WO2021217337A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2021217337A1
WO2021217337A1 PCT/CN2020/087225 CN2020087225W WO2021217337A1 WO 2021217337 A1 WO2021217337 A1 WO 2021217337A1 CN 2020087225 W CN2020087225 W CN 2020087225W WO 2021217337 A1 WO2021217337 A1 WO 2021217337A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access preamble
duration
time units
length
Prior art date
Application number
PCT/CN2020/087225
Other languages
English (en)
French (fr)
Inventor
黄煌
颜矛
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/087225 priority Critical patent/WO2021217337A1/zh
Priority to CA3177157A priority patent/CA3177157A1/en
Priority to EP20932964.8A priority patent/EP4124146A4/en
Priority to CN202080099806.4A priority patent/CN115399047A/zh
Publication of WO2021217337A1 publication Critical patent/WO2021217337A1/zh
Priority to US17/968,930 priority patent/US20230044554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • This application relates to the field of communication, and in particular to a communication method and communication device.
  • orthogonal frequency division multiplexing (OFDM) technology is used to implement one channel to transmit multiple signals, for example, in random access (RA)
  • OFDM can be used to transmit the random access preamble signal.
  • the random access preamble signal is carried by the physical random access channel (PRACH), which is orthogonal to the physical uplink shared channel (PUSCH). ), and the PUSCH is used to carry data signals.
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • a cyclic prefix can be inserted between OFDM symbols to reduce inter-symbol interference (ISI) and inter-channel interference (Inter-symbol interference, ISI) caused by multipath propagation when using OFDM technology.
  • ISI inter-symbol interference
  • ISI inter-channel interference
  • ICI inter-symbol interference
  • the greater the multipath delay the longer the cyclic prefix required.
  • NCP Short normal cyclic prefix
  • ECP extended cyclic prefix
  • the time length of the CP used in the random access preamble signal is aligned to the shorter NCP format in the data signal, and when the data signal uses ECP (for example, when a large subcarrier interval is adopted) , The possibility of using ECP is very high), because the random access preamble signal is not aligned with the data signal, the interference between the channels carrying the two signals increases, which affects the communication performance.
  • the present application provides a communication method and a communication device, which are used to increase the probability of successful random access preamble transmission of a terminal device in a random access process and reduce interference between random access signals and data signals.
  • the first aspect of the present application provides a communication method, which includes: in the information interaction process of a terminal device not connected to the network establishing a connection with the network, that is, in the random access process, the terminal device receives configuration information from the network device; The terminal device further determines the parameters corresponding to the random access preamble in the first parameter set according to the configuration information; thereafter, the terminal sends the random access preamble to the network device according to the parameters corresponding to the random access preamble and the configuration information.
  • each item in the first parameter set includes at least the parameter corresponding to the random access preamble, that is, at least the cyclic prefix CP length, the subcarrier interval length, the duration of the random access preamble, and the random access preamble corresponds to The physical random access channel PRACH duration
  • the first parameter set includes one or more of the following:
  • the length of the cyclic prefix CP is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kilohertz kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the duration of the physical random access channel PRACH corresponding to the incoming preamble is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 4 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 768 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 4 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3328 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 1 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3840 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to The duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 13 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 5 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 11 ⁇ 2560 ⁇ 2 - ⁇ ; or
  • the CP length is 2816 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 10 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2560 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 9 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2304 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 8 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 7 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 11 ⁇ 2560 ⁇ 2 - ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 10 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1536 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 9 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 8 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 7 ⁇ 2560 ⁇ 2- ⁇ ;
  • is a constant
  • is the subcarrier interval index of PRACH.
  • any random access preamble in the first parameter set is OFDM symbols aligned to an integer number of ECPs.
  • the CP type used in the data format of the data signal is ECP
  • the random access preamble signal on the PRACH is aligned with the integer number of OFDM data signals on the PUSCH, thereby improving the message 1 (random access) of the terminal equipment in the random access process. (Incoming preamble) transmission success probability, and reduce the access delay, reduce the interference between the random access signal and the data signal.
  • the parameter "PRACH duration of the physical random access channel corresponding to the random access preamble" in any item of the first parameter set may also be expressed as the number of OFDM symbols.
  • the first parameter set includes one or more of the following:
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kilohertz kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble The corresponding physical random access channel PRACH duration is 2 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 4 OFDM symbols; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 768 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 2 OFDM symbols; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 4 OFDM symbols; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 3328 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to PRACH duration is 12 OFDM symbols;
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 1 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 2 OFDM symbols; or
  • the CP length is 3840 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 12 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 13 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 12 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 5 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 11 OFDM symbols; or
  • the CP length is 2816 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 10 OFDM symbols;
  • the CP length is 2560 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 9 OFDM symbols; or
  • the CP length is 2304 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 8 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 7 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 11 OFDM symbols; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 10 OFDM symbols;
  • the CP length is 1536 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 9 OFDM symbols; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to PRACH duration is 8 OFDM symbols;
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the PRACH duration is 7 OFDM symbols.
  • the process of the terminal device determining the parameters corresponding to the random access preamble in the first parameter set according to the configuration information may include: when the terminal device determines that the CP type is the extended cyclic prefix ECP , The terminal device determines the parameter corresponding to the random access preamble in the first parameter set according to the configuration information.
  • the terminal device can determine that the CP type used in the PRACH is the extended cyclic prefix ECP Or, when the terminal device determines that the CP type used in the PUSCH is the extended cyclic prefix ECP, the terminal device determines the parameter corresponding to the random access preamble in the first parameter set.
  • the configuration information includes one or more of the following: CP length, preamble sequence length, and PRACH duration corresponding to the random access preamble;
  • the configuration information determines the parameters corresponding to the random access preamble in the first parameter set.
  • the terminal device can obtain related parameters through the configuration information (including one or more of the following: CP length, preamble sequence length, and PRACH duration corresponding to the random access preamble), at this time, if the related parameter indicates the first
  • the terminal device may determine other parameters corresponding to the random access preamble in the first parameter set according to the related parameter.
  • the terminal device determines that the CP type is the extended cyclic prefix ECP, where the first indication is used to indicate the initial uplink partial bandwidth or The CP type of the initial downlink part of the bandwidth is ECP.
  • the terminal device can use configuration information as one of the basis for determining the CP type as ECP. Specifically, the terminal device can implement this according to the first indication carried in the configuration information.
  • the first indication is used to indicate that the CP type of the initial uplink partial bandwidth or the initial downlink partial bandwidth is ECP, so that subsequent terminal devices can determine that the CP type used in the random access preamble is ECP according to the first indication. Or the parameters corresponding to the random access preamble are determined in the first parameter set). Therefore, when the CP type used in the data format of the data signal is ECP, the random access preamble signal on the PRACH is aligned with an integer number of OFDM data signals on the PUSCH.
  • the configuration information may include one or more of the following: CP length, duration length of the random access preamble, and PRACH duration corresponding to the random access preamble.
  • the terminal device may use the one or more parameters according to the one or more parameters.
  • the parameters corresponding to the random access preamble are determined in the first parameter set, thereby providing another implementation manner for determining the parameters corresponding to the random access preamble, and improving the feasibility of the solution.
  • any item in the first parameter set further includes the format of the random access preamble, and the configuration information also includes the random access configuration index;
  • the configuration information of the terminal device to determine the parameters corresponding to the random access preamble in the first parameter set includes: the terminal device determines the target format of the random access preamble according to the random access configuration index, and thereafter, the terminal device determines the target format of the random access preamble according to the random access configuration index.
  • the target format of the incoming preamble determines the parameter corresponding to the random access preamble in the first parameter set.
  • any item in the first parameter set further includes a format of a random access preamble (FORMAT), and the format of the random access preamble is used to identify each item in the first parameter set;
  • the configuration information includes Random access configuration index, the random access configuration index may correspond to the target format indicating the random access preamble carried in the specified item in the first parameter set, and further, the terminal device may be based on the target format of the random access preamble
  • the format determines the parameters corresponding to the random access preamble in the first parameter set, so that the parameters corresponding to the random access preamble are determined in the first parameter set.
  • any item in the first parameter set further includes the length of the preamble sequence.
  • the length of the preamble sequence is one of the parameters corresponding to the random access preamble. Therefore, the terminal device can determine a more comprehensive parameter corresponding to the random access preamble in the first parameter set, which further improves the terminal device’s performance in the random access process.
  • Message 1 random access preamble
  • the length of the preamble sequence is 139 or 127 or 571 or 1151, or other set lengths, so as to realize multiple implementation manners of the preamble sequence length.
  • the length of the preamble sequence can have multiple possible values, when any item in the first parameter set includes the length of the preamble sequence and the format of the random access preamble (FORMAT), since the format of the random access preamble is used to identify each item in the first parameter set, the format of the random access preamble can also identify the length of the preamble sequence in each item in the first parameter set, thereby The terminal device can determine the length of the preamble sequence according to the format of the random access preamble.
  • FORMAT the format of the random access preamble
  • the terminal device may receive a second instruction from the network device, and further, the terminal device determines the length of the preamble sequence according to the second instruction.
  • the length of the preamble sequence can have multiple possible values, and the network device can indicate the specific value of the length of the preamble sequence to the terminal device through the second instruction, so that the terminal device can determine the length of the preamble sequence according to the second instruction.
  • the second indication may be carried in the configuration information, or may be carried in other messages sent by the network device to the terminal device, which is not limited here.
  • is a constant and the value of ⁇ can be 64, 128, 256, 512 or other values, so as to realize the flexibility of the parameters corresponding to the random access preamble.
  • the value of ⁇ is associated with one or more of the following: the carrier frequency of the random access preamble, the random access type, and the frequency type used by the random access preamble.
  • is the subcarrier interval index of PRACH
  • the specific value of ⁇ is associated with one or more of the carrier frequency of the random access preamble, the random access type, or the frequency type used by the random access preamble, namely According to parameters such as the carrier frequency of the random access preamble, the random access type, and the frequency type used by the random access preamble, the specific value of ⁇ can be determined, thereby realizing multiple implementations of the value of ⁇ .
  • a second aspect of the present application provides a communication device, and the communication device has the function of implementing the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions, such as a transceiver unit, a processing unit, and so on.
  • the third aspect of the present application provides a communication device.
  • the communication device includes at least one processor, a memory, and computer-executable instructions that are stored in the memory and run on the processor.
  • the computer-executed instructions are executed by the processor.
  • the processor executes the method described in the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • a fourth aspect of the present application provides a computer-readable storage medium, which includes a computer program or instruction.
  • the processor executes the first aspect or the first aspect described above.
  • the method described in any one of the possible implementations is not limited to, but not limited to, but not limited to,
  • the fifth aspect of the present application provides a computer program product storing one or more computer-executable instructions.
  • the computer program product includes a computer program or instruction.
  • the processor executes the above-mentioned first One aspect or any one of the possible implementation methods of the first aspect.
  • the sixth aspect of the present application provides a chip system.
  • the chip system includes a processor and a communication interface.
  • the processor may include an application processor baseband processor (BP, baseband processor).
  • the processor may also include (AP, application processor), used to support the communication device to implement the functions involved in the first aspect or any one of the possible implementation manners of the first aspect.
  • the chip system may also include a memory, which is used to store necessary computer programs or instructions, and the processor executes the computer programs or instructions in the memory through the communication interface to implement the above-mentioned first aspect or Any one of the possible implementation methods of the first aspect.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the seventh aspect of the present application provides a communication system.
  • the communication system includes a network device for sending configuration information, and a communication device as in the foregoing second aspect or any one of the possible implementations of the second aspect, or the communication
  • the system includes a network device, and a communication device as in the foregoing third aspect or any one of the possible implementation manners of the third aspect.
  • the technical effects brought by the second aspect to the seventh aspect or any one of the possible implementation manners may refer to the technical effects brought about by the first aspect or the different possible implementation manners of the first aspect, and details are not described herein again.
  • the terminal device receives configuration information from the network device; the terminal device determines the corresponding random access preamble in the first parameter set according to the configuration information Parameters; the terminal sends a random access preamble to the network device according to the parameters corresponding to the random access preamble and the configuration information, because the CP length in the parameter of any random access preamble in the first parameter set is OFDM symbols aligned to an integer number of ECP, when the CP type used in the data format of the data signal is ECP, the random access preamble signal on PRACH is aligned with the integer number of OFDM data signals on PUSCH, thereby improving the randomness of the terminal equipment.
  • the message 1 random access preamble
  • the access delay is reduced
  • the interference between the random access signal and the data signal is reduced.
  • Figure 1 is a schematic diagram of a network architecture in an embodiment of the application
  • Figure 2 is a schematic diagram of a terminal device in an embodiment of the application.
  • Figure 3 is a schematic diagram of a network device in an embodiment of the application.
  • Figure 4 is a schematic diagram of a random access process in an embodiment of the application.
  • FIG. 5 is a schematic diagram of an embodiment of a communication method in an embodiment of this application.
  • FIG. 6 is a schematic diagram of an embodiment of a communication device in an embodiment of this application.
  • FIG. 7 is another schematic diagram of an embodiment of a communication device in an embodiment of this application.
  • the network architecture involved in this application is shown in Figure 1, including single or multiple network devices (the network devices in the dashed box not only serve as backhaul nodes, but also serve as nodes that provide terminal equipment (UE) access, both integrated Access and return), and single or multiple terminal devices.
  • the architecture involved is similar to the architecture of the network (also called radio access network) in the new radio (NR) access technology or the long term evolution (LTE) access technology.
  • NR new radio
  • LTE long term evolution
  • the dashed box indicates optional equipment, that is, the network equipment (backhaul node) in the dashed box exists in the scenario of integrated access and backhaul, and the equipment can be used as a network node to provide UEs
  • the network can also send back, that is, act as a UE to access the parent network node.
  • the hardware structure related to related equipment includes a terminal device and a network device.
  • FIG. 2 and FIG. 3 are schematic diagrams of the hardware structure implemented by the terminal device and the network device, respectively.
  • the terminal device 10 includes a processor 101, a memory 102, and a signal transceiving unit 103
  • the signal transceiving unit 103 includes a transmitter 1031, a receiver 1032, and an antenna 1033.
  • the network device 20 includes a processor 201, a memory 202, and a signal transceiving unit 203.
  • the signal transceiving unit 203 includes a transmitter 2031, a receiver 2032, and an antenna 2033.
  • the receiver 1032 may be used to receive transmission control information through the antenna 1033, and the transmitter 1031 may be used to send transmission information to the network device 20 through the antenna 1033.
  • the transmitter 2031 may be used to send transmission control configuration information to the terminal device 10 through the antenna 2033, and the receiver 2032 may be used to receive the transmission information sent by the terminal device 10 through the antenna 2033.
  • the network equipment may be a device deployed in a wireless access network to provide wireless communication functions for the terminal equipment.
  • the network equipment may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, etc.
  • the network equipment may also be base station equipment in a 5G network.
  • the network device may also be a wearable device or a vehicle-mounted device, or the network device may also transmit and receive a node (Transmission and Reception Point, TRP).
  • TRP Transmission and Reception Point
  • the terminal devices involved may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal can be a mobile station (Mobile Station, MS), subscriber unit (subscriber unit), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (PDA) computer , Tablet PC, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (Machine Type Communication, MTC) terminal, etc.
  • the network architecture can be specifically used to implement the random access process between the terminal device and the network device.
  • the following will explain some terms related to the random access process in the embodiments of this application——
  • Random access In an LTE or 5G communication system with access control, an information exchange mechanism (or process) for devices that have not accessed the network to establish a connection with the network. It is divided into contention-based random access and non-competition random access. Random access based on contention is usually divided into 4 steps, and each step corresponds to a message: including message 1, message 2, message 3, and message 4, which respectively carry different signaling or information. Random access based on non-competition has only the first two steps. In addition, in order to reduce the access time of the 4-step contention-based random access, there are further 2-step random access. In 2-step random access, it consists of message A and message B. Message A includes the preamble and the first data information (for example, similar to message 1 and message 3 in 4-step random access), and message B contains Including contention resolution and uplink scheduling (for example, similar to message 2 and message 4 in 4-step random access).
  • Message 1 (message 1, Msg1): that is, the random access preamble (preamble or sequence), which is carried by the physical random access channel (PRACH), that is, the random access signal corresponding to the random access preamble.
  • PRACH physical random access channel
  • Random access time and frequency resources are sent.
  • the time and frequency resources used to send the random access preamble are also called random access opportunities (PRACH occasion).
  • PRACH signal In the physical layer, it is also called PRACH signal or PRACH. It is usually used to initiate connection requests, handover requests, synchronization requests, and scheduling requests between the device and the network.
  • Message 2 (message 2, Msg2): Also called a random access response (random access response, RAR) message. It is the response of the network side to the received message 1.
  • a message 2 can respond to multiple Msg1. If the network side receives message 1, it will encapsulate and send at least one of the following information: the index of message 1 (random access preamble identity, RAPID), uplink scheduling grant (uplink grant), timing advance, temporary cell-wireless network Temporary identification (temporary cell radio network temporary identity, TC-RNTI), etc.
  • the network side can be in the same Msg2 and respond to multiple Msg1 at the same time.
  • Message 3 (message 3, Msg3): Also called the first uplink scheduled transmission, it is scheduled for transmission by the UL grant of the uplink resource in message 2, or the downlink control information (DCI) scrambled by TC-RNTI.
  • the Msg3 transmission content is a high-level message, such as a connection establishment request message (specifically, it may be the identification information of the user who initiated the connection request). The function of this message is for contention resolution. If multiple different devices use the same Msg1 for random access, Msg3 and Msg4 can jointly determine whether there is a conflict.
  • Msg3 can be defined as: Message transmitted on UL-SCH (uplink shared channel) containing a C-RNTI MAC (Medium access control) CE (control element) or CCCH (Common Control Channel) SDU (Service Data Unit), submitted from upper layer and associated with the UE Contention Resolution Identity, as part of a Random Access procedure.
  • the transmission of message 3 includes retransmission and power control (that is, power control information is included in the UL grant for scheduling initial transmission or retransmission).
  • Message 4 (message 4, Msg4): used for contention resolution. It usually contains the CCCH SDU carried in message 3. If the device detects the CCCH SDU sent by itself in message 4, it considers that the contention random access is successful and continues the next communication process.
  • Message 4 has a retransmission, that is, there is a corresponding physical uplink control channel (PUCCH) to transmit feedback information (whether message 4 is successfully detected), and the device has power control for sending feedback information on the PUCCH.
  • PUCCH physical uplink control channel
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology.
  • Different beams can be characterized by different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can include one or more antenna ports, which are used to transmit data channels, control channels, and sounding signals. It has certain directivity or characteristics in space.
  • the transmit beam can refer to the distribution of signal strength in different directions in space after the signal is transmitted through the antenna
  • the receive beam can refer to the wireless signal received from the antenna in space.
  • the beam can be embodied in the protocol as a spatial filter.
  • the transmission beam is a transmission spatial filter (spatial domain transmission filter), for example, the reception beam is a transmission spatial domain filter (spatial domain receiver filter).
  • the transmitting beam and the receiving beam are the same, which may mean that the spatial filtering used for transmission is the same as the spatial filtering used for receiving.
  • Message It is a kind of wireless access network layer data message, including data message and control message. At the physical layer, it is carried by each physical channel and propagated in the form of each physical signal through the antenna. Therefore, the same data or control can adopt the name "message” of the upper layer, or the name "signal” or "channel” of the physical layer.
  • the random access process mainly includes the following steps:
  • the base station sends synchronization signals and system information at a specific location (broadcast transmission).
  • the synchronization signal sent by the base station is synchronization signal/physical broadcast channel block (synchronization signal/PBCH block, SS/PBCH block), or synchronization signal block, SS/PBCH block and system information are sent periodically by the base station according to the configuration ;
  • synchronization signal/PBCH block, SS/PBCH block, or synchronization signal block, SS/PBCH block and system information are sent periodically by the base station according to the configuration ;
  • scan the synchronization signal of the base station After the UE is powered on or needs to re-access the network, scan the synchronization signal of the base station, perform downlink time and frequency synchronization, and receive configuration information about random access resources in the system information;
  • the UE selects a specific random access resource according to the random resource configuration information, the resource includes time, frequency resources, and code domain resources (random access preamble), and uses the random access resource to send random access signals , Also known as message 1 (Msg1);
  • the base station After receiving the message 1 sent by the UE, the base station estimates the timing advance of the UE according to the preamble sent by the user, and replies to the user message 2 (Msg2).
  • Message 2 includes the UE for sending message 3 (Msg3).
  • Configuration information such as the location of time-frequency resources for conflict resolution, modulation and coding mode, etc.;
  • the base station After receiving message 3, the base station replies to the user with message 4 (Msg4), indicating that the terminal user has successfully accessed.
  • Msg4 message 4
  • the process from Msg1 to Msg4 is generally called a 4-step random access process.
  • the transmission of the random access preamble in Msg1 can also be applied to non-contention-based random access and 2-step random access. It's just that the non-competitive random access has only the first two steps of Msg1 and Msg2.
  • 2-step random access which consists of two messages: message A and message B.
  • message A includes the sending of the random access preamble and the first data information (for example, similar to message 1 and message 3 in 4-step random access), and message B includes contention resolution and uplink scheduling (for example, similar to 4-step random access).
  • Msg1, Msg3, and Msg4 can be retransmitted (after failure).
  • the following describes the process of the UE sending the random access preamble (for example, step 2 corresponding to FIG. 4 above).
  • OFDM can be used to transmit random access preamble signals.
  • the random access preamble signals are carried by PRACH.
  • the generated inter-symbol interference (ISI) and/or inter-symbol interference (ICI) can be eliminated by inserting a cyclic prefix between OFDM symbols.
  • ISI inter-symbol interference
  • ICI inter-symbol interference
  • the format of the random access preamble is determined by the following five parts: preamble sequence length, subcarrier interval, cyclic prefix, duration (or sequence time length), guard interval, Guard interval (or the total length of the random access preamble, choose one of the two).
  • preamble sequence length In the NR protocol TS 38.211 in the 3rd generation partnership project (3rd generation partnership project, 3GPP), clearly defined are: preamble sequence length, subcarrier spacing, cyclic prefix, duration length (or sequence time length), protection Interval, the total length of random access preamble.
  • the parameter "total length of random access preamble" is not defined in the same table as other parameters, and is called PRACH duration in NR.
  • NR defines two types of random access preamble formats corresponding to different preamble sequence lengths shown in Table 1 and Table 2.
  • "Format” is the format identifier of the random access preamble
  • ⁇ 0,1,2,3 ⁇ is the preamble format subcarrier interval index
  • ⁇ f RA is the random connection subcarriers in the preamble interval
  • N u is the length of time the duration of the random access preamble (the number of sampling points in the reference time represented, also called random access sequence is a length of time)
  • Is the cyclic prefix length of the random access preamble.
  • the data symbol and the cyclic prefix are included.
  • the data symbol length is 2048 ⁇ 2 - ⁇ .
  • cyclic prefix formats can be used, which are normal cyclic prefix (NCP) and extended cyclic prefix (ECP).
  • NCP normal cyclic prefix
  • ECP extended cyclic prefix
  • the time slot corresponding to the extended cyclic prefix has 12 OFDM symbols, and the length of the cyclic prefix of each OFDM symbol is the same, which is 512 ⁇ 2- ⁇ . Please refer to Table 1 and Table 2 for the description of time unit, symbols ⁇ and ⁇ .
  • the greater the multipath delay the longer the cyclic prefix used to eliminate the multipath delay.
  • ECP in the data signal to eliminate multipath delay and avoid interference between OFDM symbols.
  • ECP can be used to tolerate longer switching delays and avoid signal damage.
  • the time length of the CP used in the random access preamble signal is aligned to the shorter NCP in the data signal. Format.
  • the data signal uses ECP, if the existing random access preamble format is adopted, the random access preamble signal and the data signal in the time slot are always not aligned, which causes the interference between the two signals to increase and affect Communication performance.
  • the embodiments of the present application provide a communication method and a communication device, which are used to optimize the process of a terminal device sending a random access preamble to a network device.
  • FIG. 5 is a schematic diagram of a communication method in an embodiment of this application.
  • a network device sends configuration information to a terminal device
  • the network device periodically sends configuration information.
  • the terminal device After the terminal device is turned on or needs to reconnect to the network, it can scan the synchronization signal/broadcast signal from the network device, synchronize the downlink time and frequency, and receive from the network device at the same time.
  • the system information block to obtain the configuration information required for random access.
  • the configuration information may be carried in a synchronization signal/broadcast signal (for example, synchronization signal/PBCH block, SS/PBCH block) and/or system information block (System Information block, SIB) sent by the network device.
  • a synchronization signal/broadcast signal for example, synchronization signal/PBCH block, SS/PBCH block
  • SIB System Information block
  • the configuration information may include random access time, frequency resource parameters, etc., specifically including at least one of the following: PRACH time configuration information (for example, PRACH configuration index prach-ConfigIndex), frequency division multiplexing random access Number of incoming opportunities (for example, message 1 frequency division multiplexing (msg1-frequency domain multiplexing, msg1-FDM)), random access root sequence index, random access preamble subcarrier spacing (or physical random access channel subcarrier Interval, or sub-carrier index) and other parameters.
  • PRACH time configuration information for example, PRACH configuration index prach-ConfigIndex
  • frequency division multiplexing random access Number of incoming opportunities for example, message 1 frequency division multiplexing (msg1-frequency domain multiplexing, msg1-FDM)
  • random access root sequence index for example, message 1 frequency division multiplexing (msg1-frequency domain multiplexing, msg1-FDM)
  • random access root sequence index for example, message 1 frequency division multiplexing (msg
  • the configuration information may further include a first parameter, and the first parameter includes at least one of the following parameters: the CP length of the random access preamble, the sequence length of the random access preamble, and the random access preamble.
  • the configuration information may further include cyclic prefix (cyclic Prefix) indication information, and the cyclic prefix indication information is used to indicate to the terminal device that the CP type is ECP when sending a message to the network device.
  • cyclic Prefix cyclic Prefix
  • the network device can perform step 501 The configuration information carrying the cyclic prefix indication information is sent in.
  • the cyclic prefix indication information may include a cyclic prefix field (that is, the first indication), the cyclic prefix field is used to indicate that the cyclic prefix of the random access preamble is an extended cyclic prefix is ECP; or the cyclic prefix field is used to indicate the PUSCH
  • the cyclic prefix is the extended cyclic prefix, ECP; or the cyclic prefix field is used to indicate that the cyclic prefix of the uplink partial bandwidth (bandwidth part) is the extended cyclic prefix is ECP; or the cyclic prefix field is used to indicate the initial uplink bandwidth (initial uplink bandwidth).
  • the cyclic prefix of part) is the extended cyclic prefix is ECP; or the cyclic prefix field is used to indicate that the cyclic prefix of the initial downlink bandwidth part is the extended cyclic prefix is ECP.
  • the network device may carry a second indication in the configuration information sent to the terminal device in step 501, where the second indication may indicate the preamble in the parameter corresponding to the random access preamble
  • the value of the sequence length may be 139 or 127 or 571 or 1151, or other set time lengths.
  • the second indication may be carried in the configuration information, or may be carried in other messages sent by the network device to the terminal device, which is not limited here.
  • the configuration information sent by the network device to the terminal device in step 501 may carry a specified random access preamble format (that is, the target format of the random access preamble), where random The format of the access preamble is used to identify the parameters corresponding to the random access preamble.
  • a specified random access preamble format that is, the target format of the random access preamble
  • the format of the access preamble is used to identify the parameters corresponding to the random access preamble.
  • there can be multiple implementations of the format of the random access preamble for example, through different numbers (such as 1, 2, 3, etc.) Identify different random access preamble formats, or through different letters (such as A, B, C... etc.) to identify different random access preamble formats, or through different combinations of letters and numbers to identify different
  • the format of the random access preamble, or the format of identifying different random access preambles by other means, is not limited here.
  • the terminal device determines a parameter corresponding to the random access preamble in the first parameter set according to the configuration information.
  • the terminal device may determine the parameter corresponding to the random access preamble in the first parameter set according to the configuration information.
  • each item in the first parameter set includes at least a parameter corresponding to the random access preamble
  • the parameters corresponding to the random access preamble include at least a cyclic prefix CP length, a subcarrier interval, and a duration of the random access preamble , The duration of the physical random access channel PRACH corresponding to the random access preamble.
  • the configuration information obtained by the terminal device in step 501 may also include a first parameter.
  • the terminal device may determine a random connection in the first parameter set according to the first parameter. Enter the parameter corresponding to the preamble; optionally, in step 502, when the terminal device determines that the first parameter indicates a certain item in the first parameter set, the terminal device further selects the parameter in the first parameter set according to the first parameter. Determine the parameters corresponding to the random access preamble.
  • any item in the first parameter set further includes a format of a random access preamble (FORMAT), and the format of the random access preamble is used to identify each item in the first parameter set.
  • the parameter corresponding to the item after the configuration information obtained by the terminal device in step 501 includes the random access configuration index (prach-ConfigIndex), the terminal device can determine the random access preamble corresponding to the random access configuration index according to the random access configuration index.
  • Target format and then, if the format of the random access preamble in any item in the first parameter set contains the target format of the random access preamble, the terminal device further sets the target format according to the target format of the random access preamble.
  • the first parameter set determines the parameters corresponding to the random access preamble, that is, the terminal device in the first parameter set determines the parameter of the specified item identified by the target format of the random access preamble as the random access preamble corresponding Parameters.
  • the configuration information sent by the network device to the terminal device in step 501 may carry the specified random access preamble format (that is, the target format of the random access preamble), After that, if the format of the random access preamble in any item in the first parameter set contains the target format of the random access preamble, the terminal device then writes it in the first parameter set according to the target format of the random access preamble.
  • the parameter corresponding to the random access preamble is determined, that is, the terminal device determines the parameter of the specified item identified by the target format of the random access preamble as the parameter corresponding to the random access preamble in the first parameter set.
  • the terminal device may obtain the second indication from the configuration information received from the terminal device in step 501, where the second indication may indicate the length of the preamble sequence in the parameter corresponding to the random access preamble The value of.
  • the value of the preamble sequence length may be 139 or 127 or 571 or 1151, or other set time lengths.
  • the terminal device can implement the determination of the length of the preamble sequence according to the second instruction.
  • the second indication may be carried in the configuration information, or may be carried in other messages sent by the network device to the terminal device, which is not limited here.
  • the length of the preamble sequence can have multiple possible values.
  • any item in the first parameter set includes the format of the random access preamble (FORMAT). Since the format of the random access preamble is used to identify each item in the first parameter set, the random access preamble is used to identify each item in the first parameter set.
  • the format of the incoming preamble can also identify the length of the preamble sequence in each item in the first parameter set, so that the terminal device can determine the length of the preamble sequence according to the format of the random access preamble.
  • the configuration information obtained by the terminal device in step 501 includes cyclic prefix indication information, and the terminal device further determines at least one of the following parameters of the random access preamble according to the cyclic prefix indication information: cyclic prefix length , The PRACH duration corresponding to the random access preamble, the guard time of the random access preamble, and the number of OFDM symbols that the random access preamble lasts. Thereafter, the terminal device determines the parameters corresponding to the random access preamble in the first parameter set according to the obtained parameters.
  • the configuration information obtained by the terminal device in step 501 may include a random access configuration index (prach-ConfigIndex) and cyclic prefix indication information, and the terminal device determines according to the random access configuration index.
  • the format of the random access preamble (Format), and further determine the parameter set used for sending the random access preamble as the first parameter set according to the cyclic prefix indication information.
  • the terminal device determines the parameters corresponding to the random access preamble in the first parameter set according to the format of the random access preamble.
  • the random access preamble has multiple parameter sets, such as a first parameter set and a second parameter set.
  • the first parameter set is used in the first scenario
  • the second parameter set is used in the second scenario.
  • the first scenario may include the terminal device using a carrier frequency band above 52.6GHz, or the terminal device using a wider subcarrier width, or The terminal equipment uses shorter OFDM symbols, or other scenarios where the terminal equipment needs to use ECP;
  • the second scenario may include the terminal equipment using the carrier frequency band below 52.6GHz, or the terminal equipment using a lower sub-carrier width, or the terminal equipment using Longer OFDM symbols, or other scenarios where terminal equipment needs to use NCP.
  • the terminal device may determine the parameter set used according to the carrier frequency, or determine the parameter set used according to the cyclic prefix indication information carried in the configuration information obtained in step 501, or determine the parameter set used in other ways , There is no limitation here.
  • the implementation of the second parameter set may be the parameter set in Table 1 or Table 2, or another parameter set, which is not limited here.
  • the first parameter set will be described in detail below, where the first parameter set includes one or more parameters corresponding to the random access preamble, and each parameter corresponding to the random access preamble includes at least one of the following : Cyclic prefix CP length, subcarrier spacing length, duration of random access preamble, and PRACH duration of the physical random access channel corresponding to the random access preamble.
  • the first parameter set can be implemented in multiple ways, which will be introduced separately below.
  • Manner 1 Refer to Table 3. Any item in the first parameter set corresponds to any row in Table 3. Correspondingly, the first parameter set may include any one or more rows in Table 3. Wherein any row in Table 3, the different columns of data (Format, L RA, ⁇ f RA , N u, PRACH duration) corresponds to the different parameters corresponding to the random access preamble. In the specific implementation of the first parameter set, it can be achieved by integrating the data of different columns in the same table in Table 3; it can also be the data of different columns.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, Data in columns such as PRACH duration); data in different columns can also be integrated into two or more different tables, which is not limited here.
  • is a constant and the value of ⁇ can be 64, 128, 256, 512 or other values, so as to realize the flexible configuration of the parameters corresponding to the random access preamble.
  • the symbol " ⁇ " represents a multiplication sign.
  • is the subcarrier spacing index of PRACH.
  • Table 3 there can be multiple implementations of the format of the random access preamble (that is, the column where the Format is located). For example, different numbers (such as 1, 2, 3..., etc.) are used to identify different random access preamble formats, or different letters (such as A, B, C..., etc.) are used to identify different random access preambles.
  • the format of the incoming preamble, or the combination of different letters and numbers for example, A1, A2, A3, B1, B2, B3, B4, C0, C2, etc. in Table 3) to identify different random access preamble formats, Or it is to identify different random access preamble formats in other ways, which is not limited here.
  • taken random access preamble e.g. a time parameter, and N u
  • the reference time unit time unit (or time granularity) of) is T g
  • is a constant, which is related to the reference time unit (or time granularity) T g .
  • is the index corresponding to the sub-carrier interval.
  • is the index corresponding to the sub-carrier interval.
  • is the index corresponding to the sub-carrier interval.
  • is the index corresponding to the sub-carrier interval.
  • is the index corresponding to the sub-carrier interval.
  • is the index corresponding to the sub-carrier interval.
  • is the index corresponding to the sub-carrier interval.
  • ⁇ 0,1,2,3,4,5,6,7,8 ⁇
  • the value of ⁇ can also be larger, and I will not list them one by one here.
  • the final set of ⁇ values is related to the frequency of the carrier, the type of random access, and the type of frequency used for random access (for example, licensed frequency band, unlicensed frequency band), which will be specifically explained below:
  • the set of ⁇ values is related to the frequency (or frequency range) where the carrier is located.
  • Table 3-1 a schematic table for the realization of the frequency range.
  • Table 3-1 takes the frequency range including 4 levels as an example.
  • the frequency ranges of these 4 levels are FR1, FR2, FRm, and FRn.
  • the set of ⁇ values is ⁇ 1,2 ⁇ ; or the set of ⁇ values is ⁇ 0,1,2 ⁇ ; or the set of ⁇ values is ⁇ ⁇ 1,2,3 ⁇ .
  • the set of ⁇ values is ⁇ 5,6 ⁇ ; or the set of ⁇ values is ⁇ 4,5,6 ⁇ ; or the set of ⁇ values is ⁇ 3, 4,5 ⁇ .
  • this is an exemplary description, and the implementation of specific ⁇ is not limited to this.
  • X1 and X2 may be less than or equal to 24,250, for example, X1 is 10,000 and X2 is 16,000.
  • Y1 and Y2 may be greater than or equal to 52,600.
  • Y1 is 52,600 and Y2 is 65,000.
  • Y1 is 65,000 and Y2 is 85,000.
  • the set of ⁇ values is related to the type of follower access.
  • the type of random access may include one or more of FR1, FR2, FRm, and FRn.
  • FRm Taking the frequency range as FRm as an example, when the random access is a two-step random access, ⁇ 1,2 ⁇ is adopted; when the random access is a four-step random access, the set of ⁇ values is ⁇ 0,1,2 ⁇ .
  • the set of ⁇ values is ⁇ 5,6 ⁇ ; when the random access is four-step random access, the set of ⁇ values Is ⁇ 4,5,6 ⁇ .
  • this is an exemplary description, and the implementation of specific ⁇ is not limited to this.
  • the set of ⁇ values is related to the type of frequency used by the follower to access (for example, authorized licensed frequency band, unlicensed frequency band).
  • the type of random access may include one or more of FR1, FR2, FRm, and FRn.
  • FRm Taking the frequency range as FRm as an example, when random access is performed in the authorized frequency band in FRm, ⁇ 1,2 ⁇ is adopted; when random access is performed in the unlicensed frequency band in FRm, the set of ⁇ values is ⁇ 0,1,2 ⁇ .
  • the set of ⁇ values is ⁇ 5,6 ⁇ ; when the random access is performed in the unlicensed frequency band in FRn, ⁇ takes The set of values is ⁇ 4,5,6 ⁇ . Obviously, this is an exemplary description, and the implementation of specific ⁇ is not limited to this.
  • A1, A2, A3, B1, B2, B3, B4, C0, and C2 in the above Format are only a code name or an example of another name for the format, which can be replaced by any other name.
  • the other names are D1, D2, D3, E1, E2, E3, E4, F0, F2 or other codes or aliases, which are not limited here.
  • the unit in the last column of the parameters in Table 3 can also be expressed as the number of OFDM symbols. Please refer to Table 4 for details. Any item in the first parameter set corresponds to any row in Table 4, and correspondingly, The first parameter set may include any one or more rows in Table 4.
  • each symbol parameter can refer to the content in the aforementioned Table 3, which will not be repeated here.
  • the different columns of data corresponds to the different parameters corresponding to the random access preamble.
  • the first parameter set it can be achieved by integrating the data of different columns in the same table in Table 4; it can also be the data of different columns. respectively integrated in two separate tables implemented (e.g., the first table comprises Format, L RA, ⁇ f RA, N u, The second table includes Format, Data in columns such as PRACH duration); data in different columns can also be integrated into two or more different tables, which is not limited here.
  • the total time length of the random access preamble is an integer number of extended cyclic prefix OFDM symbols, which can keep the data signal in the PUSCH and the random access preamble signal in the PRACH as much as possible It is synchronized enough to reduce mutual interference; the cyclic prefix length of the random access preamble is longer than the guard interval of the data signal, which is beneficial to protect the subsequent data of the random access preamble and prevent the channel multipath delay from causing the PRACH signal to interfere with the connection.
  • the following data transmission; the total time of the random access preamble in a time slot does not exceed 12 OFDM symbols, so that the PRACH does not span multiple time slots, facilitating flexible scheduling.
  • Manner 2 Refer to Table 5. Any item in the first parameter set corresponds to any row in Table 5. Correspondingly, the first parameter set may include any one or more rows in Table 5. Wherein any row in Table 5, the different columns of data (Format, L RA, ⁇ f RA , N u, PRACH duration) corresponds to the different parameters corresponding to the random access preamble. In the specific implementation of the first parameter set, it can be achieved by integrating the data of different columns in the same table in Table 5; it can also be the data of different columns.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, Data in columns such as PRACH duration); data in different columns can also be integrated into two or more different tables, which is not limited here.
  • the unit in the last column of the parameters in Table 5 can also be expressed as the number of OFDM symbols.
  • Table 6 for details. Any item in the first parameter set corresponds to any row in Table 6, corresponding to The first parameter set may include any one or more rows in Table 6.
  • the different columns of data corresponds to the different parameters corresponding to the random access preamble.
  • it can be achieved by integrating the data of different columns in the same table in Table 6; it can also be the data of different columns.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, Data in columns such as PRACH duration); data in different columns can also be integrated into two or more different tables, which is not limited here.
  • the total time length of the random access preamble is an integer number of extended cyclic prefix OFDM symbols, so that the data signal in the PUSCH and the random access preamble signal in the PRACH can be kept as long as possible It is synchronized enough to reduce mutual interference; the total time of the random access preamble in a time slot does not exceed 12 OFDM symbols, which can make the PRACH not span multiple time slots and facilitate flexible scheduling.
  • the cyclic prefix length in the partial format (A3/B4/C2) is reduced in the second method, so that the cyclic prefix length of the random access preamble does not exceed the time length of one OFDM symbol, and there is no need to span multiple OFDM symbols.
  • the symbol carries a cyclic prefix.
  • Manner 3 Refer to Table 7. Any item in the first parameter set corresponds to any row in Table 7. Correspondingly, the first parameter set may include any one or more rows in Table 7. Wherein, in any one row of Table 7, the different columns of data (Format, L RA, ⁇ f RA , N u, PRACH duration) corresponds to the different parameters corresponding to the random access preamble. In the specific implementation of the first parameter set, it can be achieved by integrating the data of different columns in the same table in Table 7; it is also possible to integrate the data of different columns in the same table.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, Data in columns such as PRACH duration); data in different columns can also be integrated into two or more different tables, which is not limited here.
  • the unit in the last column of the parameters in Table 7 can also be expressed as the number of OFDM symbols. Please refer to Table 8 for details.
  • Any item in the first parameter set corresponds to any row in Table 8.
  • the first parameter set may include any one or more rows in Table 8.
  • the different columns of data corresponds to the different parameters corresponding to the random access preamble.
  • it can be achieved by integrating the data of different columns in the same table in Table 8; it is also possible to integrate the data of different columns in the same table.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, PRACH duration and other column data
  • the data of different columns can also be integrated into two or more different tables, which is not limited here.
  • the total time length of the random access preamble is an integer number of extended cyclic prefix OFDM symbols, which can keep the data signal in the PUSCH and the random access preamble signal in the PRACH as much as possible It is synchronized enough to reduce mutual interference; the cyclic prefix length of the random access preamble is longer than the guard interval of the data signal, which is beneficial to protect the subsequent data of the random access preamble and prevent the channel multipath delay from causing the PRACH signal to interfere with the connection.
  • the following data transmission; the total time of the random access preamble in a time slot does not exceed 12 OFDM symbols, which can make the PRACH not span multiple time slots, which is convenient for flexible scheduling.
  • the cyclic prefix length in the partial format is reduced, so that the cyclic prefix length of the random access preamble does not exceed the time length of one OFDM symbol, and there is no need to carry the cyclic prefix across multiple OFDM symbols;
  • the cyclic prefix length in the partial format is further reduced, and the duration of the random access preamble is correspondingly increased, so that the cyclic prefix length of the random access preamble remains unchanged.
  • Manner 4 Refer to Table 9. Any item in the first parameter set corresponds to any row in Table 9. Correspondingly, the first parameter set may include any one or more rows in Table 9. Wherein any row in Table 9, the different columns of data (Format, L RA, ⁇ f RA , N u, PRACH duration) corresponds to the different parameters corresponding to the random access preamble. In the specific implementation of the first parameter set, it can be achieved by integrating the data of different columns in the same table in Table 9; it is also possible to integrate the data of different columns in the same table.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, PRACH duration and other column data
  • the data of different columns can also be integrated into two or more different tables, which is not limited here.
  • the unit in the last column of the parameters in Table 9 can also be expressed as the number of OFDM symbols.
  • Table 10 for details. Any item in the first parameter set corresponds to any row in Table 10.
  • the first parameter set may include any one or more rows in Table 10.
  • the different columns of data corresponds to the different parameters corresponding to the random access preamble.
  • it can be achieved by integrating the data of different columns in the same table in Table 10; it is also possible to integrate the data of different columns in the same table.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, PRACH duration and other column data
  • the data of different columns can also be integrated into two or more different tables, which is not limited here.
  • the total time length of the random access preamble is an integer number of extended cyclic prefix OFDM symbols, which can make the data signal in the PUSCH and the random access preamble signal in the PRACH keep as much as possible It is synchronized enough to reduce mutual interference; the cyclic prefix length of the random access preamble is longer than the guard interval of the data signal, which is beneficial to protect the subsequent data of the random access preamble and prevent the channel multipath delay from causing the PRACH signal to interfere with the connection.
  • Physical downlink control channel physical dowlink control Chanel, PDCCH
  • uplink and downlink handover uplink and downlink handover
  • sounding reference signal sounding reference signal
  • Manner 5 Refer to Table 11. Any item in the first parameter set corresponds to any row in Table 11. Correspondingly, the first parameter set may include any one or more rows in Table 11. Wherein any row of Table 11, the data of different columns (Format, L RA, ⁇ f RA , N u, PRACH duration) corresponds to the different parameters corresponding to the random access preamble. In the specific implementation of the first parameter set, it can be achieved by integrating the data of different columns in the same table in Table 11; it is also possible to integrate the data of different columns in the same table.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, PRACH duration and other column data
  • the data of different columns can also be integrated into two or more different tables, which is not limited here.
  • the unit in the last column of the parameters in Table 11 can also be expressed as the number of OFDM symbols.
  • Table 12 for details. Any item in the first parameter set corresponds to any row in Table 12.
  • the first parameter set may include any one or more rows in Table 12.
  • the data of different columns (Format, L RA, ⁇ f RA , N u, PRACH duration) corresponds to the different parameters corresponding to the random access preamble.
  • it can be achieved by integrating the data of different columns in the same table in Table 12; it can also be the data of different columns.
  • the first table comprises Format, L RA, ⁇ f RA, N u
  • the second table includes Format, PRACH duration and other column data
  • the data of different columns can also be integrated into two or more different tables, which is not limited here.
  • the total time length of the random access preamble is an integer number of extended cyclic prefix OFDM symbols, so that the data signal in the PUSCH and the random access preamble signal in the PRACH can be kept as long as possible It is synchronized enough to reduce mutual interference; the length of the cyclic prefix of the random access preamble does not exceed the time length of one OFDM symbol, so that the PRACH does not span multiple time slots, which is convenient for flexible scheduling; the random access preamble in one time slot The total time does not exceed 11, 10, 9, 8, or 7 OFDM symbols, and some symbol lengths can be reserved to carry other channels or signal transmission of other functions, such as PDCCH, uplink and downlink switching, SRS, etc.
  • the cyclic prefix length in the partial format is reduced, and the duration of the random access preamble is correspondingly increased, so that the cyclic prefix length of the random access preamble remains unchanged.
  • the specific implementation of the first parameter set may be that the terminal device pre-stores the first parameter set in a storage module, where the storage module may include a recording medium, a computer memory, a read-only memory (ROM, Read-Only Memory). Only Memory), Random Access Memory (RAM, Random Access Memory), Subscriber Identity Module (SIM), Universal Subscriber Identity Module (USIM), Embedded SIM Card (embedded SIM, eSIM) , Or in any storage medium in the terminal device, it can also be the first parameter set obtained from the synchronization signal and/or broadcast signal and/or system information block sent by the network device by the terminal device, or the The terminal device receives messages from other devices to obtain the first parameter set, which is not limited here.
  • the storage module may include a recording medium, a computer memory, a read-only memory (ROM, Read-Only Memory). Only Memory), Random Access Memory (RAM, Random Access Memory), Subscriber Identity Module (SIM), Universal Subscriber Identity Module (USIM), Embedded SIM Card (embedded SIM,
  • the terminal device sends a random access preamble to the network device according to the parameters and configuration information corresponding to the random access preamble.
  • the terminal device can obtain the random access time and frequency resource parameters of the random access preamble in step 501, and can obtain the parameters corresponding to the random access preamble in step 502, including at least the cyclic prefix CP length and the subcarrier interval length , The duration of the random access preamble, and the duration of the physical random access channel PRACH corresponding to the random access preamble, so that the random access preamble is sent to the network device according to the parameters and configuration information corresponding to the random access preamble.
  • the network device receives the random access preamble from the terminal device, that is, the process of step 2 in FIG. 4 is implemented. Thereafter, the network device can estimate the timing advance of the terminal device based on the random access preamble, And reply message 2 (Msg2) to the terminal device, and perform other steps in FIG. 4, so as to realize the random access process of the terminal device.
  • Msg2 reply message 2
  • the CP length in the parameter of any random access preamble in the first parameter set is aligned to an integer number of ECP OFDM symbols
  • the CP type used in the data format of the data signal is ECP
  • the random access preamble signal on PRACH is aligned with the integer number of OFDM data signals on PUSCH, thereby increasing the probability of successful message 1 (random access preamble) transmission of the terminal device in the random access process, and reducing the access delay and reducing Interference between random access signal and data signal.
  • a communication device 600 in an embodiment of the present application includes:
  • the transceiver unit 601 is configured to receive configuration information from a network device
  • the processing unit 602 is configured to determine a parameter corresponding to the random access preamble in the first parameter set according to the configuration information
  • the first parameter set includes one or more of the following:
  • the length of the cyclic prefix CP is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kilohertz kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the duration of the physical random access channel PRACH corresponding to the incoming preamble is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 4 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 768 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 4 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the preamble sequence length is 6 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the PRACH duration corresponding to the random access preamble is 6 ⁇ 2560 ⁇ 2 - ⁇ ;
  • the CP length is 3328 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the preamble sequence length is 12 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the PRACH duration corresponding to the random access preamble is 12 ⁇ 2560 ⁇ 2 - ⁇ ;
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the preamble sequence length is 1 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the PRACH duration corresponding to the random access preamble is 2 ⁇ 2560 ⁇ 2 - ⁇ ;
  • the CP length is 3840 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ;
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to The duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ;
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 13 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 5 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ;
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 11 ⁇ 2560 ⁇ 2 - ⁇ ; or
  • the CP length is 2816 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 10 ⁇ 2560 ⁇ 2- ⁇ ;
  • the CP length is 2560 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 9 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2304 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 8 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 7 ⁇ 2560 ⁇ 2- ⁇ ;
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 11 ⁇ 2560 ⁇ 2 - ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 10 ⁇ 2560 ⁇ 2- ⁇ ;
  • the CP length is 1536 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 9 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 8 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 7 ⁇ 2560 ⁇ 2- ⁇ ;
  • is a constant, and ⁇ is the subcarrier spacing index of PRACH;
  • the transceiver unit 601 is configured to send a random access preamble to the network device according to the parameters corresponding to the random access preamble and the configuration information.
  • the parameter "PRACH duration of the physical random access channel corresponding to the random access preamble" in any item of the first parameter set can also be expressed as the number of OFDM symbols.
  • the first parameter set A parameter set includes one or more of the following:
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kilohertz kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble The corresponding physical random access channel PRACH duration is 2 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 4 OFDM symbols; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 768 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 2 OFDM symbols; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 4 OFDM symbols; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 3328 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to PRACH duration is 12 OFDM symbols;
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 1 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 2 OFDM symbols; or
  • the CP length is 3840 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 12 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 13 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 12 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 5 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 6 OFDM symbols; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 11 OFDM symbols; or
  • the CP length is 2816 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 10 OFDM symbols;
  • the CP length is 2560 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 9 OFDM symbols; or
  • the CP length is 2304 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 8 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 7 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 11 OFDM symbols; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 10 OFDM symbols;
  • the CP length is 1536 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 9 OFDM symbols; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to PRACH duration is 8 OFDM symbols;
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the PRACH duration is 7 OFDM symbols.
  • processing unit 602 is specifically configured to:
  • the parameters corresponding to the random access preamble are determined in the first parameter set according to the configuration information.
  • processing unit 602 is specifically configured to:
  • the configuration information includes a first indication
  • the first indication is used to indicate that the CP type of the initial uplink partial bandwidth or the initial downlink partial bandwidth is ECP.
  • the configuration information includes one or more of the following: CP length, preamble sequence length, and PRACH duration corresponding to the random access preamble.
  • any item in the first parameter set further includes a random access preamble format
  • the configuration information further includes a random access configuration index
  • the processing unit 602 specifically uses At:
  • the parameter corresponding to the random access preamble is determined in the first parameter set according to the target format of the random access preamble.
  • any item in the first parameter set further includes the length of the preamble sequence.
  • the transceiving unit 601 is further configured to receive a second instruction from the network device;
  • the processing unit is further configured to determine the length of the preamble sequence according to the second instruction.
  • the value of ⁇ is 64 or 128 or 256 or 512.
  • the value of ⁇ is associated with one or more of the following:
  • the carrier frequency of the random access preamble, the type of random access, and the type of frequency used by the random access preamble are the carrier frequency of the random access preamble, the type of random access, and the type of frequency used by the random access preamble.
  • the communication device 600 can be implemented as an implementation corresponding to any execution step performed by the terminal device in the foregoing embodiment, wherein the antenna and radio frequency circuit with the transceiver function can be regarded as the terminal device's
  • the transceiver unit regards the processor with processing functions as the processing unit of the terminal.
  • the communication device 600 (that is, the terminal device) includes a transceiver unit 601 and a processing unit 602.
  • the transceiving unit 601 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 602 may also be referred to as a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 601 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 601 can be regarded as the sending unit, that is, the transceiving unit 601 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 601 is configured to perform the sending operation and receiving operation of the terminal device in the foregoing method embodiment
  • processing unit 602 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • FIG. 7 is a schematic diagram of a possible logical structure of the communication device 700 involved in the above-mentioned embodiments provided by the embodiments of this application.
  • the communication device 700 may include, but is not limited to, a processor 701, a communication port 702, and a memory. 703.
  • the processor 701 is configured to perform control processing on the actions of the communication device 700.
  • the processor 701 is configured to execute the communication method in the foregoing method embodiment, specifically:
  • the processor 701 receives configuration information from a network device through the communication port 702;
  • the processor 701 determines the parameters corresponding to the random access preamble in the first parameter set according to the configuration information
  • the first parameter set includes one or more of the following:
  • the length of the cyclic prefix CP is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kilohertz kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the duration of the physical random access channel PRACH corresponding to the incoming preamble is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 4 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 768 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 4 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3328 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 1 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 2 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3840 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to The duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 13 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 12 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 5 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 6 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 11 ⁇ 2560 ⁇ 2 - ⁇ ; or
  • the CP length is 2816 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 10 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2560 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 9 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2304 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 8 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 7 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to
  • the duration of PRACH is 11 ⁇ 2560 ⁇ 2 - ⁇ ; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 10 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1536 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble
  • the duration of PRACH is 9 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 8 ⁇ 2560 ⁇ 2- ⁇ ; or
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the duration of PRACH is 7 ⁇ 2560 ⁇ 2- ⁇ ;
  • is a constant, and ⁇ is the subcarrier spacing index of PRACH;
  • the processor 701 sends a random access preamble to the network device through the communication port 702 according to the parameter corresponding to the random access preamble.
  • the parameter "PRACH duration of the physical random access channel corresponding to the random access preamble" in any item of the first parameter set can also be expressed as the number of OFDM symbols.
  • the first parameter set A parameter set includes one or more of the following:
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kilohertz kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble The corresponding physical random access channel PRACH duration is 2 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 4 OFDM symbols; or
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 768 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 2 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 2 OFDM symbols; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 4 OFDM symbols; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 3328 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to PRACH duration is 12 OFDM symbols;
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 1 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 2 OFDM symbols; or
  • the CP length is 3840 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 6 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 12 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 4 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 6 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 13 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 12 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 5 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 6 OFDM symbols;
  • the CP length is 3072 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 11 OFDM symbols; or
  • the CP length is 2816 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 10 OFDM symbols;
  • the CP length is 2560 ⁇ 2 - ⁇ time units
  • the subcarrier spacing length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 9 OFDM symbols; or
  • the CP length is 2304 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 8 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 7 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 7 OFDM symbols; or
  • the CP length is 2048 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 12 ⁇ 2048 ⁇ 2 - ⁇ time units.
  • the random access preamble corresponds to PRACH duration is 11 OFDM symbols; or
  • the CP length is 1792 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 11 ⁇ 2048 ⁇ 2 - ⁇ time units
  • corresponding to the random access preamble PRACH duration is 10 OFDM symbols;
  • the CP length is 1536 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 10 ⁇ 2048 ⁇ 2 - ⁇ time units, corresponding to the random access preamble PRACH duration is 9 OFDM symbols; or
  • the CP length is 1280 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 9 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to PRACH duration is 8 OFDM symbols;
  • the CP length is 1024 ⁇ 2 - ⁇ time units
  • the subcarrier interval length is 15 ⁇ 2 - ⁇ kHz
  • the duration of the random access preamble is 8 ⁇ 2048 ⁇ 2 - ⁇ time units
  • the random access preamble corresponds to
  • the PRACH duration is 7 OFDM symbols.
  • the processor 701 is specifically configured to:
  • the parameters corresponding to the random access preamble are determined in the first parameter set according to the configuration information.
  • the processor 701 is specifically configured to: when the configuration information includes a first indication, determine that the CP type is an extended cyclic prefix ECP, and the first indication is used to indicate the initial uplink part
  • the CP type of the bandwidth or the initial downlink part of the bandwidth is ECP.
  • the configuration information includes one or more of the following: CP length, preamble sequence length, and PRACH duration corresponding to the random access preamble.
  • any item in the first parameter set further includes a format of a random access preamble
  • the configuration information further includes a random access configuration index
  • the processor 701 is specifically configured to : Determine the target format of the random access preamble according to the random access configuration index
  • the parameter corresponding to the random access preamble is determined in the first parameter set according to the target format of the random access preamble.
  • any item in the first parameter set further includes the length of the preamble sequence.
  • the processor 701 is further configured to receive a second instruction from the network device through the communication port 702;
  • the processor 701 is further configured to determine the length of the preamble sequence according to the second instruction.
  • the value of ⁇ is 64 or 128 or 256 or 512.
  • the value of ⁇ is associated with one or more of the following:
  • the carrier frequency of the random access preamble, the type of random access, and the type of frequency used by the random access preamble are the carrier frequency of the random access preamble, the type of random access, and the type of frequency used by the random access preamble.
  • each component module in the above-mentioned communication device can be specifically referred to in the description of the method embodiment shown in the foregoing application. Go into details again.
  • the various component modules of the communication device in the embodiment shown in FIG. 7 are functional modules implemented by software, these software functional modules are stored in the memory 703, and when the processor 701 executes the software codes in the memory 703 At this time, the communication device is made to implement the content executed as described in FIG. 6, and the specific implementation process can refer to the content of FIG. 6, which will not be repeated here.
  • the processor 701 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the embodiments of the present application also provide a computer-readable storage medium, which includes a computer program or instruction.
  • the computer-executable instruction is executed by a processor, the processor executes any one of the foregoing method embodiments.
  • One possible way to achieve the described method is to achieve the described method.
  • the embodiments of the present application also provide a computer program product storing one or more computer-executable instructions.
  • the computer program product includes a computer program or instruction.
  • the processor executes the foregoing Any one of the possible implementation methods of the method embodiment.
  • the present application also provides a chip system.
  • the chip system includes a processor and a communication interface.
  • the processor may include a baseband processor (BP).
  • the processor may also include an application processor (AP). , Application processor), the processor is used to support the communication device to implement the functions involved in any one of the possible implementation manners of the foregoing method embodiments.
  • the chip system may also include a memory, and the memory is used to store necessary computer programs or instructions.
  • the processor executes the computer programs or instructions in the memory through the communication interface to implement any of the foregoing method embodiments.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application also provides a communication system, which includes a network device for sending configuration information, and a communication device as in any of the foregoing embodiments.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请实施例提供了一种通信方法及通信装置,在该方法中,终端设备接收来自网络设备的配置信息;所述终端设备根据所述配置信息在第一参数集中确定出随机接入前导对应的参数;终端根据所述随机接入前导对应的参数和所述配置信息向所述网络设备发送随机接入前导,由于第一参数集中的任意一项随机接入前导中的参数中的CP长度是对齐到整数个ECP的OFDM符号,当数据信号中的数据格式使用的CP类型为ECP时,使得PRACH上的随机接入前导信号与PUSCH上的整数个数据信号对齐,从而提升终端设备在随机接入过程中的消息1(随机接入前导)发送成功概率,且降低接入时延,降低随机接入信号与数据信号之间的干扰。

Description

一种通信方法及通信装置 技术领域
本申请涉及通信领域,尤其涉及一种通信方法及通信装置。
背景技术
在通信系统中,为了能够充分利用信道的带宽,采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术来实现一个信道传送多路信号,例如,在随机接入(random access,RA)过程中,可以使用OFDM传输随机接入前导信号其中,随机接入前导信号通过物理随机接入信道(physical random access channel,PRACH)承载,PRACH正交于物理上行共享信道(physical uplink shared channel,PUSCH),且该PUSCH用于承载数据信号。
现有技术中,可以在OFDM符号间插入循环前缀(cyclic prefix,CP),以减少使用OFDM技术时由于多径传播而产生的符号间干扰(inter-symbol interference,ISI)和信道间干扰(Inter-channel interference,ICI),一般来说,多径延迟越大,需要的循环前缀越长,在新空口(new radio,NR)中定义了两种数据信号的循环前缀格式,分别为时间长度较短的正常循环前缀(normal cyclic prefix,NCP)和时间长度较长的扩展循环前缀(extended cyclic prefix,ECP)。
然而,当前NR定义中,随机接入前导信号中所使用的CP的时间长度是对齐到数据信号中时间长度较短的NCP的格式,而当数据信号使用ECP时(例如采取大子载波间隔时,使用ECP的可能性很高),由于随机接入前导信号与数据信号不对齐,导致承载这两个信号的信道之间干扰增大,影响通信性能。
发明内容
本申请提供了一种通信方法及通信装置,用于提升终端设备在随机接入过程中随机接入前导发送成功的概率,且降低随机接入信号与数据信号之间的干扰。
本申请第一方面提供了一种通信方法,包括:在未接入网络的终端设备与网络建立连接的信息交互过程中,即在随机接入过程中,终端设备接收来自网络设备的配置信息;该终端设备进一步根据该配置信息在第一参数集中确定出随机接入前导对应的参数;此后,该终端根据该随机接入前导对应的参数和该配置信息向该网络设备发送随机接入前导。其中,在该第一参数集中的每一项至少包括该随机接入前导对应的参数,即至少包括循环前缀CP长度,子载波间隔长度,随机接入前导的持续时间长度,随机接入前导对应的物理随机接入信道PRACH持续时间,该第一参数集包括以下一项或多项:
循环前缀CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的 持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2
其中,κ为常数,μ为PRACH的子载波间隔索引。
本实施例中,第一参数集中的任意一项随机接入前导是对齐到整数个ECP的OFDM符号。 当数据信号中的数据格式使用的CP类型为ECP时,PRACH上的随机接入前导信号与PUSCH上的整数个OFDM数据信号对齐,从而提升终端设备在随机接入过程中的消息1(随机接入前导)发送成功概率,且降低接入时延,降低随机接入信号与数据信号之间的干扰。
本申请第一方面的一种可能的实现方式中,该第一参数集任一项中的参数“随机接入前导对应的物理随机接入信道PRACH持续时间”还可以表示为OFDM符号个数,此时,该第一参数集包括以下一项或多项:
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4个OFDM符号;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2个OFDM符号;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2个OFDM符号;或
CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的 持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11个OFDM符号;或
CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10个OFDM符号;或
CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9个OFDM符号;或
CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10个OFDM符号;或
CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9个 OFDM符号;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8个OFDM符号;或
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7个OFDM符号。
本申请第一方面的一种可能的实现方式中,终端设备根据配置信息在第一参数集中确定出随机接入前导对应的参数的过程可以包括:在终端设备确定CP类型为扩展循环前缀ECP时,该终端设备根据配置信息在第一参数集中确定出随机接入前导对应的参数。其中,由于第一参数集中的任意一项随机接入前导中的参数中的CP长度是对齐到整数个ECP的OFDM符号,从而,终端设备可以确定在PRACH中使用的CP类型为扩展循环前缀ECP,或者是,该终端设备确定在PUSCH中使用的CP类型为扩展循环前缀ECP时,该终端设备在第一参数集中确定出随机接入前导对应的参数。
本申请第一方面的一种可能的实现方式中,当所述配置信息包括以下一项或多项时:CP长度、前导序列长度、随机接入前导对应的PRACH持续时间;该终端设备根据所述配置信息在第一参数集中确定出随机接入前导对应的参数。其中,终端设备可以通过该配置信息得到相关参数时(包括以下一项或多项时:CP长度、前导序列长度、随机接入前导对应的PRACH持续时间),此时,如果该相关参数指示第一参数集中的某一项时,该终端设备可以根据该相关参数在第一参数集中确定出随机接入前导对应的其它参数。
本申请第一方面的一种可能的实现方式中,如果在配置信息包括第一指示时,该终端设备确定CP类型为扩展循环前缀ECP,其中,该第一指示用于指示初始上行部分带宽或初始下行部分带宽的CP类型为ECP。其中,终端设备确定CP类型为ECP的过程中,可以使用配置信息作为确定CP类型为ECP的依据之一,具体来说,该终端设备可以依据该配置信息中所携带的第一指示来实现该确定过程,其中,第一指示用于指示初始上行部分带宽或初始下行部分带宽的CP类型为ECP,使得后续终端设备可以根据该第一指示确定在随机接入前导中使用的CP类型为ECP(或者在第一参数集中确定出随机接入前导对应的参数)。从而,当数据信号中的数据格式使用的CP类型为ECP时,PRACH上的随机接入前导信号与PUSCH上的整数个OFDM数据信号对齐。
本申请第一方面的一种可能的实现方式中,该配置信息可以包括以下一项或多项:CP长度、随机接入前导的持续时间长度、随机接入前导对应的PRACH持续时间。其中,当该配置信息包括CP长度、随机接入前导的持续时间长度、随机接入前导对应的PRACH持续时间中的一项或多项参数时,该终端设备可以根据该一项或多项参数在该第一参数集中确定出随机接入前导对应的参数,从而提供了确定出随机接入前导对应的参数的又一实现方式,提升方案的可实现性。
本申请第一方面的一种可能的实现方式中,在第一参数集中的任意一项中,还包括随机接入前导的格式,在配置信息中,还包括随机接入配置索引;此时,终端设备所述配置 信息在第一参数集中确定出随机接入前导对应的参数包括:该终端设备根据随机接入配置索引确定随机接入前导的目标格式,此后,该终端设备根据所述随机接入前导的目标格式在第一参数集中确定所述随机接入前导对应的参数。其中,在第一参数集中的任意一项中,还包括随机接入前导的格式(FORMAT),该随机接入前导的格式用于标识第一参数集中的每一项;在配置信息中包含有随机接入配置索引,该随机接入配置索引可以对应于指示该第一参数集中的指定一项所携带的随机接入前导的目标格式,进一步地,终端设备可以根据该随机接入前导的目标格式在第一参数集中确定随机接入前导对应的参数,从而实现在第一参数集中确定该随机接入前导对应的参数。
本申请第一方面的一种可能的实现方式中,在第一参数集中的任意一项中,还包括前导序列长度。其中,前导序列长度为随机接入前导对应的参数之一,从而,终端设备可以在第一参数集中确定出更全面的随机接入前导对应的参数,进一步提升终端设备在随机接入过程中的消息1(随机接入前导)发送成功概率。
本申请第一方面的一种可能的实现方式中,该前导序列长度的取值为139或127或571或1151,或者是其它设定的长度,从而实现前导序列长度的多种实现方式。
本申请第一方面的一种可能的实现方式中,前导序列长度可以有多种可能的取值,当第一参数集中的任意一项中包含有该前导序列长度以及该随机接入前导的格式(FORMAT),由于随机接入前导的格式用于标识第一参数集中的每一项,因此,该随机接入前导的格式也可以标识第一参数集中的每一项中的前导序列长度,从而,终端设备可以根据该随机接入前导的格式实现前导序列长度的确定。
本申请第一方面的一种可能的实现方式中,终端设备可以接收来自所述网络设备的第二指示,进一步地,该终端设备再根据该第二指示确定出前导序列长度。其中,前导序列长度可以有多种可能的取值,网络设备可以通过第二指示向该终端设备指示前导序列长度的具体取值,从而,终端设备可以根据该第二指示实现前导序列长度的确定。此外,该第二指示可以承载于该配置信息中,也可以承载于网络设备向该终端设备发送的其它消息中,此处不做限定。
本申请第一方面的一种可能的实现方式中,κ为常数且κ的取值具体可以为64、128、256、512或者是其它的取值,从而实现随机接入前导对应的参数的灵活配置。此外,κ的取值可以关联于该随机接入前导采取的基准时间单位或者时间粒度,例如可以是LTE的采样率T s(T s=1/(15000×2048)秒)除以随机接入前导所采取的基准时间单位(或者时间粒度)T g有关得到的值,或者是通过其它方式确定出κ的取值,此处不做限定。
本申请第一方面的一种可能的实现方式中,μ的取值关联于以下一项或多项:随机接入前导的载波频率、随机接入类型、随机接入前导使用的频率类型。其中,μ为PRACH的子载波间隔索引,具体μ的取值关联于该随机接入前导的载波频率、随机接入类型或该随机接入前导使用的频率类型中的一项或多项,即根据随机接入前导的载波频率、随机接入类型、随机接入前导使用的频率类型等参数,可以确定出μ的具体的取值,从而实现的取值μ的取值的多种实现方式。
本申请第二方面提供一种通信装置,通信装置具有实现上述第一方面或第一方面任意一种可能实现方式的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的 软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块,例如:收发单元、处理单元等。
本申请第三方面提供了一种通信装置,通信装置包括至少一个处理器、存储器以及存储在存储器中并可在处理器上运行的计算机执行指令,在所述计算机执行指令被所述处理器执行时,所述处理器执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请第四方面提供一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,在所述计算机执行指令被处理器执行时,所述处理器执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请第五方面提供一种存储一个或多个计算机执行指令的计算机程序产品,该计算机程序产品包括计算机程序或指令,在所述计算机执行指令被处理器执行时,所述处理器执行上述第一方面或第一方面任意一种可能实现方式的方法。
本申请第六方面提供了一种芯片系统,该芯片系统包括处理器和通信接口,该处理器可以包括应用处理器基带处理器(BP,baseband processor),示例性地,该处理器还可以包括(AP,application processor),用于支持通信装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,该存储器用于保存必要的计算机程序或指令,该处理器通过该通信接口执行该存储器中的计算机程序或指令,实现上述第一方面或第一方面任意一种可能实现方式的方法。此外,该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请第七方面提供了一种通信系统,该通信系统包括网络设备,用于发送配置信息,以及如前述第二方面或第二方面任意一种可能实现方式中的通信装置,或者,该通信系统包括网络设备,以及如前述第三方面或第三方面任意一种可能实现方式中的通信装置。
其中,第二方面至第七方面或者其中任一种可能实现方式所带来的技术效果可参见第一方面或第一方面不同可能实现方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请具有以下优点:在该方法中,终端设备接收来自网络设备的配置信息;所述终端设备根据该配置信息在第一参数集中确定出随机接入前导对应的参数;终端根据所述随机接入前导对应的参数和所述配置信息向所述网络设备发送随机接入前导,由于第一参数集中的任意一项随机接入前导中的参数中的CP长度是对齐到整数个ECP的OFDM符号,当数据信号中的数据格式使用的CP类型为ECP时,使得PRACH上的随机接入前导信号与PUSCH上的整数个OFDM数据信号对齐,从而提升终端设备在随机接入过程中的消息1(随机接入前导)发送成功概率,且降低接入时延,降低随机接入信号与数据信号之间的干扰。
附图说明
图1为本申请实施例中网络架构的一个示意图;
图2为本申请实施例中终端设备的一个示意图;
图3为本申请实施例中网络设备的一个示意图;
图4为本申请实施例中随机接入过程的一个示意图;
图5为本申请实施例中一种通信方法实施例的一个示意图;
图6为本申请实施例中一种通信装置实施例的一个示意图;
图7为本申请实施例中一种通信装置实施例的另一个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请涉及的网络架构如图1所示,包括单个或多个网络设备(虚线框内的网络设备既充当回传节点,也充当提供终端设备(user equipment,UE)接入的节点,既集成接入和回传),和单个或多个终端设备。涉及的架构与新无线(new radio,NR)接入技术或长期演进(long term evolution,LTE)接入技术中的网络(也称为无线接入网)架构相似。在图1所示通信系统架构,虚线框表示可选设备,即虚线框内的网络设备(回传节点)在集成接入和回传的场景中存在,该设备既可以作为网络节点给UE提供网络,也可以回传,即充当UE接入父级网络节点。
在图1对应的网络架构中,涉及相关设备的硬件结构包括终端设备和网络设备,图2和图3分别为终端设备和网络设备所实现的硬件结构的示意图。其中,如图2所示,终端设备10包括处理器101、存储器102和信号收发单元103,信号收发单元103包括发射机1031、接收机1032和天线1033。如图3所示,网络设备20包括处理器201、存储器202和信号收发单元203,信号收发单元203包括发射机2031、接收机2032和天线2033。接收机1032可以用于通过天线1033接收传输控制信息,发射机1031可以用于通过天线1033向网络设备20发送传输信息。发射机2031可以用于通过天线2033向终端设备10发送传输控制配置信息,接收机2032可以用于通过天线2033接收终端设备10发送传输信息。
此外,图2和图3所示的终端设备和网络设备在宏观实现上,网络设备可以是一种部署在无线接入网中为终端设备提供无线通信功能的装置。例如,网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等,此外,网络设备还可以是5G网络中的基站设备。网络设备还可以是可穿戴设备或车载设备,或者,网络设备还可以传输接收节点(Transmission and Reception Point,TRP)。本申请实施例中,所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
上述网络架构中,具体可以使用该网络架构实现终端设备与网络设备之间的随机接入过程,下面将对本申请实施例中涉及随机接入过程的部分用语进行解释说明——
随机接入(random access,RA):在LTE或5G有接入控制的通信系统中,用于未接入 网络的设备与网络建立连接的信息交互机制(或者过程)。分为基于竞争的随机接入和非竞争的随机接入。基于竞争的随机接入通常分为4步,每一步对应一个消息:包括消息1、消息2、消息3、消息4,分别承载不同的信令或者信息。基于非竞争的随机接入只有前2步。另外,为了降低4步基于竞争的随机接入的接入时间,进一步有2步随机接入。在2步随机接入中,由消息A和消息B两个组成,其中消息A中包括前导和第一个数据信息(例如类似4步随机接入中的消息1和消息3),消息B中包括竞争解决以及上行调度(例如类似4步随机接入中的消息2和消息4)。
消息1(message 1,Msg1):即随机接入前导(preamble或者sequence),通过物理随机接入信道(physical random access channel,PRACH)承载,即随机接入前导对应的随机接入信号,在一个随机接入时间、频率资源上发送。该用于发送随机接入前导的时间、频率资源也称为随机接入机会(PRACH occasion)。在物理层,也称为PRACH信号、PRACH。通常用于设备与网络之间发起连接请求、切换请求、同步请求、调度请求。
消息2(message 2,Msg2):也称为随机接入响应(random access response,RAR)消息。是网络侧对接收到的消息1的回应,一个消息2里面可以回应多个Msg1。如果网络侧接收到了消息1,则将以下至少一个信息封装发送:消息1的索引(random access preamble identity,RAPID)、上行调度授权(uplink grant)、时间提前(timing advance)、临时小区-无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)等。网络侧可以在同一个Msg2里面,同时针对多个Msg1进行响应。
消息3(message 3,Msg3):也称为第一次上行调度传输,是由消息2中的上行资源UL grant调度传输,或者TC-RNTI加扰的下行控制信息(downlink control information,DCI)调度的重传。Msg3传输内容为高层消息,例如连接建立请求消息(具体可能是发起连接请求用户的标识信息)。该消息的作用是用于竞争解决,如果多个不同设备使用相同Msg1进行随机接入,通过Msg3和Msg4可以共同确定是否有冲突。Msg3可以定义为:Message transmitted on UL-SCH(uplink shared channel)containing a C-RNTI MAC(Medium access control)CE(control element)or CCCH(Common Control Channel)SDU(Service Data Unit),submitted from upper layer and associated with the UE Contention Resolution Identity,as part of a Random Access procedure。消息3的传输有重传和功率控制(即调度初传或者重传的UL grant中,有功率控制信息)。
消息4(message 4,Msg4):用于竞争解决。通常包含消息3中携带的CCCH SDU,如果设备在消息4中检测到自己发送的CCCH SDU,则认为竞争随机接入成功,继续进行接下来的通信过程。消息4有重传,即有相应的物理上行控制信道(physical uplink control channel,PUCCH)传输反馈信息(是否成功检测到消息4),设备在PUCCH发送反馈信息有功率控制。
波束:是一种通信资源。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以通过不同的资源表征。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个 波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。在空间上具有一定指向性或者特征,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter),例如发送波束即发送空域滤波(spatial domain transmission filter),例如接收波束即发送空域滤波(spatial domain receiver filter)。发送波束和接收波束相同,可以指发送使用的空域滤波和接收使用的空域滤波相同。
消息:是一种无线接入网上层数据报文,有数据消息和控制消息。在物理层,由各个物理信道承载,通过天线以各个物理信号的方式传播。因此,同一个数据或者控制,既可以采用上层的名称“消息”,也可以采取物理层的名称“信号”或者“信道”。
此处以5G NR中实现该随机接入过程为例进行说明,请参阅图4,该随机接入过程主要包括以下几个步骤:
1、基站在特定的位置发送同步信号和系统信息(广播方式发送)。在NR中,基站发送的同步信号为同步信号/物理广播信道块(synchronization signal/PBCH block,SS/PBCH block),或称同步信号块,SS/PBCH block和系统信息由基站根据配置周期性发送;UE开机之后或者需要重新接入网络时,扫描基站的同步信号,进行下行时间和频率同步,同时接收系统信息中有关随机接入资源的配置信息;
2、UE根据该随机资源配置信息,选择特定的随机接入资源,该资源包括时间、频率资源,码域资源(随机接入前导码preamble),并使用该随机接入资源发送随机接入信号,又称为消息1(Msg1);
3、基站接收到UE发送的消息1之后,根据用户发送的preamble,估计UE的定时提前量,并向用户回复消息2(Msg2),消息2中包括了UE用于发送消息3(Msg3)进行冲突解决的时频资源位置,调制编码方式等配置信息;
4、UE收到消息2之后,根据消息2中配置,在对应时频资源发送消息3;
5、基站接收到消息3之后,向用户回复消息4(Msg4),指示终端用户成功接入。
其中Msg1到Msg4的过程一般被称为4-step的随机接入过程。此外,Msg1中的随机接入前导码的发送,还可以应用到基于非竞争的随机接入和2-step随机接入中。只不过非竞争的随机接入只有Msg1和Msg2前2步。另外,还有一种2-step随机接入,由消息A和消息B两个组成。其中消息A中包括随机接入前导码的发送和第一个数据信息(例如类似4-step随机接入中的消息1和消息3),消息B中包括竞争解决和上行调度(例如类似4-step随机接入中的消息2和消息4)。Msg1、Msg3、Msg4可以有(失败后的)重新传输。
下面将对UE发送随机接入前导码的过程(例如前述图4对应步骤2)进行说明。其中,为了能够充分利用信道的带宽,在随机接入过程中,可以使用OFDM传输随机接入前导信号,其中,随机接入前导信号通过PRACH承载,在使用OFDM技术传输数据时,由于多径传播而产生的符号间干扰(Inter-symbol interference,ISI)和/或子载波间干扰(Inter-symbol interference,ICI)可以通过在OFDM符号间插入循环前缀来消除,一般来说,多径延迟 越大,需要的循环前缀越长。
对于PRACH中承载的随机接入前导,一般来说,随机接入前导的格式由以下五部分确定:前导序列长度、子载波间隔、循环前缀、持续时间长度(或序列时间长度)、保护间隔、保护间隔(或随机接入前导总时间长度,两者二选一)。在第三代合作伙伴计划(3rd generation partnership project,3GPP)中的NR协议TS 38.211中,明确定义的有:前导序列长度、子载波间隔、循环前缀、持续时间长度(或序列时间长度)、保护间隔、随机接入前导总时间长度,其中参数“随机接入前导总时间长度”与其他参数不在同一个表格定义,在NR中称为PRACH duration。具体地,NR定义了表1中和表2所示的两类不同前导序列长度对应的随机接入前导格式。在表1中,前导序列长度L RA=839的随机接入前导有4种格式;在表2中,前导序列长度L RA=139的随机接入前导中有9种格式。
Figure PCTCN2020087225-appb-000001
表1(前导序列长度L RA=839,子载波间隔Δf RA∈{1.25,5}kHz)
Figure PCTCN2020087225-appb-000002
表2(前导序列长度L RA=139,子载波间隔Δf RA=15·2 μkHz)
其中,在表1和表2中,“Format”为随机接入前导的格式标识,μ∈{0,1,2,3}为前导格式子载波间隔索引,κ=64为扩展因子,κ是LTE的采样率T s(T s=1/(15000×2048)秒)除以NR的基准采样率T c(T c=1/(48000×4096)秒)得到的值,Δf RA为随机接入前导中的子载波间隔,N u为随机接入前导的持续时间长度(以基准时间采样点数量来表示,也称为随机接入序列的时间长度),
Figure PCTCN2020087225-appb-000003
为随机接入前导的循环前缀长度。
对于PUSCH中承载的数据信号,包含数据符号和循环前缀。其中,数据符号长度为2048κ·2 。一般来说,可以使用循环前缀格式,分别为正常循环前缀(normal cyclic prefix,NCP)和扩展循环前缀(Extended cyclic prefix,ECP)。在正常循环前缀所对应的时隙中,时隙中有14个OFDM符号,具有两种循环前缀的长度,分别为144κ·2 和144κ·2 +16κ,比较多的是144κ·2 。扩展循环前缀所对应的时隙中,具有12个OFDM符号,每个OFDM符号的循环前缀的长度相同,为512κ·2 。时间单位、符号κ和μ的说明可以参 考表1和表2中的内容。
一般来说,多径延迟越大,用于消除多径延迟的循环前缀就越长。例如当需要使用52.6GHz以上载波频段、或者需要使用较宽子载波宽度、或者需要使用时隙长度更短的OFDM符号,可以在数据信号中使用ECP来消除多径延迟,避免OFDM符号之间干扰。或者,为了在OFDM符号之间切换波束,可以用ECP来容忍更长的切换时延,避免信号损伤。
通过表1和表2中的随机接入前导的循环前缀长度所在列可知,当前NR定义中,随机接入前导信号中所使用的CP的时间长度是对齐到数据信号中时间长度较短的NCP的格式。而当数据信号使用ECP时,如果采取现有的随机接入前导格式,则时隙中的随机接入前导信号与数据信号总是不对齐,导致承载这两个信号之间干扰增大,影响通信性能。
为了解决上述问题,本申请实施例提供了一种通信方法及通信装置,用于优化终端设备向网络设备发送随机接入前导的过程。
请参阅图5,为本申请实施例中一种通信方法的一个示意图。
501、网络设备向终端设备发送配置信息;
本实施例中,网络设备周期性发送配置信息,终端设备在开机之后或者需要重新接入网络时,可以扫描来自网络设备的同步信号/广播信号,进行下行时间和频率同步,同时接收来自网络设备的系统信息块,获取随机接入所需要的配置信息。其中,该配置信息可以承载于网络设备发送的同步信号/广播信号(例如,synchronization signal/PBCH block,SS/PBCH block)和/或系统信息块(System Information block,SIB)中。
在一种实现方式中,该配置信息可以包括随机接入时间、频率资源参数等,具体包括以下至少一个:PRACH时间配置信息(例如,PRACH配置索引prach-ConfigIndex)、频分复用的随机接入机会数量(例如,消息1频分复用(msg1-frequency domain multiplexing,msg1-FDM))、随机接入根序列索引、随机接入前导的子载波间隔(或者物理随机接入信道的子载波间隔,或者子载波索引)等参数。
在一种可选的实现方式中,该配置信息还可以包括第一参数,该第一参数包括以下至少一个参数:随机接入前导的CP长度、随机接入前导的序列长度、随机接入前导对应的PRACH持续时间、随机接入前导的保护时间、随机接入前导持续的OFDM符号数量。
在一种可选的实现方式中,该配置信息还可以包括循环前缀(cyclicPrefix)指示信息,该循环前缀指示信息用于向终端设备指示在向网络设备发送消息时,使用CP类型为ECP。其中,当该网络设备需要使用52.6GHz以上载波频段、或者需要使用较宽子载波宽度、或者需要使用时间长度更短的OFDM符号,或者是其它需要使用ECP的场景时,网络设备可以在步骤501中发送携带有该循环前缀指示信息的配置信息。
此外,该循环前缀指示信息可以包括循环前缀字段(即第一指示),该循环前缀字段用于指示随机接入前导的循环前缀为扩展循环前缀为ECP;或者该循环前缀字段用于指示PUSCH的循环前缀为扩展循环前缀为ECP;或者该循环前缀字段用于指示上行部分带宽(bandwidth part)的循环前缀为扩展循环前缀为ECP;或者该循环前缀字段用于指示初始上行部分带宽(initial uplink bandwidth part)的循环前缀为扩展循环前缀为ECP;或者该循环前缀字段用于指示初始下行部分带宽(initial downlink bandwidth part)的循环前缀为扩展循环前缀为ECP。
在一种可选的实现方式中,网络设备可以在步骤501中向终端设备发送的配置信息中可以承载有第二指示,其中,第二指示可以指示在随机接入前导对应的参数中的前导序列长度的取值。例如可以指示前导序列长度的取值为139或127或571或1151,或者是其它设定的时间长度。此外,该第二指示可以承载于该配置信息中,也可以承载于网络设备向该终端设备发送的其它消息中,此处不做限定。
在一种可选的实现方式中,网络设备可以在步骤501中向终端设备发送的配置信息中可以承载有指定的随机接入前导的格式(即随机接入前导的目标格式),其中,随机接入前导的格式用于标识随机接入前导对应的参数,具体来说,随机接入前导的格式的实现可以有多种,例如通过不同的数字(例如1、2、3...等)标识不同的随机接入前导的格式,或者是通过不同的字母(例如A、B、C...等)标识不同的随机接入前导的格式,或者是通过不同的字母与数字的组合标识不同的随机接入前导的格式,或者是通过其它的方式标识不同的随机接入前导的格式,此处不做限定。
502、终端设备根据该配置信息在第一参数集中确定出随机接入前导对应的参数;
本实施例中,终端设备可以根据该配置信息在该第一参数集中确定出随机接入前导对应的参数。其中,在该第一参数集中的每一项至少包括该随机接入前导对应的参数,该随机接入前导对应的参数至少包括循环前缀CP长度,子载波间隔,随机接入前导的持续时间长度,随机接入前导对应的物理随机接入信道PRACH持续时间。
在一种可选的实现方式中,终端设备在步骤501中得到的该配置信息还可以包括第一参数,在步骤502中,终端设备可以根据该第一参数在第一参数集中确定出随机接入前导对应的参数;可选地,在步骤502中,该终端设备在确定该第一参数指示第一参数集中的某一项时,该终端设备再进一步根据该第一参数在第一参数集中确定出随机接入前导对应的参数。
在一种可选的实现方式中,在第一参数集中的任意一项中,还包括随机接入前导的格式(FORMAT),该随机接入前导的格式用于标识第一参数集中的每一项对应的参数。其中,终端设备在步骤501中得到的该配置信息包括随机接入配置索引(prach-ConfigIndex)之后,终端设备可以根据随机接入配置索引确定与该随机接入配置索引对应的随机接入前导的目标格式,然后,如果在第一参数集中的任意一项中的随机接入前导的格式包含有该随机接入前导的目标格式时,该终端设备再进一步根据该随机接入前导的目标格式在第一参数集中确定随机接入前导对应的参数,也就是说,终端设备在该第一参数集中,将该随机接入前导的目标格式所标识的指定项的参数,确定为随机接入前导对应的参数。
此外,在另一种可选的实现方式中,网络设备可以在步骤501中向终端设备发送的配置信息中可以承载有指定的随机接入前导的格式(即随机接入前导的目标格式),此后,如果在第一参数集中的任意一项中的随机接入前导的格式包含有该随机接入前导的目标格式时,该终端设备再根据该随机接入前导的目标格式在第一参数集中确定随机接入前导对应的参数,也就是说,终端设备在该第一参数集中,将该随机接入前导的目标格式所标识的指定项的参数,确定为随机接入前导对应的参数。
在一种可选的实现方式中,终端设备可以在步骤501中接收来自终端设备的配置信息 中得到第二指示,其中,第二指示可以指示在随机接入前导对应的参数中的前导序列长度的取值。例如可以指示前导序列长度的取值为139或127或571或1151,或者是其它设定的时间长度。此后,终端设备可以根据该第二指示实现前导序列长度的确定。此外,该第二指示可以承载于该配置信息中,也可以承载于网络设备向该终端设备发送的其它消息中,此处不做限定。
在另一种可选的实现方式中,前导序列长度可以有多种可能的取值。可选地,第一参数集中的任意一项中包含有该随机接入前导的格式(FORMAT),由于随机接入前导的格式用于标识第一参数集中的每一项,因此,该随机接入前导的格式也可以标识第一参数集中的每一项中的前导序列长度,从而,终端设备可以根据该随机接入前导的格式实现前导序列长度的确定。
在一种可选的实现方式中,终端设备在步骤501中得到的该配置信息包括循环前缀指示信息,终端设备进一步根据循环前缀指示信息,确定随机接入前导的以下至少一个参数:循环前缀长度、随机接入前导对应的PRACH持续时间、随机接入前导的保护时间、随机接入前导持续的OFDM符号数量。此后,该终端设备根据得到的参数在第一参数集中确定出随机接入前导对应的参数。
在一种可选的实现方式中,终端设备在步骤501中得到的该配置信息可以包括随机接入配置索引(prach-ConfigIndex)和循环前缀指示信息,该终端设备根据该随机接入配置索引确定随机接入前导的格式(Format),并进一步根据循环前缀指示信息确定发送随机接入前导所使用的参数集为第一参数集。此后,该终端设备在第一参数集中根据该随机接入前导的格式确定所述随机接入前导对应的参数。
在一种可选的实现方式中,随机接入前导具有多个参数集,例如第一参数集和第二参数集。其中第一参数集用于第一场景,第二参数集用于第二场景,示例性地,第一场景可以包括终端设备使用52.6GHz以上载波频段、或者终端设备使用较宽子载波宽度、或者终端设备使用时间长度更短的OFDM符号,或者是终端设备其它需要使用ECP的场景;第二场景可以包括终端设备使用52.6GHz以下载波频段、或者终端设备使用较低子载波宽度、或者终端设备使用时间长度更长的OFDM符号,或者是终端设备其它需要使用NCP的场景。具体地,终端设备可以根据载波频率确定使用的参数集,或者根据在步骤501中得到的该配置信息所承载的循环前缀指示信息确定使用的参数集,或者是通过其他的方式确定使用的参数集,此处不做限定。此外,第二参数集的实现可以是前述表1或者是表2中的参数集,或者是其它的参数集,此处不做限定。
下面将对第一参数集进行详细的介绍,其中,该第一参数集中包括一项或多项随机接入前导对应的参数,且每一项随机接入前导对应的参数中包括以下至少一项:循环前缀CP长度,子载波间隔长度,随机接入前导的持续时间长度,随机接入前导对应的物理随机接入信道PRACH持续时间。该第一参数集可以有多种实现方式,下面将分别介绍。
方式一:请参阅表3,第一参数集中的任意一项对应于表3中的任意一行,对应的,该第一参数集可以包括表3中的任意一行或多行。其中,表3中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000004
PRACH duration)对应于随机接入前导对应 的不同参数,第一参数集的具体实现中,可以通过表3中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000005
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000006
PRACH duration等列的数据);还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000007
表3
在表3中,表格中,N为随机接入前导序列的长度,例如N=139、N=127、N=571、N=1151或者是其它的取值;Δf RA=15·2 μkHz为随机接入前导的子载波间隔;N u为随机接入前导的持续时间长度(或序列时间长度);
Figure PCTCN2020087225-appb-000008
为随机接入前导的循环前缀长度。其中,κ为常数且κ的取值具体可以为64、128、256、512或者是其它的取值,从而实现随机接入前导对应的参数的灵活配置。此外,符号“·”表示乘号。μ为PRACH的子载波间隔索引。
在一种可能的实现方式中,在表3中,随机接入前导的格式(即Format所在列)的实现可以有多种。例如通过不同的数字(例如1、2、3...等)标识不同的随机接入前导的格式,或者是通过不同的字母(例如A、B、C...等)标识不同的随机接入前导的格式,或者是通过不同的字母与数字的组合(例如表3中的A1、A2、A3、B1、B2、B3、B4、C0、C2等)标识不同的随机接入前导的格式,或者是通过其它的方式标识不同的随机接入前导的格式,此处不做限定。
在一种可能的实现方式中,在表3中,随机接入前导所采取(例如时间参数N u
Figure PCTCN2020087225-appb-000009
)的基准时间单位time unit(或者时间粒度time granularity)为T g,κ为常数,跟该基准时间单位(或者时间粒度)T g有关。具体κ可以是LTE的采样率T s(T s=1/(15000×2048)秒)除以随机接入前导所采取的基准时间单位(或者时间粒度)T g有关得到的值,例如若T g=1/(480·1000·4096)秒时,则κ=64、若T g=1/(960·1000·4096)秒时,则κ=128、若T g=1/(1920·1000·4096)秒时,则κ=256、若T g=1/(3840·1000·4096)秒时,则κ=512,若T g=1/(7680·1000·4096)秒时,κ=1024,或者是其它的取值实现,此处不做限定。
在一种可能的实现方式中,在表3中,μ为子载波间隔对应的索引,示例性地, μ∈{0,1,2,3,4,5,6,7,8},此外,μ的取值还可以更大,这里不一一例举。应该理解,最终μ取值的集合,跟载波所在的频率、随机接入的类型、随机接入所使用的频率类型(例如,授权licensed频段、非授权unlicensed频段)有关,下面将具体说明:
一、在一种实现中,μ取值的集合,跟载波所在的频率(或频率范围)有关。
请参见表3-1,为频率范围实现的一个示意表。表3-1以包括4个等级的频率范围为例,这4个等级的频率范围分别为FR1、FR2、FRm和FRn。示例性的,当频率范围为FRm时,μ取值的集合为μ∈{1,2};或者μ取值的集合为μ∈{0,1,2};或者μ取值的集合为μ∈{1,2,3}。当频率范围为FRn时,μ取值的集合为μ∈{5,6};或者μ取值的集合为μ∈{4,5,6};或者μ取值的集合为μ∈{3,4,5}。显然,此处为示例性说明,具体μ的实现不以此为限。
Figure PCTCN2020087225-appb-000010
表3-1
需要说明的是,本申请实施例对表3-1中的X1、X2、Y1、Y2的具体取值不作限定。示例性的,X1和X2可以小于或等于24250,例如,X1为10000,X2为16000。示例性的,Y1和Y2可以大于或等于52600,例如,Y1为52600,Y2为65000,又例如,Y1为65000,Y2为85000。
二、在一种实现中,μ取值的集合,跟随机接入的类型有关。
其中,随机接入的类型可以包括FR1、FR2、FRm、FRn中的一项或多项。以频率范围为FRm为例,当随机接入为两步随机接入时,采取μ∈{1,2};当随机接入为四步随机接入时,μ取值的集合为μ∈{0,1,2}。或者在频率范围为FRn,当随机接入为两步随机接入时,μ取值的集合为μ∈{5,6};当随机接入为四步随机接入时,μ取值的集合为μ∈{4,5,6}。显然,此处为示例性说明,具体μ的实现不以此为限。
三、在一种实现中,μ取值的集合,跟随机接入所使用的频率类型(例如,授权licensed频段、非授权unlicensed频段)有关。
其中,随机接入的类型可以包括FR1、FR2、FRm、FRn中的一项或多项。以频率范围为FRm为例,当随机接入在FRm中的授权频段进行时,采取μ∈{1,2};当随机接入在FRm中的非授权频段进行时,μ取值的集合为μ∈{0,1,2}。或者在频率范围为FRn,当随机接入在FRn中的授权频段进行时,μ取值的集合为μ∈{5,6};当随机接入在FRn中的非授权频段进行时,μ取值的集合为μ∈{4,5,6}。显然,此处为示例性说明,具体μ的实现不以此为限。
此外,以上Format中的A1、A2、A3、B1、B2、B3、B4、C0、C2仅为格式的一个代号或者别称的一种示例,可以用其它任意名称代替。例如,另外一种名称分别为D1、D2、D3、E1、E2、E3、E4、F0、F2或者是其它的代号或者别称,此处不做限定。
其中,表3中各项的参数中最后一列中的单位还可以表示为OFDM符号个数,具体请参阅表4,第一参数集中的任意一项对应于表4中的任意一行,对应的,该第一参数集可以包括表4中的任意一行或多行。
Figure PCTCN2020087225-appb-000011
表4
在表4中,各个符号参数的定义可参考前述表3中的内容,此处不再赘述。其中,表4中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000012
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表4中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000013
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000014
PRACH duration等列的数据);还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
在该第一参数集所实现的方式一中,随机接入前导的总时间长度为整数个扩展循环前缀OFDM符号,可以使得PUSCH中的数据信号和PRACH中的随机接入前导信号之间尽量保持足够同步,降低相互之间干扰;随机接入前导的循环前缀长度比保护间隔多数据信号的循环前缀长度,有利于保护随机接入前导后续的数据,防止信道多径时延使得PRACH信号干扰接下来的数据传输;一个时隙中的随机接入前导的总时间不超过12个OFDM符号,使得PRACH不跨多个时隙,便于灵活调度。
方式二:请参阅表5,第一参数集中的任意一项对应于表5中的任意一行,对应的,该第一参数集可以包括表5中的任意一行或多行。其中,表5中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000015
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表5中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000016
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000017
PRACH duration等列的数据);还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000018
表5
其中,表5中各项的参数中最后一列中的单位还可以表示为OFDM符号个数,具体请参阅表6,第一参数集中的任意一项对应于表6中的任意一行,对应的,该第一参数集可以包括表6中的任意一行或多行。其中,表6中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000019
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表6中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000020
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000021
PRACH duration等列的数据);还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000022
表6
在表5和表6中,各个符号参数的定义可参考前述表3中的内容,此处不再赘述。
在该第一参数集所实现的方式二中,随机接入前导的总时间长度为整数个扩展循环前缀OFDM符号,可以使得PUSCH中的数据信号和PRACH中的随机接入前导信号之间尽量保持足够同步,降低相互之间干扰;一个时隙中的随机接入前导的总时间不超过12个OFDM符号,可以使得PRACH不跨多个时隙,便于灵活调度。相比于前述方式一,方式二中将部分格式(A3/B4/C2)中的循环前缀长度降低,使得随机接入前导的循环前缀长度不超过一个OFDM符号的时间长度,无需跨多个OFDM符号承载循环前缀。
方式三:请参阅表7,第一参数集中的任意一项对应于表7中的任意一行,对应的,该第一参数集可以包括表7中的任意一行或多行。其中,表7中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000023
PRACH duration)对应于随机接入前导对应的 不同参数,第一参数集的具体实现中,可以通过表7中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000024
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000025
PRACH duration等列的数据);还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000026
表7
其中,表7中各项的参数中最后一列中的单位还可以表示为OFDM符号个数,具体请参阅表8,第一参数集中的任意一项对应于表8中的任意一行,对应的,该第一参数集可以包括表8中的任意一行或多行。其中,表8中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000027
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表8中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000028
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000029
PRACH duration等列的数据),还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000030
表8
在表7和表8中,各个符号参数的定义可参考前述表3中的内容,此处不再赘述。
在该第一参数集所实现的方式三中,随机接入前导的总时间长度为整数个扩展循环前缀OFDM符号,可以使得PUSCH中的数据信号和PRACH中的随机接入前导信号之间尽量保持足够同步,降低相互之间干扰;随机接入前导的循环前缀长度比保护间隔多数据信号的循环前缀长度,有利于保护随机接入前导后续的数据,防止信道多径时延使得PRACH信号干 扰接下来的数据传输;一个时隙中的随机接入前导的总时间不超过12个OFDM符号,可以使得PRACH不跨多个时隙,便于灵活调度。相比于前述方式一,在方式三中将部分格式中的循环前缀长度降低,使得随机接入前导的循环前缀长度不超过一个OFDM符号的时间长度,无需跨多个OFDM符号承载循环前缀;相比于前述方式二,在方式三中将部分格式中的循环前缀长度进一步降低,对应增加随机接入前导的持续时间长度,使得随机接入前导的循环前缀长度保持不变。
方式四:请参阅表9,第一参数集中的任意一项对应于表9中的任意一行,对应的,该第一参数集可以包括表9中的任意一行或多行。其中,表9中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000031
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表9中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000032
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000033
PRACH duration等列的数据),还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000034
表9
其中,表9中各项的参数中最后一列中的单位还可以表示为OFDM符号个数,具体请参阅表10,第一参数集中的任意一项对应于表10中的任意一行,对应的,该第一参数集可以包括表10中的任意一行或多行。其中,表10中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000035
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表10中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000036
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000037
PRACH duration等列的数据),还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000038
表10
在表9和表10中,各个符号参数的定义可参考前述表3中的内容,此处不再赘述。
在该第一参数集所实现的方式四中,随机接入前导的总时间长度为整数个扩展循环前缀OFDM符号,可以使得PUSCH中的数据信号和PRACH中的随机接入前导信号之间尽量保持足够同步,降低相互之间干扰;随机接入前导的循环前缀长度比保护间隔多数据信号的循环前缀长度,有利于保护随机接入前导后续的数据,防止信道多径时延使得PRACH信号干扰接下来的数据传输;一个时隙中的随机接入前导的总时间不超过11、10、9、8、7个OFDM符号,可以预留一些符号长度以承载其他信道或者其他功能的信号传输,例如物理下行控制信道(physical dowlink control Chanel,PDCCH)、上下行切换、探测参考信号(sounding reference signal,SRS)等。
方式五:请参阅表11,第一参数集中的任意一项对应于表11中的任意一行,对应的,该第一参数集可以包括表11中的任意一行或多行。其中,表11中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000039
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表11中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000040
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000041
PRACH duration等列的数据),还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000042
表11
其中,表11中各项的参数中最后一列中的单位还可以表示为OFDM符号个数,具体请参阅表12,第一参数集中的任意一项对应于表12中的任意一行,对应的,该第一参数集可以包括表12中的任意一行或多行。其中,表12中的任意一行中,不同列的数据(Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000043
PRACH duration)对应于随机接入前导对应的不同参数,第一参数集的具体实现中,可以通过表12中将不同列的数据集成在同一个表格中的方式实现;也可以将不同列的数据分别集成在两个不同的表格中实现(例如,第一个表格包括Format、L RA、Δf RA、N u
Figure PCTCN2020087225-appb-000044
等列的数据,第二个表格包括Format、
Figure PCTCN2020087225-appb-000045
PRACH duration等列的数据),还可以将不同列的数据分别集成在两个以上不同的表格中实现,此处不做限定。
Figure PCTCN2020087225-appb-000046
表12
在表11和表12中,各个符号参数的定义可参考前述表3中的内容,此处不再赘述。
在该第一参数集所实现的方式五中,随机接入前导的总时间长度为整数个扩展循环前缀OFDM符号,可以使得PUSCH中的数据信号和PRACH中的随机接入前导信号之间尽量保持足够同步,降低相互之间干扰;随机接入前导的循环前缀长度不超过一个OFDM符号的时间长度,可以使得PRACH不跨多个时隙,便于灵活调度;一个时隙中的随机接入前导的总时间不超过11、10、9、8、7个OFDM符号,可以预留一些符号长度以承载其他信道或者其他功能的信号传输,例如PDCCH、上下行切换、SRS等。相比于前述方式四,在方式五中将部分格式中的循环前缀长度降低,对应增加随机接入前导的持续时间长度,使得随机接入前导的循环前缀长度保持不变。
此外,该第一参数集具体的实现上,可以是该终端设备在存储模块中预存有该第一参数集,其中,该存储模块可以包括记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、用户识别模块(Subscriber Identity Module,SIM)、通用用户识别模块(Universal Subscriber Identity Module,USIM)、嵌入式SIM卡(embedded SIM,eSIM)、或者是终端设备中的任一存储介质中,也可以是该终端设备通过网络设备发送的同步信号和/或广播信号和/或系统信息块中获取得到该第一参数集,还可以是该终端设备接收其它设备的消息来获取得到该第一参数集,此处不做限定。
503、终端设备根据随机接入前导对应的参数和配置信息向网络设备发送随机接入前导。
本实施例中,终端设备在步骤501可以得到随机接入前导的随机接入时间、频率资源参数等,在步骤502可以得到随机接入前导对应的参数至少包括循环前缀CP长度,子载波间隔长度,随机接入前导的持续时间长度,随机接入前导对应的物理随机接入信道PRACH持续时间,从而,根据随机接入前导对应的参数和配置信息向网络设备发送随机接入前导。
在步骤503的实现过程中,网络设备接收来自终端设备的随机接入前导,即实现图4中步骤2的过程,此后,网络设备可以根据该随机接入前导估计该终端设备的定时提前量,并向该终端设备回复消息2(Msg2),执行图4中的其它步骤,从而实现该终端设备的随机接入过程。
本实施例中,由于第一参数集中的任意一项随机接入前导中的参数中的CP长度对齐到整数个ECP的OFDM符号,当数据信号中的数据格式使用的CP类型为ECP时,使得PRACH上的随机接入前导信号与PUSCH上的整数个OFDM数据信号对齐,从而提升终端设备在随机接入过程中的消息1(随机接入前导)发送成功概率,且降低接入时延,降低随机接入信号与数据信号之间的干扰。
以上描述了本申请实施例中的通信方法,下面结合附图介绍本申请实施例提供的通信装置。
请参阅图6,本申请实施例中的一种通信装置600包括:
收发单元601,用于接收来自网络设备的配置信息;
处理单元602,用于根据该配置信息在第一参数集中确定出随机接入前导对应的参数;
该第一参数集包括以下一项或多项:
循环前缀CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,前导序列长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,前导序列长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,前导序列长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为 6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2
CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2
CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2
其中,κ为常数,μ为PRACH的子载波间隔索引;
该收发单元601,用于根据该随机接入前导对应的参数和该配置信息向该网络设备发送随机接入前导。
在一种可能的实现方式中,该第一参数集任一项中的参数“随机接入前导对应的物理随机接入信道PRACH持续时间”还可以表示为OFDM符号个数,此时,该第一参数集包括以下一项或多项:
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4个OFDM符号;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2个OFDM符号;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2个OFDM符号;或
CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的 持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11个OFDM符号;或
CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10个OFDM符号;或
CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9个OFDM符号;或
CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10个OFDM符号;或
CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9个 OFDM符号;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8个OFDM符号;或
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7个OFDM符号。
在一种可能的实现方式中,所述处理单元602具体用于:
在确定CP类型为扩展循环前缀ECP时,根据所述配置信息在第一参数集中确定出随机接入前导对应的参数。
在一种可能的实现方式中,所述处理单元602具体用于:
在所述配置信息包括第一指示时,确定所述CP类型为扩展循环前缀ECP,所述第一指示用于指示初始上行部分带宽或初始下行部分带宽的CP类型为ECP。
在一种可能的实现方式中,所述配置信息包括以下一项或多项:CP长度、前导序列长度、随机接入前导对应的PRACH持续时间。
在一种可能的实现方式中,在所述第一参数集中的任意一项中,还包括随机接入前导的格式,所述配置信息还包括随机接入配置索引,所述处理单元602具体用于:
根据所述随机接入配置索引确定随机接入前导的目标格式;
根据所述随机接入前导的目标格式在所述第一参数集中确定所述随机接入前导对应的参数。
在一种可能的实现方式中,在所述第一参数集中的任意一项中,还包括前导序列长度。
在一种可能的实现方式中,所述收发单元601,还用于接收来自所述网络设备的第二指示;
所述处理单元,还用于根据所述第二指示确定出所述前导序列长度。
在一种可能的实现方式中,所述κ的取值为64或128或256或512。
在一种可能的实现方式中,所述μ的取值关联于以下一项或多项:
随机接入前导的载波频率、随机接入类型、随机接入前导使用的频率类型。
在本申请实施例中,该通信装置600可以实现为前述实施例中终端设备所执行的任一执行步骤所对应的实现方式,其中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端的处理单元。如图6所示,通信装置600(即终端设备)包括收发单元601和处理单元602。收发单元601也可以称为收发器、收发机、收发装置等。处理单元602也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元601中用于实现接收功能的器件视为接收单元,将收发单元601中用于实现发送功能的器件视为发送单元,即收发单元601包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元601用于执行上述方法实施例中终端设备的发送操作和接收操作, 处理单元602用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
需要说明的是,上述通信装置600的单元的执行过程,以及不同的单元可能存在的多种实现方式等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
请参阅图7,为本申请的实施例提供的上述实施例中所涉及的通信装置700的一种可能的逻辑结构示意图,该通信装置700可以包括但不限于处理器701、通信端口702、存储器703、总线704,在本申请的实施例中,处理器701用于对通信装置700的动作进行控制处理。
其中,该处理器701用于执行前述方法实施例中的通信方法,具体来说:
该处理器701通过该通信端口702接收来自网络设备的配置信息;
该处理器701根据所述配置信息在第一参数集中确定出随机接入前导对应的参数;
所述第一参数集包括以下一项或多项:
循环前缀CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为 6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2 ;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2
其中,κ为常数,μ为PRACH的子载波间隔索引;
该处理器701通过该通信端口702根据所述随机接入前导对应的参数向所述网络设备发送随机接入前导。
在一种可能的实现方式中,该第一参数集任一项中的参数“随机接入前导对应的物理随机接入信道PRACH持续时间”还可以表示为OFDM符号个数,此时,该第一参数集包括以下一项或多项:
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4个OFDM符号;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2个OFDM符号;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的 持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2个OFDM符号;或
CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6个OFDM符号;或
CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11个OFDM符号;或
CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10个OFDM符号;或
CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9个OFDM符号;或
CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8个 OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7个OFDM符号;或
CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11个OFDM符号;或
CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10个OFDM符号;或
CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9个OFDM符号;或
CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8个OFDM符号;或
CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7个OFDM符号。
在一种可能的实现方式中,该处理器701具体用于:
在确定CP类型为扩展循环前缀ECP时,根据所述配置信息在第一参数集中确定出随机接入前导对应的参数。
在一种可能的实现方式中,该处理器701具体用于:在所述配置信息包括第一指示时,确定所述CP类型为扩展循环前缀ECP,所述第一指示用于指示初始上行部分带宽或初始下行部分带宽的CP类型为ECP。
在一种可能的实现方式中,所述配置信息包括以下一项或多项:CP长度、前导序列长度、随机接入前导对应的PRACH持续时间。
在一种可能的实现方式中,在所述第一参数集中的任意一项中,还包括随机接入前导的格式,所述配置信息还包括随机接入配置索引,该处理器701具体用于:根据所述随机接入配置索引确定随机接入前导的目标格式;
根据所述随机接入前导的目标格式在所述第一参数集中确定所述随机接入前导对应的参数。
在一种可能的实现方式中,在所述第一参数集中的任意一项中,还包括前导序列长度。
在一种可能的实现方式中,该处理器701还用于通过该通信端口702接收来自所述网络设备的第二指示;
该处理器701还用于根据所述第二指示确定出所述前导序列长度。
在一种可能的实现方式中,所述κ的取值为64或128或256或512。
在一种可能的实现方式中,所述μ的取值关联于以下一项或多项:
随机接入前导的载波频率、随机接入类型、随机接入前导使用的频率类型。
需要说明的是,上述通信装置中的各个组成模块的执行过程,以及各个组成模块可能存在的多种实现方式等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。此外,当图7所示实施例中的通信装置的各个组成模块为软件实现的功能模块时,这些软件功能模块存储在所述存储器703中,当处理器701执行所述存储器703中的软件代码时使得该通信装置实现前述图6所述执行的内容,具体实现过程可以参考前述图6的内容,此处不再赘述。
此外,处理器701可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,在所述计算机执行指令被处理器执行时,所述处理器执行如前述方法实施例任意一种可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机程序产品,该计算机计算机程序产品包括计算机程序或指令,在所述计算机程序产品被处理器执行时,所述处理器执行前述方法实施例任意一种可能实现方式的方法。
本申请还提供了一种芯片系统,该芯片系统包括处理器和通信接口,该处理器可以包括基带处理器(BP,baseband processor),示例性地,该处理器还可以包括应用处理器(AP,application processor),该处理器用于支持通信装置实现前述方法实施例任意一种可能的实现方式中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存必要的计算机程序或指令,该处理器通过该通信接口执行该存储器中的计算机程序或指令,实现前述方法实施例任意一种可能实现方式的方法。此外,该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请还提供了一种通信系统,该通信系统包括网络设备,用于发送配置信息,以及如前述任一实施例中的通信装置。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的配置信息;
    所述终端设备根据所述配置信息在第一参数集中确定出随机接入前导对应的参数;
    所述第一参数集包括以下一项或多项:
    循环前缀CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
    CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
    CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
    CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
    CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
    CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为 12×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
    CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
    CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
    CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
    CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
    CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
    CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
    CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2
    其中,κ为常数,μ为PRACH的子载波间隔索引;
    所述终端设备根据所述随机接入前导对应的参数向所述网络设备发送随机接入前导。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述配置信息在第一参数集中确定出随机接入前导对应的参数包括:
    在所述终端设备确定CP类型为扩展循环前缀ECP时,所述终端设备根据所述配置信息在第一参数集中确定出随机接入前导对应的参数。
  3. 根据权利要求2所述的方法,其特征在于,在所述配置信息包括第一指示时,所述终端设备确定所述CP类型为扩展循环前缀ECP,所述第一指示用于指示初始上行部分带宽或初始下行部分带宽的CP类型为ECP。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述配置信息包括以下一项或多项:CP长度、前导序列长度、随机接入前导对应的PRACH持续时间。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,在所述第一参数集中的任意一项中,还包括随机接入前导的格式,所述配置信息还包括随机接入配置索引,所述终端设备根据所述配置信息在第一参数集中确定出随机接入前导对应的参数包括:
    所述终端设备根据所述随机接入配置索引确定随机接入前导的目标格式;
    所述终端设备根据所述随机接入前导的目标格式在所述第一参数集中确定所述随机接入前导对应的参数。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在所述第一参数集中的任意一项中,还包括前导序列长度。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示;
    所述终端设备根据所述第二指示确定出所述前导序列长度。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述k的取值为64或128或256或512。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述μ的取值关联于以下一项或多项:
    随机接入前导的载波频率、随机接入类型、随机接入前导使用的频率类型。
  10. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的配置信息;
    处理单元,用于根据所述配置信息在第一参数集中确定出随机接入前导对应的参数;
    所述第一参数集包括以下一项或多项:
    循环前缀CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 千赫兹kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的物理随机接入信道PRACH持续时间为2×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
    CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为768κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为2×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
    CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为4×2560κ×2 ;或
    CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为3328κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
    CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为1×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为2×2560κ×2 ;或
    CP长度为3840κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为6×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为4×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的 持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为13×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为12×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为5×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为6×2560κ×2 ;或
    CP长度为3072κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
    CP长度为2816κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
    CP长度为2560κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
    CP长度为2304κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为7×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为7×2560κ×2 ;或
    CP长度为2048κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为12×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为11×2560κ×2 ;或
    CP长度为1792κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为11×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为10×2560κ×2 ;或
    CP长度为1536κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为10×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为9×2560κ×2 ;或
    CP长度为1280κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为9×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为8×2560κ×2 ;或
    CP长度为1024κ×2 个时间单位,子载波间隔长度为15×2 kHz,随机接入前导的持续时间长度为8×2048κ×2 个时间单位,随机接入前导对应的PRACH持续时间为 7×2560κ×2
    其中,κ为常数,μ为PRACH的子载波间隔索引;
    所述收发单元,用于根据所述随机接入前导对应的参数向所述网络设备发送随机接入前导。
  11. 根据权利要求10所述的装置,其特征在于,所述处理单元具体用于:
    在确定CP类型为扩展循环前缀ECP时,根据所述配置信息在第一参数集中确定出随机接入前导对应的参数。
  12. 根据权利要求11所述的装置,其特征在于,所述处理单元具体用于:
    在所述配置信息包括第一指示时,确定所述CP类型为扩展循环前缀ECP,所述第一指示用于指示初始上行部分带宽或初始下行部分带宽的CP类型为ECP。
  13. 根据权利要求10至12任一项所述的装置,其特征在于,所述配置信息包括以下一项或多项:CP长度、前导序列长度、随机接入前导对应的PRACH持续时间。
  14. 根据权利要求10至13任一项所述的装置,其特征在于,在所述第一参数集中的任意一项中,还包括随机接入前导的格式,所述配置信息还包括随机接入配置索引,所述处理单元具体用于:
    根据所述随机接入配置索引确定随机接入前导的目标格式;
    根据所述随机接入前导的目标格式在所述第一参数集中确定所述随机接入前导对应的参数。
  15. 根据权利要求10至14任一项所述的装置,其特征在于,在所述第一参数集中的任意一项中,还包括前导序列长度。
  16. 根据权利要求15所述的装置,其特征在于,
    所述收发单元,还用于接收来自所述网络设备的第二指示;
    所述处理单元,还用于根据所述第二指示确定出所述前导序列长度。
  17. 根据权利要求10至16任一项所述的装置,其特征在于,所述κ的取值为64或128或256或512。
  18. 根据权利要求10至17任一项所述的装置,其特征在于,所述μ的取值关联于以下一项或多项:
    随机接入前导的载波频率、随机接入类型、随机接入前导使用的频率类型。
  19. 一种通信装置,其特征在于,包括:
    处理器以及存储器;
    所述存储器用于存储程序指令;
    所述处理器用于执行所述程序指令以使得所述通信装置实现权利要求1-9中任一项所述的方法。
  20. 一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,其特征在于,在所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至6中任一项所述的方法。
  21. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令, 其特征在于,在所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行如权利要求1至9中任一项所述的方法。
  22. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得权利要求1至9任一项所述的方法。
  23. 一种通信系统,其特征在于,所述通信系统包括:
    网络设备,用于发送配置信息;以及
    如权利要求10至18任一项所述的通信装置。
PCT/CN2020/087225 2020-04-27 2020-04-27 一种通信方法及通信装置 WO2021217337A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/087225 WO2021217337A1 (zh) 2020-04-27 2020-04-27 一种通信方法及通信装置
CA3177157A CA3177157A1 (en) 2020-04-27 2020-04-27 Communication method and communication apparatus
EP20932964.8A EP4124146A4 (en) 2020-04-27 2020-04-27 COMMUNICATION METHOD AND COMMUNICATION APPARATUS
CN202080099806.4A CN115399047A (zh) 2020-04-27 2020-04-27 一种通信方法及通信装置
US17/968,930 US20230044554A1 (en) 2020-04-27 2022-10-19 Communication method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087225 WO2021217337A1 (zh) 2020-04-27 2020-04-27 一种通信方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/968,930 Continuation US20230044554A1 (en) 2020-04-27 2022-10-19 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021217337A1 true WO2021217337A1 (zh) 2021-11-04

Family

ID=78373869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087225 WO2021217337A1 (zh) 2020-04-27 2020-04-27 一种通信方法及通信装置

Country Status (5)

Country Link
US (1) US20230044554A1 (zh)
EP (1) EP4124146A4 (zh)
CN (1) CN115399047A (zh)
CA (1) CA3177157A1 (zh)
WO (1) WO2021217337A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832212B2 (en) * 2020-07-27 2023-11-28 Samsung Electronics Co., Ltd. Positioning in RRC idle and inactive states
US11979919B2 (en) * 2021-09-17 2024-05-07 Qualcomm Incorporated Flexible random access channel configurations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246831A (zh) * 2017-09-30 2019-01-18 华为技术有限公司 随机接入方法及装置
CN110178440A (zh) * 2017-01-20 2019-08-27 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
US20190306832A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block
CN110392443A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 一种数据信道传输方法、接收方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182459B2 (en) * 2016-06-15 2019-01-15 Convida Wireless, Llc Random access procedures in next gen networks
WO2018203674A1 (ko) * 2017-05-03 2018-11-08 엘지전자 주식회사 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178440A (zh) * 2017-01-20 2019-08-27 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN109246831A (zh) * 2017-09-30 2019-01-18 华为技术有限公司 随机接入方法及装置
US20190306832A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block
CN110392443A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 一种数据信道传输方法、接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4124146A4 *

Also Published As

Publication number Publication date
US20230044554A1 (en) 2023-02-09
EP4124146A1 (en) 2023-01-25
CA3177157A1 (en) 2021-11-04
EP4124146A4 (en) 2023-04-05
CN115399047A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US12047959B2 (en) Method and apparatus for enhanced contention based random access procedure
US10149339B2 (en) Base station, user equipment and methods for random access
CN111165060B (zh) 随机接入方法、装置以及通信系统
EP2425661B1 (en) Methods and apparatuses for resource allocation for random access in wireless telecommunication systems with carrier-aggregation
WO2020020270A1 (zh) 随机接入的方法和通信设备
US12048021B2 (en) Random access method and device
US20200100296A1 (en) Listen before Talk and Channel Access Priority Class for RACH in New Radio Unlicensed
US20200137703A1 (en) Synchronization method and apparatus
WO2020063828A1 (zh) 一种随机接入的方法和通信装置
WO2020199882A1 (zh) 通信方法、装置及设备
US20230044554A1 (en) Communication method and communication apparatus
EP3930368B1 (en) Transmitting prach configuration information from a central unit (cu) of an access network device to a distributed unit (du) connected to the central unit (cu) by means of an f1 interface
WO2017193410A1 (zh) Ta获取方法和装置
WO2020220311A1 (en) Systems and methods of enhanced random access procedure
WO2020172777A1 (zh) 随机接入的方法和设备
KR20200097467A (ko) 무선통신 시스템에서 2단계 랜덤 엑세스 절차를 지시하는 방법 및 장치
WO2019095115A1 (zh) 用于竞争随机接入的方法、网络设备和终端设备
US20220070926A1 (en) Communication control method and user equipment
CN113424641B (zh) 无线通信网络中的随机接入
WO2018006245A1 (en) Apparatuses and methods for preamble sequence management for contention based access
WO2019218134A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021146871A1 (zh) 通信方法及装置
CN114902709A (zh) 用于交叉部署基本服务集(bss)颜色和信道优化的无线系统和方法
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2024098213A1 (en) Coverage enhancement method and related devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3177157

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020932964

Country of ref document: EP

Effective date: 20221019

NENP Non-entry into the national phase

Ref country code: DE