WO2024093694A1 - 一种波束失败恢复方法及通信装置 - Google Patents

一种波束失败恢复方法及通信装置 Download PDF

Info

Publication number
WO2024093694A1
WO2024093694A1 PCT/CN2023/125700 CN2023125700W WO2024093694A1 WO 2024093694 A1 WO2024093694 A1 WO 2024093694A1 CN 2023125700 W CN2023125700 W CN 2023125700W WO 2024093694 A1 WO2024093694 A1 WO 2024093694A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal device
information
harq
beams
Prior art date
Application number
PCT/CN2023/125700
Other languages
English (en)
French (fr)
Inventor
李君瑶
杨帆
张天虹
黄海宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093694A1 publication Critical patent/WO2024093694A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present application relates to the field of sidelink (SL) technology, and in particular to a beam failure recovery method and a communication device.
  • SL sidelink
  • the fifth generation mobile communication system supports frequency range (FR) 2 communication, that is, high frequency band signals are used to transmit data.
  • FR2 frequency range
  • the signal's anti-interference ability is weak, the penetration is poor, and the signal energy drops sharply with the transmission distance.
  • high frequency communication uses beamforming technology.
  • the beam selected by the transmitter or the receiver may no longer be applicable, for example, the link quality corresponding to the beam is poor. This situation is also called beam failure or beam fault.
  • the transmitter or the receiver can request beam failure recovery (BFR) to align the beams finally selected by the transmitter and the receiver to ensure communication quality.
  • BFR beam failure recovery
  • the present application provides a beam failure recovery method and a communication device for implementing beam failure recovery of a side link, so that the beams between the communicating parties of the side link are aligned, thereby improving the communication quality.
  • a beam failure recovery method is provided, which can be performed by a communication device, which can be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a terminal device, or a chip system provided in the terminal device, or other components for implementing the functions of the terminal device.
  • the beam failure recovery method provided by the first aspect is described below by taking the communication device as a first terminal device as an example.
  • the beam failure recovery method includes: a first terminal device determines that a beam fails, and sends first information to a second terminal device through a first beam on a first resource, where the first information is used for beam failure recovery.
  • the first resource is associated with the first beam, and the first resource belongs to a resource used to transmit a physical sidelink feedback channel (PSFCH) in the frequency domain.
  • PSFCH physical sidelink feedback channel
  • a beam may be indicated based on a PSFCH resource, for example, a PSFCH resource may be associated with a beam.
  • first information for beam failure recovery may be sent to the second terminal device through a first beam on a first resource.
  • the first resource belongs to a PSFCH resource, and the first resource is associated with a first beam.
  • the first resource belongs to a resource dedicated to the first beam; or, the first resource belongs to a resource used to transmit an automatic retransmission request (hybrid automatic repeat reQuest, HARQ)-acknowledgement (ACK) or HARQ-negative acknowledgement (NACK) for data.
  • resources dedicated to beam failure recovery can be (pre) configured in the PSFCH resources.
  • the resources used for beam failure recovery can be resources used to transmit HARQ feedback.
  • the resources used to transmit HARQ feedback can be reused to send beams to improve resource utilization.
  • resources dedicated to the first beam refers to resources dedicated to transmitting beam failure recovery requests, or refers to resources dedicated to indicating one of multiple beams in a beam failure recovery request, and is not limited to being dedicated to a specific beam.
  • the resources dedicated to beam failure recovery and the resources reused for transmitting HARQ feedback are for time domain resources and/or frequency domain resources, and do not include code domain resources.
  • beam failure recovery request and HARQ feedback are sent using the same time-frequency resources, and beam failure recovery request and/or HARQ feedback are distinguished by different code domain resources.
  • beams are distinguished by different cyclic shift resources or code domain resources.
  • the first beam is related to the cyclic shift resource and code domain resource of the first information, so that the second terminal device can clearly identify the cyclic shift value and code domain resource of the first information. Determine the first beam to be restored by the first terminal device.
  • the first resource is a resource dedicated to the first beam
  • Different combinations of M, m beam and m cs can indicate different beams, so that resources can be associated with beams and beam failure recovery requests can be indicated by resources.
  • orthogonality between different terminal devices can also be achieved through available code domain resources.
  • the first resource belongs to a resource dedicated to the first beam
  • HARQ resources when HARQ resources are used to send beams, different beams are distinguished by increasing the beam dimension, so that the second terminal device can clearly identify the first beam to be restored by the first terminal device by receiving HARQ-ACK or HARQ-NACK.
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies in,
  • the beam index is the product of the number of resource blocks (RBs) available for transmitting the first information and the number of code domain resources, the beam index is used to indicate the first beam, the P ID is the identifier of the second terminal device, the first terminal device and the second terminal device communicate based on multicast mode, and only support feedback of HARQ-NACK, and the M ID is the identifier of the first terminal device; the first terminal device and the second terminal device communicate based on unicast mode or multicast mode, and support feedback of HARQ-ACK or HARQ-NACK, the M ID is 0, and mod is a modulo operation. That is, the beam index is introduced on the basis of the P ID + M ID to identify the beam, so as to determine the first resource associated with sending the first beam.
  • RBs resource blocks
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies
  • P ID is the identifier of the second terminal device
  • M ID is the identifier of the first terminal device
  • It is the product of the number of RBs available for transmitting the first information and the number of code domain resources, wherein different beams are associated with different orthogonal cover codes (OCC), that is, the beams are associated with the OCC to distinguish the beams.
  • OCC orthogonal cover codes
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data
  • the first information further includes HARQ feedback information for data sent by the second terminal device, that is, the first information can implement both HARQ feedback and the indication of the first beam, in this case, the beams are distinguished by code domain resources , so that the second terminal device can clearly identify the first beam according to the code domain resources used by the first information.
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data
  • the number of m cs is determined by m cs is used to determine the first beam and the cyclic shift code.
  • the method further includes: the first terminal device receives second information from the second terminal device on a second resource, the second resource is at least X time slots apart from the first resource, X is greater than or equal to 4, the second information is response information of the first information, and the second information is carried on a physical sidelink shared channel (physical sidelink shared channel, PSSCH) or a physical sidelink control channel (physical sidelink control channel, PSCCH).
  • the second terminal device sends the second information to the first terminal device in response to the first information.
  • the second resource carrying the second information is at least X time slots apart from the first resource carrying the first information, so as to leave enough time for the second terminal device to process the first information as much as possible.
  • the second resource has a mapping relationship with the first resource.
  • the second terminal can respond to the beam failure recovery request of the first terminal at the corresponding second resource, so that the first terminal device knows whether the beam failure recovery is completed, so as to ensure the beam alignment and communication performance between the first terminal device and the second terminal device as much as possible.
  • a beam failure recovery method is provided, which can be performed by a communication device, which can be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a terminal device, or a chip system provided in the terminal device, or other components for implementing the functions of the terminal device.
  • the beam failure recovery method provided by the second aspect is described below by taking the communication device as a second terminal device as an example.
  • the beam failure recovery method includes: a second terminal device receives first information from a first terminal device on a first resource, and the first information is used for beam failure recovery.
  • the first resource is associated with a first beam, and the first resource belongs to a resource for transmitting a PSFCH in the frequency domain.
  • the second terminal device determines the first beam according to the first resource.
  • the first resource belongs to a resource dedicated to the first beam; or, the first resource belongs to a resource used to transmit HARQ-ACK or HARQ-NACK for data.
  • the first resource is a resource dedicated to the first beam
  • the first resource is a resource dedicated to the first beam
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies in, is the product of the number of resource blocks (RBs) available for transmitting the first information and the number of code domain resources, beam index is used to indicate the first beam, P ID is the identifier of the second terminal device, the first terminal device and the second terminal device communicate based on multicast mode, and only support feedback HARQ-NACK, M ID is the identifier of the first terminal device; the first terminal device and the second terminal device communicate based on unicast mode Or multicast communication, and support feedback HARQ-ACK or HARQ-NACK, M ID is 0, mod is modulo operation.
  • RBs resource blocks
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies
  • P ID is the identifier of the second terminal device
  • M ID is the identifier of the first terminal device
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data
  • m 0 is the total number of code domain resources available for transmitting the first information
  • m 0 is based on the number of cyclic shift pairs. Determine, m cs and m beam are used to determine the first beam.
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data
  • the number of m cs is determined by m cs is used to determine the first beam and the cyclic shift code.
  • the method also includes: the second terminal device sends second information to the first terminal device on a second resource, the second resource is at least X time slots apart from the first resource, X is greater than or equal to 4, the second information is response information of the first information, and the second information is carried on PSSCH or PSCCH.
  • a beam failure recovery method is provided, which can be performed by a communication device, which can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a terminal device, or a chip system provided in the terminal device, or other components for implementing the functions of the terminal device.
  • the beam failure recovery method provided by the third aspect is described below by taking the communication device as a first terminal device as an example.
  • the beam failure recovery method includes: a first terminal device generates first indication information, and sends the first indication information to a second terminal device on a first resource.
  • the first indication information is used to indicate a first beam, and the first beam is used for beam failure recovery.
  • the first indication information is included in sidelink control information (SCI), or the first indication information is included in a channel state information (CSI) report.
  • SCI sidelink control information
  • CSI channel state information
  • the first terminal device determines that the beam fails and can indicate the beam to be restored, such as the first beam, to the second terminal device through an SCI or CSI report, so that the second terminal device is clear about the beam selected by the first terminal device.
  • the method before the first terminal device sends a CSI report including first indication information to the second terminal device, the method further includes: the first terminal device receives a CSI request from the second terminal device; or, the first terminal device determines that a beam fails, and optionally, the first terminal device also indicates to the second terminal device that the CSI report is used for beam failure recovery; or, the first terminal device is configured to periodically send a CSI report to the second terminal device.
  • the method before the first terminal device sends a MAC CE including first indication information to the second terminal device, the method also includes: the first terminal device receives request information for a beam failure recovery request from the second terminal device; or, the first terminal device determines that the beam has failed, and optionally, the first terminal device also indicates to the second terminal device that MAC CE is used for beam failure recovery; or, the first terminal device is configured to periodically send MAC CE to the second terminal device for a beam failure recovery request.
  • the method further includes: the first terminal device receives a response message from the second terminal device to the first indication information on a second resource.
  • the second resource is the first PSFCH opportunity after at least X time slots from the first resource; or the second resource is the first time slot after at least X time slots from the first resource.
  • a beam failure recovery method is provided, which can be performed by a communication device, which can be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a terminal device, or a chip system set in the terminal device, or other components for implementing the functions of the terminal device.
  • the beam failure recovery method provided by the fourth aspect is described.
  • the beam failure recovery method includes: a second terminal device receives first indication information from a first terminal device on a first resource.
  • the first indication information is used to indicate a first beam, and the first beam is used for beam failure recovery.
  • the second terminal device determines the first beam according to the first indication information.
  • the first indication information is included in the SCI, or the first indication information is included in the CSI report.
  • the method before the first terminal device sends the CSI report including the first indication information to the second terminal device, the method further includes: the second terminal device sends a CSI request to the first terminal device.
  • the method further includes: the second terminal device sends a message of response and first indication information to the first terminal device on a second resource.
  • the second resource is the first PSFCH opportunity after at least X time slots from the first resource; or the second resource is the first time slot after at least X time slots from the first resource.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of any aspect from the first aspect to the fourth aspect.
  • the communication device may be the first terminal device in the first aspect, or the communication device may be a device capable of implementing the method provided in the first aspect, such as a chip or a chip system.
  • the communication device may be the first terminal device in the third aspect, or the communication device may be a device capable of implementing the method provided in the third aspect, such as a chip or a chip system.
  • the communication device may be the second terminal device in the second aspect, or the communication device may be a device capable of implementing the method provided in the second aspect, such as a chip or a chip system.
  • the communication device may be the second terminal device in the fourth aspect, or the communication device may be a device capable of implementing the method provided in the second aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for executing the method of any aspect of the first aspect to the fourth aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver).
  • the transceiver unit may include a sending unit and a receiving unit, and it can also be understood that the sending unit and the receiving unit are the same functional module.
  • the transceiver unit is also understood to be a general term for the sending unit and the receiving unit, and the sending unit and the receiving unit may be different functional modules.
  • These units (modules) can perform the corresponding functions in the method examples of any aspect of the first aspect to the fourth aspect above. Please refer to the detailed description in the method examples for details, which will not be repeated here.
  • an embodiment of the present application provides a communication device, which may be the communication device of the fifth aspect, or a chip or chip system arranged in the communication device of the fifth aspect.
  • the communication device may be a terminal device or a network device.
  • the communication device includes a communication interface and a processor, and optionally, also includes a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the first terminal device or the second terminal device in the above method.
  • an embodiment of the present application provides a communication device, the communication device comprising an input/output interface and a logic circuit.
  • the input/output interface is used to input and/or output information.
  • the logic circuit is used to execute the method described in any one of the first to fourth aspects.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a communication interface, for implementing the method described in any one of the first to fourth aspects.
  • the chip system also includes a memory for storing a computer program.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • an embodiment of the present application provides a communication system, the communication system comprising a terminal device for implementing the functions related to the first aspect and a terminal device for implementing the functions related to the second aspect.
  • the communication system comprises a terminal device for implementing the functions related to the third aspect and a terminal device for implementing the functions related to the fourth aspect.
  • the communication system may include more terminal devices.
  • the present application provides a computer-readable storage medium storing a computer program, which, when executed, implements the method in any one of the first to fourth aspects described above.
  • a computer program product comprising: a computer program code, when the computer program code is executed, the method in any one of the above-mentioned first to fourth aspects is executed.
  • beneficial effects of the above-mentioned second to eleventh aspects and their implementation methods can refer to the description of the beneficial effects of the first aspect or the third aspect and their implementation methods.
  • FIG1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of another network architecture applicable to an embodiment of the present application.
  • FIG3 is a schematic diagram of a first beam failure recovery process provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of resources for beam failure recovery response provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • FIG6 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the link can be a new radio (NR) system, or a long term evolution (LTE) system, or can also be applied to the link in the next generation mobile communication system or other similar communication systems, without specific limitation.
  • NR new radio
  • LTE long term evolution
  • the link can also be a link in other possible communication systems.
  • the link is a link in a wireless local area network (WLAN), for example, the link is a link in a wireless local area network system such as an Internet of Things (IoT) network or a Vehicle to X (V2X) network.
  • WLAN wireless local area network
  • IoT Internet of Things
  • V2X Vehicle to X
  • the link between devices in the embodiment of the present application refers to the link established between devices of the same type, such as a device-to-device (D2D) link.
  • a D2D link may also be referred to as a sidelink (SL), a side link or a side link, etc.
  • SL sidelink
  • a D2D link, or a side link or a side link all refers to a link established between devices of the same type, and they have the same meaning.
  • the so-called devices of the same type may be a link between terminal devices to terminal devices, a link between network devices to network devices, a link between relay nodes to relay nodes, etc., and the embodiment of the present application does not limit this.
  • the following takes the application of the technical solution provided in the embodiment of the present application to SL as an example.
  • V2X specifically includes direct communication between vehicles (V2V), vehicles and roadside infrastructure (V2I), vehicles and pedestrians (V2P), and V2X links between vehicles and networks (V2N) or vehicles to any entity.
  • V2V refers to communication between vehicles
  • V2P refers to communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to communication between vehicles and infrastructure, such as road side units (RSU) or network equipment.
  • RSU includes two types: terminal type RSU, which is in a non-mobile state because it is deployed on the roadside and does not need to consider mobility.
  • the terminal device of the embodiment of the present application can be RSU; base station type RSU can provide timing synchronization and resource scheduling for the vehicle communicating with it.
  • V2N refers to the communication between vehicles and network devices.
  • Figure 1 is a network architecture applicable to the embodiments of the present application.
  • Figure 1 includes two terminal devices, and a SL can be established between the two terminal devices, and communication is performed based on the established SL.
  • the number of terminal devices in Figure 1 is just an example, and there can be more.
  • Figure 1 can also include network devices, as shown in Figure 2.
  • Figure 2 is a network architecture applicable to an embodiment of the present application.
  • Figure 2 includes 1 network device and multiple terminal devices (such as terminal device 1-terminal device 4 in Figure 2).
  • terminal device 1 and terminal device 2 are mobile phones
  • terminal device 3 and terminal device 4 are vehicle-mounted terminal devices.
  • These multiple terminal devices can all communicate with the network device, and the network device and the terminal device communicate through the Uu port communication link (as shown by the thick line in Figure 2), and the terminal devices can communicate based on the established SL (as shown by the thin line in Figure 2).
  • the network device is an access device that the terminal device accesses to the mobile communication system by wireless means, for example, including access network (AN) equipment, such as a base station.
  • AN access network
  • the network device may also refer to a device that communicates with the terminal device at the air interface.
  • the network device may include an evolved Node B (also referred to as eNB or e-NodeB) in an LTE system or long term evolution-advanced (LTE-A); the network device may also include a next generation node B (gNB) in a 5G NR system; or, the network device may also include an access node in a wireless fidelity (Wi-Fi) system, etc.; or the network device may be a relay station, an on-board device, and a future evolved public land mobile network (PLMN) device, a device in a D2D network, a device in a machine to machine (M2M) network, a device in an Internet of Things (IoT) network, or a network device in a PLMN network, etc.
  • PLMN public land mobile network
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the communication device for implementing the function of the network device may be a network device, or may be a device capable of supporting the network device to implement the function, such as a chip system, which may be installed in the network device.
  • the technical solution provided in the embodiment of the present application is described by taking the device for implementing the function of the network device as an example, that is, the network device.
  • the terminal device which may also be referred to as a terminal device, is a device with wireless transceiver functions, which can send signals to network devices or receive signals from network devices.
  • the terminal device may include user equipment (UE), which may be Also called terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • UE user equipment
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, D2D, V2X, machine-to-machine/machine-type communications (M2M/MTC), IoT, virtual reality (VR), augmented reality (AR), industrial control, self driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drone, robot and other scenarios.
  • cellular communication D2D, V2X
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT virtual reality
  • VR virtual reality
  • AR augmented reality
  • industrial control self driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drone, robot and other scenarios.
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices or smart wearable devices, etc., which are a general term for the use of wearable technology to intelligently design and develop wearable devices for daily wear, such as glasses, gloves, watches, clothing and shoes.
  • the terminal device in the embodiments of the present application if located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be considered as a vehicle-mounted terminal, which is also called, for example, an on-board unit (OBU) or a telematics box (T-box).
  • OEM on-board unit
  • T-box telematics box
  • the terminal device or terminal equipment can be used as a whole vehicle, and the terminal device can also be built into the vehicle as one or more components, modules or units.
  • the terminal device can be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit.
  • the vehicle can implement the method of the present application through the built-in vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit.
  • Direct communication (PC5) interface communication is supported between terminal devices, that is, transmission through a side link is supported.
  • any terminal device in Figure 1 or Figure 2 can send some of its own information, such as location, speed or intention (turning, merging, or reversing) to other terminal devices around it.
  • the terminal device will also receive information from other terminal devices.
  • the communication device used to implement the function of the terminal device may be the terminal device itself, or may be a device capable of supporting the terminal device to implement the function, such as a chip system, which may be installed in the terminal device.
  • the technical solution provided in the embodiment of the present application is described by taking the device used to implement the function of the terminal device as the terminal device itself as an example.
  • the embodiment of the present application provides a BFR solution in the sidelink, so that the beams of the communicating parties are aligned to ensure the communication quality.
  • PSFCH resources i.e., resources used to transmit PSFCH
  • PSFCH resources can be used by the receiving end to feed back HARQ-ACK or HARQ-NACK, etc. to the transmitting end.
  • a terminal device can communicate with multiple terminal devices at the same time, so this terminal device can receive data sent from multiple terminal devices, and accordingly, this terminal device needs to feed back multiple data transmissions.
  • the PSFCH resources can be configured or pre-configured periodically. For example, there is a PSFCH resource in one time slot every X time slots.
  • the value of X can also be 1, 2 or 4, that is, the value of the PSFCH period can be 1, 2 or 4.
  • the specific resource of the PSFCH sent by the receiving end or the transmitting end is based on Sure.
  • P ID is the source identification (ID)
  • M ID is the destination ID.
  • the source ID and the destination ID are relative to the service transmission and reception.
  • the source ID corresponds to the service transmission and can also be considered as the ID of the transmitter.
  • the destination ID corresponds to the service reception and can also be considered as the ID of the receiver.
  • the source ID is the ID of the device that sends PSSCH/PSCCH and receives HARQ-ACK/HARQ-NACK
  • the destination ID is the ID of the device that receives PSSCH/PSCCH and sends HARQ-ACK/HARQ-NACK.
  • M ID is 0; if the transmitter and the receiver communicate based on multicast mode and only support feedback of HARQ-NACK, that is, the receiver successfully receives the data from the transmitter, and the receiver does not feedback HARQ-ACK. Only when the data from the transmitter is not successfully received, NACK is fed back to the transmitter, and M ID is the ID of the receiver.
  • the receiving end feedback HARQ-ACK/HARQ-NACK can be based on
  • the determined resource index is used to determine the frequency domain resource and code domain resource for feeding back ACK/NACK in ascending order of frequency domain first and then code domain.
  • the relationship between and m0 is shown in Table 1, and the value of mcs is shown in Table 2.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • Multiple means two or more, and “multiple” can also be understood as “at least two”.
  • At least one can be understood as one or more, for example, one, two or more.
  • including at least one means including one, two or more, and there is no restriction on which ones are included.
  • A, B and C then A, B, C, A and B, A and C, B and C, or A and B and C may be included.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" unless otherwise specified, generally indicates that the previously associated objects are in an "or" relationship.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of the multiple objects.
  • a first terminal device and a second terminal device are only used to distinguish different terminal devices, but do not limit the functions, priority or importance of the two terminal devices.
  • the beam can be replaced by a beam direction, a beam index (index information), a reference signal, a reference signal index (index information), a reference signal resource, a reference signal resource index (index information), spatial filtering information, spatial filtering parameters, a quasi co-located (Quasi Co-Located, QCL) indication, and a transmission configuration indicator (transmission configuration indicator, TCI) status.
  • the reference signal includes but is not limited to CSI-RS; for example, the reference signal can also be one or more of the following: demodulation reference signal (DM-RS), phase tracking reference signals (PT-RS), sidelink synchronization signal and physical broadcast channel block/sidelink synchronization signal block (sidelink synchronization signal and PBCH block, S-SSB), sidelink primary synchronization signal (sidelink primary synchronization signal, S-PSS) in S-SSB and/or sidelink secondary synchronization signal (sidelink secondary synchronization signal, S-SSS).
  • DM-RS demodulation reference signal
  • PT-RS phase tracking reference signals
  • S-PSS sidelink primary synchronization signal
  • S-SSS sidelink secondary synchronization signal
  • S-SSS sidelink secondary synchronization signal
  • the same beam direction means transmission using the same spatial transmission filter; different beam directions mean transmission using different spatial transmission filters.
  • Pre-configuration equivalent to (pre) configuration, may refer to one or more of pre-definition, RRC configuration, SCI indication, MAC CE indication, and DCI indication.
  • SCI is the first-level SCI and/or the second-level SCI.
  • the indication or (pre) configuration or determination may be explicit or implicit.
  • Explicit means directly indicated or (pre) configured or determined through signaling or parameters.
  • Implicit refers to indirect indication or (pre) configuration or determination through signaling or parameters, which can be understood as that the required indication or (pre) configuration or determination information can be indirectly derived based on the signaling or parameters.
  • the beam failure recovery method provided in the embodiment of the present application is applied to the network architecture shown in Figure 1 or Figure 2, and is applied to the transmission scenario of the side link as an example.
  • the network architecture and application scenario described in the embodiment of the present application are to more clearly illustrate the technical solution of the embodiment of the present application, and do not constitute a limitation on the technical solution provided in the embodiment of the present application.
  • a person of ordinary skill in the art can know that with the evolution of the network architecture and the emergence of new application scenarios, the technical solution provided in the embodiment of the present application is also applicable to similar technical problems.
  • the beam failure recovery method provided in the embodiment of the present application can be executed by a first communication device or a second communication device.
  • the first communication device and the second communication device can both be terminal devices or communication devices that can support the terminal device to implement the functions required for the method. Of course, they can also be other communication devices, such as chip systems.
  • the following takes the beam failure recovery method being executed by the first terminal device and the second terminal device as an example. If the embodiment of the present application is applied to the network architecture shown in Figure 1 or Figure 2, the first terminal device and the second terminal device described below may be terminal devices in the network architecture shown in Figure 1 or Figure 2.
  • the terminal device in Figure 1 or Figure 2 can communicate with or without a network infrastructure.
  • the terminal device in Figure 1 or Figure 2 is a vehicle-mounted
  • the terminal device is taken as an example, that is, the embodiment of the present application is applied to the V2X scenario.
  • the embodiment of the present application does not limit the specific form of the terminal device.
  • the terminal device can also be a mobile phone.
  • the embodiment of the present application is only performed by the first terminal device and the second terminal device as an example, and is not limited to the first terminal device and the second terminal device.
  • the embodiment of the present application can also be performed by more terminal devices.
  • the main scenario of the embodiment of the present application is SL, and the (pre) configuration mentioned includes one or more of radio resource control (RRC) configuration, SCI indication, predefined or default.
  • RRC radio resource control
  • the first terminal device and the second terminal device need to know the number of beams supported by each other.
  • the first terminal device and the second terminal device can exchange the number of beams supported by each other.
  • the first terminal device can send the number of beams supported by the first terminal device to the second terminal device through MAC CE or PC5 interface signaling.
  • the second terminal device can send the number of beams supported by the second terminal device to the first terminal device through medium access control (MAC) control element (CE) or interface (e.g., PC5) signaling between terminals.
  • MAC medium access control
  • CE control element
  • the number of beams supported by the terminal device can be predetermined as the number of beams supported under the maximum capability of the terminal device.
  • the number of beams supported by the (pre)configured resource pool may be used, and the number of beams supported by all terminal devices in the resource pool is the number of beams supported by the (pre)configured resource pool.
  • the "cyclic shift pair" and "cyclic shift" in the embodiments of the present application are interchangeable.
  • Figure 3 is a flowchart of the first beam failure recovery method provided in an embodiment of the present application.
  • Any terminal device that determines beam failure can initiate a beam failure recovery process.
  • the first terminal device determines beam failure and initiates beam failure recovery.
  • the first terminal device determines that beam formation fails.
  • the channel condition between the beam pair originally selected by the first terminal device and the second terminal device may deteriorate, resulting in deterioration of communication performance, that is, beam failure occurs.
  • the first terminal device may request the second terminal device to recover from the beam failure.
  • the ways for the first terminal device to determine that the beam fails include but are not limited to the following ways.
  • Determination method one: if the first terminal device determines one or more of the following: the number of times that the channel state information reference signal (CSI-RS), sidelink synchronization signal block (S-SSB), reference signal received power (RSRP) of PSSCH or PSCCH is lower than or equal to a certain threshold (for example, the first threshold) reaches a certain number of thresholds (for example, the second threshold), then the first terminal device determines that the beam has failed.
  • CSI-RS channel state information reference signal
  • S-SSB sidelink synchronization signal block
  • RSRP reference signal received power
  • Determination method two if the first terminal device determines one or more of the following: the number of times the channel quality measured by CSI-RS, S-SSB, PSSCH or PSCCH is lower than or equal to a certain threshold (for example, the third threshold) reaches a certain number threshold (for example, the fourth threshold), then the first terminal device determines that the beam has failed.
  • a certain threshold for example, the third threshold
  • a certain number threshold for example, the fourth threshold
  • Determination method three if the first terminal device determines that the number of reception failures (or decoding failures or demodulation failures) of PSSCH and/or PSCCH reaches a fifth threshold, then the first terminal device determines that the beam has failed.
  • one or more thresholds among the first threshold, the second threshold, the third threshold, the fourth threshold and the fifth threshold can be (pre) configured.
  • the thresholds corresponding to different types of signals can be configured the same.
  • a first threshold can be configured, and the first threshold is applicable to CSI-RS and S-SSB.
  • a first threshold can be configured, and the first threshold is applicable to PSSCH and PSCCH.
  • corresponding thresholds can be (pre) configured for each channel or signal.
  • a first threshold can be (pre) configured for CSI-RS, and a first threshold can also be (pre) configured for S-SSB.
  • the first threshold of CSI-RS and the first threshold of S-SSB can be the same or different.
  • the first terminal device determines that the beam fails, and can request the second terminal device for beam failure recovery to notify the first terminal device of the selected beam, so that the beams between the first terminal device and the second terminal device are aligned, and the communication performance between the first terminal device and the second terminal device is guaranteed as much as possible.
  • the first terminal device determines that the beam fails, and the MAC layer triggers the beam failure recovery, and the first terminal device performs the beam failure recovery process.
  • the first terminal device sends first information to the second terminal device through a first beam using a first resource.
  • the first information is used for beam failure recovery, and the embodiment of the present application does not limit the specific name of the first information.
  • the first information may be a beam failure recovery request (BFRQ).
  • the first terminal device may send a beam failure recovery request to the second terminal device through a PSFCH resource.
  • a beam may be associated with a resource, and a beam failure recovery request may be sent through a resource associated with the beam to be recovered, so that the beam may be distinguished by the resource carrying the beam failure recovery request, thereby realizing sidelink beam failure recovery.
  • the first terminal device may send first information to the second terminal device through the first beam on the first resource, so that the second terminal device receives the first information through the first beam on the first resource.
  • the information determines that the beam selected (to be restored) by the first terminal device is the first beam.
  • the first resource belongs to the PSFCH resource.
  • the first terminal device sends the first information to the second terminal device through the first beam on the first resource, which can also be understood as the first terminal device sending the first information through or using the first resource.
  • association can also be referred to as “mapping", “correlation” or “correspondence”.
  • the first resource is associated with the first beam, or the first resource corresponds to (or maps, or correlates with) the first beam.
  • the association relationship between multiple resources and multiple beams can be (pre-)configured, so that the first terminal device determines to send the first information through the first beam on the first resource based on the first beam and the association relationship.
  • multiple resources correspond to multiple beams one by one.
  • the number of beams can be predefined, the resources can be abstracted into at least one bit (bit), and the beam can be indicated by the number of bits (or status value).
  • the resource is abstracted into 2 bits, and the 2 bits can indicate 2 or 4 beam directions.
  • the embodiment of the present application does not limit the specific implementation form of the association relationship between beams and resources.
  • the correspondence between beams (such as CSI-RS beams and/or S-SSB beams) and PSFCH resources can be (pre-)configured.
  • the correspondence between beam resources (such as CSI-RS resources and/or S-SSB resources) and PSFCH resources may be (pre) configured.
  • the first resource includes one or more resources in the time domain, frequency domain and code domain.
  • the first resource belongs to the PSFCH resource, which means that the first resource belongs to the time domain resource for transmitting PSFCH (also called PSFCH time domain resource) in the time domain, and belongs to the frequency domain resource for transmitting PSFCH (also called PSFCH frequency domain resource) in the frequency domain.
  • the frequency domain resources used to transmit PSFCH can be all frequency domain resources on the PSFCH occasion, or can be part of the frequency domain resources (pre-) configured on the PSFCH occasion.
  • the frequency domain resources on the PSFCH occasion can be used for one or more of the following: beam failure recovery, feedback of HARQ information, or conflict indication.
  • the period for beam failure recovery request and the period for PSFCH occasion may be the same or different.
  • the period of PSFCH may be (pre)configured to be 4, and the period of time domain resources for beam failure recovery request may be 8.
  • the time domain resources for beam failure recovery may not be located on the PSFCH occasion.
  • a set of time domain resources may be independently configured for beam failure recovery, and the time domain resources are not located on the PSFCH occasion.
  • the frequency domain resources used for beam failure recovery can be dedicated.
  • frequency domain resources dedicated to beam failure recovery can be (pre)configured in the PSFCH frequency domain resources.
  • three RB sets (such as the first RB set, the second RB set, and the third RB set) can be (pre)configured by means of bitmap.
  • the first RB set, the second RB set, and the third RB set are different from each other.
  • the first RB set is used for beam failure recovery
  • the second RB set is used to feedback HARQ information
  • the third RB set is used for conflict indication. That is, the first resource belongs to the first RB set in the frequency domain.
  • one or more of the three sets can be (pre)configured.
  • the frequency domain resources used for beam failure recovery can reuse some frequency domain resources in the PSFCH frequency domain resources.
  • the resources used for beam failure recovery can also reuse the resources used to transmit HARQ feedback information. That is, the resources used for beam failure recovery are the same as the resources used for HARQ feedback information, or the information used for beam failure recovery is carried in the RB set used for HARQ feedback.
  • the first resource belongs to the second RB set in the frequency domain.
  • the way of indicating the first beam through the first resource is also different. The following examples are provided for different situations.
  • the first RB set in the PSFCH resource is taken as an example of a frequency domain resource for beam failure recovery
  • the second RB set in the PSFCH resource is taken as an example of a frequency domain resource for HARQ feedback.
  • the first RB set and the second RB set are different.
  • the first RB set and the second RB set are (pre)configured through bitmap, the first RB set is the frequency domain resource for beam failure recovery, and the second RB set is the frequency domain resource for HARQ feedback, wherein the first RB set and the second RB set are different.
  • the frequency domain resources used for beam failure recovery are dedicated. Since the frequency domain resources dedicated to beam failure recovery are (pre)configured, the implementation is simpler.
  • there is no need to multiplex other resources for example, there is no need to multiplex resources for HARQ feedback, that is, beam failure recovery and HARQ feedback are independent, and the beam failure recovery process can be performed even if there is no PSSCH or PSCCH feedback required.
  • the orthogonality of beam failure recovery and HARQ feedback can also be guaranteed as much as possible to avoid interference.
  • different beams can be distinguished by different code domain resources.
  • the code domain resources include cyclic shift resources or orthogonal cover code (OCC) resources.
  • OCC orthogonal cover code
  • different beams can be distinguished by different cyclic shift values or OCCs.
  • the second terminal device can clearly identify the first beam to be restored by the first terminal device through the cyclic shift value or OCC of the first information.
  • m cs and m beam are used to determine the first beam, and it can also be considered that m cs , m beam and beam have an associated relationship.
  • m cs 0 or 6.
  • the number of beams is related. For example, It can be (pre)configured from multiple candidate values based on the number of beams, and the multiple candidate values are related to the number of beams. It can be understood that for different numbers of beams, the candidate values are different.
  • the number of beams is the number of beams supported by the second terminal device.
  • the second terminal device supports M beams, and these M beams constitute the first beam set.
  • the first beam is a beam in the first beam set.
  • M can be determined according to the capability of the second terminal device, or can be (pre) configured.
  • M is an integer greater than or equal to 1. It should be understood that the value of M varies with the number of beams.
  • the relationship between and m 0 is shown in Table 3. According to the difference of M, The candidate values of are also different, for example, The candidate value of can be one or more values in Table 3.
  • the m beam varies depending on the M.
  • the second terminal device can clearly know the beam to be restored by the first terminal device, thereby achieving beam alignment between terminal devices. It can be understood that since m cs and m beam are used to distinguish beams, they cannot be used for orthogonality between different terminal devices. Therefore, when determining the first resource, based on After obtaining the index, the frequency domain can be ascended first and then the code domain can be ascended according to the index, and the code domain ascending should only be ascended in m 0 .
  • Table 3, Table 5, Table 7, and Table 9 can be considered as different tables in different scenarios, and can also be considered as corresponding to different ranges in Table 3 in different situations.
  • the value range of is 1, 2 or 3, which corresponds to the values of some rows in Table 3, as shown in Table 5.
  • the above M The relationship between the m beam and the m beam is shown in the following figure, taking different values of M as an example.
  • the value range of m beam . is (pre) configured, so the above M, In the description of the relationship between the m beam , The value or value range of is optional.
  • the relationship between m beams can be the relationship between M and m beams , Can be (pre)configured.
  • m beam 0.
  • Table 4, Table 6, Table 8 and Table 10 take the beam numbering starting from 1 as an example, and the embodiment of the present application does not limit the starting numbering of the beams, for example, the beam numbering may start from 0.
  • the corresponding relationships shown in Table 4, Table 6, Table 8 and Table 10 are only for indicating that the combination of m beam and m cs may correspond to different beams, and do not specify the correspondence between specific numbers.
  • the second terminal device can clearly know the beam to be restored by the first terminal device, thereby achieving beam alignment between terminal devices. It can be understood that since part of the values of mcs and m0 are used to distinguish beams, this part of CS cannot be used for orthogonalization between different terminal devices. Therefore, when determining the first resource, based on After obtaining the index, the frequency domain can be ascended first and then the code domain can be ascended according to the index, and the code domain ascending should only be ascended in the remaining part of m 0.
  • M 2, in ascending order among 0 and 3
  • CSs not listed in m 0 are used to distinguish different beams.
  • Tables 11 to 14 take the beam numbering starting from 1 as an example.
  • the embodiments of the present application do not limit the starting numbering of the beams.
  • the beam numbering can start from 0.
  • the corresponding relationships shown in Tables 11 to 14 are only to illustrate that different combinations of m cs and m 0 can correspond to different beams, and do not specifically refer to the correspondence between specific numbers.
  • the first resource belongs to the first RB set in the frequency domain, that is, the frequency domain resources used for beam failure recovery and the frequency domain resources used for HARQ feedback are independent of each other.
  • the P ID is the P ID of the PSSCH/PSCCH transmission last sent by the terminal device receiving the beam failure recovery request to the terminal device that currently needs to send the beam failure recovery request
  • the M ID is the M ID of the PSSCH/PSCCH transmission last sent by the terminal device receiving the beam failure recovery request to the terminal device that currently needs to send the beam failure recovery request.
  • the P ID is the physical layer source ID of the terminal device receiving the beam failure recovery request or the ID of the terminal device
  • the M ID is 0 or a (pre) configured value.
  • Tables 3 to 14 above are only examples. In a possible implementation, some rows or columns in the table may be taken as a new table.
  • the resources used for beam failure recovery are the same as the resources used for HARQ feedback information.
  • different beams are distinguished by increasing the beam dimension. For example, HARQ-ACK or HARQ-NACK is sent through the first beam, so that the second terminal device can clearly know the first beam to be recovered by the first terminal device by receiving HARQ-ACK or HARQ-NACK.
  • the first index satisfies Can be used to determine the first resource.
  • the beam index is the product of the number of RBs available for transmitting the first information and the number of code domain resources, and is used to indicate the first beam.
  • mod is a modulo operation.
  • the beam index is introduced in the first index to identify the beam.
  • the beam index is numbered from 0 or 1.
  • the first index satisfies
  • different OCCs can be used to distinguish different beams.
  • the P ID is the P ID of the PSSCH/PSCCH transmission last sent by the terminal device receiving the beam failure recovery request to the terminal device that currently needs to send the beam failure recovery request
  • the M ID is the M ID of the PSSCH/PSCCH transmission last sent by the terminal device receiving the beam failure recovery request to the terminal device that currently needs to send the beam failure recovery request.
  • the P ID is the physical layer source ID of the terminal device receiving the beam failure recovery request or the ID of the terminal device
  • the M ID is 0 or a (pre) configured value.
  • HARQ resources are multiplexed to simultaneously send a beam failure recovery request and HARQ feedback information.
  • the first information also includes HARQ feedback information for data sent by the second terminal device.
  • the beams are distinguished by code domain resources, so that the second terminal device can identify the first beam based on the code domain resources used by the first information.
  • m 0 is the total number of code domain resources available for transmitting the first information, and m 0 is calculated based on the number of cyclic shift pairs.
  • m cs and m beam are used to determine the first beam, and it can also be considered that m cs , m beam and the beam have an associated relationship.
  • m cs 0 or 6.
  • m beam 0 or 1
  • the 2 beams can be distinguished.
  • the second terminal device can clearly know the beam to be restored by the first terminal device, thereby achieving beam alignment between terminal devices. It can be understood that since m cs and m beam are used to distinguish beams, they cannot be used for orthogonality between different terminal devices. Therefore, when determining the first resource, based on After obtaining the index, the frequency domain can be ascended first and then the code domain can be ascended according to the index, and the code domain ascending should only be ascended in m 0 .
  • Tables 16 to 20 take the example that the m beam number starts from 0 and the beam number starts from 1.
  • the embodiments of the present application do not limit the starting number of the m beam and the starting number of the beam.
  • the m beam number and the beam number can both start from 0.
  • the corresponding relationships shown in Tables 16 to 20 are only for indicating that different m beams can correspond to different beams, and do not specifically refer to the correspondence between specific numbers.
  • the second terminal device sends second information to the first terminal device on a second resource.
  • the second terminal device may send response information of the first information (for example, called the second information) to the first terminal device.
  • the second information may be a beam failure recovery response message.
  • the second terminal device sends the second information to the first terminal device on the second resource.
  • the second resource is at least X time slots apart from the first resource.
  • X is (pre) configured, or X is determined based on the processing capability of the second terminal device, or X is related to the subcarrier spacing. For example, X is greater than or equal to 4.
  • the second information is carried on PSSCH or first-order SCI or second-order SCI or MAC CE.
  • the second resource is at least X time slots away from the first resource. In order to leave enough time for the second terminal device to process the first information.
  • the second resource is located at the first PSFCH opportunity after at least X time slots away from the first resource.
  • the first PSFCH opportunity is (pre) configured, or the first
  • the second resource is located at the first time slot after being spaced at least X time slots from the first resource.
  • the second resource is located at the first PSFCH opportunity after being spaced at least 2 or 3 time slots from the first resource, 2 or 3 being (pre) configured.
  • the second resource is located at the first PSFCH opportunity after being spaced at least X or 2 or 3 time slots, whichever is greater, from the first resource.
  • the second information is carried by 1 bit of the SCI.
  • the first terminal device receives the second information, and it is assumed that the second terminal device completes beam failure recovery, or the beam failure recovery process is completed.
  • the second resource may be associated with the first resource, and the second resource and the first resource have a mapping relationship. This allows the first terminal device to clearly know whether the beam failure recovery is completed, so as to ensure the communication performance between the first terminal device and the second terminal device as much as possible.
  • part of the PSFCH resources may be (pre)configured as resources dedicated to sending beam failure recovery response messages, and the second resource belongs to this resource.
  • the second resource may be allocated according to the first index, i.e.
  • the second resource may be determined based on Among them, RB index is the frequency domain index of the first resource, and CS index is the code domain index of the first resource.
  • P ID is the P ID of the PSSCH/PSCCH transmission last sent by the terminal device receiving the beam failure recovery request to the terminal device that currently needs to send the beam failure recovery request
  • M ID is the M ID of the PSSCH/PSCCH transmission last sent by the terminal device receiving the beam failure recovery request to the terminal device that currently needs to send the beam failure recovery request.
  • P ID is the physical layer source ID of the terminal device receiving the beam failure recovery request or the ID of the terminal device, and M ID is 0 or a (pre) configured value.
  • the period of the time domain resources used for beam failure recovery response may be (pre) configured, and the period may be the same as or different from the period of the PSFCH resources in the time domain.
  • the frequency domain resources used for beam failure recovery response are different from the frequency domain resources dedicated to beam failure recovery request.
  • the first RB set, the second RB set, and the fourth RB set may be (pre)configured on the PSFCH resource.
  • the first RB set is a frequency domain resource for beam failure recovery request
  • the second RB set is a frequency domain resource for HARQ feedback
  • the fourth RB set is a frequency domain resource for beam failure recovery response.
  • the first RB set is different from the second RB set
  • the fourth RB set is different from the first RB set and the second RB set, as shown in (a) of FIG. 4 .
  • the first RB set and the fourth RB set may be (pre)configured on the PSFCH resources.
  • the first RB set is a frequency domain resource for beam failure recovery request, and the first RB set may belong to a second RB set, which is a frequency domain resource for HARQ feedback. That is, the frequency domain resources used for beam failure recovery request are the same as the resources used for HARQ feedback.
  • the fourth RB set is a frequency domain resource for beam failure recovery response.
  • the fourth RB set is different from the first RB set and the second RB set, as shown in (b) in Figure 4. It should be noted that (a) in Figure 4 and (b) in Figure 4 are only examples.
  • PSFCH resources can also be (pre)configured, for example, resources for conflict indication.
  • the PSFCH resource is associated with the beam
  • the first resource is associated with the first beam.
  • the first information for beam failure recovery can be sent to the second terminal device through the first beam on the first resource.
  • the second terminal device it can be clear through the first resource that the first terminal device is to recover the first beam.
  • the second beam failure recovery method provided by an embodiment of the present application is described below.
  • the first terminal device determines that the beam has failed, it can indicate the first beam to be restored to the second terminal device through an SCI or CSI report or a MAC CE.
  • the first terminal device sends first indication information to the second terminal device on a first resource.
  • the first indication information is used to indicate the first beam, and the first beam is used for beam failure recovery.
  • the first indication information is included in the SCI, and the SCI is carried on the PSSCH.
  • the first indication information is included in the CSI report, and the CSI report may be carried on the MAC CE.
  • the first indication information is included in the MAC CE, and the MAC CE is carried on the PSSCH.
  • the MAC CE may be a MAC CE for a beam failure recovery request, and does not carry a CSI report.
  • the first terminal device indicates the first beam to the second terminal device based on the SCI.
  • the first indication information is included in an SCI, such as a first-order SCI or a second-order SCI.
  • the first-order SCI may also be referred to as a first-level SCI
  • the second-order SCI may also be referred to as a second-level SCI.
  • the first indication information may be carried by a first field in a first-order SCI or a second-order SCI.
  • the first field may be a newly defined field or an already defined field. If the first field is an already defined field, then 1 bit may be additionally used to identify the first field for indicating the first beam.
  • the first indication information is used to indicate the first beam to be restored. From this perspective, the first indication information may be a beam failure recovery request message.
  • the second terminal device receives the first indication information and may send a HARQ-ACK on a PSFCH resource (e.g., referred to as a second resource) corresponding to the SCI including the first indication information in response to the first indication information.
  • a PSFCH resource e.g., referred to as a second resource
  • the second resource is located at least X time slots after the first resource.
  • X is (pre) configured, or X is determined based on the processing capability of the second terminal device, or X is related to the subcarrier spacing. For example, X is greater than or equal to 4.
  • the second resource is located at least X time slots after the first resource.
  • the first PSFCH opportunity of the first resource The first PSFCH opportunity is (pre) configured.
  • the second resource is located in the first time slot after being at least X time slots away from the first resource.
  • the CSI report can be carried on a MAC CE or a PSSCH.
  • the CSI report can also include RI, CQI, etc.
  • the beam can be a CSI-RS beam or an S-SSB beam.
  • the CSI report includes RI, CQI, and a CSI-RS beam (or an S-SSB beam).
  • the CSI report includes a CSI-RS beam or an S-SSB beam.
  • the first terminal device sends a CSI report to the second terminal device when one or more of the following conditions are met: the first terminal device receives a CSI request from the second terminal device; the first terminal device determines that the beam fails; or the first terminal device is configured to periodically send a CSI report to the second terminal device; or the first terminal device is configured to send a CSI report to the second terminal device when a beam failure recovery request is initiated.
  • the original beam can be indicated without selecting and indicating a new beam.
  • the second terminal device sends a CSI request to the first terminal device
  • the first terminal device sends a CSI report to the second terminal device based on the request of the second terminal device, and the CSI report includes first indication information, and the first indication information indicates the first beam selected by the first terminal device.
  • the second terminal device determines that the beam fails, it sends a CSI request to the first terminal device.
  • the first terminal device sends the CSI report based on the request of the second terminal device, which can also be understood as the triggering method of the CSI report is a request triggering method.
  • the first terminal device determines that the beam has failed, it sends a CSI report to the second terminal device; or, when the first terminal device initiates beam failure recovery, it sends a CSI report to the second terminal device.
  • the CSI report includes first indication information, and the first indication information indicates the first beam selected by the first terminal device.
  • the CSI report may be included in an SCI, such as a first-order SCI or a second-order SCI.
  • the first terminal device also indicates to the second terminal device that the CSI report is used for beam failure recovery. For example, 1 bit in the SCI or CSI report indicates that the CSI report is used for beam failure recovery.
  • the second terminal device receives the CSI report and determines the beam selected by the first terminal device.
  • the first terminal device may send a CSI report on the next time slot in which a beam failure is determined, or the first terminal device sends a CSI report according to (pre)configured resources.
  • the first terminal device determines that a beam failure has occurred or initiates beam failure recovery, and sends a CSI report to the second terminal device.
  • This can also be understood as a CSI report being triggered in a conditional manner. That is, the first terminal device determines that the conditions for reporting a CSI report are met: beam failure or initiation of beam failure recovery triggers the reporting of a CSI report.
  • the first terminal device is configured to periodically send a CSI report to the second terminal device.
  • the first terminal device sends a CSI report to the second terminal device according to the configured period.
  • the resources used to send the CSI report can be (pre) configured.
  • the period value of the resources used to send the CSI report can be the same as the period of the CSI-RS.
  • the period of the resources (pre) configured to send the CSI report is Y times the CSI-RS period, that is, a CSI report is sent every Y CSI-RS.
  • the value of Y can be (pre) configured, or the value of Y is the number of beams supported by the terminal device sending the CSI-RS.
  • the original beam can be indicated without selecting and indicating a new beam.
  • the second terminal device may send second information to the first terminal device at least X time slots apart from the first resource, where the second information is a response message to the first indication information.
  • the first terminal device determines that the beam fails and can indicate the beam to be restored, such as the first beam, to the second terminal device through an SCI or CSI report, so that the second terminal device can clearly understand the beam selected by the first terminal device.
  • the method provided in the embodiments of the present application is introduced by taking the first terminal device as an example.
  • each embodiment can be implemented independently or in combination based on certain internal connections; in each embodiment, different implementation methods can be implemented in combination or independently.
  • the first terminal device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the present application embodiment provides a communication device.
  • the following describes the communication device used to implement the above method in the present application embodiment in conjunction with the accompanying drawings.
  • FIG5 is a schematic block diagram of a communication device 500 provided in an embodiment of the present application.
  • the communication device 500 may include a processing module 510 and a transceiver module 520.
  • a storage unit may be further included, which may be used to store instructions (codes or programs) and/or data.
  • the processing module 510 and the transceiver module 520 may be coupled to the storage unit.
  • the processing module 510 may read instructions (codes or programs) and/or data in the storage unit to implement the corresponding method.
  • the above-mentioned modules may be independently arranged or partially or fully integrated.
  • the communication device 500 can implement the first terminal in the first beam failure recovery method embodiment described above.
  • the behavior and function of the terminal device, the communication device 500 can be a first terminal device, or a component (such as a chip or circuit) used in the first terminal device, or a chip or chipset in the first terminal device or a part of the chip used to execute the function of the related method.
  • the processing module 510 is used to determine beam failure.
  • the transceiver module 520 is used to send first information to the second terminal device through the first beam on the first resource, and the first information is used for beam failure recovery.
  • the first resource is associated with the first beam, and the first resource belongs to a resource for transmitting PSFCH in the frequency domain.
  • the first resource belongs to a resource dedicated to the first beam; or, the first resource belongs to a resource used to transmit HARQ-ACK or HARQ-NACK for data.
  • the first resource is a resource dedicated to the first beam
  • the first resource is a resource dedicated to the first beam
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies in, It is the product of the number of resource blocks (RBs) available for transmitting the first information and the number of code domain resources, beam index is used to indicate the first beam, P ID is the identifier of the second terminal device, the communication device 500 and the second terminal device communicate based on multicast, and only support feedback HARQ-NACK, M ID is the identifier of the communication device 500; the communication device 500 and the second terminal device communicate based on unicast or multicast, and support feedback HARQ-ACK or HARQ-NACK, M ID is 0, and mod is a modulo operation.
  • RBs resource blocks
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies
  • P ID is the identifier of the second terminal device
  • M ID is the identifier of the communication device 500
  • the first resource belongs to a resource used to transmit a HARQ-ACK or HARQ-NACK for data
  • the first beam belongs to a first beam set
  • the number of beams included in the first beam set is M
  • the first resource belongs to a HARQ-ACK or HARQ-NACK for transmitting data.
  • the method also includes: the transceiver module 520 is also used to receive second information from a second terminal device on a second resource, the second resource is at least X time slots apart from the first resource, X is greater than or equal to 4, the second information is response information of the first information, and the second information is carried on PSSCH or PSCCH.
  • the second resource has a mapping relationship with the first resource.
  • the communication device 500 can implement the behaviors and functions of the second terminal device in the above-mentioned first beam failure recovery method embodiment.
  • the communication device 500 can be a second terminal device, or a component (such as a chip or circuit) applied to the second terminal device, or a chip or chipset in the second terminal device or a part of the chip for executing related method functions.
  • the transceiver module 520 is used to receive first information from a first terminal device on a first resource, where the first information is used for beam failure recovery.
  • the first resource is associated with a first beam, and the first resource belongs to a resource for transmitting a PSFCH in the frequency domain.
  • the processing module 510 is used to determine the first beam based on the first resource.
  • the first resource belongs to a resource dedicated to the first beam; or, the first resource belongs to a resource used to transmit HARQ-ACK or HARQ-NACK for data.
  • the first resource is a resource dedicated to the first beam
  • the first resource is a resource dedicated to the first beam
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies in, It is the product of the number of resource blocks (RBs) available for transmitting the first information and the number of code domain resources, beam index is used to indicate the first beam, P ID is the identifier of the second terminal device, the first terminal device and the communication device 500 communicate based on multicast, and only support feedback HARQ-NACK, M ID is the identifier of the first terminal device; the first terminal device and the communication device 500 communicate based on unicast or multicast, and support feedback HARQ-ACK or HARQ-NACK, M ID is 0, and mod is a modulo operation.
  • RBs resource blocks
  • the first resource belongs to a resource used to transmit a HARQ-ACK or a HARQ-NACK for data, and the first resource is determined according to a first index, and the first index satisfies
  • P ID is the identifier of the communication device 500
  • M ID is the identifier of the first terminal device
  • OCC orthogonal cover codes
  • the first resource belongs to a resource used to transmit a HARQ-ACK or HARQ-NACK for data
  • m 0 is the total number of code domain resources available for transmitting the first information
  • m 0 is calculated according to the number of cyclic shift pairs. Determine, m cs and m beam are used to determine the first beam.
  • the first resource belongs to a resource used to transmit a HARQ-ACK or HARQ-NACK for data
  • the number of m cs is determined by m cs is used to determine the first beam and the cyclic shift code.
  • the transceiver module 520 is also used to send second information to the first terminal device on a second resource, where the second resource is at least X time slots apart from the first resource, where X is greater than or equal to 4, and the second information is response information to the first information, and the second information is carried on PSSCH or PSCCH.
  • the communication device 500 can implement the behaviors and functions of the first terminal device in the above-mentioned second beam failure recovery method embodiment.
  • the communication device 500 can be the first terminal device, or it can be a component (such as a chip or circuit) applied to the first terminal device, or it can be a chip or chipset in the first terminal device or a part of the chip for executing related method functions.
  • the processing module 510 is used to generate first indication information.
  • the transceiver module 520 is used to send the first indication information to the second terminal device on the first resource.
  • the first indication information is used to indicate a first beam, and the first beam is used for beam failure recovery.
  • the first indication information is included in the SCI, or the first indication information is included in the CSI report.
  • the transceiver module 520 before the transceiver module 520 sends the CSI report including the first indication information to the second terminal device, the transceiver module 520 is further configured to receive a CSI request from the second terminal device.
  • the processing module 510 is further configured to determine beam failure, wherein the communication device 500 further indicates to the second terminal device that the CSI report is used for beam failure recovery; or the communication device 500 is configured to periodically send the CSI report to the second terminal device.
  • the transceiver module 520 is further configured to receive a response message from the second terminal device to the first indication information on a second resource.
  • the second resource is the first PSFCH opportunity after at least X time slots from the first resource; or the second resource is the first time slot after at least X time slots from the first resource.
  • the communication device 500 can implement the behaviors and functions of the second terminal device in the above-mentioned second beam failure recovery method embodiment.
  • the communication device 500 can be a second terminal device, or a component (such as a chip or circuit) applied to the second terminal device, or a chip or chipset in the second terminal device or a part of the chip for executing related method functions.
  • the transceiver module 520 is used to receive first indication information from a first terminal device on a first resource.
  • the first indication information is used to indicate a first beam, and the first beam is used for beam failure recovery.
  • the processing module 510 is used to determine the first beam according to the first indication information.
  • the first indication information is included in the SCI, or the first indication information is included in the CSI report.
  • the transceiver module 520 is further configured to send a CSI request to the first terminal device.
  • the transceiver module 520 is further configured to send a response message to the first indication information to the first terminal device on a second resource, wherein the second resource is the first PSFCH opportunity after at least X time slots from the first resource; or the second resource is the first time slot after at least X time slots from the first resource.
  • processing module 510 in the embodiment of the present application can be implemented by a processor or a processor-related circuit component
  • transceiver module 520 can be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • FIG6 is a schematic block diagram of a communication device 600 provided in an embodiment of the present application.
  • the communication device 600 may be a terminal device that can implement the functions of the first terminal device or the second terminal device in the method provided in an embodiment of the present application.
  • the communication device 600 may also be a device that can support the terminal device to implement the corresponding functions in the method provided in an embodiment of the present application, wherein the communication device 600 may be a chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices. For specific functions, please refer to the description in the above method embodiment.
  • the communication device 600 includes one or more processors 601, which can be used to implement or support the communication device 600 to implement the function of the first terminal device in the method provided in the embodiment of the present application. Please refer to the detailed description in the method example for details, which will not be repeated here.
  • the communication device 600 includes one or more processors 601, which can be used to implement or support the communication device 600 to implement the function of the second terminal device in the method provided in the embodiment of the present application. Please refer to the detailed description in the method example for details, which will not be repeated here.
  • the processor 601 may also be referred to as a processing unit or a processing module, and may implement certain control functions.
  • the processor 601 may be a general-purpose processor or a dedicated processor, etc.
  • it may include: a central processing unit, an application processor, a modem processor, a graphics processor, an image signal processor, a digital signal processor, a video codec processor, a controller, a memory, and/or a neural network processor, etc.
  • the central processing unit may be used to control the communication device 600, execute software programs, and/or process data.
  • Different processors may be independent devices, or they may be integrated into one or more processors, for example, integrated into one or more application-specific integrated circuits.
  • the communication device 600 includes one or more memories 602 for storing instructions 604, and the instructions can be executed on the processor 601, so that the communication device 600 performs the method described in the above method embodiment.
  • the memory 602 and the processor 601 can be set separately or integrated together, and the memory 602 and the processor 601 can also be considered to be coupled.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which can be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 601 may operate in conjunction with the memory 602. At least one of the at least one memory may be included in the processor. It should be noted that the memory 602 is not necessary, so it is illustrated by dotted lines in Figure 6.
  • data may also be stored in the memory 602.
  • the processor and memory may be provided separately or integrated together.
  • the memory 602 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random-access memory (RAM).
  • a memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device that can implement a storage function, for storing program instructions and/or data.
  • the communication device 600 may include instructions 603 (sometimes also referred to as codes or programs), and the instructions 603 may be executed on the processor so that the communication device 600 performs the method described in the above embodiment.
  • the processor 601 may store data.
  • the communication device 600 may further include a transceiver 605 and an antenna 606.
  • the transceiver 605 may be referred to as a transceiver unit, a transceiver module, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to implement the transceiver function of the communication device 600 through the antenna 606.
  • the processor 601 and transceiver 605 described in the present application may be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFID), a mixed signal IC, an ASIC, a printed circuit board (PCB), or an electronic device.
  • the communication device described in this article may be an independent device (e.g., an independent integrated circuit, a mobile phone, etc.), or may be a part of a larger device (e.g., a module that can be embedded in other devices).
  • aforementioned description of the terminal device and the network device which will not be repeated here.
  • the communication device 600 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (USB) interface, a power management module, an antenna, a speaker, a microphone, an input/output module, a sensor module, a motor, a camera, or a display screen, etc. It is understood that in some embodiments, the communication device 600 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the communication device in the above embodiment can be a terminal device, or a circuit, or a chip used in a terminal device, or other combined devices, components, etc. having the above terminal device functions.
  • the transceiver module can be a transceiver, which can include an antenna and a radio frequency circuit, etc.
  • the processing module can be a processor, such as a central processing unit (CPU).
  • the transceiver module can be a radio frequency unit
  • the processing module can be a processor.
  • the communication device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a CPU, a network processor (NP), a digital signal processing circuit (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other integrated chips.
  • the processing module may be a processor of a chip system.
  • the transceiver module or the communication interface may be an input/output interface or an interface circuit of a chip system.
  • the interface circuit may be a code/data read/write interface circuit.
  • the interface circuit may be used to receive code instructions (code instructions are stored in a memory, may be read directly from the memory, or may be read from the memory through other devices) and transmit them to the processor; the processor may be used to run the code instructions to execute the method in the above method embodiment.
  • the interface circuit may also be a signal transmission interface circuit between a communication processor and a transceiver.
  • the device may include a transceiver unit and a processing unit, wherein the transceiver unit may be an input/output circuit and/or a communication interface; and the processing unit may be an integrated processor or microprocessor or integrated circuit.
  • the embodiment of the present application also provides a communication system, specifically, the communication system includes a plurality of terminal devices.
  • the communication system includes a plurality of first terminal devices and a second terminal device for implementing the functions related to the first beam failure recovery method mentioned above.
  • the communication system includes a plurality of first terminal devices and a second terminal device for implementing the functions related to the second beam failure recovery method mentioned above. Please refer to the relevant description in the above method embodiment for details, which will not be repeated here.
  • a computer-readable storage medium is also provided in an embodiment of the present application, comprising instructions, which, when executed on a computer, enables the computer to execute the method executed by the first terminal device or the second terminal device in the above-mentioned first beam failure recovery method.
  • a computer program product is also provided in an embodiment of the present application, including a computer program code.
  • the computer program code executes the method executed by the first terminal device or the second terminal device in the above-mentioned first beam failure recovery method.
  • the embodiment of the present application provides a chip system, which includes a processor and may also include a memory, for implementing the function of the first terminal device in the aforementioned method.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the part of the technical solution of the present application that contributes essentially or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), RAM, disk or CD-ROM and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种波束失败恢复方法及通信装置,适用于V2X、车联网、智能驾驶或智能网联汽车等领域。波束失败恢复方法包括:第一终端装置确定波束失败,在第一资源上通过第一波束向第二终端装置发送第一信息,该第一信息用于波束失败恢复。其中,第一资源关联第一波束,第一资源在频域上属于用于传输PSFCH的资源。在侧行链路中,可将PSFCH资源用于波束失败恢复,例如,将PSFCH资源与波束关联。第一终端装置在与第一波束对应的第一资源上发送波束失败恢复请求,第二终端装置通过第一资源可明确第一终端装置要恢复的是第一波束。通过本申请实施例提供的方案,可实现侧行链路中的波束失败恢复。

Description

一种波束失败恢复方法及通信装置
相关申请的交叉引用
本申请要求在2022年11月02日提交中国国家知识产权局、申请号为202211361474.X、申请名称为“一种波束失败恢复方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及侧行链路(sidelink,SL)技术领域,尤其涉及一种波束失败恢复方法及通信装置。
背景技术
第五代移动通信系统(5th generation,5G)支持频率范围(frequency range,FR)2通信,即采用高频段信号传输数据。在FR2上,信号的抗干扰能力较弱、穿透性较差,信号能量随传输距离急剧下降。为了克服这个问题,高频通信采用波束赋形技术。
发送端和接收端在通信过程中,发送端或接收端已经选择的波束可能不再适用,例如该波束对应的链路质量较差,这种情况也称为波束失败或者波束故障。当波束失败时,发送端或接收端可请求波束失败恢复(beam failure recovery,BFR),以使得发送端和接收端最终选择的波束对齐,保证通信质量。然而,在侧行链路中,如何实现BFR是亟待解决的问题。
发明内容
本申请提供一种波束失败恢复方法及通信装置,用于实现侧行链路的波束失败恢复,使得侧行链路的通信双方之间波束对齐,提高通信质量。
第一方面,提供一种波束失败恢复方法,该方法可由通信装置执行,该通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片系统。示例性地,该通信装置为终端装置,或者为设置在终端装置中的芯片系统,或者为用于实现终端装置的功能的其他部件。为方便描述,下面以所述通信装置为第一终端装置为例,描述第一方面提供的波束失败恢复方法。
所述波束失败恢复方法包括:第一终端装置确定波束失败,在第一资源上通过第一波束向第二终端装置发送第一信息,该第一信息用于波束失败恢复。其中,第一资源关联第一波束,第一资源在频域上属于用于传输物理侧行反馈信道(physical sidelink feedback channel,PSFCH)的资源。
在本申请实施例中,可基于PSFCH资源指示波束,例如,将PSFCH资源与波束关联。当与第二终端装置通信的第一终端装置确定波束失败,可在第一资源上通过第一波束向第二终端装置发送用于波束失败恢复的第一信息。其中,第一资源属于PSFCH资源,第一资源关联第一波束。从而对于第二终端装置来说,通过第一资源可明确第一终端装置要恢复的是第一波束。通过本申请实施例提供的方案,可实现侧行链路中的波束失败恢复。
在可能的实现方式中,第一资源属于专用于第一波束的资源;或者,第一资源属于用于传输针对数据的自动重传请求(hybrid automatic repeat reQuest,HARQ)-确认应答(acknowledgement,ACK)或者HARQ-否定应答(negative acknowledgement,NACK)的资源。即可以在PSFCH资源中(预)配置专用于波束失败恢复的资源。或者,用于波束失败恢复的资源可以是用于传输HARQ反馈的资源,换句话说,可复用用于传输HARQ反馈的资源来发送波束,提高资源利用率。其中,“专用于第一波束的资源”指专用于传输波束失败恢复请求的资源,或者指专用于在波束失败恢复请求中指示多个波束中的一个波束,并不限定专用于某个特定波束。且,专用于波束失败恢复的资源和复用用于传输HARQ反馈的资源针对的是时域资源和/或频域资源,不包括码域资源。例如,波束失败恢复请求和HARQ反馈使用相同的时频资源进行发送,通过不同的码域资源来区分波束失败恢复请求和/或HARQ反馈。通过配置专用于波束恢复请求的资源,即使在没有需要反馈HARQ的情况下,也能进行波束失败恢复过程,以尽量保证终端装置间的通信性能。
在可能的实现方式中,通过不同的循环移位资源或码域资源来区分波束。例如,第一波束与第一信息的循环移位资源、码域资源相关,使得第二终端装置通过第一信息的循环移位值和码域资源就可以明 确第一终端装置要恢复的第一波束。
作为一种示例,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定第一波束。
在可能的实现方式中,第一波束属于第一波束集合,该第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
M=2,mbeam=0,或6;或者,
M=3或4,mbeam=0或1,或3;或者,
M=5或6,mbeam=0、1或2,或2;或者,
M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,
通过M、mbeam和mcs的不同组合可指示不同的波束,从而可实现通过资源与波束关联,通过资源指示波束失败恢复请求。且波束数量不同时,通过可用的码域资源还可以实现不同终端装置间的正交性。
作为另一种示例,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和m0用于确定第一波束。
在可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预配置或者配置的,其中,m0=0、1、2、3、4或5,mcs=0或6,M和之间满足如下至少一种:
M=2,或者,
M=3或4,或者,
M=5或6,或者,
M=7、8、9、10、11或12,
在可能的实现方式中,使用HARQ资源发送波束时,通过增加波束维度来区分不同的波束,从而使得第二终端装置通过接收HARQ-ACK或HARQ-NACK就可以明确第一终端装置要恢复的第一波束。
作为一种示例,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,第一索引满足其中,为传输第一信息可用的资源块(resource block,RB)数量和码域资源的数量的乘积,beam index用于指示第一波束,PID为第二终端装置的标识,第一终端装置和第二终端装置之间基于组播方式通信,且仅支持反馈HARQ-NACK,MID为第一终端装置的标识;第一终端装置和第二终端装置之间基于单播方式或组播方式通信,且支持反馈HARQ-ACK或HARQ-NACK,MID为0,mod为取模运算。即在PID+MID的基础上引入beam index来标识波束,以确定发送第一波束关联的第一资源。
作为另一种示例,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,该第一索引满足其中,PID为第二终端装置的标识,MID为第一终端装置的标识,为传输第一信息可用的RB数量和码域资源的数量的乘积,其中,不同的波束关联不同的正交覆盖码(orthogonal cover code,OCC)。即通过OCC关联波束用以区分波束。
在可能的实现方式中,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一信息还包括针对第二终端装置发送的数据的HARQ反馈信息,其中,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定第一波束。当第一信息还包括针对第二终端装置发送的数据的HARQ反馈信息,即第一信息既可以实现HARQ的反馈,又可以实现第一波束的指示,这种情况下,通过码域资源来区分波束,从而第二终端装置根据第一信息使用的码域资源可明确第一波束。
在可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
M=2,mbeam=0或1,或3;或者,
M=3,mbeam=0、1或2,或2;或者,
M=4、5或6,mbeam=0、1、2、3、4或5,
在可能的实现方式中,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一信息还包括针对所述第二终端装置发送的数据的HARQ反馈信息,其中,所述第一信息的循环移位值α满足:α=m0+mcs,m0为传输所述第一信息使用可用的码域资源总数,m0根据循环移位对的数量确定,mcs用于确定第一波束和循环移位码。
在可能的实现方式中,所述方法还包括:第一终端装置在第二资源上接收来自第二终端装置的第二信息,该第二资源与第一资源至少间隔X个时隙,X大于或等于4,第二信息为第一信息的响应信息,第二信息承载于物理侧行共享信道(physical sidelink shared channel,PSSCH)或物理侧行控制信道(physical sidelink control channel,PSCCH)。第二终端装置响应于第一信息向第一终端装置发送第二信息。其中,承载第二信息的第二资源与承载第一信息的第一资源至少间隔X个时隙,以尽量为第二终端装置留有足够的时间处理第一信息。
在可能的实现方式中,第二资源与第一资源具有映射关系。通过将第二资源与第一资源关联,从而第二终端能够在相应的第二资源对第一终端的波束失败恢复请求进行响应,使得第一终端装置获知波束失败恢复是否完成,以尽量保证第一终端装置和第二终端装置间的波束对齐和通信性能。
第二方面,提供一种波束失败恢复方法,该方法可由通信装置执行,该通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片系统。示例性地,该通信装置为终端装置,或者为设置在终端装置中的芯片系统,或者为用于实现终端装置的功能的其他部件。为方便描述,下面以所述通信装置为第二终端装置为例,描述第二方面提供的波束失败恢复方法。
所述波束失败恢复方法包括:第二终端装置在第一资源上接收来自第一终端装置的第一信息,该第一信息用于波束失败恢复。其中,第一资源关联第一波束,第一资源在频域上属于用于传输PSFCH的资源。第二终端装置根据第一资源确定第一波束。
在可能的实现方式中,第一资源属于专用于第一波束的资源;或者,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源。
在可能的实现方式中,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定第一波束。
在可能的实现方式中,第一波束属于第一波束集合,该第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
M=2,mbeam=0,或6;或者,
M=3或4,mbeam=0或1,或3;或者,
M=5或6,mbeam=0、1或2,或2;或者,
M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,
在可能的实现方式中,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和m0用于确定第一波束。
在可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预配置或者配置的,其中,m0=0、1、2、3、4或5,mcs=0或6,M和之间满足如下至少一种:
M=2,或者,
M=3或4,或者,
M=5或6,或者,
M=7、8、9、10、11或12,
在可能的实现方式中,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,该第一索引满足其中,为传输第一信息可用的资源块(resource block,RB)数量和码域资源的数量的乘积,beam index用于指示第一波束,PID为第二终端装置的标识,第一终端装置和第二终端装置之间基于组播方式通信,且仅支持反馈HARQ-NACK,MID为第一终端装置的标识;第一终端装置和第二终端装置之间基于单播方式 或组播方式通信,且支持反馈HARQ-ACK或HARQ-NACK,MID为0,mod为取模运算。
在可能的实现方式中,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,该第一索引满足其中,PID为第二终端装置的标识,MID为第一终端装置的标识,为传输第一信息可用的RB数量和码域资源的数量的乘积,其中,不同的波束关联不同的OCC。
在可能的实现方式中,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一信息还包括针对第二终端装置发送的数据的HARQ反馈信息,其中,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定第一波束。
在可能的实现方式中,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
M=2,mbeam=0或1,或3;或者,
M=3,mbeam=0、1或2,或2;或者,
M=4、5或6,mbeam=0、1、2、3、4或5,
在可能的实现方式中,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一信息还包括针对第二终端装置发送的数据的HARQ反馈信息,其中,第一信息的循环移位值α满足:α=m0+mcs,m0为传输所述第一信息使用可用的码域资源总数,m0根据循环移位对的数量确定,mcs用于确定第一波束和循环移位码。
在可能的实现方式中,所述方法还包括:第二终端装置在第二资源上向第一终端装置发送第二信息,该第二资源与第一资源至少间隔X个时隙,X大于或等于4,第二信息为第一信息的响应信息,第二信息承载于PSSCH或PSCCH。
关于第二方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述,此处不再赘述。
第三方面,提供一种波束失败恢复方法,该方法可由通信装置执行,该通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片系统。示例性地,该通信装置为终端装置,或者为设置在终端装置中的芯片系统,或者为用于实现终端装置的功能的其他部件。为方便描述,下面以所述通信装置为第一终端装置为例,描述第三方面提供的波束失败恢复方法。
所述波束失败恢复方法包括:第一终端装置生成第一指示信息,在第一资源上向第二终端装置发送第一指示信息。该第一指示信息用于指示第一波束,第一波束用于波束失败恢复。其中,该第一指示信息包含于侧行控制信息(sidelink control information,SCI),或者,该第一指示信息包含于信道状态信息(channel state information,CSI)报告。
在侧行链路中,第一终端装置确定波束失败可通过SCI或CSI报告向第二终端装置指示要恢复的波束,例如第一波束,使得第二终端装置明确第一终端装置所选择的波束。
在可能的实现方式中,在第一终端装置向所述第二终端装置发送包括第一指示信息的CSI报告之前,所述方法还包括:第一终端装置接收来自第二终端装置的CSI请求;或者,第一终端装置确定波束失败,可选地,第一终端装置还向第二终端装置指示CSI报告用于波束失败恢复;或者,第一终端装置被配置周期性地向第二终端装置发送CSI报告。
在可能的实现方式中,在第一终端装置向所述第二终端装置发送包括第一指示信息的MAC CE之前,所述方法还包括:第一终端装置接收来自第二终端装置的波束失败恢复请求的请求信息;或者,第一终端装置确定波束失败,可选地,第一终端装置还向第二终端装置指示MAC CE用于波束失败恢复;或者,第一终端装置被配置周期性地向第二终端装置发送MAC CE,用于波束失败恢复请求。
在可能的实现方式中,所述方法还包括:第一终端装置在第二资源上接收来自第二终端装置针对第一指示信息的响应消息。其中,第二资源为与第一资源至少间隔X个时隙之后的第一个PSFCH时机;或者,第二资源为与第一资源至少间隔X个时隙之后的第一个时隙。
第四方面,提供一种波束失败恢复方法,该方法可由通信装置执行,该通信装置可以是通信设备或能够支持通信设备实现该方法所需功能的通信装置,例如芯片系统。示例性地,该通信装置为终端装置,或者为设置在终端装置中的芯片系统,或者为用于实现终端装置的功能的其他部件。为方便描述,下面 以所述通信装置为第二终端装置为例,描述第四方面提供的波束失败恢复方法。
所述波束失败恢复方法包括:第二终端装置在第一资源上接收来自第一终端装置的第一指示信息。该第一指示信息用于指示第一波束,第一波束用于波束失败恢复。第二终端装置根据第一指示信息确定第一波束。其中,该第一指示信息包含于SCI,或者,该第一指示信息包含于CSI报告。
在可能的实现方式中,在第一终端装置向所述第二终端装置发送包括第一指示信息的CSI报告之前,所述方法还包括:第二终端装置向第一终端装置发送CSI请求。
在可能的实现方式中,所述方法还包括:第二终端装置在第二资源上向第一终端装置发送响应与第一指示信息的消息。其中,第二资源为与第一资源至少间隔X个时隙之后的第一个PSFCH时机;或者,第二资源为与第一资源至少间隔X个时隙之后的第一个时隙。
第五方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第一方面至第四方面任意方面方法实施例中行为的功能,具体可以参见第一方面至第四方面的相关描述,此处不再赘述。例如,该通信装置可以是第一方面中的第一终端装置,或者该通信装置可以是能够实现第一方面提供的方法的装置,例如芯片或芯片系统。或者,该通信装置可以是第三方面中的第一终端装置,或者该通信装置可以是能够实现第三方面提供的方法的装置,例如芯片或芯片系统。或者,该通信装置可以是第二方面中的第二终端装置,或者该通信装置可以是能够实现第二方面提供的方法的装置,例如芯片或芯片系统。或者该通信装置可以是第四方面中的第二终端装置,或者该通信装置可以是能够实现第二方面提供的方法的装置,例如芯片或芯片系统。
在一个可能的设计中,该通信装置包括用于执行第一方面至第四方面任意方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。收发单元可包括发送单元和接收单元,也可以理解为,发送单元和接收单元是同一个功能模块。或者,收发单元也理解为是发送单元和接收单元的统称,发送单元和接收单元可以是不同的功能模块。这些单元(模块)可以执行上述第一方面至第四方面任意方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,本申请实施例提供一种通信装置,该通信装置可以为上述第五方面的通信装置,或者为设置在第五方面中的通信装置中的芯片或芯片系统。该通信装置可以为终端设备或网络设备。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述方法中由第一终端装置或第二终端装置所执行的方法。
第七方面,本申请实施例提供了一种通信装置,该通信装置包括输入输出接口和逻辑电路。输入输出接口用于输入和/或输出信息。逻辑电路用于执行第一方面至第四方面中的任意一个方面中所述的方法。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括通信接口,用于实现第一方面至第四方面中的任意一个方面中所述的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存计算机程序。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例提供了一种通信系统,所述通信系统包括用于实现第一方面相关功能的终端装置和用于实现第二方面相关功能的终端装置。或者,所述通信系统包括用于实现第三方面相关功能的终端装置和用于实现第四方面相关功能的终端装置。当然,所述通信系统可以包括更多终端装置。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面至第四方面中的任意一个方面中的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面至第四方面中的任意一个方面中的方法被执行。
上述第二方面至第十一方面及其实现方式的有益效果可以参考对第一方面或第三方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例适用的另一种网络架构示意图;
图3为本申请实施例提供的第一种波束失败恢复的流程示意图;
图4为本申请实施例提供的波束失败恢复响应的资源示意图;
图5为本申请实施例提供的通信装置的一种结构示意图;
图6为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于设备间的链路,该链路可以是新无线(new radio,NR)系统,或者应用于长期演进(long term evolution,LTE)系统中,或者还可以应用于下一代移动通信系统或其他类似的通信系统中的链路,具体的不做限制。当然,该链路也可以是其他可能的通信系统中的链路。例如,该链路是无线本地区域网络(wireless local area network,WLAN)中的链路,例如,该链路是物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)网络等无线局域网系统中的链路。
本申请实施例中的设备间的链路指的是相同类型的设备之间建立的链路,例如设备到设备(device to device,D2D)链路。D2D链路也可以称为侧行链路(sidelink,SL)、边链路或副链路等。在本申请实施例中,D2D链路,或边链路或副链路都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是网络设备到网络设备之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。为方便描述,下文以本申请实施例提供的技术方案应用于SL为例。
对于终端设备和终端设备之间的链路,包括D2D链路,也包括车联万物(vehicle to everything,V2X)链路。应理解,V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)或车到任何实体的V2X链路。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与基础设施的通信,基础设施例如路侧单元(road side unit,RSU)或者网络设备。其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性,例如,本申请实施例的终端装置可以为RSU;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。V2N指的是车辆与网络设备的通信。
示例性的,请参考图1,为本申请实施例适用的一种网络架构。图1包括两个终端设备,这两个终端设备之间可以建立SL,基于所建立的SL进行通信。图1中的终端设备的数量只是举例,还可以更多。
当然图1所示的网络架构还可以包括网络设备,如图2所示。图2为本申请实施例适用的一种网络架构。图2包括1个网络设备和多个终端设备(如图2中的终端设备1-终端设备4)。本申请实施例对这多个终端设备的类型不作限制,例如终端设备1和终端设备2是手机,终端设备3和终端设备4是车载终端设备。这多个终端设备均可以与网络设备通信,网络设备和终端设备之间通过Uu口通信链路进行通信(如图2中粗线示意),终端设备间可以基于所建立的SL进行通信(如图2中细线示意)。
其中,网络设备是终端设备通过无线方式接入到移动通信系统中的接入设备,例如包括接入网(access network,AN)设备,例如基站。网络设备也可以是指在空口与终端设备通信的设备。网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B)(也简称为eNB或e-NodeB);网络设备也可以包括5G NR系统中的下一代节点B(next generation node B,gNB);或者,网络设备也可以包括无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;或者网络设备可以为中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、D2D网络中的设备、机器到机器(machine to machine,M2M)网络中的设备、物联网(internet of things,IoT)网络中的设备或者PLMN网络中的网络设备等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
在本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
在本申请实施例中,终端装置,也可以称为终端设备,是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来自网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时 也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端装置用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、D2D、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、IoT、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景中的终端装置。
作为示例而非限定,在本申请的实施例中,该终端装置还可以是可穿戴装置。可穿戴装置也可以称为穿戴式智能装置或智能穿戴式装置等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。本申请实施例中的终端装置,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端,车载终端例如也称为车载单元(on-board unit,OBU)或远程通信模组(也就(telematics box,T-box)。
终端装置或终端设备可以作为整车,终端装置还可以是作为一个或多个部件、模块或者单元而内置于车辆中,例如,终端装置可以为车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。终端装置之间支持直接通信(PC5)接口通信,即支持通过侧行链路进行传输。例如,图1或图2中的任意一个终端装置可将自身的一些信息,例如位置、速度或意图(转弯、并线、或倒车)等信息发送给周围的其余终端装置,同样地,该终端装置也会接收来自其他终端装置的信息。
本申请实施例中,用于实现终端装置功能的通信装置可以是终端装置本身,也可以是能够支持终端装置实现该功能的装置,例如芯片系统,该装置可以被安装在终端装置中。在本申请实施例提供的技术方案中,以用于实现终端装置的功能的装置是终端装置本身为例,描述本申请实施例提供的技术方案。
如前述互相通信的发送端和接收端之间需要采用特定的波束进行传输,以保证通信质量。针对侧行链路,目前还没有BFR的方案。本申请实施例提供侧行链路中BFR的方案,使得通信双方的波束对齐,保证通信质量。
为方便理解本申请实施例提供的技术方案,在介绍本申请实施例提供的技术方案之前,首先介绍本申请实施例涉及的一些概念。
1)PSFCH资源,即用于传输PSFCH的资源,可用于接收端向发送端反馈HARQ-ACK或HARQ-NACK等。在一种可能的场景,一个终端装置可以同时和多个终端装置进行通信,那么这一个终端装置可以接收来自多个终端装置发送的数据,相应的,这个终端装置需要对多个数据传输进行反馈。
可配置或预配置周期性的PSFCH资源,例如,每X个时隙上有1个时隙内具有PSFCH资源。X的取值也可以是1,2或4,即PSFCH的周期的取值可以是1或2或4。接收端或发送端发送PSFCH的资源具体根据确定。
其中,PID为源(source)标识(identity,ID),MID为目的(destination)ID。源ID和目的ID是相对业务收发而言的,源ID对应业务发送,也可以认为是发送端的ID,目的ID对应业务接收,也可以认为是接收端的ID。换句话说,源ID是发送PSSCH/PSCCH、接收HARQ-ACK/HARQ-NACK的设备的ID;目的ID是接收PSSCH/PSCCH、发送HARQ-ACK/HARQ-NACK的设备的ID。需要说明的是,如果发送端和接收端之间基于单播或组播方式通信,且支持反馈HARQ-ACK或HARQ-NACK,那么MID为0;如果发送端和接收端之间基于组播方式通信,且仅支持反馈HARQ-NACK,即接收端成功接收来自发送端的数据,接收端不反馈HARQ-ACK,只有在没有成功接收来自发送端的数据,才向发送端反馈NACK,MID为接收端的ID。为反馈HARQ-ACK/HARQ-NACK的PSFCH可用的RB的数量和码域资源(code resource,CS)的数量的乘积。应理解,码域资源用于传输PSFCH的循环移位(cyclic shift,CS)。
接收端反馈HARQ-ACK/HARQ-NACK可根据所确定的资源索引,根据该索引按照先频域升序,再码域升序的顺序,确定用于反馈ACK/NACK的频域资源和码域资源。其中,PSFCH的循环移位值α=m0+mcs,循环移位对(pair)的数量是预配置或者配置的,m0为码域资源总数。与m0之间的关系如表1所示,mcs的取值如表2所示。
表1
表2
2)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一终端装置和第二终端装置,只是为了区分不同的终端装置,而并不是限制两个终端装置的功能、优先级或重要程度等。
本申请实施例中,波束可以替换为波束方向、波束索引(索引信息)、参考信号、参考信号索引(索引信息)、参考信号资源、参考信号资源索引(索引信息)、空域滤波信息、空域滤波参数、准共址(Quasi Co-Located,QCL)指示、传输配置指示(transmission configuration indicator,TCI)状态。
其中,参考信号包括但不限于CSI-RS;例如参考信号还可以为以下中的一项或多项:解调参考信号(demodulation reference signal,DM-RS)、相位跟踪参考信号(phase-tracking reference signals,PT-RS)、侧行链路同步信号和物理广播信道块/侧行链路同步信号块(sidelink synchronization signal and PBCH block,S-SSB)、S-SSB中的侧行链路主同步信号(sidelink primary synchronization signal,S-PSS)和/或侧行链路辅同步信号(sidelink secondary synchronization signal,S-SSS)。
相同的波束方向,指使用相同的空域传输滤波器传输的;不同的波束方向,指使用不同的空域传输滤波器传输的。
预配置,等价于(预)配置,可以指预定义、RRC配置、SCI指示、MAC CE指示、DCI指示中的一项或多项。其中,SCI为第一级SCI和/或第二级SCI。
指示或(预)配置或确定,可以是显式的,或者隐式的。
显式的指通过信令或参数直接指示或(预)配置或确定。
隐式的指通过信令或参数间接指示或(预)配置或确定,可以理解为,根据信令或参数,可以间接推导出所需要指示或(预)配置或确定的信息。
下面结合说明书附图介绍本申请实施例提供的波束失败恢复方法。在下文的介绍中,以本申请实施例提供的波束失败恢复方法应用于图1或图2所示的网络架构,且应用于侧行链路的传输场景为例。本申请实施例描述的网络架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的波束失败恢复方法可由第一通信装置或第二通信装置执行,该第一通信装置和第二通信装置均可以是终端装置或能够支持终端装置实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。为方便描述,下文以该波束失败恢复方法由第一终端装置和第二终端装置执行为例。如果将本申请实施例应用在图1或图2所示的网络架构,则下文中所述的第一终端装置和第二终端装置可以是图1或图2所示的网络架构中的终端设备。图1或图2中的终端设备可以在有网络基础设施或者无网络基础设施的情况下进行通信。为方便描述,本文以图1或图2中的终端设备是车载 终端设备为例,即以本申请实施例应用于V2X场景为例。本申请实施例对终端装置的具体形态不作限制,例如,终端装置也可以是手机等。需要说明的是,本申请实施例只是以通过第一终端装置和第二终端装置执行为例,并不限制于第一终端装置和第二终端装置。例如,本申请实施例也可以通过更多个终端装置执行。
应理解,涉及到更多个终端装置时,这更多个终端装置中各个终端装置执行流程相同。本申请实施例主要场景为SL,提及的(预)配置包括无线资源控制(radio resource control,RRC)配置、SCI指示、预定义或者默认等中的一种或多种。另外,为了明确波束失败恢复中指示波束所使用的比特数,第一终端装置和第二终端装置彼此需知道对方支持的波束数量。第一终端装置和第二终端装置可以交互彼此支持的波束数量,例如,第一终端装置可通过MAC CE或PC5接口信令向第二终端装置发送第一终端装置支持的波束数量。同理,第二终端装置可通过媒体接入控制(medium access control,MAC)控制元素(control element,CE)或终端间的接口(例如,PC5)信令向第一终端装置发送第二终端装置支持的波束数量。或者,可以预定终端装置支持的波束数量为终端装置的最大能力下支持的波束数量。或者,可以(预)配置资源池支持的波束数量,该资源池内所有终端装置支持的波束数量为(预)配置资源池支持的波束数量。如无特殊说明,本申请实施例中的“循环移位对”与“循环移位”可替换。
请参见图3,为本申请实施例提供的第一种波束失败恢复方法的流程示意图。任意终端装置确定波束失败都可以发起波束失败恢复流程,在图3中以第一终端装置确定波束失败,发起波束失败恢复。
S301、第一终端装置确定波束失败。
第一终端装置与第二终端装置在通信过程中,由于第一终端装置或第二终端装置的移动和信道条件的变化,第一终端装置和第二终端装置的原本选择的波束对之间的信道条件可能变差,导致通信性能变差,即发生波束失败。这种情况下,第一终端装置可向第二终端装置请求波束失败恢复。
第一终端装置确定波束失败的方式有多种,本申请实施例对此不作限制。例如,第一终端装置确定波束失败的方式包括但不下限于如下几种方式。
确定方式一,如果第一终端装置确定如下的一项或多项:信道状态信息参考信号(channel state information reference signal,CSI-RS)、侧行链路-同步信号块(sidelink synchronization signal block,S-SSB)、PSSCH或PSCCH的参考信号接收功率(reference signal received power,RSRP)低于或等于某个阈值(例如第一阈值)的次数达到某次数阈值(例如第二阈值),那么第一终端装置确定波束失败。
确定方式二,如果第一终端装置确定如下的一项或多项:CSI-RS、S-SSB、PSSCH或PSCCH测量得到的信道质量低于或等于某个阈值(例如第三阈值)的次数达到某次数阈值(例如第四阈值),那么第一终端装置确定波束失败。
确定方式三,如果第一终端装置确定PSSCH和/或PSCCH的接收失败(或者译码失败或解调失败)的次数达到第五阈值,那么第一终端装置确定波束失败。
其中,第一阈值、第二阈值、第三阈值、第四阈值以及第五阈值中的一个或多个阈值可以是(预)配置的。针对不同类型的信号对应的阈值可以配置相同的,例如,可以配置第一阈值,该第一阈值适用于CSI-RS,也可以适用于S-SSB。又例如,可以配置第一阈值,该第一阈值适用于PSSCH,也可以适用于PSCCH。针对不同类型的信道或信号,可以分别为各个信道或信号(预)配置相应的阈值。例如,对于CSI-RS可以(预)配置第一阈值,对于S-SSB也可以(预)配置第一阈值。其中,CSI-RS的第一阈值和S-SSB的第一阈值可以相同或不同。
第一终端装置确定波束失败,可向第二终端装置请求波束失败恢复,以通知第一终端装置选择的波束,使得第一终端装置和第二终端装置之间的波束对齐,尽量保证第一终端装置和第二终端装置之间的通信性能。其中,第一终端装置确定波束失败,由MAC层触发波束失败恢复,第一终端装置执行波束失败恢复过程。
S302、第一终端装置在第一资源通过第一波束向第二终端装置发送第一信息。
第一信息用于波束失败恢复,本申请实施例对第一信息的具体名称不作限制。例如,第一信息可以是波束失败恢复请求(beam failure recovery request,BFRQ)。
在本申请实施例中,第一终端装置可通过PSFCH资源向第二终端装置发送波束失败恢复请求。具体来讲,可将波束与资源关联,通过与要恢复的波束关联的资源发送波束失败恢复请求,以通过承载波束失败恢复请求的资源来区分波束,从而实现侧行链路波束失败恢复。例如,第一终端装置可在第一资源通过第一波束向第二终端装置发送第一信息,从而第二终端装置在第一资源上通过第一波束接收第一 信息,确定第一终端装置所选择(要恢复的)波束是第一波束。其中,第一资源属于PSFCH资源。第一终端装置在第一资源上通过第一波束向第二终端装置发送第一信息,也可以理解为,第一终端装置通过或使用第一资源发送第一信息。
“关联”也可以称为“映射”、“相关”或者“对应”。例如,第一资源与第一波束关联,也可以为第一资源与第一波束对应(或映射,或相关)。可以(预)配置多个资源与多个波束的关联关系,从而第一终端装置根据第一波束以及该关联关系确定在第一资源上通过第一波束发送第一信息。可选地,多个资源与多个波束一一对应。或者,可以预定义波束的个数,将资源抽象为至少一个比特(bit),通过bit的个数(或者状态值)来指示波束。例如,资源抽象为2bit,通过该2bit可以指示2个或4个波束方向。这种情况下,无需配置多个资源与多个波束的关联关系。本申请实施例对波束和资源之间的关联关系的具体实现形式不作限制。例如,可(预)配置波束(例如CSI-RS波束和/或S-SSB波束)与PSFCH资源的对应关系。又例如,可(预)配置波束资源(例如CSI-RS资源和/或S-SSB资源)与PSFCH资源的对应关系。
需要说明的是,第一资源包括时域、频域和码域这三项中的一项或多项的资源。第一资源属于PSFCH资源指的是,第一资源在时域上属于用于传输PSFCH的时域资源(也称为PSFCH时域资源),在频域上属于用于传输PSFCH的频域资源(也称为PSFCH频域资源)。用于传输PSFCH的频域资源可以是PSFCH机会(occasion)上的全部频域资源,也可以是PSFCH occasion上(预)配置的一部分频域资源。例如,PSFCH occasion上的频域资源可以用于如下的一项或多项:波束失败恢复、反馈HARQ信息,或冲突指示。
可选地,用于波束失败恢复请求的周期与PSFCH occasion的周期可以相同,也可以不同。例如,可以(预)配置PSFCH的周期为4,用于波束失败恢复请求的时域资源的周期为8。可选地,用于波束失败恢复的时域资源可以不位于PSFCH occasion上。换句话说,可以独立配置一套时域资源用于波束失败恢复,且该时域资源不位于PSFCH occasion。
用于波束失败恢复的频域资源可以是专用的,例如,可以在PSFCH频域资源中(预)配置专用于波束失败恢复的频域资源。例如,通过bitmap的方式可以(预)配置三个RB集合(例如第一RB集合、第二RB集合和第三RB集合)。第一RB集合、第二RB集合和第三RB集合彼此不同。其中,第一RB集合用于波束失败恢复,第二RB集合用于反馈HARQ信息,第三RB集合用于冲突指示。即第一资源在频域上属于第一RB集合。可选地,可以(预)配置三个集合中的一个或多个。
用于波束失败恢复的频域资源可以复用PSFCH频域资源中的一些频域资源,例如,用于波束失败恢复的资源也可以复用用于传输HARQ反馈信息的资源。也就是,用于波束失败恢复的资源与用于HARQ反馈信息的资源相同,或者,用于波束失败恢复的信息承载于用于HARQ反馈的RB集合。沿用上述的例子,第一资源在频域上属于第二RB集合。根据用于波束失败恢复的资源的不同,通过第一资源指示第一波束的方式也有所不同。下面分情况举例说明。为方便描述,在本申请实施例中,以PSFCH资源中的第一RB集合为用于波束失败恢复的频域资源为例,以PSFCH资源中的第二RB集合为用于HARQ反馈的频域资源为例。其中,第一RB集合和第二RB集合不同。
第一种情况,通过bitmap(预)配置第一RB集合和第二RB集合,第一RB集合为用于波束失败恢复的频域资源,第二RB集合为用于HARQ反馈的频域资源,其中,第一RB集合和第二RB集合不同。换句话说,用于波束失败恢复的频域资源是专用的。由于(预)配置专用于波束失败恢复的频域资源,因此实现更为简单。另外,无需复用其他资源,例如无需复用用于HARQ反馈的资源,即波束失败恢复和HARQ反馈是独立的,在即使没有PSSCH或PSCCH需要反馈的情况下,也可以执行波束失败恢复流程。在码域资源有限的情况下,也可以尽量保证波束失败恢复和HARQ反馈的正交性,避免干扰。
这种情况下,可通过不同的码域资源来区分不同的波束。该码域资源包括循环移位资源,或者正交覆盖码(orthogonal cover code,OCC)资源。换句话说,可通过不同的循环移位值或者OCC来区分不同的波束。这样第二终端装置通过第一信息的循环移位值或OCC就可以明确第一终端装置要恢复的第一波束。
作为一种示例,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对(或者循环移位)的数量确定,可用于标识码域资源。mcs和mbeam用于确定第一波束,也可以认为,mcs、mbeam和波束具有关联关系。mcs=0或6。与 波束数量相关。例如,可以是基于波束数量从多个候选值(预)配置的,多个候选值与波束数量相关。可以理解为,对于不同的波束数量,候选值不同。可选地,可根据波束数量确定,或者与波束数量有关。举例来说,波束数量为2或12,(预)配置为1。
波束数量是第二终端装置支持的波束数量,以第二终端装置支持M个波束,这M个波束组成第一波束集合为例。第一波束为第一波束集合中的一个波束。其中,M可以是根据第二终端装置的能力确定,也可能是(预)配置的。M为大于或等于1的整数。应理解,随着波束数量的不同,M的取值也有所不同。其中,与m0之间的关系如表3所示。根据M的不同,的候选值也所有不同,例如,的候选值可以是表3中的一个或多个取值。
表3
相应的,根据M的不同,mbeam也有所不同。例如,以及mbeam之间满足如下至少一种:M=2,mbeam=0,或6;M=3或4,mbeam=0或1或3;M=5或6,mbeam=0、1或2,或2;或者,M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,
当M=2,即第二终端装置支持2个波束,需要区分出2个波束。可以为1,2,3或6。由于mcs=0或6,那么mbeam=0,即可区分出2个波束。如表4所示,mbeam=0,当mcs=0表示波束1,当mcs=6表示波束2。需要说明的是,表4以波束编号从1开始编号为例,本申请实施例中,波束编号也可以从0开始。
表4
类似地,当M=3或4,可以为1,2或3,如表5所示。
表5
当M=3或4,需要区分出4个波束即可。由于mcs=0或6,那么mbeam=0或1,即可区分出4个波束。如表6所示。
表6
类似地,当M=5或6,可以为1或2,如表7所示。
表7

当M=5或6,需要区分出6个波束即可。由于mcs=0或6,那么mbeam=0,1或2,即可区分出6个波束。如表8所示。
表8
当M=7,8,9,10,11或12,为1,如表9所示。
表9
当M=7,8,9,10,11或12,需要区分出12个波束。由于mcs=0或6,那么mbeam=0,1,2,3,4,或5,即可区分出12个波束。如表10所示。
表10
通过引入参数mbeam结合mcs来区分波束,使得第二终端装置可以明确第一终端装置要恢复的波束,从而实现终端装置间的波束对齐。可以理解的是,由于mcs和mbeam用于区分波束了,无法用于不同终端装置之间的正交。因此,在确定第一资源时,基于获得索引之后,可根据该索引先频域升序,再码域升序,且码域升序应该只在m0中升序。
可以理解,表3、表5、表7、表9可以认为是不同场景下不同的表格,也可以认为是在不同情况下对应表3中不同的范围。例如,当波束数M=3或4时,的取值范围为1、2或3,即对应表3中的部分行的取值,如表5。可选地,上述M、以及mbeam之间的关系,仅以M取不同值为例,示出以及mbeam的取值范围。由于是(预)配置的,因此上述M、以及mbeam之间的关系的描述中,涉及的取值或取值范围的描述均是可选的。也就是,以及mbeam之间的关系可以为M和mbeam之间的关系,可以是(预)配置的。例如,M=2,mbeam=0,或6,也可以表示M=2,mbeam=0。类似地,M=3或4,mbeam=0或1,或3,也可以表示M=3或4,mbeam=0或1。M=5或6,mbeam=0、1或2,也可以表示M=5或6,mbeam=0、1或2。M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,也可以表示M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5。
可选的,对于FR1,或者仅1个波束,或者不区分波束的情况下,mbeam=0。
表4、表6、表8和表10以波束的编号从1开始为例,本申请实施例对波束的起始编号不作限定,例如,波束编号可以从0开始。另外,表4、表6、表8和表10所示的对应关系仅为了示意mbeam和mcs的组合可以对应不同波束,不特指具体编号之间的对应。
作为另一种示例,第一信息的循环移位值α满足:α=m0+mcs,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和m0用于确定第一波束。mcs=0或6。与前述示例的不同之处在于,mcs和m0用于确定第一波束,即通过mcs和m0来标识波束,无需引入新的参数mbeam。也可以认为,mcs、m0和波束具有关联关系。这种情况下,m0=0、1、2、3、4或5。
沿用上述的例子,即第二终端装置支持M个波束,M和之间满足如下至少一种:M=2,或6;M=3或4,或6;M=5或6,或6;或者,M=7、8、9、10、11或12,
当M=2,可以为6。请参见表11,示出了mcs和m0指示的波束。其中,mcs指示循码域资源(code resources,CS)。
表11
当M=3或4,可以为3。请参见表12,示出了mcs和m0指示的波束。
表12
当M=5或6,可以为2。请参见表13,示出了mcs和m0指示的波束。
表13
当M=7,8,9,10,11或12,可以为1。请参见表14,示出了mcs和m0指示的波束。
表14
通过m0结合mcs来区分波束,使得第二终端装置可以明确第一终端装置要恢复的波束,从而实现终端装置间的波束对齐。可以理解的是,由于mcs和m0的部分取值用于区分波束了,这部分CS无法用于不同终端装置之间的正交。因此,在确定第一资源时,基于获得索引之后,可根据该索引先频域升序,再码域升序,且码域升序应该只在m0的其余部分中升序。例如,如以下至少一项:M=2,时,分别在0、1、2、3、4、5中升序;M=2,时,在0中升序;M=2,时,在0、3中升序;M=2,时,在0、2、4中升序;M=3或4,时,在0中升序;M=3或4,时,在0、1、2或0、2、4中升序;M=5或6,时,在0中升序;M=5或6,时,在0、1或0、3中升序;M=7、8、9、10、11或12,时,在0中升序。可选地,m0中未列出的CS用于区分不同波束。
表11-表14以波束的编号从1开始为例,本申请实施例对波束的起始编号不作限定,例如,波束编号可以从0开始。另外,表11-表14所示的对应关系仅为了示意不同mcs和m0的组合可以对应不同波束,不特指具体编号之间的对应。
需要说明的是,第一资源在频域上属于第一RB集合,即用于波束失败恢复的频域资源与用于HARQ反馈的频域资源是相互独立的。这种情况下,PID为接收波束失败恢复请求的终端装置上一次发送给当前需要发送波束失败恢复请求的终端装置的PSSCH/PSCCH传输的PID;MID为接收波束失败恢复请求的终端装置上一次发送给当前需要发送波束失败恢复请求的终端装置的PSSCH/PSCCH传输的MID。或者PID为接收波束失败恢复请求的终端装置的物理层source ID或者该终端装置的ID,MID为0或者(预)配置的取值。
如上的表3-表14仅是举例,在可能的实现方式中,可以取表格中的部分行或列作为新的表格。
第二种情况,用于波束失败恢复的资源与用于HARQ反馈信息的资源相同。这种情况下,通过增加波束维度来区分不同的波束。例如,通过第一波束发送HARQ-ACK或HARQ-NACK,从而第二终端装置通过接收HARQ-ACK或HARQ-NACK就可以明确第一终端装置要恢复的第一波束。
作为一种示例,第一索引满足可用于确定第一资源。其中,为传输第一信息可用的RB数量和码域资源的数量的乘积,beam index用于指示第一波束。mod为取模运算。通过在第一索引中引入beam index来标识波束。可选地,beam index从0或1开始编号。可选地,beam index的最大值取决于波束数量M。在FR1场景中,beam index=0。
作为另一种示例,无需引入beam index,即第一索引满足用于确定第一资 源。该示例中,可使用不同的OCC来区分不同的波束。
需要说明的是,在第二种情况下,对于独立的CSI-RS来说,PID为接收波束失败恢复请求的终端装置上一次发送给当前需要发送波束失败恢复请求的终端装置的PSSCH/PSCCH传输的PID;MID为接收波束失败恢复请求的终端装置上一次发送给当前需要发送波束失败恢复请求的终端装置的PSSCH/PSCCH传输的MID。或者PID为接收波束失败恢复请求的终端装置的物理层source ID或者该终端装置的ID,MID为0或者(预)配置的取值。
第三种情况,复用HARQ资源同时发送波束失败恢复的请求和HARQ反馈信息。例如,第一信息还包括针对第二终端装置发送的数据的HARQ反馈信息。这种情况下,通过码域资源来区分波束,从而第二终端装置根据第一信息使用的码域资源可明确第一波束。
作为一种示例,第一信息的循环移位值α满足:α=m0+mcs+mbeam。m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定。mcs和mbeam用于确定第一波束,也可以认为,mcs、mbeam和波束具有关联关系。mcs=0或6。以第二终端装置支持M个波束,第一波束为这M个波束中的一个波束。以及mbeam之间满足如下至少一种:M=2,mbeam=0或1, M=3,mbeam=0、1或2,或2;或者,M=4、5或6,mbeam=0、1、2、3、4或5,
当M=2,可以为1,2,或3,如表15所示。
表15
当M=2,即第二终端装置支持2个波束,需要区分出2个波束。mbeam=0或1,即可区分出2个波束。如表16所示,mbeam=0,表示波束1,当mbeam=1表示波束2。
表16
类似地,当M=3,可以为1或2,如表17所示。
表17
当M=3,需要区分出3个波束即可。mbeam=0、1或2,即可区分出3个波束。如表18所示。
表18
类似地,当M=4、5或6,可以为1,如表19所示。
表19
当M=4、5或6,至少需要区分出6个波束即可。mbeam=0,1,2,3,4或5,即可区分出6个波束。 如表20所示。
表20
通过引入参数mbeam结合mcs来区分波束,使得第二终端装置可以明确第一终端装置要恢复的波束,从而实现终端装置间的波束对齐。可以理解的是,由于mcs和mbeam用于区分波束了,无法用于不同终端装置之间的正交。因此,在确定第一资源时,基于获得索引之后,可根据该索引先频域升序,再码域升序,且码域升序应该只在m0中升序。
表16-表20以mbeam的编号从0开始,波束的编号从1开始为例,本申请实施例对mbeam的起始编号和波束的起始编号不作限定,例如,mbeam的编号和波束编号都可以从0开始。另外,表16-表20所示的对应关系仅为了示意不同mbeam可以对应不同波束,不特指具体编号之间的对应。
作为另一种示例,第一信息的循环移位值α满足:α=m0+mcs。m0可用于确定第一波束和循环移位码。即通过m0来标识波束和循环移位码。例如,第二终端装置支持M个波束,M和之间满足如下至少一种:M=2,或6;M=3,或6;或者,M=4、5或6,
例如,有2个波束,m0指示的内容如表21所示。
表21
当有3个波束,mcs指示的内容如表22所示。
表22
当有4、5或6个波束,mcs指示的内容如表23所示。
表23
通过m0来区分波束,使得第二终端装置可以明确第一终端装置要恢复的波束,从而实现终端装置间的波束对齐。可以理解的是,由于m0的部分取值用于区分波束了,无法用于不同终端装置之间的正交。因此,在确定第一资源时,基于获得索引之后,可根据该索引先频域升序,再码域升序,且码域升序应该只在m0的其余取值中升序。例如,M=2,时,分别在0、2、4或0、1、2中升序,其余CS用于区分不同波束。类似的,如以下至少一项:
M=2,时,在0中升序;M=3,时,在0中升序;M=3,时,在0、3或0、1中升序;M=4、5或6,时,在0中升序。
S303、第二终端装置在第二资源上向第一终端装置发送第二信息。
第二终端装置接收第一信息之后,可向第一终端装置发送第一信息的响应信息(例如称为第二信息)。本申请实施例对第二信息的具体名称不作限制,例如第二信息可以是波束失败恢复响应消息。该第二终端装置在第二资源上向第一终端装置发送第二信息。其中,第二资源与第一资源至少间隔X个时隙。可选地,X是(预)配置的,或者,X是基于第二终端装置的处理能力确定的,或者,X与子载波间隔有关。例如,X大于或等于4。
例如,第二信息承载于PSSCH或一阶SCI或二阶SCI或MAC CE。第二资源与第一资源至少间隔X个时隙。以尽量为第二终端装置留有足够的时间处理第一信息。例如,第二资源位于与第一资源至少间隔X个时隙之后的第一个PSFCH时机。可选地,该第一个PSFCH时机为(预)配置的,或者,第 二资源位于与第一资源至少间隔X个时隙之后的第一个时隙。可选地,第二资源位于与第一资源至少间隔2或3个时隙之后的第一个PSFCH时机,2或3为(预)配置。可选地,第二资源位于与第一资源至少间隔X或2或3中最大值个时隙之后的第一个PSFCH时机。
可选地,通过SCI的1bit来承载第二信息。第一终端装置接收第二信息,默认第二终端装置完成波束失败恢复,或者波束失败恢复过程完成。
又例如,可将第二资源与第一资源关联,第二资源与第一资源具有映射关系。使得第一终端装置明确知道波束失败恢复是否完成,以尽量保证第一终端装置和第二终端装置间的通信性能。例如,可(预)配置PSFCH资源中的部分资源为专用于发送波束失败恢复响应消息的资源,那么第二资源属于该资源。这种情况下,第二资源可根据第一索引,即来确定;或者,第二资源可根据其中,RB index为第一资源的频域索引,CS index为第一资源的码域索引。其中,PID为接收波束失败恢复请求的终端装置上一次发送给当前需要发送波束失败恢复请求的终端装置的PSSCH/PSCCH传输的PID;MID为接收波束失败恢复请求的终端装置上一次发送给当前需要发送波束失败恢复请求的终端装置的PSSCH/PSCCH传输的MID。或者PID为接收波束失败恢复请求的终端装置的物理层source ID或者该终端装置的ID,MID为0或者(预)配置的取值。
可选地,用于波束失败恢复响应的时域资源的周期可以是(预)配置的,该周期与PSFCH资源在时域上的周期可以相同,也可以不同。
可选地,用于波束失败恢复响应的频域资源与专用于波束失败恢复请求的频域资源不同。例如,可在PSFCH资源上(预)配置第一RB集合、第二RB集合和第四RB集合。其中,第一RB集合为用于波束失败恢复请求的频域资源,第二RB集合为用于HARQ反馈的频域资源,第四RB集合为用于波束失败恢复响应的频域资源。第一RB集合和第二RB集合不同,第四RB集合与第一RB集合和第二RB集合不同,如图4中的(a)所示。
又例如,可在PSFCH资源上(预)配置第一RB集合和第四RB集合。其中,第一RB集合为用于波束失败恢复请求的频域资源,且,第一RB集合可以属于第二RB集合,该第二RB集合为用于HARQ反馈的频域资源。即用于波束失败恢复请求的频域资源与用于HARQ反馈的资源相同。第四RB集合为用于波束失败恢复响应的频域资源。第四RB集合与第一RB集合和第二RB集合不同,如图4中的(b)所示。需要说明的是,图4中的(a)以及图4中的(b)只是举例示意。PSFCH资源上还可以(预)配置,例如用于冲突指示的资源。
通过前述本申请实施例提供的方案,即在侧行链路中,将PSFCH资源与波束关联,例如第一资源关联第一波束。当第一终端装置确定波束失败,可在第一资源上通过第一波束向第二终端装置发送用于波束失败恢复的第一信息。对于第二终端装置来说,通过第一资源可明确第一终端装置要恢复的是第一波束。
下面介绍本申请实施例提供的第二种波束失败恢复方法。在第二种波束失败恢复方法中,第一终端装置确定波束失败后,可通过SCI或CSI报告或MAC CE向第二终端装置指示要恢复的第一波束。例如,第一终端装置在第一资源上向第二终端装置发送第一指示信息。该第一指示信息用于指示第一波束,第一波束用于波束失败恢复。
其中,第一指示信息包含于SCI,SCI承载于PSSCH。或者,第一指示信息包含于CSI报告,该CSI报告可承载于MAC CE。或者,第一指示信息包含于MAC CE,该MAC CE承载于PSSCH。可选地,该MAC CE可以是用于波束失败恢复请求的MAC CE,不承载CSI报告。
首先介绍第一终端装置如何基于SCI向第二终端装置指示第一波束。
在可能的实现方式中,第一指示信息包含于SCI,例如一阶SCI或二阶SCI。一阶SCI也可以称为第一级SCI,二阶SCI也称为第二级SCI。例如,可以通过一阶SCI或二阶SCI中的第一字段承载第一指示信息。该第一字段可以是新定义的字段,也可以是已经定义的字段。如果第一字段是已经定义的字段,那么可额外通过1bit来标识该第一字段用于指示第一波束。第一指示信息用于指示要恢复的第一波束,从这个角度来说,第一指示信息可以是波束失败恢复请求消息。
第二终端装置接收第一指示信息,可在包括第一指示信息的SCI所对应的PSFCH资源(例如称为第二资源)上发送HARQ-ACK,以响应第一指示信息。可选地,第二资源位于与第一资源至少间隔X个时隙之后。可选地,X是(预)配置的,或者,X是基于第二终端装置的处理能力确定的,或者,X与子载波间隔有关。例如X大于或等于4。可选地,第二资源位于与第一资源至少间隔X个时隙之后 的第一个PSFCH时机。该第一个PSFCH时机为(预)配置的。或者,第二资源位于与第一资源至少间隔X个时隙之后的第一个时隙。
下面介绍第一终端装置如何通过CSI报告向第二终端装置指示第一波束。该CSI报告可承载于MAC CE或者PSSCH。该CSI报告除了指示波束,还可以包括RI、CQI等。波束可以是CSI-RS波束,也可以是S-SSB波束。例如,该CSI报告包括RI、CQI以及CSI-RS波束(或S-SSB波束)。又例如,该CSI报告包括CSI-RS波束或S-SSB波束。
第一终端装置在满足如下的一种或多种条件下,向第二终端装置发送CSI报告:第一终端装置接收来自第二终端装置的CSI请求;第一终端装置确定波束失败;或者,第一终端装置被配置周期性地向第二终端装置发送CSI报告;或者,第一终端装置被配置在发起波束失败恢复请求时向第二终端装置发送CSI报告。可选地,如果没有失败,可以指示原本的波束,无需选择并指示新波束。
例如,第二终端装置向第一终端装置发送CSI请求,第一终端装置基于第二终端装置的请求向第二终端装置发送CSI报告,该CSI报告包括第一指示信息,该第一指示信息指示第一终端装置所选择的第一波束。可选地,第二终端装置确定波束失败时,向第一终端装置发送CSI请求。第一终端装置发送CSI报告是基于第二终端装置的请求,也可以理解为,CSI报告的触发方式为请求触发方式。
又例如,第一终端装置确定波束失败后,向第二终端装置发送CSI报告;或者,第一终端装置发起波束失败恢复时,向第二终端装置发送CSI报告。该CSI报告包括第一指示信息,该第一指示信息指示第一终端装置所选择的第一波束。该CSI报告可以包含于SCI,例如一阶SCI或二阶SCI。另外,第一终端装置还向第二终端装置指示该CSI报告用于波束失败恢复。例如,在SCI或CSI报告中的1bit指示该CSI报告用于波束失败恢复。从而第二终端装置接收CSI报告,确定第一终端装置所选择的波束。
可选地,第一终端装置可在确定波束失败的下一个时隙上发送CSI报告,或者,第一终端装置根据(预)配置的资源发送CSI报告。第一终端装置确定波束失败或者发起波束失败恢复,向第二终端装置发送CSI报告,也可以理解为,CSI报告的触发方式为条件触发方式。即第一终端装置确定满足上报CSI报告的条件:波束失败或者发起波束失败恢复,触发CSI报告的上报。
又例如,第一终端装置被配置周期性地向第二终端装置发送CSI报告。这种情况下,第一终端装置根据被配置的周期,向第二终端装置发送CSI报告。其中,用于发送CSI报告的资源可以是(预)配置的。例如,可以约定用于发送CSI报告的资源的周期值与CSI-RS的周期可以相同。或者,(预)配置用于发送CSI报告的资源的周期是CSI-RS周期的Y倍,即每隔Y个CSI-RS发送一次CSI报告。Y的取值可以是(预)配置的,或者,Y的取值为发送CSI-RS的终端装置支持的波束数量。可选地,如果没有失败,可以指示原本的波束,无需选择并指示新波束。
第二终端装置可在与第一资源至少间隔X个时隙向第一终端装置发送第二信息,该第二信息为第一指示信息的响应消息。
本申请实施例中,第一终端装置确定波束失败可通过SCI或CSI报告向第二终端装置指示要恢复的波束,例如第一波束,使得第二终端装置明确第一终端装置所选择的波束。
上述本申请提供的实施例中,以第一终端设备为例对本申请实施例提供的方法进行了介绍。本申请中,各个实施例可以独立实施或者基于某些内在联系结合实施;每个实施例中,不同的实现方式可以结合实施或者独立实施。为了实现上述本申请实施例提供的方法中的各功能,第一终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置。下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。
图5为本申请实施例提供的通信装置500的示意性框图。该通信装置500可以包括处理模块510和收发模块520。可选地,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块510和收发模块520可以与该存储单元耦合,例如,处理模块510可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个模块可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置500能够对应实现上述第一种波束失败恢复方法实施例中第一终 端装置的行为和功能,通信装置500可以为第一终端装置,也可以为应用于第一终端装置中的部件(例如芯片或者电路),也可以是第一终端装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,处理模块510用于确定波束失败。收发模块520用于在第一资源上通过第一波束向第二终端装置发送第一信息,该第一信息用于波束失败恢复。其中,第一资源关联第一波束,第一资源在频域上属于用于传输PSFCH的资源。
作为一种可选的实现方式,第一资源属于专用于第一波束的资源;或者,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源。
作为一种可选的实现方式,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定第一波束。
作为一种可选的实现方式,第一波束属于第一波束集合,该第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,以及mbeam之间满足如下至少一种:
M=2,mbeam=0,或6;或者,
M=3或4,mbeam=0或1,或3;或者,
M=5或6,mbeam=0、1或2,或2;或者,
M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,
作为一种可选的实现方式,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和m0用于确定第一波束。
作为一种可选的实现方式,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预配置或者配置的,其中,m0=0、1、2、3、4或5,mcs=0或6,M和之间满足如下至少一种:
M=2,或者,
M=3或4,或者,
M=5或6,或者,
M=7、8、9、10、11或12,
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,第一索引满足其中,为传输第一信息可用的资源块(resource block,RB)数量和码域资源的数量的乘积,beam index用于指示第一波束,PID为第二终端装置的标识,通信装置500和第二终端装置之间基于组播方式通信,且仅支持反馈HARQ-NACK,MID为通信装置500的标识;通信装置500和第二终端装置之间基于单播方式或组播方式通信,且支持反馈HARQ-ACK或HARQ-NACK,MID为0,mod为取模运算。
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,该第一索引满足其中,PID为第二终端装置的标识,MID为通信装置500的标识,为传输第一信息可用的RB数量和码域资源的数量的乘积,其中,不同的波束关联不同的OCC。
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一信息还包括针对第二终端装置发送的数据的HARQ反馈信息,其中,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定第一波束。
作为一种可选的实现方式,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,以及mbeam之间满足如下至少一种:
M=2,mbeam=0或1,或3;或者,
M=3,mbeam=0、1或2,或2;或者,
M=4、5或6,mbeam=0、1、2、3、4或5,
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的 资源,第一信息还包括针对第二终端装置发送的数据的HARQ反馈信息,其中,第一信息的循环移位值α满足:α=m0+mcs,m0为传输第一信息使用可用的码域资源总数,m0根据循环移位对的数量确定,mcs用于确定第一波束和循环移位码。
作为一种可选的实现方式,所述方法还包括:收发模块520还用于在第二资源上接收来自第二终端装置的第二信息,该第二资源与第一资源至少间隔X个时隙,X大于或等于4,第二信息为第一信息的响应信息,第二信息承载于PSSCH或PSCCH。
作为一种可选的实现方式,第二资源与第一资源具有映射关系。
在一些可能的实施方式中,通信装置500能够对应实现上述第一种波束失败恢复方法实施例中第二终端装置的行为和功能,通信装置500可以为第二终端装置,也可以为应用于第二终端装置中的部件(例如芯片或者电路),也可以是第二终端装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,收发模块520用于在第一资源上接收来自第一终端装置的第一信息,该第一信息用于波束失败恢复。其中,第一资源关联第一波束,第一资源在频域上属于用于传输PSFCH的资源。处理模块510用于根据第一资源确定第一波束。
在可能的实现方式中,第一资源属于专用于第一波束的资源;或者,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源。
作为一种可选的实现方式,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定第一波束。
作为一种可选的实现方式,第一波束属于第一波束集合,该第一波束集合包括的波束个数为M,M根据第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,以及mbeam之间满足如下至少一种:
M=2,mbeam=0,或6;或者,
M=3或4,mbeam=0或1,或3;或者,
M=5或6,mbeam=0、1或2,或2;或者,
M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,
作为一种可选的实现方式,第一资源属于专用于第一波束的资源,第一信息的循环移位值α满足:α=m0+mcs,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和m0用于确定第一波束。
作为一种可选的实现方式,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据通信装置500的能力确定,或者M是预配置或者配置的,其中,m0=0、1、2、3、4或5,mcs=0或6,M和之间满足如下至少一种:
M=2,或者,
M=3或4,或者,
M=5或6,或者,
M=7、8、9、10、11或12,
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,该第一索引满足其中,为传输第一信息可用的资源块(resource block,RB)数量和码域资源的数量的乘积,beam index用于指示第一波束,PID为第二终端装置的标识,第一终端装置和通信装置500之间基于组播方式通信,且仅支持反馈HARQ-NACK,MID为第一终端装置的标识;第一终端装置和通信装置500之间基于单播方式或组播方式通信,且支持反馈HARQ-ACK或HARQ-NACK,MID为0,mod为取模运算。
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一资源根据第一索引确定,该第一索引满足其中,PID为通信装置500的标识,MID为第一终端装置的标识,为传输第一信息可用的RB数量和码域资源的数量的乘积,其中,不同的波束关联不同的正交覆盖码OCC。
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一信息还包括针对通信装置500发送的数据的HARQ反馈信息,其中,第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输第一信息可用的码域资源总数,m0根据循环移位对的数量 确定,mcs和mbeam用于确定第一波束。
作为一种可选的实现方式,第一波束属于第一波束集合,第一波束集合包括的波束个数为M,M根据通信装置500的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,以及mbeam之间满足如下至少一种:
M=2,mbeam=0或1,或3;或者,
M=3,mbeam=0、1或2,或2;或者,
M=4、5或6,mbeam=0、1、2、3、4或5,
作为一种可选的实现方式,第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,第一信息还包括针对通信装置500发送的数据的HARQ反馈信息,其中,第一信息的循环移位值α满足:α=m0+mcs,m0为传输所述第一信息使用可用的码域资源总数,m0根据循环移位对的数量确定,mcs用于确定第一波束和循环移位码。
作为一种可选的实现方式,收发模块520还用于在第二资源上向第一终端装置发送第二信息,该第二资源与第一资源至少间隔X个时隙,X大于或等于4,第二信息为第一信息的响应信息,第二信息承载于PSSCH或PSCCH。
一些可能的实施方式中,通信装置500能够对应实现上述第二种波束失败恢复方法实施例中第一终端装置的行为和功能,通信装置500可以为第一终端装置,也可以为应用于第一终端装置中的部件(例如芯片或者电路),也可以是第一终端装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,处理模块510用于生成第一指示信息。收发模块520用于在第一资源上向第二终端装置发送第一指示信息。该第一指示信息用于指示第一波束,第一波束用于波束失败恢复。其中,该第一指示信息包含于SCI,或者,该第一指示信息包含于CSI报告。
作为一种可选的实现方式,在收发模块520向第二终端装置发送包括第一指示信息的CSI报告之前,收发模块520还用于接收来自第二终端装置的CSI请求。或者,处理模块510还用于确定波束失败,其中,通信装置500还向第二终端装置指示CSI报告用于波束失败恢复;或者,通信装置500被配置周期性地向第二终端装置发送CSI报告。
作为一种可选的实现方式,收发模块520还用于在第二资源上接收来自第二终端装置针对第一指示信息的响应消息。其中,第二资源为与第一资源至少间隔X个时隙之后的第一个PSFCH时机;或者,第二资源为与第一资源至少间隔X个时隙之后的第一个时隙。
在一些可能的实施方式中,通信装置500能够对应实现上述第二种波束失败恢复方法实施例中第二终端装置的行为和功能,通信装置500可以为第二终端装置,也可以为应用于第二终端装置中的部件(例如芯片或者电路),也可以是第二终端装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,收发模块520用于在第一资源上接收来自第一终端装置的第一指示信息。该第一指示信息用于指示第一波束,第一波束用于波束失败恢复。处理模块510用于根据第一指示信息确定第一波束。其中,该第一指示信息包含于SCI,或者,该第一指示信息包含于CSI报告。
在可能的实现方式中,收发模块520还用于向第一终端装置发送CSI请求。
在可能的实现方式中,收发模块520还用于在第二资源上向第一终端装置发送针对第一指示信息的响应消息。其中,第二资源为与第一资源至少间隔X个时隙之后的第一个PSFCH时机;或者,第二资源为与第一资源至少间隔X个时隙之后的第一个时隙。
应理解,本申请实施例中的处理模块510可以由处理器或处理器相关电路组件实现,收发模块520可以由收发器或收发器相关电路组件或者通信接口实现。
图6为本申请实施例提供的通信装置600的示意性框图。其中,该通信装置600可以是终端设备,能够实现本申请实施例提供的方法中第一终端装置或第二终端装置的功能。通信装置600也可以是能够支持终端装置实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置600可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
通信装置600包括一个或多个处理器601,可用于实现或用于支持通信装置600实现本申请实施例提供的方法中第一终端装置的功能。具体参见方法示例中的详细描述,此处不做赘述。或者,通信装置600包括一个或多个处理器601,可用于实现或用于支持通信装置600实现本申请实施例提供的方法中第二终端装置的功能。具体参见方法示例中的详细描述,此处不做赘述。
处理器601也可以称为处理单元或处理模块,可以实现一定的控制功能。处理器601可以是通用处理器或者专用处理器等。例如,包括:中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述中央处理器可以用于对通信装置600进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选地,通信装置600中包括一个或多个存储器602,用以存储指令604,所述指令可在所述处理器601上被运行,使得通信装置600执行上述方法实施例中描述的方法。存储器602和处理器601可以单独设置,也可以集成在一起,也可以认为存储器602和处理器601耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器601可能和存储器602协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器602不是必须的,所以在图6中以虚线进行示意。
可选地,所述存储器602中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器602可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可选地,通信装置600可以包括指令603(有时也可以称为代码或程序),所述指令603可以在所述处理器上被运行,使得所述通信装置600执行上述实施例中描述的方法。处理器601中可以存储数据。
可选地,通信装置600还可以包括收发器605以及天线606。所述收发器605可以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线606实现通信装置600的收发功能。
本申请中描述的处理器601和收发器605可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、ASIC、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
可选地,通信装置600还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置600可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
需要说明的是,上述实施例中的通信装置可以是终端装置,也可以是电路,也可以是应用于终端装置中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当通信装置是终端装置时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述第一终端装置功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。处理模块可以是芯片系统的处理器。收发模块或通信接口可以是芯片系统的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括多个终端装置。示例性的,通信系统包括多个用于实现上述第一种波束失败恢复方法相关功能的第一终端装置和第二终端装置。示例性的,通信系统包括多个用于实现上述第二种波束失败恢复方法相关功能的第一终端装置和第二终端装置。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一种波束失败恢复方法中第一终端装置或第二终端装置执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码被执行时,使得计算机执行上述第一种波束失败恢复方法中第一终端装置或第二终端装置执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种波束失败恢复方法,其特征在于,包括:
    第一终端装置确定波束失败;
    第一终端装置在第一资源上向第二终端装置发送第一信息,所述第一信息用于波束失败恢复,其中,所述第一资源关联第一波束,所述第一波束为要恢复的波束,所述第一资源在频域上属于用于传输物理侧行反馈信道PSFCH的资源。
  2. 如权利要求1所述的方法,其特征在于,所述第一资源包括时域、频域和码域这三项中的一项或多项的资源,其中,不同的所述第一波束关联的时域资源、频域资源或者码域资源中的一项或多项不同。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一资源属于专用于所述第一波束的资源;或者,
    所述第一资源属于用于传输针对数据的自动重传请求HARQ-确认应答ACK或者HARQ-否定应答NACK的资源。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一资源属于专用于所述第一波束的资源,所述第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输所述第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定所述第一波束。
  5. 如权利要求4所述的方法,其特征在于,第一波束属于第一波束集合,所述第一波束集合包括的波束个数为M,M根据所述第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
    M=2,mbeam=0,2、3或6;或者,
    M=3或4,mbeam=0或1,2或3;或者,
    M=5或6,mbeam=0、1或2,或2;或者,
    M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,
  6. 如权利要求1或2所述的方法,其特征在于,所述第一资源属于专用于所述第一波束的资源,所述第一信息的循环移位值α满足:α=m0+mcs,m0为传输所述第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和m0用于确定所述第一波束。
  7. 如权利要求6所述的方法,其特征在于,第一波束属于第一波束集合,所述第一波束集合包括的波束个数为M,M根据所述第二终端装置的能力确定,或者M是预配置或者配置的,其中,m0=0、1、2、3、4或5,mcs=0或6,M和之间满足如下至少一种:
    M=2,或者,
    M=3或4,或者,
    M=5或6,或者,
    M=7、8、9、10、11或12,
  8. 如权利要求1或2所述的方法,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一资源根据第一索引确定,所述第一索引满足 其中,为传输所述第一信息可用的资源块RB数量和码域资源的数量的乘积,beam index用于指示所述第一波束,PID为所述第二终端装置的标识,所述第一终端装置和所述第二终端装置之间基于组播方式通信,且仅支持反馈HARQ-NACK,MID为所述第一终端装置的标识;所述第一终端装置和所述第二终端装置之间基于单播方式或组播方式通信,且支持反馈HARQ-ACK或HARQ-NACK,MID为0,mod为取模运算。
  9. 如权利要求1或2所述的方法,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一资源根据第一索引确定,所述第一索引满足其中,PID为所述第二终端装置的标识,MID为所述第一终端装置的标识,为传输所述第一信息可用的RB数量和码域资源的数量的乘积,其中,不同的波束关联不同的正交覆盖码OCC。
  10. 如权利要求1或2所述的方法,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一信息还包括针对所述第二终端装置发送的数据的HARQ反馈信息,其中,所述第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输所述第一信息可用的 码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定所述第一波束。
  11. 如权利要求10所述的方法,其特征在于,所述第一波束属于第一波束集合,所述第一波束集合包括的波束个数为M,M根据所述第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
    M=2,mbeam=0或1,2或3;或者,
    M=3,mbeam=0、1或2,或2;或者,
    M=4、5或6,mbeam=0、1、2、3、4或5,
  12. 如权利要求1或2所述的方法,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一信息还包括针对所述第二终端装置发送的数据的HARQ反馈信息,其中,所述第一信息的循环移位值α满足:α=m0+mcs,m0为传输所述第一信息使用可用的码域资源总数,m0根据循环移位对的数量确定,mcs用于确定所述第一波束和循环移位码。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置在第二资源上接收来自所述第二终端装置的第二信息,其中,所述第二资源与所述第一资源至少间隔X个时隙,所述X大于或等于4,所述第二信息为所述第一信息的响应信息,所述第二信息承载于物理侧行共享信道PSSCH或物理侧行控制信道PSCCH。
  14. 如权利要求13所述的方法,其特征在于,所述第二资源与所述第一资源具有映射关系。
  15. 一种通信装置,其特征在于,包括处理模块和收发模块;
    所述处理模块,用于确定波束失败;
    所述收发模块,用于在第一资源上向第二终端装置发送第一信息,所述第一信息用于波束失败恢复,其中,所述第一资源关联第一波束,所述第一波束为要恢复的波束,所述第一资源在频域上属于用于传输物理侧行反馈信道PSFCH的资源。
  16. 如权利要求15所述的通信装置,其特征在于,所述第一资源包括时域、频域和码域这三项中的一项或多项的资源,其中,不同的所述第一波束关联的时域资源、频域资源或者码域资源中的一项或多项不同。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述第一资源属于专用于所述第一波束的资源;或者,
    所述第一资源属于用于传输针对数据的自动重传请求HARQ-确认应答ACK或者HARQ-否定应答NACK的资源。
  18. 如权利要求17所述的通信装置,其特征在于,所述第一资源属于专用于所述第一波束的资源,所述第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输所述第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定所述第一波束。
  19. 如权利要求18所述的通信装置,其特征在于,第一波束属于第一波束集合,所述第一波束集合包括的波束个数为M,M根据所述第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
    M=2,mbeam=0,2、3或6;或者,
    M=3或4,mbeam=0或1,2或3;或者,
    M=5或6,mbeam=0、1或2,或2;或者,
    M=7、8、9、10、11或12,mbeam=0、1、2、3、4或5,
  20. 如权利要求15或16所述的通信装置,其特征在于,所述第一资源属于专用于所述第一波束的资源,所述第一信息的循环移位值α满足:α=m0+mcs,m0为传输所述第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和m0用于确定所述第一波束。
  21. 如权利要求20所述的通信装置,其特征在于,第一波束属于第一波束集合,所述第一波束集合包括的波束个数为M,M根据所述第二终端装置的能力确定,或者M是预配置或者配置的,其中,m0=0、1、2、3、4或5,mcs=0或6,M和之间满足如下至少一种:
    M=2,或者,
    M=3或4,或者,
    M=5或6,或者,
    M=7、8、9、10、11或12,
  22. 如权利要求15或16所述的通信装置,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一资源根据第一索引确定,所述第一索引满足其中,为传输所述第一信息可用的资源块RB数量和码域资源的数量的乘积,beam index用于指示所述第一波束,PID为所述第二终端装置的标识,所述通信装置和所述第二终端装置之间基于组播方式通信,且仅支持反馈HARQ-NACK,MID为所述通信装置的标识;所述通信装置和所述第二终端装置之间基于单播方式或组播方式通信,且支持反馈HARQ-ACK或HARQ-NACK,MID为0,mod为取模运算。
  23. 如权利要求15或16所述的通信装置,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一资源根据第一索引确定,所述第一索引满足其中,PID为所述第二终端装置的标识,MID为所述通信装置的标识,为传输所述第一信息可用的RB数量和码域资源的数量的乘积,其中,不同的波束关联不同的正交覆盖码OCC。
  24. 如权利要求15或16所述的通信装置,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一信息还包括针对所述第二终端装置发送的数据的HARQ反馈信息,其中,所述第一信息的循环移位值α满足:α=m0+mcs+mbeam,m0为传输所述第一信息可用的码域资源总数,m0根据循环移位对的数量确定,mcs和mbeam用于确定所述第一波束。
  25. 如权利要求24所述的通信装置,其特征在于,所述第一波束属于第一波束集合,所述第一波束集合包括的波束个数为M,M根据所述第二终端装置的能力确定,或者M是预定义或者配置的,其中,mcs=0或6,M、以及mbeam之间满足如下至少一种:
    M=2,mbeam=0或1,2或3;或者,
    M=3,mbeam=0、1或2,或2;或者,
    M=4、5或6,mbeam=0、1、2、3、4或5,
  26. 如权利要求15或16所述的通信装置,其特征在于,所述第一资源属于用于传输针对数据的HARQ-ACK或者HARQ-NACK的资源,所述第一信息还包括针对所述第二终端装置发送的数据的HARQ反馈信息,其中,所述第一信息的循环移位值α满足:α=m0+mcs,m0为传输所述第一信息使用可用的码域资源总数,m0根据循环移位对的数量确定,mcs用于确定所述第一波束和循环移位码。
  27. 如权利要求15-26任一项所述的通信装置,其特征在于,所述收发模块还用于:
    在第二资源上接收来自所述第二终端装置的第二信息,其中,所述第二资源与所述第一资源至少间隔X个时隙,所述X大于或等于4,所述第二信息为所述第一信息的响应信息,所述第二信息承载于物理侧行共享信道PSSCH或物理侧行控制信道PSCCH。
  28. 如权利要求27所述的通信装置,其特征在于,所述第二资源与所述第一资源具有映射关系。
  29. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至14任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至14中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至14中任一项所述的方法。
PCT/CN2023/125700 2022-11-02 2023-10-20 一种波束失败恢复方法及通信装置 WO2024093694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211361474.XA CN118042627A (zh) 2022-11-02 2022-11-02 一种波束失败恢复方法及通信装置
CN202211361474.X 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024093694A1 true WO2024093694A1 (zh) 2024-05-10

Family

ID=90929654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125700 WO2024093694A1 (zh) 2022-11-02 2023-10-20 一种波束失败恢复方法及通信装置

Country Status (2)

Country Link
CN (1) CN118042627A (zh)
WO (1) WO2024093694A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348633A (zh) * 2019-02-01 2021-09-03 联想(新加坡)私人有限公司 侧链故障检测和恢复
WO2021190271A1 (zh) * 2020-03-25 2021-09-30 华为技术有限公司 信号传输方法及装置
US20210392717A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Sidelink drx and standalone sidelink beam failure detection and recovery
CN114762270A (zh) * 2019-11-11 2022-07-15 交互数字专利控股公司 链路恢复和侧行链路波束成形
US20220255793A1 (en) * 2021-02-05 2022-08-11 Qualcomm Incorporated Beam failure indications between sidelink user equipments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348633A (zh) * 2019-02-01 2021-09-03 联想(新加坡)私人有限公司 侧链故障检测和恢复
CN114762270A (zh) * 2019-11-11 2022-07-15 交互数字专利控股公司 链路恢复和侧行链路波束成形
WO2021190271A1 (zh) * 2020-03-25 2021-09-30 华为技术有限公司 信号传输方法及装置
US20210392717A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Sidelink drx and standalone sidelink beam failure detection and recovery
US20220255793A1 (en) * 2021-02-05 2022-08-11 Qualcomm Incorporated Beam failure indications between sidelink user equipments

Also Published As

Publication number Publication date
CN118042627A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US20200280981A1 (en) Method and apparatus for managing resource pool in wireless communication system
KR20210020773A (ko) 사이드링크 통신을 지원하는 통신 시스템에서 harq 응답의 송수신을 위한 방법 및 장치
US11659565B2 (en) Method and apparatus of retransmission using adjacent configured grant resource in wireless communications systems
CN115604825A (zh) 一种侧行通信方法及装置
CN114503467B (zh) 一种数据传输方法以及装置
CN113630738A (zh) 一种侧行链路通信方法及装置
KR102363503B1 (ko) 응답 정보 전송 방법, 통신 디바이스, 및 네트워크 디바이스
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
CN115604664A (zh) 一种多播业务修改通知方法及通信装置
WO2021142682A1 (zh) 一种数据传输方法及装置
WO2023030209A1 (zh) 一种通信方法及通信装置
CN114128327B (zh) 一种sfci的发送方法以及装置
KR20210023711A (ko) 통신 시스템에서 사이드링크 자원들의 설정 방법
WO2023011218A1 (zh) 一种资源共享方法及通信装置
CN113366902A (zh) 用于侧链路组播通信的方法和装置
WO2024093694A1 (zh) 一种波束失败恢复方法及通信装置
US20220312441A1 (en) Reference signal transmission method, apparatus, and system
CN115733600B (zh) 一种通信方法及装置
WO2021159512A1 (zh) 一种控制信息传输方法及装置
WO2024164795A1 (zh) 一种通信方法及通信装置
WO2023088456A1 (zh) 通信方法和通信装置
WO2024169575A1 (zh) 通信方法、装置及系统
WO2023241171A9 (zh) 一种数据传输方法及装置
WO2024041184A1 (zh) 一种通信方法及装置
WO2024164734A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884626

Country of ref document: EP

Kind code of ref document: A1