WO2020244604A1 - 电路检测方法及装置、设备、存储介质 - Google Patents

电路检测方法及装置、设备、存储介质 Download PDF

Info

Publication number
WO2020244604A1
WO2020244604A1 PCT/CN2020/094467 CN2020094467W WO2020244604A1 WO 2020244604 A1 WO2020244604 A1 WO 2020244604A1 CN 2020094467 W CN2020094467 W CN 2020094467W WO 2020244604 A1 WO2020244604 A1 WO 2020244604A1
Authority
WO
WIPO (PCT)
Prior art keywords
mos tube
charging interface
power connection
switch circuit
charging unit
Prior art date
Application number
PCT/CN2020/094467
Other languages
English (en)
French (fr)
Inventor
刘绍斌
卜昌军
田晨
张俊
李家达
史岩松
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020244604A1 publication Critical patent/WO2020244604A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2843In-circuit-testing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the embodiments of the application relate to electronic technology, and relate to but not limited to circuit detection methods and devices, equipment, and storage media.
  • a certain switch element used to connect the charging interface to the battery in the direct charging unit.
  • the switching element When the switching element is worn to a certain extent, when the electronic device is charged at this time, it may cause a serious problem of heating of the electronic device, and even the problem of the electronic device withdrawing from charging.
  • circuit detection method, device, equipment, and storage medium provided in the embodiments of the present application are implemented as follows:
  • the circuit detection method provided by the embodiment of the present application is applied to an electronic device with a direct charging unit.
  • the direct charging unit includes: a charging interface, a battery, and a switch for establishing an electrical connection between the charging interface and the battery
  • the method includes: determining the power connection state of the charging interface, the power connection state is not connected or connected; collecting the direct charging unit corresponding to the power connection state Parameter value; according to the electrical parameter value and preset conditions, the performance of the switch circuit is detected to obtain a first detection result.
  • the electronic device includes: a direct charging unit, a processor, and a controller; wherein the direct charging unit includes a charging interface, a battery, and a switch circuit, and the switch circuit is used to establish the charging interface and The connection between the batteries;
  • the processor is configured to perform the following steps: determine the power supply connection status of the charging interface, and the power supply connection status is not connected or connected; collect data from the direct charging unit and The electrical parameter value corresponding to the power connection state; the performance of the switch circuit is detected according to the electrical parameter value and a preset condition, and a first detection result is obtained.
  • the electronic device provided by the embodiment of the present application includes a memory, a processor, and a direct charging unit.
  • the memory stores a computer program that can run on the processor.
  • the processor executes the program, the above circuit detection method is implemented. step.
  • the computer-readable storage medium provided by the embodiment of the present application has a computer program stored thereon, and when the computer program is executed by a processor, the steps in the above circuit detection method are realized.
  • an electronic device with a direct charging unit collects electrical parameter values on the direct charging unit corresponding to the power connection state of the charging interface; then, the electronic device according to the electrical parameter Value and preset conditions, perform performance testing on the switch circuit in the direct charging unit to obtain a first testing result. In this way, the electronic device collects the electrical parameter values on the direct charging unit itself, so as to realize the automatic detection of the performance of the switching circuit in the direct charging unit.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of this application.
  • FIG. 2 is a schematic diagram of the implementation process of a circuit detection method according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of still another electronic device according to an embodiment of the application.
  • 4A is a schematic diagram of the implementation process of another circuit detection method according to an embodiment of the application.
  • 4B is a schematic diagram of an implementation process of determining a gate voltage according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of an implementation process of determining a power connection state according to an embodiment of the application
  • 6A is a schematic structural diagram of another electronic device according to an embodiment of the application.
  • 6B is a schematic diagram of the implementation process of yet another circuit detection method according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a mobile phone according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a fast charging channel according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of the implementation of a method for detecting whether a Type-C interface has device access according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of yet another electronic device according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another electronic device according to an embodiment of the application.
  • first ⁇ second ⁇ third referred to in the embodiments of this application only distinguishes similar objects, and does not represent a specific order of objects. Understandably, “first ⁇ second ⁇ third” "If permitted, the specific order or sequence can be interchanged, so that the embodiments of the present application described herein can be implemented in a sequence other than those illustrated or described herein.
  • FIG. 1 is a schematic structural diagram of the electronic device according to an embodiment of the present application.
  • the electronic device 10 includes Direct charging unit 11, memory 12, processor 13, and controller 14; among them,
  • the direct charging unit 11 includes a charging interface 111, a battery 112, and a switch circuit 113 for establishing an electrical connection between the charging interface 111 and the battery 112.
  • the memory 12 stores a computer program that can be run on the processor 13, and the processor 13 implements the steps in the circuit detection method described in any embodiment of the present application when the processor 13 executes the program.
  • the processor 13 may also interact with the controller 14 to enable the controller 14 to control the working state of the direct charging unit 11 and to collect electrical parameter values on the direct charging unit 11.
  • the power adapter 20 After the power adapter 20 establishes an electrical connection with the charging interface 111 through the data line, it directly charges the battery 112 by turning on the switch circuit 113 in the direct charging unit 11.
  • the electronic device may be any terminal with charging capability.
  • the electronic device is a mobile phone, a tablet computer, a notebook computer or an e-reader, etc.; the electronic device can also be other products, for example, the electronic device is an electric car, an electric bicycle, a drone, a mobile power supply, Electronic cigarettes, watches, bracelets, smart glasses, sweeping robots, wireless headsets, Bluetooth speakers, electric toothbrushes or rechargeable wireless mice, etc. That is to say, in the embodiment of the present application, the product form of the electronic device is not limited.
  • FIG. 2 is a schematic diagram of the implementation process of the circuit detection method according to the embodiment of the application. As shown in FIG. 2, the method may include the following steps S201 to S203:
  • Step S201 The electronic device determines the power connection status of the charging interface on the direct charging unit; wherein the direct charging unit includes: a charging interface, a battery, and a device for establishing an electrical connection between the charging interface and the battery. Switch circuit.
  • the power supply connection state includes two states: not connected and connected.
  • the power connection state When the power connection state is not connected, it indicates that the electronic device is in an uncharged state and the electronic device is not connected to the power adapter; on the contrary, when the power connection state is the connected state, it indicates that the electronic device is charging State, the electronic device charges its own battery by connecting with the power adapter.
  • Step S202 The electronic device collects electrical parameter values on the direct charging unit corresponding to the power connection state.
  • the electronic device can turn on its own direct charging unit, so that the output current of the power adapter directly flows into the battery, thereby realizing rapid charging of the battery.
  • the electronic device may collect the current value of one or more electrical parameters on the direct charging unit, that is, the number and category of the electrical parameter values are not limited here. However, under different power connection states, the values collected should be the corresponding electrical parameter values. Different power connection states have different collection objects.
  • the interface voltage of the charging interface can be collected, and/or, the metal, oxide, semiconductor (Metal, Oxide, The gate (Grid, G) voltage of a semiconductor, MOS) field effect transistor (hereinafter referred to as a MOS transistor), and/or the first current between the gate and the source (Source, S) of the MOS transistor; and
  • the second current between the gate and the source of the MOS tube is collected.
  • Step S203 The electronic device detects the performance of the switch circuit according to the electrical parameter value and the preset condition to obtain a first detection result.
  • the electronic device determines that the performance of the switching circuit is deteriorated. For example, when the electrical parameter value is greater than the corresponding first threshold value, it is determined that the performance of the switching circuit has deteriorated.
  • the first detection result can be generated, and the result can include the device identification of the electronic device, the collected electrical parameter value and/ Or a signal that characterizes the deterioration of the performance of the switching circuit.
  • the performance of the switching circuit does not deteriorate, that is, when the electrical parameter value is less than or equal to the corresponding first threshold
  • the first detection result can also be generated.
  • the generated result can include the device identification and/or the electronic device Collected electrical parameter values, etc.
  • the MOS tube connected to the battery in the switching circuit gradually reduces the impedance between the G pole and the S pole of the MOS tube as it is used, resulting in a gradual decrease in the performance of the switching circuit.
  • the S pole of the MOS tube is connected to the power supply pin of the battery, so that no matter whether the electronic device is in a charging state, there is always voltage on the S pole of the MOS tube. That is, there is always a voltage difference between the G pole and the S pole of the MOS tube.
  • the impedance between the G pole and the S pole of the MOS tube decreases, that is, the performance of the switching circuit deteriorates.
  • the electronic device collects the electrical parameter values on the direct charging unit and implements automatic detection of the performance of the switching circuit on the direct charging unit according to preset conditions.
  • the maintenance personnel do not need to disassemble the electronic equipment, and use a multimeter to measure the electrical parameter values of the components of the direct charging unit one by one to troubleshoot the root cause of the problem, and only need to call the corresponding electronic equipment
  • the first detection result can find out the reason why the electronic device generates heat severely or quit charging.
  • the electronic device collects the electrical parameter value corresponding to the power connection state of the charging interface on its own direct charging unit; then, the electronic device is based on the electrical parameter value and A preset condition is to perform performance testing on the switch circuit in the direct charging unit to obtain a first testing result. In this way, the electronic device collects the electrical parameter values on the direct charging unit itself, so as to realize the automatic detection of the performance of the switching circuit in the direct charging unit.
  • FIG. 3 is a schematic structural diagram of another electronic device according to an embodiment of the present application. Compared with the electronic device 10 shown in FIG. 1, FIG. 3 illustrates that the switch circuit 313 includes at least A MOS tube 314. As shown in Fig. 3, the electronic device 30 includes a direct charging unit 31, a memory 32, a processor 33, and a controller 34; among them,
  • the direct charging unit 31 includes a charging interface 311, a battery 312 and a switch circuit 313 for establishing an electrical connection between the charging interface 311 and the battery 312.
  • the switch circuit 313 includes at least one MOS tube 314 connected to the battery.
  • the switch circuit 313 includes two MOS transistors.
  • the type of the MOS transistor is not limited here, and the type of the MOS transistor may be various.
  • the type of the MOS transistor can be N-channel enhancement type, N-channel depletion type, P-channel enhancement type, or P-channel depletion type.
  • the memory 32 stores a computer program that can run on the processor 33, and the processor 33 implements the steps in the circuit detection method described in any embodiment of the present application when the processor 33 executes the program.
  • FIG. 4A is a schematic diagram of the implementation flow of the circuit detection method according to the embodiment of the application. As shown in FIG. 4A, the method may include the following steps S401 Go to step S408:
  • step S401 the electronic device determines whether the power connection state of the charging interface on the direct charging unit is the connected state; if so, execute step S404; otherwise, execute step S402.
  • the direct charging unit includes a charging interface 311, a battery 312, and a switch circuit 313 for establishing an electrical connection between the charging interface 311 and the battery 312.
  • the switch circuit 313 includes at least one battery 312 Connected MOS tube 314;
  • Step S402 the electronic device sends a first control signal to the switch circuit to trigger the switch circuit to enter the off state, and then enter step S403;
  • Step S403 The electronic device collects at least one of the following electrical parameter values on the direct charging unit: the interface voltage of the charging interface, the gate voltage of the MOS tube connected to the battery, and the gate voltage of the MOS tube.
  • the interface voltage of the charging interface of the electronic device should be zero.
  • the voltage on the VBUS pin of the Type-C interface (that is, the interface voltage) should be zero.
  • the MOS tube on the switching circuit gradually suffers loss. For example, the impedance between the G pole and the S pole of the N-channel enhancement mode MOS tube connected to the battery gradually decreases.
  • the switch circuit may be in a conducting state.
  • the G pole voltage of the N-channel enhancement mode MOS tube is greater than 0, and the interface voltage of the charging interface is also greater than 0.
  • the electronic device can collect the interface voltage of the charging interface on the direct charging unit, the gate voltage of the MOS tube connected to the battery, and the voltage between the gate and the source of the MOS tube.
  • One or more electrical parameter values in the first current of so as to detect the performance of the switching circuit according to the collected electrical parameter values and preset conditions.
  • the type of the electrical parameter value is not limited here, and the electrical parameter value may also be other electrical parameter values.
  • the electrical parameter value may also be the impedance between the gate and the source of the MOS tube. If it is less than a preset threshold, it is determined that the performance of the switching circuit is deteriorated.
  • the electrical parameter value may also be the G pole voltage, the current between the G pole and the S pole of the MOS tube connected to the battery.
  • the electronic device collects the gate voltage of the MOS tube connected to the battery on the direct charging unit, as shown in FIG. 4B, which can be implemented by the following steps S4041 and S4042: step S4041, electronic The device collects the voltage on the analog-digital conversion (Analog Digital Converter, ADC) pin connected to the gate of the MOS tube connected to the battery; step S4042, the electronic device determines the voltage on the ADC pin as the gate Polar voltage; Among them, ADC pin is the pin on the controller, with signal acquisition function and analog-to-digital conversion capability.
  • ADC Analog Digital Converter
  • Step S404 the electronic device sends a second control signal to the direct charging unit to trigger the switch circuit to enter a conducting state, and then enter step S405;
  • Step S405 the electronic device collects the second current between the gate and the source of the MOS tube connected to the battery on the direct charging unit; wherein the switch circuit includes at least one MOS tube, and then Go to step S406.
  • the G pole and S pole of the MOS tube connected to the battery are also insulated, that is, The current between the G pole and the S pole should be zero.
  • the MOS tube connected to the battery gradually suffers loss, and the impedance between the G pole and the S pole of the MOS tube gradually decreases. In this way, when charging the electronic device, there is a current between the G pole and the S pole of the MOS tube. Based on this, in the embodiment of the present application, the performance detection of the switching circuit can be realized by collecting the second current according to its corresponding preset condition.
  • the second current is greater than the corresponding first threshold, it is determined that the performance of the switching circuit is deteriorated.
  • the charging interface of the electronic device has power access, that is, when the electronic device is in a charging state
  • other electrical parameter values on the direct charging unit can also be collected. For example, the current between the G pole and the S pole of the MOS tube connected to the charging interface is collected, and if it is greater than the corresponding first threshold, it is determined that the performance of the switch circuit is deteriorated.
  • Step S406 the electronic device detects the performance of the MOS transistor according to the collected electrical parameter value and the first threshold corresponding to the electrical parameter value.
  • the types of the electrical parameter values are different, and the corresponding first threshold values are also different.
  • the set first threshold value is generally larger than the theoretical value, which can reduce the probability of misjudgment caused by acquisition errors; wherein, the theoretical value refers to the ideal value when the components on the switching circuit of the electronic device are not damaged at the initial stage of use. For example, when an electronic device is in a non-charging state, the interface voltage of its charging interface should theoretically be 0. However, in order to reduce the probability of misjudgment caused by acquisition errors, the threshold is set to a value greater than 0.
  • step S407 if at least one electrical parameter value is greater than the corresponding first threshold, the electronic device generates a first detection result indicating that the performance of the switching circuit has deteriorated due to the deterioration of the MOS transistor.
  • the electronic device can determine that the performance of the switching circuit has not deteriorated, and the first detection result can be generated at this time, or it can be determined that the performance of the switching circuit has deteriorated. Then generate the corresponding first detection result.
  • the electronic device determines that the performance of the switching circuit has not deteriorated, and the first detection result may not be generated at this time.
  • Step S408 the electronic device outputs the first detection result.
  • the electronic device can output the first detection result in multiple ways. For example, when the first detection result indicates that the performance of the switch circuit has deteriorated, the electronic device sends the first detection result to a server, or the electronic device displays or broadcasts the first detection result .
  • the first detection result is sent to the server, so that the server saves the first detection result corresponding to the electronic device; in this way, when the electronic device is returned to the factory for repair due to the problem of exiting charging or serious heat generation, the maintenance personnel can download from the server
  • the first detection result of the electronic device is retrieved to determine whether the above-mentioned problem is caused by the deterioration of the performance of the switching circuit. In other words, this can help maintenance personnel quickly troubleshoot the root cause of the above-mentioned problems.
  • the electronic device displays or broadcasts the first test result, for example, a voice notification to the user: "There is a problem with the charging function of your mobile phone, please repair it in time”, thereby reminding the user of the electronic device to repair the switch circuit in time to avoid electronic The problem of serious emission or withdrawal of charging when the device is charging.
  • the electronic device collects at least one electrical parameter value on its direct charging unit. For example, when the power connection state is not connected, the electronic device collects the interface voltage of its charging interface, and/or collects the gate voltage of the MOS tube connected to the battery, and/or, the gate of the MOS tube
  • the performance of the switching circuit of the direct charging unit is detected according to the collected electrical parameter value and the corresponding first threshold value and the first current between the source and the source. In this way, the electronic device can realize the performance detection of its own switching circuit, and avoid the need for maintenance personnel to disassemble the machine for troubleshooting when the electronic device is withdrawn from charging or when the charging is severely heated.
  • the electronic device may determine the power connection state of the charging interface through the following steps S501 to S505:
  • Step S501 The electronic device performs at least two detections on the power connection state of its own charging interface according to a preset detection strategy to obtain a second detection result set.
  • the detection strategy can be varied. For example, the detection strategy is to detect the power connection state of the charging interface every 1 second, and the number of detections is 3 times. For another example, the detection strategy is to detect the power connection state of the charging interface once every 1 second; then, once every 0.5 seconds; and finally, once every 0.2 seconds.
  • the purpose of detecting the power connection status of the charging interface multiple times in the embodiment of the present application is to ensure that the currently detected power connection status is accurate; in this way, the collected electrical parameters corresponding to the power connection status The value will not have a large error, thereby reducing the probability of misjudgment of the performance of the switching circuit by the electronic device.
  • Step S502 The electronic device determines the number X of second detection results in the second detection result set indicating that the direct charging unit is not powered on;
  • Step S503 the electronic device determines whether the number X is greater than or equal to N; if yes, execute step S504; otherwise, execute step S505; where N is a preset second threshold;
  • step S504 the electronic device determines that the power connection state of the charging interface is an unconnected state.
  • the electronic device determines that the power connection status of the charging interface is not connected .
  • Step S505 The electronic device determines that the power connection state of the charging interface is the connection state.
  • FIG. 6A is a schematic structural diagram of another electronic device according to an embodiment of the application.
  • the electronic device 61 includes a battery 62, a MOS tube 63, a MOS tube 64, and a charging interface 65.
  • the controller 66, the memory 67 and the processor 68 wherein one end of the battery 62 is connected to the S pole of the MOS tube 63, the G pole of the MOS tube 63 is connected to the controller 66, and the D pole of the MOS tube 63 is connected to the MOS tube 64 The D pole is connected, the S pole of the MOS tube 64 is connected to the charging interface 65, and the G pole of the MOS tube 64 is connected to the controller 66.
  • the processor 68 is connected to the controller 66 and can exchange information with the controller 66.
  • the memory 67 stores a computer program that can run on the processor 68, and the processor 68 implements the steps in the circuit detection method described in any embodiment of the present application when the processor 68 executes the program. It should be noted that the MOS transistor 63 and the MOS transistor 64 actually form a switch circuit for turning on and off the electrical connection between the battery 62 and the charging interface 65.
  • FIG. 6B is a schematic diagram of the implementation flow of another circuit detection method according to an embodiment of the present application. As shown in FIG. 6B, the method may include the following steps S601 to S606:
  • step S601 the electronic device 61 determines whether the charging interface 65 has power access; if not, execute step S602; if yes, return to execute step S601.
  • the electronic device may periodically or non-periodically perform step S601 to step 606, that is, periodically or non-periodically detect the performance of the switching circuit including the MOS transistor 63 and the MOS transistor 64.
  • step S602 the electronic device 61 triggers the switch circuit including the MOS transistor 63 and the MOS transistor 64 to enter the off state; for example, the electronic device 61 triggers the MOS transistor 63 and the MOS transistor 64 to enter the off state through the controller 66;
  • Step S603 the electronic device 61 reads the interface voltage VB of the charging interface 65;
  • step S604 the electronic device 61 determines whether the interface voltage VB is greater than the corresponding first threshold; if so, execute step S605; otherwise, return to execute step S601;
  • Step S605 The electronic device 61 generates a first detection result, and the content of the first detection result includes the device identification of the electronic device 61, the reason that causes the performance of the switch circuit to deteriorate, and the interface voltage VB;
  • Step S606 the electronic device 61 sends the first detection result to the server.
  • the electronic device collects the interface voltage of the charging interface when its charging interface is not powered on; then, based on the interface voltage and the corresponding first threshold, it quickly determines whether the performance of its own switching circuit has deteriorated.
  • the fast charging (quick charging for short) technology uses a low-voltage and high-current method.
  • the output pin VBUS of the charger is connected to the VBAT (Battery Voltage of Battery) pin of the mobile phone battery through two MOS tubes.
  • VBAT Battery Voltage of Battery
  • the electrode will leak, causing the voltage of the G electrode to drive the MOS tube to be reduced; this will cause the impedance between the D electrode and the S electrode of the MOS tube to be too large when the MOS tube is turned on, which may cause serious heat and withdrawal of the mobile phone Fast charging problem.
  • the method adopted is to disassemble the shielding bracket on the main board of the mobile phone, and then measure the impedance between the G pole and the S pole.
  • the disadvantages of this method are: First, the motherboard of the mobile phone needs to be removed, and then the shielding bracket of the motherboard needs to be removed. This involves disassembling the mobile phone and repairing the motherboard, resulting in increased repair costs and waste of time; second, MOS tube When the impedance between the G pole and the S pole is not reduced much, the impedance between the G pole and the S pole is still large at this time. At this time, the value obtained by measuring the impedance with a multimeter has a large error, and it is impossible to accurately determine whether the MOS tube has abnormal.
  • FIG. 7 is a schematic structural diagram of the mobile phone according to the embodiment of the application.
  • the mobile phone 70 includes at least: a battery 701, a fast charging channel 702, a USB holder 703, and a micro-control unit ( Microcontroller Unit (MCU) 704 and AP 705; where the MCU is an example of the controller described in the foregoing embodiment.
  • MCU Microcontroller Unit
  • the embodiment of the present application adopts a new method to judge the condition of the fast charging path (that is, the switching circuit) based on the current fast charging scheme.
  • the application processor (AP) of the mobile phone sends a signal to the Microcontroller Unit (MCU) of the fast charging channel to start collecting the pin VBUS After that, MCU controls the output of SW2 pin from high level to low level.
  • MCU Microcontroller Unit
  • the MOS tube V4303 is turned off, and the G poles of the MOS tube V4304 and the MOS tube V4305 become grounded through a 470K resistor. If the impedance between the G pole and the S pole of the MOS tube V4304 becomes smaller, the voltage on the G pole is the divided voltage between the resistor R4307.
  • the voltage on the G pole of the MOS tube V4304 exceeds the threshold voltage of the MOS tube V4305, the MOS tube V4305 is turned on, there is a voltage on the VBUS (VB) pin, and the voltage on VB is collected through the AP.
  • the condition of the MOS tube V4304 can be judged by the voltage on VB. For example, if the voltage on VB is greater than a preset threshold (for example, 0.1 mv), it is determined that the impedance of the MOS tube V4304 is reduced, and the performance of the MOS tube V4304 is reduced.
  • a preset threshold for example, 0.1 mv
  • the voltage on VB in FIG. 8 is the VBUS voltage corresponding to the mobile phone USB (ie, the charging interface), and VA is the battery voltage of the mobile phone.
  • the following embodiment is a case of the problem of collecting MOS tubes on the mobile phone, and is an upgraded version of the above solution.
  • Collect data (such as the voltage on VB) through the cooperation of AP and MCU on the mobile phone, and upload the data to the cloud for analysis.
  • the Android system of the mobile phone sends a collection command to the AP of the mobile phone at a fixed time.
  • the AP checks the Type-C interface Whether a device is connected (if a device is connected, there is voltage on the VBUS pin of the Type-C interface, which will cause the collected voltage to be the VBUS voltage of the external device). If there is no device connected (that is, there is no power connection), the AP sends a reset command to the MCU to trigger the MCU reset.
  • the AP checks whether there is a device connected to the Type-C interface; if not, it sends it to the MCU 15 clock (Clock, clk) signals. After receiving at least 10 clk signals, the MCU sets the SW2 pin level low, and then sets the SW2 pin level high after 1 second; after 0.2 seconds, the AP checks the Type- Whether there is a device connected to the C interface; if not, read the voltage on the VB 3 times, each time interval is 0.1 seconds, and then upload the read data.
  • the MCU 15 clock (Clock, clk) signals After receiving at least 10 clk signals, the MCU sets the SW2 pin level low, and then sets the SW2 pin level high after 1 second; after 0.2 seconds, the AP checks the Type- Whether there is a device connected to the C interface; if not, read the voltage on the VB 3 times, each time interval is 0.1 seconds, and then upload the read data.
  • the reason for judging whether there is an external device multiple times in the embodiment of the present application is that if a device is connected, the VBUS of the USB has a voltage, which will cause the collected voltage VB to be the VBUS voltage of the external device.
  • the condition of the MOS tube in the mobile phone can be judged.
  • automatic collection and cloud upload are realized. It does not need to disassemble the phone, etc., to determine the status of the MOS tube in the mobile phone, which greatly simplifies the operation.
  • the mobile phone when the SW2 pin is set low, taking the mobile phone shown in FIG. 8 as an example, the mobile phone reads the G pole voltage of the MOS transistor V4304 through the ADC to determine the condition of the MOS transistor V4304. That is, connect the SW1 pin to the ADC pin of the MCU, and judge by analyzing the voltage here. For example, when the voltage of the G electrode of the MOS transistor V4304 is greater than the preset threshold, it is determined that the performance of the MOS transistor V4304 is degraded.
  • the current between the G pole and the S pole of the MOS transistor V4304 can be measured to determine the condition of the MOS transistor V4304.
  • FIG. 10 is a schematic structural diagram of the electronic device according to an embodiment of the application.
  • the electronic device 100 includes a direct charging unit 1001 and a processor 1002. And the controller 1003; wherein the direct charging unit 1001 is connected to the controller 1003, the direct charging unit 1001 includes a charging interface 1011, a battery 1012, and a switch circuit 1013, one end of the switch circuit 1013 and a charging interface 1011 is connected, the other end of the switch circuit 1013 is connected to the battery 1012, and the switch circuit 1013 is used to establish an electrical connection between the charging interface 1011 and the battery 1012;
  • the processor 1002 is connected to the controller 1003, and is configured to perform the following steps: determine the power connection status of the charging interface 1011, and the power connection status is not connected or connected; through the control
  • the device 1003 collects the electrical parameter value corresponding to the power connection state on the direct charging unit 1001; detects the performance of the switch circuit 1013 according to the electrical parameter value and preset conditions to obtain a first detection result.
  • the processor may be a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP), or a field programmable gate array (FPGA).
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the above circuit detection method is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions to enable An electronic device (which can be a mobile phone, a tablet computer, a desktop computer, a personal digital assistant, a navigator, a digital phone, a video phone, a television, a sensor device, etc.) performs all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (Read Only Memory, ROM), magnetic disk or optical disk and other media that can store program codes. In this way, the embodiments of the present application are not limited to any specific hardware and software combination.
  • FIG. 11 is a schematic diagram of a hardware entity of the electronic device according to an embodiment of the application.
  • the hardware entity of the electronic device 110 includes a memory 111 and a processor 112,
  • the memory 111 stores a computer program that can run on the processor 112, and the processor 112 implements the steps in the circuit detection method provided in the foregoing embodiment when the processor 112 executes the program.
  • the memory 111 is configured to store instructions and applications executable by the processor 112, and can also cache data to be processed or processed by the processor 112 and the modules in the electronic device 110 (for example, image data, audio data, voice communication data, and Video communication data) can be implemented through flash memory (FLASH) or random access memory (Random Access Memory, RAM).
  • FLASH flash memory
  • RAM Random Access Memory
  • the embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the computer program implements the steps in the circuit detection method provided in the foregoing embodiment when the computer program is executed by a processor.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms of.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present application can all be integrated into one processing unit, or each unit can be individually used as a unit, or two or more units can be integrated into one unit;
  • the unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the foregoing program can be stored in a computer readable storage medium.
  • the execution includes The steps of the foregoing method embodiment; and the foregoing storage medium includes: various media that can store program codes, such as a mobile storage device, a read only memory (Read Only Memory, ROM), a magnetic disk, or an optical disk.
  • ROM Read Only Memory
  • the above-mentioned integrated unit of this application is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions to enable An electronic device (which can be a mobile phone, a tablet computer, a desktop computer, a personal digital assistant, a navigator, a digital phone, a video phone, a television, a sensor device, etc.) performs all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: removable storage devices, ROMs, magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例公开了电路检测方法及装置、设备、存储介质,其中,所述方法应用于具有直充单元的电子设备,所述直充单元包括:充电接口、电池、用于建立所述充电接口和所述电池之间电性连接的开关电路;所述方法包括:确定所述充电接口的电源接入状态,所述电源接入状态为未接入或已接入;采集所述直充单元上,与所述电源接入状态对应的电参数值;依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果。

Description

电路检测方法及装置、设备、存储介质
相关申请的交叉引用
本申请基于申请号为201910488318.1、申请日为2019年06月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本申请实施例涉及电子技术,涉及但不限于电路检测方法及装置、设备、存储介质。
背景技术
随着电子设备(例如手机、平板电脑等)的使用,电子设备内的某些元件逐渐损耗。例如,直充单元中用于连接充电接口与电池的某个开关元件。当开关元件损耗到一定程度时,此时在对电子设备进行充电时,可能会导致电子设备发热严重的问题,甚至会导致电子设备退出充电的问题。
目前,在排查上述问题时,常用的方法是将电子设备主板上的屏蔽支架拆开后,维修人员通过仪表逐一检测每个电路的性能。然而,这样不仅增加了维修成本,维修人员通过仪表测量,有时也无法找出到底是哪里出现了问题。
发明内容
本申请实施例提供的电路检测方法及装置、设备、存储介质,是这样实现的:
本申请实施例提供的电路检测方法,应用于具有直充单元的电子设备,所述直充单元包括:充电接口、电池、用于建立所述充电接口和所述电池之间电性连接的开关电路;所述方法包括:确定所述充电接口的电源接入状态,所述电源接入状态为未接入或已接入;采集所述直充单元上与所述电源接入状态对应的电参数值;依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果。
本申请实施例提供的电子设备,包括:直充单元、处理器和控制器;其中,所述直充单元,包括充电接口、电池和开关电路,所述开关电路用于建立所述充电接口和所述电池之间的连接;
所述处理器,用于执行以下步骤:确定所述充电接口的电源接入状态,所述电源接入状态为未接入或已接入;通过所述控制器采集所述直充单元上与所述电源接入状态对应的电参数值;依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果。
本申请实施例提供的电子设备,包括存储器、处理器和直充单元,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述电路检测方法中的步骤。
本申请实施例提供的计算机可读存储介质,其上存储有计算机程序,该计算机程序 被处理器执行时实现上述电路检测方法中的步骤。
本申请实施例提供的电路检测方法,具有直充单元的电子设备,采集所述直充单元上与充电接口的电源接入状态对应的电参数值;然后,所述电子设备依据所述电参数值和预设条件,对所述直充单元中的开关电路进行性能检测,得到第一检测结果。如此,通过所述电子设备采集自身直充单元上的电参数值,从而实现对直充单元中的开关电路性能的自动化检测。
附图说明
图1为为本申请实施例电子设备的结构示意图;
图2为本申请实施例电路检测方法的实现流程示意图;
图3为本申请实施例再一电子设备的结构示意图;
图4A为本申请实施例另一电路检测方法的实现流程示意图;
图4B为本申请实施例确定栅极电压的实现流程示意图;
图5为本申请实施例确定电源接入状态的实现流程示意图;
图6A为本申请实施例又一电子设备的结构示意图;
图6B为本申请实施例再一电路检测方法的实现流程示意图;
图7为本申请实施例手机的结构示意图;
图8为本申请实施例快充通路的结构示意图;
图9为本申请实施例检测Type-C接口是否有设备接入的方法实现示意图;
图10为本申请实施例再一电子设备的结构示意图;
图11为本申请实施例另一电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请的具体技术方案做进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
需要指出,本申请实施例所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
为了便于读者对以下实施例所提供的电路检测方法的理解,本申请实施例先提供一种电子设备,图1为本申请实施例电子设备的结构示意图,如图1所示,电子设备10包括直充单元11、存储器12、处理器13和控制器14;其中,
直充单元11包括充电接口111、电池112和用于建立充电接口111和电池112之间电性连接的开关电路113。
存储器12存储有可在处理器13上运行的计算机程序,处理器13执行所述程序时实现本申请任一实施例所述的电路检测方法中的步骤。
需要说明的是,处理器13还可以通过与控制器14交互,使控制器14控制直充单元11的工作状态,并能够采集直充单元11上的电参数值。电源适配器20通过数据线与充电接口111建立电性连接之后,通过导通直充单元11中的开关电路113,从而直接对电池112进行充电。
结合图1所示的电子设备结构示意图,以下对电路检测方法及装置、设备、存储介质的各实施例进行说明。在本申请各实施例中,所述电子设备可以是任意具有充电能力的终端。例如,所述电子设备为手机、平板电脑、笔记本电脑或者电子阅读器等;所述电子设备还可以是其他产品,例如,所述电子设备为电动汽车、电动自行车、无人机、移动电源、电子烟、手表、手环、智能眼镜、扫地机器人、无线耳机、蓝牙音响、电动牙刷或者可充电无线鼠标等。也就是说,在本申请实施例中,对所述电子设备的产品形式不做限定。
本申请实施例提供一种电路检测方法,图2为本申请实施例电路检测方法的实现流程示意图,如图2所示,所述方法可以包括以下步骤S201至步骤S203:
步骤S201,电子设备确定自身直充单元上充电接口的电源接入状态;其中,所述直充单元包括:充电接口、电池、用于建立所述充电接口和所述电池之间电性连接的开关电路。
可以理解地,所述电源接入状态包括未接入和已接入两种状态。当所述电源接入状态为未接入状态时,表明电子设备处于未充电状态,电子设备没有接入电源适配器;反之,当所述电源接入状态为接入状态时,表明电子设备处于充电状态,电子设备通过与电源适配器连接以对自身电池进行充电。
步骤S202,所述电子设备采集所述直充单元上与所述电源接入状态对应的电参数值。
可以理解地,当电源适配器对电子设备中的电池进行快速充电时,电子设备可以导通自身的直充单元,以使电源适配器的输出电流直接流入电池中,从而实现对电池的快速充电。
在实现时,电子设备可以采集所述直充单元上的一种或多种电参数的当前数值,也就是说,这里不限定所述电参数值的数量和类别。但是,在不同的电源接入状态下,采集的应该是其对应的电参数的数值,不同的电源接入状态,采集对象是不同的。例如,当所述充电接口的电源接入状态为未接入时,可以采集所述充电接口的接口电压,和/ 或,采集与所述电池相连的金属、氧化物、半导体(Metal、Oxide、Semiconductor,MOS)场效应晶体管(以下简称MOS管)的栅(Grid,G)极电压,和/或,所述MOS管的栅极与源(Source,S)极之间的第一电流;再如,当所述充电接口的电源接入状态为已接入时,采集MOS管的栅极与源极之间的第二电流。
步骤S203,所述电子设备依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果。
在实现时,如果电参数值不满足对应的预设条件,电子设备确定开关电路的性能变差。例如,当电参数值大于对应的第一阈值时,确定开关电路的性能变差,此时可以生成第一检测结果,在该结果中可以包括电子设备的设备标识、采集的电参数值和/或表征开关电路的性能变差的信号等。当然,当开关电路的性能没有变差时,即电参数值小于或等于对应的第一阈值时,也可以生成第一检测结果,此时生成的结果中可以包括电子设备的设备标识和/或采集的电参数值等。
需要说明的是,不同的电参数值对应的预设条件可以不同,也可以相同。
可以理解地,随着电子设备的使用,电子设备中的元件逐渐受到损耗。例如,开关电路中与电池相连的MOS管,随着其使用,该MOS管的G极与S极之间的阻抗逐渐减小,导致开关电路的性能逐渐下降。这是因为,该MOS管的S极与电池的电源引脚连接,这样,无论电子设备是否在充电状态,该MOS管的S极上一直都有电压。即,该MOS管的G极与S极之间始终存在电压差。随着电子设备的使用,该MOS管的G极与S极之间的阻抗减小,即开关电路的性能变差。减小,则会导致该MOS管的S极漏电,从而造成用于驱动该MOS管导通的G极电压降低。如此,在给电子设备充电时,该MOS管的漏(Drain,D)极与S极之间的阻抗过大,而过大则会造成电子设备发热严重,甚至退出快速充电的问题。
基于此,在本申请实施例中,所述电子设备通过采集自身直充单元上的电参数值,并依据预设条件,实现对直充单元上开关电路性能的自动化检测。从而,使得当电子设备发热严重或者退出快速充电时,维修人员不用拆开电子设备,用万用表逐一测量直充单元的元件的电参数值来排查问题出现的根由,只需调取电子设备对应的第一检测结果,即可找出电子设备发热严重或者退出充电的原因。
可以理解地,本申请实施例所提供的电路检测方法,电子设备采集自身直充单元上与充电接口的电源接入状态对应的电参数值;然后,所述电子设备依据所述电参数值和预设条件,对所述直充单元中的开关电路进行性能检测,得到第一检测结果。如此,通过所述电子设备采集自身直充单元上的电参数值,从而实现对直充单元中的开关电路性能的自动化检测。
本申请实施例再提供一种电子设备,图3为本申请实施例再一电子设备的结构示意图,与图1所示的电子设备10相比,图3中示意出了开关电路313中至少包括一个MOS管314。如图3所示,电子设备30包括直充单元31、存储器32、处理器33和控制器 34;其中,
直充单元31包括充电接口311、电池312和用于建立充电接口311和电池312之间的电性连接的开关电路313。开关电路313至少包括一个与电池相连的MOS管314。例如,开关电路313包括两个MOS管。需要说明的是,这里对所述MOS管的类型不做限定,所述MOS管的类型可以是多种多样的。例如,所述MOS管的类型可以是N沟道增强型、N沟道耗尽型、P沟道增强型或者P沟道耗尽型等。
存储器32存储有可在处理器33上运行的计算机程序,处理器33执行所述程序时实现本申请任一实施例所述的电路检测方法中的步骤。
结合图3所示的电子设备30,本申请实施例提供另一电路检测方法,图4A为本申请实施例电路检测方法的实现流程示意图,如图4A所示,所述方法可以包括以下步骤S401至步骤S408:
步骤S401,电子设备确定自身直充单元上的充电接口的电源接入状态是否是已接入状态;如果是,执行步骤S404;否则,执行步骤S402。
其中,所述直充单元,如图3所示,包括充电接口311、电池312和用于建立充电接口311与电池312之间电性连接的开关电路313,开关电路313至少包括一个与电池312相连的MOS管314;
步骤S402,所述电子设备发送第一控制信号给所述开关电路,以触发所述开关电路进入截止状态,然后进入步骤S403;
步骤S403,所述电子设备采集所述直充单元上的以下至少之一电参数值:所述充电接口的接口电压、与所述电池相连的MOS管的栅极电压、所述MOS管的栅极与源极之间的第一电流;其中,所述开关电路至少包括一个所述MOS管,然后进入步骤S406。
可以理解地,当电子设备在非充电状态时,即没有电源接入电子设备的充电接口时,理论上来讲,电子设备的充电接口的接口电压应该为0。以充电接口为Type-C接口为例,当电子设备在非充电状态时,Type-C接口的VBUS引脚上的电压(即所述接口电压)应该为0。然而,随着电子设备的使用,开关电路上的MOS管逐渐受到损耗。例如,与电池相连的N沟道增强型MOS管的G极与S极之间的阻抗逐渐减小。这样,即使没有电源接入所述充电接口,开关电路也可能会处于导通状态。此时,N沟道增强型MOS管的G极电压大于0,充电接口的接口电压也大于0,N沟道增强型MOS管的G极与S极之间存在电流,即所述第一电流也大于0。
基于此,在本申请实施例中,所述电子设备可以采集所述直充单元上的充电接口的接口电压、与电池相连的MOS管的栅极电压、MOS管的栅极与源极之间的第一电流中的一个或多个电参数值,从而依据采集的电参数值与预设条件,对所述开关电路的性能进行检测。当然,这里对所述电参数值的类型不做限定,所述电参数值还可以是其他电参数值。比如,所述电参数值还可以是MOS管的栅极与源极之间的阻抗,如果小于预设阈值,则确定开关电路的性能变差。再如,所述电参数值还可以是与电池相连的MOS管的G极电压、G极与S极之间的电流等。
在其他实施例中,电子设备在采集所述直充单元上与所述电池相连的MOS管的栅极电压,如图4B所示,可以通过如下步骤S4041和步骤S4042来实现:步骤S4041,电子设备采集与所述电池相连的MOS管的栅极连接的模拟数字转换(Analog Digital Converter,ADC)引脚上的电压;步骤S4042,电子设备将所述ADC引脚上的电压确定为所述栅极电压;其中,ADC引脚为控制器上的引脚,具备信号采集功能和模数转换能力。
步骤S404,所述电子设备发送第二控制信号给所述直充单元,以触发所述开关电路进入导通状态,然后进入步骤S405;
步骤S405,所述电子设备采集所述直充单元上与所述电池相连的MOS管的栅极与源极之间的第二电流;其中,所述开关电路至少包括一个所述MOS管,然后进入步骤S406。
可以理解地,当电子设备在充电状态时,即,有电源接入电子设备的充电接口时,理论上来讲,与电池相连的MOS管的G极与S极之间也是绝缘的,也就是,G极与S极之间的电流应该为0。然而,随着电子设备的使用,与电池相连的MOS管逐渐受到损耗,MOS管的G极与S极之间的阻抗逐渐减小。这样,在给电子设备进行充电时,MOS管的G极与S极之间存在电流。基于此,在本申请实施例中,可以通过采集所述第二电流,依据其对应的预设条件来实现对开关电路的性能检测。例如,当所述第二电流大于对应的第一阈值时,确定所述开关电路的性能变差。当然,当电子设备的充电接口有电源接入时,即电子设备为充电状态时,也可以采集直充单元上的其他电参数值。比如,采集与充电接口连接的MOS管的G极与S极之间的电流,如果大于对应的第一阈值,确定所述开关电路的性能变差。
步骤S406,所述电子设备依据采集的电参数值和所述电参数值对应的第一阈值,对所述MOS管的性能进行检测。
一般情况下,所述电参数值的类型不同,其对应的第一阈值也是不同的。设置的第一阈值一般比理论值大,这样可以减少采集误差导致的误判概率;其中,所述理论值指的是电子设备在使用初期开关电路上的元件还没有受到损耗时的理想值。例如,当电子设备在非充电状态时,其充电接口的接口电压理论上应该为0。但是,为了减少采集误差导致的误判概率,设置的阈值为大于0的数值。
步骤S407,如果至少一个电参数值大于对应的第一阈值,所述电子设备生成表征由于所述MOS管的性能变差而导致所述开关电路的性能变差的第一检测结果。
在其他实施例中,如果没有一个电参数值大于对应的第一阈值,电子设备可以确定开关电路的性能没有变差,此时可以生成第一检测结果,也可以在确定开关电路的性能变差时再生成对应的第一检测结果。
在其他实施例中,如果电参数值大于第一阈值的个数超过第三阈值时,电子设备生成表征由于所述MOS管的性能变差而导致所述开关电路的性能变差的第一检测结果;反之,如果电参数值大于第一阈值的个数小于第三阈值时,电子设备确定所述开关电路 的性能没有变差,此时可以不生成第一检测结果。
步骤S408,所述电子设备输出所述第一检测结果。
在实现时,所述电子设备可以通过多种方式输出第一检测结果。例如,当所述第一检测结果表征所述开关电路的性能变差时,所述电子设备将所述第一检测结果发送给服务器,或者,所述电子设备显示或播报所述第一检测结果。
可以理解地,将第一检测结果发送给服务器,以便服务器保存电子设备对应的第一检测结果;这样,当电子设备出现退出充电或者发热严重的问题被返厂维修时,维修人员可以从服务器端调取电子设备的第一检测结果,从而确定是否是开关电路的性能变差导致的上述问题。也就是说,如此可以帮助维修人员快速排查导致上述问题的根源。另外,电子设备显示或播报第一检测结果,例如,语音通知用户:“您的手机充电功能出现问题,请及时维修”,从而提醒电子设备的用户及时对所述开关电路进行维修,以免出现电子设备充电时发射严重或者退出充电的问题。
在本申请实施例中,在不同的电源接入状态下,电子设备采集其直充单元上的至少一个电参数值。例如,在电源接入状态为未接入时,电子设备采集其充电接口的接口电压,和/或,采集与电池相连的MOS管的栅极电压,和/或,所述MOS管的栅极与源极之间的第一电流等,并依据采集的电参数值和对应的第一阈值对所述直充单元的开关电路的性能进行检测。如此,电子设备可以实现对自身的开关电路的性能检测,避免在电子设备退出充电或者充电时发热严重时,需要维修人员拆机来进行故障排查。
需要说明的是,确定所述充电接口的电源接入状态的方式有很多种,在本申请实施例中不做限定。例如,图5所示,电子设备可以通过如下步骤S501至步骤S505,确定所述充电接口的电源接入状态:
步骤S501,所述电子设备按照预设的检测策略对自身充电接口的电源接入状态至少进行两次检测,得到第二检测结果集合。
所述检测策略可以是多种多样的。例如,所述检测策略为每隔1秒钟检测一次所述充电接口的电源接入状态,检测次数为3次。再如,所述检测策略为隔1秒检测一次所述充电接口的电源接入状态;然后,隔0.5秒检测一次;最后,隔0.2秒检测一次。
可以理解地,在本申请实施例中多次检测所述充电接口的电源接入状态的目的是为了确保当前检测的电源接入状态是准确的;这样,采集的电源接入状态对应的电参数值才不会出现较大误差,从而降低电子设备对开关电路的性能检测的误判概率。
在其他实施例中,也可以对自身充电接口的电源接入状态只进行一次检测。当只进行一次检测时,得到检测结果为直充单元没有电源接入时,电子设备确定所述充电接口的电源接入状态为未接入;反之,得到检测结果为直充单元有电源接入时,电子设备确定所述充电接口的电源接入状态为已接入。
步骤S502,所述电子设备确定所述第二检测结果集合中表征所述直充单元没有电源接入的第二检测结果的数量X;
步骤S503,所述电子设备确定所述数量X是否大于或等于N;如果是,执行步骤S504;否则,执行步骤S505;其中,N为预设的第二阈值;
步骤S504,所述电子设备确定所述充电接口的电源接入状态为未接入状态。
也就是说,如果所述第二检测结果集合中有至少N个第二检测结果表征所述直充单元没有电源接入,所述电子设备确定所述充电接口的电源接入状态为未接入。
步骤S505,所述电子设备确定所述充电接口的电源接入状态为接入状态。
本申请实施例又提供一种电子设备,图6A为本申请实施例又一电子设备的结构示意图,如图6A所示,电子设备61包括电池62、MOS管63、MOS管64、充电接口65、控制器66、存储器67和处理器68;其中,电池62的一端与MOS管63的S极连接,MOS管63的G极与控制器66连接,MOS管63的D极与MOS管64的D极连接,MOS管64的S极与充电接口65连接,MOS管64的G极与控制器66连接。处理器68与控制器66连接,可以与控制器66之间进行信息交互。存储器67上存储有可在处理器68上运行的计算机程序,处理器68执行所述程序时实现本申请任一实施例所述的电路检测方法中的步骤。需要说明的是,MOS管63和MOS管64实际上组成了一个开关电路,用于导通和截止电池62和充电接口65之间的电性连接。
结合图6A,本申请实施例提供再一电路检测方法,图6B为本申请实施例再一电路检测方法的实现流程示意图,如图6B所示,所述方法可以包括以下步骤S601至步骤S606:
步骤S601,电子设备61确定充电接口65是否有电源接入;如果没有,执行步骤S602;如果有,返回执行步骤S601。
在实现时,电子设备可以周期性或非周期性地执行步骤S601至步骤606,也就是周期性或非周期性地对包括MOS管63和MOS管64的开关电路的性能进行检测。
步骤S602,电子设备61触发包括MOS管63和MOS管64的开关电路进入截止状态;例如,电子设备61通过控制器66触发MOS管63和MOS管64进入截止状态;
步骤S603,电子设备61读取充电接口65的接口电压VB;
步骤S604,电子设备61确定所述接口电压VB是否大于对应的第一阈值;如果是,执行步骤S605;否则,返回执行步骤S601;
步骤S605,电子设备61生成第一检测结果,所述第一检测结果的内容包括所述电子设备61的设备标识、导致所述开关电路性能变差的原因、所述接口电压VB;
步骤S606,电子设备61将所述第一检测结果发送给服务器。
在本申请实施例中,电子设备在其充电接口没有电源接入时,采集充电接口的接口电压;然后,依据接口电压和对应的第一阈值,快速判定自身的开关电路的性能是否变差。
快速充电(简称快充)技术采用的是低压大电流方式,通过两个MOS管,将充电 器的输出引脚VBUS连接到手机电池的VBAT(电池电压Voltage of Battery)引脚。然而,由于靠近电池的MOS管的S极上一直有电压,G极与S极之间有电压差,随着手机的使用,MOS管的G极与S极之间的阻抗会减小,S极会漏电,造成用于驱动MOS管导通的G极电压降低;这样就会造成MOS管导通时其D极与S极之间的阻抗过大,如此就可能会造成手机发热严重和退出快充问题。
相关技术中,针对判断MOS管的G极与S极之间的阻抗是否降低,采用的方法是将手机主板上的屏蔽支架拆开后,测量G极与S极之间的阻抗。这种方法存在的缺点是:第一,需要将手机的主板拆下,之后拆开主板的屏蔽支架,这样涉及到拆手机和维修主板,造成维修成本增加和时间的浪费;第二,MOS管的G极与S极之间的阻抗减少不多时,此时G极与S极之间的阻抗仍很大,此时用万用表测量阻抗得到的值误差较大,无法准确判断出MOS管是否有异常。
基于此,下面结合优选实施例,对上述实施例中涉及到的内容进行说明。
首先,本申请实施例提供一种手机,图7为本申请实施例手机的结构示意图,如图7所示,手机70至少包括:电池701、快充通路702、USB座703、微控单元(Microcontroller Unit,MCU)704和AP 705;其中,所述MCU即为上述实施例所述的控制器的一种示例。
其次,本申请实施例在目前快充方案的基础上,采用新方法来进行快充通路(即所述开关电路)状况的判断。以下结合图8对实施方法进行具体说明:
在某个时刻,手机检测到自身未插入充电设备时,手机的应用处理器(Application Processor,AP)给快充通路的微控制单元(Microcontroller Unit,MCU)发送信号,让其开始采集引脚VBUS上的电压;之后,MCU控制SW2引脚的输出由高电平变为低电平。这样,MOS管V4303截止,MOS管V4304和MOS管V4305的G极变为通过470K的电阻接地。若MOS管V4304的G极与S极之间的阻抗变小,则其G极上的电压为与电阻R4307之间的分压。MOS管V4304的G极上的电压超过MOS管V4305的门限电压,MOS管V4305导通,VBUS(简称VB)引脚上就有电压,通过AP采集VB上的电压。由VB上的电压即可判断出MOS管V4304的状况。例如,VB上的电压大于预设阈值(例如0.1mv),则确定MOS管V4304的阻抗降低,MOS管V4304的性能降低。
需要说明的是,图8中VB上的电压为手机USB(即所述充电接口)上所对应的VBUS电压,而VA为手机的电池电压。
以下实施例为手机端采集MOS管的问题的一个案例,是上述方案的升级版本。通过手机端的AP和MCU的配合采集数据(例如VB上的电压),同时将数据上传到云端进行分析。
此处以Type-C接口的手机为例,如图9所示,手机的安卓系统在一固定的时间,给手机的AP发送采集命令,AP在接收到所述采集命令之后,检查Type-C接口是否有设备接入(若有设备接入时,Type-C接口的VBUS引脚上有电压,会造成采集的电压 为外部设备的VBUS电压)。如果没有设备接入(即没有电源接入),AP给MCU发送复位命令,触发MCU复位,之后再隔1秒,AP再次检查Type-C接口是否有设备接入;如果没有,则给MCU发送15个时钟(Clock,clk)信号,MCU在接收到至少10个clk信号后,将SW2引脚电平置低,1秒后将SW2引脚电平置高;0.2秒后AP再次检查Type-C接口是否有设备接入;若没有,则3次读取VB上的电压,每次时间间隔为0.1秒,之后将读取的数据上传。可以理解地,本申请实施例中多次判断是否有外部设备的原因是:若有设备接入时,USB的VBUS有电压,会造成采集的电压VB为外部设备的VBUS电压。
在本申请实施例中,通过采集充电接口(例如USB接口)上VBUS引脚上的电压,即可判断出手机中MOS管的状况。并且,通过AP与MCU的配合,实现了自动化采集和云端上传,其不需要拆机等,即可判断出手机中MOS管的状况,极大地简化了操作。
在其他实施例中,SW2引脚置低时,以图8所示的手机为例,手机通过ADC读取MOS管V4304的G极电压,从而来判断MOS管V4304的情况。即,将SW1引脚连接至MCU的ADC引脚上,通过分析此处的电压来进行判断。例如,当MOS管V4304的G极电压大于预设阈值时,则确定MOS管V4304的性能下降。
在其他实施例中,SW2置高或置低时,测量流过MOS管V4304的G极与S极之间电流,即可判断MOS管V4304的状况。
基于前述的实施例,本申请实施例提供一种电子设备,图10为本申请实施例电子设备的结构示意图,如图10所示,所述电子设备100包括:直充单元1001、处理器1002和控制器1003;其中,所述直充单元1001与所述控制器1003连接,所述直充单元1001,包括充电接口1011、电池1012和开关电路1013,所述开关电路1013的一端和充电接口1011连接,所述开关电路1013的另一端与所述电池1012连接,所述开关电路1013用于建立所述充电接口1011和所述电池1012之间的电性连接;
所述处理器1002与所述控制器1003连接,用于执行以下步骤:确定所述充电接口1011的电源接入状态,所述电源接入状态为未接入或已接入;通过所述控制器1003采集所述直充单元1001上,与所述电源接入状态对应的电参数值;依据所述电参数值和预设条件,对所述开关电路1013的性能进行检测,得到第一检测结果。
在实施的过程中,处理器可以为中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
以上设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的电路检测方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可 以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得电子设备(可以是手机、平板电脑、台式机、个人数字助理、导航仪、数字电话、视频电话、电视机、传感设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
本申请实施例再提供一种电子设备,图11为本申请实施例电子设备的一种硬件实体示意图,如图11所示,该电子设备110的硬件实体包括:包括存储器111和处理器112,所述存储器111存储有可在处理器112上运行的计算机程序,所述处理器112执行所述程序时实现上述实施例中提供的电路检测方法中的步骤。
存储器111配置为存储由处理器112可执行的指令和应用,还可以缓存待处理器112以及电子设备110中各模块待处理或已经处理的数据(例如,图像数据、音频数据、语音通信数据和视频通信数据),可以通过闪存(FLASH)或随机访问存储器(Random Access Memory,RAM)实现。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中提供的电路检测方法中的步骤。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请存储介质和设备实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备 或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得电子设备(可以是手机、平板电脑、台式机、个人数字助理、导航仪、数字电话、视频电话、电视机、传感设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种电路检测方法,所述方法应用于具有直充单元的电子设备,所述直充单元包括:充电接口、电池、用于建立所述充电接口和所述电池之间电性连接的开关电路;所述方法包括:
    确定所述充电接口的电源接入状态,所述电源接入状态为未接入或已接入;
    采集所述直充单元上与所述电源接入状态对应的电参数值;
    依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果。
  2. 根据权利要求1所述的方法,其中,所述采集所述直充单元上与所述电源接入状态对应的电参数值,包括:
    当所述充电接口的电源接入状态为未接入时,发送第一控制信号给所述开关电路,以触发所述开关电路进入截止状态;
    采集所述直充单元上的以下至少之一电参数值:所述充电接口的接口电压、与所述电池相连的金属氧化物半导体MOS管的栅极电压、所述MOS管的栅极与源极之间的第一电流;其中,所述开关电路至少包括一个所述MOS管。
  3. 根据权利要求1所述的方法,其中,所述采集所述直充单元上与所述电源接入状态对应的电参数值,包括:
    当所述充电接口的电源接入状态为已接入时,发送第二控制信号给所述直充单元,以触发所述开关电路进入导通状态;
    采集所述直充单元上与所述电池相连的MOS管的栅极与源极之间的第二电流;其中,所述开关电路至少包括一个所述MOS管。
  4. 根据权利要求2所述的方法,其中,采集所述直充单元上与所述电池相连的MOS管的栅极电压,包括:
    采集与所述MOS管的栅极连接的模拟数字转换ADC引脚上的电压;
    将所述ADC引脚上的电压确定为所述栅极电压。
  5. 根据权利要求2或3所述的方法,其中,所述依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果,包括:
    依据所述电参数值和对应的第一阈值,对所述MOS管的性能进行检测;
    如果至少一个电参数值大于对应的第一阈值,生成表征由于所述MOS管的性能变差而导致所述开关电路的性能变差的第一检测结果。
  6. 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:
    当所述第一检测结果表征所述开关电路的性能变差时,将所述第一检测结果发送给服务器,或者,显示或播报所述第一检测结果。
  7. 根据权利要求1至4任一项所述的方法,其中,所述确定所述充电接口的电源 接入状态,包括:
    按照预设的检测策略对所述充电接口的电源接入状态至少进行两次检测,得到第二检测结果集合;
    如果所述第二检测结果集合中有至少N个第二检测结果表征所述充电接口没有电源接入,确定所述电源接入状态为未接入,N为预设的第二阈值。
  8. 根据权利要求1至4任一项所述的方法,其中,所述确定所述充电接口的电源接入状态,包括:
    对所述充电接口的电源接入状态进行一次检测;
    如果得到的检测结果为所述充电接口没有电源接入,则确定所述电源接入状态为未接入;
    如果得到的检测结果为所述充电接口有电源接入,则确定所述电源接入状态为已接入。
  9. 一种电子设备,包括:直充单元、处理器和控制器;其中,
    所述直充单元与所述控制器连接,所述直充单元包括充电接口、电池和开关电路,所述开关电路的一端和充电接口连接,所述开关电路的另一端与所述电池连接,所述开关电路用于建立所述充电接口和所述电池之间的电性连接;
    所述处理器与所述控制器连接,所述处理器用于执行以下电路检测方法中的步骤:
    确定所述充电接口的电源接入状态,所述电源接入状态为未接入或已接入;
    通过所述控制器采集所述直充单元上,与所述电源接入状态对应的电参数值;
    依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果。
  10. 根据权利要求9所述的设备,其中,所述开关电路至少包括一个与所述电池相连的MOS管;
    所述处理器用于通过执行以下步骤实现所述采集所述直充单元上与所述电源接入状态对应的电参数值的步骤:
    当所述充电接口的电源接入状态为未接入时,发送第一控制信号给所述开关电路,以触发所述开关电路进入截止状态;
    采集所述直充单元上的以下至少之一电参数值:所述充电接口的接口电压、与所述电池相连的金属氧化物半导体MOS管的栅极电压、所述MOS管的栅极与源极之间的第一电流;其中,所述开关电路至少包括一个所述MOS管。
  11. 根据权利要求10所述的设备,其中,所述处理器用于通过执行以下步骤实现所述采集所述直充单元上与所述电源接入状态对应的电参数值的步骤:
    当所述充电接口的电源接入状态为已接入时,发送第二控制信号给所述直充单元,以触发所述开关电路进入导通状态;
    采集所述直充单元上与所述电池相连的MOS管的栅极与源极之间的第二电流;其中,所述开关电路至少包括一个所述MOS管。
  12. 根据权利要求10所述的设备,其中,所述处理器用于通过执行以下步骤实现所述直充单元上与所述电池相连的MOS管的栅极电压的采集:
    采集与所述MOS管的栅极连接的模拟数字转换ADC引脚上的电压;
    将所述ADC引脚上的电压确定为所述栅极电压。
  13. 根据权利要求10或11所述的设备,其中,所述处理器用于通过执行以下步骤实现所述依据所述电参数值和预设条件,对所述开关电路的性能进行检测,得到第一检测结果的步骤:
    依据所述电参数值和对应的第一阈值,对所述MOS管的性能进行检测;
    如果至少一个电参数值大于对应的第一阈值,生成表征由于所述MOS管的性能变差而导致所述开关电路的性能变差的第一检测结果。
  14. 根据权利要求9至13任一项所述的设备,其中,所述处理器还用于执行以下步骤:
    当所述第一检测结果表征所述开关电路的性能变差时,将所述第一检测结果发送给服务器,或者,显示或播报所述第一检测结果。
  15. 根据权利要求9至13任一项所述的设备,其中,所述处理器还用于执行以下步骤:
    按照预设的检测策略对所述充电接口的电源接入状态至少进行两次检测,得到第二检测结果集合;
    如果所述第二检测结果集合中有至少N个第二检测结果表征所述充电接口没有电源接入,确定所述电源接入状态为未接入,N为预设的第二阈值。
  16. 根据权利要求9至13任一项所述的设备,其中,所述处理器还用于执行以下步骤:
    对所述充电接口的电源接入状态进行一次检测;
    如果得到的检测结果为所述充电接口没有电源接入,则确定所述电源接入状态为未接入;
    如果得到的检测结果为所述充电接口有电源接入,则确定所述电源接入状态为已接入。
  17. 根据权利要求9至13任一项所述的设备,其中,所述开关电路包括MOS管(63)和MOS管(64);电池的一端与MOS管(63)的S极连接,MOS管(63)的G极与控制器连接,MOS管(63)的D极与MOS管(64)的D极连接,MOS管(64)的S极与充电接口连接,MOS管(64)的G极与控制器连接。
  18. 根据权利要求9至13任一项所述的设备,其中,所述设备还包括存储器,所述存储器存储有可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述电路检测方法中的步骤。
  19. 一种电子设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至8任一项所述电路检测方法 中的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至8任一项所述电路检测方法中的步骤。
PCT/CN2020/094467 2019-06-05 2020-06-04 电路检测方法及装置、设备、存储介质 WO2020244604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910488318.1 2019-06-05
CN201910488318.1A CN112054564B (zh) 2019-06-05 2019-06-05 电路检测方法及装置、设备、存储介质

Publications (1)

Publication Number Publication Date
WO2020244604A1 true WO2020244604A1 (zh) 2020-12-10

Family

ID=73608950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094467 WO2020244604A1 (zh) 2019-06-05 2020-06-04 电路检测方法及装置、设备、存储介质

Country Status (2)

Country Link
CN (1) CN112054564B (zh)
WO (1) WO2020244604A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787374A (zh) * 2020-12-30 2021-05-11 维沃移动通信有限公司 充电系统、电子设备及其充电控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112649722B (zh) * 2020-12-30 2022-06-24 卡斯柯信号有限公司 一种防淹门与信号系统的接口电路的故障监测方法
CN114594748A (zh) * 2022-02-21 2022-06-07 深圳市道通科技股份有限公司 测试设备、诊断设备及汽车诊断系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147921A1 (en) * 1983-09-30 1985-07-10 Oki Electric Industry Company, Limited Method and apparatus for determining the electrostatic breakdown voltage of semiconductor devices
CN1988385A (zh) * 2005-12-20 2007-06-27 矢崎总业株式会社 电源电路的导通故障检测设备
CN102035529A (zh) * 2009-09-24 2011-04-27 瑞萨电子株式会社 半导体装置和检测半导体装置的特性退化的方法
CN206807043U (zh) * 2017-03-30 2017-12-26 维沃移动通信有限公司 一种充电电路及移动终端
CN208190282U (zh) * 2018-03-27 2018-12-04 深圳市未来天使机器人有限公司 一种针对电池直充电路的保护系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678277B1 (ko) * 2014-10-06 2016-11-21 주식회사 엘지화학 스위치 열화 검출 장치 및 방법
CN104993182B (zh) * 2015-08-05 2018-01-09 青岛海信移动通信技术股份有限公司 一种移动终端、可直充电源适配器及充电方法
JP5973106B1 (ja) * 2016-04-06 2016-08-23 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、電流値を検出するセンサの状態を判定する判定方法、および該状態を判定するためのプログラム
CN108258348B (zh) * 2018-02-13 2022-04-29 中兴通讯股份有限公司 充电方法及装置、系统、充电电路、终端、充电系统
CN109755997B (zh) * 2018-12-17 2021-05-25 维沃移动通信有限公司 一种充电方法及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147921A1 (en) * 1983-09-30 1985-07-10 Oki Electric Industry Company, Limited Method and apparatus for determining the electrostatic breakdown voltage of semiconductor devices
CN1988385A (zh) * 2005-12-20 2007-06-27 矢崎总业株式会社 电源电路的导通故障检测设备
CN102035529A (zh) * 2009-09-24 2011-04-27 瑞萨电子株式会社 半导体装置和检测半导体装置的特性退化的方法
CN206807043U (zh) * 2017-03-30 2017-12-26 维沃移动通信有限公司 一种充电电路及移动终端
CN208190282U (zh) * 2018-03-27 2018-12-04 深圳市未来天使机器人有限公司 一种针对电池直充电路的保护系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787374A (zh) * 2020-12-30 2021-05-11 维沃移动通信有限公司 充电系统、电子设备及其充电控制方法
CN112787374B (zh) * 2020-12-30 2023-12-22 维沃移动通信有限公司 充电系统、电子设备及其充电控制方法

Also Published As

Publication number Publication date
CN112054564A (zh) 2020-12-08
CN112054564B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2020244604A1 (zh) 电路检测方法及装置、设备、存储介质
US10656209B2 (en) Method and apparatus for managing battery
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
US20150058642A1 (en) Electronic device and method for controlling the same
WO2021035736A1 (zh) 充电控制方法及装置、充电测试方法及系统、电子设备
CN102590609B (zh) 移动终端及测量移动终端功耗的方法
US20120198101A1 (en) Mobile device peripheral detection with independent state machines
WO2021136384A1 (zh) 用于内短路电流检测方法、装置、设备及可读存储介质
JP6185321B2 (ja) 二次電池パックの管理方法および電源管理システム、電子機器
US20130041607A1 (en) Battery monitoring circuit
WO2020024116A1 (zh) 一种接口配置方法、终端设备及接口
WO2021043225A1 (zh) 一种充电控制方法及充电控制装置
US11549995B2 (en) Test board, test system and test method for charging device
US10862175B2 (en) Battery fuel gauge circuit
CN103460063A (zh) 电池电压测量
WO2024093811A1 (zh) 电池电量检测电路、电子设备和电量计量方法
CN112698229B (zh) 短路电流检测方法、装置、可读存储介质及电子设备
US20140019790A1 (en) Monitoring a battery in an electronic device
JP6261901B2 (ja) バッテリマネージメント回路、それを用いた電源管理システム、電子機器
EP4123867A1 (en) Smart battery device, and electronic device thereof
CN101938156B (zh) 用于移动终端校准测试的充电电路及其实现方法
JP6185322B2 (ja) 二次電池パックの管理方法および電源管理システム、電子機器
WO2018068329A1 (zh) 一种电量值计算方法、电子设备及存储介质
CN112448448B (zh) 充电控制方法、装置、耳机、电子设备和可读存储介质
TW201901179A (zh) 電池之殘量檢測電路、使用其之電子機器、電池殘量之檢測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819421

Country of ref document: EP

Kind code of ref document: A1