WO2024093273A1 - 触控膜层和触控显示面板 - Google Patents

触控膜层和触控显示面板 Download PDF

Info

Publication number
WO2024093273A1
WO2024093273A1 PCT/CN2023/102370 CN2023102370W WO2024093273A1 WO 2024093273 A1 WO2024093273 A1 WO 2024093273A1 CN 2023102370 W CN2023102370 W CN 2023102370W WO 2024093273 A1 WO2024093273 A1 WO 2024093273A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
slit
electrode
film layer
electrodes
Prior art date
Application number
PCT/CN2023/102370
Other languages
English (en)
French (fr)
Inventor
李旺
袁海江
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2024093273A1 publication Critical patent/WO2024093273A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present application relates to the field of display technology, and in particular to a touch film layer and a touch display panel.
  • OLED organic light-emitting
  • the purpose of the present application is to provide a touch film layer and a touch display panel to improve the problem that the touch film layer is easily broken during the rolling process of a folding screen or a roll-up screen.
  • the present application discloses a touch film layer, including a touch electrode layer, wherein the touch electrode layer includes multiple groups of first touch electrode groups and multiple groups of second touch electrode groups, multiple first touch electrodes arranged along a first direction are connected to form a group of first touch electrode groups, multiple second touch electrodes arranged along a second direction are connected to form a group of second touch electrode groups, the first direction and the second direction intersect to form an angle of 90 degrees ⁇ 30 degrees, and the second direction is defined as the direction in which the touch film layer is curled or bent, the first touch electrode and the second touch electrode are respectively strip electrodes, the long axis or long side of the strip electrode is parallel to the first direction, and the short axis or short side of the strip electrode is parallel to the second direction.
  • the present application also discloses a touch display panel, comprising a flexible display panel and the above-mentioned touch film layer, wherein the touch film layer is arranged on the light emitting surface of the flexible display panel.
  • the present application sets the touch electrodes in the touch film layer as strip electrode patterns, and the short sides of the strip electrodes correspond to the direction in which the touch film layer is rolled.
  • the short side of the touch electrode is shorter and less likely to break.
  • the long side is perpendicular or approximately perpendicular to the second direction and is less likely to break. Therefore, by changing the shape of the touch electrode, the present application can avoid the problem of damage to the touch electrode due to the passive rupture of the film layer during curling, which causes uncontrollable rupture lines, by changing the shape of the touch electrode without reducing the area of the touch electrode.
  • the deformation of the touch pattern is utilized to increase the tensile resistance, the screen body can withstand greater stress, and a smaller bending radius requirement can be achieved, so that the degree of curling can be greater, which is conducive to reducing the size of the entire machine.
  • FIG1 is a schematic diagram of a touch film layer of the present application.
  • FIG2 is a schematic diagram of a first strip electrode of the present application.
  • FIG3 is a schematic cross-sectional view of FIG2 ;
  • FIG4 is a schematic diagram of a second strip electrode of the present application.
  • FIG5 is a schematic diagram of a second strip electrode of the present application in a rolled state
  • FIG6 is a schematic diagram of a third strip electrode of the present application.
  • FIG7 is a schematic diagram of a third strip electrode of the present application in a rolled state
  • FIG8 is a schematic diagram of a first touch film layer of the present application.
  • FIG9 is a schematic diagram of a second touch film layer of the present application.
  • FIG. 10 is a schematic diagram of a flexible display panel of the present application.
  • first and second are used for descriptive purposes only and are not to be understood as indicating relative importance or implicitly indicating the number of technical features indicated. Therefore, unless otherwise specified, features defined as “first” and “second” may explicitly or implicitly include one or more of the features; “multiple” means two or more.
  • terms such as “upper”, “lower”, “left”, “right”, “vertical”, and “horizontal” indicating orientation or positional relationships are described based on the orientation or relative positional relationships shown in the accompanying drawings, and are only for the convenience of describing the simplified description of the present application, and are not intended to be construed as limiting the scope of the present application.
  • FIG1 is a schematic diagram of a touch film layer of the present application.
  • the present application discloses a touch film layer, including a touch electrode layer 100.
  • the touch electrode layer 100 includes a plurality of first touch electrode groups 110 and a plurality of second touch electrode groups 120.
  • a plurality of first touch electrodes 111 arranged along a first direction Y are connected to form a first touch electrode group 110.
  • a plurality of second touch electrodes 121 arranged along a second direction X are connected to form a second touch electrode group 120.
  • the first direction Y intersects with the second direction X to form an angle of 90 degrees ⁇ 30 degrees.
  • the first touch electrodes 111 and the second touch electrodes 121 are strip electrodes 130 respectively.
  • the long axis or long side of the strip electrode 130 is parallel to the first direction Y, and the short axis or short side of the strip electrode 130 is parallel to the second direction X.
  • the second direction X is defined as the direction in which the touch film layer 30 is curled or bent.
  • the present application sets the touch electrodes in the touch film layer 30 as a strip electrode 130 pattern, and the short side or short axis of the strip electrode 130 corresponds to the direction in which the touch film layer 30 is curled.
  • the short side of the touch electrode is shorter and less likely to break.
  • the long side corresponds to being perpendicular or approximately perpendicular to the second direction, and is less likely to break. Therefore, the present application can change the shape of the touch electrode to avoid the problem of the film layer being passively broken during curling, causing the crack lines to be uncontrollable, and causing damage to the touch electrode without reducing the area of the touch electrode.
  • the deformation of the touch pattern is used to increase the tensile resistance, the screen body can withstand greater stress, and a smaller bending radius requirement can be achieved, so that the degree of curling can be greater, which is conducive to reducing the size of the entire machine.
  • the first direction Y is perpendicular to, or substantially perpendicular to, the second direction X.
  • the maximum range can be offset to 60 degrees to 120 degrees.
  • the shape of the strip electrode 130 in this embodiment may be a rectangle or a long strip with arc edges or an ellipse or a quadrilateral, etc.
  • the strip electrode 130 has a long side and a short side.
  • the strip electrode 130 is an ellipse or a long strip
  • the strip electrode 130 has a long axis and a short axis.
  • the ratio of the length of the long side or the long axis of the strip electrode 130 to the length of the short side or the short axis is greater than or equal to 2:1.
  • the length of the long side or the long axis of the strip electrode 130 is 3.5mm-5.5mm.
  • the length of the long side of the strip electrode 130 is set to this width in order to ensure a certain touch accuracy and to ensure that the user has a better experience when touching.
  • the length of the short side is set as small as possible to ensure that the short side is not easily broken when curling or bending; but the width of the short side is also ensured to be at least about 2 mm or less, so that the narrower short side can also cooperate with the long side to ensure that the area of the touch electrode is sufficient for accurate touch recognition.
  • the strip electrode 130 is a long strip with arc edges, specifically narrow in the middle and wide at both ends, and the narrowest part of the strip electrode 130 is 0.5 to 1.2 mm.
  • the ends of the strip electrode 130 are enlarged, the ends of the touch electrode can be To ensure that it can be recognized, the middle part of the strip electrode 130 can be further narrowed, thereby further ensuring that the short side is not easy to break when curling or bending.
  • the middle part of the strip electrode 130 still keeps the two ends connected, and the strip electrode 130 is still as a whole, and can still maintain touch recognition and detection, ensuring the recognition accuracy of touch. Therefore, further narrowing the middle part of the strip electrode 130 can prevent cracks when curling or bending.
  • FIG2 is a schematic diagram of the first strip electrode of the present application, as shown in FIG2, as a further preferred embodiment of the above-mentioned strip electrode 130 which is narrow in the middle and wide at both ends.
  • the touch pattern is relatively regular, and the geometric center of the strip electrode 130 is located at the exact center.
  • the straight line passing through the geometric center and parallel to the second direction is the narrowest part of the strip electrode 130.
  • the middle of the strip electrode 130 along the first direction is the narrowest part of the strip electrode 130.
  • the metal connecting bridge is connected to the position on the strip electrode 130 away from the middle to ensure the stable connection between the metal connecting bridge and the touch electrode.
  • the touch film layer further includes an insulating layer 150 and a metal layer 151, and the insulating layer 150 is arranged between the touch electrode layer and the metal layer 151;
  • the metal layer 151 includes a plurality of second connection lines, and the second connection lines are metal connection bridges, and the two ends of the second connection lines are respectively connected to two adjacent second touch electrodes arranged along the second direction through vias.
  • the middle of the strip electrode is the narrowest, the middle of the strip electrode is least likely to break, so the two ends of the metal connection bridge can be connected to the middle of the strip electrode.
  • the middle of the strip electrode is narrow, it is easy to disconnect the metal connection bridge and the middle of the strip electrode during processing, resulting in poor contact. It is also considered that the two ends of the strip electrode are easy to disconnect, which will also cause poor contact with the metal connection bridge; therefore, in another embodiment, the metal connection bridge can be connected to the middle of the upper end or lower end of the strip electrode, so as to avoid the narrow middle part and the two ends from breaking easily, resulting in poor contact, and ensure the connection stability of the metal connection bridge and the touch electrode. Furthermore, the connection position with the metal connection bridge can be set near 1/3 to 1/2 of the middle of the strip electrode. As shown in FIG2 , b is 1/3 of half the length of the strip electrode, and c is 1/2 of half the length of the strip electrode.
  • connection position of the metal connection bridge is set in the area between b and c.
  • the width of the strip electrode is greater than 1 mm.
  • the strip electrode at this location is not easy to break, and the connection between the strip electrode and the second connection line can be prevented from breaking, resulting in connection failure.
  • the metal connection bridge can be set at an inclination angle to the second direction, and the inclination angles of adjacent metal connection bridges are different. In this way, the positive contact of the metal connection bridge or the touch layer can be reduced. Face visibility.
  • FIG3 is a cross-sectional schematic diagram of FIG2 of the present application.
  • the insulating layer 150 is disposed on the metal layer 151
  • the touch electrode layer is disposed on the insulating layer 150
  • a via is disposed on the insulating layer 150
  • the touch electrode layer is connected to the metal layer 151 through the via
  • the corresponding metal connecting bridge connects two adjacent second touch electrodes.
  • the metal layer 151 may also be disposed on the touch electrode layer.
  • FIG4 is a schematic diagram of a second strip electrode of the present application.
  • at least one first slit 140 is disposed inside the strip electrode 130.
  • the first slit 140 is disposed along the first direction Y.
  • the touch film layer 30 is curled along the second direction X, the slit width of the first slit 140 increases, and the strip electrode 130 is divided into at least two sub-electrodes 131.
  • the two sub-electrodes 131 are electrically connected at both ends in the direction of the long side of the strip electrode 130.
  • a slit is provided on the strip electrode 130.
  • the strip electrode 130 is deformed at the slit position, the width of the slit increases, and the sub-electrodes 131 on both sides of the slit move outward.
  • the strip electrode 130 actively moves when curled, and during the movement, the two sub-electrodes 131 of the strip electrode 130 always remain connected at both ends, and the touch electrode is not damaged.
  • FIG5 shows a schematic diagram of the second strip electrode of the present application in a rolled state, in which the gap of the first slit 140 becomes larger, and the gap of the first slit 140 is the largest in the central area of the strip electrode 130.
  • the gap of the first slit 140 gradually becomes smaller, and at the two ends of the strip electrode 130, the two sub-electrodes 131 are interconnected, and the first slit 140 does not completely separate the strip electrode 130 into two completely independent sub-electrodes 131.
  • the touch electrode changes from the rolled state back to the initial state, the strip electrode 130 can be restored to the strip shape along the reverse process of deformation.
  • the curling of the touch film layer 30 mentioned in the present application means that, for example, when the folding screen is folded outward, the film layer at the folded or bent position will be stretched.
  • the film layer at the folded or bent position will be stretched.
  • the touch electrode is a deformable material, such as nanosilver, etc.
  • the characteristics of the deformable material include that it can be deformed when stretched without breaking, and it can return to its original shape after the stretching is completed.
  • the touch electrode can also be made of materials such as indium tin oxide.
  • the first slit 140 when one first slit is provided, the first slit 140 is located on the midline of the short side of the strip electrode 130, the center point of the first slit 140 coincides with the center point of the strip electrode 130, and the length of the first slit 140 is less than the length of the long side of the strip electrode 130.
  • only one first slit 140 is provided in the middle of the strip electrode 130, and is provided at the center of the strip electrode 130.
  • this embodiment takes the ratio of the long side length to the short side length of the strip electrode as 2:1, the long side length of the strip electrode is 4 mm, and the short side length of the strip electrode is 2 mm as an example.
  • the first slit 140 is provided at 1 mm of the short side, and the length of the first slit 140 is less than 4 mm.
  • Figure 6 is a schematic diagram of the third strip electrode of the present application
  • Figure 7 is a schematic diagram of the third strip electrode of the present application in a curled state.
  • the strip electrode 130 is provided with at least two of the first slits 140
  • the strip electrode 130 also includes at least one second slit 141, the second slit 141 is arranged along the first direction Y, and the second slit 141 is arranged between adjacent first slits 140, and the spacing between the two first slits and the second slit is equal
  • the second slit 141 includes a first section 141a and a second section 141b, the first section 141a extends from the short side of the strip electrode 130 along the first direction Y, and the second section 141b extends from the other short side of the strip electrode 130 along the first direction Y, and the first section 141a and the second section 141b are collinear and not connected.
  • multiple (including two or more) first slits 140 can be set on the strip electrode 130, and the multiple first slits 140 divide the strip electrode 130 into multiple sub-electrodes 131 with equal widths, and the first slits 140 do not completely cut the strip electrode 130 into two independent sub-electrodes 131.
  • a second slit 141 is also set in the two first slits 140, and the second slit 141 is completely different from the first slit 140.
  • the first slit 140 is mainly aimed at the central area of the strip electrode 130
  • the second slit 141 is mainly aimed at the two ends of the strip electrode 130 in the long side direction.
  • the second slit 141 cooperates with the first slit 140 to make the touch film layer 30 have a stronger degree of curling.
  • the strip electrodes 130 may be deformed into a mesh structure as shown in FIG. 5 , which also shows deformation diagrams of the strip electrodes 130 when the rolling degrees are 11% and 58%.
  • first slit 140 and the second slit 141 are provided.
  • the number of first slits 140 and second slits 141 can be set as needed.
  • the first slit 140 and the second slit 141 are formed by etching in the film layer process, and the size of the slit is closely related to the material of the strip electrode and the area of the strip electrode. For example, when nanosilver material is used, the length of the slit can be larger, thereby achieving a larger angle of integrity or curling, while when indium tin oxide is used, a relatively narrow size is selected. Moreover, the width of the slit in this embodiment is extremely small.
  • the slit does not form a hole similar to a via, and although a gap is formed, the sub-electrodes on both sides of the slit are still in contact, and the width of the slit can be selected to be micrometer-level or nanometer-level.
  • the strip electrode 130 when the strip electrode 130 is a long strip with an arc edge, it is also possible to consider setting a second slit 141.
  • the second slit 141 is set at the midline position of the upper short side 132 and the lower short side 133, so that the two ends of the strip electrode 130 are deformed when curling and bending, and the width of the second slit 141 becomes larger.
  • the strip electrode 130 when the strip electrode 130 is used as the first touch electrode 111, when the two adjacent first touch electrodes are connected by the first connecting line, and the first When the connection line is a metal connection bridge, the connection between the metal connection bridge and the strip electrode 130 can be arranged on both sides of the second slit, thereby preventing the connection of the metal connection bridge from being broken during the deformation of the strip electrode 130.
  • the second connection line when the strip electrode 130 is used as the second touch electrode 121, the second connection line is preferably connected to the middle of the strip electrode 130.
  • FIG8 is a schematic diagram of the first touch film layer of the present application.
  • the first touch electrodes 111 and the second touch electrodes 121 are arranged alternately, and in the first direction Y, the first touch electrodes 111 and the second touch electrodes 121 are staggered, and the two ends of the first touch electrode 111 in the first direction Y are respectively aligned with the midline of the adjacent second touch electrode 121 in the length direction. It should be understood that the spacing between the first touch electrode 111 and the second touch electrode 121 in FIG8 is relatively small.
  • each column of first touch electrodes 111 is a column touch detection channel
  • each row of second touch electrodes 121 is a row touch detection channel.
  • Each column touch detection channel is externally connected to a touch circuit
  • each row touch detection channel is externally connected to a touch circuit. The touch position can be accurately located through the column touch detection channel and the row touch detection channel.
  • the touch film layer also includes an insulating layer 150 and a metal layer 151, and the insulating layer 150 is arranged between the touch electrode layer and the metal layer 151;
  • the metal layer 151 includes a plurality of second connecting lines, and the second connecting lines are metal connecting bridges, and the routing direction of the second connecting lines is parallel to the second direction, and the two ends of the second connecting lines are respectively connected to two adjacent second touch electrodes arranged along the second direction through vias;
  • the touch electrode layer also includes a plurality of first connecting lines, and the first connecting lines are used to connect two adjacent first touch electrodes arranged along the first direction, and the first connecting lines and the first touch electrodes are formed by the same process.
  • the routing direction of the first connection line 112 is parallel to the first direction Y, and the routing direction of the second connection line 122 is parallel to the second direction X.
  • the first connection line 112 is used to connect two adjacent first touch electrodes 111 arranged along the first direction Y, and the second connection line 122 is used to connect two adjacent second touch electrodes 121 arranged along the second direction X.
  • the first touch electrodes 111 are connected along the first direction Y through the first connection line 112, and form a group of first touch electrode groups 110, and the group of first touch electrode groups 110 is a column touch detection channel.
  • a plurality of second touch electrodes 121 are connected along the second direction X through the second connection line 122, and form a group of second touch electrode groups 120, and the group of second touch electrode groups 120 is a row touch detection channel.
  • the second connection line 122 is a metal connection bridge; the first connection line 112 and the first touch electrode 111 are formed by the same process.
  • the second connecting line 122 in this embodiment is a metal connecting bridge, which is made of metal and has much better ductility than the first touch electrode 111 and the second touch electrode 121.
  • the first touch electrode 111 and the second touch electrode 121 of the present application are formed by a transparent conductive layer. It is also necessary to consider that the first connecting line 112 will not break when the touch film layer 30 is curled. Specifically, it includes:
  • the width of the first connecting line 112 is equal to the width of the short side of the second touch electrode 121.
  • each column of second touch electrodes 121 is a complete touch electrode line with equal width.
  • the first slit 140 and the second slit 141 can also be set on the first connecting line 112, wherein the first slit 140 needs to be aligned with the first slit 140 on the adjacent first touch electrode 111 and the second touch electrode 121, and the second slit 141 needs to be aligned with the second slit 141 on the adjacent first touch electrode 111 and the second touch electrode 121.
  • the line width of the first connection line 112 is smaller than the short side length of the first touch electrode 111.
  • a plurality of first connection lines 112 are provided, each corresponding to the sub-electrodes 131 between two adjacent second slits 141, so that even when the first touch electrode 111 is deformed, the connection between the first connection line 112 and the first touch electrode 111 will not be damaged.
  • the line width of the first connection line 112 is smaller, so that the touch film layer 30 is not easily damaged during the curling process.
  • FIG 9 is a schematic diagram of the second touch film layer of the present application.
  • the touch film layer 30 includes a plurality of second connecting lines 122, a plurality of third connecting lines 113 and a plurality of first touch channels 114.
  • the routing directions of the second connecting lines 122 and the third connecting lines 113 are parallel to the second direction X.
  • the second connecting lines 122 are used to connect two adjacent second touch electrodes 121 arranged along the second direction X.
  • One first touch channel 114 is arranged in parallel with a column of the first touch electrodes 111, and each of the touch electrodes in a column of the first touch electrodes 111 is connected to the first touch channel 114 through the third connecting lines 113, and the first touch channel 114 is externally connected to the touch control unit.
  • the first connection line 112 in the first direction Y is no longer provided, and the second connection line 122 and the third connection line 113 in the second direction X are provided.
  • the column touch detection circuit includes a touch channel, and the third connection line 113 extending in the second direction X connects a column of multiple first touch electrodes 111 to the first touch channel 114 respectively.
  • the problem of the first connection line 112 being broken does not occur in this embodiment, and the third connection line 113 can also be formed by a metal connection bridge.
  • the width of the first touch channel 114 is in the micrometer level, and the short side width of the second touch electrode 121 is in the millimeter level.
  • the first touch channel 114 and the first touch electrode 111 can be formed by the same process. It should be noted that when the second connection line 122 and the third connection line 113 mentioned above adopt a metal connection bridge structure, it is necessary to avoid the sub-pixel area of the display panel to increase the aperture ratio.
  • FIG10 is a schematic diagram of the flexible display panel of the present application.
  • the present application discloses a touch display panel 10, including a flexible display panel 20 and a touch film layer 30 mentioned in any of the above embodiments, wherein the touch film layer is arranged on the light emitting surface of the flexible display panel.
  • the flexible display panel is used to produce folding screens, scroll screens, etc., and is more suitable for folding screens and scroll screens that fold outward.
  • the touch electrode designed in the present application is more suitable for the folded part of the folding screen, and the part of the screen that is not displayed when the scroll screen is rolled up.
  • the touch electrodes in the touch film layer 30 are arranged as strip electrodes 130, and the short sides of the strip electrodes 130 are arranged corresponding to the direction in which the touch film layer 30 is rolled.
  • the touch film layer 30 is rolled, the short sides of the touch electrodes are shorter. It is not easy to break.
  • the present application provides a slit on the strip electrode 130.
  • the touch film layer 30 is curled, the strip electrode 130 is deformed at the slit position, the width of the slit becomes larger, and the sub-electrodes 131 on both sides of the slit move outward.
  • the strip electrode 130 By actively setting the slit, the strip electrode 130 actively moves when curling, and during the movement, the two sub-electrodes 131 of the strip electrode 130 always remain connected at both ends, and the touch electrode is not damaged. It avoids the problem of the film layer passively breaking when curling, causing the crack lines to be uncontrollable, resulting in damage to the touch electrode. Moreover, through the setting of the touch electrode of the present application, the deformation of the touch pattern is used to increase the tensile resistance, the screen body can withstand greater stress, and a smaller bending radius requirement can be achieved, so that the degree of curling can be greater, which is conducive to reducing the size of the whole machine.
  • inventive concept of the present application can form a large number of embodiments, but the application document is limited in length and cannot be listed one by one. Therefore, under the premise of no conflict, the embodiments or technical features described above can be arbitrarily combined to form new embodiments. After the embodiments or technical features are combined, the original technical effects will be enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请公开了一种触控膜层和触控显示面板,沿第一方向排列的多个第一触控电极(111)连通形成一组第一触控电极组(110),沿第二方向排列的多个第二触控电极(121)连通形成一组第二触控电极组(120),第一触控电极(111)与第二触控电极(121)分别为条状电极(130),条状电极(130)的长轴或长边平行于第一方向,条状电极的短轴或短边平行于第二方向,通过上述方案以改善折叠屏或卷轴屏在卷曲过程中,触控膜层容易破碎的问题。

Description

触控膜层和触控显示面板
本申请要求于2022年11月04日提交中国专利局,申请号为CN2022113732549,申请名称为“触控膜层和触控显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种触控膜层和触控显示面板。
背景技术
目前,有机发光(OLED)技术的发展前景非常乐观,随着电子产品的不断更新,当下的显示面板采用OLED屏幕技术比例越来越高,用户对柔性屏幕的期待越来越高。一般而言,柔性屏除了显示面板外,还包括触控板,其中也得利于触控感应技术不断发展,手机、平板电脑等显示装置都设置有触控板。常见的触控方式包括电阻式、电容式和光学式等。最为主流的采用互容式触控方案,具有触控信号弱,功耗低,触控IC成本较低的优点。
但是用于折叠屏或卷轴屏时,由于折叠屏和卷轴屏需要弯折,且存在卷曲前和卷曲后的两种使用状态。对于触控膜层来说,容易在弯折时发生膜层破裂,造成无法触控的问题。
发明内容
本申请的目的是提供一种触控膜层和触控显示面板,以改善折叠屏或卷轴屏在卷曲过程中,触控膜层容易破碎的问题。
本申请公开了一种触控膜层,包括触控电极层,所述触控电极层包括多组第一触控电极组和多组第二触控电极组,沿第一方向排列的多个所述第一触控电极连通形成一组第一触控电极组,沿第二方向排列的多个第二触控电极连通形成一组第二触控电极组,所述第一方向与所述第二方向交叉形成90度±30度的夹角,定义所述第二方向为所述触控膜层被卷曲或被弯折的方向,所述第一触控电极与所述第二触控电极分别为条状电极,所述条状电极的长轴或长边平行于所述第一方向,所述条状电极的短轴或短边平行于所述第二方向。
本申请还公开了一种触控显示面板,包括柔性显示面板和上述的触控膜层,所述触控膜层设置在所述柔性显示面板的出光面上。
相对于示例性技术中设置菱形的触控电极的方案来说,本申请通过将触控膜层中的触控电极设置为条状电极图案,且条状电极的短边对应触控膜层被卷曲的方向设置,在触控膜层 被卷曲时,该触控电极的短边较短,不易发生破裂。而长边对应垂直于或大致垂直于第二方向,更不容易破碎。因而,本申请通过改变触控电极的形状,可在使得触控电极的面积不进行缩减的情况下避免了由于卷曲时,膜层被动发生破裂,造成破裂纹路无法控制,导致触控电极损坏的问题。而且,通过本申请的触控电极的设置,利用触控图案可发生形变来增加抗拉伸性,屏体能承受更大应力,可实现更小弯折半径要求,使得卷曲的程度可以更大,有利于缩小整机尺寸。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请的触控膜层的示意图;
图2是本申请第一种条状电极的示意图;
图3是图2的截面示意图;
图4是本申请第二种条状电极的示意图;
图5是本申请第二种条状电极处于卷曲状态下的示意图;
图6是本申请第三种条状电极的示意图;
图7是本申请第三种条状电极处于卷曲状态下的示意图;
图8是本申请第一种触控膜层的示意图;
图9是本申请第二种触控膜层的示意图;
图10是本申请的柔性显示面板的示意图。
具体实施方式
需要理解的是,这里所使用的术语、公开的具体结构和功能细节,仅仅是为了描述具体实施例,是代表性的,但是本申请可以通过许多替换形式来具体实现,不应被解释成仅受限于这里所阐述的实施例。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示相对重要性,或者隐含指明所指示的技术特征的数量。由此,除非另有说明,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;“多个”的含义是两个或两个以上。另外,“上”、“下”、“左”、“右”、“竖直”、“水平”等指示的方位或位置关系的术语,是基于附图所示的方位或相对位置关系描述的,仅是为了便于描述本申请的简化描述,而不 是指示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下面参考附图和可选的实施例对本申请作详细说明。
图1是本申请的触控膜层的示意图,如图1所示,本申请公开了一种触控膜层,包括触控电极层100,所述触控电极层100包括多组第一触控电极组110和多组第二触控电极组120,沿第一方向Y排列的多个所述第一触控电极111连通形成一组第一触控电极组110,沿第二方向X排列的多个第二触控电极121连通形成一组第二触控电极组120,所述第一方向Y与所述第二方向X交叉形成90度±30度的夹角,所述第一触控电极111与所述第二触控电极121分别为条状电极130,所述条状电极130的长轴或长边平行于所述第一方向Y,所述条状电极130的短轴或短边平行与第二方向X,定义所述第二方向X为所述触控膜层30被卷曲或被弯折的方向。
本申请通过将触控膜层30中的触控电极设置为条状电极130图案,且条状电极130的短边或短轴对应触控膜层30被卷曲的方向设置,在触控膜层30被卷曲时,该触控电极的短边较短,不易发生破裂。而长边对应垂直于或大致垂直于第二方向,更不容易破碎。因而,本申请通过改变触控电极的形状,可在使得触控电极的面积不进行缩减的情况下避免了由于卷曲时,膜层被动发生破裂,造成破裂纹路无法控制,导致触控电极损坏的问题。而且,通过本申请的触控电极的设置,利用触控图案可发生形变来增加抗拉伸性,屏体能承受更大应力,可实现更小弯折半径要求,使得卷曲的程度可以更大,有利于缩小整机尺寸。
本实施例中第一方向Y与第二方向X垂直,或大致处于垂直状态。最大范围可偏移至60度至120度。
具体地,本实施例中的条状电极130的形状可为矩形或带弧边的长条形或椭圆形或四边形等。当条状电极130为四边形或矩形等时,此时条状电极130具有长边和短边。当条状电极130为椭圆形或长条形时,此时条状电极130具有长轴和短轴。进一步地,条状电极130的长边长度或长轴长度与短边长度或短轴长度之比大于等于2:1。条状电极130的长边长度或长轴长度为3.5mm-5.5mm,将条状电极130的长边长度设置为这个宽度,是为了保证一定的触控精准度,保证用户触控时具备较好的体验。而将短边的长度尽可能设置小,如此以保证卷曲或者弯折时,短边不易发生破裂;但也尽量保证短边的宽度至少保证在2mm左右或者在2mm以内,这样较窄的短边也能通过和长边的配合,保证触控电极的面积足够触控识别精准。
在一实施例中,条状电极130为带弧边的长条形,具体呈中间窄两端宽,所述条状电极130的最窄处为0.5至1.2mm。此时由于将条状电极130的两端增大,触控电极的两端可以 保证被识别到,条状电极130的中部可以进一步缩窄,从而进一步确保卷曲或者弯折时,短边不易发生破裂。当然由于条状电极130的两端增大,增大的部分在卷曲或者弯折时较为容易发生破裂;但是此时,由于开裂的是条状电极130的两端,条状电极130的中部依然将两端保持连接,条状电极130仍然作为一个整体,仍能保持触控识别和探测,保证了触控的识别精准度。因此,将条状电极130的中部进一步缩窄,能防止卷曲或者弯折发生破裂时。
图2是本申请第一种条状电极的示意图,如图2所示,作为上述呈中间窄两端宽的条状电极130的进一步优选方案。本实施例中,条状电极130包括沿着第二方向的上短边132、下短边133,以及连接上短边132、下短边133的左弧边134和右弧边135;左弧边134和右弧边135均向内侧凹陷,且左弧边134和右弧边135以所述上短边132、下短边133的中线对称设置,所述左弧边134和所述右弧边135的中心连线处为所述条状电极130的最窄处d,其中d=0.5-1.2mm;所述条状电极130沿所述第一方向的宽度大于等于2mm。当采用此设计时,触控图案较为规整,且条状电极130的几何中心位于正中心,此时过几何中心和第二方向平行的直线即为条状电极130的最窄处,此时条状电极130沿第一方向的中部即为条状电极130的最窄处。此时,由于条状电极130的两端具有2mm的宽度,因此条状电极130的两端也不容易开裂,而条状电极130的中部由于较窄,在和金属连接桥连接时容易发生断开,故此时将金属连接桥和条状电极130上远离中部的位置连接,保证金属连接桥和触控电极的稳定连接。
当本实施例中的条状电极作为第二触控电极时,本实施例中,所述触控膜层还包括绝缘层150和金属层151,所述绝缘层150设置在所述触控电极层和所述金属层151之间;所述金属层151包括多条第二连接线,所述第二连接线为金属连接桥,第二连接线的两端分别通过过孔连接沿所述第二方向排列的相邻的两个第二触控电极。本实施例中,由于条状电极的中部最窄,条状电极的中部最不容易发生破裂,因此可以将金属连接桥的两端和条状电极的中部连接。但是,由于条状电极的中部较窄,实际在加工时,会导致金属连接桥和条状电极的中部容易发生断开导致接触不良,还考虑到条状电极的两端由于容易断开,也会发生和金属连接桥的接触不良;因而在另一实施例中,可以将金属连接桥和条状电极的上端或者下端的中部连接,这样可以尽量避免中部较窄处和两端容易断裂导致接触不良,保证金属连接桥和触控电极的连接稳定性。进一步地,可以将和金属连接桥的连接位置设置在靠近条状电极中部1/3至1/2处,如图2所示,b为条状电极一半长度的1/3等分,c为条状电极一半长度的1/2等分,其金属连接桥的连接位置设置在b与c之间的区域。本实施例中,在靠近条状电极中部1/3至1/2处,条状电极的宽度大于1mm,该处的条状电极不易破裂,而且可防止条状电极与第二连接线的连接处破裂,导致连接失效的问题。金属连接桥可以和第二方向呈倾斜角设置,相邻的金属连接桥的倾斜角不同。如此,可以减少金属连接桥或者触控层的正 面可见性。
图3是本申请的图2的截面示意图,如图2所示,其中,绝缘层150设置在金属层151上,触控电极层设置在绝缘层150上,绝缘层150上设置有过孔,触控电极层通过过孔连接到金属层151,对应的金属连接桥连接相邻的两个第二触控电极。在另一实施例中,金属层151也可以设置在触控电极层上。
图4是本申请第二种条状电极的示意图,如图4所示,所述条状电极130的内部至少设置有一条第一开缝140,所述第一开缝140沿所述第一方向Y设置,当所述触控膜层30沿所述第二方向X被卷曲时,所述第一开缝140的缝隙宽度变大,并将所述条状电极130至少分隔为两块子电极131,两块子电极131在所述条状电极130的长边所在方向上的两端电连接。
本申请在条状电极130上设置有开缝,在触控膜层30被卷曲时,条状电极130在开缝位置处发生形变,开缝的宽度变大,开缝两侧的子电极131向外移动,通过主动设置开缝的方式,使得条状电极130在卷曲时主动发生移动,且在移动过程中,条状电极130的两个子电极131在两端始终保持连通状态,并不会损伤触控电极。
图5示出了本申请第二种条状电极处于卷曲状态下的示意图,该第一开缝140的间隙变大,且在条状电极130的中心区域,第一开缝140的间隙最大。朝向条状电极130两端的方向,第一开缝140的间隙逐渐变小,在条状电极130的两端,两块子电极131相互连通,其第一开缝140并不完全将条状电极130分隔为两块完全独立的子电极131。且更重要的是,在触控电极由卷曲状态变回为初始状态时,条状电极130可以沿形变逆过程恢复至条状形状。
需要理解的是,本申请所提及的触控膜层30被卷曲指的是例如折叠屏在外翻折叠的情况下,折叠或者弯折位置处的膜层会被拉伸。例如卷轴屏,在屏幕卷收的情况下,多余的屏幕部分需要卷曲收缩在显示器内部,此时该卷曲位置处的膜层也会被拉伸。触控电极为可变形材料,例如纳米银等,该可变形材料的特性包括,在拉伸时可变形状,不会发生断裂的情况,而在拉伸结束后,可以恢复原状。在另一实施例中,其触控电极也可以选择氧化铟锡等材料。
具体地,当所述第一开缝设置一条时,所述第一开缝140位于所述条状电极130的短边的中线上,所述第一开缝140的中心点与所述条状电极130的中心点重合,且所述第一开缝140的长度小于所述条状电极130的长边长度。本实施例中,仅在条状电极130的中部设置有一条第一开缝140,且设置在条状电极130的中心位置,在触控电极发生卷曲时,第一开缝140两侧的子电极131的面积大小一致,在形变过程中,可以更均匀的形变,避免发生破裂的情况。
具体地,本实施例的条状电极为矩形时,本实施例以所述条状电极的长边长度与短边长度之比为2:1,所述条状电极的长边长度为4mm,所述条状电极的短边长度2mm为例。对于上述实施例仅设置一条第一开缝140的实施例来说,该第一开缝140设置在短边1mm处,且第一开缝140的长度小于4mm。
图6是本申请第三种条状电极的示意图,图7是本申请第三种条状电极处于卷曲状态下的示意图,如图6-7所示,本实施例中,所述条状电极130至少设置有两条所述第一开缝140,所述条状电极130还包括至少一条第二开缝141,所述第二开缝141沿所述第一方向Y设置,所述第二开缝141设置在相邻所述第一开缝140之间,所述两条第一开缝与所述第二开缝的间距相等;所述第二开缝141包括第一段141a和第二段141b,所述第一段141a从所述条状电极130的短边沿所述第一方向Y延伸,所述第二段141b从所述条状电极130的另一短边沿所述第一方向Y延伸,所述第一段141a与所述第二段141b共线且不连通。
本实施例中,为了使得触控膜层30具有更大的被卷曲的程度,可在条状电极130上设置多条(含两条及其以上)第一开缝140,多条第一开缝140将条状电极130划分为多条宽度相等子电极131,且第一开缝140并不完全将条状电极130切割为两条独立的子电极131。本实施例还在两条第一开缝140中设置了第二开缝141,第二开缝141与第一开缝140完全不同。第一开缝140主要是针对的条状电极130中心区域,第二开缝141主要是针对条状电极130长边方向上的两端,第二开缝141与第一开缝140配合,可使得触控膜层30具有更强的被卷曲程度。本实施例中,在触控膜层30被卷曲时,该条状电极130可形变成如图5所示的网状结构,在图5中还分别展示了卷曲程度为11%和58%状态下条状电极130的形变示意图。
需要理解的是,本实施例仅列举了设置有两条第一开缝140和一条第二开缝141的情况,在实际中,可根据需要设置第一开缝140和第二开缝141的数量。本实施例中,该第一开缝140和第二开缝141可知膜层制程中,通过刻蚀的方式来形成,且开缝的尺寸与条状电极的材料、条状电极的面积息息相关,例如在使用纳米银材料时,该开缝的长度可以更大,进而实现更大角度的完整或卷曲,而使用氧化铟锡时,则选用相对较窄的尺寸。而且,本实施例中的开缝的宽度极小,在不进行卷曲时,该开缝没有形成类似过孔一样的孔,而且虽然形成了缝隙,但其开缝两侧的子电极仍然处于接触状态,其开缝的宽度可选用微米级或纳米级宽度。
而且,结合本申请图2中的当所述条状电极130为带弧边的长条形时,同样可考虑设置第二开缝141,在上短边132、下短边133的中线位置处设置第二开缝141,可使得条状电极130的两端在卷曲和弯折时形变,其第二开缝141的宽度变大,对应的在该条状电极130作为第一触控电极111时,当所述相邻两个所述第一触控电极通过第一连接线连接,且第一 连接线为金属连接桥时,可将金属连接桥与所述条状电极130的连接处设置在第二开缝的两侧,由此避免条状电极130在发生形变过程中,造成金属连接桥的连接处破裂。对应的在该条状电极130作为第二触控电极121时,第二连接线较优选的连接至条状电极130的中部。
图8是本申请第一种触控膜层的示意图,如图8所示,在所述第二方向X上,多列所述第一触控电极111与多列所述第二触控电极121间隔排列设置,且在所述第一方向Y上,所述第一触控电极111和所述第二触控电极121错位设置,所述第一触控电极111的在第一方向Y上的两端别分与相邻的所述第二触控电极121在长度方向上的中线对齐。需要理解的是,图8中的第一触控电极111和第二触控电极121之间的间距较小,本实施例中,其每一个第一触控电极111的周边都存在有四个第二触控电极121,每一第二触控电极121的周边都存在有四个第一触控电极111。沿第一方向Y,每一列第一触控电极111为列触控检测通道,沿第二方向X,每一行第二触控电极121为行触控检测通道,每一列触控检测通道外部连接至触控电路,每一行触控检测通道外部连接至触控电路,通过列触控检测通道和行触控检测通道可精准定位到触控位置。
具体地,所述触控膜层还包括绝缘层150和金属层151,所述绝缘层150设置在所述触控电极层和所述金属层151之间;所述金属层151包括多条第二连接线,所述第二连接线为金属连接桥,所述第二连接线的走线方向平行于所述第二方向,第二连接线的两端分别通过过孔连接沿所述第二方向排列的相邻的两个第二触控电极;所述触控电极层还包括多条第一连接线,所述第一连接线用于连接沿所述第一方向排列的相邻的两个第一触控电极,所述第一连接线与所述第一触控电极同制程形成。
所述第一连接线112的走线方向平行于所述第一方向Y,所述第二连接线122的走线方向平行于所述第二方向X,所述第一连接线112用于连接沿所述第一方向Y排列的相邻的两个第一触控电极111,所述第二连接线122用于连接沿所述第二方向X排列的相邻的两个第二触控电极121。其中第一触控电极111沿第一方向Y通过第一连接线112连通,且组成一组第一触控电极组110,该一组第一触控电极组110即为一条列触控检测通道,对应的,多个第二触控电极121沿第二方向X通过第二连接线122连通,组成一组第二触控电极组120,该一组第二触控电极组120即为一条行触控检测通道。本实施例中,所述第二连接线122为金属连接桥;所述第一连接线112与所述第一触控电极111同制程形成。
本实施例中的第二连接线122为金属连接桥,采用金属制程,其延展性远远好于第一触控电极111和第二触控电极121。本申请的第一触控电极111和第二触控电极121采用透明导电层形成。还需要考虑第一连接线112在触控膜层30被卷曲时的膜层不会破裂。具体包括:
在一实施例中,第一连接线112的宽度与所述第二触控电极121的短边宽度相等,即在 第一方向Y上,每一列第二触控电极121是一条完全的宽度相等的触控电极线。对应可在第一连接线112上也同样设置第一开缝140和第二开缝141等,其中,第一开缝140需与相邻的第一触控电极111和第二触控电极121上的第一开缝140对齐,而第二开缝141需与相邻的第一触控电极111和第二触控电极121上的第二开缝141对齐。在触控膜层30在卷曲的过程中,整列触控电极线发生形变,形成网状结构。
在另一实施例中,所述第一连接线112的线宽小于所述第一触控电极111的短边长度。且第一连接线112设置多条,分别对应相邻两条第二开缝141之间的子电极131连接,这样即使在第一触控电极111在形变时,第一连接线112与第一触控电极111之间的连接不会被破坏。且第一连接线112的线宽更小,触控膜层30被卷曲的过程中,不容易被破坏。
图9是本申请第二种触控膜层的示意图,如图9所示,所述触控膜层30包括多条第二连接线122、多条第三连接线113和多条第一触控通道114,所述第二连接线122与所述第三连接线113的走线方向平行于所述第二方向X,所述第二连接线122用于连接沿所述第二方向X排列的相邻的两个第二触控电极121;一条所述第一触控通道114与一列所述第一触控电极111平行排列设置,且一列所述第一触控电极111中的每一个所述触控电极分别通过所述第三连接线113连接至所述第一触控通道114上,所述第一触控通道114外接触控控制单元。
本实施例中,相比于上一实施方式,不再设置第一方向Y的第一连接线112,而且全部设置第二方向X的第二连接线122和第三连接线113。其中,列触控检测线路中,包括一条触控通道,通过第二方向X走向的第三连接线113将一列多个第一触控电极111分别连接至第一触控通道114上,相对于上一实施例,本实施例不会出现第一连接线112破裂的问题,而第三连接线113同样可采用金属连接桥的方式形成。
本实施例中,所述第一触控通道114的宽度为微米级,所述第二触控电极121的短边宽度为毫米级。第一触控通道114与第一触控电极111可采用相同的制程形成。需要说明的是,上述提及的第二连接线122和第三连接线113采用金属连接桥结构的情况下,需要避让显示面板的子像素区域,以提高开口率。
图10是本申请的柔性显示面板的示意图,如图10所示,本申请公开了一种触控显示面板10,包括柔性显示面板20和上述任一实施例提及的触控膜层30,所述触控膜层设置在所述柔性显示面板的出光面上。其中,柔性显示面板被用于生产折叠屏、卷轴屏等,更适用于向外翻折的折叠屏与卷轴屏。本申请设计的触控电极更适用折叠屏中折叠的部位、以及卷轴屏中卷曲时不显示的屏幕部分。
本申请通过将触控膜层30中的触控电极设置为条状电极130图案,且条状电极130的短边对应触控膜层30被卷曲的方向设置,在触控膜层30被卷曲时,该触控电极的短边较短, 不易发生破裂。同时本申请在条状电极130上设置有开缝,在触控膜层30被卷曲时,条状电极130在开缝位置处发生形变,开缝的宽度变大,开缝两侧的子电极131向外移动,通过主动设置开缝的方式,使得条状电极130在卷曲时主动发生移动,且在移动过程中,条状电极130的两个子电极131在两端始终保持连通状态,并不会损伤触控电极。避免了由于卷曲时,膜层被动发生破裂,造成破裂纹路无法控制,导致触控电极损坏的问题。而且,通过本申请的触控电极的设置,利用触控图案可发生形变来增加抗拉伸性,屏体能承受更大应力,可实现更小弯折半径要求,使得卷曲的程度可以更大,有利于缩小整机尺寸。
需要说明的是,本申请的发明构思可以形成非常多的实施例,但是申请文件的篇幅有限,无法一一列出,因而,在不相冲突的前提下,以上描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例,各实施例或技术特征组合之后,将会增强原有的技术效果。
以上内容是结合具体的可选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (20)

  1. 一种触控膜层,包括触控电极层,所述触控电极层包括多组第一触控电极组和多组第二触控电极组,沿第一方向排列的多个所述第一触控电极连通形成一组第一触控电极组,沿第二方向排列的多个第二触控电极连通形成一组第二触控电极组,所述第一方向与所述第二方向交叉形成90度±30度的夹角,定义所述第二方向为所述触控膜层被卷曲或被弯折的方向,所述第一触控电极与所述第二触控电极分别为条状电极,所述条状电极的长轴或长边平行于所述第一方向,所述条状电极的短轴或短边平行于所述第二方向。
  2. 根据权利要求1所述的触控膜层,其中,所述第一触控电极和所述第二触控电极位于同一膜层;相邻所述第二触控电极之间采用金属连接桥连通。
  3. 根据权利要求1所述的触控膜层,其中,所述条状电极的内部至少设置有一条第一开缝,所述第一开缝沿所述第一方向设置,当所述触控膜层沿所述第二方向被卷曲时,所述第一开缝的缝隙宽度变大,并将所述条状电极至少分隔为两块子电极,两块所述子电极在所述条状电极的所述第一方向上的两端电连接。
  4. 根据权利要求3所述的触控膜层,其中,当所述触控膜层未被卷曲时,所述第一开缝的两侧的两块所述子电极在所述第一开缝的位置处,处于接触状态;
    当所述触控膜层沿所述第二方向被卷曲时,所述第一开缝的两侧的两块所述子电极处于分离状态,且所述第一开缝的宽度由中间向两端递减。
  5. 根据权利要求3所述的触控膜层,其中,当所述第一开缝设置一条时,所述第一开缝的中心点与所述条状电极的中心点重合,且所述第一开缝的长度小于在所述第一方向上所述条状电极的长度。
  6. 根据权利要求3所述的触控膜层,其中,当所述第一开缝至少设置有两条所述第一开缝时,所述条状电极还包括至少一条第二开缝,所述第二开缝沿所述第一方向设置,所述第二开缝设置在相邻所述第一开缝之间,所述两条第一开缝与所述第二开缝的间距相等;
    所述第二开缝包括第一段和第二段,所述第一段从所述条状电极的短边沿所述第一方向延伸,所述第二段从所述条状电极的另一短边沿所述第一方向延伸,所述第一段与所述第二段共线且不连通。
  7. 根据权利要求1所述的触控膜层,其中,所述条状电极为矩形或四边形或椭圆形或带弧边的长条形;所述条状电极的长边长度或长轴长度与短边长度或短轴长度之比大于等于2:1,所述条状电极的长边长度或长轴长度为3.5mm-5.5mm。
  8. 根据权利要求1所述的触控膜层,其中,在所述第二方向上,多列所述第一触控电极与多列所述第二触控电极间隔排列设置,且在所述第一方向上,所述第一触控电极和所述第二触控电极错位设置。
  9. 根据权利要求7所述的触控膜层,其中,当所述条状电极为带弧边的长条形,所述条状电极呈中间窄两端宽,所述条状电极的最窄处为0.5至1.2mm。
  10. 根据权利要求9所述的触控膜层,其中,所述条状电极包括平行于所述第二方向的上短边、下短边,以及分别连接上短边、下短边的左弧边和右弧边;所述左弧边和所述右弧边均向内侧凹陷,且所述左弧边和所述右弧边以所述上短边、下短边的中线对称设置,所述左弧边和所述右弧边的中心连线处为所述条状电极的最窄处;所述条状电极沿所述第一方向的宽度大于等于2mm。
  11. 根据权利要求10所述的触控膜层,其中,所述触控电极层还包括多条第一连接线,所述第一连接线用于连接沿所述第一方向排列的相邻的两个第一触控电极,所述第一连接线与所述第一触控电极同制程形成。
  12. 根据权利要求11所述的触控膜层,其中,所述第一连接线的宽度与所述第二触控电极的短边宽度相等。
  13. 根据权利要求10所述的触控膜层,其中,所述触控膜层还包括绝缘层和金属层,所述绝缘层设置在所述触控电极层和所述金属层之间;所述金属层包括多条第二连接线,所述第二连接线为金属连接桥,所述第二连接线的两端分别通过过孔连接沿所述第二方向排列的相邻的两个第二触控电极,所述第二连接线与所述第一触控电极连接的位置远离所述条状电极的最窄处。
  14. 根据权利要求10所述的触控膜层,其中,所述触控膜层包括多条第二连接线、多条第三连接线和多条第一触控通道,所述第二连接线与所述第三连接线的走线方向平行于所述第二方向,所述第二连接线用于连接沿所述第二方向排列的相邻的两个第二触控电极;一条所述第一触控通道与一列所述第一触控电极平行排列设置,且一列所述第一触控电极中的每一个所述第一触控电极分别通过所述第三连接线连接至所述第一触控通道上。
  15. 一种触控显示面板,包括柔性显示面板和触控膜层,所述触控膜层设置在所述柔性显示面板的出光面上;所述触控膜层包括触控电极层,所述触控电极层包括多组第一触控电极组和多组第二触控电极组,沿第一方向排列的多个所述第一触控电极连通形成一组第一触控电极组,沿第二方向排列的多个第二触控电极连通形成一组第二触控电极组,所述第一方向与所述第二方向交叉形成90度±30度的夹角,定义所述第二方向为所述触控膜层被卷曲或被弯折的方向,所述第一触控电极与所述第二触控电极分别为条状电极,所述条状电极的长轴或长边平行于所述第一方向,所述条状电极的短轴或短边平行于所述第二方向。
  16. 根据权利要求15所述的触控显示面板,其中,所述第一触控电极和所述第二触控电极位于同一膜层;相邻所述第二触控电极之间采用金属连接桥连通。
  17. 根据权利要求15所述的触控显示面板,其中,所述条状电极的内部至少设置有一条 第一开缝,所述第一开缝沿所述第一方向设置,当所述触控膜层沿所述第二方向被卷曲时,所述第一开缝的缝隙宽度变大,并将所述条状电极至少分隔为两块子电极,两块所述子电极在所述条状电极的所述第一方向上的两端电连接。
  18. 根据权利要求17所述的触控显示面板,其中,当所述触控膜层未被卷曲时,所述第一开缝的两侧的两块所述子电极在所述第一开缝的位置处,处于接触状态;
    当所述触控膜层沿所述第二方向被卷曲时,所述第一开缝的两侧的两块所述子电极处于分离状态,且所述第一开缝的宽度由中间向两端递减。
  19. 根据权利要求17所述的触控显示面板,其中,当所述第一开缝设置一条时,所述第一开缝的中心点与所述条状电极的中心点重合,且所述第一开缝的长度小于在所述第一方向上所述条状电极的长度。
  20. 根据权利要求17所述的触控显示面板,其中,当所述第一开缝至少设置有两条所述第一开缝时,所述条状电极还包括至少一条第二开缝,所述第二开缝沿所述第一方向设置,所述第二开缝设置在相邻所述第一开缝之间,所述两条第一开缝与所述第二开缝的间距相等;
    所述第二开缝包括第一段和第二段,所述第一段从所述条状电极的短边沿所述第一方向延伸,所述第二段从所述条状电极的另一短边沿所述第一方向延伸,所述第一段与所述第二段共线且不连通。
PCT/CN2023/102370 2022-11-04 2023-06-26 触控膜层和触控显示面板 WO2024093273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211373254.9 2022-11-04
CN202211373254.9A CN115421618B (zh) 2022-11-04 2022-11-04 触控膜层和触控显示面板

Publications (1)

Publication Number Publication Date
WO2024093273A1 true WO2024093273A1 (zh) 2024-05-10

Family

ID=84207756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102370 WO2024093273A1 (zh) 2022-11-04 2023-06-26 触控膜层和触控显示面板

Country Status (3)

Country Link
US (1) US11847291B1 (zh)
CN (1) CN115421618B (zh)
WO (1) WO2024093273A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421618B (zh) 2022-11-04 2023-03-10 惠科股份有限公司 触控膜层和触控显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816460A (zh) * 2017-03-01 2017-06-09 上海天马微电子有限公司 一种柔性触控显示面板及柔性触控显示装置
US20170228081A1 (en) * 2016-02-06 2017-08-10 Shanghai Avic Opto Electronics Co., Ltd. Touch-control display panel
CN108008862A (zh) * 2017-12-19 2018-05-08 上海天马微电子有限公司 触控膜层、触控面板及其触控显示装置
CN109002205A (zh) * 2018-06-29 2018-12-14 京东方科技集团股份有限公司 一种触控面板和触控显示装置
CN115421618A (zh) * 2022-11-04 2022-12-02 惠科股份有限公司 触控膜层和触控显示面板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201447704A (zh) * 2013-06-10 2014-12-16 Ili Technology Corp 透明觸控面板
KR102194818B1 (ko) * 2013-08-06 2020-12-24 삼성디스플레이 주식회사 플렉서블 터치 표시 패널
KR102313990B1 (ko) * 2014-01-29 2021-10-18 삼성디스플레이 주식회사 플렉서블 표시 장치
US9965113B2 (en) * 2014-04-14 2018-05-08 Lg Innotek Co., Ltd. Touch window
KR102241773B1 (ko) * 2014-12-18 2021-04-19 삼성디스플레이 주식회사 터치 센서 장치
KR102374751B1 (ko) * 2015-08-31 2022-03-15 엘지디스플레이 주식회사 백플레인 기판 및 이를 적용한 플렉서블 디스플레이
KR102414140B1 (ko) * 2015-11-17 2022-06-30 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP6588852B2 (ja) * 2016-03-28 2019-10-09 株式会社ジャパンディスプレイ センサ及びセンサ付き表示装置
KR102582688B1 (ko) * 2016-08-09 2023-09-26 삼성전자주식회사 압력 센서를 구비한 전자 장치
TWI746603B (zh) * 2016-08-09 2021-11-21 南韓商東友精細化工有限公司 透明電極、包括其的觸控感測器及影像顯示裝置
JP2018112859A (ja) * 2017-01-11 2018-07-19 株式会社ジャパンディスプレイ 表示装置
CN106952938B (zh) * 2017-05-16 2020-06-02 上海天马微电子有限公司 一种柔性显示装置及其制造方法、以及柔性显示设备
CN107450772B (zh) * 2017-07-19 2020-08-25 武汉天马微电子有限公司 柔性触摸传感器和柔性触摸显示装置
US20230205377A1 (en) * 2017-08-04 2023-06-29 Chengdu Boe Optoelectronics Technology Co., Ltd. Touch control structure and display apparatus
CN109976592A (zh) * 2018-03-08 2019-07-05 京东方科技集团股份有限公司 触控基板及其制造方法和显示装置
KR102569374B1 (ko) 2019-05-31 2023-08-22 구글 엘엘씨 블루투스 장치 동작 방법
CN209912403U (zh) * 2019-06-13 2020-01-07 京东方科技集团股份有限公司 显示面板和柔性显示装置
KR20210085033A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 폴더블 표시 장치
WO2021217614A1 (zh) * 2020-04-30 2021-11-04 京东方科技集团股份有限公司 触控模组、显示面板和显示装置
WO2022087820A1 (zh) * 2020-10-27 2022-05-05 京东方科技集团股份有限公司 触控面板及触控显示装置
GB2609794A (en) * 2021-01-28 2023-02-15 Boe Technology Group Co Ltd Touch module, fabrication method therefor, and touch display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170228081A1 (en) * 2016-02-06 2017-08-10 Shanghai Avic Opto Electronics Co., Ltd. Touch-control display panel
CN106816460A (zh) * 2017-03-01 2017-06-09 上海天马微电子有限公司 一种柔性触控显示面板及柔性触控显示装置
CN108008862A (zh) * 2017-12-19 2018-05-08 上海天马微电子有限公司 触控膜层、触控面板及其触控显示装置
CN109002205A (zh) * 2018-06-29 2018-12-14 京东方科技集团股份有限公司 一种触控面板和触控显示装置
CN115421618A (zh) * 2022-11-04 2022-12-02 惠科股份有限公司 触控膜层和触控显示面板

Also Published As

Publication number Publication date
CN115421618B (zh) 2023-03-10
CN115421618A (zh) 2022-12-02
US11847291B1 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
CN107977116B (zh) 柔性触控面板、触控显示屏及触控显示装置
US10222919B2 (en) Capacitive touch screen and single layer wiring electrode array
CN106020575B (zh) 触摸面板
CN104898912B (zh) 一种电容式触控屏及其制备方法、显示装置
KR101323004B1 (ko) 정전용량 방식 터치 스크린 패널
US20190187843A1 (en) Flexible touch panel, touch display panel and touch display device
CN104520789B (zh) 触摸面板基板和显示装置
CN109062442B (zh) 有机发光显示面板和显示装置
US20140118635A1 (en) Touch screen having mesh patterned electrodes
US20210223916A1 (en) Touch Panel and Manufacturing Method Thereof, and Touch Display Device
WO2024093273A1 (zh) 触控膜层和触控显示面板
TW201007539A (en) Display devices with touch screen
WO2020001098A1 (zh) 触控面板和触控显示装置
US11086454B2 (en) Touch substrate and display device
US10949045B2 (en) Flexible touch substrate and touch device that have reduced parasitic capacitance between different signal lines
US10802621B2 (en) Touch panel
KR20160115521A (ko) 터치패널
KR20150029507A (ko) 정전용량 방식의 터치 스크린 센서, 터치 스크린 패널 및 영상표시장치
US20160328046A1 (en) Touch panel and display device
TWI787293B (zh) 觸控面板及顯示裝置
KR20190139308A (ko) 터치 패널
CN110658957A (zh) 触控面板
US20150029142A1 (en) Touch screen panel and fabricating method thereof
KR101935628B1 (ko) 터치패널
US10976883B2 (en) Touch substrate and touch display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884212

Country of ref document: EP

Kind code of ref document: A1