WO2021142682A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2021142682A1
WO2021142682A1 PCT/CN2020/072337 CN2020072337W WO2021142682A1 WO 2021142682 A1 WO2021142682 A1 WO 2021142682A1 CN 2020072337 W CN2020072337 W CN 2020072337W WO 2021142682 A1 WO2021142682 A1 WO 2021142682A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink data
terminal device
dci
data
detection space
Prior art date
Application number
PCT/CN2020/072337
Other languages
English (en)
French (fr)
Inventor
张云昊
骆喆
徐修强
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/072337 priority Critical patent/WO2021142682A1/zh
Priority to EP20914555.6A priority patent/EP4075896A4/en
Priority to CN202080086987.7A priority patent/CN114830781A/zh
Priority to CA3163654A priority patent/CA3163654A1/en
Publication of WO2021142682A1 publication Critical patent/WO2021142682A1/zh
Priority to US17/866,248 priority patent/US20220369387A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • terminal devices in communication scenarios gradually show characteristics such as large numbers and multiple forms.
  • the industrial automation scenario there are a large number of monitoring equipment, machines, sensors, etc. in the factory; in the home and life scenarios, there are a large number of mobile phones, tablets, wearable devices, smart home appliances, or vehicle-mounted terminal devices, etc.
  • This application provides a data transmission method and device, which are used to provide a terminal that is in an RRC idle state or an RRC inactive state to perform dynamic scheduling during data transmission with a base station.
  • an embodiment of the present application provides a data transmission method.
  • the method can be implemented by a terminal device, or can be implemented by a component of the terminal device, such as a processing chip, a circuit, and other components in the terminal device.
  • the method includes: when the terminal device is in the RRC non-connected state, receiving a first DCI from a network device in a common detection space, receiving first downlink data according to the first DCI, and the first downlink data is used to indicate In the second detection space, for example, the first downlink data may be, but not limited to, a paging message, random access response (RAR), or MsgB (message B); in the second detection space
  • the second DCI is received from the network device in the network device, and the second DCI is used to indicate the transmission parameter of the second downlink data, and the second downlink data is received according to the transmission parameter of the second downlink data indicated by the second DCI.
  • the data is data specific to the terminal device, where the transmission parameter of the second downlink data
  • the terminal device can receive the first downlink data through the first DCI detected in the common detection space when the RRC is not connected, and receive the second DCI through the second detection space indicated by the first downlink data,
  • the second downlink data can be received according to the transmission parameters indicated by the second DCI, so that the terminal device can perform terminal device-specific data transmission with the network device in the RRC non-connected state.
  • the common detection space can carry scheduling information for scheduling paging messages, RAR or MsgB, that is, the first downlink data scheduled by the first DCI can be paging messages, RAR or MsgB, etc., so even if the terminal equipment When in the RRC idle state or RRC inactive state, you can still receive paging messages, RAR or MsgB, etc. multiple times, and execute the above process after receiving the paging message, RAR or MsgB to obtain the transmission parameters of the second downlink data .
  • the transmission parameters obtained multiple times may be different.
  • the network device can reconfigure the resource location of the downlink data channel according to the channel change, and notify the terminal device to perform data transmission according to the reconfigured transmission parameter, thereby achieving,
  • the flexibility of resource scheduling when the terminal device is in the RRC disconnected state, the specific data transmission method between the terminal device and the network device is more suitable for channel conditions, and the transmission efficiency of the communication system can be improved.
  • the security of data transmission can also be improved on the basis of the foregoing.
  • the first DCI is received from the network device in the dedicated detection space of the terminal device, and the first downlink data is received according to the first DCI,
  • the first downlink data is used to indicate the second detection space;
  • the second DCI is received from the network device in the second detection space, and the second DCI is used to indicate the transmission parameters of the second downlink data, and according to the
  • the second DCI indicates a transmission parameter of the second downlink data to receive the second downlink data, and the second downlink data is data specific to the terminal device.
  • the first DCI is detected in the dedicated detection space of the terminal device, and the first downlink data is received according to the first DCI, and then the second DCI is detected in the second detection space indicated by the first downlink data, and the second DCI can be detected according to the first DCI.
  • the second downlink data is received by the transmission parameter indicated by the DCI, so that the terminal device can perform terminal device-specific data transmission with the network device in the RRC non-connected state.
  • the terminal device when the terminal device is in the RRC idle state or the RRC inactive state, it can detect the public detection space, or the public detection space and the exclusive detection space of the terminal device. Therefore, in addition to the public detection space, the terminal device can also be in its own detection space.
  • the corresponding proprietary detection space detects the first DCI to perform the above process to obtain the transmission parameters of the second downlink data.
  • the transmission parameters obtained multiple times can be different, thereby realizing flexible adjustment of the transmission parameters of the downlink data .
  • the dedicated detection space of a terminal device is a specific resource space of the terminal device or a specific resource space of a terminal device group containing the terminal device. It can be understood that, except for the terminal device or the terminal device group, other terminal devices cannot receive or demodulate the data transmitted in it. Therefore, on the basis of realizing the flexible adjustment of the downlink data transmission parameters, the data transmission is further improved. Security.
  • the first downlink data is used to indicate the second detection space, including: the first downlink data is used to indicate the control resource set CORESET and the search space searchspace; the CORESET and searchspace are used To determine the second detection space.
  • the first downlink data is also used to indicate the effective time and/or effective times of the second detection space.
  • the configuration of the second detection space is indicated through the first downlink data.
  • the configuration can be CORESET and searchspace, and the effective time and/or effective times of the second detection space are configured.
  • the peer device such as a network device, can be Within the valid time or number of valid times, the second DCI indicating different transmission parameters is sent in the configured second detection space to adjust the transmission parameters of the second downlink data.
  • the network device does not need to repeat the steps of sending the first DCI and sending the first downlink data to indicate the transmission parameters of the second detection space, so as to realize the flexible adjustment of the resource position of the second downlink data. Based on this, the signaling overhead is saved.
  • the method further includes: sending feedback information of second downlink data to a network device according to uplink transmission parameters, where the uplink transmission parameters are determined by the first DCI, the second DCI, and the first downlink. Line data or the second downlink data indicates.
  • the first DCI, the second DCI, the first downlink data, or the second downlink data in the above process indicates the uplink transmission parameter configured for the terminal device.
  • the uplink transmission parameter is an uplink channel (e.g., The transmission parameters of the control channel PUCCH or the data channel PUSCH) are used to carry the transmission feedback information, so as to realize the flexible adjustment of the uplink transmission parameters of the terminal equipment.
  • the embodiments of the present application provide a data transmission method.
  • the method can be implemented by a terminal device or a component of the terminal device, such as a processing chip and a circuit in the terminal device.
  • the method includes: when the terminal device is in the RRC non-connected state, receiving a first DCI from a network device in a common detection space, receiving first downlink data according to the first DCI, and the first downlink data is used to indicate The transmission parameter of the second downlink data, where the first downlink data may be, but not limited to, a paging message, RAR, or message B MsgB; the second downlink data is received according to the transmission parameter of the second downlink data, The second downlink data is data specific to the terminal device.
  • the terminal device can receive the first downlink data through the first DCI detected in the public detection space in the RRC disconnected state, and can receive the second downlink data according to the transmission parameters indicated by the first downlink data , So as to realize the terminal device specific data transmission with the network device in the RRC non-connected state.
  • the common detection space can carry scheduling information for scheduling paging messages, RAR or MsgB, that is, the first downlink data scheduled by the first DCI can be paging messages, RAR or MsgB, etc., so even if the terminal equipment When in the RRC idle state or RRC inactive state, you can still receive paging messages, RAR or MsgB, etc.
  • the network device can reconfigure the resource location of the downlink data channel according to the channel change, and notify the terminal device to perform specific data transmission according to the reconfigured transmission parameter, so as to achieve Therefore, the flexibility of resource scheduling when the terminal device is in the RRC non-connected state, the specific data transmission method between the terminal device and the network device is more suitable for channel conditions, and the transmission efficiency of the communication system can be improved.
  • the security of data transmission can also be improved on the above-mentioned basis.
  • the first DCI is received from the network device in the dedicated detection space of the terminal device, the first downlink data is received according to the first DCI, and the first downlink data is used for Indicates the transmission parameter of the second downlink data, where the first downlink data is a paging message, RAR or message B MsgB; the second downlink data is received according to the transmission parameter of the second downlink data, the second downlink Data is data specific to the terminal device.
  • the first DCI is detected in the dedicated detection space of the terminal equipment, and the first downlink data is received according to the first DCI, and then the second downlink data is received according to the transmission parameters indicated by the first downlink data, thereby realizing the terminal equipment Perform terminal device-specific data transmission with network devices in the RRC non-connected state.
  • the terminal device when the terminal device is in the RRC idle state or the RRC inactive state, it can detect the public detection space, or the public detection space and the exclusive detection space of the terminal device. Therefore, in addition to the public detection space, the terminal device can also be in its own detection space.
  • the corresponding dedicated detection space detects the first DCI to perform the above process to obtain the transmission parameters of the second downlink data packet.
  • the transmission parameters obtained multiple times can be different, thereby achieving flexibility in the transmission parameters of the downlink data adjust.
  • the dedicated detection space of a terminal device is a specific resource space of the terminal device or a specific resource space of a terminal device group containing the terminal device. It can be understood that, except for the terminal device or the terminal device group, other terminal devices cannot receive or demodulate the data transmitted in it. Therefore, on the basis of realizing flexible adjustment of downlink data transmission parameters, the security of data transmission is further improved. sex.
  • the method further includes: sending feedback information of second downlink data to a network device according to an uplink transmission parameter, where the uplink transmission parameter is determined by the first DCI, the first downlink data, or the second downlink data. 2. As indicated by the downlink data.
  • the first DCI, the first downlink data, or the second downlink data in the above process indicate the uplink transmission parameters configured for the terminal device, thereby realizing flexible adjustment of the uplink transmission parameters of the terminal device.
  • the embodiments of the present application provide a data transmission method.
  • the method can be implemented by a terminal device or a component of the terminal device, such as a processing chip, a circuit and other components in the terminal device.
  • the method includes: when the terminal device is in the RRC disconnected state, receiving a first DCI from a network device in a common detection space, and receiving a paging message and second downlink data according to the first DCI, where the second downlink data is Data specific to the terminal device.
  • the terminal device can receive the public data and the second downlink data through the first DCI detected in the public detection space in the RRC disconnected state.
  • the public data contains the paging message, which realizes the terminal device in the RRC disconnected state.
  • State and network equipment carry out terminal equipment-specific data transmission.
  • the terminal device can still detect the common detection space multiple times, receive the first DCI, and can execute the above process after receiving the first DCI to obtain the transmission of the second downlink data parameter.
  • the second downlink data is specific data of the terminal device, the security of data transmission is improved.
  • the transmission parameters obtained multiple times may be different, which realizes the flexible adjustment of the transmission parameters of the downlink data.
  • the first DCI is received from the network device in the dedicated detection space of the terminal device, and the public data and the second downlink are received according to the first DCI.
  • Data, the second downlink data is data specific to the terminal device.
  • the first DCI is detected in the dedicated detection space of the terminal device, and public data and the second downlink data are received according to the first DCI.
  • the public data contains a paging message
  • the terminal device is connected to the network in the RRC non-connected state.
  • the device performs terminal device-specific data transmission.
  • the terminal device when the terminal device is in the RRC idle state or the RRC inactive state, it can detect the public detection space, or the public detection space and the exclusive detection space of the terminal device. Therefore, in addition to the public detection space, the terminal device can also be in its own detection space.
  • the corresponding dedicated detection space detects the first DCI to execute the above process to obtain the transmission parameters of the second downlink data packet.
  • the dedicated detection space of a terminal device is a specific resource space of the terminal device or a specific resource space of a terminal device group containing the terminal device. It can be understood that, except for the terminal device or the terminal device group, other terminal devices cannot receive or demodulate the data transmitted therein, thereby improving the security of data transmission.
  • the transmission parameters acquired multiple times may be different, which realizes the flexible adjustment of the transmission parameters of the downlink data.
  • the method further includes: sending feedback information of second downlink data to a network device according to an uplink transmission parameter, where the uplink transmission parameter is determined by the first DCI, public data, or second downlink data. Directed.
  • the first DCI or the second downlink data in the foregoing process indicates the uplink transmission parameters configured for the terminal device, thereby achieving flexible adjustment of the uplink transmission parameters of the terminal device.
  • the embodiments of the present application provide a data transmission method.
  • the method can be implemented by a network device or a component of the network device, such as a processing chip, a circuit, and other components in the network device.
  • the method includes: sending a first DCI to a terminal device in a common detection space, where the first DCI is used to schedule first downlink data, and the first downlink data is used to indicate a second detection space; Second, send a second DCI to the terminal device in the detection space, the second DCI is used to schedule second downlink data, and the second downlink data is data specific to the terminal device; send a second DCI to the terminal device Downlink data; wherein, the terminal device may be in an RRC non-connected state, and the first downlink data may be, but not limited to, a paging message, RAR, or message B and MsgB.
  • the first downlink data is used to indicate the second detection space, including: the first downlink data is used to indicate the control resource set CORESET and search space search space of the second detection space.
  • the first downlink data is also used to indicate the effective time and/or effective times of the second detection space.
  • the method further includes: receiving feedback information of second downlink data from the terminal device according to uplink transmission parameters, where the uplink transmission parameters are determined by the first DCI, the second DCI, and the first downlink data. Data or the second downlink data indicates.
  • the embodiments of the present application provide a data transmission method.
  • the method can be implemented by a network device or a component of the network device, such as a processing chip, a circuit, and other components in the network device.
  • the method includes: sending a first DCI to a terminal device in a common detection space, where the first DCI is used to schedule first downlink data, and the first downlink data is used to indicate a transmission parameter of the second downlink data, wherein
  • the first downlink data may be, but not limited to, a paging message, RAR, or message B MsgB; second downlink data is sent to the terminal device; the second downlink data is data specific to the terminal device; wherein ,
  • the terminal device can be in RRC non-connected state.
  • the method further includes: receiving feedback information of second downlink data from the terminal device according to uplink transmission parameters, where the uplink transmission parameters are determined by the first DCI, the second DCI, and the first downlink data. Data or the second downlink data indicates.
  • the embodiments of the present application provide a data transmission method.
  • the method can be implemented by a network device or a component of the network device, such as a processing chip, a circuit, and other components in the network device.
  • the method includes: sending a first DCI to a terminal device in a common detection space, where the first DCI is used to schedule a paging message and second downlink data, and the second downlink data is data specific to the terminal device; wherein , The terminal device is in an RRC non-connected state.
  • the method further includes: receiving feedback information of second downlink data from the terminal device according to uplink transmission parameters, where the uplink transmission parameters are determined by the first DCI, the second DCI, the first downlink data, or the As indicated by the second downlink data.
  • an embodiment of the present application provides a communication device that has the function of implementing the method described in the first aspect, the method described in the second aspect, or the method described in the third aspect, and the function may be implemented by hardware Realization can also be realized by software, or by hardware executing corresponding software.
  • the device includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor.
  • the memory is used to store a program or instruction executed by the processor.
  • the program or instruction is executed by the processor, the device can execute the above-mentioned first aspect.
  • the device may be a terminal device.
  • an embodiment of the present application provides a communication device that has the function of implementing the method described in the fourth aspect or the method described in the fifth aspect or the method described in the sixth aspect, and the function may be implemented by hardware Realization can also be realized by software, or by hardware executing corresponding software.
  • the device includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor.
  • the memory is used to store programs or instructions executed by the processor.
  • the device can execute the aforementioned fourth aspect.
  • the device may be a network device.
  • an embodiment of the present application provides a system including the communication device described in the seventh aspect and the communication device described in the eighth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, a memory, and a communication interface.
  • the communication interface is used to receive signals or send signals; and the memory is used to store programs or instructions. Code; the processor is configured to call the program or instruction code from the memory to execute the method described in the first aspect or the method described in the second aspect or the method described in the third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, a memory, and a communication interface.
  • the communication interface is used to receive signals or send signals; and the memory is used to store programs or Instruction code; the processor is configured to call the program or instruction code from the memory to execute the method described in the fourth aspect or the method described in the fifth aspect or the method described in the sixth aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive a program or instruction code and transmit it to the processor; the processor The program or instruction code is executed to execute the method described in the first aspect or the method described in the second aspect or the method described in the third aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive a program or instruction code and transmit it to the processor; the processor Run the program or instruction code to execute the method described in the fourth aspect or the method described in the fifth aspect or the method described in the sixth aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a program or instruction, and when the program or instruction is executed, the method described in the first aspect is Or the method described in the second aspect or the method described in the third aspect is implemented.
  • an embodiment of the present application provides a computer-readable storage medium for storing a program or instruction, and when the program or instruction is executed, the method described in the fourth aspect is Or the method of the fifth aspect or the method of the sixth aspect is implemented.
  • the embodiments of the present application provide a computer program product including instructions that, when the instructions are executed, cause the method described in the first aspect or the method described in the second aspect or the method described in the third aspect to The method is implemented.
  • the embodiments of the present application provide a computer program product including instructions that, when the instructions are executed, cause the method described in the fourth aspect or the method described in the fifth aspect or the method described in the sixth aspect to The method is implemented.
  • FIG. 1 is a schematic diagram of RRC state transition of a terminal device according to an embodiment of the application
  • Figure 2 is a schematic diagram of a communication architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of an application scenario of data transmission provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of an RBG provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of determining the position of a time-frequency resource according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of an application scenario for data transmission provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 9a is a schematic diagram of an application scenario for data transmission according to an embodiment of the application.
  • FIG. 9b is a schematic diagram of an application scenario of data transmission provided by an embodiment of the application.
  • FIG. 10 is a schematic flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of an application scenario of data transmission provided by an embodiment of the application.
  • Figures 12-14 are schematic diagrams of application scenarios for indicating uplink time-frequency resources provided by embodiments of this application.
  • 15-18 are schematic diagrams of the structure of a communication device provided by an embodiment of this application.
  • terminal equipment can perform radio resource control (RRC) establishment procedures with network equipment After the RRC connection is established with the network device, the RRC state of the terminal device is the RRC connected state. Subsequently, the RRC state of the terminal device can be converted in the following states: RRC idle (RRC_IDLE) state, RRC connected (RRC_CONNECTED) state, and RRC inactive (RRC_INACTIVE) state.
  • RRC radio resource control
  • the network device knows that the terminal device is within the coverage of the network device or is within the management range of the network device. For example, the network device knows that the terminal device is within the coverage of the cell managed by the network device; the core network knows The core network knows through which network device the terminal device can be located or found within the coverage or management range of which network device the terminal device is.
  • the network device and the terminal device can transmit the specific data channel and/or control channel of the terminal device, so that the specific information or unicast information of the terminal device can be transmitted.
  • the network device may send the terminal device specific physical downlink control channel (PDCCH) and/or the physical downlink shared channel (PDSCH) to the terminal device, and/or the terminal device may send to the network device A physical uplink shared channel (PUSCH) and/or a physical uplink control channel (PUCCH) specific to a terminal device.
  • the terminal equipment can receive the uplink scheduling indication or the downlink scheduling indication sent by the network equipment through the PDCCH.
  • the terminal device may send hybrid automatic repeat request (HARQ) information to the network device through the PUCCH, which is used to instruct the terminal device to demodulate the downlink data.
  • HARQ hybrid automatic repeat request
  • the PDCCH specific to the terminal device satisfies one or more of the following conditions: the resource location of the PDCCH is specific to the terminal device, and the cyclic redundancy check (CRC) of the PDCCH passes the terminal device
  • the identifier of the device is scrambled, and the PDCCH is used to schedule the specific PDSCH or PUSCH of the terminal device.
  • the PDCCH used to schedule PDSCH or PUSCH can also be described as: the PDCCH is used to carry transmission parameters of the PDSCH or PUSCH.
  • the transmission parameters of PDSCH or PUSCH include one or more of the following parameters: time domain resource location, frequency domain resource location, modulation and coding scheme (MCS), modulation mechanism, coding Mechanism, transport block size (TBS), redundancy version (RV), frequency hopping indication, and power control commands.
  • MCS modulation and coding scheme
  • TBS transport block size
  • RV redundancy version
  • the identifier of the terminal device may be the cell radio network temporary identifier (C-RNTI) of the terminal device or other types of radio network temporary identifier (radio network temporary identifier) of the terminal device. , RNTI).
  • C-RNTI cell radio network temporary identifier
  • radio network temporary identifier radio network temporary identifier
  • the PDSCH specific to the terminal equipment satisfies one or more of the following conditions: the transmission parameters of the PDSCH are specific to the terminal equipment or specific to the terminal equipment group in which the terminal equipment is located, and the PDSCH is specific to the terminal equipment
  • the PDSCH is scheduled by the PDCCH, the CRC of the PDSCH is scrambled by the identification of the terminal device, and the information carried on the PDSCH is specific to the terminal device or specific to the terminal device group in which the terminal device is located.
  • a terminal device specific PUSCH satisfies one or more of the following conditions: the transmission parameter of the PUSCH is specific to the terminal device or specific to the terminal device group in which the terminal device is located, and the PUSCH is specific to the terminal device The CRC of the PUSCH is scrambled by the identification of the terminal device, and the information carried on the PUSCH is specific to the terminal device or specific to the terminal device group in which the terminal device is located.
  • the PUCCH specific to the terminal device satisfies one or more of the following conditions: the transmission parameters of the PUCCH are specific to the terminal device or specific to the terminal device group where the terminal device is located, and the CRC of the PUCCH is passed through the terminal device. If the identification of the device is scrambled, the information carried on the PUCCH is specific to the terminal device or specific to the terminal device group in which the terminal device is located.
  • the terminal device When the terminal device is in the RRC idle state, the RRC connection between the terminal device and the access network is released. At this time, the terminal device can receive a paging message, a broadcast channel, and/or system information, etc. from the network device.
  • the network device does not know whether the terminal device is within the coverage of the network device or whether it is within the management range of the network device. For example, the network device does not know whether the terminal device is in the cell managed by the network device.
  • the core network does not know which network device is covered or managed by the core network, and the core network does not know which network device can locate or find the terminal device.
  • the network device When the terminal device is in the RRC inactive state, there is no RRC connection between the terminal device and the network device. At this time, the network device does not know whether the terminal device is within the coverage area of the network device or whether it is within the management range of the network device. For example, the network device does not know whether the terminal device is within the coverage area of the cell managed by the network device. Within; the core network knows which network device or network devices are covered or managed, and the core network knows which network device or devices can locate or find the terminal device.
  • the terminal device When the terminal device is in the RRC_INACTIVE state, the terminal device can receive paging messages, synchronization signals, broadcast messages, and/or system information from the network device.
  • the RRC inactive state and the RRC idle state may be collectively referred to as the RRC non-connected state.
  • Figure 1 is an example diagram of terminal equipment transitioning in the above three RRC states, including the following transition processes:
  • the network device may send an RRC release (RRC release) message to the terminal device, so that the terminal device changes from the RRC connected state to the RRC idle state.
  • RRC release RRC release
  • the network device may send an RRC suspend message or an RRC release (RRC release) to the terminal device, so that the terminal device is converted from the RRC connected state to the RRC inactive state.
  • RRC release an RRC release
  • the terminal device may convert the terminal device from the RRC idle state to the RRC connected state through an RRC establishment process with the network device.
  • the RRC establishment process may be triggered by the higher layer of the terminal device.
  • the higher layer of the terminal device triggers the RRC establishment process.
  • the RRC establishment process may also be triggered by the network device.
  • the network device sends a paging message to the terminal device, and the paging message contains the identification of the terminal device.
  • the terminal device triggers the RRC establishment process.
  • the RRC establishment process may be that the terminal device sends an RRC Connection Request (RRC Connection Request) message to the network device.
  • RRC Connection Request RRC Connection Request
  • the network device receives the request message, if the network device sends an RRC Connection setup message to the terminal device, it means that the network device agrees to the terminal device to access, and the RRC state of the terminal device can be converted to RRC Connected state.
  • the network device sends an RRC Connection reject message to the terminal device, it means that the network device rejects the terminal device to access, and the RRC state of the terminal device continues to stay in the RRC idle state.
  • scenarios where the higher layer of the terminal device triggers the terminal device to initiate the RRC establishment process include but are not limited to: the terminal device needs to send information to the network device.
  • the service data adaptation protocol (SDAP) layer of the terminal device the packet data convergence protocol (PDCP) layer, and/or the radio link control (RLC) layer
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • the RRC layer of the terminal device triggers the RRC layer of the terminal device and the network device to perform the RRC establishment process
  • the RRC layer of the terminal device triggers the media access control (MAC) layer of the terminal device and the network device to perform the access process.
  • the RRC state of the terminal device can be converted to the RRC connected state through the RRC establishment or RRC recovery process.
  • the terminal device In the RRC_INACTIVE state, after the terminal device receives the paging message from the network device or is triggered by the upper layer of the terminal device, the terminal device can initiate the RRC recovery process, trying to restore the RRC connection with the network device to enter the RRC_CONNECTED state.
  • the RRC recovery process between the terminal device and the network device includes: the terminal device sends an RRC resume request (RRCResumeResuest) message to the network device, and after receiving the request: the network device sends an RRC setup (RRCSetup) message or RRC recovery to the terminal device (RRCResume) message, so that the state of the terminal device can be converted to the RRC_CONNECTED state; or, the network device sends an RRC release (RRCRelease) message to the terminal device, so that the state of the terminal device is converted from the RRC_INACTIVE state to the RRC_IDLE state; or, the network device sends the terminal device to the RRC_IDLE state.
  • the device sends an RRC Reject (RRCReject) message, so that the terminal device continues to stay in the RRC_INACTIVE state.
  • the network device may change the terminal device from the RRC inactive state to the RRC idle state through a release process.
  • the terminal device when the terminal device-specific data transmission is performed between the network device and the terminal device, the terminal device needs to be in the RRC connected state.
  • the data transmission includes: the network device sends data to the terminal device; and/or, the terminal device sends data to the network device.
  • the terminal device if the terminal device is in the RRC idle state or the RRC inactive state, the terminal device first performs an RRC establishment process with the network device. After the terminal device and the network device establish an RRC connection, the state of the terminal device is the RRC connected state, At this time, data transmission specific to the terminal device can be performed.
  • the terminal device in order to avoid the signaling overhead and processing power consumption caused by first switching to the RRC connected state and then data transmission, the terminal device can be allowed to communicate with the network in the RRC idle state or the RRC inactive state.
  • the device performs data transmission specific to the terminal device. Therefore, how the terminal device performs the specific data transmission of the terminal device with the network device in the RRC non-connected state is a problem that needs to be solved.
  • the transmission parameters of the downlink data channel of the terminal device can be directly or indirectly indicated through the message of the common detection space.
  • the common detection space may be a resource space configured for all terminal devices or a group of terminal devices that can receive downlink messages in any RRC state.
  • the network device can send a downlink message in the common detection space to indicate the resource location of the downlink data channel.
  • the network device can still reconfigure the resource location of the downlink data channel according to channel changes, and notify the terminal device to perform data transmission according to the reconfigured transmission parameters to improve the communication system The transmission efficiency.
  • the technical solutions provided by the embodiments of this application can be applied to various communication systems, for example: it can be applied to communication systems such as LTE, 5G, etc., and can also be applied to wireless fidelity (WiFi) and worldwide microwave interconnection access (worldwide). interoperability for microwave access, wimax), or in future communication systems, such as the future 6th generation (6G) system.
  • WiFi wireless fidelity
  • wimax worldwide microwave interconnection access
  • 6G 6th generation
  • 5G can also be called new radio (NR).
  • NR new radio
  • one entity can initiate paging or access to another entity.
  • the air interface communication process between the network device and the terminal device is taken as an example.
  • the technical solution provided in the embodiment of this application can also be applied to sidelink (SL) communication.
  • SL sidelink
  • one terminal device can initiate paging or access to another terminal device.
  • the technical solutions provided in the embodiments of the present application can be applied to device-to-device (D2D) communication scenarios, such as NR D2D communication scenarios and/or LTE D2D communication scenarios, etc.; or can be applied to car-to-device (D2D) communication scenarios.
  • D2D device-to-device
  • D2D device-to-device
  • V2X vehicle to everything
  • V2X communication scenarios such as NR V2X communication scenarios, LTE V2X communication scenarios, car networking communication scenarios, and/or vehicle-to-vehicle (V2V) communication scenarios, etc.; or available In the fields of intelligent driving, intelligent networked vehicles and so on.
  • the communication equipment can use air interface resources for wireless communication.
  • the communication device may include a network device and a terminal device, and the network device may also be referred to as a network side device.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources, and space resources.
  • a and/or B describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone In the case of B, where A and B can be singular or plural.
  • the character "/" generally indicates that the associated objects before and after are in an "or" relationship.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • “plurality” means two or more.
  • FIG. 2 it is a schematic diagram of a possible network architecture to which the embodiments of this application are applicable, including a network device and at least one terminal device.
  • the network device and terminal device shown in FIG. 2 are only an example, and the network device may provide services for one or more terminal devices.
  • the embodiment of the present application does not affect the number of terminal devices and network devices in the communication system. Make specific restrictions.
  • the terminal device in FIG. 2 is shown as an example of a mobile phone, but the present application is not limited to this, and the terminal device may also be other types of terminal devices, such as a vehicle-mounted terminal device or a vehicle.
  • terminal equipment can access and communicate with network equipment.
  • one network device can manage one or more (for example, 3 or 6, etc.) cells, and the terminal device can access the network device in at least one of the one or more cells, and connect to the terminal device Communicate with network equipment in the accessed cell.
  • at least one may be one, two, three, or more, which is not limited in the embodiments of the present application.
  • the term "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application may be used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • the first information and the second information are only for distinguishing different signaling, but do not indicate the difference in content, priority, sending order, or importance of the two types of information.
  • Wireless communication between communication devices may include: wireless communication between network devices and terminal devices, wireless communication between terminal devices and terminal devices, and so on.
  • wireless communication can also be simply referred to as “communication”
  • communication can also be described as “data transmission”, “information transmission”, “signal transmission” or “transmission”.
  • Transmission can include sending and/or receiving.
  • the transmission between a network device and a terminal device includes: the network device sends a downlink signal to the terminal device, that is, the terminal device receives a downlink signal from the network device; and/or, the terminal device sends an uplink signal to the network device, that is, the network device sends an uplink signal from the terminal device. Receive uplink signal.
  • the communication between the network device and the terminal device is described as an example.
  • Those skilled in the art can use the technical solution provided in the embodiment of this application to perform wireless communication between other scheduling entities and subordinate entities, for example,
  • the wireless communication between the macro base station and the micro base station is used for the wireless communication between the first terminal device and the second terminal device, which is not limited in the embodiment of the present application.
  • a terminal device which can be a device with a wireless transceiver function.
  • Terminal devices can be referred to as terminals for short, which can be deployed on land, including indoor, outdoor, and/or handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a user equipment (UE), and the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, and/or wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in power grids wireless terminals in smart cities, and/or wireless terminals in smart homes, etc.
  • the device used to implement the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Network equipment including a base station (BS), can be a device that is deployed in a wireless access network and can communicate with terminal equipment wirelessly.
  • Base stations may come in many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiment of the present application may be a base station in a 5G system or a base station in an LTE system, or a future 6th generation (6G) base station in a future communication system.
  • the base station in the 5G system may also be referred to as a transmission reception point (TRP) or a next-generation Node B (gNB or gNodeB).
  • TRP transmission reception point
  • gNB next-generation Node B
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the public detection space is used by network devices to send downlink control information (DCI) to terminal devices.
  • the DCI is a DCI that can be detected by all terminal devices in a cell or a group of terminal devices in the cell. DCI detected.
  • the common detection space is used to transmit DCI
  • the DCI is used to schedule PDSCH
  • the PDSCH is used to carry system messages, paging messages, random access response (RAR) or MsgB (message B), etc. information.
  • RAR random access response
  • MsgB messages B
  • the DCI carries the transmission parameters of the PDSCH.
  • one cell may include one or more terminal device groups, which is not limited in the embodiment of the present application.
  • the dedicated detection space of the terminal device (also called the specific detection space of the terminal device), used by the network device to send the terminal device specific DCI to the terminal device, the DCI is a group of terminal devices where the terminal device can detect The detected DCI or the DCI that can be detected by the terminal device.
  • the specific detection space of the terminal device is used to transmit DCI
  • the DCI is used to schedule PDSCH or PUSCH, and/or used to indicate parameters such as power control information and/or frame structure configuration information.
  • the above introduction is only for ease of understanding.
  • the implementation of this application does not limit the type of messages transmitted in the dedicated detection space of the terminal device.
  • the dedicated detection space of the terminal device can also be used to transmit DCI, which is used for scheduling and carrying paging.
  • the DCI transmitted in the common detection space is the DCI that can be detected by all terminal devices in the cell.
  • the DCI transmitted in the dedicated detection space of the terminal equipment is the DCI that can be detected by a group of terminal equipment in the cell, where the terminal equipment is included in the group of terminal equipment, and the terminal equipment outside the group of terminal equipment in the cell detects The DCI is not available; or, the DCI transmitted in the dedicated detection space of the terminal device is the DCI that can be detected by the terminal device, and terminal devices other than the terminal device in the cell cannot detect the DCI.
  • the DCI transmitted in the common detection space is a DCI that can be detected by all terminal devices in the cell, or the DCI transmitted in the common detection space is a DCI in the cell.
  • the DCI that can be detected by a group of terminal devices, where the terminal device is included in the group of terminal devices, and the terminal devices other than the group of terminal devices in the cell cannot detect the DCI.
  • the DCI transmitted in the dedicated detection space of the terminal device is the DCI that can be detected by the terminal device, and terminal devices other than the terminal device in the cell cannot detect the DCI.
  • DCI Downlink control information
  • the terminal device can obtain the PDCCH by blind detection, and obtain the DCI carried on the PDCCH by demodulating and decoding the PDCCH.
  • the time-frequency resource range for the blind detection of the PDCCH by the terminal device is determined according to the control resource set (CORESET) and the search space (SearchSpace).
  • the PDCCH is scrambled by a radio network temporary identifier (RNTI) known by a terminal device.
  • RNTI radio network temporary identifier
  • the terminal device uses the known RNTI to try to descramble the PDCCH during blind detection. If the descrambling succeeds, it can receive The PDCCH, and the DCI carried on the PDCCH is received.
  • CORESET and SearchSpace are pre-defined by the protocol, or configured by the network device through signaling for the terminal device, and can be used to jointly determine the time-frequency resource range for blind detection of the PDCCH.
  • the time-frequency resource range may include a set of candidate time-frequency resource positions of the PDCCH, and the network device may send the PDCCH to the terminal device at a candidate time-frequency resource position in the set. Since the terminal device may not know at which candidate time-frequency resource location in the set the network device will send the PDCCH to the terminal device, the terminal can blindly detect the PDCCH at the candidate time-frequency resource location in the candidate time-frequency resource location set, The process of determining the location of candidate time-frequency resources for blind detection based on CORESET and SearchSpace will be described in detail below. Wherein, the candidate time-frequency resource location set includes one or more candidate time-frequency resource locations.
  • RNTI of terminal equipment can be paging radio network temporary identifier (P-RNTI), random access radio network temporary identifier (random access RNTI, RA-RNTI), cell wireless network temporary identifier (cell radio network temporary identifier, C-RNTI), temporary cell radio network temporary identity (TC-RNTI), or inactive radio network temporary identifier (inactive RNTI, I-RNTI), etc.
  • P-RNTI paging radio network temporary identifier
  • random access radio network temporary identifier random access radio network temporary identifier
  • cell wireless network temporary identifier cell radio network temporary identifier, C-RNTI
  • TC-RNTI temporary cell radio network temporary identity
  • I-RNTI inactive radio network temporary identifier
  • the I-RNTI is configured by the network side for the terminal equipment to be used when the RRC is in an inactive state.
  • the I-RNTI is unique within a mobile range of a terminal.
  • the mobile range is called a RAN notification area (radio access network-based notification area), and the RAN notification area may include multiple cell coverage areas.
  • a data transmission method provided by an embodiment of this application can be applied to the communication system shown in FIG. 2.
  • this method is executed by network equipment and terminal equipment.
  • the method includes the following steps:
  • Step S301 The network device sends a first DCI in the public detection space, where the first DCI is used to schedule first downlink data;
  • Step S302 The terminal device receives the first DCI in the public detection space.
  • the terminal device may be in an RRC non-connected state. Before this process, it is assumed that the terminal device knows (or has determined) the resource location of the public detection space.
  • the resource location of the public detection space may be predetermined by an agreement or configured by the network device for the terminal device.
  • the process for the terminal device to determine the resource location of the public detection space includes: the network device sends first configuration information to the terminal device, the first configuration information is used to indicate the resource location of the public detection space, and after the first configuration information is received : The terminal device determines the resource location of the public detection space according to the first configuration information.
  • the configuration when the network device configures the resource location of the common detection space for the terminal device, the configuration can be performed when the terminal device is in the RRC connected state, that is, before converting to the RRC non-connected state.
  • the network device will carry the The RRC release message or the RRC suspension message of the first configuration information is sent to the terminal device; and/or, the terminal device may be configured when the terminal device is in the RRC disconnected state.
  • the network device will carry the broadcast message of the first configuration information (such as system The information block (system information block, SIB) 1) is sent to the terminal device.
  • the first configuration information may be used to indicate CORESET and SearchSpace, and CORESET and SearchSpace will be specifically introduced below.
  • the terminal device When the terminal device receives the first DCI in the public detection space, the terminal device blindly detects the first DCI in the public detection space. Specifically, the terminal device may detect the first DCI at one or more candidate time-frequency resource positions in the common detection space.
  • the first DCI is used to schedule first downlink data.
  • the first DCI is used to indicate the transmission parameters of a channel (such as PDSCH) that carries the first downlink data.
  • the first DCI is used by a network device.
  • the terminal device uses the known RNTI to scramble the DCI, and the terminal device uses the known RNTI to descramble the detected first DCI.
  • the terminal device knows one or more RNTIs that may be used to scramble the first DCI, and the terminal device uses at least one RNTI of the one or more RNTIs to try to descramble the first DCI. If one or more RNTIs are used, If one RNTI of the multiple RNTIs successfully descrambles the first DCI, the terminal device can obtain the transmission parameters of the channel carrying the first downlink data to determine the resource location of the channel carrying the first downlink data.
  • scrambling the first DCI using the RNTI of the terminal device includes: using the RNTI to scramble the cyclic redundancy check (CRC) of the PDCCH carrying the DCI.
  • CRC cyclic redundancy check
  • Step S303 The network device sends the first downlink data to the terminal device.
  • the network device sends the first downlink data according to the transmission parameter of the first downlink data.
  • the first downlink data is used to indicate the configuration of a new detection space.
  • the first downlink data may be a paging message, a random access response (RAR) or MsgB (message B).
  • the RAR may be a message 2 sent by the network device to the terminal device when the terminal device uses the four-step access method to access the network device.
  • the terminal device sends an access preamble to the network device through a physical random access channel (PRACH), that is, sends a message 1 to the network device;
  • PRACH physical random access channel
  • the network device After receiving the access preamble, the network device sends a random access response RAR to the terminal device, that is, the network device sends a message 2 to the terminal device.
  • the RAR can indicate the resource location of the PUSCH and/or the access received by the network device in the first step.
  • the terminal device sends a message 3 to the network device through the PUSCH according to the PUSCH resource location indicated by the message 2; the fourth step, after receiving the message 3, the network device can send a message 4 to the terminal device.
  • the message 3 may include an RRC setup request (RRCSetupResuest) message or an RRC resume request (RRCResumeResuest) message.
  • message 4 may include one or more of the following information: RRC setup (RRCSetup) message, RRC resume (RRCResume) message, PUSCH acknowledgement/negative acknowledgement in message 3. NACK), and power control commands, etc.
  • the message B may be a message sent by the network device to the terminal device when the terminal device uses the two-step access method to access the network device.
  • the terminal device sends an access preamble to the network device via PRACH, and can send uplink data to the network device via PUSCH, that is, the terminal device sends message A to the network device; in the second step, after receiving message A, The network device sends a message B to the terminal device.
  • the message A may include an RRC setup request (RRCSetupResuest) message or an RRC resume request (RRCResumeResuest) message.
  • message B may include one or more of the following information: RRC setup (RRCSetup) message, RRC resume (RRCResume) message, PUSCH ACK/NACK in message A, and power control commands.
  • the network device can initiate a paging to the terminal device in the public detection space, and the first downlink data can be any kind of DCI that can be carried in the public detection space.
  • the scheduled message for example, a paging message
  • the channel carrying the paging message is the PDSCH.
  • the network device sends the first DCI used to schedule the paging message in the common detection space, where the first DCI is used to indicate the transmission parameter of the PDSCH that carries the paging message.
  • the first DCI is the DCI scrambled by the P-RNTI known by the terminal device.
  • the terminal device detects the first DCI in the common detection space and descrambles the first DCI according to the P-RNTI.
  • the first DCI is The indicated resource location is the resource location of the PDSCH carrying the paging message.
  • the paging message may be first downlink data, and the first downlink data is used to indicate the configuration of the second detection space.
  • the first downlink data may also be RAR or MsgB. The following will separately introduce whether the first downlink data is a paging message, RAR or MsgB.
  • Step S304 The terminal device receives the first downlink data according to the received first DCI.
  • the terminal device receives the first downlink data according to the transmission parameter indicated by the first DCI.
  • the first downlink data is used to indicate the second detection space to the terminal device.
  • the first downlink data may include second configuration information of the second detection space, and the terminal device can determine the second detection space according to the second configuration information.
  • the second configuration information is used to indicate CORESET and SearchSpace. The following will give a detailed introduction to CORESET and SearchSpace.
  • Step S305 The network device sends the second DCI in the second detection space.
  • the network device sends the second DCI in the second detection space indicated by the first downlink data.
  • the second DCI is the DCI scrambled by the RNTI known by the terminal device.
  • the temporary RNTI ie TC-RNTI
  • the terminal device descrambles the second DCI according to the TC-RNTI included in the first downlink data.
  • the second DCI is used to schedule second downlink data.
  • the second DCI carries the transmission parameters of the channel carrying the second downlink data.
  • Step S306 The terminal device receives the second DCI in the second detection space.
  • the terminal device detects the second DCI in the second detection space indicated by the first downlink data received from the network device.
  • the first downlink data includes the TC-RNTI allocated by the network device to the terminal device.
  • the device uses the TC-RNTI to descramble the detected second DCI and obtain the transmission parameters of the channel carrying the second downlink data carried in the second DCI to determine the resource location of the channel carrying the second downlink data.
  • Step S307 The network device sends second downlink data to the terminal device.
  • the network device sends the second downlink data according to the transmission parameter of the second downlink data, and the second downlink data is data specific to the terminal device.
  • Step S308 The terminal device receives second downlink data according to the second DCI.
  • FIG. 4 it is a schematic diagram of an application scenario provided by an embodiment of this application.
  • each large box in FIG. 4 is represented as a time unit, such as a slot.
  • P-DCI DCI scrambled by P-RNTI can be called P-DCI.
  • the P-DCI may be a group common DCI (Group Common DCI), or a specific DCI of the terminal device, used for scheduling paging messages, which are carried in the P-PDSCH.
  • P-DCI corresponds to the first DCI in the method flow shown in FIG. 3.
  • the P-DCI may be received by all terminal devices in the cell, or may be received by a group of terminal devices including the terminal device.
  • P-PDSCH The PDSCH that carries the paging message is scheduled by the P-DCI, and the P-PDSCH may be a common downlink data channel.
  • the paging message contains the identification of one or more terminal devices being paged.
  • the paging message includes data sent by the network device to the paged terminal device.
  • the paging message includes the ID of the paged terminal device and data corresponding to the ID.
  • the P-PDSCH for UE1 in FIG. 4 refers to the P-PDSCH or data of UE1.
  • the P-PDSCH in FIG. 4 may also include P-PDSCH for UE2, which refers to the data of UE2 or P-PDSCH carried in the P-PDSCH, where P-PDSCH for UE2 is not shown in FIG. 4 Shows.
  • P-PDSCH for UE1 carried in the paging message, refers to the data of UE1, which corresponds to the PDSCH carrying the first downlink data in the method flow shown in Figure 3, that is, the first one in this embodiment
  • the downlink data belongs to a paging message, and it is assumed that UE1 is a terminal device in the method flow shown in FIG. 3.
  • SD-PDSCH The PDSCH carrying downlink data is a private downlink data channel used to transmit terminal device-specific data, for example, as the second downlink data in the method flow shown in 3, SD-PDSCH corresponds to The PDSCH carrying the second downlink data in the method flow shown in FIG. 3.
  • network devices and terminal devices mainly perform the following processes:
  • Step 1 The network device sends the P-DCI in the first detection space.
  • the first detection space may belong to a public detection space or a dedicated detection space of the terminal device.
  • the public detection space includes one or more candidate resource positions of the PDCCH, and the terminal device can perform blind detection in the public detection space of the PDCCH to receive scheduling information of the network device.
  • the scheduling information is DCI (ie P-DCI) used to schedule paging messages, and the P-DCI can schedule terminal devices in the RRC idle state or RRC inactive state to receive the paging message, so that the network device can communicate with each other.
  • the terminal device has a data transmission requirement. For example, when the terminal device has a corresponding call or data must be received, the terminal device can be notified to establish an RRC connection with the network device.
  • the resource location of the first detection space is known by the terminal device.
  • the resource location is predefined by the protocol, and may also be configured by the network device.
  • the first detection space is jointly determined by the first CORESET and the first SearchSpace.
  • the process of configuring the resource location of the first detection space for the terminal device by the network device includes: the network device sends the first configuration information to the terminal device, and the first configuration The information is used to indicate the configuration information of the first CORESET and the first SearchSpace.
  • the terminal device determines the resource location of the first detection space according to the configuration information of the first CORESET and the first SearchSpace indicated by the first configuration information.
  • the process of determining the resource location according to the first CORESET and the first SearchSpace will be described in detail below , No key explanation here.
  • Step 2 The terminal device blindly detects the P-DCI in the first detection space.
  • the terminal device determines the resource location of the first detection space based on a protocol predefined or based on the first configuration information sent by the network device.
  • the resource location includes multiple candidate time-frequency resource locations, and the terminal device blindly detects the PDCCH at the multiple candidate time-frequency resource locations, thereby performing blind detection of the P-DCI.
  • Step 3 The network device sends a paging message (ie, P-PDSCH in Figure 4) at the resource location indicated by the P-DCI.
  • a paging message ie, P-PDSCH in Figure 4
  • Step 4 The terminal device receives the P-PDSCH at the resource location indicated by the P-DCI;
  • the P-PDSCH carries the first downlink data sent to the terminal device, for example, the P-PDSCH for UE1, and the P-PDSCH for UE1 is used to indicate the resource location of the second detection space, which is exemplary Specifically, the P-PDSCH for UE1 includes the second configuration information used to determine the resource location of the second detection space; or includes the index value of the second configuration information used to determine the resource location of the second detection space, and the terminal device Determine the second configuration information corresponding to the index value indicated by the P-PDSCH for UE1 according to the preset correspondence between different index values and the second configuration information.
  • Step 5 The terminal device determines the resource location of the second detection space according to the second configuration information.
  • the second configuration information includes CORESET and SearchSpace
  • the terminal device determines the resource location of the second detection space according to the CORESET and SearchSpace indicated by the P-PDSCH for UE1.
  • the configuration information of CORESET includes but is not limited to one or more of the following information:
  • Time domain resource length refers to the number of symbols occupied by the target resource.
  • the value range of this parameter is 1 to 3.
  • the target resource here refers to the resource used by the parameter for configuration.
  • the target resource is the resource of the second detection space.
  • the length of the time domain resource may be pre-configured.
  • the network device can indicate the available resource block group (RBG (RB Group), including 6 consecutive RBs in the frequency domain) in the band used by the terminal device through a bitmap (bitmap).
  • the band used by the terminal device may be the band where the terminal resides, that is, the frequency band where the terminal device can search for the synchronization signal block (synchronization signal block, SSB) broadcast by the network device.
  • the frequency band refers to the frequency domain resources of the cell where the terminal device resides, or the frequency domain resources of the bandwidth part where the terminal device resides.
  • one RBG includes one or more (such as 6) RBs in the frequency domain, and one RB includes 12 subcarriers in the frequency domain.
  • One subcarrier in the frequency domain and one symbol in the time domain correspond to one RE (resource element). , Resource element).
  • RE is a minimum time-frequency resource unit used to map a channel/signal to a time-frequency resource for transmission.
  • each bit in the bitmap is used to indicate whether a corresponding RBG belongs to the target resource.
  • the bitmap corresponds to all RBGs in the bandwidth part where the terminal device resides. For a bit in the bitmap, if The value of this bit is the first value (such as "1"), indicating that the RBG corresponding to the bit belongs to the target resource. If the value of this bit is the second value (such as "0"), it means that the RBG corresponding to the bit does not belong to the target resource.
  • Target resources It should be noted that the above is only an example.
  • the embodiment of the application does not limit the value of the bit and the corresponding rule.
  • the configuration information of SearchSpace includes but is not limited to one or more of the following information:
  • the period and the offset within the period include the monitoring period (Periodicity) and offset (Offset).
  • the monitoring period refers to the number of slots included in a monitoring period.
  • Offset refers to the start slot occupied by the target resource in each monitoring period, and the offset relative to the start slot of the monitoring period.
  • the length of the monitoring time slot can be pre-configured and configured The value of can be 0 or other integers.
  • Monitoring time slot length refers to the length of the slot occupied by the target resource, or the number of slots occupied by the target resource.
  • the length of the listening time slot may be pre-configured.
  • the monitoring symbol position refers to the offset of the start symbol occupied by the target resource relative to the start symbol of the slot in each slot where the target resource is located.
  • the listening symbol position may be pre-configured, and the configured value may be 0 or other integers.
  • the embodiment of the present application refers to the duration included in CORESET as duration1, and refers to the duration included in SearchSpace as duration2.
  • FIG. 6 a schematic diagram of determining the resource location of the second detection space according to the configuration parameters of the second CORESET and the second SearchSpace shown in Table 1 provided in this embodiment of the present application.
  • FIG. 6 does not show each group of RBGs belonging to or not belonging to the target resource in the bitmap under frequencyDomainResources, and the frequency domain resource shown in FIG. 6 is only a group of RBGs belonging to the target resource, and the group of RBGs The time domain resource belonging to the target resource.
  • FIG. 6 shows an RBG corresponding to a bit in the bitmap. For example, if the bit is 1, it means that the RBG belongs to the frequency domain resource of the second detection space (target resource). If the bit is 0 , It means that the RBG does not belong to the frequency domain resource of the second detection space, and so on.
  • the following takes a group of RBGs shown in FIG. 6 and the parameters shown in Table 1 as an example to introduce and explain the process of determining the time domain resources belonging to the target resource in the RBG group:
  • Each of the larger rectangular boxes displayed in the time dimension in Figure 6 represents a slot, and each rectangular box filled with black grids represents the slot belonging to the target resource, where the target resource refers to the resource belonging to the second detection space .
  • Each smaller rectangular box filled with diagonal shading in FIG. 6 represents a symbol belonging to the target resource.
  • each monitoring period includes 10 slots;
  • the Offset of the SearchSpace in Table 1 is 5, which identifies the start slot position occupied by the target resource in each listening period and the start slot of the listening period in which the offset is 5, that is, the start slot occupied by the target resource in Figure 6
  • the slot (the rectangular box with black grid pattern) is the sixth slot of each monitoring period.
  • the duration2 of SearchSpace in Table 1 is 3, which means that the slot length of the target resource in each listening period is 3, that is, the target resource contains 3 consecutive slots, and the target resource is determined by combining the position of the starting slot of the target resource determined above
  • the slot corresponding to Figure 6, the target resource is the 5th to 8th slot (that is, the black plaid rectangular frame) of each monitoring period.
  • the monitoringSymbolsWithinSlot of SearchSpace in Table 1 is 2, which means that the offset between the start symbol of the slot where each target resource is located and the start symbol of the slot is 2 symbols, that is, the slot where a target resource is located in Figure 6
  • the start symbol belonging to the target resource in the slot is the third symbol
  • the duration1 of CORESET in Table 1 is 2, which means that the number of symbols belonging to the target resource in the slot where the target resource is located is 2.
  • the above-mentioned parameters jointly determine the resource location of the second detection space, that is, the location of one or more candidate time-frequency resources for blind detection of DCI by the terminal device.
  • the time-frequency resource represented by the black checkered rectangle in Figure 6 is the blind detection DCI.
  • the time-frequency resource represented by the diagonally shaded part in FIG. 6 is the candidate time-frequency resource position of the blind detection DCI, and the time-frequency resource position of the blind detection DCI in each black checkered rectangular block All so.
  • the network device may send the PDCCH to the terminal device at one of the candidate time-frequency resource positions, and the terminal may blindly detect the P-DCI at the one or more candidate time-frequency resource positions.
  • CORESET and SearchSpace Some or all of the configuration parameters in CORESET and SearchSpace may also be predefined by the protocol.
  • the configuration parameters included in CORESET are predetermined by the protocol, and the configuration parameters included in SearchSpace are configured by the network device for the terminal device.
  • the above describes the specific steps for determining the resource location of the second detection space according to the configuration parameters of the second CORESET and the second SearchSpace.
  • the network device when the network device configures the resource location of the second detection space for the terminal device, the network device can pass The first downlink data is configured.
  • the following uses the first downlink data as an example to illustrate the method of indicating the resource location of the second detection space through the first downlink data:
  • the first downlink data carries the configuration parameters of the second CORESET and/or the second SearchSpace used to determine the resource location of the second detection space.
  • the values of some or all of the configuration parameters included in the second CORESET and/or the second SearchSpace are indicated through different fields of the first downlink data. That is, the first downlink data includes one or more of frequencyDomainResources, duration1, Period, duration2, and monitoringSymbolsWithinSlot.
  • the first downlink data includes one or more of frequencyDomainResources, duration1, Period, duration2, and monitoringSymbolsWithinSlot.
  • parameters not included in the first downlink data they may be predefined by the protocol, or configured by the network equipment through other signaling, for example, RRC signaling such as RRC release message or RRC suspension message. This is not limited.
  • the first downlink data carries the index value corresponding to the combination of the second CORESET and the second SearchSpace used to determine the resource location of the second detection space.
  • the embodiment of the present application may preset the first correspondence between different combinations of the configuration information of the second CORESET and the second SearchSpace and different index values, as shown in Table 2 below, which is provided in this embodiment of the present application.
  • Table 2 A specific example of the first correspondence that may be applicable:
  • the first downlink data sent by the network device carries the index value corresponding to the combination of the second CORESET and the configuration information of the second SearchSpace.
  • the terminal device After receiving the first downlink data: the terminal device matches the configuration information of the second CORESET and the second SearchSpace corresponding to the index value carried in the received first downlink data based on the same first correspondence as the network device.
  • the index value carried by the first downlink data is 1, and the terminal device is based on the first correspondence shown in Table 2 and the index value 1 carried by the received first downlink data.
  • the first correspondence does not include the value of the configuration parameter.
  • the value of the configuration parameter can be pre-defined based on the protocol, or configured by other signaling such as RRC signaling, or configured by the first downlink data That is, the value of the configuration parameter is not determined by the index value carried by the first downlink data, but the specific value of the configuration parameter is carried by the first downlink data. That is to say, the first downlink data may carry the index value, and may also carry the value of some or all of the configuration parameters included in the second CORESET and/or the second SearchSpace.
  • the embodiment of the present application may include a combination scheme including: the first downlink data indicates the parameter value of some or all of the configuration parameters, the first downlink data indicates the index value of some or all of the configuration parameters, and/or Pre-defined (pre-configured) some or all of the parameters.
  • the first downlink data carries the index value corresponding to the combination of the configuration information of the second CORESET and the second SearchSpace, the index value is 2, and the first downlink data also carries the value of Period.
  • the Offset is pre-defined based on the protocol.
  • the terminal device matches the configuration information of the second CORESET and the second SearchSpace corresponding to index value 2 based on Table 2, that is, frequencyDomainResources is 11111011101111, duration1 is 2, duration2 is 10, monitoringSymbolsWithinSlot is 0, and carried according to the first downlink data
  • the value of Periodicity indicates the value of Periodicity is determined, and the value of Offset is determined based on the agreement's definition of Offset.
  • the first correspondence relationship may be predefined by the protocol, or configured by the network device for the terminal, for example, configured through RRC signaling, such as configured through an RRC release message or an RRC suspension message.
  • RRC signaling such as configured through an RRC release message or an RRC suspension message.
  • the terminal device determines one or more candidate time-frequency resource positions in the second detection space according to the first downlink data, and blindly detects the second DCI at the one or more candidate time-frequency resource positions.
  • the embodiment of the present application may also configure the effective times and/or effective time for the second detection space.
  • the effective time is used to indicate the effective time period of the resource location of the second detection space determined by the configuration information of the second CORESET and the second SearchSpace from the designated start time to the effective time.
  • the valid time is 100ms
  • the designated start time is the last time slot that carries the valid time information. Within 100ms after the designated start time, it is the time for the configuration corresponding to the valid time to take effect. After 100ms is reached
  • the configuration of the second detection space is invalid, that is, the second detection space indicated by the first downlink data is invalid. It should be noted that the foregoing is only an example, and this application does not limit the specified start time. For example, it may also be the last time slot where the first downlink data is used to indicate the resource location of the second detection space.
  • Valid times used to indicate the number of times the terminal device detects the second DCI in the second detection space, or used to indicate the number of times the terminal device detects the second DCI in the second detection space, or used to instruct the terminal device to receive SD- PDSCH times.
  • the terminal device is determining the second DCI according to the first downlink data. After the detection space, the second detection space is detected. As shown in Figure 4, no matter whether the second DCI is detected or not, after the terminal device detects the second DCI in the second detection space 3 times, the terminal device determines the first 2. The resource location in the downlink space is invalid.
  • the terminal device detects the second DCI only twice, and the resource location of the second detection space is still valid. That is, the terminal device may also receive a second DCI at the determined resource location of the second detection space.
  • the resource location of the second detection space determined by the terminal device becomes invalid.
  • Step 6 The network device sends a second DCI in the second detection space, where the second DCI is used to schedule second downlink data.
  • the second DCI carries the transmission parameters of the channel carrying the second downlink data, and the transmission parameters are used to determine the transmission parameters of the channel.
  • Step 7 The terminal device detects the second DCI in the second detection space.
  • the terminal device performs blind detection on each candidate time-frequency resource position in the second detection space determined in step 5 above to obtain the second DCI.
  • the second DCI may be DCI scrambled by any RNTI known by the terminal device.
  • any RNTI known by the terminal device will be referred to as X-RNTI below.
  • X-RNTI can be any of the following:
  • the group common RNTI refers to the RNTI shared by multiple terminals, for example, the RNTI of one or more terminal equipment groups, that is, the one or more terminal equipment groups can use the RNTI (such as P-RNTI), and descrambling DCI.
  • the dedicated RNTI of a terminal device refers to a dedicated RNTI configured for a terminal device, that is, only one terminal device can use the dedicated RNTI to descramble DCI, such as C-RNTI, TC-RNTI, or I-RNTI.
  • X-RNTI is any type of RNTI known to terminal equipment, which can be pre-defined based on the protocol, or configured by the network equipment for the terminal equipment.
  • RNTI is any type of RNTI known to terminal equipment, which can be pre-defined based on the protocol, or configured by the network equipment for the terminal equipment.
  • network equipment that configure the RNTI for the terminal equipment. The way:
  • Configuration method 1 The network equipment is configured through high-level signaling.
  • the network equipment configures the RNTI for the terminal equipment through high-level signaling such as RRC signaling.
  • the specific RRC signaling may be an RRC release message or an RRC suspension message.
  • Configuration method 2 The network device is configured through the first downlink data.
  • the first download data sent by the network device such as the P-PDSCH in FIG. 4, carries the RNTI allocated for the terminal device.
  • Configuration method 3 The network device is configured through system messages.
  • the network device carries the RNTI configured for the terminal device in a system message and broadcasts it to multiple terminal devices.
  • the group common RNTI can be configured through any one of the above-mentioned configuration methods 1 to 3.
  • the dedicated RNTI of the terminal device can be configured through the above configuration method 1 or configuration method 2.
  • the first downlink data carrying the dedicated RNTI of the terminal device may be terminal device specific data, or The first downlink data is carried in the dedicated detection space of the terminal device.
  • Step 8 The network device sends second downlink data according to the transmission parameters of the second downlink data, where the second downlink data is data specific to the terminal device.
  • the second downlink data is carried on the SD-PDSCH.
  • Step 9 The terminal device receives the second downlink data according to the second DCI.
  • the above process includes the process of the network device paging the terminal device in the first detection space.
  • the embodiment of this application does not limit the resource space for initiating paging.
  • the first detection space may be a public detection space or a dedicated terminal device. Detection space.
  • the public detection space and the dedicated detection space of the terminal equipment can be implemented in the same process.
  • the public detection space can be a resource space for detection by any terminal device.
  • the resources of the space The locations are the same, but the resource locations of the dedicated detection space of different terminal devices or different terminal device groups are different.
  • the dedicated detection space of a terminal device is the dedicated resource space of the terminal device or a group of terminal device groups. Therefore, when the technical solution of the present application is implemented in the dedicated detection space of the terminal device, the data transmission security is further improved on the basis of the flexible scheduling of the data of the terminal device in the RRC idle state or the RRC inactive state.
  • the network device that executes the above method process may not be the network device of the cell where the terminal device in the RRC disconnected state is located at the time.
  • multiple network devices may perform the above process, for example, determine The position when the terminal device is converted from the RRC connected state to the RRC non-connected state is executed by some or all of the network devices within an area of a preset distance from the position, as executed by the network device in Figure 3 or Embodiment 1 above Method flow.
  • the network side determines the cell where the terminal device is located, and the network device of the cell executes the method procedure executed by the network device in FIG. 3 or Embodiment 1.
  • the network device when the network device is a base station, the network device implementing the technical solution of the present application may be the serving base station of the cell where the terminal device is located.
  • the core network when determining the cell where the terminal device in the RRC non-connected state is located, if the terminal device is in the RRC inactive state, as mentioned above, because the core network knows which network device the terminal device is in, Or within the management range, it is known which base station or base stations can be used to locate or find the terminal device, so the core network device can also determine the cell where the terminal device is located. If the terminal device is in the RRC idle state or the RRC inactive state, multiple network devices can jointly initiate paging to the terminal device, and determine the cell where the terminal device is located according to the response message of the terminal device, thereby determining the The cell where the terminal device is located.
  • the step of jointly determining the cell where the terminal device is located by multiple network devices may include:
  • Step a The network side (including one or more network devices) initiates paging to the terminal device, for example, multiple network devices send paging messages to the terminal device, or through other RRC idle state or RRC inactive state
  • the downlink transmission mode sends a downlink message to the terminal device.
  • the network side configures a dedicated detection space for the terminal in the RRC idle state or the RRC inactive state to send a downlink message exclusive to the terminal device.
  • Step b The terminal device receives a paging or other form of downlink message from the network side, and sends uplink feedback information to the network side to notify the network side of the cell where the terminal device is located.
  • the uplink feedback information may be a preamble or PUSCH.
  • the preamble can be exclusive to the terminal device or sent on the time-frequency resource exclusive to the terminal device, so that the network side can be based on the detected preamble or the detected preamble It is determined that the detected preamble is sent by the terminal device to determine the cell where the terminal device is located; for example, if it is PUSCH, the time-frequency resource of the PUSCH may be exclusive to the terminal device , Or the PUSCH carries the ID of the terminal device, so the network side can determine the cell where the terminal device is located according to the ID in the received PUSCH or the time-frequency resource location of the received PUSCH.
  • Step c The network side receives the uplink feedback information of the terminal device to determine the cell where the terminal device is located, and the network device of the cell where the terminal device is located executes the method flow performed by the network device in FIG. 3 or Embodiment 1.
  • step c if the uplink information received by the network side device from the terminal device is the preamble, for the network side device, it can be considered that the terminal device initiates a random access process.
  • the terminal device first sends a preamble to the network device, and then the network device may send a random access response (RAR) to the terminal device.
  • RAR random access response
  • the random access process includes four-step random access (4-step RACH) and two-step random access (2-step RACH).
  • the response information sent by the network device to the terminal device in the second step can be called RAR (or Msg2) in 4-step RACH, and MsgB in 2-step RACH. It should be understood that RAR may also be included in MsgB.
  • the embodiments of the present application provide another technical solution for the above-mentioned scenario, that is, for the preamble received when the terminal device is paged on the network side, the network device indicates the resource location of the second detection space through MsgB or RAR, as follows A specific description will be given through Example 2.
  • RAR or MsgB is used to indicate the transmission parameters of the second downlink data
  • FIG. 7 it is a schematic diagram of a scenario corresponding to the above method flow in FIG. 3 provided by this embodiment of the application.
  • each large box in FIG. 7 is represented as a time unit (such as a slot).
  • the RA-RNTI scrambled DCI in FIG. 7 corresponds to the first DCI in the method flow shown in FIG. 3;
  • the bearer RAR or MsgB in FIG. 7 corresponds to the first downlink data that carries the method flow shown in FIG. 3;
  • the SD-PDSCH is the PDSCH that carries the second downlink data.
  • the network device configures a first detection space for the terminal device before initiating paging, and the first detection space may be located in a public detection space or a dedicated detection space of the terminal device.
  • the first detection space may be a detection space in the PDCCH where the terminal device receives control information of RAR or MsgB during the random access process.
  • the network device sends the first resource configuration information of the first detection space to the terminal device and the terminal device determines the resource location of the first detection space according to the first resource configuration information
  • the terminal device determines the resource location of the first detection space according to the first resource configuration information
  • network devices and terminal devices mainly perform the following processes:
  • Step 1 The network device sends the RA-RNTI scrambled DCI in the first detection space, and the DCI is used to schedule RAR or MsgB.
  • RA-RNTI For RA-RNTI, it should be understood that network equipment and terminal equipment can calculate the RA-RNTI corresponding to the terminal equipment according to the preamble and transmission time sent by the terminal equipment, and the calculation results of the network equipment and the terminal equipment are the same, that is, the network equipment
  • the RA-RNTI calculated by the device is the same as the RA-RNTI calculated by the terminal device. Therefore, the RA-RNTI can be determined by the terminal device itself through calculation in addition to being predefined by the protocol or configured by the network device.
  • Step 2 The terminal device detects the RA-RNTI scrambled DCI in the first detection space.
  • Step 3 The network device sends RAR or MsgB at the resource location indicated by the DCI scrambled by the RA-RNTI, where the RAR or MsgB is used to indicate the resource location of the second detection space.
  • the RAR or MsgB may also carry the RNTI allocated to the terminal device, for example, TC-RNTI, which can be used to scramble the second DCI, It will be introduced below.
  • whether the network device sends RAR or MsgB can be determined according to the random access process initiated by the terminal device. For example, if the terminal device initiates a 4-Step RACH, the network device can send RAR to the terminal device. If the terminal device initiates a 4-Step RACH, the network device can send RAR to the terminal device. If it is a 2-Step RACH, the network device can send MsgB to the terminal device.
  • Step 4 The terminal device receives the RAR or MsgB according to the resource location indicated by the DCI descrambled using the RA-RNTI, and determines the resource location of the second detection space according to the RAR or MsgB.
  • the terminal device determines the resource location of the second detection space according to the RAR or MsgB.
  • the effective number or effective time of the resource location in the second detection space indicated by the RAR or MsgB can also be configured.
  • Step 5 The network device sends a second DCI in the second detection space indicated by the RAR or MsgB, and the second DCI is used to schedule second downlink data.
  • the second DCI can be scrambled by X-RNTI
  • the X-RNTI can be any RNTI known to the terminal equipment described above. Please refer to the above related description of X-RNTI. The description will not be repeated here.
  • the X-RNTI may also be the TC-RNTI allocated to the terminal equipment by the network equipment carried in the RAR or MsgB above. In an optional implementation manner, when the TC-RNTI is carried in the RAR or MsgB, it may mean that the network device instructs the terminal device to use the TC-RNTI to descramble the second DCI.
  • the second DCI carries transmission parameters of the second downlink data, and is used to determine the resource location of the SD-PDSCH that carries the second downlink data.
  • Step 6 The terminal device detects the second DCI in the second detection space, and determines the transmission parameters of the SD-PDSCH carrying the second downlink data according to the second DCI.
  • Step 7 The network device sends the SD-PDSCH carrying second downlink data according to the transmission parameters of the SD-PDSCH, and the second downlink data is data specific to the terminal device.
  • Step 8 The terminal device receives the SD-PDSCH carrying the second downlink data according to the transmission parameter indicated by the second DCI.
  • the network device sends the second downlink data in step 7 and the terminal device receives the second downlink data through the second DCI in step 8, please refer to the relevant description of the foregoing embodiment, which will not be repeated here.
  • the network device when the terminal device is in the RRC disconnected state, the network device indicates the second detection space of the second DCI through a paging message or MsgB or RAR, and schedules the second downlink data through the second DCI, so as to be flexible through the second DCI Scheduling the second downlink data.
  • the new second downlink data transmission parameters enable the downlink data transmission parameters of the terminal equipment in the RRC disconnected state to be flexibly configured according to needs.
  • the security of data transmission can also be improved on the basis of flexible scheduling of the downlink data.
  • the embodiment of the present application also proposes a second data transmission method, which indicates the transmission parameters of the second downlink data through the first downlink data. Compared with the method shown in FIG. 3, on the basis of realizing flexible scheduling of the downlink data, it further reduces Signaling overhead reduces time delay.
  • FIG. 8 is a flowchart of another data transmission method provided in this embodiment of the application. Similarly, this method can be applied to the communication system shown in FIG. 2.
  • the method is executed by network equipment and terminal equipment as an example. The method includes the following steps:
  • Step S801 The network device sends a first DCI in the first detection space, and the first DCI is used to schedule first downlink data; specifically, the first downlink data may be a paging message, RAR or MsgB, and the first
  • the detection space may be a public detection space or a dedicated detection space of the terminal device, which is not limited in the embodiment of the present application.
  • the first DCI is used to indicate the transmission parameters of the channel used to carry the first downlink data.
  • Step S802 The terminal device receives the first DCI in the first detection space, and the terminal device may be in an RRC non-connected state;
  • the terminal device knows the resource location of the first detection space.
  • the configuration of the first detection space please refer to the method flow in FIG. Related descriptions will not be repeated here.
  • Step S803 The network device sends the first downlink data according to the transmission parameter of the first downlink data, where the first downlink data is used to indicate the transmission parameter of the second downlink data.
  • the first downlink data is used to indicate the transmission parameters of the channel used to carry the second downlink data.
  • the first downlink data may be a paging message, RAR or MsgB.
  • Step S804 The terminal device receives the first downlink data according to the first DCI.
  • Step S805 The network device sends second downlink data according to the transmission parameters of the second downlink data, where the second downlink data is data specific to the terminal device.
  • the network device may send a data channel according to the transmission parameter indicated by the first downlink data, and the data channel carries the second downlink data.
  • Step S806 The terminal device receives the second downlink data according to the transmission parameter indicated by the first downlink data.
  • the terminal device receives the data channel according to the transmission parameter indicated by the first downlink data, thereby receiving the second downlink data carried on the data channel.
  • FIG. 9a it is a schematic diagram of a scenario for the method flow shown in FIG. 8 provided by an embodiment of this application.
  • each large box in FIG. 9a is represented as a time unit (such as a slot).
  • the P-DCI in Fig. 9a corresponds to the first DCI of the method flow shown in Fig. 8;
  • the P-PDSCH in Fig. 9a is the PDSCH carrying the paging message, and the P-PDSCH included in the P-PDSCH for UE1 corresponds to the bearer
  • the first downlink data of the method flow shown in FIG. 8, that is, the first downlink data in this embodiment belongs to a paging message, and UE1 corresponds to the terminal equipment of the method flow shown in FIG. 8;
  • SD-PDSCH is The PDSCH that carries the second downlink data.
  • Embodiment 3 is similar to Embodiment 1.
  • the terminal device configures a first detection space.
  • the first detection space may be a public detection space or a dedicated detection space for the terminal device.
  • the network device sends the first resource configuration information of the first detection space to the terminal device and the terminal device determines the resource location of the first detection space according to the first resource configuration information, please refer to the specific description of the foregoing embodiment 1. Go into details again.
  • network devices and terminal devices mainly perform the following steps:
  • Step 1 The network device sends the P-DCI in the first detection space, and the P-DCI is used to schedule the P-PDSCH.
  • the P-DCI may be the DCI scrambled by the P-RNTI.
  • P-RNTI the DCI scrambled by the P-RNTI.
  • Step 2 The terminal device detects the P-DCI in the first detection space.
  • Step 3 The network device sends the P-PDSCH according to the transmission parameters of the P-PDSCH.
  • the P-PDSCH contains the first downlink data, namely P-PDSCH for UE1.
  • the first downlink data is used to indicate the transmission parameters of the SD-PDSCH. .
  • Step 4 The terminal device receives the P-PDSCH according to the transmission parameters indicated by the P-DCI, and determines the transmission parameters of the SD-PDSCH according to the first downlink data in the P-PDSCH, that is, the P-PDSCH for UE1.
  • the first downlink data carries transmission parameters of the second downlink data, and is used to determine the resource location of the SD-PDSCH that carries the second downlink data.
  • the transmission parameters of the SD-PDSCH according to the P-PDSCH for UE1 please refer to the specific description of the indication method 1 or the indication method 2 in the foregoing embodiment 1, and the description will not be repeated here.
  • the first downlink data may be used to indicate repetitive information of the second downlink data.
  • the first downlink data further includes some or all of the following information:
  • the repetition period of SD-PDSCH the number of repetitions of SD-PDSCH, the valid time of SD-PDSCH, or the number of valid SD-PDSCH.
  • the repetition period can be the interval time between the resource positions of the SD-PDSCH.
  • the time interval between the SD-PDSCH that can receive the second downlink data is 10 slots, where the data carried on each SD-PDSCH It can be the same or different.
  • the number of repetitions can be the number of SD-PDSCH received by the terminal device, or the number of times the SD-PDSCH resource location takes effect.
  • the repetition period is 10 slots, regardless of whether the terminal device receives the SD-PDSCH on the resource location Data, after the SD-PDSCH repeats three times, the configuration becomes invalid, that is, the resource position of the SD-PDSCH determined according to the first downlink data and the resource position of the repeated SD-PDSCH thereafter become invalid.
  • Step 5 The network device sends SD-PDSCH according to the transmission parameters of the SD-PDSCH, and the SD-PDSCH is data specific to the terminal device.
  • Step 6 The terminal device receives the SD-PDSCH according to the transmission parameters indicated by the P-PDSCH for UE1.
  • the foregoing P-PDSCH for UE1 is a paging message, that is, the foregoing embodiment 3 is an implementation manner for indicating the transmission parameters of the second downlink data through a paging message, and another implementation manner is to indicate the second downlink through RAR or MsgB.
  • the transmission parameters of the data are briefly introduced in Embodiment 4 below.
  • each large box in FIG. 9b is represented as a time unit (such as a slot).
  • the DCI scrambled by RA-RNTI in FIG. 9b corresponds to the first DCI in the method flow shown in FIG. 8;
  • RAR or MsgB in FIG. 9b corresponds to the first downlink data in the method flow shown in FIG. 8;
  • SD- The PDSCH is the PDSCH that carries the second downlink data.
  • the fourth embodiment is similar to the first to third embodiments.
  • the network device configures a first detection space for the terminal device.
  • the first detection space may be a public detection space or a dedicated detection space for the terminal device.
  • the first detection space may be a detection space in the PDCCH where the terminal device receives control information of RAR or MsgB during the random access process.
  • the network device sends the first resource configuration information of the first detection space to the terminal device and the terminal device determines the resource location of the first detection space according to the first resource configuration information, please refer to the detailed description of the foregoing embodiments 1 to 3. I won't repeat it here.
  • network devices and terminal devices mainly perform the following processes:
  • Step 1 The network device sends the RA-RNTI scrambled DCI in the first detection space, and the DCI is used to schedule RAR or MsgB.
  • the DCI is used to schedule RAR or MsgB.
  • Step 2 The terminal device detects the RA-RNTI scrambled DCI in the first detection space.
  • Step 3 The network device sends RAR or MsgB according to the transmission parameters of RAR or MsgB, and the RAR or MsgB is used to indicate the transmission parameters of SD-PDSCH.
  • the network device sends the downlink data channel to the terminal device according to the transmission parameters of the downlink data channel, and the downlink data channel is used to carry RAR or MsgB.
  • Step 4 The terminal device receives the RAR or MsgB according to the transmission parameters indicated by the DCI scrambled by the RA-RNTI, and determines the transmission parameters of the SD-PDSCH according to the RAR or MsgB.
  • the terminal device determines the transmission parameters of the SD-PDSCH according to the RAR or MsgB, please refer to the relevant description of the foregoing Embodiments 1 to 3, and the description will not be repeated here.
  • Step 5 The network device sends the SD-PDSCH according to the transmission parameters of the SD-PDSCH, and the second downlink data carried by the SD-PDSCH is data specific to the terminal device.
  • Step 6 The terminal device receives the SD-PDSCH according to the transmission parameters indicated by the RAR or MsgB.
  • Embodiment 4 it can also be configured to indicate SD-PDSCH transmission parameters or SD-PDSCH repetition information through RAR or MsgB.
  • SD-PDSCH transmission parameters or SD-PDSCH repetition information through RAR or MsgB.
  • the transmission parameter of the second downlink data can be directly indicated through the P-PDSCH, thereby reducing the signaling overhead for indicating the transmission parameter of the second downlink data, and shortening the time delay for receiving the second downlink data.
  • the embodiment of the present application provides a third data transmission method. Please refer to FIG. 10 for a schematic flowchart of this method. Similarly, the method can be applied to the communication system shown in FIG. 2. For ease of introduction, in the following, the method executed by the network device and the terminal device is taken as an example. The method includes the following steps:
  • Step S1001 The network device sends a first DCI in the first detection space, where the first DCI is used for scheduling common data and second downlink data.
  • the first detection space may be a public detection space or a dedicated detection space of the terminal device, which is not limited in the embodiment of the present application.
  • the network device sends a first DCI to the terminal device, where the first DCI is used to indicate a transmission parameter of a data channel, and the data channel is used to carry common data and second downlink data.
  • Step S1002 The terminal device receives the first DCI in the first detection space, and the terminal device may be in an RRC non-connected state.
  • the terminal device knows the resource location of the first detection space.
  • the configuration of the first detection space please refer to the method flow in FIG. 3 or in the first and second embodiments. Related descriptions will not be repeated here.
  • Step S1003 The network device sends public data and second downlink data to the terminal device, where the second downlink data is data specific to the terminal device.
  • the network device sends a downlink data channel to the terminal device according to the transmission parameters of the data channel, and the downlink data channel is used to carry the public data and the second downlink data.
  • Step S1004 The terminal device receives public data and second downlink data according to the first DCI.
  • FIG. 11 a schematic diagram of a scenario of the method flow shown in FIG. 10 provided by an embodiment of this application.
  • the rectangular box can be represented as 1 time unit (such as slot).
  • P-DCI is the DCI used to schedule common data and second downlink data.
  • the entire resource space scheduled by P-DCI can be divided into at least two parts, as shown in Figure 11, the entire resource space can be divided into P-PDSCH part1 and P -PDSCH part2 two parts.
  • One part is used to carry public data of the terminal device, and the remaining part is used to carry at least one terminal device-specific data.
  • the public data in the embodiment of the present application may be carried in the P-PDSCH part1, and the public data includes a paging message.
  • At least one terminal device-specific data bearer and P-PDSCH part2, that is, P-PDSCH part2 can be subdivided into multiple resource spaces belonging to different terminal devices, used to carry the terminal device-specific data, corresponding to Figure 10.
  • the P-PDSCH part1 includes the paging message of the UE1, and the P-PDSCH part2 includes the second downlink data of the UE1.
  • the paging message of UE1 contains data used to indicate the parameters of the second downlink data of UE1, as shown in P-PDSCH for UE1 in Figure 11.
  • UE1 can follow the second downlink data indicated by P-PDSCH for UE1 To determine the resource location of the second downlink data in the P-PDSCH part2.
  • the embodiment of the present application may use a common coding method to encode the message carried by the P-PDSCH part1.
  • the message carried by the P-PSDCH part1 can be received and demodulated by all terminal devices.
  • the P-PDSCH part2 can be divided into the resource space of at least one terminal device, that is, it can carry data specific to at least one terminal device. For example, as shown in FIG. 11, for a terminal device, the second downlink data of the terminal device occupies a part of the P-PDSCH part2, and the remaining part of the P-PDSCH part2 can carry specific data of other terminal devices.
  • Part or all of the messages of different terminal devices carried on the P-PDSCH part2 can be scrambled or encrypted using the proprietary information of the corresponding terminal device, and the data that is scrambled or encrypted using the proprietary information of the terminal device is the terminal device.
  • the specific data that is, the specific data such as the second downlink data can only be descrambled by the terminal device or the terminal device group in which the terminal device is located. Therefore, this method improves the security of data transmission.
  • the P-DCI (first DCI) schedules the public data of the P-PDSCH part1 and the private data of the terminal equipment in the P-PDSCH part2.
  • Scheduling method 1 Simultaneous scheduling of public data and proprietary data of terminal equipment through P-DCI;
  • the resource space indicated by the P-DCI is the sum of the P-PSDCH part1 and the P-PSDCH part2. That is, P-DCI schedules public data (P-PSDCH part1) and terminal equipment's proprietary data (P-PSDCH part2) at the same time, or it can be understood that P-DCI schedules an overall resource space.
  • P-PSDCH part1 and P-PSDCH part2 it is possible to indicate the specific resource space of P-PSDCH part1 and the specific resource space of P-PSDCH part2 by indicating the proportion of P-PSDCH part1 and P-PSDCH part2 occupying the overall resource space, P-PSDCH part1 and P-PSDCH part1 and P-PSDCH part1.
  • PSDCH part2 There are many ways to divide PSDCH part2, the following are a few:
  • the protocol predefines the proportion n/m of the time domain and/or frequency domain that the P-PSDCH part1 occupies the overall resource space indicated by the P-DCI.
  • n and m are non-zero positive integers, and n is not greater than m, for example, n/m is 1/2, 1/3, or 2/5.
  • the sum of the proportions of P-PSDCH part1 and P-PSDCH part2 occupying the overall resource space is 1.
  • the proportion of the overall resource space occupied by any one of the transmission blocks can be used to determine that the other transmission block occupies the overall resource space For example, if the protocol pre-defined P-PSDCH part1 occupies 1/3 of the overall resource space time domain and frequency domain, it can be determined that P-PSDCH part2 occupies 2/3 of the overall resource space time domain and frequency domain.
  • the time domain position of P-PSDCH part1 is before the time domain position of P-PSDCH part2, and the frequency domain position of P-PSDCH part1 is before the frequency domain position of P-PSDCH part2, or a ratio predefined by the protocol n/ m can also carry symbols.
  • the ratio value is positive, it means that the time domain position of P-PSDCH part1 is before the time domain position of P-PSDCH part2.
  • the ratio value is negative, it means that the time domain position of P-PSDCH part1 is at P-PSDCH part2.
  • the ratio value is predefined by the protocol, and the P-DCI carries at least one identification bit indicating the time domain position relationship and/or the frequency domain position relationship of the two, which is not limited in the embodiment of the present application.
  • the terminal device can determine that the time domain space of P-PSDCH part1 occupies The last 1/3 of the entire time domain space, the frequency domain space of P-PSDCH part1 occupies the last 1/4 of the entire frequency domain space, and the remaining space is the resource space of P-PSDCH part2, that is, the time domain space of P-PSDCH part2 Occupies the first 2/3 of the entire time domain space, and the frequency domain space of P-PSDCH part2 occupies the first 3/4 of the entire frequency domain space.
  • Division 2 Configure the division of P-PSDCH part1 and P-PSDCH part2 by system information or high-level signaling, or configure the position of P-PSDCH part1 and/or P-PSDCH part2 in the resource space scheduled by P-DCI .
  • the configuration is broadcast to all terminals in the cell in the system information SIB1; or configured by the network equipment through RRC signaling, such as carrying the above-mentioned ratio value in the RRC release message or the RRC suspension message and configure it to the terminal equipment.
  • the first DCI (such as P-DCI or RA-RNTI scrambled DCI) configures P-PSDCH part1 and P-PSDCH part2, or configures P-PSDCH part1 and/or P-PSDCH part2 The position in the resource space scheduled by P-DCI.
  • the ratio value can be indicated by a partial field of the DCI, for example, the field contains 4 bits, the value of n is indicated by the bits on two consecutive bits, and the value of n is indicated by the remaining two consecutive bits.
  • the above bit indicates the value of m, and the terminal device uses this to determine the ratio value n/m.
  • the terminal device After receiving the P-DCI: the terminal device is based on the second Correspondence, determine the ratio value corresponding to the index value carried in the P-DCI received from the network device.
  • this field may be an existing field in DCI or an extended field in DCI.
  • the DCI includes several specific formats, such as format 1_0, 0_0, etc.
  • the functions implemented by the DCI of different formats are different, and the content included is also different.
  • the DCI for scheduling PDSCH is used to indicate information such as the transport block size, coding mechanism, modulation and coding mechanism, redundancy version, and/or resource location (time domain and/or frequency domain resource location) of the scheduled PDSCH.
  • the DCI for scheduling the PUSCH includes an MSC index field, which is used to indicate the modulation order and code rate of the PUSCH.
  • the network device can instruct the terminal device to perform a new interpretation of the existing field of the DCI through an additional signaling.
  • the terminal device when the ratio value is indicated by the MCS index value of the DCI of the scheduling PUSCH, the terminal device is triggered to determine the modulation order and code rate according to the MCS index value, and at the same time, it may also be based on the MCS index value and the preset second correspondence relationship. Determine the scale value.
  • the second corresponding relationship may be predefined by a protocol or configured by the network device for the terminal device through high-level signaling.
  • the high-level signaling is an RRC release message or an RRC suspension message.
  • Scheduling method 2 The public data and the private data of the terminal device are respectively scheduled through the first DCI.
  • different fields of the first DCI may respectively indicate the transmission parameters of the channel carrying the common data and the transmission parameters of the channel carrying the dedicated data of the terminal device.
  • This field can be an existing field or an extended field of the first DCI.
  • the first partial field of the first DCI may be used to indicate the transmission parameters of the P-PSDCH part1
  • the second partial field of the first DCI may be used to indicate the transmission parameters of the P-PSDCH part2.
  • the second downlink data is carried in the P-PSDCH part2.
  • the second downlink data can be carried in the P-PSDCH part2.
  • -PSDCH part1 can also be carried on P-PSDCH part2.
  • the P-PSDCH part2 can also be divided into dedicated resource spaces corresponding to multiple terminal devices.
  • the network device sends second downlink data to the terminal device, it can also indicate that the second downlink data is located in the P-PSDCH part2
  • Method 1 Instructed by the first DCI
  • the first DCI is P-DCI
  • the P-DCI indicates the transmission parameters of the second downlink data.
  • the P-DCI may carry the transmission parameters of the second downlink data, for example, the second downlink data.
  • the time domain resource information and/or frequency domain resource information is used to determine the resource location of the second downlink data.
  • the public data indication scheduled by the first DCI for example, taking FIG. 11 as an example, the P-PSDCH for UE1 indication included in the public data.
  • the P-PSDCH for UE1 indicates the transmission parameters of the second downlink data.
  • the P-PSDCH for UE1 includes the time domain resource information and/or frequency domain resource information of the second downlink data, and the terminal device may use the P-PSDCH for UE1 to include the time domain resource information and/or time domain resource information of the second downlink data.
  • the frequency domain resource information determines the resource location of the second downlink data.
  • the P-PSDCH for UE1 includes time domain resource information and frequency domain resource information of the second downlink data, and the terminal device may determine the time domain resource location according to the time domain resource information, and determine the frequency domain resource location according to the frequency domain resource information.
  • the time domain resource or frequency domain resource of the second downlink data may also be predefined through the protocol, and the terminal device combines the protocol reservation and the P-PSDCH for UE1 to determine the resource location of the second downlink data.
  • other signaling may be used to indicate the time domain resource or frequency domain resource of the second downlink data, and the terminal device may determine the resource location of the second downlink data in combination with the indication of the other signaling and the P-PSDCH for UE1.
  • the P-PSDCH for UE1 includes time domain resource information and frequency domain resource information of the second downlink data.
  • the frequency domain resource information included in the P-PSDCH for UE1 is used to indicate the start position and RB length information of the RB where the second downlink data is located.
  • the frequency domain resource information is the information that carries the second downlink data.
  • the time domain resource information included in the P-PSDCH for UE1 may include specific time domain resource location information of the second downlink data.
  • the time domain resource information is the frame number and time slot number of the radio frame, optionally, The symbol number may also be included, and the terminal device determines the time domain resource location and the time domain length of the second downlink data according to the time domain resource information.
  • the time domain resource information may also be used to indicate the start time domain position and time domain length information of the second downlink data; for example, the time domain resource information includes a time interval (or called a timing offset), and the time The interval may be the time interval between the first designated position of the PDCCH carrying the first DCI and the second designated position of the PDSCH carrying the second downlink data, where the first designated position and the second designated position may be relative to different resources. The same relative position, or the same relative position with respect to different resources.
  • the time interval may be between the start time domain position of the PDCCH carrying the first DCI and the start time domain position of the PDSCH carrying the second downlink data. The time interval between.
  • the time interval may be the time interval between the end time domain position of the PDCCH carrying the first DCI and the start time domain position of the PDSCH carrying the second downlink data.
  • the time interval may be the time interval between the start time domain position of the PDCCH carrying the first DCI and the tail time domain position of the PDSCH carrying the second downlink data, which is not limited in this embodiment of the application.
  • Manner three is pre-defined by the protocol; specifically, the time domain resource and/or frequency domain resource of the second downlink data is pre-defined by the protocol.
  • the signaling overhead can be further reduced, the time delay can be shortened, and the security of data transmission can be improved.
  • the foregoing embodiments 1 to 5 introduced the method for the network device to configure downlink data transmission resources for the terminal device in the RRC non-connected state.
  • the embodiment of this application can also configure the terminal device with uplink time-frequency resources for sending feedback information.
  • the terminal device may send feedback information for the second downlink data to the network device to instruct the network device to decode the second downlink data by the terminal device. result.
  • the feedback information is HARQ-ACK. If the terminal device receives the data sent by the network device and the decoding is correct, it sends an acknowledgement (acknowledge character, ACK) to the network device.
  • the terminal device If the terminal device does not receive the data sent by the network device, or decodes the data incorrectly after receiving the data, it sends a negative acknowledgement (NACK) to the network device. Correspondingly, after the network device receives the NACK sent by the terminal device, The data can be resent to the terminal device.
  • NACK negative acknowledgement
  • the second downlink data may indicate the transmission parameters of the uplink channel (such as PUSCH or PUCCH), and the uplink channel is used to carry feedback information for the second downlink data.
  • the second downlink data includes the uplink time-frequency resources of the uplink channel, such as time-domain resource information and/or frequency-domain resource information, used to determine the resource location of the uplink channel, specifically similar to the second method according to the above embodiment 5.
  • the relevant description of the transmission parameters of the second downlink data indicated by the P-PDSCH in the P-PDSCH will not be repeated here.
  • the uplink channel used to carry feedback information may be PUSCH or PUCCH.
  • the transmission parameters of the uplink channel include one or more of the following parameters: time domain resource location, frequency domain resource location, MCS, modulation mechanism, coding mechanism, TBS, RV, frequency hopping indicator, and power control command.
  • FIG. 12 is only for illustration.
  • the second downlink data may be the second downlink data in FIG. 4, FIG. 7, FIG. 9a, FIG. 9b, or FIG.
  • the implementation manners are combined, which is not limited in the embodiment of the present application.
  • the second downlink data may also carry ACK/NACK feedback rules, for example, sequence pattern configuration information.
  • sequence pattern includes Pattern- 1 and Pattern-2, the feedback stipulates that Pattern-1 means ACK, and Pattern-2 means NACK.
  • FIG. 13 it is a schematic diagram of another scenario for configuring uplink transmission parameters (such as time-frequency resources) provided by an embodiment of this application.
  • the transmission parameters of the uplink channel may be configured through the first downlink data (for example, P-PDSCH for UE1 in FIG. 13), and the uplink channel is used to carry feedback information for the second downlink data.
  • the specific configuration method is similar to the above-mentioned related description based on the configuration method in the scenario of FIG. 12, and the description is not repeated here.
  • the first downlink data may be the first downlink data in FIG. 4, FIG. 9a, or FIG. 11, or the RAR or MsgB in FIG. 7 or FIG. 9b may indicate the uplink time.
  • Frequency resources which are not limited in the embodiment of the present application.
  • FIG. 14 it is a schematic diagram of a third scenario for configuring uplink transmission parameters (such as time-frequency resources) provided by an embodiment of this application.
  • the transmission parameters of the uplink channel are configured by scheduling the DCI of the second downlink data (ie, the second DCI in FIG. 14), and the uplink channel is used to carry feedback information for the second downlink data.
  • the uplink time-frequency resource is indicated by the existing field or extension field of the DCI.
  • the specific configuration method is similar to the related description of the second downlink data transmission parameter indicated by the P-PDSCH in the above-mentioned embodiment 5, which will not be omitted here. Repeat the description.
  • FIG. 14 is only for illustration.
  • the second DCI may be the second DCI in FIG. 4 or FIG. 7, that is, the DCI scrambled by X-RNTI.
  • the method shown in FIG. 14 may be the same as any of the above methods.
  • the implementation manners are combined, which is not limited in the embodiment of the present application.
  • the terminal device sends feedback information according to the uplink transmission parameters configured in the foregoing manner, and the feedback information may include one or more of the following:
  • Sequence-based feedback that is, the feedback information is a sequence, which can be used to indicate the decoding result.
  • the sequence may be a signal carried by a preamble, an uplink control channel, or a signal carried by an uplink data channel, such as a demodulation reference signal (DMRS) or a channel sounding reference signal (SRS).
  • DMRS demodulation reference signal
  • SRS channel sounding reference signal
  • sequence patterns or sequence values may be used to indicate different decoding results.
  • the sequence pattern is Pattern-1 for ACK
  • the sequence pattern for Pattern-2 is NACK. That is, when the sequence pattern sent by the terminal device is Pattern-1, it means that the terminal device has received the data and decoded it correctly. If the sequence pattern sent by the terminal device is Pattern-2, it means that the terminal device has a decoding error or has not received data.
  • the uplink data channel carries HARQ-ACK information
  • the terminal device indicates its own reception result of the second downlink data through the ACK/NACK information, for example, the second downlink data is received and decoded If it is correct, the ACK information is fed back. If the second downlink data is not received or the bit decoding is correct after the second downlink data is received, the NACK information is fed back.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of interaction between the terminal device and the network device.
  • the terminal device and the network device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. . Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 1500 for implementing the function of the terminal device in the above-mentioned method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1500 may include: a processing module 1501 and a communication module 1502.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in one processor, or may exist alone physically, or two or more modules may be integrated in one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the communication module 1502 is configured to receive the first DCI from the network device in the public detection space;
  • the network device receives the second DCI and receives the second downlink data.
  • the processing module 1501 is configured to use the communication module 1502 to receive the first DCI from the network device in the public detection space, and to use the communication module 1502 to receive the first downlink data according to the first DCI;
  • the communication module 1502 receives a second DCI from a network device in the second detection space, and uses the communication interface to receive second downlink data according to the second DCI.
  • the communication module 1502 is configured to receive the first DCI from the network device in the public detection space; receive the first downlink data; and receive the first downlink data; 2. Downlink data.
  • the processing module 1501 is configured to use the communication module 1502 to receive a first DCI from a network device in a common detection space, and to receive first downlink data using the communication interface according to the first DCI, and the second A downlink data is used to indicate a transmission parameter of the second downlink data, where the first downlink data is a paging message, a random access response RAR, or a message B MsgB; according to the transmission parameter of the second downlink data, The communication module 1502 is used to receive the second downlink data.
  • the communication module 1502 is configured to receive the first DCI from the network device in the public detection space; receive public data and second downlink data.
  • the processing module 1501 is configured to use the communication module 1502 to receive a first DCI from a network device in a public detection space, and use the communication module 1502 to receive public data and second downlink data according to the first DCI.
  • the second downlink data is data specific to the terminal device; according to the first DCI, the communication interface 1502 is used to receive second downlink data from the network device.
  • the apparatus 1500 can also implement the functions of the terminal device in the process shown in Embodiment 1 to Embodiment 5. For details, please refer to the description in the method process shown in Embodiment 1 to Embodiment 5, which will not be repeated here.
  • FIG. 16 shows an apparatus 1600 provided by an embodiment of the application.
  • the apparatus shown in FIG. 16 may be a hardware circuit implementation of the apparatus shown in FIG. 15.
  • the communication device may be suitable for implementing the function of the terminal device in the above method embodiment in the flowchart shown in FIG. 3, FIG. 8 or FIG. 10.
  • FIG. 16 only shows the main components of the communication device.
  • the apparatus 1600 shown in FIG. 16 includes at least one processor 1620, configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the device 1600 may further include at least one memory 1630 for storing program instructions and/or data.
  • the memory 1630 and the processor 1620 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1620 may operate in cooperation with the memory 1630.
  • the processor 1620 may execute program instructions stored in the memory 1630. At least one of the at least one memory may be included in the processor.
  • the apparatus 1600 may further include a communication interface 1610 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1600 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the processor 1620 uses the communication interface 1610 to send and receive data, and is used to implement the method executed by the terminal device in the embodiment corresponding to FIG. 3, FIG. 8 or FIG. 10.
  • the communication interface 1610 is used to receive the first DCI from the network device in the public detection space;
  • the network device receives the second DCI and receives the second downlink data.
  • the processor 1620 is configured to use the communication interface 1610 to receive the first DCI from the network device in the public detection space, and according to the first DCI, use the communication interface 1610 to receive the first downlink data;
  • the communication interface 1610 receives a second DCI from a network device in the second detection space, and uses the communication interface to receive second downlink data according to the second DCI.
  • the communication interface 1610 is used to receive the first DCI from the network device in the common detection space; receive the first downlink data; 2. Downlink data.
  • the processor 1620 is configured to use the communication interface 1610 to receive the first DCI from the network device in the common detection space, and according to the first DCI, use the communication interface 1610 to receive the first downlink data, the first The downlink data is used to indicate the transmission parameters of the second downlink data, where the first downlink data is a paging message, a random access response RAR, or a message B MsgB; according to the transmission parameters of the second downlink data, use The communication interface 1610 receives the second downlink data.
  • the communication interface 1610 is used to receive the first DCI from the network device in the public detection space; receive public data and second downlink data.
  • the processor 1620 is configured to use the communication interface 1610 to receive the first DCI from the network device in the public detection space, and use the communication interface 1610 to receive the public data and the second downlink data according to the first DCI.
  • the second downlink data is data specific to the terminal device; according to the first DCI, the communication interface 1610 is used to receive the second downlink data from the network device.
  • the apparatus 1600 can also implement the functions of the terminal device in the procedures shown in Embodiments 1 to 5.
  • the procedures shown in Embodiments 1 to 5 please refer to the description in the method procedures shown in Embodiments 1 to 5, which will not be repeated here.
  • the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 1610, the processor 1620, and the memory 1630.
  • the memory 1630, the processor 1620, and the communication interface 1610 are connected by a bus 1640 in FIG. 16, and the bus is represented by a thick line in FIG. 116.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • an embodiment of the present application further provides an apparatus 1700 for implementing the function of the network device in the foregoing method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1700 may include: a processing module 1701 and a communication module 1702.
  • the communication module 1702 is configured to send the first DCI to the terminal device in the public detection space;
  • the terminal device sends the second DCI; and the first downlink data and the second downlink data are sent to the terminal device.
  • the processing module 1701 is configured to use the communication module 1702 to send a first DCI to a terminal device in the public detection space; use the communication module 1702 to send a second DCI to the terminal device in the second detection space; The communication module 1702 is used to send the first downlink data and the second downlink data to the terminal device.
  • the communication module 1702 is configured to send the first DCI to the terminal device in the public detection space; and send the first downlink data to the terminal device And, sending the second downlink data to the terminal device according to the transmission parameter of the second downlink data.
  • the processing module 1701 is configured to use the communication module 1702 to send the first DCI to the terminal device in the public detection space; use the communication module 1702 to send the first downlink data to the terminal device; and, use the communication module 1702 Sending the second downlink data to the terminal device according to the transmission parameter of the second downlink data.
  • the communication module 1702 is used to send the first DCI to the terminal device in the public detection space; and to send the public data and the first DCI to the terminal device. 2. Downlink data.
  • the processing module 1701 is configured to use the communication module 1702 to send a first DCI to a terminal device in a common detection space, where the first DCI is used to schedule public data and second downlink data, and the second downlink data It is the specific data of the terminal device; the communication module 1702 is used to send public data and second downlink data.
  • the apparatus 1700 can also function as a network device in the process shown in Embodiment 1 to Embodiment 5.
  • the apparatus 1700 can also function as a network device in the process shown in Embodiment 1 to Embodiment 5.
  • a network device in the process shown in Embodiment 1 to Embodiment 5.
  • FIG. 18 shows an apparatus 1800 provided by an embodiment of the application.
  • the apparatus shown in FIG. 18 may be a hardware circuit implementation of the apparatus shown in FIG. 17.
  • the communication device can be applied to the flowchart shown in FIG. 3, FIG. 8 or FIG. 10 to perform the function of the network device in the foregoing method embodiment.
  • FIG. 18 only shows the main components of the communication device.
  • the apparatus 1800 shown in FIG. 18 includes at least one processor 1820, which is configured to implement the function of the network device in the method provided in the embodiment of the present application.
  • the device 1800 may also include at least one memory 1830 for storing program instructions and/or data.
  • the memory 1830 and the processor 1820 are coupled.
  • the processor 1820 may operate in cooperation with the memory 1830.
  • the processor 1820 may execute program instructions stored in the memory 1830. At least one of the at least one memory may be included in the processor.
  • the apparatus 1800 may further include a communication interface 1810 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1800 can communicate with other devices.
  • the processor 1820 uses the communication interface 1810 to send and receive data, and is used to implement the method executed by the network device in the embodiment corresponding to FIG. 3, FIG. 8 or FIG. 10.
  • the communication interface 1810 is used to send the first DCI to the terminal device in the public detection space;
  • the terminal device sends the second DCI; and the second downlink data is sent to the terminal device.
  • the processor 1820 is configured to use the communication interface 1810 to send the first DCI to the terminal device in the public detection space; use the communication interface 1810 to send the second DCI to the terminal device in the second detection space; The communication interface 1810 is used to send the second downlink data to the terminal device.
  • the communication interface 1810 is used to send the first DCI to the terminal device in the public detection space; according to the first DCI indicated by the first DCI
  • the second downlink data transmission parameter sends the second downlink data to the terminal device.
  • the processor 1820 is configured to use the communication interface 1810 to send a first DCI to a terminal device in a common detection space, where the first DCI is used to indicate a transmission parameter of second downlink data; according to the second downlink For data transmission parameters, the communication interface 1810 is used to send second downlink data to the terminal device.
  • the communication interface 1810 is used to send the first DCI to the terminal device in the public detection space; and to send the public data and the first DCI to the terminal device. 2. Downlink data.
  • the processor 1820 is configured to use the communication interface 1810 to send a first DCI to a terminal device in a common detection space, where the first DCI is used to schedule public data and second downlink data, and the second downlink data It is the specific data of the terminal device; the communication interface 1810 is used to send public data and second downlink data.
  • the apparatus 1800 can also implement the functions of the network equipment in the procedures shown in Embodiments 1 to 5.
  • the procedures shown in Embodiments 1 to 5 please refer to the description in the method procedures shown in Embodiments 1 to 5, which will not be repeated here.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1810, the processor 1820, and the memory 1830.
  • the memory 1830, the processor 1820, and the communication interface 1810 are connected by a bus 1840.
  • the bus is represented by a thick line in FIG. 18.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 18 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware
  • the components can implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • the embodiments can be mutually cited.
  • the methods and/or terms between the method embodiments can be mutually cited, such as the functions and/or functions between the device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法及装置,其中方法包括:在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,在所述第一下行数据指示的第二检测空间中接收第二DCI,并根据所述第二DCI接收第二下行数据,该第二下行数据为终端设备特定的数据。示例性地,该第一下行数据可以为寻呼消息、RAR或MsgB。采用本申请实施例提供的方法及装置,即使终端设备处于RRC非连接态时,仍可通过接收寻呼消息、MsgB或RAR来获取第二下行数据的传输参数,从而实现了下行数据的传输参数(如资源位置)的灵活调整,当第二下行数据为终端设备特定的数据时,还可以在此基础上,提高数据传输的安全性。

Description

一种数据传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
随着通信技术的发展和用户需求的提升,通信场景中的终端设备逐渐呈现大数量、多形态等特征。例如,工业自动化场景中,厂房中存在大量的监控设备、机器、传感器等;家庭和生活场景中,存在大量手机、平板、穿戴式设备、智能家电、或车载终端设备等。
发明内容
本申请提供一种数据传输方法及装置,用以提供一种实现处于RRC空闲态或RRC非激活态的终端,在与基站进行数据传输时的动态调度。
第一方面,本申请实施例提供了一种数据传输方法。该方法可以由终端设备实现,也可以由终端设备的部件实现,如由终端设备中的处理芯片、电路等部件实现。该方法包括:在终端设备为RRC非连接态时,在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二检测空间,示例性地,所述第一下行数据可以但不限于为寻呼消息、随机接入响应(random access response,RAR)或MsgB(消息B);在所述第二检测空间中从网络设备接收第二DCI,该第二DCI用于指示第二下行数据的传输参数,根据所述第二DCI指示的第二下行数据的传输参数接收第二下行数据,所述第二下行数据是终端设备特定的数据,其中,第二下行数据的传输参数可用于确定第二下行数据的资源位置。
通过上述方法,终端设备可以在RRC非连接态时通过在公共检测空间检测到的第一DCI来接收第一下行数据,通过第一下行数据指示的第二检测空间来接收第二DCI,并可以根据第二DCI指示的传输参数来接收第二下行数据,从而实现了终端设备在RRC非连接态与网络设备进行终端设备特定的数据传输。进一步,由于公共检测空间可以承载用于调度寻呼消息、RAR或MsgB的调度信息,也就是第一DCI调度的第一下行数据可以是寻呼消息、RAR或MsgB等,因此,即使终端设备处于RRC空闲态或RRC非激活态时,仍可多次接收寻呼消息、RAR或MsgB等,并在接收到寻呼消息、RAR或MsgB后执行上述流程,以获取第二下行数据的传输参数。可选的,多次获取的传输参数可以是不同的,例如,网络设备可以依据信道变化重新配置下行数据信道的资源位置,并通知终端设备根据重新配置的传输参数进行数据传输,从而实现了,在终端设备处于RRC非连接态时资源调度的灵活性,终端设备与网络设备之间进行特定的数据传输的方式更加适应信道状况,能够改善通信系统的传输效率。当其中的第一下行数据或第二DCI或第二下行数据为终端设备特定的数据时,还可以在上述基础上,提高数据传输的安全性。
在一种可能的设计中,可替代地,终端设备在RRC非连接态时,在终端设备的专用检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二检测空间;在所述第二检测空间中从网络设备接收第二DCI,所述第 二DCI用于指示第二下行数据的传输参数,并根据所述第二DCI指示第二下行数据的传输参数接收第二下行数据,所述第二下行数据是终端设备特定的数据。
通过上述方法,在终端设备的专用检测空间检测第一DCI,并根据第一DCI接收第一下行数据,随后在第一下行数据指示的第二检测空间检测第二DCI,并可以根据第二DCI指示的传输参数来接收第二下行数据,从而实现了终端设备在RRC非连接态与网络设备进行终端设备特定的数据传输。进一步,终端设备处于RRC空闲态或RRC非激活态时,可以对公共检测空间,或公共检测空间和终端设备的专有检测空间进行检测,因此,除公共检测空间外,终端设备也可以在自身对应的专有检测空间检测第一DCI,以执行上述流程,获取第二下行数据的传输参数,可选的,多次获取的传输参数可以是不同的,从而实现下行数据的传输参数的灵活调整。另外,终端设备的专用检测空间为该终端设备特定的资源空间,或包含该终端设备的终端设备组特定的资源空间。可以理解为,除该终端设备或该终端设备组以外,其他终端设备无法接收或解调在其中传输的数据,因此,在实现下行数据的传输参数的灵活调整的基础上,进一步提高了数据传输的安全性。
在一种可能的设计中,所述第一下行数据用于指示第二检测空间,包括:所述第一下行数据用于指示控制资源集合CORESET和搜索空间searchspace;所述CORESET和searchspace用于确定第二检测空间。
在一种可能的设计中,所述第一下行数据还用于指示所述第二检测空间的有效时间和/或有效次数。
通过上述方法,通过第一下行数据指示第二检测空间的配置,该配置可以是CORESET和searchspace,并配置第二检测空间的有效时间和/或有效次数,对端设备,例如网络设备可以在该有效时间或有效次数内,通过在已配置的第二检测空间内,发送指示不同传输参数的第二DCI来调整第二下行数据的传输参数。在该有效时间或有效次数内,网路设备不需要重复执行发送第一DCI和发送第一下行数据的步骤来指示第二检测空间的传输参数,在实现灵活调整第二下行数据的资源位置的基础上,节省了信令开销。
在一种可能的设计中,所述方法还包括:根据上行传输参数向网络设备发送第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、第二DCI、第一下行数据或第二下行数据指示的。
通过上述方法,通过上述流程中的第一DCI、第二DCI、第一下行数据或第二下行数据指示为终端设备配置的上行传输参数,示例性地,该上行传输参数为上行信道(如控制信道PUCCH或数据信道PUSCH)的传输参数,该上行信道用于承载发送反馈信息,以此实现了终端设备的上行传输参数的灵活调整。
第二方面,本申请实施例提供了一种数据传输方法,该方法可以由终端设备实现,也可以由终端设备的部件实现,如由终端设备中的处理芯片、电路等部件实现。该方法包括:在终端设备为RRC非连接态时,在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据可以但不限于为寻呼消息、RAR或消息B MsgB;根据所述第二下行数据的传输参数接收第二下行数据,所述第二下行数据是终端设备特定的数据。
通过上述方法,终端设备可以在RRC非连接态时通过在公共检测空间检测到的第一DCI来接收第一下行数据,并可以根据第一下行数据指示的传输参数来接收第二下行数据,从而实现了终端设备在RRC非连接态与网络设备进行终端设备特定的数据传输。进一步, 由于公共检测空间可以承载用于调度寻呼消息、RAR或MsgB的调度信息,也就是第一DCI调度的第一下行数据可以是寻呼消息、RAR或MsgB等,因此,即使终端设备处于RRC空闲态或RRC非激活态时,仍可多次接收寻呼消息、RAR或MsgB等,并在接收到寻呼消息、RAR或MsgB后执行上述流程,以获取第二下行数据的传输参数。可选的,多次获取的传输参数可以是不同的,例如,网络设备可以依据信道变化重新配置下行数据信道的资源位置,并通知终端设备根据重新配置的传输参数进行特定的数据传输,从而实现了,在终端设备处于RRC非连接态时资源调度的灵活性,终端设备与网络设备之间进行特定的数据传输的方式更加适应信道状况,能够改善通信系统的传输效率。当其中的第一下行数据或第二下行数据为终端设备特定的数据时,还可以在上述基础上,提高数据传输的安全性。
在一种可能的设计中,可替代地,在终端设备的专用检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据为寻呼消息、RAR或消息B MsgB;根据所述第二下行数据的传输参数接收第二下行数据,所述第二下行数据是终端设备特定的数据。
通过上述方法,在终端设备的专用检测空间检测第一DCI,并根据第一DCI接收第一下行数据,随后根据第一下行数据指示的传输参数接收第二下行数据,从而实现了终端设备在RRC非连接态与网络设备进行终端设备特定的数据传输。进一步,终端设备处于RRC空闲态或RRC非激活态时,可以对公共检测空间,或公共检测空间和终端设备的专有检测空间进行检测,因此,除公共检测空间外,终端设备也可以在自身对应的专有检测空间检测第一DCI,以执行上述流程,获取第二下行数据包的传输参数,可选的,多次获取的传输参数可以是不同的,从而实现下行数据的传输参数的灵活调整。另外,终端设备的专用检测空间为该终端设备特定的资源空间,或包含该终端设备的终端设备组特定的资源空间。可以理解为,除该终端设备或该终端设备组以外,其他终端设备无法接收或解调在其中传输的数据,因此,在实现灵活调整下行数据传输参数的基础上,进一步提高了数据传输的安全性。
在一种可能的设计中,所述方法还包括:根据上行传输参数向网络设备发送第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、第一下行数据或第二下行数据指示的。
通过上述方法,通过上述流程中的第一DCI、第一下行数据或第二下行数据指示为终端设备配置的上行传输参数,以此实现了终端设备的上行传输参数的灵活调整。
第三方面,本申请实施例提供了一种数据传输方法,该方法可以由终端设备实现,也可以由终端设备的部件实现,如由终端设备中的处理芯片、电路等部件实现。该方法包括:在终端设备处于RRC非连接态时,在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收寻呼消息和第二下行数据,所述第二下行数据是终端设备特定的数据。
通过上述方法,终端设备可以在RRC非连接态时通过在公共检测空间检测到的第一DCI来接收公共数据和第二下行数据,该公共数据包含寻呼消息,实现了终端设备在RRC非连接态与网络设备进行终端设备特定的数据传输。进一步,即使终端设备处于RRC空闲态或RRC非激活态时,仍可多次检测公共检测空间,接收第一DCI,并可以在接收到第一DCI后执行上述流程,获取第二下行数据的传输参数。另外,由于第二下行数据为终端设备特定的数据,因此提高数据传输的安全性。可选的,多次获取的传输参数可以是不同 的,实现了下行数据的传输参数的灵活调整。
在一种可能的设计中,可替代地,终端设备处于RRC非连接态时,在终端设备的专用检测空间中从网络设备接收第一DCI,根据所述第一DCI接收公共数据和第二下行数据,所述第二下行数据是终端设备特定的数据。
通过上述方法,在终端设备的专用检测空间检测第一DCI,并根据第一DCI接收公共数据和第二下行数据,该公共数据包含寻呼消息,·实现了终端设备在RRC非连接态与网络设备进行终端设备特定的数据传输。进一步,终端设备处于RRC空闲态或RRC非激活态时,可以对公共检测空间,或公共检测空间和终端设备的专有检测空间进行检测,因此,除公共检测空间外,终端设备也可以在自身对应的专有检测空间检测第一DCI,以执行上述流程,获取第二下行数据包的传输参数。另外,终端设备的专用检测空间为该终端设备特定的资源空间,或包含该终端设备的终端设备组特定的资源空间。可以理解为,除该终端设备或该终端设备组以外,其他终端设备无法接收或解调在其中传输的数据,因此提高了数据传输的安全性。可选的,多次获取的传输参数可以是不同的,实现了下行数据的传输参数的灵活调整。
在一种可能的设计中,所述方法还包括:根据上行传输参数向网络设备发送第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、公共数据或第二下行数据指示的。
通过上述方法,通过上述流程中的第一DCI或第二下行数据指示为终端设备配置的上行传输参数,以此实现了终端设备的上行传输参数的灵活调整。
第四方面,本申请实施例提供了一种数据传输方法,该法可以由网络设备实现,也可以由网络设备的部件实现,如由网络设备中的处理芯片、电路等部件实现。该方法包括:在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度第一下行数据,所述第一下行数据用于指示第二检测空间;在所述第二检测空间中向所述终端设备发送第二DCI,所述第二DCI用于调度第二下行数据,所述第二下行数据是所述终端设备特定的数据;向所述终端设备发送第二下行数据;其中,所述终端设备可以为RRC非连接态,所述第一下行数据可以但不限于为寻呼消息、RAR或消息B MsgB。
在一种可能的设计中,所述第一下行数据用于指示第二检测空间,包括:所述第一下行数据用于指示第二检测空间的控制资源集合CORESET和搜索空间searchspace。
在一种可能的设计中,所述第一下行数据还用于指示所述第二检测空间的有效时间和/或有效次数。
在一种可能的设计中,还包括:根据上行传输参数从所述终端设备接收第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、第二DCI、第一下行数据或第二下行数据指示的。
第五方面,本申请实施例提供了一种数据传输方法,该方法可以由网络设备实现,也可以由网络设备的部件实现,如由网络设备中的处理芯片、电路等部件实现。该方法包括:在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据可以但不限于为寻呼消息、RAR或消息B MsgB;向所述终端设备发送第二下行数据;所述第二下行数据是所述终端设备特定的数据;其中,该终端设备可以为RRC非连接态。
在一种可能的设计中,该方法还包括:根据上行传输参数从所述终端设备接收第二下行数据的反馈信息,所述上行传输参数是由第一DCI、第二DCI、第一下行数据或第二下 行数据指示的。
第六方面,本申请实施例提供了一种数据传输方法,该方法可以由网络设备实现,也可以由网络设备的部件实现,如由网络设备中的处理芯片、电路等部件实现。该方法包括:在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度寻呼消息和第二下行数据,所述第二下行数据是所述终端设备特定的数据;其中,所述终端设备为RRC非连接态。
在一种可能的设计中,还包括:根据上行传输参数从所述终端设备接收第二下行数据的反馈信息,所述上行传输参数是由第一DCI、第二DCI、第一下行数据或第二下行数据指示的。
第七方面,本申请实施例提供一种通信装置,该装置具有实现第一方面所述的方法或第二方面所述的方法或第三方面所述的方法的功能,所述功能可以通过硬件实现,也可以通过软件实现,或者通过硬件执行相应的软件实现。所述装置包括一个或多个与上述功能相对应的模块,比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序或指令,当程序或指令被处理器执行时,所述装置可以执行上述第一方面所述的方法或第二方面所述的方法或第三方面所述的方法。
在一个可能的设计中,该装置可以为终端设备。
第八方面,本申请实施例提供一种通信装置,该装置具有实现第四方面所述的方法或第五方面所述的方法或第六方面所述的方法的功能,所述功能可以通过硬件实现,也可以通过软件实现,或者通过硬件执行相应的软件实现。所述装置包括一个或多个与上述功能相对应的模块,比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序或指令,当程序或指令被处理器执行时,所述装置可以执行上述第四方面所述的方法或第五方面所述的方法或第六方面所述的方法。
在一个可能的设计中,该装置可以为网络设备。
第九方面,本申请实施例提供了一种系统,所述系统包括第七方面所述的通信装置、和第八方面所述的通信装置。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储程序或指令代码;所述处理器,用于从所述存储器调用所述程序或指令代码执行如第一方面所述的方法或第二方面所述的方法或第三方面所述的方法。
第十一方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储程序或指令代码;所述处理器,用于从所述存储器调用所述程序或指令代码执行如第四方面所述的方法或第五方面所述的方法或第六方面所述的方法。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收程序或指令代码并传输至所述处理器;所述处理器运行所述程序或指令代码以执行如第一方面所述的方法或第二方面所述的方法或第三方面所述的方法。
第十三方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收程序或指令代码并传输至所述处理器;所述处理器运行所述程序或指令代码以执行第四方面所述的方法或第五方面所述的方法或第六方面所述的方法。
第十四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序或指令,当所述程序或指令被执行时,使得第一方面所述的方法或第二方面所述的方法或第三方面所述的方法被实现。
第十五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储程序或指令,当所述程序或指令被执行时,使得第四方面所述的方法或第五方面所述的方法或第六方面所述的方法被实现。
第十六方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第一方面所述的方法或第二方面所述的方法或第三方面所述的方法被实现。
第十七方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第四方面所述的方法或第五方面所述的方法或第六方面所述的方法被实现。
附图说明
图1为本申请实施例提供的终端设备的RRC状态转换示意图;
图2为本申请实施例提供的通信架构示意图;
图3为本申请实施例提供的一种数据传输方法的流程示意图;
图4为本申请实施例提供的一种数据传输的应用场景示意图;
图5为本申请实施例提供的一种RBG的示意图;
图6为本申请实施例提供的一种确定时频资源位置的示意图;
图7为本申请实施例提供的一种数据传输的应用场景示意图;
图8为本申请实施例提供的另一种数据传输方法的流程示意图;
图9a为本申请实施例提供的一种数据传输的应用场景示意图;
图9b为本申请实施例提供的一种数据传输的应用场景示意图;
图10为本申请实施例提供的一种数据传输方法的流程示意图;
图11为本申请实施例提供的一种数据传输的应用场景示意图;
图12-图14为本申请实施例提供的指示上行时频资源的应用场景示意图;
图15-图18为本申请实施例提供的通信装置结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
在无线通信系统中,如长期演进(long term evolution,LTE)系统或第五代(5th generation,5G)通信系统中,终端设备可以和网络设备进行无线资源控制(radio resource control,RRC)建立过程,当和网络设备建立了RRC连接后,该终端设备的RRC状态即为RRC连接态。随后,终端设备的RRC状态可以在以下状态中进行转换:RRC空闲(RRC_IDLE)态、 RRC连接(RRC_CONNECTED)态和RRC非激活(RRC_INACTIVE)态。
首先,对终端设备的3种RRC状态进行介绍说明:
一、RRC连接态
终端设备是RRC_CONNECTED态时,存在终端设备和网络设备之间的RRC连接。此时,网络设备知道该终端设备在该网络设备的覆盖范围内或者在该网络设备的管理范围内,例如网络设备知道该终端设备在该网络设备所管理的小区的覆盖范围内;核心网知道该终端设备在哪个网络设备的覆盖范围内或者管理范围内,核心网知道通过哪个网络设备可以定位到或者找到该终端设备。
终端设备是RRC_CONNECTED态时,网络设备和终端设备可以进行该终端设备特定的数据信道和/或控制信道的传输,从而可以传输该终端设备的特定信息或单播信息。例如网络设备可以向终端设备发送终端设备特定的物理下行控制信道(physical downlink control channel,PDCCH)和/或物理下行共享信道(physical downlink shared channel,PDSCH),和/或终端设备可以向网络设备发送终端设备特定的物理上行共享信道(physical uplink shared channel,PUSCH)和/或物理上行控制信道(physical uplink control channel,PUCCH)。终端设备可以通过PDCCH来接收网络设备发送的上行调度指示或下行调度指示。终端设备可以通过PUCCH向网络设备发送混合自动重传请求(hybrid automatic repeat request,HARQ)信息,用于指示终端设备对下行数据的解调情况。
示例性地,终端设备特定的PDCCH满足以下条件中的一个或多个:该PDCCH的资源位置是该终端设备特定的,该PDCCH的循环冗余校验(cyclic redundancy check,CRC)是通过该终端设备的标识进行加扰的,该PDCCH是用于调度该终端设备特定的PDSCH或PUSCH的。其中,PDCCH用于调度PDSCH或PUSCH还可以描述为:该PDCCH用于携带该PDSCH或PUSCH的传输参数。
在本申请实施例中,PDSCH或PUSCH的传输参数包括以下参数中的一种或多种:时域资源位置、频域资源位置、调制编码机制(modulation and coding scheme,MCS)、调制机制、编码机制、传输块大小(transport block size,TBS)、冗余版本(redundancy version,RV)、跳频指示、和功率控制命令。
在本申请实施例中,终端设备的标识可以是该终端设备的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)或该终端设备的其它类型的无线网络临时标识(radio network temporary identifier,RNTI)。
示例性地,终端设备特定的PDSCH满足以下条件中的一个或多个:该PDSCH的传输参数是该终端设备特定的或该终端设备所在的终端设备组特定的,该PDSCH是由该终端设备特定的PDCCH调度的,该PDSCH的CRC是通过该终端设备的标识加扰的,该PDSCH上携带的信息是该终端设备特定的或该终端设备所在的终端设备组特定的。
示例性地,终端设备特定的PUSCH满足以下条件中的一个或多个:该PUSCH的传输参数是该终端设备特定的或该终端设备所在的终端设备组特定的,该PUSCH是由该终端设备特定的PDCCH调度的,该PUSCH的CRC是通过该终端设备的标识加扰的,该PUSCH上携带的信息是该终端设备特定的或该终端设备所在的终端设备组特定的。
示例性地,终端设备特定的PUCCH满足以下条件中的一个或多个:该PUCCH的传输参数是该终端设备特定的或该终端设备所在的终端设备组特定的,该PUCCH的CRC是通过该终端设备的标识加扰的,该PUCCH上携带的信息是该终端设备特定的或该终端设 备所在的终端设备组特定的。
二、RRC空闲态
终端设备处于RRC空闲态时,释放了终端设备和接入网之间的RRC连接。此时,终端设备可以从网络设备接收寻呼消息、广播信道、和/或系统信息等。
在该RRC状态下,网络设备不知道该终端设备是否在该网络设备的覆盖范围内或者是否在该网络设备的管理范围内,例如网络设备不知道该终端设备是否在该网络设备所管理的小区的覆盖范围内;核心网不知道终端设备在哪个网络设备的覆盖范围内或者管理范围内,核心网不知道通过哪个网络设备可以定位到或者找到该终端设备。
三、RRC非激活态
终端设备处于RRC非激活态时,没有终端设备和网络设备之间的RRC连接。此时,网络设备不知道该终端设备是否在该网络设备的覆盖范围内或者是否在该网络设备的管理范围内,例如网络设备不知道该终端设备是否在该网络设备所管理的小区的覆盖范围内;核心网知道终端设备在哪个或哪些网络设备的覆盖范围内或者管理范围内,核心网知道通过哪个或哪些网络设备可以定位到或者找到该终端设备。
当终端设备是RRC_INACTIVE态时,终端设备可以从网络设备接收寻呼消息、同步信号、广播消息、和/或系统信息等。
在本申请一些实施例中,RRC非激活态和RRC空闲态可以统称为RRC非连接态。
请参考图1,为终端设备在上述3种RRC状态中进行转换的示例图,包含以下几种转换流程:
1,RRC连接态→RRC空闲态
示例性地,网络设备可以向终端设备发送RRC释放(RRC rlease)消息,使终端设备由RRC连接态转换为RRC空闲态。
2,RRC连接态→RRC非激活态
示例性地,网络设备可以向终端设备发送RRC暂停(RRC suspend)消息或RRC释放(RRC rlease),使终端设备由RRC连接态转换为RRC非激活态。
3,RRC空闲态→RRC连接态
示例性地,终端设备可以通过与网络设备的RRC建立过程,使终端设备由RRC空闲态转换为RRC连接态。其中,RRC建立过程可以是由终端设备的高层触发的,例如,终端设备有上行数据的发送需求时,由终端设备的高层触发RRC建立过程。RRC建立过程也可以是由网络设备触发的,例如,在终端设备处于RRC空闲态时,网络设备向终端设备发送寻呼消息,该寻呼消息包含该终端设备的标识。对应的,终端设备从网络设备接收到该寻呼消息后,触发RRC建立过程。
具体的,RRC建立过程可以是终端设备向网络设备发送RRC建立请求(RRC Connection Request)消息。对应的,网络设备接收到该请求消息后,若网络设备向该终端设备发送RRC建立(RRC Connection setup)消息,意味着网络设备同意该终端设备接入,则终端设备的RRC状态可转换为RRC连接态。若网络设备向该终端设备发送RRC拒绝(RRC Connection reject)消息,意味着网络设备拒绝该终端设备接入,则该终端设备的RRC状态继续停留在RRC空闲态。
在本申请实施例中,终端设备的高层触发终端设备发起RRC建立过程的场景包括但不限于:终端设备需要向网络设备发送信息。示例性地,终端设备的服务数据适配协议 (service data adaptation protocol,SDAP)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、和/或无线链路控制(radio link control,RLC)层触发终端设备的RRC层和网络设备进行RRC建立过程,终端设备的RRC层触发终端设备的媒体接入控制(media access control,MAC)层和网络设备进行接入过程,从而在接入过程中或者接入后和网络设备进行RRC建立过程。
4,RRC非激活态→RRC连接态
示例性地,终端设备处于RRC非激活态时,可以通过RRC建立或RRC恢复过程,使终端设备的RRC状态转换为RRC连接态。
在RRC_INACTIVE态时,终端设备从网络设备接收到寻呼消息后或者由终端设备的高层触发后,终端设备可以发起RRC恢复过程,试图恢复和网络设备间的RRC连接以进入RRC_CONNECTED态。例如,终端设备和网络设备之间的RRC恢复过程包括:终端设备向网络设备发送RRC恢复请求(RRCResumeResuest)消息,接收到该请求后:网络设备向终端设备发送RRC建立(RRCSetup)消息或者RRC恢复(RRCResume)消息,使得终端设备的状态可以转换为RRC_CONNECTED态;或者,网络设备向终端设备发送RRC释放(RRCRelease)消息,使得终端设备的状态从RRC_INACTIVE态转换为RRC_IDLE态;或者,网络设备向终端设备发送RRC拒绝(RRCReject)消息,使得终端设备继续停留在RRC_INACTIVE态。
5,RRC非激活态→RRC空闲态
示例性地,终端设备处于RRC非激活态时,网络设备可以通过释放过程,使得终端设备由RRC非激活态转换为RRC空闲态。
一种可能的实现中,网络设备和终端设备之间进行该终端设备特定数据传输时,需要终端设备为RRC连接态。其中,该数据传输包括:网络设备向终端设备发送数据;和/或,终端设备向网络设备发送数据。示例性地,若终端设备为RRC空闲态或RRC非激活态时,终端设备首先与网络设备进行RRC建立过程,终端设备和网络设备建立了RRC连接后,该终端设备的状态为RRC连接态,此时便可进行该终端设备特定的数据传输。然而对一些有节能需求的终端设备,为了避免先转换为RRC连接态再进行数据传输带来的信令开销和处理功耗,可以允许该终端设备在RRC空闲态或RRC非激活态时与网络设备进行该终端设备特定的数据传输。因此,终端设备如何在RRC非连接态与网络设备进行该终端设备特定的数据传输,是需要被解决的问题。
鉴于此,以下行数据传输为例,提供本申请实施例的技术方案。在本申请实施例中,可以通过公共检测空间的消息直接或间接指示终端设备的下行数据信道的传输参数。在一个小区中,该公共检测空间可以为配置给所有终端设备或者终端设备组可在任何RRC状态下接收下行消息的资源空间。当终端处于RRC非连接态时,网络设备可以在公共检测空间发送下行消息,来指示下行数据信道的资源位置。换言之,在该方式下,即使终端设备为RRC非连接态,网络设备依然可以依据信道变化重新配置下行数据信道的资源位置,并通知终端设备根据重新配置的传输参数进行数据传输,以改善通信系统的传输效率。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:可以应用到LTE、5G等通信系统中,也可以应用到无线保真(wireless fidelity,WiFi)、全球微波互联接入(worldwide interoperability for microwave access,wimax)、或者未来的通信系统中,如未来的第六代(6th generation,6G)系统等。其中,5G还可以称为新无线(new radio,NR)。 示例性地,可以应用本申请实施例提供的技术方案的通信系统中,一个实体可以对另一个实体发起寻呼或接入。本申请实施例在介绍过程中是以网络设备和终端设备之间的空口通信过程为例,可选的,本申请实施例提供的技术方案也可以应用于侧行链路(sidelink,SL)通信,该通信中一个终端设备能够对另一个终端设备发起寻呼或接入。例如,本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)通信场景,例如可以是NR D2D通信场景和/或LTE D2D通信场景等;或者可以应用于车到一切(vehicle to everything,V2X)通信场景,例如可以是NR V2X通信场景、LTE V2X通信场景、车联网通信场景、和/或车与车(vehicle-to-vehicle,V2V)通信场景等;或可用于智能驾驶,智能网联车等领域。
在通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为网络侧设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一种。在本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。其中,“多个”是指两个或两个以上。
如图2所示,为本申请实施例所适用的一种可能的网络架构示意图,包括网络设备和至少一个终端设备。
应理解,图2中所示出的网络设备和终端设备仅为一种示例,网络设备可以为一个或多个终端设备提供服务,本申请实施例对通信系统中终端设备以及网络设备的数量不做具体限定。图2中的终端设备是以手机为例示出的,但本申请不限于此,终端设备还可以是其他类型的终端设备,如车载终端设备或车辆等。
通信系统中,终端设备可以接入网络设备,并和网络设备进行通信。示例性地,一个网络设备可以管理一个或多个(例如3个或6个等)小区,终端设备可以在该一个或多个小区中的至少一个小区中接入网络设备,并在该终端设备所接入的小区中和网络设备进行通信。在本申请实施例中,至少一个可以是1个、2个、3个或者更多个,本申请实施例不做限制。
在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
可选地,本申请实施例提及“第一”、“第二”等序数词可以用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信令,而并不是表示这两种信息的内容、优先级、发送顺序或者重要程度等的不同。
通信设备间的无线通信可以包括:网络设备和终端设备间的无线通信、终端设备和终端设备间的无线通信等。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”、“信号传输”或“传输”。传输可以包括发送和/或接收。例如,网络设备和终端设备间的传输包括:网络设备向终端设备 发送下行信号,即终端设备从网络设备接收下行信号;和/或,终端设备向网络设备发送上行信号,即网络设备从终端设备接收上行信号。
本申请实施例中以网络设备和终端设备之间的通信为例进行描述,本领域技术人员可以将本申请实施例提供的技术方案用于进行其它调度实体和从属实体间的无线通信,例如用于宏基站和微基站之间的无线通信,例如用于第一终端设备和第二终端设备间的无线通信,本申请实施例不做限制。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,可以是一种具有无线收发功能的设备。终端设备可以简称为终端,其可以部署在陆地上,包括室内、室外、和/或手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、和/或智慧家庭(smart home)中的无线终端等等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。本申请实施例涉及到的基站可以是5G系统中的基站或LTE系统中的基站,或未来的通信系统中未来的第六代(6th generation,6G)基站。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)公共检测空间,用于网络设备向终端设备发送下行控制信息(downlink control information,DCI),该DCI是一个小区中所有终端设备都可以检测到的DCI或者是该小区中一组终端设备可以检测到的DCI。示例性地,公共检测空间中用于传输DCI,该DCI用于调度PDSCH,该PDSCH用于承载系统消息、寻呼消息、随机接入响应(random access response,RAR)或MsgB(消息B)等消息。示例性地,该DCI中携带该PDSCH的传输参数。
在本申请实施例中,一个小区中可以包括一个或多个终端设备组,本申请实施例不做限制。
4)终端设备的专用检测空间(也可以称为终端设备的特定检测空间),用于网络设备 向终端设备发送该终端设备特定的DCI,该DCI是该终端设备所在的一组终端设备可以检测到的DCI或者是该终端设备可以检测到的DCI。示例性地,终端设备的特定检测空间中用于传输DCI,该DCI用于调度PDSCH或PUSCH,和/或用于指示功率控制信息、和/或帧结构配置信息等参数。上述介绍仅为方便理解,本申请实施并不限定终端设备的专用检测空间传输的消息的类型,例如,终端设备的专用检测空间也可以用于传输DCI,该DCI用于调度用于承载寻呼消息、RAR或MsgB等消息的PDSCH。
示例性地,对于一个小区,对于一个终端设备,公共检测空间中传输的DCI是该小区中所有终端设备都可以检测到的DCI。终端设备的专用检测空间中传输的DCI是该小区中的一组终端设备可以检测到的DCI,其中,该一组终端设备中包括该终端设备,该小区中该组终端设备以外的终端设备检测不到该DCI;或者,终端设备的专用检测空间中传输的DCI是该终端设备可以检测到的DCI,该小区中该终端设备以外的终端设备检测不到该DCI。
再示例性地,对于一个小区,对于一个终端设备,公共检测空间中传输的DCI是该小区中所有终端设备都可以检测到的DCI,或者,公共检测空间中传输的DCI是该小区中的一组终端设备可以检测到的DCI,其中,该一组终端设备中包括该终端设备,该小区中该组终端设备以外的终端设备检测不到该DCI。或者,终端设备的专用检测空间中传输的DCI是该终端设备可以检测到的DCI,该小区中该终端设备以外的终端设备检测不到该DCI。
5)下行控制信息(downlink control information,DCI),是由网络设备发送给终端设备的,承载于PDCCH上。终端设备可以通过盲检测的方式获得PDCCH,通过对PDCCH进行解调译码得到PDCCH上承载的DCI。
终端设备盲检测PDCCH的时频资源范围是根据控制资源集合(CORESET)和搜索空间(SearchSpace)确定的。PDCCH被一个终端设备已知的无线网络临时标识(radio network temporary identifier,RNTI)加扰,终端设备在盲检测时,用该已知的RNTI去尝试解扰PDCCH,如果解扰成功,则可以接收该PDCCH,以及接收承载在该PDCCH上的DCI。其中,CORESET和SearchSpace为协议预定义,或由网络设备通过信令为终端设备配置,可用于共同确定盲检测PDCCH的时频资源范围。该时频资源范围中可以包括PDCCH的候选时频资源位置集合,网络设备可以在该集合中的一个候选时频资源位置上向终端设备发送PDCCH。由于终端设备可能并不知道网络设备会在该集合中的哪个候选时频资源位置上向终端设备发送PDCCH,终端可以在该候选时频资源位置集合中的候选时频资源位置上盲检测PDCCH,对于根据CORESET和SearchSpace确定盲检测的候选时频资源位置的过程,下文将会详细介绍。其中,该候选时频资源位置集合中包括一个或多个候选时频资源位置。
6)RNTI:终端设备的RNTI可以是寻呼无线网络临时标识(paging radio network temporary identifier,P-RNTI)、随机接入无线网络临时标识(random access RNTI,RA-RNTI)、小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、临时性小区无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)或非激活态无线网络临时标识(inactive RNTI,I-RNTI)等。
其中,I-RNTI是由网络侧配置给终端设备在RRC非激活态时使用的。该I-RNTI在一个终端移动范围内是唯一的,该移动范围称为RAN通知区(radio access network-based notification area),RAN通知区中可包括多个小区覆盖的范围。
下面结合附图介绍本申请实施例提供的方法。
如图3所示,为本申请实施例提供的一种数据传输方法,该方法可以应用于图2所示的通信系统中,为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例进行介绍,该方法包括以下步骤:
步骤S301,网络设备在公共检测空间发送第一DCI,该第一DCI用于调度第一下行数据;
步骤S302,终端设备在公共检测空间接收第一DCI。
该终端设备可以为RRC非连接态。在此过程之前,假设终端设备已知(或已经确定)该公共检测空间的资源位置,该公共检测空间的资源位置可以是协议预定的,或者是网络设备为终端设备配置的。例如,终端设备确定公共检测空间的资源位置的过程包括:网络设备向终端设备发送第一配置信息,该第一配置信息用于指示公共检测空间的资源位置,在接收到该第一配置信息后:终端设备根据该第一配置信息确定公共检测空间的资源位置。
在本申请实施例中,由网络设备为终端设备配置公共检测空间的资源位置时,可以在终端设备处于RRC连接态,即在转换为RRC非连接态之前进行配置,例如,网络设备将携带该第一配置信息的RRC释放消息或RRC暂停消息发送至终端设备;和/或,可以是终端设备处于RRC非连接态时进行配置,例如,网络设备将携带第一配置信息的广播消息(如系统信息块(system information block,SIB)1)发送至终端设备。示例性地,该第一配置信息可以用于指示CORESET和SearchSpace,下文将会对CORESET和SearchSpace进行具体介绍。
终端设备在公共检测空间接收第一DCI时,终端设备在公共检测空间盲检测第一DCI。具体的,终端设备可以在公共检测空间的一个或多个候选时频资源位置上检测第一DCI。该第一DCI用于调度第一下行数据,示例性地,该第一DCI用于指示承载该第一下行数据的信道(如PDSCH)的传输参数,该第一DCI为网络设备使用该终端设备已知的RNTI加扰的DCI,终端设备使用已知的RNTI对检测到的第一DCI进行解扰。例如,终端设备已知可能用于对第一DCI进行加扰的一个或多个RNTI,终端设备使用该一个或多个RNTI中的至少一个RNTI对第一DCI尝试解扰,如果使用该一个或多个RNTI中的一个RNTI对第一DCI解扰成功,则终端设备可以获取承载该第一下行数据的信道的传输参数,以确定承载该第一下行数据的信道的资源位置。
在本申请实施例中,使用终端设备的RNTI对第一DCI进行加扰包括:使用该RNTI加扰承载该DCI的PDCCH的循环冗余校验(Cyclic Redundancy Check,CRC)。
步骤S303,网络设备向终端设备发送第一下行数据。
例如,网络设备根据第一下行数据的传输参数发送第一下行数据。
该第一下行数据用于指示一个新的检测空间的配置。该第一下行数据可以是寻呼消息、随机接入响应(random access response,RAR)或MsgB(消息B)。
在本申请实施例中,RAR可以是终端设备采用四步接入法接入网络设备时,网络设备向终端设备发送的消息2。在四步接入法中,第一步,终端设备通过物理随机接入信道(physical random access channel,PRACH)向网络设备发送接入前导(preamble),即向网络设备发送消息1;第二步,接收到接入前导后,网络设备向终端设备发送随机接入响应RAR,即网络设备向终端设备发送消息2,RAR可以指示PUSCH的资源位置和/或网络设 备在第一步接收到的接入前导;第三步,终端设备根据消息2指示的PUSCH的资源位置,通过PUSCH向网络设备发送消息3;第四步,接收到消息3后,网络设备可以向终端设备发送消息4。可选地,消息3中可以包括RRC建立请求(RRCSetupResuest)消息或者RRC恢复请求(RRCResumeResuest)消息。可选地,消息4中可以包括以下信息中的一种或多种:RRC建立(RRCSetup)消息、RRC恢复(RRCResume)消息、消息3中的PUSCH的应答(acknowledgement)/否定应答(negative acknowledgement,NACK)、和功率控制命令等。
在本申请实施例中,消息B可以是终端设备采用两步接入法接入网络设备时,网络设备向终端设备发送的消息。第一步,终端设备通过PRACH向网络设备发送接入前导(preamble),并可以通过PUSCH向网络设备发送上行数据,即终端设备向网络设备发送消息A;第二步,接收到消息A后,网络设备向终端设备发送消息B。可选地,消息A中可以包括RRC建立请求(RRCSetupResuest)消息或者RRC恢复请求(RRCResumeResuest)消息。可选地,消息B中可以包括以下信息中的一种或多种:RRC建立(RRCSetup)消息、RRC恢复(RRCResume)消息、消息A中的PUSCH的ACK/NACK、和功率控制命令等。
示例性地,若终端设备的状态为RRC非连接态,则网络设备可以在公共检测空间对该终端设备发起寻呼,则该第一下行数据可以为公共检测空间可承载的任意一种DCI所调度的消息,例如,寻呼消息,承载该寻呼消息的信道为PDSCH。网络设备在公共检测空间发送用于调度寻呼消息的第一DCI,该第一DCI用于指示承载该寻呼消息的PDSCH的传输参数。具体的,该第一DCI为终端设备已知的P-RNTI加扰后的DCI,终端设备在公共检测空间检测第一DCI,并根据P-RNTI对第一DCI进行解扰,该第一DCI指示的资源位置为承载寻呼消息的PDSCH的资源位置。该寻呼消息可以是第一下行数据,该第一下行数据用于指示第二检测空间的配置。可选的,该第一下行数据还可以是RAR或MsgB。下面将分别对第一下行数据为寻呼消息、RAR或MsgB进行介绍。
步骤S304,终端设备根据接收到的第一DCI接收第一下行数据。
终端设备根据第一DCI指示的传输参数接收第一下行数据。该第一下行数据用于向终端设备指示第二检测空间,例如,第一下行数据可包含第二检测空间的第二配置信息,终端设备可根据该第二配置信息确定第二检测空间的资源位置,示例性地,第二配置信息用于指示CORESET和SearchSpace。下文将会对CORESET和SearchSpace进行具体介绍。
步骤S305,网络设备在第二检测空间发送第二DCI。
具体的,网络设备在第一下行数据指示的第二检测空间中发送第二DCI。示例性地,该第二DCI为终端设备已知的RNTI加扰后的DCI,例如,网络设备为该终端设备分配的临时RNTI(即TC-RNTI),该TC-RNTI可以是承载于第一下行数据中,终端设备根据第一下行数据包含的TC-RNTI对第二DCI进行解扰。
本申请中第二DCI用于调度第二下行数据,示例性地,该第二DCI中携带承载该第二下行数据的信道的传输参数。
步骤S306,终端设备在第二检测空间接收第二DCI。
具体的,终端设备在从网络设备接收的第一下行数据指示的第二检测空间中检测第二DCI,示例性地,第一下行数据包含网络设备为终端设备分配的TC-RNTI,终端设备使用该TC-RNTI对检测到的第二DCI进行解扰,获取该第二DCI中携带的承载第二下行数据 的信道的传输参数,以确定承载第二下行数据的信道的资源位置。
步骤S307,网络设备向终端设备发送第二下行数据。
具体的,网络设备根据第二下行数据的传输参数发送第二下行数据,该第二下行数据为该终端设备特定的数据。
步骤S308,终端设备根据该第二DCI接收第二下行数据。
下面通过具体的实施例对图3所示的具体实现方法进行说明。
【实施例1】——通过寻呼消息来指示第二下行数据的传输参数;
如图4所示,为本申请实施例提供的一种应用场景示意图。示例性地,图4中的每个大方框均表示为一个时间单元,例如一个时隙(slot)。下面对上述图4中涉及的部分通信术语进行解释说明:
1)P-DCI:P-RNTI加扰的DCI可以称为P-DCI。P-DCI可以是一个组公共DCI(Group Common DCI),或该终端设备特定的DCI,用于调度寻呼消息,寻呼消息承载在P-PDSCH中。P-DCI对应于图3所示方法流程中的第一DCI。P-DCI可以被小区中的所有终端设备接收,或者可以被包括该终端设备的一组终端设备接收。
2)P-PDSCH:承载寻呼消息的PDSCH,由P-DCI调度,该P-PDSCH可以是一个公共的下行数据信道。可选的,寻呼消息中包含被寻呼的一个或多个终端设备的标识。可选的,寻呼消息中包括网络设备向被寻呼的终端设备发送的数据。示例性地,寻呼消息中包含被寻呼的终端设备的ID和与该ID对应的数据,例如,图4中的P-PDSCH for UE1是指UE1的P-PDSCH或数据。可选地,图4中的P-PDSCH中还可以包括P-PDSCH for UE2,是指该P-PDSCH中承载的UE2的数据或P-PDSCH,其中,P-PDSCH for UE2未在图4中示出。
3)P-PDSCH for UE1:承载于寻呼消息中,指UE1的数据,对应于图3中所示方法流程中承载第一下行数据的PDSCH,也就是说,本实施例中的第一下行数据属于寻呼消息,假设UE1为图3所示方法流程中的终端设备。
4)SD-PDSCH:承载下行数据的PDSCH,为一个非公开的下行数据信道,用于传输终端设备特定的数据,例如,如3所示方法流程中的第二下行数据,SD-PDSCH对应于图3所示方法流程中的承载第二下行数据的PDSCH。
接下来结合图4所示的场景介绍本申请图3所示的方法的具体实现过程,在图4所示的场景中,网络设备和终端设备主要执行以下流程:
步骤1,网络设备在第一检测空间发送P-DCI。
该第一检测空间可以属于公共检测空间,也可以属于该终端设备的专用检测空间。以公共检测空间为例,该公共检测空间中包括PDCCH的一个或多个候选资源位置,终端设备可以在PDCCH的公共检测空间内进行盲检测,以接收网络设备的调度信息。例如,该调度信息为用于调度寻呼消息的DCI(即P-DCI),该P-DCI可以调度处于RRC空闲态或RRC非激活态的终端设备接收寻呼消息,以使网络设备在与终端设备有数据传输需求,例如,该终端设备有对应的通话或数据必须接收时,可以通知终端设备与网络设备建立RRC连接。
如前所述,该第一检测空间的资源位置为终端设备已知的,例如,该资源位置为协议预定义,还可以是网络设备配置的。例如,第一检测空间由第一CORESET和第一SearchSpace共同确定,网络设备为终端设备配置第一检测空间的资源位置的过程包括:网 络设备将第一配置信息发送给终端设备,该第一配置信息用于指示第一CORESET和第一SearchSpace的配置信息。对应的,终端设备根据第一配置信息指示的第一CORESET和第一SearchSpace的配置信息确定第一检测空间的资源位置,对于根据第一CORESET和第一SearchSpace确定资源位置的过程将在下文详细介绍,此处不作重点说明。
步骤2,终端设备在第一检测空间盲检测P-DCI。
终端设备基于协议预定义或基于网络设备发送的第一配置信息确定第一检测空间的资源位置。该资源位置包含多个候选时频资源位置,终端设备在该多个候选时频资源位置上盲检测PDCCH,从而进行盲检测P-DCI。
步骤3,网络设备在P-DCI指示的资源位置发送寻呼消息(即图4中的P-PDSCH)。
步骤4,终端设备在P-DCI指示的资源位置接收P-PDSCH;
本申请实施例中P-PDSCH中承载有发送给该终端设备的第一下行数据,例如,P-PDSCH for UE1,该P-PDSCH for UE1用于指示第二检测空间的资源位置,示例性地,该P-PDSCH for UE1包含上文中用于确定第二检测空间的资源位置的第二配置信息;或包含有用于确定第二检测空间的资源位置的第二配置信息的索引值,终端设备根据预设的不同索引值与第二配置信息的对应关系确定P-PDSCH for UE1指示的索引值对应的第二配置信息。
步骤5,终端设备根据第二配置信息确定第二检测空间的资源位置。
如前所述,第二配置信息包含CORESET和SearchSpace,终端设备根据P-PDSCH for UE1指示的CORESET和SearchSpace共同确定第二检测空间的资源位置。
下面以第二配置信息包含的CORESET和SearchSpace为例,对CORESET和SearchSpace进行详细介绍:
一、CORESET
CORESET的配置信息包括但不限于下列信息中的一项或多项:
1)时域资源长度(duration),指目标资源占据的符号数。可选的,该参数的取值范围为1~3。其中,这里的目标资源是指该参数用于配置的资源,例如,该CORESET为第二CORESET时,目标资源为第二检测空间的资源。可选的,时域资源长度可以是预配置的。
2)频域资源位置(frequencyDomainResources)。网络设备可以通过比特图(bitmap)指示终端设备所使用的频段(band)中可用的资源块组(RBG(RB Group),包括频域6个连续RB)。终端设备所使用的band可以是终端驻留的band,即为终端设备可搜索到网络设备广播的同步信号块(synchronization signal block,SSB)所在的频段。该频段指的是终端设备所驻留的小区的频域资源,或所驻留的带宽部分的频域资源。
下面对RBG进行介绍:
如图5所示,1个RBG在频域包括一个或多个(如6个)RB,1个RB频域包括12个子载波,频域一个子载波和时域一个符号对应一个RE(resource element,资源元素)。其中,RE是用于将信道/信号映射到时频资源上进行传输的最小时频资源单元。
其中,bitmap中的每个比特用于指示一个对应的RBG是否属于目标资源,示例性地,bitmap对应的为该终端设备所驻留的带宽部分的所有RBG,对于bitmap中的某一个比特,如果该比特的值为第一值(如“1”),表示该比特对应的一个RBG属于目标资源,如果该比特的值为第二值(如“0”),表示该比特对应的RBG不属于目标资源。需要说明的是,上述仅为举例,也可以是该比特的值为“0”时,表示该比特对应的RBG属于该目标资源, 该比特的值为“1”,表示该比特对应的RBG不属于该目标资源,本申请实施例对于比特的值与对应的规则不作限定。
二、SearchSpace
SearchSpace的配置信息包括但不限于下列信息中的一项或多项:
1)周期和周期内的偏移(monitoringSlotPeriodicityAndOffset),以时隙为单位,包含监听周期(Periodicity)和偏置(Offset)。
其中,监听周期是指一个监听周期包含的slot的数量。
偏置(Offset)是指在每个监听周期内,目标资源占据的起始slot,相对于该监听周期的起始slot的偏移,可选的,监听时隙长度可以是预配置的,配置的值可以为0或其它整数。
2)监听时隙长度(duration),是指目标资源占据的slot的长度,或者是目标资源占据的slot的数量。可选的,监听时隙长度可以是预配置的。
3)监听符号位置(monitoringSymbolsWithinSlot),是指在目标资源所在的每个slot内,目标资源占据的起始符号相对于该slot的起始符号的偏移。可选的,监听符号位置可以是预配置的,配置的值可以为0或其它整数。
为便于区分,本申请实施例将CORESET包含的duration称为duration1,将SearchSpace包含的duration称为duration2。
举例来说,如图6所示,为本申请实施例提供的根据表1所示的第二CORESET和第二SearchSpace的配置参数确定第二检测空间的资源位置的示意图。
表1
Figure PCTCN2020072337-appb-000001
需要说明的是,图6未示出frequencyDomainResources下的bitmap中属于或不属于目标资源的每一组RBG,图6示出的频域资源仅为一组属于目标资源的RBG,以及该组RBG中属于目标资源的时域资源。可以理解为图6所示的为bitmap中一个比特对应的一个RBG,示例性地,若该比特为1,表示该RBG属于第二检测空间(目标资源)的频域资源,若该比特为0,则表示该RBG不属于第二检测空间的频域资源,以此类推。
下面以图6中示出的一组RBG以及表1所示的参数为例,对确定该RBG组中属于目标资源的时域资源的流程进行介绍说明:
图6中在时间维度上陈列的每个较大的矩形框表示一个slot,每个填充为黑色格纹的矩形框表示属于目标资源的slot,这里的目标资源是指属于第二检测空间的资源。图6中以斜阴影填充的每个较小的矩形框表示属于目标资源的符号。
参见图6,表1中的SearchSpace的Periodicity为10,表示每个监听周期包括10个slot;
表1中的SearchSpace的Offset为5,标识每个监听周期中目标资源占据的起始slot的位置与所在的监听周期的起始slot的偏移为5,即图6中目标资源占据的起始slot(黑色格纹的矩形框)为每个监听周期的第6个slot。
表1中的SearchSpace的duration2为3,表示每个监听周期内的目标资源的slot长度为3,即目标资源包含3个连续的slot,结合上述确定的目标资源的起始slot的位置确定目标资源的slot,对应图6中,目标资源为每个监听周期的第5至8个slot(即黑色格纹矩形 框)。
表1中的SearchSpace的monitoringSymbolsWithinSlot为2,表示每个目标资源所在的slot的起始符号与该slot的起始符号之间的偏移为2个符号,即图6中以一个目标资源所在的slot为例,在该slot中属于目标资源的起始符号为第3个符号;
表1中的CORESET的duration1为2,表示在目标资源所在的slot中属于目标资源的符号数量为2,结合上述确定的目标资源的起始符号的位置确定目标资源占据的符号,对应图6中的第3和第4个符号目标资源占据的符号(即斜阴影矩形框)。
上述参数共同确定了第二检测空间的资源位置,即终端设备盲检测DCI的一个或多个候选时频资源位置,例如,图6中黑色格纹矩形框部分表示的时频资源为盲检测DCI的候选时频资源位置,又例如,图6中斜阴影部分表示的时频资源为盲检测DCI的候选时频资源位置,且每个黑色格纹矩形块中的盲检测DCI的时频资源位置均如此。
网络设备可以在其中一个候选时频资源位置上向终端设备发送PDCCH,终端可以在该一个或多个候选时频资源位置上盲检测P-DCI。
上述仅为举例,本申请对于CORESET和SearchSpace的具体配置参数并不作限定,可选的,CORESET和SearchSpace中的部分或全部配置参数还可以是协议预定义的。例如,CORESET包含的配置参数为协议预定的,SearchSpace包含的配置参数为网络设备为终端设备配置的。
上述介绍了根据第二CORESET和第二SearchSpace的配置参数确定第二检测空间的资源位置的具体步骤,示例性地,由网络设备为终端设备配置第二检测空间的资源位置时,网络设备可以通过第一下行数据进行配置,下面以第一下行数据为例,对通过第一下行数据指示第二检测空间的资源位置的方式进行举例说明:
指示方式一,第一下行数据携带用于确定第二检测空间的资源位置的第二CORESET和/或第二SearchSpace的配置参数。
示例性地,通过第一下行数据的不同字段指示第二CORESET和/或第二SearchSpace包含的部分或全部配置参数的数值。也就是,第一下行数据包含frequencyDomainResources、duration1、Periodicity、duration2和monitoringSymbolsWithinSlot中一项或多项。对于第一下行数据中未包含的参数,可以是协议预定义的,也可以是网络设备通过其他信令配置的,例如,RRC信令如RRC释放消息或RRC暂停消息,本申请实施例对此不作限定。
指示方式二,第一下行数据携带用于确定第二检测空间的资源位置的第二CORESET和第二SearchSpace的组合对应的索引值。
示例性地,本申请实施例可以预设第二CORESET和第二SearchSpace的配置信息的不同的组合与不同的索引值的第一对应关系,如下表2所示,为本申请实施例提供的一种可能适用的第一对应关系的一具体示例:
表2
Figure PCTCN2020072337-appb-000002
网络设备发送的第一下行数据中携带第二CORESET和第二SearchSpace的配置信息的组合对应的索引值。在接收到第一下行数据后:终端设备基于与网络设备相同的第一对应关系,匹配接收到的第一下行数据携带的索引值对应的第二CORESET和第二SearchSpace的配置信息。
举例来说,以表2为例,第一下行数据携带的索引值为1,则终端设备基于表2所示的第一对应关系和接收到的第一下行数据携带的索引值1,确定第二CORESET和第二SearchSpace包含的配置参数的数值,例如duration1为3,Periodicity为10,为了简洁,此处不一一列举。
其中,表2中的/表示第一对应关系不包含该配置参数的数值,该配置参数的数值可以基于协议预定义,或由其他信令如RRC信令配置,或由第一下行数据配置,即该配置参数的数值不由第一下行数据携带的索引值确定,而是由第一下行数据携带该配置参数的具体数值。也就是说,第一下行数据中可以携带索引值,还可以携带第二CORESET和/或第二SearchSpace包含的部分或全部配置参数的数值。
本申请实施例可以包括一种组合方案,该组合方案中包括:第一下行数据指示部分或全部配置参数的参数值、第一下行数据指示部分或全部配置参数的索引值、和/或预定义(预配置)部分或全部参数。
举例来说,以表2为例,第一下行数据携带第二CORESET和第二SearchSpace的配置信息的组合对应的索引值,该索引值为2,第一下行数据还携带有Periodicity的数值指示,对于Offset则基于协议预定义。对应的,终端设备基于表2匹配索引值2对应的第二CORESET和第二SearchSpace的配置信息,即frequencyDomainResources为11111011101111,duration1为2,duration2为10,monitoringSymbolsWithinSlot为0,并根据第一下行数据携带的Periodicity的数值指示确定Periodicity的数值,以及基于协议对Offset的定义确定Offset的数值。
本申请实施例中,该第一对应关系可以是协议预定义的,或者是网络设备为终端配置的,例如,通过RRC信令配置的,如通过RRC释放消息或RRC暂停消息配置的,本申请实施例对此不作限定。
终端设备根据第一下行数据确定第二检测空间中的一个或多个候选时频资源位置,并在该一个或多个候选时频资源位置上盲检测第二DCI。
作为一种优化方案,本申请实施例还可以为第二检测空间配置有效次数和/或有效时间。
有效时间,用于指示在指定起始时间至有效时间内,通过上述第二CORESET和第二SearchSpace的配置信息确定的第二检测空间的资源位置的有效时间段。例如,该有效时间为100ms,指定起始时间为承载该有效时间信息的最后一个时隙,在该指定起始时间至之后的100ms内,为该有效时间对应的配置生效的时间,达到100ms后第二检测空间的配置失效,即第一下行数据指示的第二检测空间失效。需要说明的是,上述仅为举例,本申请对指定起始时间并不作限定,例如还可以是用于指示第二检测空间的资源位置的第一下行数据所在的最后一个时隙。
有效次数,用于指示终端设备在第二检测空间中检测第二DCI的次数,或用于指示终端设备在第二检测空间内检测到第二DCI的次数,或用于指示终端设备接收SD-PDSCH的次数。
举例来说,假设有效次数为3,该有效次数用于指示终端设备在第二检测空间中检测 第二DCI的次数,以图4为例,则终端设备在根据第一下行数据确定第二检测空间后,对第二检测空间进行检测,如图4所示,不论是否检测到第二DCI,终端设备在第二检测空间内检测第二DCI的次数达到3次后,终端设备确定的第二下行空间的资源位置失效。
若有效次数用于指示终端设备在第二检测空间内检测到第二DCI的次数,则在图4中,终端设备仅检测到2次第二DCI,该第二检测空间的资源位置仍生效,即终端设备还可以在确定的第二检测空间的资源位置上接收一个第二DCI。
若有效次数用于指示终端设备接收SD-PDSCH的次数,则终端设备在接收到3个SD-PDSCH后,上述终端设备确定的第二检测空间的资源位置失效。
上述仅为举例,本申请实施例对有效时间或有效次数对应的配置不作限定。
步骤6,网络设备在第二检测空间发送第二DCI,该第二DCI用于调度第二下行数据。
具体的,第二DCI携带承载第二下行数据的信道的传输参数,该传输参数用于确定该信道的传输参数。
步骤7,终端设备在第二检测空间检测第二DCI。
具体的,终端设备在上述步骤5中确定的第二检测空间的各候选时频资源位置上进行盲检测,以获取第二DCI。
本申请实施例中第二DCI可以是由终端设备已知的任意一种RNTI加扰的DCI,为方便描述,下面将终端设备已知的任意一种RNTI成为X-RNTI。
具体的,X-RNTI可以是如下的任意一种:
1)组公共RNTI,是指多个终端共用的RNTI,例如,一个或多个终端设备组的RNTI,即该一个或多个终端设备组均可使用该RNTI(如P-RNTI),解扰DCI。
2)终端设备的专有RNTI,是指针对一个终端设备配置的专有RNTI,即只有一个终端设备可使用该专有RNTI解扰DCI,例如C-RNTI、TC-RNTI或I-RNTI等。
应理解的是,X-RNTI为终端设备已知的任意一种RNTI,可以是基于协议预定义的,也可以是由网络设备为终端设备配置的,下面列举几种网络设备为终端设备配置RNTI的方式:
配置方式一:网络设备通过高层信令配置。
示例性地,网络设备通过高层信令如RRC信令,为终端设备配置RNTI。具体的RRC信令可以是RRC释放消息或RRC暂停消息。
配置方式二:网络设备通过第一下行数据配置。
示例性地,网络设备发送的第一下数据,例如图4中的P-PDSCH携带为终端设备分配的RNTI。
配置方式三:网络设备通过系统消息配置。
示例性地,网络设备将为终端设备配置的RNTI承载于系统消息中,并广播给多个终端设备。
其中,组公共RNTI可以通过上述配置方式1~配置方式3中的任一种方式进行配置。终端设备的专有RNTI可以通过上述配置方式1或配置方式2进行配置,当通过配置方式二进行配置时,承载终端设备的专有RNTI的第一下行数据可以是终端设备特定的数据,或者该第一下行数据承载于该终端设备的专用检测空间内。
步骤8,网络设备根据第二下行数据的传输参数发送第二下行数据,该第二下行数据为该终端设备特定的数据。
参见图4所示,该第二下行数据承载于SD-PDSCH上。
步骤9,终端设备根据第二DCI接收第二下行数据。
上述流程包括网络设备在第一检测空间寻呼终端设备的过程,本申请实施例对于发起寻呼的资源空间不作限定,例如,第一检测空间可以是公共检测空间,也可以是终端设备的专用检测空间。公共检测空间和终端设备的专用检测空间的实现方法流程可以相同,不同的是,公共检测空间可以是任意一个终端设备进行检测的资源空间,对于不同终端设备或者同一组终端设备,该空间的资源位置是相同的,而不同终端设备或不同终端设备组的专用检测空间的资源位置是不同的,可以理解为,终端设备的专用检测空间为该终端设备或一组终端设备组专用的资源空间,因此,在终端设备的专用检测空间实现本申请的技术方案时,在实现对处于RRC空闲态或RRC非激活态的终端设备的数据进行灵活调度的基础上,进一步提高了数据传输的安全性。
应理解的是,由于终端设备处于RRC空闲态或RRC非激活态时,网络设备与该终端设备释放了RRC连接,该终端设备不再上报自身的位置信息,因此,一种可选的场景是,本申请实施例中执行上述方法流程的网络设备可以不是该处于RRC非连接态的终端设备当时所在小区的网络设备,则在该场景下,可以由多个网络设备执行上述流程,例如,确定终端设备由RRC连接态转换为RRC非连接态时的位置,由距离该位置为预设距离的区域范围内的部分或全部网络设备来执行,上述图3或实施例1中的网络设备所执行的方法流程。另一种可实施的方式为,网络侧确定该终端设备所在的小区,并由该小区的网络设备来执行图3或实施例1中的网络设备所执行的方法流程。例如,该网络设备为基站时,则执行本申请技术方案的网络设备可以是该终端设备所在小区的服务基站。
示例性地,在确定RRC非连接态的终端设备所在的小区时,若该终端设备为RRC非激活态时,如前所述,由于核心网知道终端设备在哪个或哪些网络设备的覆盖范围内或者管理范围内,知道通过哪个或哪些基站可以定位到或者找到该终端设备,因此还可以由核心网设备确定终端设备所在的小区。若该终端设备为RRC空闲态或RRC非激活态时,可以由多个网络设备共同对该终端设备发起寻呼,并根据该终端设备的应答消息来确定该终端设备所在的小区,从而确定该终端设备所在的小区。
示例性地,由多个网络设备共同确定终端设备所在小区的步骤可以包括:
步骤a,网络侧(包含1个或多个网络设备)向该终端设备发起寻呼,例如,多个网络设备向该终端设备发送寻呼消息,或通过其他RRC空闲态或RRC非激活态的下行传输方式向终端设备发送下行消息,例如,通过网络侧配置给终端在RRC空闲态或RRC非激活态所用的专用检测空间,发送终端设备专属的下行消息。
步骤b,终端设备接收网络侧的寻呼或其他形式的下行消息,向网络侧发送上行反馈信息,以通知网络侧该终端设备所在的小区。例如,该上行反馈信息可以是前导码或PUSCH。示例性地,如果是前导码,该前导码可以是该终端设备专属的,或在该终端设备专属的时频资源上发送的,由此网络侧可以根据检测到的前导码或检测到前导码的时频资源位置,确定检测到的前导码为该终端设备发送的,以此确定该终端设备所在的小区;再示例性地,如果是PUSCH,该PUSCH的时频资源可以是该终端设备专属的,或该PUSCH中携带了该终端设备的ID,由此网络侧可以根据接收PUSCH中的ID或接收到该PUSCH的时频资源位置,确定该终端设备所在的小区。
步骤c,网络侧接收终端设备的上行反馈信息,以确定该终端设备所在的小区,并由 该终端设备所在小区的网络设备执行图3或实施例1中的网络设备所执行的方法流程。
其中,在步骤c中若网络侧设备从终端设备接收到的上行信息为前导码,则对于网络侧设备而言,可以认为该终端设备发起了一次随机接入过程。
示例性地,在随机接入过程中,首先由终端设备向网络设备发送前导码,随后,网络设备可向该终端设备发送随机接入响应(random access response,RAR)。应理解的是,随机接入过程包含四步随机接入(4-step RACH)和两步随机接入(2-step RACH)。其中,在4-step RACH中,网络设备在第二步向该终端设备发送的响应信息,在4-step RACH中可称为RAR(或Msg2),在2-step RACH中称为MsgB。应理解的是,MsgB中也可以包括RAR。
因此,本申请实施例针对上述场景,提供了另一种技术方案,即针对上述网络侧寻呼终端设备时接收到的前导码,网络设备通过MsgB或RAR指示第二检测空间的资源位置,下面通过实施例2进行具体说明。
【实施例2】通过RAR或MsgB来指示第二下行数据的传输参数;
如图7所示,为本申请实施例提供的针对上述图3的方法流程对应的场景示意图。示例性地,图7中的每个大方框均表示为一个时间单元(如slot)。图7中的RA-RNTI加扰的DCI对应于图3中所示方法流程的第一DCI;图7中的承载RAR或MsgB对应于承载图3中所示方法流程的第一下行数据;SD-PDSCH为承载第二下行数据的PDSCH。
与实施例1类似,网络设备在发起寻呼前,为终端设备配置第一检测空间,该第一检测空间可以位于公共检测空间,或终端设备的专用检测空间。具体的,该第一检测空间可以是PDCCH中终端设备在随机接入过程中接收RAR或MsgB的控制信息的检测空间。
对于网络设备向终端设备发送第一检测空间的第一资源配置信息以及终端设备根据第一资源配置信息确定第一检测空间的资源位置的方式,请参见上述实施例1的具体描述,此处不再赘述。
在图7所示的场景中,网络设备和终端设备主要执行以下流程:
步骤1,网络设备在第一检测空间发送RA-RNTI加扰的DCI,该DCI用于调度RAR或MsgB。
对于RA-RNTI,应理解的是,网络设备和终端设备可以根据终端设备发送的前导码和发送时间计算得到该终端设备对应的RA-RNTI,且网络设备和终端设备的计算结果相同,即网络设备计算得到的RA-RNTI和终端设备计算得到的RA-RNTI相同,因此,该RA-RNTI除了可以由协议预定义或网络设备配置外,还可以由终端设备自行通过计算确定。
步骤2,终端设备在第一检测空间检测RA-RNTI加扰的DCI。
步骤3,网络设备在RA-RNTI加扰的DCI指示的资源位置发送RAR或MsgB,该RAR或MsgB用于指示第二检测空间的资源位置。
对于根据RAR或MsgB指示第二检测空间的资源位置的方式可以参见上述实施例1中的指示方式一或指示方式二的具体描述,此处不再重复说明。
除用于指示第二检测空间的资源位置外,该RAR或MsgB中还可携带有分配给该终端设备的RNTI,例如,TC-RNTI,该TC-RNTI可用于对第二DCI进行加扰,下文将进行介绍。
其中,网络设备是发送RAR还是发送MsgB,可根据终端设备发起的随机接入过程而定,例如,终端设备发起的是4-Step RACH,则网络设备可向终端设备发送RAR,若终端 设备发起的是2-Step RACH,则网络设备可向终端设备发送MsgB。
步骤4,终端设备根据使用RA-RNTI解扰的DCI指示的资源位置接收RAR或MsgB,并根据RAR或MsgB确定第二检测空间的资源位置。
对于终端设备根据RAR或MsgB确定第二检测空间的资源位置的方式请参见上述实施例1的相关描述,此处不再重复说明。
同样的,实施例2中还可以配置RAR或MsgB指示的第二检测空间的资源位置的有效次数或有效时间,具体请参见上述实施例1的相关描述,此处不再赘述。
步骤5,网络设备在RAR或MsgB指示的第二检测空间发送第二DCI,该第二DCI用于调度第二下行数据。
如前所述,该第二DCI可以由X-RNTI进行加扰,该X-RNTI可以是可以为上述介绍的终端设备已知的任一种RNTI,请参见上述对于X-RNTI的相关描述,此处不再重复说明。除此之外,该X-RNTI还可以是上文中RAR或MsgB中携带的网络设备为终端设备分配的TC-RNTI。一种可选的实施方式,当RAR或MsgB中携带有TC-RNTI时,可意为网络设备指示终端设备使用该TC-RNTI解扰第二DCI。
具体的,该第二DCI携带有第二下行数据的传输参数,用于确定承载第二下行数据的SD-PDSCH的资源位置。
步骤6,终端设备在第二检测空间检测第二DCI,并根据第二DCI确定承载第二下行数据的SD-PDSCH的传输参数。
步骤7,网络设备根据SD-PDSCH的传输参数发送承载第二下行数据的SD-PDSCH,该第二下行数据为终端设备特定的数据。
步骤8,终端设备根据第二DCI指示的传输参数接收承载第二下行数据的SD-PDSCH。
对于步骤7网络设备发送第二下行数据,以及步骤8终端设备通过第二DCI接收第二下行数据的方式请参见上述实施例的相关描述,此处不再赘述。
以上通过实施例1和实施2对本申请实施例提供的第一种数据传输方法进行了详细的说明。上述方法,终端设备处于RRC非连接态时,网络设备通过寻呼消息或MsgB或RAR指示第二DCI的第二检测空间,并通过第二DCI调度第二下行数据,以此通过第二DCI灵活调度第二下行数据。在此方式下,即使终端设备处于RRC空闲态或RRC非激活态时,仍可多次接收寻呼消息或MsgB或RAR,并在接收到寻呼消息或MsgB或RAR后执行上述流程,以获取新的第二下行数据的传输参数,使得终端设备处于RRC非连接态时的下行数据的传输参数可以根据需要进行灵活配置,当上述实施例的方法流程中的第一下行数据或第二DCI或第二下行数据为终端设备特定的数据时,或在终端设备的专用检测空间实施上述方法流程时,还可以在灵活调度下行数据的基础上,提高数据传输的安全性。
本申请实施例还提出了第二种数据传输方法,通过第一下行数据指示第二下行数据的传输参数,相对于图3所示的方法,在实现灵活调度下行数据的基础上,进一步减少信令开销,缩短时延。
请参见图8所示,为本申请实施例提供的另一种数据传输的方式流程图,同样的,该方法可应用于图2所示的通信系统中,为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。该方法包括以下步骤:
步骤S801,网络设备在第一检测空间发送第一DCI,该第一DCI用于调度第一下行数据;具体的,该第一下行数据可以是寻呼消息、RAR或MsgB,该第一检测空间可以是 公共检测空间,也可以是该终端设备的专用检测空间,本申请实施例对此不作限定。
第一DCI用于指示用于承载第一下行数据的信道的传输参数。
步骤S802,终端设备在第一检测空间接收第一DCI,该终端设备可以为RRC非连接态;
与图3所示的方法流程相似,在此步骤之前,终端设备已知第一检测空间的资源位置,对于第一检测空间的配置方式请参见图3方法流程或实施例1以及实施2中的相关描述,此处不再赘述。
步骤S803,网络设备根据第一下行数据的传输参数发送第一下行数据,该第一下行数据用于指示第二下行数据的传输参数。
第一下行数据用于指示用于承载第二下行数据的信道的传输参数。
如上文中的实施例1和实施例2可知,该第一下行数据可以为寻呼消息、RAR或MsgB。
步骤S804,终端设备根据第一DCI接收第一下行数据。
步骤S805,网络设备根据第二下行数据的传输参数发送第二下行数据,该第二下行数据为该终端设备特定的数据。
网络设备可以根据第一下行数据指示的传输参数发送数据信道,该数据信道上承载第二下行数据。
步骤S806,终端设备根据第一下行数据指示的传输参数接收第二下行数据。
终端设备根据第一下行数据指示的传输参数接收数据信道,从而接收该数据信道上承载的第二下行数据。
下面结合具体实施例对图8所示的实现方法进行举例说明。
【实施例3】
如图9a所示,为本申请实施例提供的一种针对上述图8所示的方法流程的场景示意图。示例性地,图9a中的每个大方框均表示为一个时间单元(如slot)。图9a中的P-DCI对应于图8中所示方法流程的第一DCI;图9a中的P-PDSCH为承载寻呼消息的PDSCH,该P-PDSCH包含的P-PDSCH for UE1对应于承载图8中所示方法流程的第一下行数据,也就是说,本实施例中的第一下行数据属于寻呼消息,UE1对应于图8所示方法流程的终端设备;SD-PDSCH为承载第二下行数据的PDSCH。
该实施例3与实施例1类似,网络设备在发起寻呼前,为终端设备配置第一检测空间,该第一检测空间可以是公共检测空间或是终端设备的专用检测空间。对于网络设备向终端设备发送第一检测空间的第一资源配置信息以及终端设备根据第一资源配置信息确定第一检测空间的资源位置的方式,请参见上述实施例1的具体描述,此处不再赘述。
在图9a所示的场景中,网络设备和终端设备主要执行以下步骤:
步骤1,网络设备在第一检测空间发送P-DCI,该P-DCI用于调度P-PDSCH。
该P-DCI可以为P-RNTI加扰后的DCI,具体的请参见实施例1的相关描述,此处不再赘述。
步骤2,终端设备在第一检测空间检测P-DCI。
步骤3,网络设备根据P-PDSCH的传输参数发送P-PDSCH,该P-PDSCH包含第一下行数据,即P-PDSCH for UE1,该第一下行数据用于指示SD-PDSCH的传输参数。
步骤4,终端设备根据P-DCI指示的传输参数接收P-PDSCH,并根据P-PDSCH中的第一下行数据,即P-PDSCH for UE1确定SD-PDSCH的传输参数。
示例性地,第一下行数据携带第二下行数据的传输参数,用于确定承载第二下行数据的SD-PDSCH的资源位置。对于根据P-PDSCH for UE1指示SD-PDSCH的传输参数的方式可以参见上述实施例1中的指示方式一或指示方式二的具体描述,此处不再重复说明。
可选的,该第一下行数据可以用于指示第二下行数据的重复信息,示例性地,该第一下行数据还包括下列信息中的部分或全部:
SD-PDSCH的重复周期、SD-PDSCH的重复次数、SD-PDSCH的有效时间或SD-PDSCH的有效次数。
其中,重复周期,可以是SD-PDSCH的资源位置之间的间隔时间,例如,可以接收第二下行数据的SD-PDSCH之间的时间间隔为10slot,其中,每个SD-PDSCH上携带的数据可以相同也可以不同。
重复次数,可以是终端设备接收到的SD-PDSCH的次数,或者SD-PDSCH的资源位置生效的次数,例如,上述重复周期为10slot,则不论终端设备在SD-PDSCH的资源位置上是否接收到数据,该SD-PDSCH重复出现3次后,该配置失效,即根据第一下行数据确定的SD-PDSCH的资源位置以及之后重复的SD-PDSCH的资源位置都失效。
对于SD-PDSCH的有效次数和/或有效时间,请参见上述实施例中对于有效次数和有效时间的相关描述,此处不再重复说明。
步骤5,网络设备根据SD-PDSCH的传输参数发送SD-PDSCH,SD-PDSCH为该终端设备特定的数据。
步骤6,终端设备根据P-PDSCH for UE1指示的传输参数接收SD-PDSCH。
上述P-PDSCH for UE1为寻呼消息,即上述实施例3为通过寻呼消息指示第二下行数据的传输参数的一种实现方式,另一种实现方式为通过RAR或MsgB来指示第二下行数据的传输参数,下面通过实施例4进行简要介绍。
【实施例4】
如图9b所示,为本申请实施例提供的另一种针对上述图8所示的方法流程的场景示意图。示例性地,图9b中的每个大方框均表示为一个时间单元(如slot)。图9b中的RA-RNTI加扰的DCI对应于图8中所示方法流程的第一DCI;图9b中的RAR或MsgB对应于图8中所示方法流程的第一下行数据;SD-PDSCH为承载第二下行数据的PDSCH。
该实施例4与实施例1~3类似,网络设备在发起寻呼前,为终端设备配置第一检测空间,该第一检测空间可以是公共检测空间或是终端设备的专用检测空间。具体的,该第一检测空间可以是PDCCH中终端设备在随机接入过程中接收RAR或MsgB的控制信息的检测空间。对于网络设备向终端设备发送第一检测空间的第一资源配置信息以及终端设备根据第一资源配置信息确定第一检测空间的资源位置的方式,请参见上述实施例1~3的具体描述,此处不再赘述。
在如9b所示的场景中,网络设备和终端设备主要执行以下流程:
步骤1,网络设备在第一检测空间发送RA-RNTI加扰的DCI,该DCI用于调度RAR或MsgB。具体请参见上述实施例1~3的相关描述,此处不再赘述。
步骤2,终端设备在第一检测空间检测RA-RNTI加扰的DCI。
步骤3,网络设备根据RAR或MsgB的传输参数发送RAR或MsgB,该RAR或MsgB用于指示SD-PDSCH的传输参数。
具体地,网络设备根据下行数据信道的传输参数向终端设备发送该下行数据信道,该 下行数据信道上用于承载RAR或MsgB。
步骤4,终端设备根据RA-RNTI加扰的DCI指示的传输参数接收RAR或MsgB,并根据RAR或MsgB确定SD-PDSCH的传输参数。
具体的,对于终端设备根据RAR或MsgB确定SD-PDSCH的传输参数的方式请参见上述实施例1~3的相关描述,此处不再重复说明。
步骤5,网络设备根据SD-PDSCH的传输参数发送SD-PDSCH,该SD-PDSCH承载的第二下行数据为该终端设备特定的数据。
步骤6,终端设备根据RAR或MsgB指示的传输参数接收SD-PDSCH。
同样的,在实施例4中还可以配置,通过RAR或MsgB指示SD-PDSCH的传输参数或SD-PDSCH的重复信息,具体请参见上述实施例1~3的相关描述,此处不再赘述。
实施例3中,可以直接通过P-PDSCH指示第二下行数据的传输参数,以此减少了指示第二下行数据的传输参数的信令开销,缩短了接收第二下行数据的时延。
本申请实施例提供了第三种数据传输方法,请参见图10为该方法的流程示意图。同样的,该方法可应用于图2所示的通信系统中,为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。该方法包括以下步骤:
步骤S1001,网络设备在第一检测空间发送第一DCI,该第一DCI用于调度公共数据和第二下行数据。具体的,该第一检测空间可以是公共检测空间,也可以是该终端设备的专用检测空间,本申请实施例对此不作限定。
具体地,网络设备向终端设备发送第一DCI,该第一DCI用于指示数据信道的传输参数,该数据信道用于承载公共数据和第二下行数据。
步骤S1002,终端设备在第一检测空间接收第一DCI,该终端设备可以为RRC非连接态。
与图3所示的方法流程相似,在此步骤之前,终端设备已知第一检测空间的资源位置,对于第一检测空间的配置方式请参见图3方法流程或实施例1以及实施2中的相关描述,此处不再赘述。
步骤S1003,网络设备向终端设备发送公共数据和第二下行数据,该第二下行数据为终端设备特定的数据。
具体地,网络设备根据数据信道的传输参数向终端设备发送下行数据信道,该下行数据信道用于承载公共数据和第二下行数据。
步骤S1004,终端设备根据第一DCI接收公共数据和第二下行数据。
下面结合具体实施例对图10所示的实现方法进行举例说明。
【实施例5】
如图11所示,为本申请实施例提供的一种图10所示的方法流程的场景示意图。在图11所示的应用场景中,该矩形框可以表示为1个时间单元(如slot),在图11所示的场景中,P-DCI为用于调度公共数据和第二下行数据的DCI,对应于图10所示方法中的第一DCI;P-DCI所调度的整个资源空间可以划分为至少两部分,如图11所示,可以将该整个资源空间划分为P-PDSCH part1和P-PDSCH part2两个部分。其中一个部分用于承载终端设备的公共数据,剩余的另一部分用于承载至少一个终端设备特定的数据。
举例来说,本申请实施例中的公共数据可承载于P-PDSCH part1中,该公共数据包含寻呼消息。至少一个终端设备特定的数据承载与P-PDSCH part2中,也就是,P-PDSCH part2 又可以细分为多个属于不同终端设备的资源空间,用于承载该终端设备特定的数据,对应图10所示方法中第二下行数据。例如,P-PDSCH part1中包含UE1的寻呼消息,P-PDSCH part2中包含该UE1的第二下行数据。可选地,UE1的寻呼消息中包含用于指示UE1的第二下行数据的参数的数据,如图11中的P-PDSCH for UE1,UE1可根据P-PDSCH for UE1指示的第二下行数据的参数,确定第二下行数据在P-PDSCH part2中的资源位置。
示例性地,本申请实施例可采用公共编码方式对P-PDSCH part1承载的消息进行编码,在该编码方式下,P-PSDCH part1承载的消息可以被所有终端设备接收和解调。P-PDSCH part2可以分为至少一个终端设备的资源空间,即可以承载至少一个终端设备特定的数据。例如,图11所示,对于一个终端设备,该终端设备的第二下行数据占据P-PDSCH part2的一部分,P-PDSCH part2的其余部分可以承载其他终端设备的特定的数据。在P-PDSCH part2上承载的不同终端设备的部分或全部消息可以使用对应终端设备的专有信息进行加扰或加密,使用该终端设备的专有信息进行加扰或加密的数据为该终端设备特定的数据,也就是说,该特定的数据如第二下行数据仅能该终端设备或该终端设备所在的终端设备组解扰,因此,该方式提高了数据传输的安全性。
在该实施例中,由P-DCI(第一DCI)调度P-PDSCH part1的公共数据和P-PDSCH part2中终端设备的专有数据,其调度方式可以有多种,下面列举几种:
调度方式一:通过P-DCI同时调度公共数据和终端设备的专有数据;
具体的,P-DCI指示的资源空间为P-PSDCH part1和P-PSDCH part2的总和。也就是,P-DCI同时调度公共数据(P-PSDCH part1)和终端设备的专有数据(P-PSDCH part2),或者可以理解为,P-DCI调度的为一个整体的资源空间,在该调度方式下,可以通过指示P-PSDCH part1和P-PSDCH part2占据整体资源空间的比例来指示P-PSDCH part1的具体的资源空间和P-PSDCH part2的具体的资源空间,P-PSDCH part1和P-PSDCH part2的划分方式可以多种,下面列举几种:
划分方式一:协议预定义两者的划分比例;
例如,协议预定义P-PSDCH part1占据P-DCI指示的整体资源空间的时域和/或频域的比例n/m。其中n和m为非零正整数,且n不大于m,例如n/m为1/2、1/3或2/5等。示例性地,P-PSDCH part1和P-PSDCH part2占据整体资源空间的比例之和为1,因此,通过其中任一个传输块占据整体资源空间的比例,便可以确定另一传输块占据整体资源空间的比例,例如,协议预定义P-PSDCH part1占据整体资源空间时域和频域的1/3,则可以确定P-PSDCH part2占据整体资源空间时域和频域的2/3。
还可以预定义P-PSDCH part1的时域位置位于P-PSDCH part2的时域位置之前,P-PSDCH part1的频域位置位于P-PSDCH part2的频域位置之前,或者协议预定义的比例n/m还可以携带符号。例如,若该比例值为正数时,表示P-PSDCH part1的时域位置位于P-PSDCH part2的时域位置之前,该比例值为负数时,表示P-PSDCH part1的时域位置位于P-PSDCH part2的时域位置之后。或者由协议预定义比例值,由P-DCI携带表示两者时域位置关系和/或频域位置关系的至少一个标识位,本申请实施例对此不作限定。
举例来说,协议预定义P-PSDCH part1占据P-DCI指示的整个时域空间的1/3,占据整个频域空间的1/4,则终端设备可以确定P-PSDCH part1的时域空间占据整个时域空间的后1/3,P-PSDCH part1的频域空间占据整个频域空间的后1/4,剩余的空间为P-PSDCH part2的资源空间,即P-PSDCH part2的时域空间占据整个时域空间的前2/3,P-PSDCH part2的 频域空间占据整个频域空间的前3/4。
划分方式二:由系统信息或高层信令配置P-PSDCH part1和P-PSDCH part2的划分方式可,或者配置P-PSDCH part1和/或P-PSDCH part2在P-DCI调度的资源空间中的位置。例如,由系统信息SIB1中向小区内所有的终端广播该配置;或由网络设备通过RRC信令配置,如将上述比例值承载于RRC释放消息或RRC暂停消息中配置给终端设备。
划分方式三:由第一DCI(例如P-DCI或RA-RNTI加扰的DCI)配置P-PSDCH part1和P-PSDCH part2的划分方式可,或者配置P-PSDCH part1和/或P-PSDCH part2在P-DCI调度的资源空间中的位置。
示例性地,可以通过DCI的部分字段指示该比例值时,例如该字段包含4个比特位,由其中的两个连续的比特位上的比特指示n的值,由剩余两个连续的比特位上的比特指示m的值,终端设备以此确定该比例值n/m。
再示例性地,预设不同索引值与不同比例值的第二对应关系,通过P-DCI携带该第二对应关系中的某一索引值,在接收到P-DCI后:终端设备基于第二对应关系,确定从网络设备接收的P-DCI携带的索引值对应的比例值。
具体的,该字段可以是DCI中的已有字段,或者是DCI中的扩展字段。
应理解的是,DCI包括若干种具体的格式,例如格式1_0、0_0等,不同格式的DCI所实现的功能不同,包含的内容也有所区别。例如调度PDSCH的DCI,用于指示所调度的PDSCH的传输块大小、编码机制、调制编码机制、冗余版本、和/或资源位置(时域和/或频域资源位置)等信息。又例如调度PUSCH的DCI,包含MSC索引字段,用于指示PUSCH的调制阶数和码率。在通过DCI的已有字段指示该比例值时,网络设备可以通过一个额外的信令指示终端设备对该DCI的已有字段进行新的解读。例如,通过调度PUSCH的DCI的MCS索引值指示该比例值时,触发终端设备根据该MCS索引值确定调制阶数和码率的同时,还可以根据该MCS索引值和预设的第二对应关系确定比例值。
其中,第二对应关系可以由协议预定义或网络设备通过高层信令为终端设备配置。例如该高层信令为RRC释放消息或RRC暂停消息。具体可以参见第一对应关系的配置方式,此处不再赘述。
调度方式二:通过第一DCI分别调度公共数据和终端设备的专有数据。
具体的,可以是由第一DCI的不同字段分别指示承载公共数据的信道的传输参数和承载终端设备的专有数据的信道的传输参数。该字段可以是第一DCI的已有字段或扩展字段。
示例性地,可以通过第一DCI的第一部分字段指示P-PSDCH part1的传输参数,通过第一DCI的第二部分字段指示P-PSDCH part2的传输参数。
上述内容为指示终端设备确定P-PSDCH part1和P-PSDCH part2的资源位置的具体介绍,在图11中第二下行数据承载于P-PSDCH part2中,实际上,第二下行数据可以承载于P-PSDCH part1,也可以承载于P-PSDCH part2。其中,P-PSDCH part2中也可以划分为多个终端设备对应的专有资源空间,则网络设备在向该终端设备发送第二下行数据时,还可以指示该第二下行数据位于P-PSDCH part2中的资源位置,本申请实施例指示第二下行数据的传输参数方式有多种,下面列举几种:
方式一:由第一DCI来指示;
以图11为例,第一DCI为P-DCI,由P-DCI指示第二下行数据的传输参数,示例性地,P-DCI可携带第二下行数据的传输参数,例如,第二下行数据的时域资源信息和/或频 域资源信息,用于确定第二下行数据的资源位置,具体请参见下文方式二中由P-PDSCH来指示第二下行数据的传输参数的具体描述,此处不再赘述。
方式二:由公共数据指示;
由第一DCI调度的公共数据指示,例如以图11为例,该公共数据中包含的P-PSDCH for UE1指示。
具体的,由P-PSDCH for UE1指示第二下行数据的传输参数。示例性地,P-PSDCH for UE1包含第二下行数据的时域资源信息和/或频域资源信息,终端设备可以根据P-PSDCH for UE1包含的第二下行数据的时域资源信息和/或频域资源信息确定第二下行数据的资源位置。例如,P-PSDCH for UE1包含第二下行数据的时域资源信息和频域资源信息,终端设备可以根据时域资源信息确定时域资源位置,根据频域资源信息确定频域资源位置。再例如,还可以通过协议预定义第二下行数据的时域资源或频域资源,终端设备结合协议预定和P-PSDCH for UE1,确定第二下行数据的资源位置。再例如,还可以通过其他信令指示第二下行数据的时域资源或频域资源,终端设备结合其他信令的指示和P-PSDCH for UE1,确定第二下行数据的资源位置。
举例来说,假设P-PSDCH for UE1包含第二下行数据的时域资源信息和频域资源信息。
示例性地,该P-PSDCH for UE1包含的频域资源信息用于指示该第二下行数据所在的RB的起始位置和RB长度信息,例如,该频域资源信息为承载第二下行数据的RB的标识和数量。该P-PSDCH for UE1包含的时域资源信息可以包含该第二下行数据的具体的时域资源位置信息,例如,该时域资源信息为无线帧的帧号和时隙编号,可选的,还可以包含符号编号,终端设备根据该时域资源信息确定第二下行数据的时域资源位置以及时域长度。再例如,该时域资源信息还可以用于指示该第二下行数据的起始时域位置和时域长度信息;比如,该时域资源信息包含时间间隔(或称为定时偏差),该时间间隔可以是承载第一DCI的PDCCH的第一指定位置与承载第二下行数据的PDSCH的第二指定位置之间的时间间隔,其中,第一指定位置和第二指定位置可以是相对于不同资源的同一相对位置,或者是相对于不同资源的同一相对位置,例如,该时间间隔可以是承载第一DCI的PDCCH的起始时域位置与承载第二下行数据的PDSCH的起始时域位置之间的时间间隔。又例如,该时间间隔可以是承载第一DCI的PDCCH的尾端时域位置与承载第二下行数据的PDSCH的起始时域位置之间的时间间隔。再例如,该时间间隔可以是承载第一DCI的PDCCH的起始时域位置与承载第二下行数据的PDSCH的尾端时域位置之间的时间间隔,本申请实施例对此不作限定。
方式三,协议预定义;具体的,由协议预定义第二下行数据的时域资源和/或频域资源。
方式四,其他信令指示,例如,RRC信令,具体如RRC释放消息或RRC暂停消息,本申请实施例对指示第二下行数据的传输参数的信令不作限定。
基于上述图10的方法流程,在实现下行数据包资源位置的灵活配置的同时,还可以更进一步减少信令开销,缩短时延,并且提高了数据传输的安全性。
上述通过实施例1~实施5介绍了网络设备为处于RRC非连接态的终端设备配置下行数据传输资源的方法,本申请实施例还可以为该终端设备配置用于发送反馈信息的上行时频资源。应理解的是,终端设备在从网络设备接收到数据如第二下行数据后,可以向网络设备发送针对第二下行数据的反馈信息,以向网络设备指示终端设备对第二下行数据的译码结果。例如,该反馈信息为HARQ-ACK,若终端设备接收到网络设备发送的数据且译 码正确,则向网络设备发送肯定应答(acknowledge character,ACK)。若终端设备未接收到网络设备发送的数据,或接收到该数据后译码错误,则向网络设备发送否定应答(negative acknowledgement,NACK),对应的,网络设备接收到终端设备发送的NACK后,可向该终端设备重新发送该数据。
接下来,对网络设备为终端设备配置上行传输参数的方式进行介绍。
如图12所示,为本申请实施例提供的一种配置上行传输参数的场景示意图。在图12所示的场景中,可以由第二下行数据指示上行信道(如PUSCH或PUCCH)的传输参数,该上行信道用于携带针对第二下行数据的反馈信息。例如,第二下行数据中包含该上行信道的上行时频资源,例如时域资源信息和/或频域资源信息,用于确定该上行信道的资源位置,具体类似根据上述实施例5的方式二中由P-PDSCH指示第二下行数据的传输参数的相关描述,此处不再赘述。
可选地,本申请实施例中,用于承载反馈信息的上行信道可以是PUSCH或PUCCH。该上行信道的传输参数包括以下参数中的一种或多种:时域资源位置、频域资源位置、MCS、调制机制、编码机制、TBS、RV、跳频指示、和功率控制命令。
需要说明的是,图12仅为示意,该第二下行数据可以是图4、图7、图9a、图9b或图11中的第二下行数据,图12所示的方式可以与上述任意一种实现方式进行组合,本申请实施例对此不作限定。
该第二下行数据除了用于指示上行信道的上行时频资源的传输参数之外,还可以携带ACK/NACK的反馈规则,例如,序列图样的配置信息,例如,序列图样(Pattern)包括Pattern-1和Pattern-2,反馈规定为Pattern-1表示ACK,Pattern-2表示NACK。
如图13所示,为本申请实施例提供的又一种配置上行传输参数(如时频资源)的场景示意图。在图13所示的场景中,可以通过第一下行数据(例如图13中的P-PDSCH for UE1)配置上行信道的传输参数,该上行信道用于携带针对第二下行数据的反馈信息。具体配置方式类似上述根据对于图12场景下的配置方式的相关描述,此处不再重复说明。
需要说明的是,图13仅为示意,该第一下行数据可以是图4、图9a或图11中的第一下行数据,也可以由图7或图9b中RAR或MsgB指示上行时频资源,本申请实施例对此不作限定。
如图14所示,为本申请实施例提供的第三种配置上行传输参数(如时频资源)的场景示意图。在图14所示的场景中,通过调度第二下行数据的DCI(即图14中的第二DCI)来配置上行信道的传输参数,该上行信道用于携带针对第二下行数据的反馈信息。例如,通过DCI的已有字段或扩展字段来指示上行时频资源,具体配置方式类似上述实施例5的方式2中由P-PDSCH指示第二下行数据的传输参数的相关描述,此处不再重复说明。
需要说明的是,图14仅为示意,该第二DCI可以是图4、或图7中的第二DCI,即X-RNTI加扰的DCI,图14所示的方式可以与上述任意一种实现方式进行组合,本申请实施例对此不作限定。
本申请实施例中,终端设备根据上述方式配置的上行传输参数发送反馈信息,该反馈信息可以包含下列中的一项或多项:
一,基于序列的反馈,即反馈信息为序列,可用于指示译码结果。
具体的,该序列可以是Preamble、上行控制信道携带的信号或上行数据信道携带的信号,如解调参考信号(demodulation reference signal,DMRS),或信道探测参考信号(sounding  reference signal,SRS)。
示例性地,可以通过不同的序列图样或序列值指示不同的译码结果。例如,如前所述,序列图样为Pattern-1为ACK,序列图样为Pattern-2为NACK,即当终端设备发送的序列图样为Pattern-1时,表示终端设备接收到数据且译码正确,若终端设备发送的序列图样为Pattern-2时,表示终端设备译码错误或未接收到数据。
二,基于上行数据信道的反馈;具体的,该上行数据信道携带HARQ-ACK信息,终端设备通过ACK/NACK信息指示自身对第二下行数据的接收结果,例如,接收到第二下行数据且解码正确,则反馈ACK信息,未接收到第二下行数据或接收到第二下行数据后位解码正确,则反馈NACK信息。
上述本申请实施例中,分别从终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,如图15所示,本申请实施例还提供一种装置1500用于实现上述方法中终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1500可以包括:处理模块1501和通信模块1502。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
示例性地,当该装置1500实现图3所示的流程中终端设备的功能时,通信模块1502,用于在公共检测空间中从网络设备接收第一DCI;在所述第二检测空间中从网络设备接收第二DCI以及接收第二下行数据。
再示例性地,处理模块1501,用于利用通信模块1502在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI,利用所述通信模块1502接收第一下行数据;利用所述通信模块1502在所述第二检测空间中从网络设备接收第二DCI,根据所述第二DCI,利用所述通信接口接收第二下行数据。
处理模块1501和通信模块1502执行的其它方法可以参考图3所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置1500实现图8所示的流程中终端设备的功能时,通信模块1502,用于在公共检测空间中从网络设备接收第一DCI;接收第一下行数据;接收第二下行数据。
再示例性地,处理模块1501,用于利用通信模块1502在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI,利用所述通信接口接收第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;根据所述第二下行数据的传输参数,利用通信模块1502接收第二下行数据。
处理模块1501和通信模块1502执行的其它方法可以参考图8所示的方法流程中的描 述,这里不再赘述。
示例性地,当该装置1500实现图10所示的流程中终端设备的功能时,通信模块1502,用于在公共检测空间中从网络设备接收第一DCI;接收公共数据和第二下行数据。
再示例性地,处理模块1501,用于利用通信模块1502在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI利用通信模块1502接收公共数据和第二下行数据,所述第二下行数据是终端设备特定的数据;根据所述第一DCI,利用所述通信接口1502从网络设备接收第二下行数据。
处理模块1501和通信模块1502执行的其它方法可以参考图10所示的方法流程中的描述,这里不再赘述。
该装置1500还可以实现实施例1~实施例5所示的流程中终端设备的功能,具体可以参考实施例1~实施例5所示的方法流程中的描述,这里不再赘述。
如图16所示为本申请实施例提供的装置1600,图16所示的装置可以为图15所示的装置的一种硬件电路的实现方式。该通信装置可适用于实现图3、图8或图10所示出的流程图中,执行上述方法实施例中终端设备的功能。为了便于说明,图16仅示出了该通信装置的主要部件。
图16所示的装置1600包括至少一个处理器1620,用于实现本申请实施例提供的方法中终端设备的功能。
装置1600还可以包括至少一个存储器1630,用于存储程序指令和/或数据。存储器1630和处理器1620耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1620可能和存储器1630协同操作。处理器1620可能执行存储器1630中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置1600还可以包括通信接口1610,用于通过传输介质和其它设备进行通信,从而用于装置1600中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。处理器1620利用通信接口1610收发数据,并用于实现图3、图8或图10对应的实施例中终端设备所执行的方法。
示例性地,当该装置1600实现图3所示的流程中终端设备的功能时,通信接口1610,用于在公共检测空间中从网络设备接收第一DCI;在所述第二检测空间中从网络设备接收第二DCI以及接收第二下行数据。
再示例性地,处理器1620,用于利用通信接口1610在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI,利用所述通信接口1610接收第一下行数据;利用所述通信接口1610在所述第二检测空间中从网络设备接收第二DCI,根据所述第二DCI,利用所述通信接口接收第二下行数据。
处理器1620和通信接口1610执行的其它方法可以参考图3所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置1600实现图8所示的流程中终端设备的功能时,通信接口1610,用于在公共检测空间中从网络设备接收第一DCI;接收第一下行数据;接收第二下行数据。
再示例性地,处理器1620,用于利用通信接口1610在公共检测空间中从网络设备接 收第一DCI,根据所述第一DCI,利用通信接口1610接收第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;根据所述第二下行数据的传输参数,利用通信接口1610接收第二下行数据。
处理器1620和通信接口1610执行的其它方法可以参考图8所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置1600实现图10所示的流程中终端设备的功能时,通信接口1610,用于在公共检测空间中从网络设备接收第一DCI;接收公共数据和第二下行数据。
再示例性地,处理器1620,用于利用通信接口1610在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI利用通信接口1610接收公共数据和第二下行数据,所述第二下行数据是终端设备特定的数据;根据所述第一DCI,利用通信接口1610从网络设备接收第二下行数据。
处理器1620和通信接口1610执行的其它方法可以参考图10所示的方法流程中的描述,这里不再赘述。
示例性地,该装置1600还可以实现实施例1~实施5所示的流程中终端设备的功能,具体可以参考实施例1~实施5所示的方法流程中的描述,这里不再赘述。
本申请实施例中不限定上述通信接口1610、处理器1620以及存储器1630之间的具体连接介质。本申请实施例在图16中以存储器1630、处理器1620以及通信接口1610之间通过总线1640连接,总线在图116中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
与上述构思类似,如图17所示,本申请实施例还提供一种装置1700用于实现上述方法中网络设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1700可以包括:处理模块1701和通信模块1702。
示例性地,当该装置1700实现图3所示的流程中网络设备的功能时,通信模块1702,用于在公共检测空间中向终端设备发送第一DCI;在所述第二检测空间中向所述终端设备发送第二DCI;向所述终端设备发送第一下行数据和第二下行数据。
再示例性地,处理模块1701,用于利用通信模块1702在公共检测空间中向终端设备发送第一DCI;利用通信模块1702在所述第二检测空间中向所述终端设备发送第二DCI;利用通信模块1702向所述终端设备发送第一下行数据和第二下行数据。
处理模块1701和通信模块1702执行的其它方法可以参考图3所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置1700实现图8所示的流程中网络设备的功能时,通信模块1702,用于在公共检测空间中向终端设备发送第一DCI;向终端设备发送第一下行数据;和,根据第二下行数据的传输参数向所述终端设备发送第二下行数据。
再示例性地,处理模块1701,用于利用通信模块1702在公共检测空间中向终端设备发送第一DCI;利用通信模块1702向所述终端设备发送第一下行数据;和,利用通信模块1702根据第二下行数据的传输参数向所述终端设备发送第二下行数据。
处理模块1701和通信模块1702执行的其它方法可以参考图8所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置1700实现图10所示的流程中网络设备的功能时,通信模块1702,用于在公共检测空间中向终端设备发送第一DCI;和向终端设备发送公共数据和第二下行数据。
再示例性地,处理模块1701,用于利用通信模块1702在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度公共数据和第二下行数据,所述第二下行数据是所述终端设备特定的数据;利用通信模块1702发送公共数据和第二下行数据。
处理模块1701和通信模块1702执行的其它方法可以参考图10所示的方法流程中的描述,这里不再赘述。
该装置1700还可以实施例1~实施例5所示的流程中网络设备的功能,具体可以参考实施例1~实施例5所示的方法流程中的描述,这里不再赘述。
如图18所示为本申请实施例提供的装置1800,图18所示的装置可以为图17所示的装置的一种硬件电路的实现方式。该通信装置可适用于图3、图8或图10所示出的流程图中,执行上述方法实施例中网络设备的功能。为了便于说明,图18仅示出了该通信装置的主要部件。
图18所示的装置1800包括至少一个处理器1820,用于实现本申请实施例提供的方法中网络设备的功能。
装置1800还可以包括至少一个存储器1830,用于存储程序指令和/或数据。存储器1830和处理器1820耦合。处理器1820可能和存储器1830协同操作。处理器1820可能执行存储器1830中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置1800还可以包括通信接口1810,用于通过传输介质和其它设备进行通信,从而用于装置1800中的装置可以和其它设备进行通信。处理器1820利用通信接口1810收发数据,并用于实现图3、图8或图10对应的实施例中网络设备所执行的方法。
示例性地,当该装置1800实现图3所示的流程中网络设备的功能时,通信接口1810,用于在公共检测空间中向终端设备发送第一DCI;在所述第二检测空间中向所述终端设备发送第二DCI;向所述终端设备发送第二下行数据。
再示例性地,处理器1820,用于利用通信接口1810在公共检测空间中向终端设备发送第一DCI;利用通信接口1810在所述第二检测空间中向所述终端设备发送第二DCI;利用通信接口1810向所述终端设备发送第二下行数据。
处理器1820和通信接口1810执行的其它方法可以参考图3所示的方法流程中的描述,这里不再赘述。
示例性地,当该装置1800实现图8所示的流程中网络设备的功能时,通信接口1810,用于在公共检测空间中向终端设备发送第一DCI;根据第一DCI指示的所述第二下行数据的传输参数向所述终端设备发送第二下行数据。
再示例性地,处理器1820,用于利用通信接口1810在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于指示第二下行数据的传输参数;根据所述第二下行数据的传输参数,利用通信接口1810向所述终端设备发送第二下行数据。
处理器1820和通信接口1810执行的其它方法可以参考图8所示的方法流程中的描述, 这里不再赘述。
示例性地,当该装置1800实现图10所示的流程中网络设备的功能时,通信接口1810,用于在公共检测空间中向终端设备发送第一DCI;和向终端设备发送公共数据和第二下行数据。
再示例性地,处理器1820,用于利用通信接口1810在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度公共数据和第二下行数据,所述第二下行数据是所述终端设备特定的数据;利用通信接口1810发送公共数据和第二下行数据。
处理器1820和通信接口1810执行的其它方法可以参考图10所示的方法流程中的描述,这里不再赘述。
示例性地,该装置1800还可以实现实施例1~实施5所示的流程中网络设备的功能,具体可以参考实施例1~实施5所示的方法流程中的描述,这里不再赘述。
本申请实施例中不限定上述通信接口1810、处理器1820以及存储器1830之间的具体连接介质。本申请实施例在图18中以存储器1830、处理器1820以及通信接口1810之间通过总线1840连接,总线在图18中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
需要说明的是,在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种数据传输方法,其特征在于,包括:
    在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二检测空间,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    在所述第二检测空间中从网络设备接收第二DCI,根据所述第二DCI接收第二下行数据,所述第二下行数据是终端设备特定的数据;
    其中,所述终端设备为RRC非连接态。
  2. 如权利要求1所述的方法,其特征在于,所述第一下行数据用于指示第二检测空间,包括:
    所述第一下行数据用于指示控制资源集合和搜索空间,所述控制资源集合和搜索空间用于确定第二检测空间。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一下行数据还用于指示所述第二检测空间的有效时间和/或有效次数。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    根据上行传输参数向网络设备发送所述第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、第二DCI、第一下行数据或第二下行数据指示的。
  5. 一种数据传输方法,其特征在于,包括:
    终端设备为RRC非连接态时,在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    根据所述第二下行数据的传输参数接收第二下行数据,所述第二下行数据是所述终端设备特定的数据。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    根据上行传输参数向网络设备发送所述第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、第一下行数据或第二下行数据指示的。
  7. 一种数据传输方法,其特征在于,包括:
    终端设备为RRC非连接态时,在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收寻呼消息和第二下行数据;
    其中,所述第二下行数据是终端设备特定的数据。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    根据上行传输参数向网络设备发送第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、公共数据或第二下行数据指示的。
  9. 一种数据传输方法,其特征在于,包括:
    在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度第一下行数据,所述第一下行数据用于指示第二检测空间,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    在所述第二检测空间中向所述终端设备发送第二DCI,所述第二DCI用于调度第二下行数据,所述第二下行数据是所述终端设备特定的数据;
    向所述终端设备发送第二下行数据;
    其中,所述终端设备为RRC非连接态。
  10. 如权利要求9所述的方法,其特征在于,所述第一下行数据用于指示第二检测空间,包括:
    所述第一下行数据用于指示第二检测空间的控制资源集合CORESET和搜索空间searchspace。
  11. 如权利要求9或10所述的方法,其特征在于,所述第一下行数据还用于指示所述第二检测空间的有效时间和/或有效次数。
  12. 如权利要求9-11任一项所述的方法,其特征在于,还包括:
    根据上行传输参数从所述终端设备接收第二下行数据的反馈信息,所述上行传输参数是由所述第一DCI、第二DCI、第一下行数据或第二下行数据指示的。
  13. 一种数据传输方法,其特征在于,包括:
    在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    向所述终端设备发送第二下行数据,所述第二下行数据是所述终端设备特定的数据;
    其中,所述终端设备为RRC非连接态。
  14. 如权利要求13所述的方法,其特征在于,还包括:
    根据上行传输参数从所述终端设备接收第二下行数据的反馈信息,所述上行传输参数是由第一DCI、第二DCI、第一下行数据或第二下行数据指示的。
  15. 一种数据传输方法,其特征在于,包括:
    在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度寻呼消息和第二下行数据,所述第二下行数据是所述终端设备特定的数据;
    向所述终端设备发送寻呼消息和第二下行数据;
    其中,所述终端设备为RRC非连接态。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    根据上行传输参数从所述终端设备接收第二下行数据的反馈信息,所述上行传输参数是由第一DCI、第二DCI、第一下行数据或第二下行数据指示的。
  17. 一种通信装置,其特征在于,用于实现如权利要求1-8中任一项所述的方法。
  18. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1-8中任一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二检测空间,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    在所述第二检测空间中从网络设备接收第二DCI,根据所述第二DCI接收第二下行数据,所述第二下行数据是终端设备特定的数据;
    其中,所述终端设备为RRC非连接态。
  20. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信 接口:
    在终端设备为RRC非连接态时,在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    根据所述第二下行数据的传输参数接收第二下行数据,所述第二下行数据是所述终端设备特定的数据。
  21. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    在终端设备为RRC非连接态时,在公共检测空间中从网络设备接收第一DCI,根据所述第一DCI接收寻呼消息和第二下行数据;
    其中,所述第二下行数据是终端设备特定的数据。
  22. 一种通信装置,其特征在于,用于实现如权利要求9-16中任一项所述的方法。
  23. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求9-16中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度第一下行数据,所述第一下行数据用于指示第二检测空间,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    在所述第二检测空间中向所述终端设备发送第二DCI,所述第二DCI用于调度第二下行数据,所述第二下行数据是所述终端设备特定的数据;
    向所述终端设备发送第二下行数据;
    其中,所述终端设备为RRC非连接态。
  25. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度第一下行数据,所述第一下行数据用于指示第二下行数据的传输参数,其中,所述第一下行数据为寻呼消息、随机接入响应RAR或消息B MsgB;
    向所述终端设备发送第二下行数据,所述第二下行数据是所述终端设备特定的数据;
    其中,所述终端设备为RRC非连接态。
  26. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口:
    在公共检测空间中向终端设备发送第一DCI,所述第一DCI用于调度寻呼消息和第二下行数据,所述第二下行数据是所述终端设备特定的数据;
    向所述终端设备发送寻呼消息和第二下行数据;
    其中,所述终端设备为RRC非连接态。
  27. 一种通信系统,其特征在于,包括权利要求17-21任一项所述的通信装置,和权利要求22-26任一项所述的通信装置。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被一个或多个处理器执行时,实现如权利要求1-16 中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-16中任一项所述的方法。
PCT/CN2020/072337 2020-01-15 2020-01-15 一种数据传输方法及装置 WO2021142682A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/072337 WO2021142682A1 (zh) 2020-01-15 2020-01-15 一种数据传输方法及装置
EP20914555.6A EP4075896A4 (en) 2020-01-15 2020-01-15 DATA TRANSMISSION METHOD AND APPARATUS
CN202080086987.7A CN114830781A (zh) 2020-01-15 2020-01-15 一种数据传输方法及装置
CA3163654A CA3163654A1 (en) 2020-01-15 2020-01-15 Data transmission method and apparatus
US17/866,248 US20220369387A1 (en) 2020-01-15 2022-07-15 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072337 WO2021142682A1 (zh) 2020-01-15 2020-01-15 一种数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/866,248 Continuation US20220369387A1 (en) 2020-01-15 2022-07-15 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021142682A1 true WO2021142682A1 (zh) 2021-07-22

Family

ID=76863466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072337 WO2021142682A1 (zh) 2020-01-15 2020-01-15 一种数据传输方法及装置

Country Status (5)

Country Link
US (1) US20220369387A1 (zh)
EP (1) EP4075896A4 (zh)
CN (1) CN114830781A (zh)
CA (1) CA3163654A1 (zh)
WO (1) WO2021142682A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201529A1 (zh) * 2022-04-19 2023-10-26 北京小米移动软件有限公司 资源配置方法及装置
WO2024012369A1 (zh) * 2022-07-14 2024-01-18 华为技术有限公司 一种数据传输的方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992383A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 随机接入响应消息发送方法和节点
CN107888361A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种公共控制信息的传输方法、装置和设备
US20180270799A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
CN109246828A (zh) * 2017-07-11 2019-01-18 普天信息技术有限公司 多子带系统中下行业务处理方法、基站及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992383A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 随机接入响应消息发送方法和节点
CN107888361A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种公共控制信息的传输方法、装置和设备
US20180270799A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
CN109246828A (zh) * 2017-07-11 2019-01-18 普天信息技术有限公司 多子带系统中下行业务处理方法、基站及用户设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201529A1 (zh) * 2022-04-19 2023-10-26 北京小米移动软件有限公司 资源配置方法及装置
WO2024012369A1 (zh) * 2022-07-14 2024-01-18 华为技术有限公司 一种数据传输的方法和通信装置

Also Published As

Publication number Publication date
CA3163654A1 (en) 2021-07-22
US20220369387A1 (en) 2022-11-17
CN114830781A (zh) 2022-07-29
EP4075896A4 (en) 2022-12-21
EP4075896A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
JP2024010195A (ja) ビーム失敗の報告方法、装置及び記憶媒体
US11864240B2 (en) Telecommunications apparatus and methods
EP4369833A2 (en) Method and apparatus for transmitting and receiving reference signal for sidelink data in wireless communication system
US20210258922A1 (en) Resource configuration method and apparatus
US20230038936A1 (en) Control information transmission method
US20220369387A1 (en) Data transmission method and apparatus
US11350308B2 (en) Method and apparatus for transmitting buffer status report in wireless communication system
WO2017113077A1 (zh) 一种上行紧急业务传输方法、基站、用户设备及系统
WO2020047765A1 (zh) 针对免授权的上行传输的反馈方法、装置及存储介质
WO2021103026A1 (zh) 在带宽部分上进行通信的方法
CN112187401B (zh) 多时间单元传输方法及相关装置
CN116137704A (zh) 侧行链路通信方法及相关装置
WO2021170032A1 (zh) 一种随机接入响应方法及装置
WO2022222079A1 (zh) 资源配置方法、设备及存储介质
CN115734202A (zh) 旁链路通信方法及设备
JP2024501702A (ja) Nr v2xにおける端末タイプによるsl drx動作方法及び装置
CN111586847B (zh) 通信方法、装置及存储介质
WO2021142652A1 (zh) 上行数据传输的方法和装置
US20240008001A1 (en) Method for resource selection and first device
WO2022205365A1 (zh) 激活时间的确定方法、装置、设备及存储介质
WO2022077470A1 (zh) 数据信道的传输方法
US20230403729A1 (en) Resource selection method and apparatus, device and storage medium
WO2024059972A1 (zh) 一种数据传输方法及装置
WO2022188685A1 (zh) 物理上行控制信道传输的方法、终端设备和网络设备
WO2017161538A1 (zh) 一种物理下行控制信道的盲检方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163654

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020914555

Country of ref document: EP

Effective date: 20220712

NENP Non-entry into the national phase

Ref country code: DE