WO2022077470A1 - 数据信道的传输方法 - Google Patents

数据信道的传输方法 Download PDF

Info

Publication number
WO2022077470A1
WO2022077470A1 PCT/CN2020/121612 CN2020121612W WO2022077470A1 WO 2022077470 A1 WO2022077470 A1 WO 2022077470A1 CN 2020121612 W CN2020121612 W CN 2020121612W WO 2022077470 A1 WO2022077470 A1 WO 2022077470A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
information
grant
indicate
terminal device
Prior art date
Application number
PCT/CN2020/121612
Other languages
English (en)
French (fr)
Inventor
张云昊
李超君
侯海龙
郑娟
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/121612 priority Critical patent/WO2022077470A1/zh
Publication of WO2022077470A1 publication Critical patent/WO2022077470A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and apparatus for transmitting data channels.
  • network devices and terminal devices can perform data transmission in corresponding service scenarios.
  • the service scenario includes but is not limited to at least one of the following: enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), and large-scale machine type communication ( massive machine-type communications, mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC massive machine-type communications
  • the network device and the terminal device can perform uplink data transmission, for example, the terminal device sends uplink data to the network device; and/or, the network device and the terminal device can perform downlink data transmission, for example, the network device sends downlink data to the terminal device.
  • uplink data transmission for example, the terminal device sends uplink data to the network device
  • downlink data transmission for example, the network device sends downlink data to the terminal device.
  • How to improve the communication efficiency of network equipment and terminal equipment is a research hotspot.
  • the embodiments of the present application provide a data channel transmission method, which is used to improve the access success rate in the random access process.
  • a method for transmitting a data channel is provided.
  • the method can be applied to a terminal device side and executed by a device (such as a terminal device, chip, circuit, or module, etc.) on the terminal device side.
  • the method includes: receiving first information from a network device, wherein the first information includes a random access response RAR corresponding to a first random access preamble, and the first information is used to indicate a first authorization and a second authorization,
  • the first grant and the second grant correspond to the first random access preamble, the first grant is used to indicate the grant of the first physical uplink shared channel PUSCH of the first terminal device, and the second grant is used for Indicate the authorization of the second PUSCH of the second terminal device; according to the first authorization, send the first PUSCH of the first terminal device to the network device.
  • the first terminal device is of the first type
  • the second terminal device is of the second type.
  • the first terminal device and the second terminal device are of different types.
  • the first terminal device is a REDCAP terminal
  • the second terminal device is an eMBB terminal.
  • the first information is the RAR, and the RAR is used to indicate the first authorization and the second authorization;
  • the first information includes the first downlink control information DCI and all the the RAR, the first DCI is used to schedule the RAR, the first DCI is used to indicate the first grant, and the RAR is used to indicate the second grant; or, the first information includes the first Downlink control information DCI and the RAR, the first DCI is used to schedule the RAR, the first DCI and the RAR are used to indicate the first grant, and the RAR is used to indicate the first grant 2.
  • the first information includes the first Downlink control information DCI and the RAR, the first DCI is used to schedule the RAR, the first DCI and the RAR are used to indicate the first grant, and the RAR is used to indicate the first grant 2.
  • the first grant is used to indicate at least one of the following transmission parameters of the first PUSCH: time-domain resource location information; frequency-domain resource location information; demodulation reference signal DMRS information; repetition times; frequency information.
  • the system design can be simplified, the existing signaling can be reused to indicate the first authorization, and the signaling overhead can be saved.
  • the first authorization when the first authorization includes a first identifier, the first authorization further indicates the transmission parameters of the first PUSCH, and when the first authorization does not include the first identifier,
  • the transmission parameters of the first PUSCH are default transmission parameters;
  • the first authorization includes a first identifier, and when the value of the first identifier is a first value, the first authorization also indicates the first PUSCH transmission parameter, when the value of the first identifier is not the first value or the second value, the first PUSCH transmission parameter is the default transmission parameter; or, the first authorization includes the first identifier, when the value of the first identifier is the first value, the first grant also indicates the transmission parameter of the first PUSCH, when the value of the first identifier is not the first value or the second value , the transmission parameters of the first PUSCH and the transmission parameters of the second PUSCH are the same.
  • the default transmission parameters are agreed in a protocol; or, the method further includes: receiving system information from the network device, where the system information is used to indicate the default transmission parameters.
  • the signaling overhead of the first grant can be adjusted according to the system load, so that the signaling overhead used to indicate the first grant can be reduced.
  • the method further includes: receiving a second DCI from a network device; wherein the second DCI is scrambled according to the TC-RNTI of the first terminal device, the first terminal
  • the TC-RNTI of the device is independent of the TC-RNTI of the second terminal device; and/or the second DCI is transmitted in the PDCCH search space of the physical downlink control channel of the first terminal device,
  • the PDCCH search space of the first terminal device is independent of the search space of the second terminal device.
  • the TC-RNTI of the first terminal device plus M is equal to the TC-RNTI of the second terminal device, where M is an integer; or, on the physical downlink shared channel PDSCH scheduled by the second DCI
  • the carried information indicates the TC-RNTI of the first terminal device.
  • the M is agreed in a protocol; the second DCI is used to indicate the M; the first information is used to indicate the M; or the M is indicated by system information.
  • This method enables the first terminal device and the second terminal device to receive the Msg4 independently, avoiding that one Msg4 carries too much information when only one of the terminal devices actually accesses, thereby reducing signaling overhead.
  • a method for transmitting a data channel which can be applied to a terminal device side and executed by a device (such as a terminal device, chip, circuit, or module, etc.) on the terminal device side.
  • the method includes:
  • the upstream initial bandwidth portion is the upstream initial bandwidth portion of the first terminal device.
  • the first terminal device and the second terminal device share the set of candidate frequency hopping ranges.
  • the upstream initial bandwidth portion of the first terminal device is independent of the upstream initial bandwidth portion of the second terminal device.
  • the range of the frequency hopping is in is the bandwidth of the upstream initial bandwidth part BWP, and X is an integer greater than or equal to 1.
  • the first terminal device and the second terminal device share the same upstream initial bandwidth portion.
  • the X is specified in the protocol; the RAR is used to indicate the X; the X is indicated by system information; or the X is indicated by the first DCI, and the first DCI is used for Schedule the RAR.
  • This method can be applied to random access procedures.
  • the frequency hopping range can be configured according to the capabilities of each terminal device, so that various types of All terminal devices can be successfully accessed, which improves the access success rate of the terminal devices.
  • a data channel transmission method is provided.
  • the method can be applied to a network device side and executed by a device (such as a network device, chip, circuit, or module, etc.) on the network device side.
  • the method includes: sending first information, wherein the first information includes a random access response RAR corresponding to a first random access preamble, the first information is used to indicate a first authorization and a second authorization, the first A grant and a second grant correspond to the first random access preamble, the first grant is used to indicate the grant of the first physical uplink shared channel PUSCH of the first terminal device, and the second grant is used to indicate the second Grant of the second PUSCH of the terminal device; receiving the first PUSCH from the first terminal device.
  • the first information includes a random access response RAR corresponding to a first random access preamble
  • the first information is used to indicate a first authorization and a second authorization
  • the first A grant and a second grant correspond to the first random access preamble
  • the first grant is used to indicate
  • a method for transmitting a data channel is provided.
  • the method can be applied to a network device side and executed by a device (such as a network device, chip, circuit, or module) on the network device side.
  • the method includes: sending a random access response RAR, wherein the RAR is used to indicate a transmission parameter of a first physical uplink shared channel PUSCH; in a first time part and a second time part, receiving the RAR from a first terminal device The first PUSCH; wherein, the first PUSCH has frequency hopping in the first time part and the second time part, and the range of the frequency hopping is determined according to the uplink initial bandwidth part.
  • an apparatus in a fifth aspect, is provided, and the apparatus may be a terminal device or other apparatus capable of implementing the method described in the first aspect and/or the second aspect.
  • the other device can be installed in the terminal equipment, or can be used in combination with the terminal equipment.
  • the apparatus may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the first aspect and/or the second aspect, and the modules may be hardware circuits, software, or The hardware circuit is implemented in combination with software.
  • the apparatus may include a processing module and a communication module.
  • the communication module is configured to receive first information from a network device, where the first information includes a random access response RAR corresponding to the first random access preamble, and the first information is used for Indicates a first grant and a second grant, where the first grant and the second grant correspond to the first random access preamble, and the first grant is used to indicate the PUSCH of the first physical uplink shared channel of the first terminal device authorization, where the second authorization is used to indicate the authorization of the second PUSCH of the second terminal device; the communication module is configured to send the first PUSCH of the first terminal device to the network device.
  • the processing module is used for receiving and processing the RAR and the first authorization.
  • the processing module is configured to generate the first PUSCH.
  • the communication module is configured to receive a random access response RAR from the network device, wherein the RAR is used to indicate the transmission parameters of the first physical uplink shared channel PUSCH; In the time part, the communication module is configured to send the first PUSCH of the first terminal device to the network device; wherein, the first PUSCH exists in the first time part and the second time part Frequency hopping, the range of the frequency hopping is determined according to the initial uplink bandwidth.
  • the processing module is used for receiving and processing the RAR.
  • the processing module is configured to generate the first PUSCH.
  • an apparatus in a sixth aspect, is provided, and the apparatus may be a network device or other apparatus capable of implementing the method described in the third aspect and/or the fourth aspect.
  • the other device can be installed in the network equipment, or can be used in combination with the network equipment.
  • the device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the third aspect and/or the fourth aspect, and the modules may be hardware circuits, software, or It is realized by hardware circuit combined with software.
  • the apparatus may include a processing module and a communication module.
  • the communication module is configured to: send first information, where the first information includes a random access response RAR corresponding to the first random access preamble, and the first information is used to indicate the first random access response RAR.
  • a grant and a second grant where the first grant and the second grant correspond to the first random access preamble, and the first grant is used to indicate the grant of the first physical uplink shared channel PUSCH of the first terminal device,
  • the second grant is used to indicate the grant of the second PUSCH of the second terminal device; the first PUSCH is received from the first terminal device.
  • the processing module is used for generating the RAR.
  • the processing module is used for processing the received PUSCH.
  • the communication module is configured to: send a random access response RAR, wherein the RAR is used to indicate the transmission parameter of the first physical uplink shared channel PUSCH; in the first time part and the second time part , the first PUSCH is received from the first terminal device; wherein, the first PUSCH has frequency hopping in the first time part and the second time part, and the range of the frequency hopping is based on the uplink initial bandwidth Partially determined.
  • the processing module is used for generating the RAR.
  • the processing module is used for processing the received PUSCH.
  • an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the first aspect and/or the second aspect.
  • the apparatus may also include a memory for storing the instructions.
  • the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect and/or the second aspect can be implemented.
  • the apparatus may also include a communication interface for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
  • the other device may be a network device.
  • the device includes:
  • a processor configured to use a communication interface to: receive first information from a network device, where the first information includes a random access response RAR corresponding to the first random access preamble, and the first information is used to indicate a first authorization and a second grant, the first grant and the second grant correspond to the first random access preamble, the first grant is used to indicate the grant of the first physical uplink shared channel PUSCH of the first terminal device, the The second grant is used to indicate the grant of the second PUSCH of the second terminal device; and sending the first PUSCH of the first terminal device to the network device.
  • the first information includes a random access response RAR corresponding to the first random access preamble
  • the first information is used to indicate a first authorization and a second grant
  • the first grant and the second grant correspond to the first random access preamble
  • the first grant is used to indicate the grant of the first physical uplink shared channel PUSCH of the first terminal device
  • the The second grant is used to indicate the grant of the second PUSCH of the second terminal device;
  • the device includes:
  • a processor for utilizing the communication interface: receiving a random access response RAR from the network device, wherein the RAR is used to indicate a transmission parameter of the first physical uplink shared channel PUSCH; and, in the first time part and the second time part , send the first PUSCH of the first terminal device to the network device; wherein, the first PUSCH has frequency hopping in the first time part and the second time part, and the range of the frequency hopping It is determined according to the upstream initial bandwidth part.
  • an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the third aspect and/or the fourth aspect.
  • the apparatus may also include a memory for storing the instructions.
  • the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the third aspect and/or the fourth aspect can be implemented.
  • the apparatus may also include a communication interface for the apparatus to communicate with other devices. At this time, the other device may be a terminal device.
  • the device includes:
  • a processor configured to use the communication interface to: send first information, where the first information includes a random access response RAR corresponding to the first random access preamble, and the first information is used to indicate the first authorization and the second Grant, the first grant and the second grant correspond to the first random access preamble, the first grant is used to indicate the grant of the first physical uplink shared channel PUSCH of the first terminal device, and the second grant A grant for indicating the second PUSCH of the second terminal device; the first PUSCH is received from the first terminal device.
  • the device includes:
  • the processor is configured to use the communication interface to: send a random access response RAR, wherein the RAR is used to indicate the transmission parameter of the first physical uplink shared channel PUSCH; in the first time part and the second time part, from the first
  • the terminal device receives the first PUSCH; wherein, the first PUSCH has frequency hopping in the first time part and the second time part, and the range of the frequency hopping is determined according to the uplink initial bandwidth part.
  • a communication system including the apparatus of the fifth aspect or the seventh aspect, and the apparatus of the sixth aspect or the eighth aspect.
  • a tenth aspect provides a computer-readable storage medium comprising instructions that, when executed on a computer, cause the computer to perform the methods of the first, second, third, and/or fourth aspects.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect, the second aspect, the third aspect, and/or the fourth aspect.
  • a twelfth aspect provides a chip system, the chip system includes a processor, and may further include a memory, for implementing the methods described in the first aspect, the second aspect, the third aspect, and/or the fourth aspect .
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 shows an example diagram of a network architecture provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a random access process provided by an embodiment of the present application.
  • FIG. 5a shows a schematic diagram of frequency hopping provided by an embodiment of the present application
  • Figure 5b shows a schematic diagram of Msg2 and Msg3 provided in the embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a MAC PDU provided by an embodiment of the present application.
  • FIG. 9 and FIG. 10 are schematic diagrams of apparatuses provided by embodiments of the present application.
  • LTE long term evolution
  • 5G fifth generation
  • wireless-fidelity wireless-fidelity
  • WiFi wireless-fidelity
  • future communication system future communication system
  • NR new radio
  • the technical solutions provided in the embodiments of the present application can be applied to various communication scenarios, for example, can be applied to one or more of the following communication scenarios: eMBB communication, URLLC, machine type communication (MTC), mMTC, device Device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, vehicle-to-vehicle (V2V) communication, and internet of things (IoT), etc.
  • the mMTC may include one or more of the following communications: communications in industrial wireless sensor networks (IWSN), communications in video surveillance (video surveillance) scenarios, and wearable device communications Wait.
  • IWSN industrial wireless sensor networks
  • video surveillance video surveillance
  • wearable device communications Wait wearable device communications Wait.
  • Communication between communication devices may include: communication between a network device and a terminal device, communication between a network device and a network device, and/or communication between a terminal device and a terminal device.
  • the term “communication” may also be described as “transmission”, “information transmission”, “data transmission”, or “signal transmission” and the like. Transmission can include sending and/or receiving.
  • the technical solution of the embodiments of the present application is described by taking the communication between the network device and the terminal device as an example, and those skilled in the art can also use the technical solution for communication between other scheduling entities and subordinate entities, such as between a macro base station and a micro base station.
  • the scheduling entity may allocate radio resources, such as air interface resources, to the subordinate entities.
  • Air interface resources include one or more of the following resources: time domain resources, frequency domain resources, code resources and space resources.
  • at least one (species) may be one (species) or multiple (species).
  • the plurality (species) may be two (species), three (species), four (species) or more (species) without limitation.
  • "/" may indicate that the objects associated before and after are an "or” relationship, for example, A/B may indicate A or B; “and/or” may be used to describe that there are three types of associated objects A relationship, eg, A and/or B, can mean that A exists alone, A and B exist simultaneously, and B exists alone. where A and B can be singular or plural.
  • words such as “first”, “second”, “A”, and/or “B” may be used to distinguish technical features with the same or similar functions.
  • the words “first”, “second”, “A”, and/or “B” do not limit the quantity and order of execution, and “first", "second", “A”, and/or The characters such as “B” are not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and the embodiments or designs described as “exemplary” or “for example” should not be construed as More preferred or advantageous over other embodiments or designs.
  • the use of words such as “exemplary” or “such as” is intended to present the relevant concepts in a specific manner to facilitate understanding.
  • FIG. 1 shows an example diagram of a network architecture to which this embodiment of the present application is applicable.
  • the network includes a network device 110 , a terminal device 120 and a terminal device 130 .
  • the network device 110 and the terminal device 120 can communicate.
  • the network device 110 and the terminal device 130 can communicate.
  • the communication between the network device and the terminal device includes: the network device sends a downlink signal to the terminal device, and/or the terminal device sends an uplink signal to the network device.
  • communication can also be referred to as signal transmission.
  • Signals can also be replaced by information or data, etc.
  • the network architecture shown in FIG. 1 is only an example, and an actual network may include other numbers of network devices and terminal devices, which are not limited.
  • the terminal device involved in the embodiments of the present application may also be referred to as a terminal.
  • the terminal device may be a device with wireless transceiving function. Terminals can be deployed on land, including indoors, outdoors, handheld, and/or vehicle; can also be deployed on water (such as ships, etc.); and can also be deployed in the air (such as aircraft, balloons, and satellites, etc.).
  • the terminal equipment may be user equipment (user equipment, UE). UEs include handheld devices, in-vehicle devices, wearable devices, or computing devices with wireless communication capabilities. Exemplarily, the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent A wireless terminal in a power grid, a wireless terminal in a smart city, and/or a wireless terminal in a smart home, and so on.
  • VR virtual reality
  • AR augmented reality
  • a wireless terminal in a power grid a wireless terminal in a smart city
  • a wireless terminal in a smart home and so on.
  • the network device involved in the embodiments of the present application includes a base station (base station, BS).
  • the base station may be a device deployed in a radio access network and capable of wirelessly communicating with a terminal device.
  • the base station may have various forms, such as macro base station, micro base station, relay station or access point.
  • the base station involved in the embodiments of the present application may be a base station in a 5G system, a base station in an LTE system, or a base station in other systems, which is not limited.
  • the base station in the 5G system can also be called a transmission reception point (TRP) or a next generation Node B (generation Node B, gNB or gNodeB).
  • TRP transmission reception point
  • gNB next generation Node B
  • the apparatus for implementing the function of the terminal device may be a terminal device; it may also be an apparatus capable of supporting the terminal device to implement the function, such as a chip system.
  • the device can be installed in the terminal equipment or used in combination with the terminal equipment.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the provided technical solution is described by taking the device for realizing the function of the terminal device as the terminal device, and taking the terminal device as the UE as an example.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system.
  • the apparatus can be installed in network equipment or used in combination with network equipment.
  • the provided technical solution is described by taking the device for realizing the function of the network device as the network device, and taking the network device as the base station as an example.
  • the UE when the UE communicates with the base station, it obtains the access resources of the cell through the initial access process, uses the access resources to access the base station through the random access process, and then can perform uplink and/or uplink and/or uplink with the base station in the cell. or downlink unicast data transmission. Since the random access process is more important, how to improve the success rate of random access is a very important research topic.
  • the UE searches for a synchronization signal block (synchronization signal and PBCH block, SSB) broadcast by the base station in the cell.
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS and SSS may be collectively referred to as synchronization signals.
  • the broadcast information carried on the PBCH indicates a control-resource set (control-resource set, CORESET) #0 and a common search space (CommonSearchSpace). CORESET#0 and the common search space together indicate the first resource.
  • CORESET#0 indicates the frequency domain location of the first resource
  • CORESET#0 and/or the common search space indicates the time domain location of the first resource.
  • the first resource includes candidate resource positions of a physical downlink control channel (physical downlink control channel, PDCCH), and the PDCCH may carry common downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the first resource may be referred to as a PDCCH search space.
  • the UE retrieves the DCI scrambled by the system information radio network temporary identifier (SI-RNTI) in the first resource, and the physical downlink shared channel (PDSCH) scheduled by the DCI bears the system Information, such as a system information block (SIB).
  • SI-RNTI system information radio network temporary identifier
  • PDSCH physical downlink shared channel scheduled by the DCI bears the system Information, such as a system information block (SIB).
  • SIB system information block
  • the SIB indicates the frequency domain location of the upstream initial bandwidth part (BWP).
  • the frequency domain position of the downlink initial BWP is the same as the frequency domain position of CORESET#0, or the SIB indicates the frequency domain position of the downlink initial BWP.
  • the uplink initial BWP and the downlink initial BWP are located in different frequency bands.
  • TDD time division duplex
  • the center frequency of the upstream initial BWP and the downstream initial BWP is the same, and the bandwidths can be independent of each other.
  • the bandwidths can be the same or different, without limitation.
  • the initial uplink BWP may also be referred to as the initial uplink BWP
  • the initial downlink BWP may also be referred to as the initial downlink BWP.
  • the uplink initial BWP and the downlink initial BWP are used for processes such as random access by the base station and the UE.
  • FIG. 2 is a schematic diagram of a possible random access process.
  • the UE sends a random access preamble (preamble) to the base station. Accordingly, the base station receives the random access preamble from the UE. This process is also referred to as the UE sending a message (message, Msg) 1 to the base station.
  • a message messages, Msg
  • the random access preamble may be referred to as a preamble for short.
  • the UE selects a preamble from the candidate preamble set, and sends the selected preamble to the base station through PRACH on the determined physical random access channel (PRACH) resource.
  • PRACH physical random access channel
  • the candidate preamble set includes one or more preambles.
  • the candidate preamble set may correspond to a cell for the UE to randomly access the base station in the cell.
  • the PRACH resource determined by the UE may be selected from a set of candidate PRACH resources.
  • the set of candidate PRACH resources may correspond to a cell, which includes one or more PRACH resources.
  • the PRACH resources in the candidate PRACH resource set may be indicated by the SIB.
  • the SIB indicates the time domain location and/or the frequency domain location of the PRACH resource.
  • a PRACH resource may also be referred to as a PRACH opportunity (PRACH occasion, RO) for transmitting PRACH.
  • PRACH is used to carry the preamble.
  • the base station receives the preamble sent by the UE.
  • the base station may estimate the transmission delay between the UE and the base station according to the received preamble, thereby determining the timing advance (TA) of the UE.
  • the base station can also determine the random access radio network temporary identifier (RA-RNTI) to be used in the following operation 202 according to the preamble or the transmission time of the PRACH carrying the preamble.
  • RA-RNTI random access radio network temporary identifier
  • the base station sends a random access response (RAR) to the UE. Accordingly, the UE receives the RAR from the base station. This process is also referred to as the base station sending Msg2 to the UE.
  • RAR random access response
  • the base station sends the DCI scrambled by the RA-RNTI to the UE, and the PDSCH scheduled by the DCI carries the RAR.
  • the information carried on the PDSCH indicates the index of one or more preambles, and the RAR for each of the preambles .
  • the information carried on the PDSCH may be collectively referred to as RAR.
  • the RAR of a preamble indicates one or more of the following: the timing advance (TA) corresponding to the preamble, the uplink (uplink, UL) grant (grant) of the PUSCH corresponding to the preamble, and the corresponding Temporary cell radio network temporary identifier (TC-RNTI) of the temporary cell radio network.
  • TA timing advance
  • TC-RNTI Temporary cell radio network temporary identifier
  • the RA-RNTI is determined according to the transmission time of the preamble and the RO used to transmit the preamble. Then, on the UE side, the UE determines the RA-RNTI according to the transmission time of the preamble in operation 201 and the RO used to transmit the preamble.
  • the UE retrieves the DCI scrambled by the RA-RNTI in the above-mentioned first resource. If the UE detects the DCI, the RAR is received through the PDSCH scheduled by the DCI. If the preamble indicated by Msg2 includes the preamble sent by the UE to the base station in operation 201, the UE considers that the preamble sent by itself may have been received by the base station. The UE uses the preamble corresponding to the RAR to perform subsequent operations. For example, the UE determines its own uplink timing according to the TA indicated by the RAR, which is used to determine or adjust the time at which the UE sends the uplink signal. For example, the UE performs the following operation 203 according to the UL grant indicated by the RAR.
  • access conflicts may occur. For example, since the preamble sent by the UE in operation 201 is randomly selected, it may occur that multiple different UEs transmit the same preamble to the base station at approximately the same time. At this time, the base station does not know which UE the received preamble belongs to, and the base station confirms in Msg2 that the received preamble is not the UE. For a UE in operation 202, even if the Msg2 received by the UE includes the index of the preamble sent by itself, the UE cannot determine whether the preamble is a preamble sent by itself or a preamble sent by another UE, so that random access cannot be guaranteed. correct entry process. In order to resolve this conflict, the random access procedure also includes the following operations 203 and 204.
  • the UE sends Msg3 to the base station.
  • the base station receives Msg3 from the UE.
  • the UE sends Msg3 to the base station through the PUSCH.
  • the UL grant of the PUSCH is indicated by the RAR obtained by the UE in operation 202, and the transmission timing of the PUSCH is determined according to the TA indicated by the RAR.
  • the unique identifier of the UE is carried in Msg3, which is used for conflict resolution.
  • the UE may send a radio resource control (radio resource control, RRC) connection establishment request message to the base station in Msg3.
  • RRC radio resource control
  • the base station sends Msg4 to the UE. Accordingly, the UE receives the Msg4 from the base station.
  • the base station sends the DCI scrambled by the TC-RNTI to the UE, and the PDSCH scheduled by the DCI carries Msg4.
  • the DCI and the information carried on the PDSCH may be collectively referred to as Msg4.
  • the TC-RNTI is the TC-RNTI corresponding to the preamble sent by the UE.
  • Msg4 indicates the unique identifier of a successfully accessed UE.
  • Msg4 may include an RRC connection establishment response message.
  • the UE searches for the DCI scrambled by the TC-RNTI in the above-mentioned first resource, and the TC-RNTI is the TC-RNTI corresponding to the preamble of the UE. If the DCI is detected, it receives Msg4 through the PDSCH scheduled by the DCI. For a UE, if the unique identifier of the UE is included in the Msg4, the UE considers that it has correctly accessed the base station, that is, it is confirmed that the base station has correctly received the preamble sent by itself before.
  • each Msg3 For the same preamble, multiple different UEs each send Msg3 to the base station, and each Msg3 carries the unique identifier of each UE.
  • the base station indicates the unique identifier of the successfully accessed UE in Msg4. Through this process, conflicts can be resolved.
  • the TC-RNTI can be used as the cell radio network temporary identifier (C-RNTI) of the UE to identify the UE in the cell.
  • C-RNTI cell radio network temporary identifier
  • the probability of multiple UEs selecting the same RO and the same preamble is relatively high, that is, the probability of conflict between UEs is relatively large. If only one UE can correctly access the base station at a time, the UE access is successful. rate is relatively low.
  • the embodiments of the present application provide the following methods.
  • the base station sends multiple UL grants.
  • the method can increase the number of successfully accessed UEs.
  • FIG. 3 is a schematic flowchart of a first data transmission method provided by an embodiment of the present application. This method can be applied to random access procedures.
  • the base station sends first information to the first UE, where the first information includes the RAR corresponding to the first preamble. Accordingly, the first UE receives the first information.
  • the first information indicates the first grant of the first PUSCH and the second grant of the second PUSCH
  • the first grant indicates the grant of the first PUSCH
  • the second grant indicates the grant of the second PUSCH.
  • the first grant indicates the transmission parameters of the first PUSCH
  • the second grant indicates the transmission parameters of the second PUSCH.
  • the first authorization and the second authorization correspond to the same preamble, that is, both correspond to the first preamble.
  • the first PUSCH corresponds to the first UE
  • the second PUSCH corresponds to the second UE.
  • the first information indicates one or more preambles, and the one or more preambles include the first preamble.
  • the first information indicates the first preamble, or the first information indicates the first preamble and the second preamble.
  • the first information indicates an index of each of the one or more preambles.
  • the first information indicates multiple grants, such as the first grant of the first PUSCH and the second grant of the second PUSCH, and different grants correspond to different UEs.
  • the first UE sends the first PUSCH to the base station according to the first authorization.
  • the second UE receives the first information, and the second UE sends the second PUSCH to the base station according to the second authorization.
  • the first information is common information of the first UE and the second UE.
  • the first information sent by the base station may be received by the first UE and may also be received by the second UE.
  • the difference between the method shown in FIG. 3 and the method shown in FIG. 2 is that in the method shown in FIG. 2 only one grant is sent for a preamble base station, while in the method shown in FIG. 3 multiple grants are sent for a preamble base station, each Each authorization is directed to different UEs, so that multiple UEs can successfully access the base station, so the access success rate can be improved.
  • the method shown in FIG. 3 can be applied to a random access procedure.
  • the first UE sends a first preamble (Msg1) to the base station.
  • the second UE sends a first preamble (Msg1) to the base station.
  • the process of sending the preamble by the first UE and the second UE is similar to S201, and details are not repeated here.
  • the first UE and the second UE are different, but transmit the same preamble to the base station at the same RO, and the preamble is the first preamble.
  • the first preamble is randomly selected by the first UE and the second UE from the candidate preamble set.
  • the first UE and the second UE transmit the same preamble to the base station at the same RO at approximately the same time. Therefore, in the following operations, the first UE and the second UE can receive the DCI scrambled by the same RA-RNTI. The same leading RAR.
  • the base station sends first information.
  • the first UE receives the first information.
  • the second UE receives the first information.
  • the UE may determine the RA-RNTI according to the transmission time of the preamble and the RO used to transmit the preamble.
  • the RA-RNTIs calculated by the multiple UEs are the same.
  • the preambles sent by the multiple UEs may be the same or different.
  • the RA-RNTI can be understood as the common RNTI of the multiple UEs, and the DCI scrambled by the RA-RNTI is the common RNTI of the multiple UEs.
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id.
  • s_id is an integer, indicating the index of the first symbol of the RO used to transmit the preamble (for example, 0 ⁇ s_id ⁇ 14).
  • t_id is an integer representing the index of the first slot of the RO for transmitting the preamble (eg, 0 ⁇ t_id ⁇ 80).
  • f_id is an integer, indicating an index in the frequency domain of the RO used to transmit the preamble (eg, 0 ⁇ f_id ⁇ 8).
  • ul_carrier_id is an integer, indicating the uplink carrier used to transmit the preamble. For example, 0 indicates the normal uplink (UL) carrier in the cell, namely the NR UL carrier, and 1 indicates the supplementary uplink (SUL) carrier in the cell, namely NR Uplink carrier shared with LTE.
  • UL normal uplink
  • SUL supplementary uplink
  • the first information is common information of the first UE and the second UE.
  • operations 403 are shown in FIG. 4 for the first UE and the second UE, respectively.
  • the base station may perform operation 403 only once, but both the first UE and the second UE may receive the first information.
  • the first information includes Msg2.
  • the first information indicates the first authorization and the second authorization corresponding to the first preamble.
  • the base station sends the DCI scrambled by the RA-RNTI, and the information carried on the PDSCH scheduled by the DCI indicates the index of the first preamble and the RAR of the first preamble.
  • the DCI may be referred to as the first DCI.
  • the RAR of the first preamble indicates one or more of the following: a TA corresponding to the first preamble, a TC-RNTI corresponding to the first preamble, and a second grant corresponding to the first preamble.
  • the first UE sends the first PUSCH to the base station according to the first grant (Msg3).
  • the first PUSCH carries the unique identifier of the first UE.
  • the uplink timing of the first PUSCH is determined according to the TA corresponding to the first preamble.
  • the first PUSCH may also carry an RRC connection establishment request message of the first UE.
  • the second UE sends the second PUSCH (Msg3) to the base station according to the second authorization.
  • the second PUSCH carries the unique identifier of the second UE.
  • the uplink timing of the second PUSCH is determined according to the TA corresponding to the first preamble.
  • the RRC connection establishment request message of the second UE may also be carried on the second PUSCH.
  • the base station sends Msg4 to the first UE.
  • the base station sends Msg4 to the second UE.
  • the first UE searches the PDCCH search space A for the DCI scrambled by the first TC-RNTI, and if the DCI is detected, receives the first Msg4 through the PDSCH scheduled by the DCI. If the first Msg4 indicates the unique identifier of the first UE, the first UE determines that it has successfully accessed the base station. The first Msg4 may also carry an RRC connection establishment response message for the first UE. After the first UE successfully accesses the base station, the first TC-RNTI may be used as the C-RNTI of the UE to identify the UE in the cell.
  • the second UE searches the PDCCH search space B for the DCI scrambled by the second TC-RNTI, and if the DCI is detected, receives the second Msg4 through the PDSCH scheduled by the DCI. If the second Msg4 indicates the unique identifier of the second UE, the second UE determines that it has successfully accessed the base station. The second Msg4 may also carry an RRC connection establishment response message for the second UE. After the second UE successfully accesses the base station, the second TC-RNTI may be used as the C-RNTI of the UE to identify the UE in the cell.
  • the first UE and the second UE are of the same UE type.
  • the first UE and the second UE are different UE types.
  • the first UE is of the first UE type
  • the second UE is of the second UE type.
  • the first authorization may be regarded as the authorization of the first UE type
  • the second authorization may be regarded as the authorization of the second UE type.
  • the first UE type may also be referred to as the first type for short
  • the second UE type may also be referred to as the second type for short.
  • UE type A is eMBB UE
  • UE type B is URLLC UE
  • UE type C is mMTC UE
  • UE type A is a UE supporting eMBB and URLLC
  • UE type B is a UE supporting mMTC
  • UE type A is a UE supporting eMBB and URLLC
  • UE type B is a UE supporting eMBB and mMTC.
  • bandwidth capability of the UE represents the maximum bandwidth supported by the UE.
  • UE type A is a traditional UE, such as an eMBB UE
  • UE type B is a reduced capability (REDCAP) UE.
  • UE type A is a first type eMMB UE
  • UE type B is a second type eMBB UE
  • UE type C is a REDCAP UE.
  • type A is an eMBB UE
  • UE type B is a URLLC UE
  • UE type C is a first type REDCAP UE
  • UE type D is a second type REDCAP UE.
  • a light UE may be introduced relative to a traditional UE, such as an eMBB UE.
  • This lightweight UE may also be referred to as a REDCAP UE.
  • the legacy UEs can be high-capability UEs or unrestricted UEs.
  • the traditional UE can be replaced with a UE that is introduced in the future and has high capabilities relative to the REDCAP UE.
  • the feature comparison of the high-capability UE and the REDCAP UE satisfies at least one of the following first to ninth items.
  • the maximum bandwidth supported by a high-capacity UE is 100MHz (megahertz) or 200MHz
  • the maximum bandwidth supported by a REDCAP UE is 20MHz, 10MHz or 5MHz.
  • the reduction in bandwidth capability may affect the UE's frequency diversity gain and thus may reduce the UE's uplink and/or downlink coverage.
  • the second item: the number of antennas for high-capacity UEs is more than the number of antennas for REDCAP UEs.
  • the number of antennas may be the number of antennas set for the UE, or the maximum number of antennas used for transmission and/or reception.
  • a high-capacity UE supports up to 4 antennas for receiving and 2 antennas for transmission
  • a REDCAP UE supports up to 2 antennas for receiving and 1 antenna for transmission.
  • the capabilities differ in antenna-selective transmission.
  • both high-capability UEs and REDCAP UEs support 2-antenna transmission, but high-capability UEs support antenna-selective transmission, while REDCAP UEs do not support antenna-selective transmission.
  • high-capacity UEs can realize single-antenna port data transmission switching between two transmit antennas, and this data transmission can obtain spatial diversity gain; while REDCAP UEs single-antenna port data transmission can only be performed on two transmit antennas. Simultaneous transmission on the transmitting antenna is equivalent to the transmission performance of one transmitting antenna.
  • the reduction in antenna capability may affect the UE's spatial diversity gain and thus may reduce the UE's uplink and/or downlink coverage.
  • the third item The maximum transmit power supported by the high-capability UE is greater than the maximum transmit power supported by the REDCAP UE.
  • the maximum transmit power supported by a high-capacity UE is 23 decibel-milliwatt (dBm) or 26dBm
  • the maximum transmit power supported by a REDCAP UE is a value between 4dBm and 20dBm.
  • the fourth item high-capacity UE supports carrier aggregation (CA), REDCAP UE does not support carrier aggregation.
  • CA carrier aggregation
  • REDCAP UE does not support carrier aggregation.
  • Item 5 When both high-capability UEs and REDCAP UEs support carrier aggregation, the maximum number of carriers supported by the high-capability UE is greater than the maximum number of carriers supported by the REDCAP UE. For example, high-capacity UE supports aggregation of up to 32 carriers or 5 carriers, and REDCAP UE supports aggregation of up to 2 carriers.
  • High-capability UE and REDCAP UE are introduced in different protocol versions.
  • high-capability UEs were introduced in version (release, R) 15 of the protocol
  • REDCAP UEs were introduced in R17 of the protocol.
  • Item 7 The duplex capabilities of high-capability UEs and REDCAP UEs are different. High-capacity UEs have stronger duplex capabilities. For example, a high-capacity UE supports full-duplex FDD, that is, a high-capacity UE supports simultaneous reception and transmission when it supports FDD, and a REDCAP UE supports half-duplex FDD, that is, a REDCAP UE does not support simultaneous reception and transmission when it supports FDD.
  • full-duplex FDD that is, a high-capacity UE supports simultaneous reception and transmission when it supports FDD
  • a REDCAP UE supports half-duplex FDD, that is, a REDCAP UE does not support simultaneous reception and transmission when it supports FDD.
  • Item 8 The data processing capability of high-capacity UEs is stronger than that of REDCAP UEs.
  • a high-capacity UE can process more data in the same time, or a high-capacity UE can process the same data in a shorter processing time.
  • T1 the time when the UE receives the downlink data from the base station
  • T2 the time when the UE sends the feedback of the downlink data to the base station
  • the delay between T2 and T1 of the high-capacity UE time difference
  • the latency of REDCAP UEs is twice that of high-capability UEs.
  • the feedback of downlink data may be ACK or NACK feedback.
  • the peak rate of data transmission of high-capacity UEs is greater than the peak rate of data transmission of REDCAP UEs.
  • the data transmission includes uplink data transmission (that is, the UE sends data to the base station) and/or downlink data transmission (that is, the UE receives data from the base station).
  • a high-capability UE may also be referred to as a non-REDCAP UE.
  • the first UE is a REDCAP UE
  • the second UE is an eMBB UE.
  • the first UE is a REDCAP UE
  • the second UE is a non-REDCAP UE.
  • the first UE is a REDCAP UE of the first type
  • the second UE is a REDCAP UE of the second type.
  • REDCAP UEs are mainly used for mMTC services. The number of UEs in this service scenario is large and the probability of conflict is high. In scenarios where mMTC services and other services are supported at the same time, or in scenarios where multiple types of REDCAP UEs are supported, if only one UE is allowed to access the same preamble during an access process, it may reduce the access of REDCAP UEs. Enter the success rate. Through this method, for the same preamble to allow access to multiple types of UEs, when the REDCAP UE collides with other types of UEs, or when different types of REDCAP UEs collide, the access success rate of the REDCAP UE can be improved.
  • different authorizations are configured for different types of UEs, which can meet the access requirements of various types of UEs. For example, processing time and/or bandwidth requirements of different UEs can be met.
  • the first information indicates the first authorization and the second authorization of the RAR corresponding to the first preamble.
  • the method can be implemented by any one of the following ways A1 to A3.
  • the first information is the RAR corresponding to the first preamble, where the RAR is used to indicate the first authorization and the second authorization.
  • the RAR corresponding to the first preamble may be embodied in the form of a MAC CE, which may also be referred to as a MAC RAR.
  • the length of the MAC RAR of the first preamble is one or more (for example, 7) bytes, and the length of each byte is 8 bits.
  • the RAR corresponding to the first preamble includes one or more of the following information fields:
  • Reserved field may also be called reserved bits or reserved bits, and is one or more bits in length.
  • TA command field used to indicate TA, the length is one or more bits, such as 12 bits.
  • UL grant field a grant used to indicate the PUSCH, one or more bits in length. For example 27 bits.
  • TC-RNTI domain Used to indicate TC-RNTI, the length is one or more bits, for example, 16 bits.
  • the information in the above reserved field is used to indicate the first grant of the first PUSCH.
  • the information of the UL grant field is used to indicate the second grant of the second PUSCH.
  • the information of the UL grant field is used to indicate one or more of the following information (or transmission parameters) of the second PUSCH.
  • Time domain resource information of the second PUSCH or time domain resource location information of the second PUSCH.
  • the information is used to indicate the time domain resource location of the second PUSCH.
  • the information indicates the symbol and/or the time slot in which the second PUSCH is located, and the like.
  • the information is used to indicate the frequency domain resource location of the second PUSCH.
  • the information indicates a subcarrier and/or a resource block (resource block, RB) where the second PUSCH is located, and the like.
  • MCS Modulation and coding scheme
  • This information is used to indicate the MCS of the second PUSCH.
  • This information is used to indicate the TB size of the second PUSCH.
  • demodulation reference signal demodulation reference signal, DMRS
  • the information is used to indicate the sequence and/or sequence cyclic shift value of the DMRS of the second PUSCH.
  • the information is used to indicate the DMRS information configured for the second PUSCH from the second candidate DMRS information set.
  • the second candidate DMRS information set includes R2 pieces of DMRS information, and each DMRS information corresponds to a DMRS sequence and a sequence cyclic shift value.
  • the indices of the R2 pieces of DMRS information are respectively 0 to R2-1
  • the DMRS information of the second PUSCH may indicate an index value from 0 to R2-1
  • the DMRS information corresponding to the index value is the DMRS of the second PUSCH.
  • the R2 pieces of DMRS information may be expressed in the form of a list (list) or table (table). Each element of the list represents a DMRS message, or each row of the table represents a DMRS message.
  • the information is used to indicate how many times the second PUSCH can be repeatedly sent in total when the second UE sends the second PUSCH to the base station.
  • the information may also indicate a repetition scheme of the second PUSCH.
  • the information indicates the number of repetitions of the second PUSCH in the time domain and the number of repetitions in the frequency domain.
  • the time domain resource where the PUSCH is located may include two parts, such as the first part and the second part shown in FIG. 5a.
  • the first part may be referred to as a first time part
  • the second part may be referred to as a second time part.
  • the PUSCH in the first time portion may be referred to as the first portion of PUSCH
  • the PUSCH in the second time portion may be referred to as the second portion of PUSCH.
  • the frequency domain position of the second part PUSH has a frequency domain offset RB offset relative to the frequency domain position of the first part PUSCH.
  • This phenomenon may be referred to as frequency hopping in the second part of PUSCH relative to the first part of PUSCH, and the frequency hopping range is RB offset , where RB offset is a positive integer and the unit is RB.
  • RB offset is a positive integer and the unit is RB.
  • mod represents the modulo operation, Indicates the number of RBs included in the initial uplink BWP.
  • the frequency domain width of the first part of the PUSCH (eg, the number of RBs included) is the same as the frequency domain width of the second part of the PUSCH.
  • both the first PUSCH and the second PUSCH may be frequency hopping.
  • the first UE and the second UE It can be the same or can be set independently without limitation. This will be described in detail below.
  • the first UE's can be recorded as of the second UE can be recorded as
  • the position of the frequency domain resource of the first part of the second PUSCH is the position indicated by the above-mentioned frequency domain resource information of the second PUSCH. Then, the starting position in the frequency domain of the first part of the second PUSCH is the starting position indicated by the above-mentioned frequency domain resource information of the second PUSCH.
  • the frequency hopping information of the second PUSCH indicates an index corresponding to the frequency hopping range of the second PUSCH from the candidate frequency hopping information set. For example, when the value of the frequency hopping information of the second PUSCH is 00, and the When it is 60, the frequency hopping range of the second PUSCH is RB.
  • This information is used to indicate the frequency hopping time range of the second PUSCH, that is, the time interval between the time domain start position of the first part of the second PUSCH and the time domain start position of the second part of the second PUSCH, or the first part of the second PUSCH
  • the indicated time interval is an integer number of slots and/or an integer number of symbols.
  • the time domain start position of the first part of the second PUSCH is the time domain start position indicated by the time domain resource information of the second PUSCH, and the time length is half of the total time domain resources of the scheduled PUSCH.
  • the above-mentioned time domain resource information of the second PUSCH indicates that the time domain length of the PUSCH is L, then the lengths of the first part of the second PUSCH and the second part of the PUSCH are L/2.
  • the frequency hopping time range of the second PUSCH is greater than or equal to L.
  • L is an integer
  • the unit of L is a time unit, such as a symbol or a time slot.
  • the frequency hopping time information of the second PUSCH may indicate an index corresponding to the frequency hopping time range of the second PUSCH from the set of candidate frequency hopping time information.
  • the set of candidate frequency hopping time information is shown in Table 2.
  • the candidate frequency hopping time information set includes R3 pieces of frequency hopping time information
  • the frequency hopping time information of the second PUSCH can be passed through
  • the bit indicates an index corresponding to the frequency hopping range of the second PUSCH, where R3 is a value greater than or equal to 1.
  • the reserved field in the MAC RAR corresponding to the first preamble is used to indicate the first grant of the first PUSCH, and is specifically used to indicate one or more of the following information (or transmission parameters) of the first PUSCH.
  • Time domain resource information of the first PUSCH or time domain resource location information of the first PUSCH.
  • the information is used to indicate the time domain resource location of the first PUSCH.
  • the information indicates the symbol and/or the time slot in which the first PUSCH is located, and the like.
  • the information indicates the offset of the time domain resource position of the first PUSCH relative to the time domain resource position of the second PUSCH.
  • the time domain resource location of the first PUSCH is a default value, and the default value may be agreed in the protocol or indicated by the SIB.
  • This information is used to indicate the frequency domain resource location of the PUSCH.
  • the information indicates the subcarrier and/or RB where the first PUSCH is located.
  • the information indicates the offset of the frequency domain resource position of the first PUSCH relative to the frequency domain resource position of the second PUSCH.
  • the frequency domain resource location of the first PUSCH is a default value, and the default value may be agreed in the protocol or indicated by the SIB.
  • the information is used to indicate the MCS of the first PUSCH, or to indicate the offset of the MCS of the first PUSCH relative to the MCS of the second PUSCH.
  • the MCS position of the first PUSCH is a default value, and the default value may be agreed in the protocol or indicated by the SIB.
  • This information is used to indicate the TB size of the first PUSCH, or to indicate the offset of the TB size of the first PUSCH relative to the TB size of the second PUSCH.
  • the TB size of the first PUSCH is a default value, and the default value may be agreed in the protocol or indicated by the SIB.
  • This information is used to indicate the sequence and sequence cyclic shift value of the DMRS of the first PUSCH.
  • the information is used to indicate the DMRS information configured for the first PUSCH from the first candidate DMRS information set.
  • the first candidate DMRS information set includes R1 pieces of DMRS information, and each DMRS information corresponds to a DMRS sequence and a sequence cyclic shift value.
  • the indices of the R1 pieces of DMRS information are respectively 0 to R1-1
  • the DMRS information of the first PUSCH may indicate an index value from 0 to R1-1
  • the DMRS information corresponding to the index value is the DMRS of the first PUSCH.
  • the R1 pieces of DMRS information may be represented in the form of a list or a table. Each element of the list represents a DMRS message, or each row of the table represents a DMRS message.
  • the above-mentioned first candidate DMRS information set and the above-mentioned second candidate DMRS information set are independent.
  • the values of the two can be the same or different without limitation.
  • the first candidate DMRS information set is for the first UE or for the first type of UE;
  • the second candidate DMRS information set is for the second UE or for the second type of UE.
  • the first candidate DMRS information set and the second candidate DMRS information set are the same candidate DMRS information set.
  • the first UE and the second UE share the candidate DMRS information set, or the first type UE and the second type UE share the candidate DMRS information set.
  • the sequence value of the DMRS of the first PUSCH and the cyclic shift value of the sequence are default values, which may be agreed in the protocol or Indicated by the SIB.
  • the information may directly indicate the number of repetitions of the first PUSCH, or may indicate an offset value of the number of repetitions of the first PUSCH relative to the number of repetitions of the second PUSCH.
  • the information may also indicate the repetition scheme of the first PUSCH.
  • the information indicates the number of repetitions of the first PUSCH in the time domain and the number of repetitions in the frequency domain.
  • the number of repetitions of the first PUSCH is a default value, and the default value may be agreed in the protocol or indicated by the SIB.
  • the frequency hopping information of the first PUSCH indicates an index corresponding to the frequency hopping range of the first PUSCH from the candidate frequency hopping information set. For example, when the value of the frequency hopping information of the first PUSCH is 0, and the When it is 40, the frequency hopping range is RB. In this method, it can be considered that the first PUSCH and the second PUSCH share a set of candidate frequency hopping information sets.
  • the initial uplink BWP of the first UE and the initial uplink BWP of the second UE are the same.
  • the frequency domain position of the uplink initial BWP is indicated by the SIB. at this time, and same.
  • the initial uplink BWP of the first UE is independent of the initial uplink BWP of the second UE.
  • the SIB indicates the first uplink initial BWP and the second uplink initial BWP, where the first uplink initial BWP is the initial uplink BWP of the first UE, and the second uplink initial BWP is the initial uplink BWP of the first UE. at this time, and Can be the same or different, depending on the specific indication of the SIB.
  • the frequency hopping information of the first PUSCH indicates X, where X is a positive integer, and the frequency hopping range of the first PUSCH is Among them, as mentioned above, is the initial uplink BWP of the second UE.
  • the frequency hopping range of the first PUSCH is a default value, and the default value may be agreed in the protocol or indicated by the SIB.
  • This information is used to indicate the frequency hopping time range of the first PUSCH.
  • the specific indication method may be the same as the above-mentioned indication method of the frequency hopping time range of the second PUSCH, which will not be repeated.
  • the frequency hopping time range of the first PUSCH is a default value, and the default value may be agreed in the protocol or indicated by the SIB.
  • the authorization of the first PUSCH when the authorization of the first PUSCH includes the first identifier, the authorization of the first PUSCH indicates the above-mentioned transmission parameters of the first PUSCH; when the authorization of the first PUSCH does not include the first identifier, the transmission of the first PUSCH
  • the parameters are the default transfer parameters.
  • the authorization of the first PUSCH when the authorization of the first PUSCH does not include the first identifier, the authorization of the first PUSCH indicates the above transmission parameters of the first PUSCH; when the authorization of the first PUSCH includes the first identifier, the transmission of the first PUSCH
  • the parameters are the default transfer parameters.
  • the UE can determine the transmission parameters of the first PUSCH by checking whether the first identifier is included in the grant of the first PUSCH.
  • the authorization of the first PUSCH when the authorization of the first PUSCH includes a first identifier, and the value of the first identifier is the first value, the authorization of the first PUSCH indicates the above-mentioned transmission parameters of the first PUSCH; when the value of the first identifier is the first value When the value is two or not the first value, the transmission parameter of the first PUSCH is the default transmission parameter.
  • the grant of the first PUSCH when the grant of the first PUSCH includes a first identifier, and when the value of the first identifier is a first value, the grant of the first PUSCH indicates the above-mentioned transmission parameters of the first PUSCH, and when the value of the first identifier is When the second value or not the first value, the transmission parameters of the first PUSCH are the same as the transmission parameters of the second PUSCH.
  • the UE can determine the transmission parameter of the first PUSCH by using the value of the first identifier.
  • the default transmission parameters of the first PUSCH are agreed in the protocol or indicated by system information (eg, SIB).
  • System information is cell public information broadcast by the base station to the UE.
  • Default transmission parameters may also be referred to as preconfigured transmission parameters.
  • the transmission parameters of the first PUSCH include one or more of the following information (transmission parameters): time domain resource location information, frequency domain resource location information, DMRS information, MCS, TB size, number of repetitions, frequency hopping information, and frequency hopping time information.
  • the first information includes the first DCI and the RAR corresponding to the first preamble, the first DCI is used to schedule the RAR corresponding to the first preamble, the first DCI is used to indicate the first grant, and the RAR corresponding to the first preamble is used to indicate Second authorization.
  • the first DCI is the DCI scrambled by the RA-RNTI.
  • the first DCI includes one or more of the following information fields:
  • Frequency domain resource allocation domain - used to indicate the frequency domain resource position of the scheduled PDSCH (the PDSCH carries the RAR corresponding to the first preamble).
  • This field contains an integer number of bits, such as bits, where, Indicates the bandwidth of CORESET#0, that is, the number of RBs included in CORESET#0.
  • Time-domain resource allocation field - used to indicate the time-domain resource location of the scheduled PDSCH.
  • the field includes an integer number of bits, such as 4 bits.
  • TB size field used to indicate the TB size of the scheduled PDSCH.
  • Virtual RB virtual RB, VRB
  • physical RB physical RB, PRB
  • mapping field used to indicate the VRB to PRB mapping mode of the scheduled PDSCH. This approach includes centralized or distributed.
  • the field includes an integer number of bits, such as 1 bit.
  • the MCS field - used to indicate the MCS of the scheduled PDSCH.
  • the field includes an integer number of bits, such as 5 bits.
  • the low-order bit field of the system frame number - used to indicate the value of the low-order bits of the system frame number.
  • This field includes an integer number of bits, such as 2 or 0 bits. For example, when the working spectrum or the frequency band currently used for access is an unlicensed spectrum, this field includes 2 bits, and when the working spectrum or the frequency band currently used for access is a licensed spectrum, this field includes 0 bits.
  • Reserved bits or reserved bits contains a total of integer bits, such as 14 or 16 bits. For example, when the working spectrum or the frequency domain currently used for access is the unlicensed spectrum, the field includes 14 bits, and when the working spectrum or the frequency domain currently used for access is the licensed spectrum, the field includes 16 bits .
  • the method of indicating the first grant of the first PUSCH through the reserved bits of the first DCI is the same as the method of indicating the first grant of the first PUSCH through the reserved field of the MAC RAR in the foregoing method A1, and will not be repeated.
  • the first information includes the first DCI and the RAR corresponding to the first preamble, the first DCI is used to schedule the RAR corresponding to the first preamble, the first DCI and the RAR corresponding to the first preamble are used to indicate the first grant, the first The RAR corresponding to the preamble is used to indicate the second authorization.
  • the first grant of the first PUSCH is jointly indicated by the reserved bits of the first DCI and the reserved field of the MAC RAR corresponding to the first preamble.
  • the method of the first authorization is not repeated here.
  • the reserved bits of the first DCI indicate a part of the transmission parameters of the first PUSCH, and the reserved field of the RAR indicates another part of the transmission parameters of the first PUSCH.
  • the reserved bit of the first DCI indicates the transmission parameter of the first PUSCH, and the reserved field of the RAR indicates the first identifier.
  • the method of indicating the second grant of the second PUSCH through the RAR corresponding to the first preamble is the same as the corresponding method in the above-mentioned mode A1, that is, indicating the transmission parameters of the second PUSCH through the UL grant field in the RAR, and details are not repeated.
  • the system information indicates the type of information indicated by the reserved field of the MAC RAR.
  • the SIB indicates whether the first identifier is included in the MAC RAR.
  • the SIB indicates whether the MAC RAR indicates time domain resource location information, frequency domain resource location information, DMRS information, MCS, TB size, number of repetitions, and/or frequency hopping information and frequency hopping time information.
  • the system information indicates the type of information indicated by the reserved bits of the first DCI.
  • system information indicates the number of bits used when the reserved field of the MAC RAR indicates each information.
  • the SIB indicates the length (number of bits) of the information field corresponding to the first identifier in the MAC RAR.
  • the SIB indicates the time domain resource location information, the frequency domain resource location information, the DMRS information, the MCS, the TB size, the number of repetitions, and/or the length of each information field in the frequency hopping information and the frequency hopping time information.
  • the system information such as the SIB, indicates that the reserved bits of the first DCI indicate the number of bits used for each piece of information.
  • the base station sends Msg2 (first information) in time unit n1, and Msg2 indicates that the time domain resource location of the first PUSCH is Time unit n2, and the time domain resource position indicating the second PUSCH is time unit n3, the first UE sends Msg3 to the base station through the first PUSCH in time unit n2, and the second UE sends Msg3 to the base station through the second PUSCH in time unit n3 . Since the processing capability of the first UE is weaker than that of the second UE, the base station may schedule the first PUSCH to be later than the second PUSCH, that is, the time unit n2 is later than the time unit
  • the base station sends Msg4 to the UE, that is, sends the DCI scrambled by the TC-RNTI and the PDSCH scheduled by the DCI.
  • the DCI scrambled by the TC-RNTI may be referred to as the second DCI.
  • the first authorization and the second authorization are respectively configured for the Msg3 of the first UE and the Msg3 of the second UE.
  • the Msg4 may be sent for the first UE and the second UE through any one of the following manners B1 to B3. This process corresponds to operations 406 and 407 .
  • Manner B1 Send the first Msg4 for the first UE.
  • a second Msg4 is sent for the second UE. That is, respective Msg4s are sent for the first UE and the second UE respectively.
  • the second DCI of the first UE (DCI in Msg4) is scrambled by the first TC-RNTI.
  • the first TC-RNTI is independent of the second TC-RNTI.
  • the first TC-RNTI is the TC-RNTI of the first UE
  • the second TC-RNTI is the TC-RNTI of the second UE.
  • the second TC-RNTI is the TC-RNTI indicated by the RAR of the first preamble, that is, the TC-RNTI corresponding to the first preamble.
  • the first TC-RNTI plus M is equal to the second TC-RNTI, that is, the second TC-RNTI minus M is equal to the first TC-RNTI; or, the second TC-RNTI plus M is equal to the first TC-RNTI, that is, the first TC-RNTI
  • One TC-RNTI minus M equals the second TC-RNTI.
  • M is an integer, such as a binary integer less than or equal to 16 bits.
  • the value of M may be agreed by the protocol, indicated by the first information, or indicated by the SIB. Wherein, when the value of M is indicated by the first information, it may be indicated by the reserved bits of the MAC RAR corresponding to the first preamble, or indicated by the reserved field of the first DCI (the DCI that schedules the RAR).
  • the second TC-RNTI is the TC-RNTI indicated by the RAR of the first preamble, that is, the TC-RNTI corresponding to the first preamble.
  • the first TC-RNTI is indicated by a SIB, eg SIB1.
  • Manner B2 Send the same Msg4 for the first UE and the second UE. That is, the base station sends the same Msg4, but both the first UE and the second UE can receive it.
  • the DCI (second DCI) in this Msg4 is scrambled by the second TC-RNTI.
  • the first TC-RNTI is independent of the second TC-RNTI.
  • the first TC-RNTI is the TC-RNTI of the first UE
  • the second TC-RNTI is the TC-RNTI of the second UE.
  • the configuration manner of the first TC-RNTI and the second TC-RNTI is the same as the foregoing manner B1.
  • the second TC-RNTI is the TC-RNTI indicated by the RAR of the first preamble.
  • the above-mentioned M value may be indicated by the reserved field of the second DCI.
  • the reserved field of the second DCI indicates the first TC-RNTI, that is, indicates the C-RNTI of the first UE.
  • the information carried on the PDSCH scheduled by the second DCI indicates the first TC-RNTI, that is, indicates the C-RNTI of the first UE.
  • each sub-PDU includes a sub-header and a MAC CE.
  • the subheader may indicate the logical channel number (LCID) of the MAC CE, which is used to indicate the meaning of the MAC CE in the sub-PDU.
  • the UE can determine the format of the MAC CE according to the LCID in the subheader, so as to correctly interpret the information carried by the MAC CE.
  • the MAC CE when LCID is equal to LL, the MAC CE is used to indicate the first TC-RNTI.
  • LL is an integer, for example, LL is a value greater than or equal to 35 or less than or equal to 46.
  • the first UE determines that the LCID of a certain sub-PDU is equal to LL
  • the first TC-RNTI is determined according to the MAC CE in the sub-PDU.
  • the second UE determines that the LCID of a certain sub-PDU is equal to LL, the MAC CE may not be interpreted according to the basis.
  • the first UE and the second UE detect the second DCI in the PDCCH search space A and the PDCCH search space B, respectively.
  • the PDCCH search space A and the PDCCH search space B are the same, that is, they are both PDCCH search spaces determined according to the COREST #0 indicated by the PBCH and the common search space.
  • Manner B3 Send the first Msg4 for the first UE.
  • a second Msg4 is sent for the second UE. That is, respective Msg4s are sent for the first UE and the second UE respectively.
  • the second DCI of the first UE (DCI in Msg4) is transmitted in the PDCCH search space A, that is, the first UE detects the second DCI in the PDCCH search space A.
  • the second DCI of the second UE (DCI in Msg4 ) is transmitted in the PDCCH search space B, that is, the second UE detects the second DCI in the PDCCH search space B.
  • PDCCH search space A is independent of PDCCH search space B.
  • the PDCCH search space A is the PDCCH search space of the first UE
  • the PDCCH search space B is the PDCCH search space B of the second UE.
  • CORESET #0 of PDCCH search space A is configured independently of CORESET #0 of PDCCH search space B.
  • the broadcast information carried on the PBCH indicates the configuration information of the first CORESET#0 and the configuration information of the second CORESET#0.
  • the broadcast information carried on the PBCH indicates the configuration information of the second CORESET#0
  • the SIB indicates the configuration information of the first CORESET#0.
  • the first CORESET#0 is the CORESET#0 of the first UE, that is, the CORESET#0 of the PDCCH search space A.
  • the second CORESET#0 is the CORESET#0 of the second UE, that is, the CORESET#0 of the PDCCH search space B.
  • the common search space of PDCCH search space A is independent of the common search space of PDCCH search space B.
  • the broadcast information carried on the PBCH indicates configuration information of the first common search space and configuration information of the second common search space.
  • the broadcast information carried on the PBCH indicates the configuration information of the second common search space
  • the SIB indicates the configuration information of the first common search space.
  • the first common search space is the common search space of the first UE, that is, the common search space of the PDCCH search space A.
  • the second CORESET#0 is the common search space of the second UE, that is, the common search space of the PDCCH search space B.
  • Example 3 ie Example 1 combined with Example 2, CORESET #0 of PDCCH search space A is configured independently of CORESET #0 of PDCCH search space B, and the common search space of PDCCH search space A is independent of PDCCH search space B public search space.
  • the configuration information of CORESET#0 is used to indicate the start position, end position, center position or any other position in the frequency domain of CORESET#0, and the bandwidth of CORESET#0.
  • the configuration information of CORESET#0 is used to indicate the start position and end position of CORESET#0 in the frequency domain.
  • the frequency domain position of CORESET#0 is the frequency domain position of the corresponding PDCCH search space.
  • the configuration information of CORESET#0 may also indicate the time domain length of CORESET#0, such as the number of symbols and/or time slots corresponding to the time domain length, for example, the time domain length of a CORESET#0 is 3 symbols, 4 symbols, or other lengths.
  • the configuration information of the common search space may indicate the time domain period of the corresponding PDCCH search space and the offset of its time domain start position relative to the start position of the time domain period.
  • the configuration information of CORESET#0 and the configuration information of the common search space together indicate the time domain period, time domain time domain start position and time domain length of the corresponding PDCCH search space.
  • the TC-RNTI used by the first UE and the second UE when receiving the second DCI may be the corresponding TC-RNTI in the foregoing manner B1 or B2.
  • the above method discusses how to make as many UEs as possible successfully access the base station when the base station cannot distinguish different types of UEs through Msg1. Below, we will discuss how to make as many UEs as possible successfully access the base station when the base station can distinguish different types of UEs through Msg1.
  • the method for the base station to distinguish different types of UEs by using Msg1 may be: independently configuring candidate preamble sets for each type of UE, and/or independently configuring RO for each type of UE.
  • the base station can distinguish the UE type of the UE trying to access by using the received PRACH resource location and/or the preamble carried on the PRACH.
  • the UE in the random access process, sends Msg3 to the base station through the PUSCH.
  • the UL grant of the PUSCH is indicated by Msg2 including the RAR, for example, the frequency domain resources configured for the PUSCH are indicated from the uplink initial BWP. For example, indicating the RB where the frequency domain resource is located, or indicating the starting RB and length of the frequency domain resource (ie, the number of RBs included in the frequency domain resource).
  • the PUSCH may be frequency hopping, and the frequency hopping range may be the candidate values shown in Table 1 above.
  • FIG. 7 is a schematic flowchart of the second data transmission method provided by the embodiment of the present application.
  • a first UE receives an RAR from a base station, where the RAR is used to indicate a transmission parameter of the first PUSCH.
  • the first UE sends the first PUSCH to the base station in the first time part and the second time part according to the transmission parameter of the first PUSCH.
  • the first PUSCH has frequency hopping in the first time part and the second time part, and the range of the frequency hopping is determined according to the initial bandwidth part.
  • the frequency hopping range is determined according to the first uplink initial BWP of the first UE.
  • the first uplink initial BWP is independent of the second uplink initial BWP of the second UE, the type of the first UE is the first UE type, and the type of the second UE is the second UE type. It can also be described that the first uplink initial BWP is for the first UE type, and the second uplink initial BWP is for the second UE type. That is, the initial uplink BWP of the UE of the first type is independent of the initial uplink BWP of the UE of the second type.
  • the SIB indicates the first upstream initial BWP and the second upstream initial BWP.
  • the RAR in operation 701 indicates an index corresponding to the frequency hopping range of the first PUSCH from the candidate frequency hopping information set shown in Table 1.
  • the first PUSCH and the second PUSCH share a set of candidate frequency hopping information sets, but their respective uplink initial BWPs are independent.
  • the range of the frequency hopping is determined according to the initial uplink bandwidth part, for example, the uplink initial BWP bandwidth of the second UE.
  • the initial upstream BWP is indicated by the SIB.
  • the range of this frequency hopping is in is the bandwidth of the upstream initial bandwidth part BWP, X is an integer greater than or equal to 1, where,
  • X is the value agreed in the agreement
  • X is indicated by RAR in operation 701;
  • X is indicated by system information, such as SIB; or,
  • X is indicated by the first DCI, where the first DCI is used to schedule the RAR in operation 701 .
  • the UE of the first type and the UE of the second type share the initial uplink BWP.
  • the base station sets the frequency hopping range of the first type UE through the value of X, so that the frequency hopping range of the first type UE does not exceed the bandwidth capability of the first type UE, so that the first type UE can successfully access.
  • the method shown in FIG. 7 can be used in a random access procedure.
  • the first UE sends a first Msg1 to the base station.
  • the second UE sends a second Msg1 to the base station.
  • the first UE is of the first UE type
  • the second UE is of the second UE type.
  • the RO of the first Msg1 and the RO of the second Msg1 are independent, and/or the leader of the first Msg1 and the leader of the second Msg1 are independent.
  • the type of the UE may be determined according to the RO of the Msg1 and/or the preamble carried by the PRACH. For example, it may be determined that the type of the first UE is the first (UE) type, and the type of the second UE is the second (UE) type.
  • the base station sends Msg2 to the first UE.
  • the base station sends Msg2 to the second UE.
  • the Msg2 of the first UE and the Msg2 of the second UE are sent to the first UE and the second UE in different DCIs and PDSCHs, respectively. UE's.
  • the Msg2 of the first UE and the Msg2 of the second UE are sent to the first UE in the same DCI and PDSCH and the RAR of the second UE, but the RAR of the first UE is the RAR corresponding to the preamble of the first UE, and the RAR of the second UE is the RAR corresponding to the preamble of the second UE.
  • the first UE and the second UE will receive respective RARs from the base station.
  • the RAR of the first UE indicates the frequency hopping range of the first PUSCH of the first UE.
  • the determination of the frequency hopping range is the same as that shown in FIG. 7 above.
  • the RAR of the first UE may also indicate the first TC-RNTI.
  • the RAR of the second UE indicates the frequency hopping range of the second PUSCH of the second UE.
  • the RAR indicates the index corresponding to the frequency hopping range of the second PUSCH from the candidate frequency hopping information set shown in Table 1, wherein the Indicated for SIB
  • the RAR of the second UE may also indicate the second TC-RNTI.
  • the first UE sends the first PUSCH to the base station.
  • the second UE sends the second PUSCH to the base station.
  • the frequency hopping range of each PUSCH is as described above.
  • the first PUSCH carries the unique identifier of the first UE.
  • the second PUSCH carries the unique identifier of the second UE.
  • the base station sends the first Msg4 to the first UE.
  • the base station sends a second Msg4 to the second UE.
  • the first UE detects the DCI scrambled by the first TC-RNTI in the PDCCH search space for receiving the first Msg4. If the first Msg4 carries the unique identifier of the first UE, the first UE considers that it has successfully accessed the base station, and uses the first TC-RNTI as its own C-RNTI.
  • the second UE detects the DCI scrambled by the second TC-RNTI in the PDCCH search space for receiving the second Msg4. If the second Msg4 carries the unique identifier of the second UE, the second UE considers that it has successfully accessed the base station, and uses the second TC-RNTI as its own C-RNTI.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of network equipment (eg, base station), terminal equipment (eg, UE), and interaction between network equipment and terminal equipment.
  • the network device and the terminal may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 9 is a diagram showing an example structure of an apparatus 900 according to an embodiment of the present application.
  • the apparatus 900 is used to implement the function of the terminal device in the above method.
  • the device may be a terminal device, or may be another device capable of realizing the functions of the terminal device.
  • the other device can be installed in the terminal device or can be matched and used with the terminal device.
  • the apparatus 900 includes a receiving module 901 for receiving signals or information. For example, for receiving SSB, DCI, and/or PDSCH from network equipment.
  • the apparatus 900 includes a sending module 902 for sending signals or information. For example, for sending PRACH and/or PUSCH to network equipment.
  • the apparatus 900 includes a processing module 903 for processing the received signal or information, for example, for decoding the signal or information received by the receiving module 901 .
  • the processing module 903 may also generate signals or information to be sent, eg, for generating signals or information to be sent by the sending module 902 .
  • each functional module in each embodiment of the present application may be integrated into one module, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the apparatus 900 is used to implement the function of the network device in the above method.
  • the apparatus may be a network device, or may be another device capable of realizing the function of the network device.
  • the other device can be installed in the network device or can be matched with the network device.
  • the apparatus 900 includes a receiving module 901 for receiving signals or information. For example for receiving PRACH and/or PUSCH from a terminal device.
  • the apparatus 900 includes a sending module 902 for sending signals or information. For example, it is used to send SSB, DCI, and/or PDSCH to terminal equipment.
  • the apparatus 900 includes a processing module 903 for processing the received signal or information, for example, for decoding the signal or information received by the receiving module 901 .
  • the processing module 903 may also generate signals or information to be sent, eg, for generating signals or information to be sent by the sending module 902 .
  • FIG. 10 shows an apparatus 1000 provided in this embodiment of the present application.
  • the apparatus 1000 is configured to implement the functions of the terminal equipment in the above method, and the apparatus may be a terminal equipment, or may be other apparatuses capable of implementing the functions of the terminal equipment.
  • the other device can be installed in the terminal device or can be matched and used with the terminal device.
  • the apparatus 1000 may be a system-on-a-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1000 includes at least one processor 1020, configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the processor 1020 may generate and transmit signals such as PRACH and/or PUSCH, which may be used to receive and process SSB, DCI and/or PDSCH, etc., for details, see the detailed description in the method example, which will not be repeated here.
  • signals such as PRACH and/or PUSCH, which may be used to receive and process SSB, DCI and/or PDSCH, etc., for details, see the detailed description in the method example, which will not be repeated here.
  • the apparatus 1000 is configured to implement the function of the network device in the above method, and the apparatus may be a network device or other apparatus capable of implementing the function of the network device. Wherein, the other device can be installed in the network device or can be matched with the network device.
  • the apparatus 1000 may be a system-on-a-chip.
  • the apparatus 1000 includes at least one processor 1020, configured to implement the function of the network device in the method provided in the embodiment of the present application.
  • the processor 1020 can receive and process signals such as PRACH and/or PUSCH, and can be used to generate and transmit SSB, DCI and/or PDSCH.
  • PRACH Physical channels allocation
  • PUSCH Physical channels allocation
  • the apparatus 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1020 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030 .
  • Processor 1020 may execute program instructions stored in memory 1030 . At least one of the at least one memory may be included in the processor 1020 .
  • the apparatus 1000 may also include a communication interface 1010 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1000 may communicate with other devices.
  • the processor 1020 uses the communication interface 1010 to send and receive signals, and is used to implement the functions in the foregoing method embodiments.
  • the specific connection medium between the communication interface 1010 , the processor 1020 , and the memory 1030 is not limited in this embodiment of the present application.
  • the memory 1030, the processor 1020, and the transceiver 1010 are connected through a bus 1040 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media integrations.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media, and the like.
  • the embodiments may refer to each other.
  • the methods and/or terms between the method embodiments may refer to each other, such as the functions and/or the device embodiments.
  • terms may refer to each other, eg, functions and/or terms between an apparatus embodiment and a method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种方法,包括:网络设备发送第一信息,其中,第一信息包括第一随机接入前导对应的随机接入响应RAR,第一信息用于指示第一授权和第二授权,第一授权和第二授权对应于第一随机接入前导,第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,第二授权用于指示第二终端设备的第二PUSCH的授权。第一终端设备可以根据第一授权,向网络设备发送第一PUSCH。第一终端设备可以根据第二授权,向网络设备发送第二PUSCH。第一终端设备和第二终端设备的类型可以不同。该方法可以用于随机接入过程。

Description

数据信道的传输方法 技术领域
本申请涉及通信技术领域,尤其涉及数据信道的传输方法和装置。
背景技术
在无线通信系统中,网络设备和终端设备可以在相应的业务场景中进行数据传输。其中,该业务场景包括但不限于以下至少一种:增强移动宽带(enhance mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、和大规模机器类型通信(massive machine-type communications,mMTC)。
进行通信时,网络设备和终端设备可以进行上行数据传输,例如终端设备向网络设备发送上行数据;和/或,网络设备和终端设备可以进行下行数据传输,例如网络设备向终端设备发送下行数据。如何提高网络设备和终端设备的通信效率是一个研究热点。
发明内容
本申请实施例提供了数据信道的传输方法,用于提高随机接入过程中的接入成功率。
第一方面,提供了一种数据信道的传输方法,该方法可以应用于终端设备侧,由终端设备侧的装置(如终端设备、芯片、电路、或模块等)执行。该方法包括:从网络设备接收第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;根据所述第一授权,向所述网络设备发送所述第一终端设备的第一PUSCH。
通过该方法,针对一个前导发送多个授权,每个授权针对不同的终端设备,则使得多个终端设备都可以成功接入基站,因此可以提高接入成功率。
一种可能的实现中,第一终端设备为第一类型,第二终端设备为第二类型。第一终端设备和第二终端设备的类型不同。例如,第一终端设备为REDCAP终端,第二终端设备为eMBB终端。
通过该方法,针对同一个前导允许接入多种类型的终端设备,当一种类型的终端设备和其他类型的终端设备冲突时,可以提高终端设备的接入成功率。此外,不同类型终端设备的能力不同时,可以针对不同类型的终端设备配置不同的资源,满足终端设备的接入需求。
一种可能的实现中,所述第一信息为所述RAR,所述RAR用于指示所述第一授权和所述第二授权;所述第一信息包括第一下行控制信息DCI和所述RAR,所述第一DCI用于调度所述RAR,所述第一DCI用于指示所述第一授权,所述RAR用于指示所述第二授权;或者,所述第一信息包括第一下行控制信息DCI和所述RAR,所述第 一DCI用于调度所述RAR,所述第一DCI和所述RAR用于指示所述第一授权,所述RAR用于指示所述第二授权。
例如,所述第一授权用于指示所述第一PUSCH的以下传输参数中的至少一种:时域资源位置信息;频域资源位置信息;解调参考信号DMRS信息;重复次数;和,跳频信息。
通过该方法,可以简化系统设计,复用已有的信令指示第一授权,节省信令开销。
一种可能的实现中,当所述第一授权中包括第一标识时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一授权中不包括第一标识时,所述第一PUSCH的传输参数是默认的传输参数;所述第一授权中包括第一标识,当所述第一标识的值为第一值时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一标识的值不为第一值或者为第二值时,所述第一PUSCH的传输参数是默认的传输参数;或者,所述第一授权中包括第一标识,当所述第一标识的值为第一值时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一标识的值不为第一值或者为第二值时,所述第一PUSCH的传输参数和所述第二PUSCH的传输参数相同。
可选地,所述默认的传输参数是协议约定的;或者,所述方法还包括:从所述网络设备接收系统信息,所述系统信息用于指示所述默认的传输参数。
通过该方法,可以根据系统负载,调节第一授权的信令开销,从而可以降低用于指示第一授权的信令开销。
一种可能的实现中,所述方法还包括:从网络设备接收第二DCI;其中,所述第二DCI是根据所述第一终端设备的TC-RNTI被加扰的,所述第一终端设备的TC-RNTI是独立于所述第二终端设备的TC-RNTI的;和/或,所述第二DCI是在所述第一终端设备的物理下行控制信道PDCCH搜索空间中被传输的,所述第一终端设备的PDCCH搜索空间是独立于所述第二终端设备的搜索空间的。
可选地,所述第一终端设备的TC-RNTI加上M等于所述第二终端设备的TC-RNTI,其中,M为整数;或者,所述第二DCI调度的物理下行共享信道PDSCH上携带的信息指示所述第一终端设备的TC-RNTI。
可选地,所述M是协议约定的;所述第二DCI用于指示所述M;所述第一信息用于指示所述M;或者,所述M是由系统信息指示的。
通过该方法,可以使得第一终端设备和第二终端设备能够独立地接收Msg4,避免当实际中仅有其中一个终端设备接入时一个Msg4中承载过多信息,从而降低信令开销。
第二方面,提供了一种数据信道的传输方法,该方法可以应用于终端设备侧,由终端设备侧的装置(如终端设备、芯片、电路、或模块等)执行。该方法包括:
从网络设备接收随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;根据所述第一PUSCH的传输参数,在第一时间部分和第二时间部分中,向所述网络设备发送第一终端设备的所述第一PUSCH;其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,该跳频的范围是根据上行初始带宽部分确定的。
可选地,所述上行初始带宽部分是第一终端设备的上行初始带宽部分。第一终端 设备和第二终端设备共享候选跳频范围集合。第一终端设备的上行初始带宽部分独立于第二终端设备的上行初始带宽部分。
可选地,所述跳频的范围是
Figure PCTCN2020121612-appb-000001
其中,
Figure PCTCN2020121612-appb-000002
为上行初始带宽部分BWP的带宽,X为大于或等于1的整数。该方法中,第一终端设备和第二终端设备共享相同的上行初始带宽部分。可选地,所述X为协议约定的;所述RAR用于指示所述X;所述X是系统信息指示的;或者,所述X是第一DCI指示的,所示第一DCI用于调度所述RAR。
该方法可以应用于随机接入过程。通过该方法,当系统中引入多种终端设备类型时,如第一终端设备是REDCAP终端,第二终端设备是eMBB终端,可以根据各终端设备的能力配置跳频范围,从而使得各种类型的终端设备都可以成功接入,提高了终端设备的接入成功率。
第三方面,提供了一种数据信道的传输方法,该方法可以应用于网络设备侧,由网络设备侧的装置(如网络设备、芯片、电路、或模块等)执行。该方法包括:发送第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;从第一终端设备接收所述第一PUSCH。
关于第一信息、第一授权、和第二授权等的介绍可以参考第一方面,不再赘述。
第四方面,提供了一种数据信道的传输方法,该方法可以应用于网络设备侧,由网络设备侧的装置(如网络设备、芯片、电路、或模块等)执行。该方法包括:发送随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;在第一时间部分和第二时间部分中,从第一终端设备接收所述第一PUSCH;其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,该跳频的范围是根据上行初始带宽部分确定的。
关于跳频范围等的介绍可以参考第二方面,不再赘述。
第五方面,提供一种装置,该装置可以是终端设备,也可以是能够实现第一方面和/或第二方面描述的方法的其它装置。该其它装置能够安装在终端设备中,或能够和终端设备匹配使用。一种设计中,该装置可以包括执行第一方面和/或第二方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,所述通信模块用于从网络设备接收第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;所述通信模块用于向所述网络设备发送所述第一终端设备的第一PUSCH。所述处理模块用于接收和处理所述RAR和第一授权。所述处理模块用于生成所述第一PUSCH。
关于第一信息、第一授权、和第二授权等的介绍可以参考第一方面,不再赘述。
一种可能的实现中,所述通信模块用于从网络设备接收随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;在第一时间部分和第二时间部分中,所述通信模块用于向所述网络设备发送第一终端设备的所述第一PUSCH;其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,该跳频的范围是根据上行初始带宽部分确定的。所述处理模块用于接收和处理所述RAR。所述处理模块用于生成所述第一PUSCH。
关于跳频范围等的介绍可以参考第二方面,不再赘述。
第六方面,提供一种装置,该装置可以是网络设备,也可以是能够实现第三方面和/或第四方面描述的方法的其它装置。该其它装置能够安装在网络设备中,或能够和网络设备匹配使用。一种设计中,该装置可以包括执行第三方面和/或第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,所述通信模块用于:发送第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;从第一终端设备接收所述第一PUSCH。所述处理模块用于生成所述RAR。所述处理模块用于处理所接收到的PUSCH。
关于第一信息、第一授权、和第二授权等的介绍可以参考第三方面,不再赘述。
一种可能的实现中,所述通信模块用于:发送随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;在第一时间部分和第二时间部分中,从第一终端设备接收所述第一PUSCH;其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,该跳频的范围是根据上行初始带宽部分确定的。所述处理模块用于生成所述RAR。所述处理模块用于处理所接收到的PUSCH。
关于跳频范围等的介绍可以参考第四方面,不再赘述。
第七方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面和/或第二方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面和/或第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。本申请实施例中,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。此时,该其它设备可以为网络设备。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口:从网络设备接收第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;以及向所述网络设备发送所述第一终端设备的第一PUSCH。
关于第一信息、第一授权、和第二授权等的介绍可以参考第一方面,不再赘述。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口:从网络设备接收随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;以及,在第一时间部分和第二时间部分中,向所述网络设备发送第一终端设备的所述第一PUSCH;其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,该跳频的范围是根据上行初始带宽部分确定的。
关于跳频范围等的介绍可以参考第一方面,不再赘述。
第八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第三方面和/或第四方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第三方面和/或第四方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。此时,该其它设备可以为终端设备。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口:发送第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;从第一终端设备接收所述第一PUSCH。
关于第一信息、第一授权、和第二授权等的介绍可以参考第三方面,不再赘述。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口:发送随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;在第一时间部分和第二时间部分中,从第一终端设备接收所述第一PUSCH;其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,该跳频的范围是根据上行初始带宽部分确定的。
关于跳频范围等的介绍可以参考第四方面,不再赘述。
第九方面,提供一种通信系统,包括第五方面或第七方面的装置,和第六方面或第八方面的装置。
第十方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面、和/或第四方面所述的方法。
第十一方面,提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面、和/或第四方面所述的方法。
第十二方面,提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面、第二方面、第三方面、和/或第四方面所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1所示为本申请实施例提供的网络架构示例图;
图2所示为本申请实施例提供的随机接入过程示意图;
图3和图4所示本申请实施例提供的方法流程示意图;
图5a所示为本申请实施例提供的跳频示意图;
图5b所示为本申请实施例提供的Msg2和Msg3的示意图;
图6所示为本申请实施例提供的MAC PDU结构示意图;
图7和图8所示本申请实施例提供的方法流程示意图;
图9和图10所示本申请实施例提供的装置示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、无线保真(wireless-fidelity,WiFi)系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:eMBB通信、URLLC、机器类型通信(machine type communication,MTC)、mMTC、设备到设备(device-to-device,D2D)通信、车辆外联(vehicle to everything,V2X)通信、车辆到车辆(vehicle to vehicle,V2V)通信、和物联网(internet of things,IoT)等。可选地,mMTC可以包括以下通信中的一种或多种:工业无线传感器网络(industrial wireless sens or network,IWSN)的通信、视频监控(video surveillance)场景中的通信、和可穿戴设备的通信等。
本申请实施例提供的技术方案可以应用于通信设备间的通信。通信设备间的通信可以包括:网络设备和终端设备间的通信、网络设备和网络设备间的通信、和/或终端设备和终端设备间的通信。在本申请实施例中,术语“通信”还可以描述为“传输”、“信息传输”、“数据传输”、或“信号传输”等。传输可以包括发送和/或接收。以网络设备和终端设备间的通信为例描述本申请实施例的技术方案,本领域技术人员也可以将该技术方案用于进行其它调度实体和从属实体间的通信,例如宏基站和微基站之间的通信,例如第一终端设备和第二终端设备间的通信。其中,调度实体可以为从属实体分配无线资源,例如空口资源。空口资源包括以下资源中的一种或多种:时域资源、频域资源、码资源和空间资源。在本申请实施例中,至少一个(种)可以是一个(种)或多个(种)。多个(种)可以是两个(种)、三个(种)、四个(种)或者更多个(种),不予限制。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。在本申请实施例中,可以采用“第一”、“第二”、“A”、和/或“B”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”、“A”、和/或“B”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”、 “A”、和/或“B”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
图1所示为本申请实施例适用的网络架构示例图。如图1所示,该网络中包括网络设备110、终端设备120和终端设备130。网络设备110和终端设备120可以进行通信。网络设备110和终端设备130可以进行通信。在本申请实施例中,网络设备和终端设备间的通信包括:网络设备向终端设备发送下行信号,和/或终端设备向网络设备发送上行信号。其中,通信还可以称为信号传输。信号还可以被替换为信息或数据等。图1所示的网络架构仅为示例,实际网络中可以包括其他数量的网络设备和终端设备,不予限制。
本申请实施例涉及到的终端设备还可以称为终端。终端设备可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内、室外、手持、和/或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、和/或智慧家庭(smart home)中的无线终端等等。
本申请实施例涉及到的网络设备包括基站(base station,BS)。基站可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站或接入点等。本申请实施例涉及到的基站可以是5G系统中的基站、LTE系统中的基站或其它系统中的基站,不做限制。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端设备的功能的装置是终端设备,以终端设备是UE为例,描述所提供的技术方案。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述所提供的技术方案。
一种可能的实现中,UE和基站进行通信时,通过初始接入过程获得小区的接入资源,利用接入资源通过随机接入过程接入基站,随后可以在小区中与基站进行上行和/或下行单播数据传输。由于随机接入过程比较重要,因此如何提高随机接入的成功率是非常重要的研究课题。
示例性地,初始接入过程中,UE在小区中搜索基站广播的同步信号块(synchronization signal and PBCH block,SSB)。SSB中包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、和物理广播信道(physical broadcast channel,PBCH)。其中,PSS和SSS可以统称为同步信号。PBCH上携带的广播信息指示控制资源集(control-resource set,CORESET)#0和公共搜索空间(CommonSearchSpace)。CORESET#0和公共搜索空间共同指示了第一资源。其中,CORESET#0指示了第一资源的频域位置,CORESET#0和/或公共搜索空间指示了第一资源的时域位置。第一资源中包括物理下行控制信道(physical downlink control channel,PDCCH)的候选资源位置,该PDCCH上可以携带公共下行控制信息(downlink control information,DCI)。为了便于描述,本申请实施例中可以将第一资源称为PDCCH搜索空间。UE在第一资源中检索由系统信息无线网络临时标识(system information radio network temporary identifier,SI-RNTI)加扰的DCI,该DCI调度的物理下行共享信道(physical downlink shared channel,PDSCH)上承载系统信息,如系统信息块(system information block,SIB)。SIB指示上行初始(initial)带宽部分(bandwidth part,BWP)的频域位置。下行初始BWP的频域位置和CORESET#0的频域位置相同,或者SIB指示下行初始BWP的频域位置。
可选地,频分双工(frequency division duplex,FDD)系统中,上行初始BWP和下行初始BWP位于不同的频段。时分双工(time division duplex,TDD)系统中,上行初始BWP和下行初始BWP的中心频点相同,带宽可以各自独立,例如带宽可以相同或不同,不予限制。本申请实施例中,上行初始BWP还可以称为初始上行BWP,下行初始BWP还可以称为初始下行BWP。
在本申请实施例中,技术特征A独立于技术特征B时,它们是分别被配置的。实际中,所配置的值可以相同,也可以不同,不予限制。
上行初始BWP和下行初始BWP用于基站和UE进行随机接入等过程。如图2所示为一种可能的随机接入过程示意图。
操作201,UE向基站发送随机接入前导(preamble)。相应地,基站接收来自UE的随机接入前导。该过程也称为UE向基站发送消息(message,Msg)1。
本申请实施例中,随机接入前导可以简称为前导。
UE从候选前导集合中选择一个前导,在所确定的物理随机接入信道(physical random access channel,PRACH)资源上,通过PRACH向基站发送所选择的前导。
本申请实施例中,候选前导集合中包括一个或多个前导。该候选前导集合可以对应于一个小区,用于UE在该小区中随机接入基站。
本申请实施例中,UE所确定的PRACH资源可以是从候选PRACH资源集合中选择的。候选PRACH资源集合可以对应于一个小区,其中包括一个或多个PRACH资源。候选PRACH资源集合中的PRACH资源可以由SIB指示。例如SIB指示该PRACH资源的时域位置和/或频域位置。一个PRACH资源还可称为一个PRACH机会(PRACH occasion,RO),用于发送PRACH。其中,PRACH用于承载前导。
基站接收UE发送的前导。基站可以根据所接收到的前导估计UE和基站之间的传输时延,从而确定UE的定时提前(timing advance,TA)。基站还可以根据该前导 或携带该前导的PRACH的传输时间,确定下述操作202中将用到的随机接入无线网络临时标识(random access radio network temporary identifier,RA-RNTI)。
操作202,基站向UE发送随机接入响应(random access response,RAR)。相应地,UE接收来自基站的RAR。该过程也称为基站向UE发送Msg2。
基站向UE发送由RA-RNTI加扰的DCI,该DCI调度的PDSCH上携带RAR。
示例性地,该PDSCH上携带的信息(如,媒体接入控制(media access control,MAC)控制元素(control element,CE))指示一个或多个前导的索引、以及针对其中每个前导的RAR。为了便于描述,本申请实施例中,该PDSCH上携带的信息可以统称为RAR。其中,一个前导的RAR指示了以下一项或多项:该前导对应的定时提前(timing advance,TA)、该前导对应的PUSCH的上行(uplink,UL)授权(grant)、和该前导对应的临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)。
如操作201中所述,RA-RNTI是根据前导的传输时间和用于传输该前导的RO确定的。则在UE侧,UE根据操作201中前导的传输时间和用于传输该前导的RO确定RA-RNTI。
UE在上述第一资源中检索由RA-RNTI加扰的DCI。如果UE检测到了该DCI,通过该DCI调度的PDSCH接收RAR。如果Msg2指示的前导中包括操作201中UE向基站发送的前导,则UE认为自己发送的前导可能已被基站接收到。UE利用该前导对应RAR进行后续操作。例如,UE根据该RAR指示的TA确定自己的上行定时,用于确定或调整UE发送上行信号的时间。例如,UE根据该RAR指示的UL grant进行下述操作203。
在随机接入过程中,可能会出现接入冲突。例如,由于操作201中UE发送的前导是随机选择的,可能会出现多个不同UE近似同时地向基站发送相同的前导。此时,基站并不知道所接收到的前导是哪个UE的,基站在Msg2中确认的是所接收到的前导而不是UE。对于操作202中的一个UE,即使该UE接收到的Msg2中包括自己发送的前导的索引,该UE也并不能确定该前导是自己发送的前导还是别的UE发送的前导,从而无法保证随机接入过程的正确进行。为了解决这种冲突,随机接入过程还包括下述操作203和204。
操作203,UE向基站发送Msg3。相应地,基站来自接收UE的Msg3。
UE通过PUSCH向基站发送Msg3。如上所述,该PUSCH的UL grant是由UE在操作202中获得的RAR指示的,该PUSCH的发送定时是根据RAR指示的TA确定的。Msg3中携带UE的唯一标识,用于进行冲突解决。
可选地,UE可以在Msg3中向基站发送无线资源控制(radio resource control,RRC)连接建立请求消息。
操作204,基站向UE发送Msg4。相应地,UE接收来自基站的Msg4。
基站向UE发送由TC-RNTI加扰的DCI,该DCI调度的PDSCH上携带Msg4。可选地,可以将该DCI和该PDSCH上携带的信息统称为Msg4。其中,如操作202所述,该TC-RNTI为该UE发送的前导对应的TC-RNTI。Msg4指示成功接入的一个UE的唯一标识。可选地,Msg4可以包括RRC连接建立响应消息。
UE在上述第一资源中检索由TC-RNTI加扰的DCI,该TC-RNTI为该UE的前导对应的TC-RNTI,如果检测到了该DCI,通过该DCI调度的PDSCH接收Msg4。对于一个UE,如果Msg4中包括该UE的唯一标识,则该UE认为自己正确接入了基站,即确认了基站之前正确接收到了自己发送的前导。
例如,针对同一个前导,多个不同UE各自向基站发送了Msg3,每个Msg3中携带各UE的唯一标识。基站在Msg4中指示成功接入的UE的唯一标识。通过该过程,可以解决冲突。
可选地,UE成功接入基站后,可以将TC-RNTI作为该UE的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),用于在小区中标识该UE。在该小区中,UE和基站完成RRC连接建立过程后,UE便可以和基站之间进行单播传输。
在上述接入过程中,当多个不同的UE近似同时地(例如在一段较短时间内、相同的时间单元内、或相同的接收窗内等,其中,时间单元包括符号、时隙、子帧、或无线帧等。)利用相同的RO向基站发送相同的前导时,通过上述操作203和204的冲突解决,对于一个前导,仅能使一个UE成功接入基站,因为Msg4中仅指示一个成功接入的UE的唯一标识。接入不成功的UE需要重新进行操作201至操作204,直到该UE在小区中成功接入基站。当小区中的UE较多时,多个UE选择同一个RO和同一个preamble的概率比较大,即UE间的冲突概率较大,若一次仅能使一个UE正确接入基站时,UE接入成功率比较低。
为了提高UE接入基站时的成功率,本申请实施例提供了下述方法。该方法中,针对同一个前导,基站发送多个UL授权。当多个UE使用相同的前导接入基站时,该方法可以增加成功接入的UE的个数。
图3所示为本申请实施例提供的第一种数据传输方法的流程示意图。该方法可以应用于随机接入过程。
操作301,基站向第一UE发送第一信息,第一信息包括第一前导对应的RAR。相应地,第一UE接收第一信息。
第一信息指示第一PUSCH的第一授权和第二PUSCH的第二授权,第一授权指示第一PUSCH的授权,第二授权指示第二PUSCH的授权。例如,第一授权指示第一PUSCH的传输参数,第二授权指示第二PUSCH的传输参数。第一授权和第二授权对应相同的前导,即都对应第一前导。其中,第一PUSCH对应于第一UE,第二PUSCH对应于第二UE。
一种可能的实现中,第一信息指示一个或多个前导,该一个或多个前导中包括第一前导。例如,第一信息指示第一前导,或者第一信息指示第一前导和第二前导。可选地,第一信息指示该一个或多个前导中每个前导的索引。对于每个前导,第一信息指示多个授权,例如第一PUSCH的第一授权和第二PUSCH的第二授权,不同授权对应不同的UE。
操作302,第一UE根据第一授权向基站发送第一PUSCH。
可选地,操作303,第二UE接收第一信息,第二UE根据第二授权向基站发送第二PUSCH。此时,可以认为第一信息是第一UE和第二UE的公共信息。基站发送的第一信息既可以被第一UE接收,也可以被第二UE接收。
图3所示的方法和图2所示的方法的不同在于,图2所示的方法中针对一个前导基站仅发送一个授权,图3所示的方法中针对一个前导基站发送多个授权,每个授权针对不同的UE,则使得多个UE都可以成功接入基站,因此可以提高接入成功率。
如图4所示,图3所示的方法可以应用于随机接入过程。
操作401,第一UE向基站发送第一前导(Msg1)。可选地,操作402,第二UE向基站发送第一前导(Msg1)。
第一UE和第二UE发送前导的过程类似S201,不再赘述。
操作401和402中,第一UE和第二UE不同,但是在相同的RO向基站发送了相同的前导,该前导为第一前导。该第一前导是第一UE和第二UE从候选前导集合中随机选择的。第一UE和第二UE在相同的RO近似同时地向基站发送相同的前导,因此,下述操作中,第一UE和第二UE可以接收由同一个RA-RNTI加扰的DCI所调度的同一个前导的RAR。
操作403,基站发送第一信息。第一UE接收第一信息。可选地,第二UE接收第一信息。
针对第一信息的介绍同上述操作301,不再赘述。
如上所述,UE可以根据前导的传输时间和用于传输该前导的RO确定RA-RNTI。多个UE在相同的时间单元和相同的RO上发送前导时,这多个UE计算得到的RA-RNTI相同。这多个UE发送的前导可以相同,也可以不同。此时,RA-RNTI可以理解为是该多个UE的公共RNTI,由RA-RNTI加扰的DCI为该多个UE的公共RNTI。
例如,RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id。其中,s_id为整数,表示用于传输前导的RO的第一个符号的索引(例如,0≤s_id<14)。t_id为整数,表示用于传输前导的RO的第一个时隙的索引(例如,0≤t_id<80)。f_id为整数,表示用于传输前导的RO的频域的索引(如0≤f_id<8)。ul_carrier_id为整数,表示用于传输前导的上行载波,例如0表示小区中的普通上行(uplink,UL)载波,即NR UL载波,1表示小区中的增补上行(supplementary uplink,SUL)载波,即NR和LTE共享的上行载波。
第一信息是第一UE和第二UE的公共信息。为了便于理解图4,图4中针对第一UE和第二UE分别示出了操作403。实际中,基站可以仅执行一次操作403,但是第一UE和第二UE都可以接收到第一信息。
类似图2中所述,第一信息包括Msg2。第一信息指示第一前导对应的第一授权和第二授权。例如,基站发送由RA-RNTI加扰的DCI,该DCI调度的PDSCH上携带的信息指示第一前导的索引,以及第一前导的RAR。本申请实施例中,该DCI可以称为第一DCI。第一前导的RAR指示以下一项或多项:第一前导对应的TA、第一前导对应的TC-RNTI、和第一前导对应的第二授权。
操作404,第一UE根据第一授权向基站发送第一PUSCH(Msg3)。
第一PUSCH上携带第一UE的唯一标识。第一PUSCH的上行定时是根据第一前导对应的TA确定的。可选地,第一PUSCH上还可以携带第一UE的RRC连接建立请求消息。
可选地,操作405,第二UE根据第二授权向基站发送第二PUSCH(Msg3)。
第二PUSCH上携带第二UE的唯一标识。第二PUSCH的上行定时是根据第一前导对应的TA确定的。可选地,第二PUSCH上还可以携带第二UE的RRC连接建立请求消息。
操作406,基站向第一UE发送Msg4。可选地,操作407,基站向第二UE发送Msg4。
类似图2的操作201,第一UE在PDCCH搜索空间A中检索第一TC-RNTI加扰的DCI,如果检测到了该DCI,通过该DCI调度的PDSCH接收第一Msg4。如果第一Msg4指示了第一UE的唯一标识,则第一UE确定自己成功接入了基站。第一Msg4还可以携带针对第一UE的RRC连接建立响应消息。第一UE成功接入基站后,可以将第一TC-RNTI作为该UE的C-RNTI,用于在小区中标识该UE。
类似地,第二UE在PDCCH搜索空间B中检索第二TC-RNTI加扰的DCI,如果检测到了该DCI,通过该DCI调度的PDSCH接收第二Msg4。如果第二Msg4指示了第二UE的唯一标识,则第二UE确定自己成功接入了基站。第二Msg4还可以携带针对第二UE的RRC连接建立响应消息。第二UE成功接入基站后,可以将第二TC-RNTI作为该UE的C-RNTI,用于在小区中标识该UE。
同上述图3描述的有益效果,图3和图4所示的方法中,在一次随机接入过程,针对同一个前导,由第一信息指示多个授权,允许接入多个UE,因此可以提高接入成功率。从而可以降低UE的数据传输时延。
下面针对上述方法进行详细描述。
可选地,第一UE和第二UE是相同的UE类型。
可选地,第一UE和第二UE是不同的UE类型。例如,第一UE为第一UE类型,第二UE为第二UE类型。此时,第一授权可以看做第一UE类型的授权,第二授权可以看做第二UE类型的授权。第一UE类型还可以简称为第一类型,第二UE类型还可以简称为第二类型。
一种可能的实现中,对于不同的UE类型,UE支持的业务场景不同。例如,UE类型A为eMBB UE,UE类型B为URLLC UE,UE类型C为mMTC UE。再例如,UE类型A为支持eMBB和URLLC的UE,UE类型B为支持mMTC的UE。再例如,UE类型A为支持eMBB和URLLC的UE,UE类型B为支持eMBB和mMTC的UE。
一种可能的实现中,对于不同的UE类型,UE的以下特征中的一项或多项不同:带宽能力、天线数、最大发射功率、载波聚合能力、协议版本、双工能力、数据处理能力、和峰值速率。其中,UE的带宽能力表示UE支持的最大带宽。例如,UE类型A为传统UE,如eMBB UE,UE类型B为能力降低(reduced capability,REDCAP)UE。再例如,UE类型A为第一类型eMMB UE,UE类型B为第二类型eMBB UE,UE类型C为REDCAP UE。再例如,类型A为eMBB UE,UE类型B为URLLC UE,UE类型C为第一类型REDCAP UE,UE类型D为第二类型REDCAP UE。
本申请实施例中,相对传统的UE,例如eMBB UE,可以引入一种轻型(light)UE。该轻型UE也可以称为REDCAP UE。相对REDCAP UE,该传统的UE可以是高能力UE或能力不受限的UE。本申请实施例中,该传统的UE可以被替换为未来引进的、相对REDCAP UE是高能力的UE。示例性地,高能力UE和REDCAP UE的特征 对比满足以下第一项至第九项中的至少一项。
第一项:高能力UE支持的最大带宽大于REDCAP UE支持的最大带宽。例如:高能力UE支持的最大带宽是100MHz(兆赫兹)或200MHz,REDCAP UE支持的最大带宽是20MHz、10MHz或者5MHz。带宽能力的降低可能影响UE的频率分集增益,因此可能降低UE的上行和/或下行覆盖。
第二项:高能力UE的天线数多于REDCAP UE的天线数。其中,该天线数可以是为UE设置的天线数,或是用于发送和/或接收的最大天线数。例如:高能力UE最高支持4天线收2天线发,REDCAP UE最高支持2天线收1天线发。或者,即使高能力UE的天线数等于REDCAP UE的天线数,但是在天线选择性传输上能力不同。例如高能力UE与REDCAP UE都支持2天线发送,但是高能力UE支持天线选择性传输,而REDCAP UE不支持天线选择性传输。以单天线端口数据传输为例,高能力UE可以实现单天线端口数据传输在2个发送天线上切换,该数据传输可以获得空间分集增益;而REDCAP UE的单天线端口数据传输只能在2个发送天线上同时发送,等价于1个发送天线的传输性能。天线能力的降低可能影响UE的空间分集增益,因此可能降低UE的上行和/或下行覆盖。
第三项:高能力UE支持的最大发射功率大于REDCAP UE支持的最大发射功率。例如:高能力UE支持的最大发射功率是23分贝毫瓦(decibel-milliwatt,dBm)或者26dBm,REDCAP UE支持的最大发射功率是4dBm至20dBm中的一个值。
第四项:高能力UE支持载波聚合(carrier aggregation,CA),REDCAP UE不支持载波聚合。
第五项:高能力UE和REDCAP UE都支持载波聚合时,高能力UE支持的最大载波数大于REDCAP UE支持的最大载波数。例如,高能力UE最多支持32个载波或者5个载波的聚合,REDCAP UE最多支持2个载波的聚合。
第六项:高能力UE和REDCAP UE在不同的协议版本中被引入。例如,在NR协议中,高能力UE是在协议的版本(release,R)15中引入的,REDCAP UE是在协议的R17中引入的。
第七项:高能力UE和REDCAP UE的双工能力不同。高能力UE的双工能力更强。例如高能力UE支持全双工FDD,即高能力UE在支持FDD时支持同时接收和发送,REDCAP UE支持半双工FDD,即REDCAP UE在支持FDD时不支持同时接收和发送。
第八项:高能力UE的数据处理能力比REDCAP UE的数据处理能力更强。高能力UE相同时间内可以处理的数据更多,或者高能力UE处理相同数据时处理时间更短。例如,记UE接收到来自基站的下行数据的时间为T1,UE处理该下行数据后,记UE向基站发送该下行数据的反馈的时间为T2,高能力UE的T2和T1之间的时延(时间差)小于REDCAP UE的T2和T1之间的时延。例如,REDCAP UE的时延为高能力UE的时延的两倍。其中,下行数据的反馈可以是ACK或者NACK反馈。
第九项:高能力UE的数据传输的峰值速率大于REDCAP UE的数据传输的峰值速率。其中,数据传输包括上行数据传输(即UE向基站发送数据)和/或下行数据传输(即UE从基站接收数据)。
可选地,为了便于区分,在本申请实施例中,高能力UE还可以称为非REDCAP UE。
示例性地,图3和图4所示的方法中,第一UE为REDCAP UE,第二UE为eMBB UE。再例如,第一UE为REDCAP UE,第二UE为非REDCAP UE。再例如,第一UE为第一种类型的REDCAP UE,第二UE为第二种类型的REDCAP UE。
通过该方法,可以提高接入成功率。REDCAP UE主要用于mMTC业务,该业务场景中的UE数量较多,冲突概率较大。在同时支持mMTC业务和其他业务的场景中,或者在支持多种类型的REDCAP UE的场景中,如果一次接入过程中,针对同一个前导仅允许接入一个UE,可能会降低REDCAP UE的接入成功率。通过该方法,针对同一个前导允许接入多种类型的UE,可以当REDCAP UE和其他类型的UE冲突时,或者不同类型的REDCAP UE冲突时,提高REDCAP UE的接入成功率。
通过该方法,针对不同类型的UE,配置不同的授权,可以满足各种类型的UE的接入需求。比如,可以满足不同UE的处理时间和/或带宽需求等。
上述方法中,第一信息指示第一前导对应的RAR的第一授权和第二授权。该方法可以通过以下方式A1至方式A3中的任一种来实现。
方式A1:第一信息为第一前导对应的RAR,该RAR用于指示第一授权和第二授权。
第一前导对应的RAR可以通过MAC CE的形式体现,该MAC CE还可以称为MAC RAR。第一前导的MAC RAR的长度为一个或多个(例如7个)字节,每个字节的长度为8个比特。第一前导对应的RAR中包括以下信息域中的一项或多项:
预留域;——还可以称为预留比特或保留比特,长度为一个或多个比特。
TA命令域;——用于指示TA,长度为一个或多个比特,例如12个比特。
UL授权(grant)域;和,——用于指示PUSCH的授权,长度为一个或多个比特。例如27个比特。
TC-RNTI域。——用于指示TC-RNTI,长度为一个或多个比特,例如16个比特。
可选地,上述预留域的信息用于指示第一PUSCH的第一授权。UL grant域的信息用于指示第二PUSCH的第二授权。
UL grant域的信息用于指示第二PUSCH的以下信息(或传输参数)中的一项或多项。
—第二PUSCH的时域资源信息,或第二PUSCH的时域资源位置信息。
该信息用于指示第二PUSCH的时域资源位置。例如,该信息指示第二PUSCH所在的符号和/或时隙等。
—第二PUSCH的频域资源信息,或第二PUSCH的频域资源位置信息。
该信息用于指示第二PUSCH的频域资源位置。例如,该信息指示第二PUSCH所在的子载波和/或资源块(resourc block,RB)等。
—第二PUSCH的调制编码方案(modulation and coding scheme,MCS)信息。
该信息用于指示第二PUSCH的MCS。
—第二PUSCH的传输块(transport block,TB)大小(size)信息。
该信息用于指示第二PUSCH的TB size。
—第二PUSCH的解调参考信号(demodulation reference signal,DMRS)信息。
该信息用于指示第二PUSCH的DMRS的序列和/或序列循环移位值。
示例性地,该信息用于从第二候选DMRS信息集合中,指示为第二PUSCH配置的DMRS信息。例如,第二候选DMRS信息集合中包括R2个DMRS信息,每个DMRS信息对应一个DMRS序列和一个序列循环移位值。该R2个DMRS信息的索引分别为0至R2-1,第二PUSCH的DMRS信息可以指示0至R2-1中的一个索引值,该索引值所对应的DMRS信息为第二PUSCH的DMRS。可选地,该R2个DMRS信息可以表示为列表(list)或者表格(table)的形式。该列表的每一个元素表示一个DMRS信息,或者该表格的每一行表示一个DMRS信息。
—第二PUSCH的重复次数。
该信息用于指示第二UE向基站发送第二PUSCH时,共可以重复发送多少次第二PUSCH。
可选地,该信息还可以指示第二PUSCH的重复方案。例如第二PUSCH重复传输时,该信息指示第二PUSCH在时域的重复次数和频域的重复次数。
—第二PUSCH的跳频信息。
本申请实施例中,如图5a所示,对于一个PUSCH,例如第一PUSCH或第二PUSCH,该PUSCH所在的时域资源可以包括两部分,例如图5a所示的第一部分和第二部分。其中,第一部分可以称为第一时间部分,第二部分可以称为第二时间部分。在第一时间部分的PUSCH可以称为第一部分PUSCH,在第二时间部分的PUSCH可以称为第二部分PUSCH。第二部分PUSH的频域位置相对第一部分PUSCH的频域位置存在频域偏移RB offset。该现象可以称为第二部分PUSCH相对第一部分PUSCH存在跳频,跳频范围为RB offset,其中,RB offset为正整数,单位为RB。例如,第一部分PUSCH的频域资源的起始位置为RB start,则第二部分PUSCH的频域资源的起始位置为
Figure PCTCN2020121612-appb-000003
Figure PCTCN2020121612-appb-000004
其中,mod表示求模操作,
Figure PCTCN2020121612-appb-000005
表示初始上行BWP中包括的RB个数。第一部分PUSCH的频域宽度(如包括的RB个数)和第二部分PUSCH的频域宽度相同。
本申请实施例中,对于第一UE和第二UE,第一PUSCH和第二PUSCH都可以跳频。此时,第一UE和第二UE的
Figure PCTCN2020121612-appb-000006
可以相同,也可以独立设置,不予限制。下文将详细描述。其中,第一UE的
Figure PCTCN2020121612-appb-000007
可以记为
Figure PCTCN2020121612-appb-000008
第二UE的
Figure PCTCN2020121612-appb-000009
可以记为
Figure PCTCN2020121612-appb-000010
对于第二PUSCH,第一部分第二PUSCH的频域资源位置为上述第二PUSCH的频域资源信息指示的位置。则,第一部分第二PUSCH的频域起始位置为上述第二PUSCH的频域资源信息指示的起始位置。
示例性地,如表1所示,第二PUSCH的跳频信息从候选跳频信息集合中指示第二PUSCH的跳频范围对应的索引。例如,当第二PUSCH的跳频信息 的值为00,且第二UE的
Figure PCTCN2020121612-appb-000011
为60时,第二PUSCH的跳频范围为
Figure PCTCN2020121612-appb-000012
个RB。
表1候选跳频信息集合
Figure PCTCN2020121612-appb-000013
—第二PUSCH的跳频时间信息。
该信息用于指示第二PUSCH的跳频时间范围,即指示第一部分第二PUSCH的时域起始位置和第二部分第二PUSCH的时域起始位置的时间间隔,或者指示第一部分第二PUSCH的时域结束位置和第二部分第二PUSCH的时域结束位置的时间间隔。例如,所指示的时间间隔为整数个时隙和/或整数个符号。其中,第一部分第二PUSCH的时域起始位置为上述第二PUSCH的时域资源信息所指示的时域起始位置,时间长度为调度的PUSCH的总时域资源的一半。例如,上述第二PUSCH的时域资源信息指示了PUSCH的时域长度为L,则第一部分第二PUSCH和第二部分PUSCH的长度为L/2。第二PUSCH的跳频时间范围大于或等于L。其中,L为整数,L的单位为时间单元,如符号或时隙等。
示例性地,第二PUSCH的跳频时间信息可以从候选跳频时间信息集合中指示第二PUSCH的跳频时间范围对应的索引。其中,候选跳频时间信息集合如表2所示。例如,当候选跳频时间信息集合中包括R3个跳频时间信息时,第二PUSCH的跳频时间信息可以通过
Figure PCTCN2020121612-appb-000014
比特指示第二PUSCH的跳频范围对应的索引,其中,R3为大于或等于1的值。
表2候选跳频时间信息集合
Figure PCTCN2020121612-appb-000015
Figure PCTCN2020121612-appb-000016
当X1、X2、X3或X4等于0时,可以认为是时隙内跳频,当X1、X2、X3或X4大于1时,可以认为是跨时隙跳频。
如上所述,第一前导对应的MAC RAR中的预留域用于指示第一PUSCH的第一授权,具体用于指示第一PUSCH的以下信息(或传输参数)中的一项或多项。
—第一PUSCH的时域资源信息,或第一PUSCH的时域资源位置信息。
该信息用于指示第一PUSCH的时域资源位置。例如,该信息指示第一PUSCH所在的符号和/或时隙等。或者,该信息指示第一PUSCH的时域资源位置相对于第二PUSCH的时域资源位置的偏移。
可选地,当第一授权不指示或不包括该信息时,第一PUSCH的时域资源位置为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一PUSCH的频域资源信息,或第一PUSCH的频域资源位置信息。
该信息用于指示PUSCH的频域资源位置。例如,该信息指示第一PUSCH所在的子载波和/或RB等。或者,该信息指示第一PUSCH的频域资源位置相对于第二PUSCH的频域资源位置的偏移。
可选地,当第一授权不指示或不包括该信息时,第一PUSCH的频域资源位置为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一PUSCH的MCS信息。
该信息用于指示第一PUSCH的MCS,或者指示第一PUSCH的MCS相对于第二PUSCH的MCS的偏移。
可选地,当第一授权不指示或不包括该信息时,第一PUSCH的MCS位置为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一PUSCH的TB size信息。
该信息用于指示第一PUSCH的TB size,或者指示第一PUSCH的TB size相对于第二PUSCH的TB size的偏移。
可选地,当第一授权不指示或不包括该信息时,第一PUSCH的TB size为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一PUSCH的DMRS信息。
该信息用于指示第一PUSCH的DMRS的序列和序列循环移位值。
示例性地,该信息用于从第一候选DMRS信息集合中,指示为第一PUSCH配置的DMRS信息。例如,第一候选DMRS信息集合中包括R1个DMRS信息,每个DMRS信息对应一个DMRS序列和一个序列循环移位值。该R1个DMRS信息的索引分别为0至R1-1,第一PUSCH的DMRS信息可以指示0至R1-1中的一个索引值,该索引值所对应的DMRS信息为第一PUSCH的DMRS。可 选地,该R1个DMRS信息可以表示为列表或者表格的形式。该列表的每一个元素表示一个DMRS信息,或者该表格的每一行表示一个DMRS信息。
上述第一候选DMRS信息集合和上述第二候选DMRS信息集合是独立的。二者的值可以相同,也可以不同,不予限制。其中,第一候选DMRS信息集合是针对第一UE的,或者是针对第一类型UE的;第二候选DMRS信息集合是针对第二UE的,或者是针对第二类型UE的。
或者,上述第一候选DMRS信息集合和上述第二候选DMRS信息集合是同一个候选DMRS信息集合。此时,第一UE和第二UE共享候选DMRS信息集合,或者,第一类型UE和第二类型UE共享候选DMRS信息集合。
可选地,当第一授权不指示或不包括该第一PUSCH的DMRS信息时,第一PUSCH的DMRS的序列值和序列的循环移位值为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一PUSCH的重复次数。
用于指示UE向基站发送第一PUSCH时,UE共可以重复发送多少次第一PUSCH。该信息可以直接指示第一PUSCH的重复次数,或者可以指示第一PUSCH的重复次数相对于第二PUSCH的重复次数的偏移值。
可选地,该信息还可以指示第一PUSCH的重复方案。例如第一PUSCH重复传输时,该信息指示第一PUSCH在时域的重复次数和频域的重复次数。
可选地,当第一授权不指示或不包括该信息时,第一PUSCH的重复次数为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一PUSCH的跳频信息。
一种可能的实现中,如表1所示,第一PUSCH的跳频信息从候选跳频信息集合中指示第一PUSCH的跳频范围对应的索引。例如,当第一PUSCH的跳频信息的值为0,且第一UE的
Figure PCTCN2020121612-appb-000017
为40时,跳频范围为
Figure PCTCN2020121612-appb-000018
个RB。该方法中,可以认为第一PUSCH和第二PUSCH共享一套候选跳频信息集合。
可选地,第一UE的初始上行BWP和第二UE的初始上行BWP相同。如前文所示,该上行初始BWP的频域位置由SIB指示。此时,
Figure PCTCN2020121612-appb-000019
Figure PCTCN2020121612-appb-000020
相同。
可选地,第一UE的初始上行BWP独立于第二UE的初始上行BWP。如SIB指示第一上行初始BWP和第二上行初始BWP,其中,第一上行初始BWP是第一UE的初始上行BWP,第二上行初始BWP是第一UE的初始上行BWP。此时,
Figure PCTCN2020121612-appb-000021
Figure PCTCN2020121612-appb-000022
可以相同,也可以不同,依赖于SIB的具体指示。
一种可能的实现中,第一PUSCH的跳频信息指示X,其中,X为正整数,第一PUSCH的跳频范围为
Figure PCTCN2020121612-appb-000023
其中,如前文所述,
Figure PCTCN2020121612-appb-000024
为第二UE的初始上行BWP。
可选地,当第一PUSCH的授权不指示第一PUSCH的跳频信息时,第一PUSCH的跳频范围为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一PUSCH的跳频时间信息。
该信息用于指示第一PUSCH的跳频时间范围。具体指示方法可以同上述第二PUSCH的跳频时间范围的指示方法,不再赘述。
可选地,当第一PUSCH的授权不指示第一PUSCH的跳频时间信息时,第一PUSCH的跳频时间范围为默认值,该默认值可以是协议约定的或者由SIB指示的。
—第一标识。
可选地,当第一PUSCH的授权中包括第一标识时,第一PUSCH的授权指示第一PUSCH的上述传输参数;当第一PUSCH的授权中不包括第一标识时,第一PUSCH的传输参数是默认传输参数。
可选地,当第一PUSCH的授权中不包括第一标识时,第一PUSCH的授权指示第一PUSCH的如上传输参数;当第一PUSCH的授权中包括第一标识时,第一PUSCH的传输参数是默认传输参数。
通过上述方法中,UE可以通过查看第一PUSCH的授权中是否包括第一标识,确定第一PUSCH的传输参数。
可选地,当第一PUSCH的授权中包括第一标识,且第一标识的值为第一值时,第一PUSCH的授权指示第一PUSCH的上述传输参数;当第一标识的值为第二值或者不为第一值时,第一PUSCH的传输参数是默认传输参数。
可选地,当第一PUSCH的授权中包括第一标识,且当第一标识的值为第一值时,第一PUSCH的授权指示第一PUSCH的上述传输参数,当第一标识的值为第二值或者不为第一值时,第一PUSCH的传输参数同第二PUSCH的传输参数。
通过上述方法中,UE可以通过第一标识的值,确定第一PUSCH的传输参数。
其中,第一PUSCH的默认传输参数是协议约定的或者由系统信息(如SIB)指示的。系统信息是由基站广播至UE的小区公共信息。默认传输参数还可以称为预配置的传输参数。第一PUSCH的传输参数包括以下信息(传输参数)中的一种或多种:时域资源位置信息、频域资源位置信息、DMRS信息、MCS、TB size、重复次数、跳频信息和跳频时间信息。
方式A2:第一信息包括第一DCI和第一前导对应的RAR,第一DCI用于调度第一前导对应的RAR,第一DCI用于指示第一授权,第一前导对应的RAR用于指示第二授权。
如操作403,第一DCI是由RA-RNTI加扰的DCI。
示例性地,第一DCI中包括以下信息域中的一项或多项:
频域资源分配域;——用于指示所调度的PDSCH(该PDSCH上携带第一前导对应的RAR)的频域资源位置。该域共包括整数个比特,如
Figure PCTCN2020121612-appb-000025
比特,其中,
Figure PCTCN2020121612-appb-000026
表示CORESET#0的带宽,即CORESET#0中包括的RB数。
时域资源分配域;——用于指示所调度的PDSCH的时域资源位置。该域共包括整数个比特,如4个比特。
TB size域;——用于指示所调度的PDSCH的TB size。
虚拟RB(virtual RB,VRB)到物理RB(physical RB,PRB)映射域;——用于指示所调度的PDSCH的VRB到PRB的映射方式。该方式包括集中式或分布式。该域共包括整数个比特,如1个比特。
MCS域;——用于指示所调度的PDSCH的MCS。该域共包括整数个比特,如5个比特。
系统帧号的低比特位域;——用于指示系统帧号的低比特位的值。该域共包括整数个比特,如2个或0个比特。例如,当工作频谱或当前用于接入的频段为非授权频谱时,该域包括2个比特,当工作频谱或当前用于接入的频段为授权频谱时,该域包括0个比特。
预留比特或保留比特。—该域共包括整数个比特,如14个或16个比特。例如,当工作频谱或当前用于接入的频域为非授权频谱时,该域包括14个比特,当工作频谱或当前用于接入的频域为授权频谱时,该域包括16个比特。
其中,通过第一DCI的保留比特指示第一PUSCH的第一授权的方法同上述方式A1中、通过MAC RAR的预留域指示第一PUSCH的第一授权的方法,不再赘述。
方式A3:第一信息包括第一DCI和第一前导对应的RAR,第一DCI用于调度第一前导对应的RAR,第一DCI和第一前导对应的RAR用于指示第一授权,第一前导对应的RAR用于指示第二授权。
通过第一DCI的保留比特和第一前导对应的MAC RAR的预留域,共同指示第一PUSCH的第一授权,指示方法类似上述方式A1中、通过MAC RAR的预留域指示第一PUSCH的第一授权的方法,不再赘述。例如,第一DCI的保留比特指示第一PUSCH的一部分传输参数,RAR的预留域指示第一PUSCH的另一部分传输参数。再例如,第一DCI的保留比特指示第一PUSCH的传输参数,RAR的预留域指示第一标识。
通过第一前导对应的RAR指示第二PUSCH的第二授权的方法同上述方式A1中的相应方法,即通过该RAR中的UL grant域指示第二PUSCH的传输参数,不再赘述。
上述方式A1和A3中,可选地,系统信息,如SIB,指示MAC RAR的预留域指示的信息种类。例如,SIB指示MAC RAR中是否包括第一标识。可选地,SIB指示MAC RAR是否指示时域资源位置信息、频域资源位置信息、DMRS信息、MCS、TB size、重复次数、和/或跳频信息和跳频时间信息。类似地,方式A2和A3中,可选地,系统信息,如SIB,指示第一DCI的保留比特指示的信息种类。
可选地,系统信息,如SIB,指示MAC RAR的预留域指示各信息时使用的比特数。例如,SIB指示MAC RAR中第一标识对应的信息域的长度(比特数)。可选地,SIB指示时域资源位置信息、频域资源位置信息、DMRS信息、MCS、TB size、重复次数、和/或跳频信息和跳频时间信息中各信息域的长度。可选地,类似地,方式A2和A3中,系统信息,如SIB,指示第一DCI的保留比特指示各信息时使用的比特数。
上述介绍了指示第一UE的第一PUSCH的第一授权的方法和指示第二UE的第二PUSCH的第二授权的方法。以第一UE是REDCAP UE,第二UE是eMBB UE为例,如图5b所示的示例,基站在时间单元n1发送Msg2(第一信息),Msg2指示了第一PUSCH的时域资源位置为时间单元n2,且指示第二PUSCH的时域资源位置为时间单 元n3,第一UE在时间单元n2通过第一PUSCH向基站发送Msg3,第二UE在时间单元n3通过第二PUSCH向基站发送Msg3。由于第一UE的处理能力弱于第二UE,因此基站可以调度第一PUSCH晚于第二PUSCH,即时间单元n2晚于时间单元n3。
如前文所述,在随机接入过程中,UE向基站发送Msg3后,基站向UE发送Msg4,即发送由TC-RNTI加扰的DCI以及该DCI所调度的PDSCH。本申请实施例中,由TC-RNTI加扰的DCI可以称为第二DCI。在图3和图4所示的方法中,为第一UE的Msg3和第二UE的Msg3分别配置了第一授权和第二授权,为了更好地匹配该机制的有效运行,一种可能的实现中,可以通过下述方式B1至方式B3中任一种,为第一UE和第二UE发送Msg4。该过程对应于操作406和407。
方式B1:为第一UE发送第一Msg4。可选地,为第二UE发送第二Msg4。即为第一UE和第二分别发送各自的Msg4。第一UE的第二DCI(Msg4中的DCI)是由第一TC-RNTI加扰的。第一TC-RNTI是独立于第二TC-RNTI的。第一TC-RNTI是第一UE的TC-RNTI,第二TC-RNTI是第二UE的TC-RNTI。
可选地,第二TC-RNTI为第一前导的RAR指示的TC-RNTI,即第一前导对应的TC-RNTI。第一TC-RNTI加上M等于第二TC-RNTI,即第二TC-RNTI减去M等于第一TC-RNTI;或者,第二TC-RNTI加上M等于第一TC-RNTI,即第一TC-RNTI减去M等于第二TC-RNTI。其中,M为整数,例如是一个小于等于16位的二进制整数。M的值可以是协议约定的、由第一信息指示的、或者由SIB指示的。其中,M的值由第一信息指示时,可以是由第一前导对应的MAC RAR的预留比特指示的,或者是由第一DCI(调度该RAR的DCI)的预留域指示的。
可选地,第二TC-RNTI为第一前导的RAR指示的TC-RNTI,即第一前导对应的TC-RNTI。由SIB,例如SIB1,指示第一TC-RNTI。
方式B2:为第一UE和第二UE发送同一个Msg4。即基站发送同一个Msg4,但是第一UE和第二UE都可以接收。该Msg4中的DCI(第二DCI)是由第二TC-RNTI加扰的。第一TC-RNTI是独立于第二TC-RNTI的。第一TC-RNTI是第一UE的TC-RNTI,第二TC-RNTI是第二UE的TC-RNTI。
其中,第一TC-RNTI和第二TC-RNTI的配置方式同上述方式B1。第二TC-RNTI为第一前导的RAR指示的TC-RNTI。
此外,可选地,上述M值可以是第二DCI的预留域指示的。
或者,该第二DCI的预留域指示第一TC-RNTI,即指示第一UE的C-RNTI。
或者,该第二DCI调度的PDSCH上携带的信息指示第一TC-RNTI,即指示第一UE的C-RNTI。
示例性地,该PDSCH上携带的MAC协议数据单元(protocol data unit,PDU)的结构示意图如图6所示。该MAC PDU包括一个或多个子PDU。可选地,该MAC PDU还可以包括填充位(padding)。其中,每个子PDU包括子头(sub-header)和MAC CE。该子头可以指示该MAC CE的逻辑信道号(LCID),用于指示该子PDU中的MAC CE的含义。UE可以根据子头中的LCID来确定MAC CE的格式,从而用于正确解读该MAC CE携带的信息。例如,可以设置当LCID等于LL时,该MAC CE用于指示第一TC-RNTI。其中,LL为整数,例如LL为大于等于35或小于等于46的值。当第一 UE确定某一个子PDU的LCID等于LL时,则根据该子PDU中的MAC CE确定第一TC-RNTI。当第二UE确定某一个子PDU的LCID等于LL时,则根据可以不解读该MAC CE。
可选地,方式B1和B2中,如操作406和操作407中所述,第一UE和第二UE分别在PDCCH搜索空间A和PDCCH搜索空间B中检测第二DCI。该PDCCH搜索空间A和PDCCH搜索空间B是相同的,即都是根据PBCH指示的COREST#0和公共搜索空间确定的PDCCH搜索空间。
方式B3:为第一UE发送第一Msg4。可选地,为第二UE发送第二Msg4。即为第一UE和第二分别发送各自的Msg4。第一UE的第二DCI(Msg4中的DCI)是在PDCCH搜索空间A中被传输的,即第一UE在PDCCH搜索空间A中检测第二DCI。第二UE的第二DCI(Msg4中的DCI)是在PDCCH搜索空间B中被传输的,即第二UE在PDCCH搜索空间B中检测第二DCI。PDCCH搜索空间A是独立于PDCCH搜索空间B的。PDCCH搜索空间A是第一UE的PDCCH搜索空间,PDCCH搜索空间B是第二UE的PDCCH搜索空间B。
示例1,PDCCH搜索空间A的CORESET#0是独立于PDCCH搜索空间B的CORESET#0被配置的。例如,PBCH上携带的广播信息指示第一CORESET#0的配置信息和第二CORESET#0配置信息。再例如,PBCH上携带的广播信息指示第二CORESET#0的配置信息,SIB指示第一CORESET#0的配置信息。其中,第一CORESET#0为第一UE的CORESET#0,即PDCCH搜索空间A的CORESET#0。第二CORESET#0为第二UE的CORESET#0,即PDCCH搜索空间B的CORESET#0。
示例2,PDCCH搜索空间A的公共搜索空间是独立于PDCCH搜索空间B的公共搜索空间的。例如,PBCH上携带的广播信息指示第一公共搜索空间的配置信息和第二公共搜索空间配置信息。再例如,PBCH上携带的广播信息指示第二公共搜索空间的配置信息,SIB指示第一公共搜索空间的配置信息。其中,第一公共搜索空间为第一UE的公共搜索空间,即PDCCH搜索空间A的公共搜索空间。第二CORESET#0为第二UE的公共搜索空间,即PDCCH搜索空间B的公共搜索空间。
示例3,即示例1结合示例2,PDCCH搜索空间A的CORESET#0是独立于PDCCH搜索空间B的CORESET#0被配置的,且PDCCH搜索空间A的公共搜索空间是独立于PDCCH搜索空间B的公共搜索空间的。
本申请实施例中,CORESET#0的配置信息用于指示CORESET#0的频域起始位置、结束位置、中心位置或其它任意位置,以及CORESET#0的带宽。或者,CORESET#0的配置信息用于指示CORESET#0的频域起始位置和结束位置。CORESET#0的频域位置即为相应的PDCCH搜索空间的频域位置。
本申请实施例中,CORESET#0的配置信息还可以指示CORESET#0的时域长度,例如时域长度所对应的符号数和/或时隙数,如一个CORESET#0的时域长度为3个符号、4个符号或其它长度。公共搜索空间的配置信息可以指示相应的PDCCH搜索空间的时域周期、以及它的时域起始位置相对时域周期的起始位置的偏移。CORESET#0的配置信息和公共搜索空间的配置信息共同指示了相应的PDCCH搜索空间的时域周期、时域时域起始位置和时域长度。
可选地,方式B3中,如操作406和操作407中所述,第一UE和第二UE接收第二DCI时用到的TC-RNTI可以是上述方式B1或B2中的相应TC-RNTI。
上述方法讨论了基站通过Msg1无法区分不同类型UE时,如何使得尽可能多的UE成功接入基站。下面,我们将讨论当基站通过Msg1可以区分不同类型UE时,如何使得尽可能多的UE成功接入基站。其中,基站通过Msg1区分不同类型UE的方法可以是:为各类型的UE独立配置候选前导集合,和/或,为各类型的UE独立配置RO。基站通过所接收到的PRACH的资源位置和/或PRACH上携带的前导,可以区分出尝试接入的UE的UE类型。
如前文所述,本申请实施例中,在随机接入过程中,UE通过PUSCH向基站发送Msg3。PUSCH的UL grant是由包括RAR的Msg2指示的,例如,从上行初始BWP中指示为该PUSCH配置的频域资源。例如指示该频域资源所在的RB,或者指示该频域资源的起始RB和长度(即,该频域资源中包括的RB个数)。其中,PUSCH可以跳频,跳频范围可以如上述表1所示的候选值。当系统中引入新的低能力UE时,不同类型UE的特征不同。如果仍然以传统的方法进行接入,例如新引入的REDCAP UE的跳频范围按照传统的eMBB的跳频范围实行,该跳频范围可能超出了低能力UE的带宽能力,从而使得低能力UE无法成功接入。为了提高UE的接入成功率,图7所示为本申请实施例提供的第二种数据传输方法的流程示意图。
操作701,第一UE从基站接收RAR,该RAR用于指示第一PUSCH的传输参数。操作702,第一UE根据第一PUSCH的传输参数,在第一时间部分和第二时间部分中,向基站发送第一PUSCH。其中,第一PUSCH在第一时间部分和第二时间部分中存在跳频,该跳频的范围是根据初始带宽部分确定的。
第一种可能的实现中,该跳频的范围是根据第一UE的第一上行初始BWP确定的。第一上行初始BWP独立于第二UE的第二上行初始BWP,第一UE的类型为第一UE类型,第二UE的类型为第二UE类型。还可以描述为,第一上行初始BWP是用于第一UE类型的,第二上行初始BWP是用于第二UE类型的。即,第一类型UE的初始上行BWP独立于第二类型UE的初始上行BWP。
示例性地,SIB指示第一上行初始BWP和第二上行初始BWP。
可选地,操作701中的RAR从表1所示的候选跳频信息集合中指示第一PUSCH的跳频范围对应的索引。该方法中,可以认为第一PUSCH和第二PUSCH共享一套候选跳频信息集合,但是各自的上行初始BWP是独立的。
第二种可能的实现中,该跳频的范围是根据初始上行带宽部分确定的,例如第二UE的上行初始BWP带宽。该初始上行BWP是由SIB指示的。该跳频的范围是
Figure PCTCN2020121612-appb-000027
其中,
Figure PCTCN2020121612-appb-000028
为上行初始带宽部分BWP的带宽,X为大于或等于1的整数,其中,
X为协议约定的值;
X是由操作701中的RAR指示的;
X是由系统信息,如SIB,指示的;或者,
X是第一DCI指示的,其中,第一DCI用于调度操作701中的RAR。
该方法中,可以认为第一类型UE和第二类型UE共享初始上行BWP。基站通过X的值设置第一类型UE的跳频范围,从而可以使得第一类型UE的跳频范围不超过第一 类型UE的带宽能力,使得第一类型UE可以成功接入。
如图8所示,图7所示的方法可以用于随机接入过程。
操作801,第一UE向基站发送第一Msg1。可选地,操作802,第二UE向基站发送第二Msg1。其中,第一UE是第一UE类型,第二UE是第二UE类型。第一Msg1的RO和第二Msg1的RO是独立的,和/或,第一Msg1的前导和第二Msg1的前导是独立的。
如果基站接收到Msg1,可以根据Msg1的RO和/或该PRACH所携带的前导确定UE的类型。例如可以确定第一UE的类型是第一(UE)类型,第二UE的类型是第二(UE)类型。
操作803,基站向第一UE发送Msg2。可选地,操作804,基站向第二UE发送Msg2。
当第一UE和第二UE的RO不同时,所计算得到RA-RNTI不同,则第一UE的Msg2和第二UE的Msg2是在不同的DCI和PDSCH中分别发送给第一UE和第二UE的。如果第一UE和第二UE的RO相同,但第一UE和第二UE的前导不同时,则第一UE的Msg2和第二UE的Msg2是在相同的DCI和PDSCH中发送给第一UE和第二UE的,但是第一UE的RAR是第一UE的前导对应的RAR,第二UE的RAR是第二UE的前导对应的RAR。
综上,第一UE和第二UE会从基站接收到各自的RAR。
第一UE的RAR指示了第一UE的第一PUSCH的跳频范围。该跳频范围的确定同上述图7所示。第一UE的RAR还可以指示第一TC-RNTI。
第二UE的RAR指示了第二UE的第二PUSCH的跳频范围。该RAR从表1所示的候选跳频信息集合中指示第二PUSCH的跳频范围对应的索引,其中的
Figure PCTCN2020121612-appb-000029
为SIB指示的
Figure PCTCN2020121612-appb-000030
第二UE的RAR还可以指示第二TC-RNTI。
操作805,第一UE向基站发送第一PUSCH。可选地,操作806,第二UE向基站发送第二PUSCH。其中,各PUSCH的跳频范围如上所述。
第一PUSCH中携带第一UE的唯一标识。第二PUSCH中携带第二UE的唯一标识。
操作807,基站向第一UE发送第一Msg4。操作808,基站向第二UE发送第二Msg4。
第一UE在PDCCH搜索空间中检测由第一TC-RNTI加扰的DCI,用于接收第一Msg4。如果第一Msg4中携带第一UE的唯一标识,则第一UE认为自己成功接入了基站,以第一TC-RNTI作为自己的C-RNTI。
可选地,第二UE在该PDCCH搜索空间中检测由第二TC-RNTI加扰的DCI,用于接收第二Msg4。如果第二Msg4中携带第二UE的唯一标识,则第二UE认为自己成功接入了基站,以第二TC-RNTI作为自己的C-RNTI。
上述本申请提供的实施例中,分别从网络设备(例如基站)、终端设备(例如UE)、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的 方式来执行,取决于技术方案的特定应用和设计约束条件。
图9所示为本申请实施例提供的装置900的结构示例图。
在一种可能的实现中,装置900用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是能够实现终端设备的功能的其他装置。其中,该其他装置能够安装在终端设备中或者能够和终端设备匹配使用。
装置900中包括接收模块901,用于接收信号或者信息。例如,用于从网络设备接收SSB、DCI、和/或PDSCH。
装置900中包括发送模块902,用于发送信号或信息。例如,用于向网络设备发送PRACH和/或PUSCH。
装置900中包括处理模块903,用于处理所接收到的信号或者信息,例如用于解码接收模块901接收到的信号或者信息。处理模块903还可以生成要发送的信号或者信息,例如用于生成要通过发送模块902发送的信号或信息。
本申请实施例中对模块的划分是示意性的,为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如接收模块901和发送模块902还可以集成为收发模块或通信模块。另外,在本申请各个实施例中的各功能模块可以集成在一个模块中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
在一种可能的实现中,装置900用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是能够实现网络设备的功能的其他装置。其中,该其他装置能够安装在网络设备中或者能够和网络设备匹配使用。
装置900中包括接收模块901,用于接收信号或者信息。例如用于从终端设备接收PRACH和/或PUSCH。
装置900中包括发送模块902,用于发送信号或信息。例如用于向终端设备发送SSB、DCI、和/或PDSCH。
装置900中包括处理模块903,用于处理所接收到的信号或者信息,例如用于解码接收模块901接收到的信号或者信息。处理模块903还可以生成要发送的信号或者信息,例如用于生成要通过发送模块902发送的信号或信息。
如图10所示为本申请实施例提供的装置1000。
在一种可能的实现中,装置1000用于实现上述方法中终端设备的功能,该装置可以是终端设备,也可以是能够实现终端设备的功能的其他装置。其中,该其他装置能够安装在终端设备中或者能够和终端设备匹配使用。例如,装置1000可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置1000包括至少一个处理器1020,用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器1020可以生成和发送PRACH和/或PUSCH等信号,可以用于接收和处理SSB、DCI和/或PDSCH等,具体参见方法示例中的详细描述,此处不做赘述。
在一种可能的实现中,装置1000用于实现上述方法中网络设备的功能,该装置可以是网络设备,也可以是能够实现网络设备的功能的其他装置。其中,该其他装置能够安装在网络设备中或者能够和网络设备匹配使用。例如,装置1000可以为芯片系统。装置1000包括至少一个处理器1020,用于实现本申请实施例提供的方法中网络设备 的功能。示例性地,处理器1020可以接收和处理PRACH和/或PUSCH等信号,可以用于生成和发送SSB、DCI和/或PDSCH,具体参见方法示例中的详细描述,此处不做赘述。
装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器1020中。
装置1000还可以包括通信接口1010,用于通过传输介质和其它设备进行通信,从而用于装置1000中的装置可以和其它设备进行通信。处理器1020利用通信接口1010收发信号,并用于实现上述方法实施例中的功能。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及收发器1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存 取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种数据信道的传输方法,其特征在于,包括:
    从网络设备接收第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;
    根据所述第一授权,向所述网络设备发送所述第一终端设备的第一PUSCH。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一终端设备的类型为第一终端设备类型,所述第二终端设备的类型为第二终端设备类型,所述第一终端设备类型和所述第二终端设备类型不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括第一随机接入前导对应的RAR,所述第一信息用于指示第一授权和第二授权,包括:
    所述第一信息为所述RAR,所述RAR用于指示所述第一授权和所述第二授权;
    所述第一信息包括第一下行控制信息DCI和所述RAR,所述第一DCI用于调度所述RAR,所述第一DCI用于指示所述第一授权,所述RAR用于指示所述第二授权;或者,
    所述第一信息包括第一下行控制信息DCI和所述RAR,所述第一DCI用于调度所述RAR,所述第一DCI和所述RAR用于指示所述第一授权,所述RAR用于指示所述第二授权。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一授权用于指示第一终端设备的第一PUSCH的授权,包括:
    所述第一授权用于指示所述第一PUSCH的以下传输参数中的至少一种:
    时域资源位置信息;
    频域资源位置信息;
    解调参考信号DMRS信息;
    重复次数;和,
    跳频信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一授权用于指示第一终端设备的第一PUSCH的授权,包括:
    当所述第一授权中包括第一标识时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一授权中不包括第一标识时,所述第一PUSCH的传输参数是默认的传输参数;
    所述第一授权中包括第一标识,当所述第一标识的值为第一值时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一标识的值不为第一值或者为第二值时,所述第一PUSCH的传输参数是默认的传输参数;或者,
    所述第一授权中包括第一标识,当所述第一标识的值为第一值时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一标识的值不为第一值或者为第二值时,所述第一PUSCH的传输参数和所述第二PUSCH的传输参数相同。
  6. 根据权利要求5所述的方法,其特征在于,
    所述默认的传输参数是协议约定的;或者,
    所述方法还包括:从所述网络设备接收系统信息,所述系统信息用于指示所述默认的传输参数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,
    所述方法还包括:从网络设备接收第二DCI;其中,
    所述第二DCI是根据所述第一终端设备的TC-RNTI被加扰的,所述第一终端设备的TC-RNTI是独立于所述第二终端设备的TC-RNTI的;和/或,
    所述第二DCI是在所述第一终端设备的物理下行控制信道PDCCH搜索空间中被传输的,所述第一终端设备的PDCCH搜索空间是独立于所述第二终端设备的搜索空间的。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端设备的TC-RNTI是独立于所述第二终端设备的TC-RNTI的,包括:
    所述第一终端设备的TC-RNTI加上M等于所述第二终端设备的TC-RNTI,其中,M为整数;或者,
    所述第二DCI调度的物理下行共享信道PDSCH上携带的信息指示所述第一终端设备的TC-RNTI。
  9. 根据权利要求8所述的方法,其特征在于,
    所述M是协议约定的;
    所述第二DCI用于指示所述M;
    所述第一信息用于指示所述M;或者,
    所述方法还包括:从所述网络设备接收系统信息,所述系统信息用于指示所述M。
  10. 一种数据信道的传输方法,其特征在于,包括:
    从网络设备接收随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;
    根据所述第一PUSCH的传输参数,在第一时间部分和第二时间部分中,向所述网络设备发送第一终端设备的所述第一PUSCH;
    其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,
    所述跳频的范围是
    Figure PCTCN2020121612-appb-100001
    其中,
    Figure PCTCN2020121612-appb-100002
    为上行初始带宽部分BWP的带宽,X为大于或等于1的整数;其中,
    所述X为协议约定的;
    所述RAR用于指示所述X;
    所述方法还包括:从所述网络设备接收系统信息,所述系统信息用于指示所述X;或者,
    所述方法还包括:从所述网络设备接收第一DCI,所述第一DCI用于调度所述RAR,所述第一DCI用于指示所述X。
  11. 一种数据信道的传输方法,其特征在于,包括:
    发送第一信息,其中,所述第一信息包括第一随机接入前导对应的随机接入响应RAR,所述第一信息用于指示第一授权和第二授权,所述第一授权和第二授权对应于 所述第一随机接入前导,所述第一授权用于指示第一终端设备的第一物理上行共享信道PUSCH的授权,所述第二授权用于指示第二终端设备的第二PUSCH的授权;
    从第一终端设备接收所述第一PUSCH。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一终端设备的类型为第一终端设备类型,所述第二终端设备的类型为第二终端设备类型,所述第一终端设备类型和所述第二终端设备类型不同。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一信息包括第一随机接入前导对应的RAR,所述第一信息用于指示第一授权和第二授权,包括:
    所述第一信息为所述RAR,所述RAR用于指示所述第一授权和所述第二授权;
    所述第一信息包括第一下行控制信息DCI和所述RAR,所述第一DCI用于调度所述RAR,所述第一DCI用于指示所述第一授权,所述RAR用于指示所述第二授权;或者,
    所述第一信息包括第一下行控制信息DCI和所述RAR,所述第一DCI用于调度所述RAR,所述第一DCI和所述RAR用于指示所述第一授权,所述RAR用于指示所述第二授权。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述第一授权用于指示第一终端设备的第一PUSCH的授权,包括:
    所述第一授权用于指示所述第一PUSCH的以下传输参数中的至少一种:
    时域资源位置信息;
    频域资源位置信息;
    解调参考信号DMRS信息;
    重复次数;和,
    跳频信息。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,所述第一授权用于指示第一终端设备的第一PUSCH的授权,包括:
    当所述第一授权中包括第一标识时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一授权中不包括第一标识时,所述第一PUSCH的传输参数是默认的传输参数;
    所述第一授权中包括第一标识,当所述第一标识的值为第一值时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一标识的值不为第一值或者为第二值时,所述第一PUSCH的传输参数是默认的传输参数;或者,
    所述第一授权中包括第一标识,当所述第一标识的值为第一值时,所述第一授权还指示所述第一PUSCH的传输参数,当所述第一标识的值不为第一值或者为第二值时,所述第一PUSCH的传输参数和所述第二PUSCH的传输参数相同。
  16. 根据权利要求15所述的方法,其特征在于,
    所述默认的传输参数是协议约定的;或者,
    所述方法还包括:发送系统信息,所述系统信息用于指示所述默认的传输参数。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,
    所述方法还包括:发送第二DCI;其中,
    所述第二DCI是根据所述第一终端设备的TC-RNTI被加扰的,所述第一终端设备的TC-RNTI是独立于所述第二终端设备的TC-RNTI的;和/或,
    所述第二DCI是在所述第一终端设备的物理下行控制信道PDCCH搜索空间中被传输的,所述第一终端设备的PDCCH搜索空间是独立于所述第二终端设备的搜索空间的。
  18. 根据权利要求17所述的方法,其特征在于,所述第一终端设备的TC-RNTI是独立于所述第二终端设备的TC-RNTI的,包括:
    所述第一终端设备的TC-RNTI加上M等于所述第二终端设备的TC-RNTI,其中,M为整数;或者,
    所述第二DCI调度的物理下行共享信道PDSCH上携带的信息指示所述第一终端设备的TC-RNTI。
  19. 根据权利要求18所述的方法,其特征在于,
    所述M是协议约定的;
    所述第二DCI用于指示所述M;
    所述第一信息用于指示所述M;或者,
    所述方法还包括:发送系统信息,所述系统信息用于指示所述M。
  20. 一种数据信道的传输方法,其特征在于,包括:
    发送随机接入响应RAR,其中,所述RAR用于指示第一物理上行共享信道PUSCH的传输参数;
    在第一时间部分和第二时间部分中,从第一终端设备接收所述第一PUSCH;
    其中,所述第一PUSCH在所述第一时间部分和所述第二时间部分中存在跳频,
    所述跳频的范围是
    Figure PCTCN2020121612-appb-100003
    其中,
    Figure PCTCN2020121612-appb-100004
    为上行初始带宽部分BWP的带宽,X为大于或等于1的整数;其中,
    所述X为协议约定的;
    所述RAR用于指示所述X;
    所述方法还包括:发送系统信息,所述系统信息用于指示所述X;或者,
    所述方法还包括:发送第一DCI,所述第一DCI用于调度所述RAR,所述第一DCI用于指示所述X。
  21. 一种通信装置,其特征在于,用于实现权利要求1-10任一项所述的方法。
  22. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1-10任任一项所述的方法。
  23. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口实现权利要求1-10任任一项所述的方法。
  24. 一种通信装置,其特征在于,用于实现权利要求11-20任一项所述的方法。
  25. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求11-20任任一项所述的方法。
  26. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口实现权利要求11-20任任一项所述的方法。
  27. 一种通信系统,包括权利要求21-23任一项所述的通信装置,和权利要求24-26 任一项所述的通信装置。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-20任一项所述的方法。
  29. 一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-20任一项所述的方法。
PCT/CN2020/121612 2020-10-16 2020-10-16 数据信道的传输方法 WO2022077470A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121612 WO2022077470A1 (zh) 2020-10-16 2020-10-16 数据信道的传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121612 WO2022077470A1 (zh) 2020-10-16 2020-10-16 数据信道的传输方法

Publications (1)

Publication Number Publication Date
WO2022077470A1 true WO2022077470A1 (zh) 2022-04-21

Family

ID=81208873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121612 WO2022077470A1 (zh) 2020-10-16 2020-10-16 数据信道的传输方法

Country Status (1)

Country Link
WO (1) WO2022077470A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170374686A1 (en) * 2016-06-24 2017-12-28 Qualcomm Incorporated Random access collision reduction based on multiple uplink grants
WO2019136597A1 (zh) * 2018-01-09 2019-07-18 Oppo广东移动通信有限公司 Bwp的跳频配置方法及网络设备、终端
WO2020017525A1 (ja) * 2018-07-17 2020-01-23 シャープ株式会社 基地局装置、端末装置、および、通信方法
WO2020038413A1 (en) * 2018-08-23 2020-02-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining frequency resource, and user equipment
CN111567124A (zh) * 2017-11-16 2020-08-21 瑞典爱立信有限公司 用于分配资源许可的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170374686A1 (en) * 2016-06-24 2017-12-28 Qualcomm Incorporated Random access collision reduction based on multiple uplink grants
CN111567124A (zh) * 2017-11-16 2020-08-21 瑞典爱立信有限公司 用于分配资源许可的方法
WO2019136597A1 (zh) * 2018-01-09 2019-07-18 Oppo广东移动通信有限公司 Bwp的跳频配置方法及网络设备、终端
WO2020017525A1 (ja) * 2018-07-17 2020-01-23 シャープ株式会社 基地局装置、端末装置、および、通信方法
WO2020038413A1 (en) * 2018-08-23 2020-02-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining frequency resource, and user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Considerations on RA procedure in NR", 3GPP DRAFT; R2-1703570 CONSIDRATIONS ON RA PROCEDURE IN NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20170403 - 20170407, 3 April 2017 (2017-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051245409 *

Similar Documents

Publication Publication Date Title
JP7394920B2 (ja) 通信装置、通信方法および集積回路
US10813139B2 (en) Wireless communication method for simultaneous data transmission, and wireless communication terminal using same
US11711857B2 (en) Orthogonal frequency division multiple access communication apparatus and communication method
JP7345499B2 (ja) Message3プロトコルデータユニットを送受信する装置及び方法
RU2687033C1 (ru) Передача ответного сообщения произвольного доступа
CN107466113B (zh) 一种Msg3传输方法、装置和相关设备
WO2022028340A1 (zh) 频域资源的确定方法、设备及存储介质
JP2017508361A (ja) マシンタイプ通信についてのランダムアクセスのためのユーザ機器及び進化型ノードb及び方法
WO2021017702A1 (zh) 一种信号传输方法及装置
WO2022028374A1 (en) Method and apparatus for pusch repetition in a random access procedure
WO2021035447A1 (zh) 一种数据传输方法及装置
WO2022028361A1 (zh) 一种无线接入的方法以及装置
US20230319902A1 (en) Orthogonal frequency division multiple access communication apparatus and communication method
US20200252961A1 (en) Wireless communication method for saving power and wireless communication terminal using same
WO2022119497A1 (en) Communication apparatus and communication method for prioritized traffic
WO2022147669A1 (zh) 一种通信方法和通信装置
WO2021217337A1 (zh) 一种通信方法及通信装置
WO2021142682A1 (zh) 一种数据传输方法及装置
WO2018201850A1 (zh) 资源配置方法、装置和系统
WO2022077470A1 (zh) 数据信道的传输方法
WO2022193254A1 (zh) 一种通信方法、装置和系统
WO2021170032A1 (zh) 一种随机接入响应方法及装置
US20240163777A1 (en) Network slicing-based random access method and apparatus, and storage medium
WO2021142652A1 (zh) 上行数据传输的方法和装置
JP7456551B2 (ja) 信号の送受信方法、装置及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957248

Country of ref document: EP

Kind code of ref document: A1