晶体管本身的电阻值也可通过晶体管栅极的控制来调整。
需要说明的是,当电池230在放电过程中,电池包200通过调整第一晶体管M1的导通程度来调整电阻可调电路220的电阻值时,电池230在充电过程中,电池包200可以通过调整第三晶体管M3的导通程度来调整电阻可调电路220的电阻值,也可以通过控制第三晶体管M3的状态和第四晶体管M4的状态来调整电阻可调电路220的电阻值。当电池230在放电过程中,电池包200通过控制第一晶体管M1的状态和第二晶体管M2的状态来调整电阻可调电路220的电阻值时,电池230在充电过程中,电池包200可以通过调整第三晶体管M3的导通程度来调整电阻可调电路220的电阻值,也可以通过控制第三晶体管M3的状态和第四晶体管M4的状态来调整电阻可调电路220的电阻值。
进一步地,电阻可调电路220还包括保护电路221,用于基于第一控制信号生成至少一个晶体管控制信号,至少一个晶体管控制信号能够分别作用于电阻可调电路220中的至少一个晶体管的控制端以控制至少一个晶体管。
保护电路221以及与电保护电路连接的至少一个晶体管为利用电池供电设备中常用的硬件,并且可以实现电阻可调电路220的功能,基本上不需要增加硬件成本,不仅可以节约电池包200的成本,还能提高电池包200的普遍适用性。
具体地,如图5所示,在电池230在放电过程中,电池包200通过调整第一晶体管M1的导通程度来调整电阻可调电路220的电阻值,第一晶体管M1为第一MOS管的场景下,第一MOS管的栅极与保护电路221的放电保护端DOUT连接,保护电路221通过控制端CNT接收第一控制信号。保护电路221具体用于:接收第一控制信号,根据第一信号,将放电保护端DOUT的输出信号从第一电压信号调整为第二电压信号;其中,当保护电路221的放电保护端DOUT输出的信号为第一电压信号时,第一MOS管处于第一导通程度,当保护电路221的放电保护端DOUT输出的信号为第二电压信号时,第一MOS管处于第二导通程度,即第一MOS管在第二电压信号的控制下从第一导通程度切换到第二导通程度。
如图5或图6A所示,在电池230在放电过程中,电池包200通过调整第一晶体管M1的状态和/或第二晶体管M2的状态来调整电阻可调电路220的电阻值,第一晶体管M1为第一MOS管,第二晶体管M2为第二MOS管的场景下,第一MOS管的栅极与保护电路 221的第一放电保护端DOUT1连接,第二MOS管的栅极与保护电路221的第二放电保护端DOUT2连接,保护电路221通过控制端CNT接收第一控制信号。保护电路221具体用于:接收第一控制信号;当第一控制信号用于控制第一MOS管的状态时,根据第一控制信号,输出第一电压信号;当第一控制信号用于控制第二MOS管的状态时,根据第一控制信号,输出第二电压信号;当第一控制信号用于控制第一MOS管的状态以及第二MOS管的状态时,根据第一控制信号,输出第一电压信号以及第二电压信号;其中,第一电压信号用于调整第一MOS管的状态,第二电压信号用于调整第二MOS管的状态;调整后第一MOS管以及第二MOS管中的至少一个处于导通状态。
如图5或图6A所示,在电池230在充电过程中,电池包200通过调整第三晶体管M3的导通程度来调整电阻可调电路220的电阻值,第三晶体管M3为第三MOS管的场景下,第三MOS管的栅极与保护电路221的充电保护端COUT连接,保护电路221通过控制端CNT接收第一控制信号。保护电路221具体用于:接收第一控制信号,根据第一信号,将充电保护端COUT的输出信号从第三电压信号调整为第四电压信号;其中,当保护电路221的充电保护端COUT输出的信号为第三电压信号时,第三MOS管处于第三导通程度,当保护电路221的充电保护端COUT输出的信号为第四电压信号时,第三MOS管处于第四导通程度,即第三MOS管在第四电压信号的控制下从第三导通程度切换到第四导通程度。
如图6B所示,在电池230在充电过程中,电池包200通过调整第三晶体管M3的状态和/或第四晶体管M4的状态来调整电阻可调电路220的电阻值,第三晶体管M3为第三MOS管,第四晶体管M4为第四MOS管的场景下,第三MOS管的栅极与保护电路221的第一充电保护端COUT1连接,第四MOS管的栅极与保护电路221的第二充电保护端COUT2连接,保护电路221通过控制端CNT接收第一控制信号。保护电路221具体用于:接收第一控制信号;当第一控制信号用于控制第三MOS管的状态时,根据第一控制信号,输出第三电压信号;当第一控制信号用于控制第四MOS管的状态时,根据第一控制信号,输出第四电压信号;当第一控制信号用于控制第三MOS管的状态以及第四MOS管的状态时,根据第一控制信号,输出第三电压信号以及第四电压信号;其中,第三电压信号用于调整第三MOS管的状态,第四电压信号用于调整第四MOS管的状态;调整后第三MOS管以及第四MOS管中的至少一个处于导通状态。
通过上述方案,电池包200中的电阻可调电路220的电阻值可以在电池包200外部的电路系统控制下进行调整,即电池包200的内阻可调,进而可以通过电池包200内阻调整前后电池包200的输出电压以及电池包200内阻调整前后的电阻变化量确定电池包200中电池230产生的电流,相对于现有技术中直接通过库仑计测量电池电流的方案,所确定的电池包产生的电流的精度较高。
如图7所示,本申请实施例还提供了一种测量电池电流的电路系统700,电路系统700包括处理电路710和测量电路720。其中,处理电路710,用于向电池包发送第一控制信号,第一控制信号用于调整电池包的电阻值;测量电路720,用于检测调整电池包的电阻值前电池包的第一输出电压和调整电池包的电阻值后电池包的第二输出电压;处理电路710还用于:根据第一输出电压、第二输出电压以及调整电池包的电阻值引起的电阻值变化量,确定电池包产生的电流。该电池包可以为上述实施例提供的任意一种电池包200。
具体地,电池包产生的电流为充电电流或放电电流。进一步地,电池包产生的电流可以为放电漏电流。
进一步地,测量电路720还用于检测电池包产生的检测电流;处理电路710具体用于:在检测电流小于第一阈值时,向电池包发送第一控制信号,以及根据第一输出电压、第二输出电压以及电阻值变化量,确定电池包产生的电流;测量电路720具体用于:在检测电流小于第一阈值时,检测第一输出电压和第二输出电压。
其中,第一阈值可以小于测量电路720能够检测的最小电流。电池包产生的电流是第一输出电压与第二输出电压之差与电阻值变化量的比值。即电池包产生的电流
Figure PCTCN2019100964-appb-000001
其中,U1表示第一输出电压,U2表示第二输出电压,ΔR表示电池包的电阻值调整前后的电阻值变化量。
在以上过程中,电路系统700工作于电流检测状态,由于适用于小电流的精确检测。进一步地,电路系统700还工作于电阻值确定状态或者叫电阻校准状态,在本状态下测量电路720还用于检测电池包产生的检测电流,此时的检测电流通常远大于小电流的精确检测状态下测量得到的小电流值;处理电路710还用于:在检测电流大于第二阈值时,向电池包发送第二控制信号,第二控制信号用于调整电池包的电阻值;测量电路720,还用于在检测电流大于第二阈值时,检测调整电池包的电阻值前电池包的第三输出电压,和调整电池包的电阻值后电池包的第四输出电压;处理电路710还用于:根据第三输出电压、第四输出电压以及检测电流,确定调整电池包的电阻值引起的电阻值变化量。其中,检测电流大于第二阈值时调整电池包的电阻值引起的电阻值变化量,与检测电流小于第一阈值时调整电池包的电阻值引起的电阻值变化量相同,第二阈值通常大于第一阈值,且第二阈值小于测量电路720所能检测的最大电流。或者,第二阈值通可以等于第一阈值,本实施例不做限定。
进一步地,调整电池包的电阻值引起的电阻值变化量
Figure PCTCN2019100964-appb-000002
其中,U3表示第三输出电压,U4表示第四输出电压,I1表示检测电流。
具体地,第二控制信号与第一控制信号相同,以使检测电流大于第二阈值时调整电池包的电阻值引起的电阻值变化量,与检测电流小于第一阈值时调整电池包的电阻值引起的电阻值变化量相同。
进一步地,如图8所示,测量电路720包括库仑计721和采样电阻R1,类似于图1中所示的库仑计和采样电阻。其中,库仑计211的第一电压检测端VBATT1用于与电池包的第一输出端连接,库仑计721的第二电压检测端VBATT2与电池包的第二输出端连接,库仑计211的第一电流检测端SR1分别与电池包的第二输出端以及采样电阻R1的第一端连接,库仑计721的第二电流检测端SR2与采样电阻R1的第二端连接。
通过上述方案,电路系统700能够控制电池包的电阻值,根据电池包的电阻值调整前后电池包的输出电压以及电池包的电阻值变化量确定电池包产生的电流,相对于现有技术中直接通过库仑计测量电池电流的方案,电路系统700所确定的电池包产生的电流的精度较高,可以实现电池包产生的小电流的在线检测。
基于以上实施例,本申请实施例还提供了一种测量电池电流的设备,如图9所示,设备900包括上述任意一种可能的实施方式提供的电池包200和上述任意一种可能的实施方式提供的电路系统700。
以下通过设备900检测待机漏电流和关机漏电流等小电流为例,对本申请实施例提供 的设备900的工作原理进行详细说明。其中,设备900中还可以安装有用于检测电池电流的应用程序(app),使得用户可以通过运行该应用程序检测设备中电池包产生的电流。应用程序用于驱动设备900执行下面的操作。应用程序可以被其他类型的计算机软件程序所代替,并被设备900中处理器,如芯片或应用处理器执行。计算机软件程序包括大量计算机程序指令,计算机程序指令可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现驱动设备900执行电流检测的功能。该计算机可读存储器包括各类易失性存储器或非易失性存储器。
具体实施实例一,设备900具体通过以下步骤进行待机漏电流的检测:
1、设备900配置待机漏电流检测标志位,进入待机状态,此时待机状态下,设备900的负荷较小,即用电负载130的用电电流小,电池包200仅输出少量漏电流;
2、设备900检测并存储当前的第一输出电压U1;
3、设备900调整电阻可调电路220的电阻值。其中,电阻可调电路220的电阻值调整前后的电阻值变化量为△R。
4、设备900检测并存储电阻可调电路220的电阻值调整后的第二输出电压U2;
5、设备900退出待机模式,根据U1、U2以及△R,确定待机漏电流I,其中,I=|U1-U1|/△R。
为了保证检测结果的准确性,设备900在检测待机漏电流之前,还可以通过以下步骤校准△R,即进入电阻值确定状态:
a、设备900调整电池230的检测电流,调整后的电池230的检测电流I1大于第二阈值。相对于待机状态,此时,即用电负载130的用电电流增大,导致电池包200的放电电流变大,即大于第二阈值。
b、设备900检测并存储电池包200的第三输出电压U3;
c、设备900调整电阻可调电路220的电阻值。其中,电阻可调电路220的电阻值调整前后的变化量为△R。
d、设备900检测并存储电阻可调电路220的电阻值调整后电池包200的第四输出电压U4,以及电池230的检测电流I1;由于此时电流较大,I1的测量值是准确的;
e、设备900根据U3、U4以及I1,确定△R,其中,△R=|U3-U4|/I1。由于大电流状态下I1的测量值是准确的,因此获得校准的△R,并可以将△R用于后续对小电流,如以上待机漏电流的检测计算。
具体实施实例二,设备900具体通过以下步骤进行关机漏电流的检测:
i、设备900配置待机漏电流检测标志位,进入关机状态;
ii、设备检测并存储当前电池包200的第一输出电压U1;
iii、设备900调整电阻可调电路220的电阻值。其中,电阻可调电路220的电阻值调整前后的电阻值变化量为△R。
iv、设备900检测并存储电阻可调电路220的电阻值调整后电池包200的第二输出电压U2;
v、设备900开机,根据U1、U2以及△R,确定关机漏电流I,其中,I=|U1-U2|/△R。
其中,设备900在检测关机漏电流之前也可以通过上述步骤a-e校准△R,本实施例不做赘述。
以上过程以漏电流的小电流检测为例做介绍,需要说明的是,对于充电小电流的检测或充放电大电流检测过程与上述方法类似,本实施例不做赘述。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种电池包,其特征在于,包括:控制信号接收端、电池以及可调电阻电路,所述电阻可调电路与所述电池串联;
    所述控制信号接收端,用于接收由所述电池包之外的电路系统发送的第一控制信号;
    所述可调电阻电路,用于基于所述第一控制信号,调整所述电阻可调电路的电阻值。
  2. 如权利要求1所述的电池包,其特征在于,所述电阻可调电路包括至少一个晶体管,所述第一控制信号用于控制所述至少一个晶体管以调整所述电阻可调电路的电阻值。
  3. 如权利要求2所述的电池包,其特征在于,所述至少一个晶体管包括第一晶体管,所述第一控制信号用于在所述电池放电过程中调整所述第一晶体管的导通程度来调整所述电阻可调电路的电阻值。
  4. 如权利要求2所述的电池包,其特征在于,所述至少一个晶体管包括并联的第一晶体管和第二晶体管,所述第一晶体管导通时的电阻值与所述第二晶体管导通时的电阻值不同,所述第一控制信号用于在所述电池放电过程中控制所述第一晶体管的状态和/或所述第二晶体管的状态来调整所述电阻可调电路的电阻值,所述第一晶体管的状态和所述第二晶体管的状态包括导通状态或截止状态。
  5. 如权利要求2至4中任一项所述的电池包,其特征在于,所述至少一个晶体管包括第三晶体管,所述第一控制信号用于在所述电池充电过程中调整所述第三晶体管的导通程度来调整所述电阻可调电路的电阻值。
  6. 如权利要求2至4中任一项所述的电池包,其特征在于,所述至少一个晶体管包括并联的第三晶体管和第四晶体管,所述第三晶体管导通时的电阻值与所述第四晶体管导通时的电阻值不同,所述第一控制信号用于在所述电池充电过程中控制所述第三晶体管的状态和/或所述第四晶体管的状态来调整所述电阻可调电路的电阻值,所述第三晶体管的状态和所述第四晶体管的状态包括导通状态或截止状态。
  7. 如权利要求2至6中任一项所述的电池包,其特征在于,所述电阻可调电路还包括保护电路,用于基于所述第一控制信号生成所述至少一个晶体管控制信号,所述至少一个晶体管控制信号能够分别作用于所述至少一个晶体管的控制端以控制所述至少一个晶体管。
  8. 一种测量电池电流的电路系统,其特征在于,包括:处理电路和测量电路;
    所述处理电路,用于向电池包发送第一控制信号,所述第一控制信号用于调整所述电池包的电阻值;
    所述测量电路,用于检测调整所述电池包的电阻值前所述电池包的第一输出电压和调整所述电池包的电阻值后所述电池包的第二输出电压;
    所述处理电路还用于:根据所述第一输出电压、第二输出电压以及调整所述电池包的电阻值引起的电阻值变化量,确定所述电池包产生的电流。
  9. 如权利要求8所述的电路系统,其特征在于,所述电池包产生的电流为充电电流或放电电流。
  10. 如权利要求9所述的电路系统,其特征在于,所述电池包产生的电流为放电漏电流。
  11. 如权利要求8至10中任一项所述的电路系统,其特征在于,所述测量电路还用于检测所述电池包产生的检测电流;
    所述处理电路具体用于:在所述检测电流小于第一阈值时,向所述电池包发送所述第一控制信号,以及根据所述第一输出电压、所述第二输出电压以及所述电阻值变化量,确定所述电池包产生的电流;
    所述测量电路具体用于:在所述检测电流小于第一阈值时,检测所述第一输出电压和所述第二输出电压。
  12. 如权利要求8至11中任一项所述的电路系统,其特征在于,所述测量电路还用于检测所述电池包产生的检测电流;
    所述处理电路还用于:在所述检测电流大于第二阈值时,向所述电池包发送第二控制信号,所述第二控制信号用于调整所述电池包的电阻值;
    所述测量电路,还用于在所述检测电流大于第二阈值时,检测调整所述电池包的电阻值前所述电池包的第三输出电压,和调整所述电池包的电阻值后所述电池包的第四输出电压;
    所述处理电路还用于:根据所述第三输出电压、第四输出电压以及所述检测电流,确定所述电阻值变化量。
  13. 如权利要求12所述的电路系统,其特征在于,所述第二控制信号与所述第一控制信号相同。
  14. 如权利要求8至13中任一项所述的电路系统,其特征在于,所述电池包产生的电流是所述第一输出电压与所述第二输出电压之差与所述电阻值变化量的比值。
  15. 一种测量电池电流的设备,其特征在于,包括如权利要求1至7中任一项所述的电池包,以及如权利要求8至14中任一项所述的电路系统。
PCT/CN2019/100964 2019-08-16 2019-08-16 电池包、测量电池电流的电路系统及测量电池电流的设备 WO2021030934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/100964 WO2021030934A1 (zh) 2019-08-16 2019-08-16 电池包、测量电池电流的电路系统及测量电池电流的设备
CN201980080363.1A CN113169385B (zh) 2019-08-16 2019-08-16 电池包、测量电池电流的电路系统及测量电池电流的设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100964 WO2021030934A1 (zh) 2019-08-16 2019-08-16 电池包、测量电池电流的电路系统及测量电池电流的设备

Publications (1)

Publication Number Publication Date
WO2021030934A1 true WO2021030934A1 (zh) 2021-02-25

Family

ID=74659840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100964 WO2021030934A1 (zh) 2019-08-16 2019-08-16 电池包、测量电池电流的电路系统及测量电池电流的设备

Country Status (2)

Country Link
CN (1) CN113169385B (zh)
WO (1) WO2021030934A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458818A (zh) * 2022-08-25 2022-12-09 圣邦微电子(北京)股份有限公司 适用于多种类型的电池包的电流采样电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2817171Y (zh) * 2005-06-15 2006-09-13 保定中恒电气有限公司 一种蓄电池恒流放电装置
CN104221208A (zh) * 2012-04-12 2014-12-17 三菱电机株式会社 蓄电设备放电装置
CN108512283A (zh) * 2018-05-17 2018-09-07 乌鲁木齐凯德道诚信息咨询服务有限公司 一种多功能充电系统
CN207852851U (zh) * 2018-01-12 2018-09-11 张怀 具有同步均衡功能的电池管理系统
CN208571636U (zh) * 2018-05-11 2019-03-01 铠龙东方汽车有限公司 一种电流可调整的电池恒流均衡电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719972B2 (ja) * 2000-12-11 2011-07-06 富士電機システムズ株式会社 充放電電流測定装置
CN102053226B (zh) * 2009-10-29 2013-04-10 比亚迪股份有限公司 一种测试电池内阻的装置及方法
JP5605143B2 (ja) * 2010-10-01 2014-10-15 ミツミ電機株式会社 電流制御回路
CN102539869A (zh) * 2012-02-23 2012-07-04 华为技术有限公司 电流检测装置及方法
JP6219687B2 (ja) * 2013-11-12 2017-10-25 ルネサスエレクトロニクス株式会社 半導体装置、電池パック及び携帯端末
CN104849565B (zh) * 2015-05-26 2017-12-26 深圳市共济科技股份有限公司 一种铅蓄电池内阻检测电路
CN105259494B (zh) * 2015-10-27 2018-04-03 北京新能源汽车股份有限公司 电池均衡电路的测试装置及方法
CN205720591U (zh) * 2016-04-13 2016-11-23 北京连创驱动技术有限公司 一种电池管理测试系统的被动均衡电路
CN106129969B (zh) * 2016-07-29 2019-05-14 宇龙计算机通信科技(深圳)有限公司 电池保护电路、电池及移动终端
CN107037371A (zh) * 2017-04-25 2017-08-11 华为技术有限公司 电池内阻的检测电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2817171Y (zh) * 2005-06-15 2006-09-13 保定中恒电气有限公司 一种蓄电池恒流放电装置
CN104221208A (zh) * 2012-04-12 2014-12-17 三菱电机株式会社 蓄电设备放电装置
CN207852851U (zh) * 2018-01-12 2018-09-11 张怀 具有同步均衡功能的电池管理系统
CN208571636U (zh) * 2018-05-11 2019-03-01 铠龙东方汽车有限公司 一种电流可调整的电池恒流均衡电路
CN108512283A (zh) * 2018-05-17 2018-09-07 乌鲁木齐凯德道诚信息咨询服务有限公司 一种多功能充电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458818A (zh) * 2022-08-25 2022-12-09 圣邦微电子(北京)股份有限公司 适用于多种类型的电池包的电流采样电路

Also Published As

Publication number Publication date
CN113169385A (zh) 2021-07-23
CN113169385B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US8278876B2 (en) Battery pack current monitoring
TWI747009B (zh) 電池控制裝置及用於檢測電池的內部短路的方法
US11056905B2 (en) Battery charging management method and terminal
EP3730955B1 (en) Battery management system, battery pack including same, and method for determining failure in current detecting circuit
US9293930B2 (en) Protective monitoring circuit and battery pack
US11527883B2 (en) Power protection apparatus and terminal using the apparatus
US20220190626A1 (en) Charging control method and charging control apparatus
JP2015049935A (ja) 携帯端末システム、携帯端末、および、電池パック
WO2019109951A1 (zh) 便携式电能系统及电池包剩余电量测量方法
CN106936181B (zh) 充放电回路接触阻抗的检测电路、检测方法及其自检方法
US9281698B2 (en) Battery pack
US9026387B2 (en) Battery voltage measurement
US20220278535A1 (en) Charging/discharging protection circuit, terminal device, and battery discharging control method
US20140139230A1 (en) Method and apparatus for determining a charge state
JP2020521963A (ja) 電圧測定装置及び方法
CN115372686A (zh) 充电芯片的检流电路以及电子设备
WO2021030934A1 (zh) 电池包、测量电池电流的电路系统及测量电池电流的设备
WO2016101484A1 (zh) 电压检测装置、电池及电压检测方法
US20210255252A1 (en) Methods and apparatus for detecting battery cell imbalance
JP2005012852A (ja) 2次電池保護用icとそれを用いたバッテリパックおよび電子機器
CN107994652B (zh) 一种监测电池充放电的电路及基于该电路的电量计量系统
JP2018200306A (ja) バッテリの残量検出回路、それを用いた電子機器、バッテリ残量の検出方法
CN212321709U (zh) 一种电流检测电路及电子设备
CN101938156A (zh) 用于移动终端校准测试的充电电路及其实现方法
US20150042349A1 (en) Voltage measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942251

Country of ref document: EP

Kind code of ref document: A1