WO2024092745A1 - 一种资源选择方法及装置、终端 - Google Patents

一种资源选择方法及装置、终端 Download PDF

Info

Publication number
WO2024092745A1
WO2024092745A1 PCT/CN2022/129982 CN2022129982W WO2024092745A1 WO 2024092745 A1 WO2024092745 A1 WO 2024092745A1 CN 2022129982 W CN2022129982 W CN 2022129982W WO 2024092745 A1 WO2024092745 A1 WO 2024092745A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
resource
terminal
resource set
time slot
Prior art date
Application number
PCT/CN2022/129982
Other languages
English (en)
French (fr)
Inventor
张世昌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/129982 priority Critical patent/WO2024092745A1/zh
Publication of WO2024092745A1 publication Critical patent/WO2024092745A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically to a resource selection method, device, and terminal.
  • MCSt Multiple Consecutive Slots transmission
  • the MCSt transmission mode is adopted in the SL-U system, multiple consecutive time slots can be used to transmit the same transport block (TB) or different TBs. It needs to be clarified how to select transmission resources for the TB.
  • Embodiments of the present application provide a resource selection method and device, a terminal, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the terminal selects multiple sidelink (SL) authorizations, where different SL authorizations among the multiple SL authorizations are used for transmission of different TBs; and the multiple SL authorizations have at least one of the following characteristics:
  • the resources of the multiple SL authorizations correspond to multiple groups of continuous time slot resources, and different resources in the same group of continuous time slot resources belong to different SL authorizations;
  • the interval between any two resources in the same SL authorization is greater than or equal to the first duration.
  • the terminal selects a SL authorization, which is used for the transmission of a TB; the SL authorization corresponds to a group of continuous time slot resources, and multiple resources in the continuous time slot resources belong to the SL authorization.
  • a selection unit is configured to select a plurality of SL authorizations, wherein different SL authorizations among the plurality of SL authorizations are used for transmission of different TBs; and the plurality of SL authorizations have at least one of the following characteristics:
  • the resources of the multiple SL authorizations correspond to multiple groups of continuous time slot resources, and different resources in the same group of continuous time slot resources belong to different SL authorizations;
  • the interval between any two resources in the same SL authorization is greater than or equal to the first duration.
  • the selection unit is used to select a SL authorization, where the SL authorization is used for the transmission of a TB; the SL authorization corresponds to a group of continuous time slot resources, and multiple resources in the continuous time slot resources belong to the SL authorization.
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned resource selection method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned resource selection method.
  • the chip includes: a processor, which is used to call and run a computer program from a memory, so that a device equipped with the chip executes the above-mentioned resource selection method.
  • the computer-readable storage medium provided in the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned resource selection method.
  • the computer program product provided in the embodiment of the present application includes computer program instructions, which enable a computer to execute the above-mentioned resource selection method.
  • the computer program provided in the embodiment of the present application when executed on a computer, enables the computer to execute the above-mentioned resource selection method.
  • SL authorization i.e., transmission resources
  • the terminal can use continuous time slot resources for the transmission of different TBs, or the terminal can also use continuous time slot resources for the transmission of the same TB. It can ensure that the terminal occupies time-continuous resources as much as possible, which is conducive to improving the overall performance of the SL-U system.
  • HARQ-ACK feedback can be guaranteed as much as possible.
  • FIG1-1 is a schematic diagram of sideline communication within the network coverage area provided by an embodiment of the present application.
  • Figure 1-2 is a schematic diagram of partial network coverage side communication provided by an embodiment of the present application.
  • 1-3 are schematic diagrams of network coverage outer line communication provided by embodiments of the present application.
  • FIG2 is a schematic diagram of resource selection corresponding to the second mode provided in an embodiment of the present application.
  • FIG3-1 is a schematic diagram of a unicast transmission method provided in an embodiment of the present application.
  • FIG3-2 is a schematic diagram of a multicast transmission method provided in an embodiment of the present application.
  • FIG3-3 is a schematic diagram of a broadcast transmission method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the PSCCH and PSSCH frame structure provided in an embodiment of the present application
  • FIG. 5 is a schematic diagram of a mapping relationship between PSSCH transmission resources and PSFCH transmission resources provided in an embodiment of the present application
  • FIG6 is a flowchart of a resource selection method according to an embodiment of the present application.
  • FIG7 is a second flow chart of a resource selection method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of an example of resource selection provided in an embodiment of the present application.
  • FIG9 is a second schematic diagram of an example of resource selection provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the first structure of a resource selection device provided in an embodiment of the present application.
  • FIG11 is a second schematic diagram of the structure of the resource selection device provided in an embodiment of the present application.
  • FIG12 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • sideline communication according to the network coverage of the communicating terminals, it can be divided into sideline communication inside the network coverage, sideline communication with partial network coverage, and sideline communication outside the network coverage, as shown in Figures 1-1, 1-2 and 1-3 respectively.
  • some terminals performing sidelink communication are located within the coverage of the base station. These terminals can receive the configuration signaling of the base station and perform sidelink communication according to the configuration of the base station. However, terminals outside the network coverage cannot receive the configuration signaling of the base station. In this case, the terminals outside the network coverage will determine the sidelink configuration and perform sidelink communication based on the pre-configuration information and the information carried in the sidelink broadcast channel (PSBCH) sent by the terminals within the network coverage.
  • PSBCH sidelink broadcast channel
  • Device-to-device communication is a sidelink transmission technology based on device-to-device (D2D). It is different from the traditional cellular system where communication data is received or sent by base stations, so it has higher spectrum efficiency and lower transmission delay. Sidelink communication adopts terminal-to-terminal direct communication. 3GPP defines two transmission modes: first mode and second mode.
  • Mode 1 The transmission resources of the terminal are allocated by the base station.
  • the terminal sends data on the sidelink according to the resources allocated by the base station.
  • the base station can allocate resources for single transmission or semi-static transmission to the terminal. As shown in Figure 1-1, the terminal is within the coverage of the network, and the network allocates transmission resources for the terminal to use for sidelink transmission.
  • the second mode The terminal selects a resource in the resource pool for data transmission. As shown in Figure 1-3, the terminal is outside the coverage of the cell, and the terminal autonomously selects a transmission resource from the pre-configured resource pool for side transmission; or as shown in Figure 1-1, the terminal autonomously selects a transmission resource from the resource pool configured by the network for side transmission.
  • Resource selection in the second mode is performed as follows:
  • Step 1 The terminal takes all available resources in the resource selection window as resource set A, and takes the remaining resources in set A after resource exclusion as candidate resource set.
  • the terminal sends data in some time slots within the listening window without listening, all resources on the corresponding time slots in the resource selection window (also referred to as the selection window) are excluded.
  • the terminal determines the corresponding time slot in the selection window using the value set of the "resource reservation period" field in the resource pool configuration used.
  • the terminal detects the Physical Sidelink Control Channel (PSCCH) within the resource listening window (also referred to as the listening window), the reference signal received power (RSRP) of the PSCCH or the RSRP of the physical sidelink shared channel (PSSCH) scheduled by the PSCCH is measured. If the measured RSRP is greater than the SL-RSRP threshold, and the reserved resources are determined to be within the resource selection window according to the resource reservation information in the sidelink control information (SCI) transmitted in the PSCCH, then the corresponding resources are excluded from the set A. If the remaining resources in the resource set A are less than X% of all the resources before the resource set A is excluded, the SL-RSRP threshold is raised by 3dB and step 1 is repeated.
  • RSRP Physical Sidelink Control Channel
  • PSSCH physical sidelink shared channel
  • the possible values of X are ⁇ 20, 35, 50 ⁇ , and the terminal determines the parameter X from the value set according to the priority of the data to be sent.
  • the SL-RSRP threshold is related to the priority carried in the PSCCH detected by the terminal and the priority of the data to be sent by the terminal.
  • Step 2 The terminal randomly selects several resources from the candidate resource set as the transmission resources for its initial transmission and retransmission.
  • the first mode may also be referred to as the first resource selection mode
  • the second mode may also be referred to as the second resource selection mode.
  • the technical solution of the embodiment of the present application does not limit the names of the first mode and the second mode.
  • the terminal triggers resource selection or reselection in time slot n, and the resource selection window starts from n+T1 and ends at n+T2.
  • T proc,1 is 3, 5, 9, 17 time slots.
  • T 2min is less than the remaining delay budget of the service, then T 2min ⁇ T2 ⁇ the remaining delay budget of the service, otherwise, T2 is equal to the remaining delay budget (PDB) of the data packet in time slots.
  • the terminal determines T 2min from the value set according to the priority of its own data to be sent. [n+T1, n+T2] is called the resource selection window.
  • the terminal performs resource listening from n-T0 to nT proc,0, where T0 is 100 or 1100 milliseconds.
  • T proc,0 is 1, 1, 2, or 4 time slots. [n-T0 to nT proc,0 ] is called the resource listening window.
  • the resource selection process in the second mode proceeds in two steps:
  • Step 1 The physical layer of the terminal excludes resources that are not suitable for sidelink transmission from the resource selection window according to the channel sensing result, and the physical layer of the terminal reports the resource set A after the resources are excluded as a candidate resource set to the upper layer, i.e., the MAC layer of the terminal.
  • the terminal uses all available resources in the resource pool used by the terminal in the resource selection window as resource set A.
  • Any resource in set A is denoted as R(x,y), where x and y indicate the frequency domain position and time domain position of the resource respectively, indicating the resource consisting of L_subch consecutive subchannels starting from subchannel x in time slot y.
  • the initial number of resources in set A is denoted as M total .
  • Ptxlg is the number of logical time slots converted from the terminal's resource reservation period Ptx.
  • Step 1-2 If the terminal detects the side control information transmitted in the PSCCH on the vth frequency domain resource E(v,m) in the time slot m within the listening window, the terminal measures the SL-RSRP of the PSCCH or the SL-RSRP of the PSSCH scheduled by the PSCCH (i.e., the SL-RSRP of the corresponding PSSCH sent in the same time slot as the PSCCH). If the measured SL-RSRP is greater than the SL-RSRP threshold and the resource reservation between TBs is activated in the resource pool used by the terminal, the terminal assumes that the side control information with the same content is received in the time slot m+q*Prxlg.
  • Prxlg is the number of logical time slots converted from Prx, where Prx is the resource reservation period indicated by the "Resource reservation period" field in the sideline control information transmitted in the PSCCH detected by the terminal.
  • the terminal will determine whether the resources indicated by the "Time resource assignment” and “Frequency resource assignment" fields of the sideline control information received in time slot m and the Q assumed received sideline control information overlap with the resource R(x,y+j*Ptxlg). If so, the corresponding resource R(x,y) is excluded from the set A.
  • Ptxlg is the number of logical time slots converted from Ptx, and Ptx is the resource reservation period determined by the terminal for resource selection.
  • the above RSRP threshold is determined by the priority P1 carried in the PSCCH detected by the terminal and the priority P2 of the data to be sent by the terminal.
  • the configuration of the resource pool used by the terminal includes a SL-RSRP threshold list, which contains the SL-RSRP thresholds corresponding to all priority combinations (P1, P2).
  • the configuration of the resource pool can be a network configuration or a pre-configuration. If the remaining resources in the resource set A are less than M total *X% after the above resources are excluded, the SL-RSRP threshold is raised by 3dB, and step 1 is re-executed.
  • the possible values of X are ⁇ 20,35,50 ⁇ .
  • the configuration of the resource pool used by the terminal includes the correspondence between the priority and the above possible values of X. The terminal determines the value of X according to the priority of the data to be sent and the correspondence.
  • Step 2 The MAC layer of the terminal randomly selects a resource from the reported candidate resource set to send data. That is, the terminal randomly selects a resource from the candidate resource set to send data.
  • unicast transmission there is only one receiving terminal.
  • the receiving terminal is all terminals in a communication group, or all terminals within a certain transmission distance.
  • UE1, UE2, UE3 and UE4 constitute a communication group, in which UE1 sends data, and other terminals in the group are receiving terminals.
  • the receiving terminal is any terminal around the sending terminal.
  • UE1 is the sending terminal, and other terminals around it, UE2 to UE6, are all receiving terminals.
  • a second-order SCI is introduced in NR-V2X.
  • the first-order SCI is carried in the PSCCH and is used to indicate the transmission resources, reserved resource information, modulation and coding scheme (MCS) level, priority and other information of the PSSCH.
  • MCS modulation and coding scheme
  • the second-order SCI is sent in the PSSCH resources and is demodulated using the demodulation reference signal (DMRS) of the PSSCH. It is used to indicate the sender ID, receiver ID, hybrid automatic repeat request (HARQ) ID, new data indicator (NDI) and other information used for data demodulation.
  • DMRS demodulation reference signal
  • HARQ hybrid automatic repeat request
  • NDI new data indicator
  • the second-order SCI is mapped from the first DMRS symbol of PSSCH, first in the frequency domain and then in the time domain.
  • PSCCH occupies 3 symbols (symbols 1, 2, and 3), and the DMRS of PSSCH occupies symbols 4 and 11.
  • the second-order SCI is mapped from symbol 4 and is frequency-division multiplexed with DMRS on symbol 4.
  • the second-order SCI is mapped to symbols 4, 5, and 6.
  • the size of the resources occupied by the second-order SCI depends on the number of bits of the second-order SCI.
  • PSFCH format 0. Physical Sidelink Feedback Channel
  • PRB physical resource block
  • OFDM orthogonal frequency division multiplexing
  • the sequence type used is the same as PUCCH format 0.
  • PSFCH resources are configured with a period of 1, 2 or 4 time slots. In the time slot where PSFCH resources exist, the PSFCH resources are located on the last OFDM symbol in the time slot that can be used for sideline transmission.
  • PSFCH is only used to carry HARQ feedback information, and the capacity of one PSFCH is one bit.
  • the transmission resources of PSFCH are determined according to the time-frequency position of the transmission resources of its corresponding PSSCH. If the terminal receives PSSCH in a certain time slot, the terminal sends the HARQ feedback information of the PSSCH in the first time slot with PSFCH resources after the minimum interval is met. The minimum interval is configured by the parameter sl-MinTimeGapPSFCH.
  • the receiving terminal determines the transmission resources of the PSFCH corresponding to the PSSCH based on the time slot and subchannel information where the PSSCH is located. Specifically, the transmission resource set of PSFCH is divided into multiple subsets according to the PSFCH period parameter in the resource pool configuration information and the number of subchannels that can be used for PSSCH transmission.
  • the PSFCH transmission resources in each subset correspond to the PSSCH transmission of one time slot and one subchannel, as shown in Figure 5. In this subset, the specific PSFCH transmission resources are determined according to the terminal identification information.
  • NR-V2X the following two PSFCH resource determination methods are supported.
  • the specific method for determining PSFCH resources is configured according to high-level signaling.
  • Method 1 Determine the transmission resource of PSFCH according to the first sub-channel of PSSCH frequency domain resources
  • Method 2 Determine the transmission resources of PSFCH according to all sub-channels occupied by PSSCH frequency domain.
  • Method 2 is more suitable for scenarios that require more sidelink HARQ feedback resources, such as the second type of sidelink HARQ feedback method in multicast.
  • the corresponding PSFCH transmission resource set can be determined according to the time slot and subchannel of the PSSCH transmission
  • the index of the PSFCH transmission resource in the resource set is first determined in the order of RB from low to high, and then in the order of CS from low to high. Further, in the resource set, the PSFCH transmission resource is determined by the following formula:
  • P ID represents the sender ID information, that is, the source ID of the sender terminal carried in SCI.
  • M ID 0; for ACK/NACK multicast side HARQ feedback mode, M ID represents the group identifier of the receiving terminal configured by the high layer.
  • PSFCH resources are configured by SL-PSFCH-Config-r16 signaling, and its contents are shown in the following table, where sl-PSFCH-Period-r16 is used to configure the period of PSFCH resources, sl-PSFCH-RB-Set-r16 is used to configure the PRB that can be used for PSFCH transmission on the OFDM symbol where the PSFCH resources are located, sl-NumMuxCS-Pair-r16 is used to configure the number of cyclic shifts allowed for the PFSCH sequence in a PRB, sl-MinTimeGapPSFCH-r16 is used to configure the minimum time interval between PSFCH and its associated PSSCH, sl-PSFCH-HopID-r16 is used to configure the frequency hopping ID of PSFCH, which is used to determine the sequence of PSFCH, and sl-PSFCH-CandidateResourceType-r16 is used to configure the method for determining PSFCH
  • the communication device needs to listen before talking (LBT), and can access the channel only after LBT is successful.
  • LBT listen before talking
  • COT channel occupancy time
  • the communication device can transmit continuously or discontinuously. Therefore, in order to make better use of the COT initiated after the LBT is successful, the concept of continuous multiple slots transmission (MCSt) may be introduced in the unlicensed sidelink (SL-U) system, that is, the communication device transmits continuously in multiple time slots to improve the utilization rate of COT.
  • MCSt continuous multiple slots transmission
  • SL-U unlicensed sidelink
  • continuous use/occupancy of the channel is also conducive to competing for the channel with other systems. For example, when the SL-U terminal adopts MCSt transmission, other users (such as WIFI users) cannot successfully access the channel through LBT because the channel is continuously occupied.
  • the MCSt transmission mode is adopted in the SL-U system, multiple consecutive time slots can be used to transmit the same transport block (TB) or different TBs, and it is necessary to clarify how to select transmission resources for the TB. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG6 is a flowchart of a resource selection method provided in an embodiment of the present application. As shown in FIG6 , the resource selection method includes the following steps:
  • Step 601 The terminal selects multiple SL authorizations (Sidelink Grant), and different SL authorizations among the multiple SL authorizations are used for the transmission of different TBs; the multiple SL authorizations have at least one of the following characteristics: the resources of the multiple SL authorizations correspond to multiple groups of continuous time slot resources, and different resources in the same group of continuous time slot resources belong to different SL authorizations; the interval between any two resources in the same SL authorization is greater than or equal to the first duration.
  • Sidelink Grant Segment Grant
  • a group of continuous time slot resources is composed of resources in multiple continuous time slots, and a group of continuous time slot resources can also be understood as an MCSt resource.
  • the terminal selects multiple SL authorizations, and different SL authorizations among the multiple SL authorizations are used for transmission of different TBs.
  • the multiple SL authorizations have at least one of the following characteristics:
  • the resources of the multiple SL authorizations correspond to multiple groups of continuous time slot resources, and different resources in the same group of continuous time slot resources belong to different SL authorizations;
  • Feature 2 The interval between any two resources in the same SL authorization is greater than or equal to the first duration.
  • the terminal selects multiple SL authorizations, which may be implemented in the following ways.
  • the terminal selects multiple resource groups from a first resource set, where the first resource set is determined by a physical layer of the terminal and reported to a MAC layer; and the terminal determines multiple SL authorizations based on the multiple resource groups.
  • the first resource set may be a resource set obtained by the physical layer of the terminal after excluding resources that are not suitable for sidelink transmission from the resource selection window according to the channel sensing result, and the resource exclusion process may refer to the aforementioned related scheme.
  • the physical layer of the terminal reports the first resource set obtained after resource exclusion to the MAC layer of the terminal, and the MAC layer of the terminal selects multiple resource groups from the first resource set, and determines multiple SL authorizations based on the multiple resource groups.
  • the terminal selects a resource group from a first resource set; if the number of selected resource groups is less than G, the terminal continues to select a resource group from the first resource set until the number of selected resource groups is equal to G or a resource group cannot be selected from the remaining resources, and G is a positive integer.
  • the terminal selects multiple resource groups from the first resource set, which may be implemented in the following ways.
  • the resource group selection process may be implemented in the following manner:
  • Step 1-A The terminal selects R resources that meet a first condition from a first resource set, where the R resources form a resource group, and R is a positive integer; the first condition includes at least one of the following:
  • the interval between any two resources among the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the first duration may be recorded as Tmin.
  • the previously sent SCI may be the SCI corresponding to the last TB transmission, which is a first-order SCI carried in the PSCCH.
  • Step 1-B If the number of selected resource groups is less than G, the terminal selects R resources that meet a second condition from the remaining resources of the first resource set, where the R resources form a resource group, and R is a positive integer; the second condition includes at least one of the following:
  • the interval between any two resources among the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously;
  • Any one of the R resources and at least one of the resources in the selected resource group are located in adjacent time slots.
  • the first duration may be recorded as Tmin.
  • the previously sent SCI may be the SCI corresponding to the last TB transmission, which is a first-order SCI carried in the PSCCH.
  • the adjacent time slots refer to adjacent logical time slots, wherein the logical time slots refer to time slots located in the current resource pool.
  • G represents the maximum number of SL authorizations of the terminal
  • R represents the maximum number of transmissions of a TB.
  • the resource group selection process may be implemented in the following manner:
  • Step 2-A The terminal selects R resources that meet a first condition from a first resource set, where the R resources form a resource group, and R is a positive integer; the first condition includes at least one of the following:
  • the interval between any two resources among the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the first duration may be recorded as Tmin.
  • the previously sent SCI may be the SCI corresponding to the last TB transmission, which is a first-order SCI carried in the PSCCH.
  • Step 2-B If the number of selected resource groups is less than G, the terminal determines a first candidate resource set and a second candidate resource set from the first resource set; the terminal selects R resources that meet a first condition from the first candidate resource set and/or the second candidate resource set, the R resources forming a resource group, and R is a positive integer; the first condition includes at least one of the following:
  • the interval between any two resources among the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the first candidate resource set has the following characteristics: any one resource in the first candidate resource set is located in an adjacent time slot to at least one of the resources in the selected resource group; the second candidate resource set has the following characteristics: the second candidate resource set includes at least part of the resources in the first resource set except the first candidate resource set.
  • the first duration may be recorded as Tmin.
  • the previously sent SCI may be the SCI corresponding to the last TB transmission, which is a first-order SCI carried in the PSCCH.
  • step 2-B Repeat step 2-B until the number of selected resource groups is equal to G or a resource group cannot be selected.
  • G represents the maximum number of SL authorizations of the terminal
  • R represents the maximum number of transmissions of a TB.
  • the terminal uses the multiple resource groups as multiple SL authorizations, wherein each resource group corresponds to one SL authorization; or, the terminal uses the repetition of the multiple resource groups within multiple periods as multiple SL authorizations, wherein each repetition of the resource group within multiple periods corresponds to one SL authorization.
  • the terminal determines G resource groups and selects g resource groups therefrom, 1 ⁇ g ⁇ G.
  • the terminal uses the g resource groups as g SL authorizations, where each resource group corresponds to one SL authorization; or the terminal uses the repetition of the g resource groups in multiple cycles as g SL authorizations, where each repetition of the g resource groups in multiple cycles corresponds to one SL authorization.
  • the terminal selects multiple groups of continuous time slot resources from a first resource set, where the first resource set is determined by the physical layer of the terminal and reported to the MAC layer; the terminal divides the multiple groups of continuous time slot resources into multiple resource groups; and the terminal determines multiple SL authorizations based on the multiple resource groups.
  • the first resource set may be a resource set obtained by the physical layer of the terminal after excluding resources that are not suitable for sidelink transmission from the resource selection window according to the channel sensing result, and the resource exclusion process may refer to the aforementioned related scheme.
  • the physical layer of the terminal reports the first resource set obtained after resource exclusion to the MAC layer of the terminal, and the MAC layer of the terminal selects multiple groups of continuous time slot resources from the first resource set, divides the multiple groups of continuous time slot resources into multiple resource groups, and determines multiple SL authorizations based on the multiple resource groups.
  • the terminal selects multiple groups of continuous time slot resources from the first resource set, which can be implemented by the following process:
  • the terminal selects R groups of continuous time slot resources from the first resource set, and the R groups of continuous time slot resources have at least one of the following characteristics:
  • the number of resources contained in each group of continuous time slot resources in the R groups of continuous time slot resources is g, where g is a positive integer;
  • the g resources in the same group of continuous time slot resources are located in continuous time slots;
  • the interval between any two groups of continuous time slot resources in the R groups of continuous time slot resources is greater than or equal to the first duration.
  • the first duration may be recorded as Tmin.
  • the terminal divides the multiple groups of continuous time slot resources into multiple resource groups, which can be achieved by the following process:
  • the terminal divides the R groups of continuous time slot resources into g resource groups, wherein different resources in the same resource group belong to different continuous time slot resources.
  • G represents the maximum number of SL authorizations of the terminal, and g is less than or equal to G.
  • R represents the maximum number of transmission times of a TB.
  • the terminal uses the multiple resource groups as multiple SL authorizations, wherein each resource group corresponds to one SL authorization; or, the terminal uses the repetition of the multiple resource groups within multiple periods as multiple SL authorizations, wherein each repetition of the resource group within multiple periods corresponds to one SL authorization.
  • the first duration is determined based on at least one of the following: the duration of the interval between the PSSCH and the PSFCH corresponding to the PSSCH; the duration required for the terminal to receive the PSFCH; the duration required for the terminal to process the PSFCH; the duration required for the terminal to prepare for SL retransmission; the transceiver conversion duration required by the terminal.
  • the first duration is equal to the sum of at least one of the following durations: the duration of the interval between the PSSCH and the PSFCH corresponding to the PSSCH; the duration required for the terminal to receive the PSFCH; the duration required for the terminal to process the PSFCH; the duration required for the terminal to prepare for SL retransmission; the transceiver conversion duration required by the terminal.
  • the terminal can select continuous time slot resources for the transmission of different TBs originating from the same logical channel, which can ensure that each TB can be sent the same number of times, and can ensure that each TB can have corresponding PSFCH feedback resources.
  • FIG. 7 is a second flow chart of a resource selection method provided in an embodiment of the present application. As shown in FIG. 7 , the resource selection method includes the following steps:
  • Step 701 The terminal selects a SL authorization, where the SL authorization is used for the transmission of a TB; the SL authorization corresponds to a group of continuous time slot resources, and multiple resources in the continuous time slot resources belong to the SL authorization.
  • a group of continuous time slot resources is composed of resources in multiple continuous time slots, and a group of continuous time slot resources can also be understood as an MCSt resource.
  • the terminal selects a SL authorization, and the SL authorization is used for the transmission of a TB; the SL authorization corresponds to a group of continuous time slot resources, and multiple resources in the continuous time slot resources belong to the SL authorization.
  • the terminal selects a SL authorization, which can be implemented through the following scheme:
  • the terminal selects a resource group from a first resource set, where the first resource set is determined by a physical layer of the terminal and reported to a MAC layer; the terminal determines a SL authorization based on the resource group.
  • the first resource set may be a resource set obtained by the physical layer of the terminal after excluding resources that are not suitable for sidelink transmission from the resource selection window according to the channel sensing result, and the resource exclusion process may refer to the aforementioned related scheme.
  • the physical layer of the terminal reports the first resource set obtained after resource exclusion to the MAC layer of the terminal, and the MAC layer of the terminal selects a resource group from the first resource set, and determines an SL authorization based on the one resource group.
  • the terminal selects a resource group from the first resource set, which may be implemented in the following ways.
  • the resource group selection process may be implemented in the following manner:
  • the terminal selects R resources satisfying a third condition from the first resource set, the R resources forming a resource group, R is a positive integer, and the third condition includes at least one of the following:
  • At least some of the R resources are located in consecutive time slots
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the previously sent SCI may be the SCI corresponding to the last TB transmission, which is a first-order SCI carried in the PSCCH.
  • the receiving end of the TB does not feedback HARQ-ACK information; or, for a TB sent using the SL authorization, the receiving end of the TB feedbacks HARQ-ACK information on the PSFCH corresponding to the TB.
  • the resource group selection process may be implemented in the following manner:
  • the terminal selects R resources satisfying a fourth condition from the first resource set, where the R resources form a resource group, and R is a positive integer; the fourth condition includes at least one of the following:
  • At least some of the R resources are located in consecutive time slots
  • the interval between resources in any two non-adjacent time slots of the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the first duration may be recorded as Tmin.
  • the previously sent SCI may be the SCI corresponding to the last TB transmission, which is a first-order SCI carried in the PSCCH.
  • the interval between resources is limited, so that the time of HARQ-ACK feedback can be guaranteed (at least partially guaranteed).
  • the receiving end of the TB feeds back HARQ-ACK information; if the interval between the resources used for the two transmissions of the TB is less than the first duration, the receiving end of the TB does not feed back HARQ-ACK information.
  • R represents the maximum number of transmissions of a TB.
  • the terminal After the terminal selects a resource group, the terminal uses the resource group as a SL authorization; or, the terminal uses the repetition of the resource group in multiple cycles as a SL authorization.
  • the first duration is determined based on at least one of the following: the duration of the interval between the PSSCH and the PSFCH corresponding to the PSSCH; the duration required for the terminal to receive the PSFCH; the duration required for the terminal to process the PSFCH; the duration required for the terminal to prepare for SL retransmission; the transceiver conversion duration required by the terminal.
  • the first duration is equal to the sum of at least one of the following durations: the duration of the interval between the PSSCH and the PSFCH corresponding to the PSSCH; the duration required for the terminal to receive the PSFCH; the duration required for the terminal to process the PSFCH; the duration required for the terminal to prepare for SL retransmission; the transceiver conversion duration required by the terminal.
  • the resources included in the resource set reported by the physical layer of the terminal in the embodiment of the present application may be single time slot resources, or may be continuous multi-time slot resources.
  • the technical solution of the embodiment of the present application uses continuous time slot resources for the retransmission of the same TB, which can avoid the limitation of resource selection between different HARQ processes, select MCSt resources as much as possible, and ensure the occupancy of the channel.
  • a group of continuous time slot resources is composed of resources in multiple continuous time slots, and a group of continuous time slot resources can also be understood as an MCSt resource.
  • Different resources in a group of continuous time slot resources belong to different SL authorizations, and different SL authorizations are used for the transmission of different TBs (one SL authorization is used for the transmission of one TB).
  • the terminal first selects a SL authorization, and then selects other SL authorizations, and different SL authorizations occupy adjacent time slots.
  • the terminal works in the second mode (i.e., the terminal autonomously selects resources mode), and the MAC layer of the terminal selects resources according to the following steps:
  • Step 1 The terminal determines the maximum number of transmissions R for a TB and the maximum number of SL authorizations G required.
  • G is related to the priority (P2) used by the terminal when performing resource selection.
  • P2 the priority
  • G is less than or equal to the number of time slots contained in the Maximum Channel Occupancy Time (mcot) corresponding to P2.
  • the corresponding relationship between P2 and mcot is defined by the standard or configured or pre-configured by the network.
  • Step 2 The MAC layer of the terminal selects a first resource group from the resource set reported by the physical layer of the terminal.
  • the first resource group includes R resources located in different time slots for initial transmission and retransmission of the same TB.
  • selecting the first resource group needs to meet the following requirements:
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • Step 3 If the number of selected resource groups is equal to G, proceed to step 5, otherwise proceed to step 4.
  • Step 4 If there are at least R resources satisfying the following conditions in the resource set reported by the physical layer of the terminal, select R resources satisfying the following conditions as another resource group, and then execute step 3, otherwise execute step 5;
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously;
  • Any resource is located in an adjacent logical time slot to at least one of the resources in the selected resource group, as shown in the first resource group and the second resource group in Figure 8.
  • the logical time slot refers to a time slot in the current resource pool.
  • Step 5 Use the selected g resource groups as g SL grants, or, if the selected resources are used for data transmission in multiple cycles, repeat the selected g resource groups as g SL grants in multiple cycles.
  • g is less than or equal to G, which is the number of resource groups actually selected.
  • Tmin in the above solution includes the sum of at least one of the following durations:
  • a group of continuous time slot resources is composed of resources in multiple continuous time slots, and a group of continuous time slot resources can also be understood as an MCSt resource.
  • Different resources in a group of continuous time slot resources belong to different SL authorizations, and different SL authorizations are used for the transmission of different TBs (one SL authorization is used for the transmission of one TB).
  • the terminal selects R groups of continuous time slot resources consisting of g adjacent time slots as g SL grants. Specifically, the terminal works in the second mode (i.e., the terminal autonomously selects resources mode), and the MAC layer of the terminal selects resources according to the following steps:
  • Step 1 The terminal determines the maximum number of transmissions R for a TB and the maximum number of SL authorizations G required.
  • G is related to the priority (P2) used by the terminal when performing resource selection, for example, G is less than or equal to the number of time slots included in mcot corresponding to P2.
  • P2 the priority
  • mcot the number of time slots included in mcot corresponding to P2.
  • the corresponding relationship between P2 and mcot is defined by the standard or configured or pre-configured by the network.
  • Step 2 The MAC layer of the terminal selects R groups of continuous time slot resources from the resource set reported by the physical layer of the terminal, where:
  • the number of resources contained in each group of continuous time slot resources is g, and g is less than or equal to G;
  • the g resources are located in consecutive logical time slots, and the logical time slots are time slots in the current resource pool;
  • R groups of continuous time slot resources are sorted in chronological order, and the interval between the rth group of continuous time slot resources and the r+1th group of continuous time slot resources is greater than or equal to Tmin, where 0 ⁇ r ⁇ R-1.
  • Step 3 Divide the selected R groups of continuous time slot resources into g resource groups, wherein the i-th resource group consists of the i-th resource in the R groups of continuous time slot resources, where 0 ⁇ i ⁇ g-1.
  • Step 4 Use the selected g resource groups as g SL grants, or, if the selected resources are used for data transmission in multiple cycles, repeat the selected g resource groups in multiple cycles as g SL grants.
  • the terminal selects 3 groups of continuous time slot resources, and the 3 groups of continuous time slot resources are divided into 2 resource groups.
  • Tmin in the above solution includes the sum of at least one of the following durations:
  • the terminal preferentially selects resources in the time slots adjacent to the existing SL authorization.
  • the terminal works in the second mode (i.e., the terminal autonomously selects resources mode), and the MAC layer of the terminal selects resources according to the following steps:
  • Step 1 The terminal determines the maximum number of transmission times R of a TB.
  • Step 2 The MAC layer of the terminal determines a first candidate resource set and a second candidate resource set from the resource set reported by the physical layer of the terminal, where:
  • Any resource in the first candidate resource set meets the requirement that: the time slot where the resource is located is adjacent to the time slot where the resource included in the SL authorization determined by the terminal is located;
  • the resources included in the second candidate resource set are the resources in the resource set reported by the physical layer of the terminal except the resources belonging to the first candidate resource set.
  • the first candidate resource set is an empty set.
  • Step 3 The MAC layer of the terminal selects multiple resources that meet the following conditions from the first candidate resource set:
  • the resources used for TB retransmission can be indicated by the previously sent SCI.
  • Step 4 If in step 3, the MAC layer of the terminal can only select R' resources that meet the conditions, and R' ⁇ R, the MAC layer of the terminal selects R-R' resources from the second candidate resource set, and satisfies:
  • the resource used for TB retransmission among the R resources finally selected can be indicated by the SCI sent previously.
  • Step 5 Use the selected R resources as a SL grant, or, if the selected resources are used for data transmission in multiple cycles, repeat the selected R resources in multiple cycles as a SL grant.
  • Tmin in the above solution includes the sum of at least one of the following durations:
  • a group of continuous time slot resources is composed of resources in multiple continuous time slots, and a group of continuous time slot resources can also be understood as an MCSt resource. All resources in a group of continuous time slot resources belong to the same SL authorization and are used for the transmission of the same TB.
  • a group of continuous time slot resources belongs to an SL grant, which is used for partial or full transmission of a TB, and the time of HARQ-ACK feedback is not guaranteed.
  • the terminal works in the second mode (i.e., the terminal autonomously selects resources mode), and the MAC layer of the terminal selects resources according to the following steps:
  • Step 1 The terminal determines the maximum number of transmission times R of a TB.
  • Step 2 The MAC layer of the terminal selects a plurality of resources that meet the following conditions from the resource set reported by the physical layer: the plurality of candidate resources are located in continuous time slots.
  • Step 3 If in step 2 the MAC layer of the terminal can only select R’ resources that meet the conditions, and R’ ⁇ R, the MAC layer of the terminal selects R-R’ resources from the remaining resources of the resource set reported by the physical layer, and it satisfies: the resources used for TB retransmission among the finally selected R resources can be indicated by the SCI sent previously.
  • Step 4 Use the selected R resource groups as an SL grant, or, if the selected resources are used for data transmission in multiple cycles, repeat the selected R resources in multiple cycles as an SL grant.
  • the receiving end of the TB does not feed back HARQ-ACK information.
  • the receiving end of the TB should feed back HARQ-ACK information in the corresponding PSFCH resources.
  • a group of continuous time slot resources is composed of resources in multiple continuous time slots, and a group of continuous time slot resources can also be understood as an MCSt resource. All resources in a group of continuous time slot resources belong to the same SL authorization and are used for the transmission of the same TB.
  • a group of continuous time slot resources belongs to an SL grant, which is used for partial or full transmission of a TB, and partially guarantees the time of HARQ-ACK feedback.
  • the terminal works in the second mode (i.e., the terminal autonomously selects resources mode), and the MAC layer of the terminal selects resources according to the following steps:
  • the terminal MAC layer selects resources according to the following steps:
  • Step 1 The terminal determines the maximum number of transmission times R of a TB.
  • Step 2 The MAC layer of the terminal selects R resources from the resource set reported by the physical layer, and the R resources meet the following conditions:
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • Step 3 Use the selected R resource groups as an SL grant, or, if the selected resources are used for data transmission in multiple cycles, repeat the selected R resources in multiple cycles as an SL grant.
  • the terminal receiving the TB should feedback HARQ-ACK information, and for other TBs, the receiving end does not feedback HARQ-ACK information.
  • the terminal can use continuous time slots for the transmission of different TBs.
  • it can first select an SL authorization, and then select other SL authorizations, with different SL authorizations occupying adjacent time slots; or, select R groups of continuous time slot resources consisting of g adjacent time slots as g SL authorizations; or, preferentially select resources in time slots adjacent to existing SL authorizations.
  • the terminal can also use continuous time slots for the transmission of the same TB, and the time for HARQ-ACK feedback may not be guaranteed or may be partially guaranteed when selecting resources. According to the method proposed in the present application, it can be ensured as much as possible that the terminal occupies resources that are continuous in time, as well as HARQ-ACK feedback, which is beneficial to improving the overall performance of the SL-U system.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • downlink indicates that the transmission direction of the signal or data
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site
  • side is used to indicate that the transmission direction of the signal or data is the third direction sent from user equipment 1 to user equipment 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term "and/or” is only a description of the association relationship of the associated objects, indicating that there can be three relationships. Specifically, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character “/" in this article generally indicates that the front and back associated objects are in an "or" relationship.
  • FIG. 10 is a schematic diagram of a structure of a resource selection device provided in an embodiment of the present application, which is applied to a terminal (such as a MAC layer of a terminal).
  • the resource selection device includes:
  • the selection unit 1001 is configured to select a plurality of SL authorizations, wherein different SL authorizations among the plurality of SL authorizations are used for transmission of different TBs; and the plurality of SL authorizations have at least one of the following characteristics:
  • the resources of the multiple SL authorizations correspond to multiple groups of continuous time slot resources, and different resources in the same group of continuous time slot resources belong to different SL authorizations;
  • the interval between any two resources in the same SL authorization is greater than or equal to the first duration.
  • the selection unit 1001 is used to select multiple resource groups from a first resource set, where the first resource set is determined by the physical layer of the terminal and reported to the media access control MAC layer; and determine multiple SL authorizations based on the multiple resource groups.
  • the selection unit 1001 is used to select a resource group from a first resource set; if the number of selected resource groups is less than G, continue to select a resource group from the first resource set until the number of selected resource groups is equal to G or a resource group cannot be selected from the remaining resources, and G is a positive integer.
  • the selection unit 1001 is configured to select R resources satisfying a first condition from a first resource set, where the R resources constitute a resource group, and R is a positive integer; the first condition includes at least one of the following:
  • the interval between any two resources among the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the sidelink control information SCI sent previously.
  • the selection unit 1001 is configured to select R resources satisfying a second condition from the first resource set, where the R resources constitute a resource group, and R is a positive integer; and the second condition includes at least one of the following:
  • the interval between any two resources among the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously;
  • Any one of the R resources and at least one of the resources in the selected resource group are located in adjacent time slots.
  • the selection unit 1001 is configured to determine a first candidate resource set and a second candidate resource set from a first resource set; select R resources that meet a first condition from the first candidate resource set and/or the second candidate resource set, where the R resources constitute a resource group, and R is a positive integer; and the first condition includes at least one of the following:
  • the interval between any two resources among the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the first candidate resource set has the following characteristics: any one resource in the first candidate resource set is located in an adjacent time slot to at least one of the resources in the selected resource group; the second candidate resource set has the following characteristics: the second candidate resource set includes at least part of the resources in the first resource set except the first candidate resource set.
  • the selection unit 1001 is used to select R’ resources from the first candidate resource set; if R’ ⁇ R, the terminal selects R-R’ resources from the second candidate resource set, and the selected R resources meet the first condition.
  • the selection unit 1001 is used to select multiple groups of continuous time slot resources from a first resource set, where the first resource set is determined by the physical layer of the terminal and reported to the MAC layer; divide the multiple groups of continuous time slot resources into multiple resource groups; and determine multiple SL authorizations based on the multiple resource groups.
  • the selection unit 1001 is configured to select R groups of continuous time slot resources from the first resource set, where the R groups of continuous time slot resources have at least one of the following characteristics:
  • the number of resources contained in each group of continuous time slot resources in the R groups of continuous time slot resources is g, where g is a positive integer;
  • the g resources in the same group of continuous time slot resources are located in continuous time slots;
  • the interval between any two groups of continuous time slot resources in the R groups of continuous time slot resources is greater than or equal to the first duration.
  • the selection unit 1001 is configured to divide the R groups of continuous time slot resources into g resource groups, wherein different resources in the same resource group belong to different continuous time slot resources.
  • G represents the maximum number of SL authorizations of the terminal, and g is less than or equal to G.
  • R represents the maximum number of transmission times of a TB.
  • the selection unit 1001 is used to treat the multiple resource groups as multiple SL authorizations, wherein each resource group corresponds to one SL authorization; or, to treat the repetition of the multiple resource groups within multiple cycles as multiple SL authorizations, wherein the repetition of each resource group within multiple cycles corresponds to one SL authorization.
  • the first duration is determined based on at least one of the following:
  • FIG. 11 is a second schematic diagram of the structure of a resource selection device provided in an embodiment of the present application, which is applied to a terminal (such as a MAC layer of a terminal).
  • the resource selection device includes:
  • the selection unit 1101 is used to select a SL authorization, where the SL authorization is used for the transmission of a TB; the SL authorization corresponds to a group of continuous time slot resources, and multiple resources in the continuous time slot resources belong to the SL authorization.
  • the selection unit 1101 is configured to select a resource group from a first resource set, where the first resource set is determined by a physical layer of the terminal and reported to a MAC layer; and determine a SL authorization based on the resource group.
  • the selection unit 1101 is configured to select R resources satisfying a third condition from the first resource set, the R resources forming a resource group, R being a positive integer, and the third condition comprising at least one of the following:
  • At least some of the R resources are located in consecutive time slots
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the selection unit 1101 is used to select R’ resources located in continuous time slots from the first resource set; if R’ ⁇ R, then select R-R’ resources from the remaining resources of the first resource set, and the resources used for TB retransmission among the selected R resources can be indicated by the SCI sent previously.
  • the receiving end of the TB does not feed back HARQ-ACK information; or, for a TB sent using the SL authorization, the receiving end of the TB feeds back HARQ-ACK information in the PSFCH corresponding to the TB.
  • the selection unit 1101 is configured to select R resources satisfying a fourth condition from the first resource set, where the R resources constitute a resource group, and R is a positive integer; the fourth condition includes at least one of the following:
  • At least some of the R resources are located in consecutive time slots
  • the interval between resources in any two non-adjacent time slots of the R resources is greater than or equal to the first duration
  • the resources used for TB retransmission among the R resources can be indicated by the SCI sent previously.
  • the receiving end of the TB feeds back HARQ-ACK information
  • the receiving end of the TB does not feed back HARQ-ACK information.
  • the first duration is determined based on at least one of the following:
  • R represents the maximum number of transmission times of a TB.
  • the selection unit 1101 is configured to take the one resource group as a SL authorization; or take repetitions of the one resource group in multiple cycles as a SL authorization.
  • Fig. 12 is a schematic structural diagram of a communication device 1200 provided in an embodiment of the present application.
  • the communication device 1200 shown in Fig. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1200 may further include a memory 1220.
  • the processor 1210 may call and run a computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210 , or may be integrated into the processor 1210 .
  • the communication device 1200 may further include a transceiver 1230 , and the processor 1210 may control the transceiver 1230 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1200 may specifically be a terminal of an embodiment of the present application, and the communication device 1200 may implement the corresponding processes implemented by the terminal in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • Fig. 13 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1300 shown in Fig. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the chip 1300 may further include a memory 1320.
  • the processor 1310 may call and run a computer program from the memory 1320 to implement the method in the embodiment of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310 , or may be integrated into the processor 1310 .
  • the chip 1300 may further include an input interface 1330.
  • the processor 1310 may control the input interface 1330 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 1300 may further include an output interface 1340.
  • the processor 1310 may control the output interface 1940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the terminal in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the terminal in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal in each method of the embodiment of the present application, which will not be described here for the sake of brevity.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal in the embodiment of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the terminal in each method of the embodiment of the present application, which will not be described here for the sake of brevity.
  • the present application also provides a computer program.
  • the computer program can be applied to the terminal in the present application, and when the computer program is run on a computer, the computer executes the corresponding process implemented by the terminal in each method of the present application, which will not be described here for brevity.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种资源选择方法及装置、终端,该方法包括:终端选择多个SL授权,所述多个SL授权中的不同SL授权用于不同TB的传输;所述多个SL授权具有以下至少一种特征:所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。

Description

一种资源选择方法及装置、终端 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种资源选择方法及装置、终端。
背景技术
为了能够更充分地利用先听后说(Listen Before Talk,LBT)成功后发起的COT,在非授权侧行(Sidelink-Unlicense,SL-U)系统中引入连续多时隙传输(Multiple Consecutive Slots transmission,MCSt)的概念,即通信设备连续地在多个时隙上进行传输,以提升COT的利用率。
如果SL-U系统中采用MCSt传输方式,连续的多个时隙可以用于传输同一个传输块(Transport Block,TB)或不同的TB,如何为TB选择传输资源需要需要明确。
发明内容
本申请实施例提供一种资源选择方法及装置、终端、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的资源选择方法,包括:
终端选择多个侧行(Sidelink,SL)授权,所述多个SL授权中的不同SL授权用于不同TB的传输;所述多个SL授权具有以下至少一种特征:
所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;
同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。
本申请实施例提供的资源选择方法,包括:
终端选择一个SL授权,所述SL授权用于一个TB的传输;所述SL授权对应一组连续时隙资源,所述连续时隙资源中的多个资源属于所述SL授权。
本申请实施例提供的资源选择装置,包括:
选择单元,用于选择多个SL授权,所述多个SL授权中的不同SL授权用于不同TB的传输;所述多个SL授权具有以下至少一种特征:
所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;
同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。
本申请实施例提供的资源选择装置,包括:
选择单元,用于选择一个SL授权,所述SL授权用于一个TB的传输;所述SL授权对应一组连续时隙资源,所述连续时隙资源中的多个资源属于所述SL授权。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的资源选择方法。
本申请实施例提供的芯片,用于实现上述的资源选择方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的资源选择方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的资源选择方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的资源选择方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的资源选择方法。
通过上述技术方案,明确了如何为TB选择SL授权(即传输资源),使得终端可以将连续时隙资源用于不同TB的传输,或者终端也可以将连续时隙资源用于同一个TB的传输。可以尽可 能保证终端占用时间上连续的资源,有利于提高SL-U系统的整体性能,此外,通过限定资源之间的间隔还可以尽可能保证HARQ-ACK反馈。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1-1是本申请实施例提供的网络覆盖范围内侧行通信的示意图;
图1-2是本申请实施例提供的部分网络覆盖侧行通信的示意图;
图1-3是本申请实施例提供的网络覆盖外侧行通信的示意图;
图2是本申请实施例提供的第二模式对应的资源选择示意图;
图3-1是本申请实施例提供的单播传输方式的示意图;
图3-2是本申请实施例提供的组播传输方式的示意图;
图3-3是本申请实施例提供的广播传输方式的示意图;
图4是本申请实施例提供的PSCCH和PSSCH帧结构示意图
图5是本申请实施例提供的PSSCH传输资源和PSFCH传输资源的映射关系示意图;
图6是本申请实施例提供的资源选择方法的流程示意图一;
图7是本申请实施例提供的资源选择方法的流程示意图二;
图8是本申请实施例提供的资源选择的实例示意图一;
图9是本申请实施例提供的资源选择的实例示意图二;
图10是本申请实施例提供的资源选择装置的结构组成示意图一;
图11是本申请实施例提供的资源选择装置的结构组成示意图二;
图12是本申请实施例提供的一种通信设备示意性结构图;
图13是本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种侧行通信系统,为便于理解本申请实施例的技术方案,以下对侧行通信系统中的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
不同网络覆盖环境下的侧行通信
在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信,分别如图1-1,图1-2和图1-3所示。
如图1-1所示,在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于同一基站的覆盖范围内,从而,上述终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
如图1-2所示,在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部分终端终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
如图1-3所示,对于网络覆盖外侧行通信,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置信息确定侧行配置进行侧行通信。
侧行通信中的资源选择方式
设备到设备通信是基于设备到设备(Device to Device,D2D)的一种侧行链路传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,因此具有更高的频谱效率以及更低的传输时延。侧行通信中采用终端到终端直接通信的方式,3GPP定义了两种传输模式:第一模式和第二模式。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据 的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图1-1所示,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图1-3所示,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者在图1-1所示,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
第二模式中的资源选择按照以下步骤进行:
步骤1:终端将资源选择窗内所有的可用资源作为资源集合A,终端将集合A中经资源排除后的剩余资源作为候选资源集合。
如果终端在侦听窗内某些时隙发送数据,没有进行侦听,则这些时隙在资源选择窗(也可以简称为选择窗)内对应的时隙上的全部资源被排除掉。终端利用所用资源池配置中的“资源预留周期(resource reservation period)”域的取值集合确定选择窗内对应的时隙。
如果终端在资源侦听窗(也可以简称为侦听窗)内侦听到物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),测量该PSCCH的参考信号接收功率(Reference Signal Received Power,RSRP)或者该PSCCH调度的物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的RSRP,如果测量的RSRP大于SL-RSRP门限,并且根据该PSCCH中传输的侧行控制信息(Sidelink Control Information,SCI)中的资源预留信息确定其预留的资源在资源选择窗内,则从集合A中排除对应资源。如果资源集合A中剩余资源不足资源集合A进行资源排除前全部资源的X%,则将SL-RSRP门限抬升3dB,重新执行步骤1。上述X可能的取值为{20,35,50},终端根据待发送数据的优先级从该取值集合中确定参数X。同时,上述SL-RSRP门限与终端侦听到的PSCCH中携带的优先级以及终端待发送数据的优先级有关。
步骤2:终端从候选资源集合中随机选择若干资源,作为其初次传输以及重传的发送资源。
需要说明的是,本申请实施例中,第一模式也可以称为第一资源选择模式,第二模式也可以称为第二资源选择模式。本申请实施例的技术方案对第一模式和第二模式的名称不做限制。
如图2所示,终端在时隙n触发资源选择或重选,资源选择窗从n+T1开始,到n+T2结束。0≤T1≤T proc,1,当子载波间隔是15,30,60,120kHz时,T proc,1为3,5,9,17个时隙。如果T 2min小于业务的剩余时延预算,则T 2min≤T2≤业务的剩余时延预算,否则,T2等于以时隙为单位的数据包的剩余时延预算(PDB,Packet Delay Budget)。T 2min的取值集合为{1,5,10,20}*2 μ个时隙,其中μ=0,1,2,3对应于子载波间隔是15,30,60,120kHz的情况,终端根据自身待发送数据的优先级从该取值集合中确定T 2min。[n+T1,n+T2]称为资源选择窗。
终端在n-T0到n-T proc,0进行资源侦听,T0的取值为100或1100毫秒。当子载波间隔是15,30,60,120kHz时,T proc,0为1,1,2,4个时隙。[n-T0到n-T proc,0]称为资源侦听窗。
第二模式中的资源选择过程按照以下两个步骤进行:
步骤1:终端的物理层根据信道侦听结果从资源选择窗中排除不适合用于侧行传输的资源,终端的物理层将资源排除后的资源集合A作为候选资源集合上报给高层,即终端的MAC层。
终端将资源选择窗内所有属于终端所用资源池的可用资源作为资源集合A,集合A中的任意一个资源记为R(x,y),x和y分别指示资源的频域位置和时域位置,表示时隙y内从子信道x开始的连续L_subch个子信道组成的资源。记集合A中资源的初始数量为M total
步骤1-1:如果终端在侦听窗内时隙a发送数据,没有进行侦听,则终端将判断时隙a+q*Prxlg与资源R(x,y+j*Ptxlg)是否重叠,如果重叠,则把资源R(x,y)从资源集合A中排除。其中j=0,1,2,3…C-1,C由终端生成的随机counter值确定。Ptxlg为终端的资源预留周期Ptx转化为逻辑时隙后的数目。Prxlg为Prx转化为逻辑时隙后的数目,这里Prx为资源池内任何一个允许的资源预留周期。如果Prx<Tscal并且n-m≤Prxlg,则
Figure PCTCN2022129982-appb-000001
否则,Q=1;Tscal等于T2转化为毫秒后的值。
步骤1-2:如果终端在侦听窗内时隙m内的第v个频域资源E(v,m)上侦听到PSCCH中传输的侧行控制信息,则终端测量该PSCCH的SL-RSRP或者该PSCCH调度的PSSCH的SL-RSRP(即与该PSCCH在同一时隙中发送的对应的PSSCH的SL-RSRP),如果测量的SL-RSRP大于SL-RSRP门限,且终端所用资源池内激活了TB间的资源预留,则终端假定在时隙m+q*Prxlg上收到了相同内容的侧行控制信息。其中q=1,2,3…Q,如果Prx<Tscal并且n-m≤Prxlg,则
Figure PCTCN2022129982-appb-000002
否则,Q=1;Tscal等于T2转化为毫秒后的值。Prxlg为Prx转化为逻辑时隙后的数目,这里Prx为终端侦听到的PSCCH中传输的侧行控制信息中“资源预留周期(Resource reservation period)”域指示的资源预留周期。终端将判断在时隙m收到的侧行控制信息和这些假定收到的Q个侧行控制信息的“时域资源分配(Time resource assignment)”和“频域资源分配(Frequency resource assignment)”域指示 的资源与资源R(x,y+j*Ptxlg)是否重叠,若重叠,则从集合A中排除对应资源R(x,y)。上述j=0,1,2,3…C-1,C由终端生成的随机counter值确定。Ptxlg是Ptx转化为逻辑时隙后的数目,Ptx为进行资源选择的终端确定的资源预留周期。
上述RSRP门限是由终端侦听到的PSCCH中携带的优先级P1和终端待发送数据的优先级P2决定的。终端所用资源池的配置中包含一张SL-RSRP门限列表,该SL-RSRP门限列表包含了所有优先级组合(P1,P2)对应的SL-RSRP门限。资源池的配置可以是网络配置或者预配置的。如果在上述资源排除后资源集合A中剩余资源不足M total*X%,则将SL-RSRP门限抬升3dB,重新执行步骤1,X可能的取值为{20,35,50},终端所用资源池的配置中包含优先级与上述X可能取值的对应关系,终端根据待发送数据的优先级及该对应关系,确定X的值。
步骤2:终端的MAC层从上报的候选资源集合中随机选择资源发送数据。即终端从候选资源集合中随机选择资源发送数据。
NR-V2X中的传输方式
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端只有一个终端,如图3-1所示,UE1和UE2之间进行单播传输;对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图3-2所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端都是接收端;对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图3-3所示,UE1是发送端终端,其周围的其他终端,UE2至UE6都是接收端。
NR-V2X中的2阶SCI机制
在NR-V2X中引入2阶SCI,第一阶SCI承载在PSCCH中,用于指示PSSCH的传输资源、预留资源信息、调制编码策略(Modulation and Coding Scheme,MCS)等级、优先级等信息,第二阶SCI在PSSCH的资源中发送,利用PSSCH的解调参考信号(Demodulation Reference Signal,DMRS)进行解调,用于指示发送端ID、接收端ID、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)ID、新数据指示(New Data indicator,NDI)等用于数据解调的信息。第二阶SCI从PSSCH的第一个DMRS符号开始映射,先频域再时域映射,如图4所示,PSCCH占据3个符号(符号1、2、3),PSSCH的DMRS占据符号4、11,第二阶SCI从符号4开始映射,在符号4上和DMRS频分复用,第二阶SCI映射到符号4、5、6,第二阶SCI占据的资源大小取决于第二阶SCI的比特数。
NR-V2X中PSFCH
在R16NR-V2X中支持序列类型的物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH),称为PSFCH格式0,该类型PSFCH在频域上占用一个物理资源块(Physical Resource Block,PRB),在时域上占用一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,采用的序列类型和PUCCH格式0相同。在一个资源池内,PSFCH资源以1,2或4个时隙为周期配置,存在PSFCH资源的时隙上,PSFCH资源位于时隙内最后一个可用于侧行发送的OFDM符号上。然而,为了支持收发转换以及自动增益控制(Automatic Gain Control,AGC)调整,PSFCH所在的符号之前存在两个OFDM符号分别用于收发转换和AGC调整。此外,在上述三个OFDM符号上不允许PSCCH和PSSCH发送。在R16NR-V2X中,PSFCH只用于承载HARQ反馈信息,一个PSFCH的容量为一个比特。
PSFCH的传输资源根据其对应的PSSCH的传输资源的时频位置确定的。如果终端在某个时隙接收PSSCH,则终端在满足最小间隔之后的第一个存在PSFCH资源的时隙发送该PSSCH的HARQ反馈信息,所述最小间隔由参数sl-MinTimeGapPSFCH配置。在NR-V2X中,接收终端根据PSSCH所在的时隙和子信道信息确定该PSSCH对应的PSFCH的传输资源。具体的,根据资源池配置信息中的PSFCH周期参数以及可用于PSSCH传输的子信道个数对PSFCH的传输资源集合划分多个子集合,每个子集合中的PSFCH传输资源对应于一个时隙、一个子信道的PSSCH传输,如图5所示,在该子集合中再根据终端标识信息确定具体的PSFCH传输资源。
在NR-V2X中,支持以下两种PSFCH的资源确定方式,具体采用哪种确定PSFCH资源的方式是根据高层信令配置的。
方式1:根据PSSCH频域资源的第一个子信道确定PSFCH的传输资源;
方式2:根据PSSCH频域占据的所有子信道确定PSFCH的传输资源。
对于方式1的资源确定方式,由于PSFCH的传输资源只根据PSSCH占据的第一个子信道确定, 因此,无论PSSCH占据多少子信道,其对应的PSFCH的反馈资源个数是固定的;对于方式2,PSFCH的传输资源个数根据PSSCH占据的子信道数确定,因此,PSSCH占据的子信道越多,其PSFCH的传输资源也越多。方式2更适用于需要更多侧行HARQ反馈资源的场景,例如,组播中的第二类侧行HARQ反馈方式。
根据传输PSSCH的时隙以及子信道可以确定其对应的PSFCH传输资源集合
Figure PCTCN2022129982-appb-000003
在该资源集合中的PSFCH传输资源的索引先按照RB从低到高的顺序,再按照CS对从低到高的顺序确定,进一步的,在该资源集合中,通过下面的公式确定PSFCH的传输资源:
Figure PCTCN2022129982-appb-000004
其中,P ID表示发送端ID信息,即SCI中携带的发送端终端的源ID,对于单播或NACK-only的组播侧行HARQ反馈方式,M ID=0;对于ACK/NACK的组播侧行HARQ反馈方式,M ID表示高层配置的接收终端的组内标识。
在NR-V2X中,PSFCH资源由SL-PSFCH-Config-r16信令配置,其内容如下表所示,其中sl-PSFCH-Period-r16用于配置PSFCH资源的周期,sl-PSFCH-RB-Set-r16用于配置PSFCH资源所在OFDM符号上可用于PSFCH发送的PRB,sl-NumMuxCS-Pair-r16用于配置一个PRB内允许的PFSCH序列的循环移位个数,sl-MinTimeGapPSFCH-r16用于配置PSFCH和与其关联的PSSCH的最小时间间隔,sl-PSFCH-HopID-r16用于配置PSFCH的跳频ID,该ID用于确定PSFCH的序列,sl-PSFCH-CandidateResourceType-r16用于配置PSFCH备选资源的确定方式。
Figure PCTCN2022129982-appb-000005
表1
连续多时隙传输
在非授权频谱上,通信设备需要先进行先听后说(Listen Before Talk,LBT),LBT成功后才可以接入信道。当通信设备LBT成功,接入信道后,其占用信道的时间称为信道占用时间(Channel Occupancy Time,COT),在COT内,通信设备可以连续传输也可以非连续传输。因此,为了能够更充分地利用LBT成功后发起的COT,在非授权侧行(Sidelink-Unlicense,SL-U)系统中可能引入连续多时隙传输(Multiple Consecutive Slots transmission,MCSt)的概念,即通信设备连续地在多个时隙上进行传输,提升COT的利用率。同时连续地使用/占用信道也有利于与异系统竞争信道。例如,当SL-U终端采用MCSt传输时,由于信道被连续占用,其他用户(如WIFI用户)无法通过LBT成功接入信道。
如果SL-U系统中采用MCSt传输方式,连续的多个时隙可以用于传输同一个传输块(Transport Block,TB)或不同的TB,如何为TB选择传输资源需要需要明确。为此,提出了本申请实施例的以下技术方案。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图6是本申请实施例提供的资源选择方法的流程示意图一,如图6所示,所述资源选择方法包括以下步骤:
步骤601:终端选择多个SL授权(Sidelink Grant),所述多个SL授权中的不同SL授权用于不同TB的传输;所述多个SL授权具有以下至少一种特征:所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。
这里,一组连续时隙资源由多个连续时隙内的资源组成,一组连续时隙资源也可以理解为一个MCSt资源。
本申请实施例中,终端选择多个SL授权,所述多个SL授权中的不同SL授权用于不同TB的传输。所述多个SL授权具有以下至少一种特征:
特征1:所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;
特征2:同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。
本申请实施例中,所述终端选择多个SL授权,可以有如下几种实现方案。
方案一
在一些实施方式中,终端从第一资源集合中选择多个资源组,所述第一资源集合由所述终端的物理层确定并上报给MAC层;所述终端基于所述多个资源组确定多个SL授权。
这里,所述第一资源集合可以是终端的物理层根据信道侦听结果从资源选择窗中排除不适合用于侧行传输的资源后得到的资源集合,资源排除过程可以参照前述相关方案。终端的物理层将资源排除后得到的第一资源集合上报给终端的MAC层,终端的MAC层从该第一资源集合中选择多个资源组,并基于基于所述多个资源组确定多个SL授权。
在一些实施方式中,所述终端从第一资源集合中选择一个资源组;如果选择的资源组个数小于G,则所述终端从所述第一资源集合中继续选择一个资源组,直至选择的资源组个数等于G或无法从剩余资源中继续选择出一个资源组,G为正整数。
这里,终端从第一资源集合中选择多个资源组,可以有如下几种实现方案。
方案1-1
在一些实施方式中,资源组的选择过程可以通过以下方式来实现:
步骤1-A:所述终端从第一资源集合中选择满足第一条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第一条件包括以下至少之一:
所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
这里,所述第一时长可以记作Tmin。
这里,所述之前发送的SCI可以是上一次TB传输对应的SCI,该SCI为第一阶SCI,承载在PSCCH中。
步骤1-B:如果选择的资源组个数小于G,则所述终端从所述第一资源集合的剩余资源中选择满足第二条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第二条件包括以下至少之一:
所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示;
所述R个资源中任意一个资源与已选择的资源组内的资源中的至少一个位于相邻的时隙。
这里,所述第一时长可以记作Tmin。
这里,所述之前发送的SCI可以是上一次TB传输对应的SCI,该SCI为第一阶SCI,承载在PSCCH中。
这里,所述位于相邻的时隙是指位于相邻的逻辑时隙,其中逻辑时隙是指位于当前资源池的时隙。
重复执行上述步骤1-B,直至选择的资源组个数等于G或无法从剩余资源中继续选择出一个资源组。
上述方案中,G表示所述终端的最大SL授权个数。R表示一个TB的最大传输次数。
方案1-2
在一些实施方式中,资源组的选择过程可以通过以下方式来实现:
步骤2-A:所述终端从第一资源集合中选择满足第一条件的R个资源,所述R个资源组成一 个资源组,R为正整数;所述第一条件包括以下至少之一:
所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
这里,所述第一时长可以记作Tmin。
这里,所述之前发送的SCI可以是上一次TB传输对应的SCI,该SCI为第一阶SCI,承载在PSCCH中。
步骤2-B:如果选择的资源组个数小于G,则所述终端从所述第一资源集合中确定第一候选资源集合和第二候选资源集合;所述终端从所述第一候选资源集合和/或所述第二候选资源集合中选择满足第一条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第一条件包括以下至少之一:
所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
这里,所述第一候选资源集合具有以下特征:所述第一候选资源集合中的任意一个资源与已选择的资源组内的资源中的至少一个位于相邻的时隙;所述第二候选资源集合具有以下特征:所述第二候选资源集合包含所述第一资源集合中除所述第一候选资源集合外的至少部分资源。
这里,所述第一时长可以记作Tmin。
这里,所述之前发送的SCI可以是上一次TB传输对应的SCI,该SCI为第一阶SCI,承载在PSCCH中。
在一些实施方式中,所述终端从所述第一候选资源集合中选择R’个资源;如果R’<R,则所述终端从所述第二候选资源集合中选择R-R’个资源,选择的R个资源满足所述第一条件;如果R’=R,则所述终端不用再从所述第二候选资源集合中选择资源,选择的R个资源满足所述第一条件。
重复执行上述步骤2-B,直至选择的资源组个数等于G或无法继续选择出一个资源组。
上述方案中,G表示所述终端的最大SL授权个数。R表示一个TB的最大传输次数。
所述终端将所述多组连续时隙资源划分为多个资源组后,所述终端将所述多个资源组作为多个SL授权,其中,每个资源组对应一个SL授权;或者,所述终端将所述多个资源组在多个周期内的重复作为多个SL授权,其中,每个资源组在多个周期内的重复对应一个SL授权。
例如:终端确定出G个资源组,从中选择g个资源组,1≤g≤G。终端将所述g个资源组作为g个SL授权,其中,每个资源组对应一个SL授权;或者,终端将所述g个资源组在多个周期内的重复作为g个SL授权,其中,每个资源组在多个周期内的重复对应一个SL授权。
方案二
在一些实施方式中,终端从第一资源集合中选择多组连续时隙资源,所述第一资源集合由所述终端的物理层确定并上报给MAC层;所述终端将所述多组连续时隙资源划分为多个资源组;所述终端基于所述多个资源组确定多个SL授权。
这里,所述第一资源集合可以是终端的物理层根据信道侦听结果从资源选择窗中排除不适合用于侧行传输的资源后得到的资源集合,资源排除过程可以参照前述相关方案。终端的物理层将资源排除后得到的第一资源集合上报给终端的MAC层,终端的MAC层从该第一资源集合中选择多组连续时隙资源,将所述多组连续时隙资源划分为多个资源组,并基于基于所述多个资源组确定多个SL授权。
在一些实施方式中,所述终端从第一资源集合中选择多组连续时隙资源,可以通过以下过程来实现:
所述终端从第一资源集合中选择R组连续时隙资源,所述R组连续时隙资源具有以下至少一种特征:
所述R组连续时隙资源中的每组连续时隙资源包含的资源个数为g,g为正整数;
同一组连续时隙资源内的g个资源位于连续的时隙内;
所述R组连续时隙资源中任何两组连续时隙资源之间的间隔大于或等于第一时长。
这里,所述第一时长可以记作Tmin。
在一些实施方式中,所述终端将所述多组连续时隙资源划分为多个资源组,可以通过以下过程来实现:
所述终端将所述R组连续时隙资源划分为g个资源组,其中同一资源组中的不同资源属于不同的连续时隙资源。
上述方案中,G表示所述终端的最大SL授权个数,g小于或等于G。R表示一个TB的最大传输次数。
所述终端将所述多组连续时隙资源划分为多个资源组后,所述终端将所述多个资源组作为多个SL授权,其中,每个资源组对应一个SL授权;或者,所述终端将所述多个资源组在多个周期内的重复作为多个SL授权,其中,每个资源组在多个周期内的重复对应一个SL授权。
上述方案中,所述第一时长基于以下至少之一确定:PSSCH与该PSSCH对应的PSFCH之间间隔的时长;终端接收PSFCH所需的时长;终端处理PSFCH所需的时长;终端准备SL重传所需的时长;终端所需的收发转换时长。例如:所述第一时长等于以下至少一种时长之和:PSSCH与该PSSCH对应的PSFCH之间间隔的时长;终端接收PSFCH所需的时长;终端处理PSFCH所需的时长;终端准备SL重传所需的时长;终端所需的收发转换时长。
本申请实施例的技术方案,终端能够选择连续时隙资源用于源于同一个逻辑信道的不同TB的传输,能够保证每个TB均能够发送相同次数,同时能够保证每个TB均能够存在与之对应的PSFCH反馈资源。
图7是本申请实施例提供的资源选择方法的流程示意图二,如图7所示,所述资源选择方法包括以下步骤:
步骤701:终端选择一个SL授权,所述SL授权用于一个TB的传输;所述SL授权对应一组连续时隙资源,所述连续时隙资源中的多个资源属于所述SL授权。
这里,一组连续时隙资源由多个连续时隙内的资源组成,一组连续时隙资源也可以理解为一个MCSt资源。
本申请实施例中,终端选择一个SL授权,所述SL授权用于一个TB的传输;所述SL授权对应一组连续时隙资源,所述连续时隙资源中的多个资源属于所述SL授权。
本申请实施例中,终端选择一个SL授权,可以通过以下方案实现:
所述终端从第一资源集合中选择一个资源组,所述第一资源集合由所述终端的物理层确定并上报给MAC层;所述终端基于所述一个资源组确定一个SL授权。
这里,所述第一资源集合可以是终端的物理层根据信道侦听结果从资源选择窗中排除不适合用于侧行传输的资源后得到的资源集合,资源排除过程可以参照前述相关方案。终端的物理层将资源排除后得到的第一资源集合上报给终端的MAC层,终端的MAC层从该第一资源集合中选择一个资源组,并基于基于所述一个资源组确定一个SL授权。
这里,终端从第一资源集合中选择一个资源组,可以有如下几种实现方案。
方案I
在一些实施方式中,资源组的选择过程可以通过以下方式来实现:
所述终端从第一资源集合中选择满足第三条件的R个资源,所述R个资源组成一个资源组,R为正整数,所述第三条件包括以下至少之一:
所述R个资源中存在至少部分资源位于连续的时隙内;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
这里,所述之前发送的SCI可以是上一次TB传输对应的SCI,该SCI为第一阶SCI,承载在PSCCH中。
在一些实施方式中,所述终端从所述第一资源集合中选择位于连续时隙内的R’个资源;如果R’<R,则所述终端从所述第一资源集合的剩余资源中选择R-R’个资源,选择的R个资源中用于TB重传的资源能够被之前发送的SCI指示;如果R’=R,则所述终端结束资源选择,选择的R个资源中用于TB重传的资源能够被之前发送的SCI指示。
对于上述方案I,资源与资源之间的间隔没有做限制,因而不保证HARQ-ACK反馈的时间。对于采用所述SL授权发送的TB,所述TB的接收端不反馈HARQ-ACK信息;或者,对于采用所述SL授权发送的TB,所述TB的接收端在所述TB对应的PSFCH反馈HARQ-ACK信息。
方案II
在一些实施方式中,资源组的选择过程可以通过以下方式来实现:
所述终端从第一资源集合中选择满足第四条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第四条件包括以下至少之一:
所述R个资源中存在至少部分资源位于连续的时隙内;
所述R个资源中任何两个不相邻时隙中的资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
这里,所述第一时长可以记作Tmin。
这里,所述之前发送的SCI可以是上一次TB传输对应的SCI,该SCI为第一阶SCI,承载在PSCCH中。
对于上述方案II,资源与资源之间的间隔进行了限制,因而可以保证(至少部分保障)HARQ-ACK反馈的时间。对于采用所述SL授权发送的TB,如果所述TB两次传输采用的资源之间的间隔大于或等于第一时长,则所述TB的接收端反馈HARQ-ACK信息;如果所述TB两次传输采用的资源之间的间隔小于第一时长,则所述TB的接收端不反馈HARQ-ACK信息。
上述方案中,R表示一个TB的最大传输次数。
所述终端将选择出一个资源组后,所述终端将所述一个资源组作为一个SL授权;或者,所述终端将所述一个资源组在多个周期内的重复作为一个SL授权。
上述方案中,所述第一时长基于以下至少之一确定:PSSCH与该PSSCH对应的PSFCH之间间隔的时长;终端接收PSFCH所需的时长;终端处理PSFCH所需的时长;终端准备SL重传所需的时长;终端所需的收发转换时长。例如:所述第一时长等于以下至少一种时长之和:PSSCH与该PSSCH对应的PSFCH之间间隔的时长;终端接收PSFCH所需的时长;终端处理PSFCH所需的时长;终端准备SL重传所需的时长;终端所需的收发转换时长。
需要说明的是,本申请实施例中的终端的物理层上报的资源集合中包含的资源可以是单时隙资源,或者也可以是连续多时隙资源。
本申请实施例的技术方案,连续时隙资源用于同一个TB的重传,可以避免不同HARQ进程之间资源选择的限制,尽可能选取MCSt资源,保证对信道的占用。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明。
应用实例一
一组连续时隙资源由多个连续时隙内的资源组成,一组连续时隙资源也可以理解为一个MCSt资源。一组连续时隙资源中的不同资源属于不同的SL授权,不同的SL授权用于不同TB的传输(一个SL授权用于一个TB的传输)。可以有多组连续时隙资源,多组连续时隙资中属于同一SL授权的任何两个资源之间的间隔大于或等于Tmin,以保证终端有足够的时间对TB的传输进行HARQ-ACK反馈。
本应用实例中,终端先选择一个SL授权,然后选择其它SL授权,不同SL授权占用相邻时隙。具体地,终端工作在第二模式(即终端自主选择资源模式),终端的MAC层按照以下步骤选择资源:
步骤1:终端确定一个TB的最大传输次数R,以及所需的最大SL授权个数G。
这里,G与终端执行资源选择时所采用的优先级(P2)有关,例如G小于或等于P2所对应的最大信道占用时间(Maximum Channel Occupancy Time,mcot)内包含的时隙数。其中P2和mcot之间的对应关系由标准定义或由网络配置或预配置。
步骤2:终端的MAC层在终端的物理层上报的资源集合中选择第一资源组,第一资源组中包括用于同一个TB初传和重传的R个位于不同时隙的资源。
这里,选择第一资源组需要满足以下要求:
1)如果资源池内配置了PSFCH资源,所述R个资源中任何两个资源之间的间隔大于或等于Tmin,如图8所示;而且,
2)所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
步骤3:如果选择的资源组个数等于G,则执行步骤5,否则执行步骤4。
步骤4:如果终端的物理层上报的资源集合中存在满足以下条件的至少R个资源,则从中选择满足以下条件的R个资源作为另外一个资源组,然后执行步骤3,否则执行步骤5;
1)如果资源池内配置了PSFCH资源,任意两个资源之间的间隔大于或等于Tmin;而且,
2)所述R个资源中用于TB重传的资源能够被之前发送的SCI指示;而且,
3)任意一个资源均和已选择资源组内的资源中的至少一个位于相邻逻辑时隙,如图8中第一资源组和第二资源组所示。这里,所述逻辑时隙是指位于当前资源池的时隙。
步骤5:用选择的g个资源组作为g个SL授权,或者,如果选择的资源用于多个周期的数据发送,将选择的g个资源组在多个周期内重复作为g个SL授权。g小于或等于G,为实际选择的资源组的数量。
上述方案中的Tmin包括以下至少一种时长之和:
PSSCH的最后一个OFDM符号和与之对应的PSFCH的起始OFDM符合之间的间隔;
接收和处理PSFCH所需的时长;
SL重传准备所需的时长;
终端需要的收发转换时长。
应用实例二
一组连续时隙资源由多个连续时隙内的资源组成,一组连续时隙资源也可以理解为一个MCSt资源。一组连续时隙资源中的不同资源属于不同的SL授权,不同的SL授权用于不同TB的传输(一个SL授权用于一个TB的传输)。可以有多组连续时隙资源,多组连续时隙资中属于同一SL授权的任何两个资源之间的间隔大于或等于Tmin,以保证终端有足够的时间对TB的传输进行HARQ-ACK反馈。
本应用实例中,终端选择R组由g个相邻时隙组成的连续时隙资源,作为g个SL授权。具体地,终端工作在第二模式(即终端自主选择资源模式),终端的MAC层按照以下步骤选择资源:
步骤1:终端确定一个TB的最大传输次数R,以及所需的最大SL授权个数G。
这里,G与终端执行资源选择时所采用的优先级(P2)有关,例如G小于或等于P2所对应的mcot内包含的时隙数。其中P2和mcot之间的对应关系由标准定义或由网络配置或预配置。
步骤2:终端的MAC层在终端物理层上报的资源集合中选择R组连续时隙资源,其中:
1)每组连续时隙资源包含的资源个数均为g,且g小于或等于G;
2)所述g个资源位于连续的逻辑时隙内,所述逻辑时隙是当前资源池内的时隙;
3)如果资源池内配置了PSFCH资源,将R组连续时隙资源按照时间先后排序,第r组连续时隙资源和第r+1组连续时隙资源之间的间隔大于或等于Tmin,其0≤r<R-1。
步骤3:将选择的R组连续时隙资源划分为g个资源组,其中第i个资源组由R组连续时隙资源中的第i个资源组成,其中0≤i<g-1。
步骤4:用选择的g个资源组作为g个SL授权,或者,如果选择的资源用于多个周期的数据发送,将选择的g个资源组在多个周期内重复作为g个SL授权。
作为示例,如图9所示,其中R=3,g=2的情况下,终端选择3组连续时隙资源,这3组连续时隙资源划分为2个资源组。
上述方案中的Tmin包括以下至少一种时长之和:
PSSCH的最后一个OFDM符号和与之对应的PSFCH的起始OFDM符合之间的间隔;
接收和处理PSFCH所需的时长;
SL重传准备所需的时长;
终端需要的收发转换时长。
应用实例三
本应用实例中,终端优先在与已有SL授权相邻的时隙内选择资源。具体地,终端工作在第二模式(即终端自主选择资源模式),终端的MAC层按照以下步骤选择资源:
步骤1:终端确定一个TB的最大传输次数R。
步骤2:终端的MAC层从终端物理层上报的资源集合中确定第一候选资源集合和第二候选资源集合,其中:
所述第一候选资源集合中的任意资源满足:该资源所在的时隙与终端已确定的SL授权中所包含的资源所在的时隙相邻;
所述第二候选资源集合包含的资源为终端物理层上报的资源集合中除属于第一候选资源集合的资源。
如果没有已确定SL授权,则第一候选资源集合为空集。
步骤3:终端的MAC层从第一候选资源集合中选择满足以下条件的多个资源:
1)如果资源池内配置了PSFCH资源,任何两个资源之间的间隔大于或等于Tmin;而且,
2)用于TB重传的资源能够被之前发送的SCI指示。
步骤4:如果在步骤3中,终端的MAC层仅能够选择出R’个满足条件的资源,且R’<R,则终端的MAC层从第二候选资源集合中选择R-R’个资源,且满足:
1)如果资源池内配置了PSFCH资源,最终选择的R个资源中任何两个资源之间的间隔大于或等于Tmin;而且,
2)最终选择的R个资源中用于TB重传的资源能够被之前发送的SCI指示。
步骤5:用选择的R个资源作为一个SL授权,或者,如果选择的资源用于多个周期的数据发送,将选择的R个资源在多个周期内重复作为一个SL授权。
上述方案中的Tmin包括以下至少一种时长之和:
PSSCH的最后一个OFDM符号和与之对应的PSFCH的起始OFDM符合之间的间隔;
接收和处理PSFCH所需的时长;
SL重传准备所需的时长;
终端需要的收发转换时长。
应用实例四
一组连续时隙资源由多个连续时隙内的资源组成,一组连续时隙资源也可以理解为一个MCSt资源。一组连续时隙资源中的所有资源均属于同一SL授权,用于同一TB的传输。
本应用实例中,一组连续时隙资源属于一个SL授权,用于一个TB的部分或全部传输,不保证HARQ-ACK反馈的时间。具体地,终端工作在第二模式(即终端自主选择资源模式),终端的MAC层按照以下步骤选择资源:
步骤1:终端确定一个TB的最大传输次数R。
步骤2:终端的MAC层从物理层上报的资源集合中选择满足以下条件的多个资源:所述多个候选资源位于连续的时隙内。
步骤3:如果在步骤2中终端的MAC层仅能够选择出R’个满足条件的资源,且R’<R,则终端的MAC层从物理层上报的资源集合的剩余资源中选择R-R’个资源,且满足:最终选择的R个资源中用于TB重传的资源能够被之前发送的SCI指示。
步骤4:用选择R个资源组作为一个SL授权,或者,如果选择的资源用于多个周期的数据发送,将选择的R个资源在多个周期内重复作为一个SL授权。
在一些实施方式中,对于采用连续时隙资源发送的TB,TB的接收端不反馈HARQ-ACK信息。
在另一些实施方式中,对于采用连续时隙资源发送的TB,TB的接收端应在对应的PSFCH资源反馈HARQ-ACK信息。
应用实例四
一组连续时隙资源由多个连续时隙内的资源组成,一组连续时隙资源也可以理解为一个MCSt资源。一组连续时隙资源中的所有资源均属于同一SL授权,用于同一TB的传输。
本应用实例中,一组连续时隙资源属于一个SL授权,用于一个TB的部分或全部传输,部分保证HARQ-ACK反馈的时间。具体地,终端工作在第二模式(即终端自主选择资源模式),终端的MAC层按照以下步骤选择资源:
如果终端工作在模式2资源选择模式,即终端自主资源选择模式,终端MAC层按照以下步骤选择资源:
步骤1:终端确定一个TB的最大传输次数R。
步骤2:终端的MAC层从物理层上报的资源集合中选择R个资源,所述R个资源满足以下条件:
1)如果资源池内配置了PSFCH资源,R个资源中任何两个位于不相邻时隙中的资源之间的间隔大于或等于Tmin;而且,
2)R个资源中用于TB重传的资源能够被之前发送的SCI指示。
步骤3:用选择R个资源组作为一个SL授权,或者,如果选择的资源用于多个周期的数据发送,将选择的R个资源在多个周期内重复作为一个SL授权。
在一些实施方式中,如果一个TB的发送资源和下一个用于重传的资源之间的间隔大于或等于Tmin,而且该传输激活了HARQ-ACK反馈,则接收该TB的终端应反馈HARQ-ACK信息,对于其它TB,接收端不反馈HARQ-ACK信息。
本申请实施例的技术方案,终端可以将连续的时隙用于不同TB的传输,在资源选择时,可以先选择一个SL授权,然后选择其它SL授权,不同SL授权占用相邻时隙;或者,选择R组由g个相邻时隙组成的连续时隙资源,作为g个SL授权;或者,优先在与已有SL授权相邻的时隙内选择资源。另外,终端也可以将连续的时隙用于同一个TB的传输,在资源选择时可以不保证或部分保证HARQ-ACK反馈的时间。根据本申请提出的方法,可以尽可能保证终端占用时间上连续的资源,以及HARQ-ACK反馈,有利于提高SL-U系统的整体性能。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背 本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图10是本申请实施例提供的资源选择装置的结构组成示意图一,应用于终端(如终端的MAC层),如图10所示,所述资源选择装置包括:
选择单元1001,用于选择多个SL授权,所述多个SL授权中的不同SL授权用于不同TB的传输;所述多个SL授权具有以下至少一种特征:
所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;
同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。
在一些实施方式中,所述选择单元1001,用于从第一资源集合中选择多个资源组,所述第一资源集合由所述终端的物理层确定并上报给媒介接入控制MAC层;基于所述多个资源组确定多个SL授权。
在一些实施方式中,所述选择单元1001,用于从第一资源集合中选择一个资源组;如果选择的资源组个数小于G,则从所述第一资源集合中继续选择一个资源组,直至选择的资源组个数等于G或无法从剩余资源中继续选择出一个资源组,G为正整数。
在一些实施方式中,所述选择单元1001,用于从第一资源集合中选择满足第一条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第一条件包括以下至少之一:
所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的侧行控制信息SCI指示。
在一些实施方式中,所述选择单元1001,用于从所述第一资源集合中选择满足第二条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第二条件包括以下至少之一:
所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示;
所述R个资源中任意一个资源与已选择的资源组内的资源中的至少一个位于相邻的时隙。
在一些实施方式中,所述选择单元1001,用于从第一资源集合中确定第一候选资源集合和第二候选资源集合;从所述第一候选资源集合和/或所述第二候选资源集合中选择满足第一条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第一条件包括以下至少之一:
所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
在一些实施方式中,所述第一候选资源集合具有以下特征:所述第一候选资源集合中的任意一个资源与已选择的资源组内的资源中的至少一个位于相邻的时隙;所述第二候选资源集合具有以下特征:所述第二候选资源集合包含所述第一资源集合中除所述第一候选资源集合外的至少部分资源。
在一些实施方式中,所述选择单元1001,用于从所述第一候选资源集合中选择R’个资源;如果R’<R,则所述终端从所述第二候选资源集合中选择R-R’个资源,选择的R个资源满足所述第一条件。
在一些实施方式中,所述选择单元1001,用于从第一资源集合中选择多组连续时隙资源,所述第一资源集合由所述终端的物理层确定并上报给MAC层;将所述多组连续时隙资源划分为多个资源组;基于所述多个资源组确定多个SL授权。
在一些实施方式中,所述选择单元1001,用于从第一资源集合中选择R组连续时隙资源,所述R组连续时隙资源具有以下至少一种特征:
所述R组连续时隙资源中的每组连续时隙资源包含的资源个数为g,g为正整数;
同一组连续时隙资源内的g个资源位于连续的时隙内;
所述R组连续时隙资源中任何两组连续时隙资源之间的间隔大于或等于第一时长。
在一些实施方式中,所述选择单元1001,用于将所述R组连续时隙资源划分为g个资源组,其中同一资源组中的不同资源属于不同的连续时隙资源。
在一些实施方式中,G表示所述终端的最大SL授权个数,g小于或等于G。
在一些实施方式中,所述R表示一个TB的最大传输次数。
在一些实施方式中,所述选择单元1001,用于将所述多个资源组作为多个SL授权,其中,每个资源组对应一个SL授权;或者,将所述多个资源组在多个周期内的重复作为多个SL授权,其中,每个资源组在多个周期内的重复对应一个SL授权。
在一些实施方式中,所述第一时长基于以下至少之一确定:
PSSCH与该PSSCH对应的PSFCH之间间隔的时长;
终端接收PSFCH所需的时长;
终端处理PSFCH所需的时长;
终端准备SL重传所需的时长;
终端所需的收发转换时长。
本领域技术人员应当理解,本申请实施例的上述资源选择装置的相关描述可以参照本申请实施例的资源选择方法的相关描述进行理解。
图11是本申请实施例提供的资源选择装置的结构组成示意图二,应用于终端(如终端的MAC层),如图11所示,所述资源选择装置包括:
选择单元1101,用于选择一个SL授权,所述SL授权用于一个TB的传输;所述SL授权对应一组连续时隙资源,所述连续时隙资源中的多个资源属于所述SL授权。
在一些实施方式中,所述选择单元1101,用于从第一资源集合中选择一个资源组,所述第一资源集合由所述终端的物理层确定并上报给MAC层;基于所述一个资源组确定一个SL授权。
在一些实施方式中,所述选择单元1101,用于从第一资源集合中选择满足第三条件的R个资源,所述R个资源组成一个资源组,R为正整数,所述第三条件包括以下至少之一:
所述R个资源中存在至少部分资源位于连续的时隙内;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
在一些实施方式中,所述选择单元1101,用于从所述第一资源集合中选择位于连续时隙内的R’个资源;如果R’<R,则从所述第一资源集合的剩余资源中选择R-R’个资源,选择的R个资源中用于TB重传的资源能够被之前发送的SCI指示。
在一些实施方式中,对于采用所述SL授权发送的TB,所述TB的接收端不反馈HARQ-ACK信息;或者,对于采用所述SL授权发送的TB,所述TB的接收端在所述TB对应的PSFCH反馈HARQ-ACK信息。
在一些实施方式中,所述选择单元1101,用于从第一资源集合中选择满足第四条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第四条件包括以下至少之一:
所述R个资源中存在至少部分资源位于连续的时隙内;
所述R个资源中任何两个不相邻时隙中的资源之间的间隔大于或等于第一时长;
所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
在一些实施方式中,对于采用所述SL授权发送的TB,
如果所述TB两次传输采用的资源之间的间隔大于或等于第一时长,则所述TB的接收端反馈HARQ-ACK信息;
如果所述TB两次传输采用的资源之间的间隔小于第一时长,则所述TB的接收端不反馈HARQ-ACK信息。
在一些实施方式中,所述第一时长基于以下至少之一确定:
PSSCH与该PSSCH对应的PSFCH之间间隔的时长;
终端接收PSFCH所需的时长;
终端处理PSFCH所需的时长;
终端准备SL重传所需的时长;
终端所需的收发转换时长。
在一些实施方式中,所述R表示一个TB的最大传输次数。
在一些实施方式中,所述选择单元1101,用于将所述一个资源组作为一个SL授权;或者,将所述一个资源组在多个周期内的重复作为一个SL授权。
本领域技术人员应当理解,本申请实施例的上述资源选择装置的相关描述可以参照本申请实施例的资源选择方法的相关描述进行理解。
图12是本申请实施例提供的一种通信设备1200示意性结构图。图12所示的通信设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,通信设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
该通信设备1200具体可为本申请实施例的终端,并且该通信设备1200可以实现本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该芯片1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
该芯片可应用于本申请实施例中的终端,并且该芯片可以实现本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述 的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质可应用于本申请实施例中的终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。该计算机程序产品可应用于本申请实施例中的终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。该计算机程序可应用于本申请实施例中的终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种资源选择方法,所述方法包括:
    终端选择多个侧行SL授权,所述多个SL授权中的不同SL授权用于不同传输块TB的传输;所述多个SL授权具有以下至少一种特征:
    所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;
    同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。
  2. 根据权利要求1所述的方法,其中,所述终端选择多个SL授权,包括:
    终端从第一资源集合中选择多个资源组,所述第一资源集合由所述终端的物理层确定并上报给媒介接入控制MAC层;
    所述终端基于所述多个资源组确定多个SL授权。
  3. 根据权利要求2所述的方法,其中,所述终端从第一资源集合中选择多个资源组,包括:
    所述终端从第一资源集合中选择一个资源组;
    如果选择的资源组个数小于G,则所述终端从所述第一资源集合中继续选择一个资源组,直至选择的资源组个数等于G或无法从剩余资源中继续选择出一个资源组,G为正整数。
  4. 根据权利要求3所述的方法,其中,所述终端从第一资源集合中选择一个资源组,包括:
    所述终端从第一资源集合中选择满足第一条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第一条件包括以下至少之一:
    所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
    所述R个资源中用于TB重传的资源能够被之前发送的侧行控制信息SCI指示。
  5. 根据权利要求3或4所述的方法,其中,所述终端从所述第一资源集合中继续选择一个资源组,包括:
    所述终端从所述第一资源集合中选择满足第二条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第二条件包括以下至少之一:
    所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
    所述R个资源中用于TB重传的资源能够被之前发送的SCI指示;
    所述R个资源中任意一个资源与已选择的资源组内的资源中的至少一个位于相邻的时隙。
  6. 根据权利要求3或4所述的方法,其中,所述终端从所述第一资源集合中继续选择一个资源组,包括:
    所述终端从第一资源集合中确定第一候选资源集合和第二候选资源集合;
    所述终端从所述第一候选资源集合和/或所述第二候选资源集合中选择满足第一条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第一条件包括以下至少之一:
    所述R个资源中任何两个资源之间的间隔大于或等于第一时长;
    所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
  7. 根据权利要求6所述的方法,其中,
    所述第一候选资源集合具有以下特征:所述第一候选资源集合中的任意一个资源与已选择的资源组内的资源中的至少一个位于相邻的时隙;
    所述第二候选资源集合具有以下特征:所述第二候选资源集合包含所述第一资源集合中除所述第一候选资源集合外的至少部分资源。
  8. 根据权利要求6或7所述的方法,其中,所述终端从所述第一候选资源集合和/或所述第二候选资源集合中选择满足第一条件的R个资源,包括:
    所述终端从所述第一候选资源集合中选择R’个资源;
    如果R’<R,则所述终端从所述第二候选资源集合中选择R-R’个资源,选择的R个资源满足所述第一条件。
  9. 根据权利要求1所述的方法,其中,所述终端选择多个SL授权,包括:
    终端从第一资源集合中选择多组连续时隙资源,所述第一资源集合由所述终端的物理层确定并上报给MAC层;
    所述终端将所述多组连续时隙资源划分为多个资源组;
    所述终端基于所述多个资源组确定多个SL授权。
  10. 根据权利要求9所述的方法,其中,所述终端从第一资源集合中选择多组连续时隙资源,包括:
    所述终端从第一资源集合中选择R组连续时隙资源,所述R组连续时隙资源具有以下至少一种特征:
    所述R组连续时隙资源中的每组连续时隙资源包含的资源个数为g,g为正整数;
    同一组连续时隙资源内的g个资源位于连续的时隙内;
    所述R组连续时隙资源中任何两组连续时隙资源之间的间隔大于或等于第一时长。
  11. 根据权利要求10所述的方法,其中,所述终端将所述多组连续时隙资源划分为多个资源组,包括:
    所述终端将所述R组连续时隙资源划分为g个资源组,其中同一资源组中的不同资源属于不同的连续时隙资源。
  12. 根据权利要求3至8、10至11中任一项所述的方法,其中,G表示所述终端的最大SL授权个数,g小于或等于G。
  13. 根据权利要求4至8、10至11中任一项所述的方法,其中,所述R表示一个TB的最大传输次数。
  14. 根据权利要求2至13中任一项所述的方法,其中,所述终端基于所述多个资源组确定多个SL授权,包括:
    所述终端将所述多个资源组作为多个SL授权,其中,每个资源组对应一个SL授权;或者,
    所述终端将所述多个资源组在多个周期内的重复作为多个SL授权,其中,每个资源组在多个周期内的重复对应一个SL授权。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述第一时长基于以下至少之一确定:
    物理侧行共享信道PSSCH与该PSSCH对应的物理侧行反馈信道PSFCH之间间隔的时长;
    终端接收PSFCH所需的时长;
    终端处理PSFCH所需的时长;
    终端准备SL重传所需的时长;
    终端所需的收发转换时长。
  16. 一种资源选择方法,所述方法包括:
    终端选择一个SL授权,所述SL授权用于一个TB的传输;所述SL授权对应一组连续时隙资源,所述连续时隙资源中的多个资源属于所述SL授权。
  17. 根据权利要求16所述的方法,其中,所述终端选择一个SL授权,包括:
    所述终端从第一资源集合中选择一个资源组,所述第一资源集合由所述终端的物理层确定并上报给MAC层;
    所述终端基于所述一个资源组确定一个SL授权。
  18. 根据权利要求17所述的方法,其中,所述终端从第一资源集合中选择一个资源组,包括:
    所述终端从第一资源集合中选择满足第三条件的R个资源,所述R个资源组成一个资源组,R为正整数,所述第三条件包括以下至少之一:
    所述R个资源中存在至少部分资源位于连续的时隙内;
    所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
  19. 根据权利要求18所述的方法,其中,所述终端从第一资源集合中选择满足第三条件的R个资源,包括:
    所述终端从所述第一资源集合中选择位于连续时隙内的R’个资源;
    如果R’<R,则所述终端从所述第一资源集合的剩余资源中选择R-R’个资源,选择的R个资源中用于TB重传的资源能够被之前发送的SCI指示。
  20. 根据权利要求18或19所述的方法,其中,
    对于采用所述SL授权发送的TB,所述TB的接收端不反馈混合自动重传请求确认HARQ-ACK信息;或者,
    对于采用所述SL授权发送的TB,所述TB的接收端在所述TB对应的PSFCH反馈HARQ-ACK信息。
  21. 根据权利要求17所述的方法,其中,所述终端从第一资源集合中选择一个资源组,包括:
    所述终端从第一资源集合中选择满足第四条件的R个资源,所述R个资源组成一个资源组,R为正整数;所述第四条件包括以下至少之一:
    所述R个资源中存在至少部分资源位于连续的时隙内;
    所述R个资源中任何两个不相邻时隙中的资源之间的间隔大于或等于第一时长;
    所述R个资源中用于TB重传的资源能够被之前发送的SCI指示。
  22. 根据权利要求21所述的方法,其中,对于采用所述SL授权发送的TB,
    如果所述TB两次传输采用的资源之间的间隔大于或等于第一时长,则所述TB的接收端反馈HARQ-ACK信息;
    如果所述TB两次传输采用的资源之间的间隔小于第一时长,则所述TB的接收端不反馈HARQ-ACK信息。
  23. 根据权利要求22所述的方法,其中,所述第一时长基于以下至少之一确定:
    PSSCH与该PSSCH对应的PSFCH之间间隔的时长;
    终端接收PSFCH所需的时长;
    终端处理PSFCH所需的时长;
    终端准备SL重传所需的时长;
    终端所需的收发转换时长。
  24. 根据权利要求18至23中任一项所述的方法,其中,所述R表示一个TB的最大传输次数。
  25. 根据权利要求17至24中任一项所述的方法,其中,所述终端基于所述一个资源组确定一个SL授权,包括:
    所述终端将所述一个资源组作为一个SL授权;或者,
    所述终端将所述一个资源组在多个周期内的重复作为一个SL授权。
  26. 一种资源选择装置,所述装置包括:
    选择单元,用于选择多个SL授权,所述多个SL授权中的不同SL授权用于不同TB的传输;所述多个SL授权具有以下至少一种特征:
    所述多个SL授权的资源对应多组连续时隙资源,同一组连续时隙资源中的不同资源属于不同的SL授权;
    同一个SL授权中任何两个资源之间的间隔大于或等于第一时长。
  27. 一种资源选择装置,所述装置包括:
    选择单元,用于选择一个SL授权,所述SL授权用于一个TB的传输;所述SL授权对应一组连续时隙资源,所述连续时隙资源中的多个资源属于所述SL授权。
  28. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法,或者权利要求16至25中任一项所述的方法。
  29. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法,或者权利要求16至25中任一项所述的方法。
  30. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法,或者权利要求16至25中任一项所述的方法。
  31. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法,或者权利要求16至25中任一项所述的方法。
  32. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法,或者权利要求16至25中任一项所述的方法。
PCT/CN2022/129982 2022-11-04 2022-11-04 一种资源选择方法及装置、终端 WO2024092745A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129982 WO2024092745A1 (zh) 2022-11-04 2022-11-04 一种资源选择方法及装置、终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129982 WO2024092745A1 (zh) 2022-11-04 2022-11-04 一种资源选择方法及装置、终端

Publications (1)

Publication Number Publication Date
WO2024092745A1 true WO2024092745A1 (zh) 2024-05-10

Family

ID=90929413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129982 WO2024092745A1 (zh) 2022-11-04 2022-11-04 一种资源选择方法及装置、终端

Country Status (1)

Country Link
WO (1) WO2024092745A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211430A (zh) * 2015-01-23 2017-09-26 Lg电子株式会社 在d2d通信系统中选择用于d2d ue的副链路授权的方法及其装置
CN112261613A (zh) * 2020-10-15 2021-01-22 大唐高鸿数据网络技术股份有限公司 一种资源选择的处理方法、装置及终端
US20210144750A1 (en) * 2019-11-08 2021-05-13 Huawei Technologies Co., Ltd. System and method for reservation and resource selection for sidelink communication
US20220070936A1 (en) * 2020-08-25 2022-03-03 Qualcomm Incorporated Sense and transmission of multiple transport blocks for new radio sidelink
US20220256539A1 (en) * 2021-02-11 2022-08-11 Qualcomm Incorporated Channel occupancy time (cot) aware autonomous sensing for sidelink
CN115245023A (zh) * 2022-06-17 2022-10-25 北京小米移动软件有限公司 资源确定的方法、装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211430A (zh) * 2015-01-23 2017-09-26 Lg电子株式会社 在d2d通信系统中选择用于d2d ue的副链路授权的方法及其装置
US20210144750A1 (en) * 2019-11-08 2021-05-13 Huawei Technologies Co., Ltd. System and method for reservation and resource selection for sidelink communication
US20220070936A1 (en) * 2020-08-25 2022-03-03 Qualcomm Incorporated Sense and transmission of multiple transport blocks for new radio sidelink
CN112261613A (zh) * 2020-10-15 2021-01-22 大唐高鸿数据网络技术股份有限公司 一种资源选择的处理方法、装置及终端
US20220256539A1 (en) * 2021-02-11 2022-08-11 Qualcomm Incorporated Channel occupancy time (cot) aware autonomous sensing for sidelink
CN115245023A (zh) * 2022-06-17 2022-10-25 北京小米移动软件有限公司 资源确定的方法、装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO: "Discussion on LBT impact to MAC for NR SL-U", 3GPP DRAFT; R2-2209936, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052263260 *

Similar Documents

Publication Publication Date Title
US11444729B2 (en) Transmitting feedback for data transmission through a sidelink
US11943168B2 (en) Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
WO2019007183A1 (zh) 一种资源选择方法及装置
WO2021008056A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2021000679A1 (zh) 一种通信方法及设备
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
JP2022520967A (ja) アップリンク伝送方法および通信装置
WO2022134076A1 (zh) 无线通信的方法和终端设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2024092745A1 (zh) 一种资源选择方法及装置、终端
WO2022077877A1 (zh) 侧行传输方法和通信装置
KR102442881B1 (ko) 무선 통신에서의 리소스 할당을 위한 방법 및 장치
WO2024067025A1 (zh) 侧行链路通信方法和装置
WO2024032323A1 (zh) 通信方法和通信装置
WO2023143092A1 (zh) 一种控制信息的发送方法和通信装置
WO2024067429A1 (zh) 通信方法及通信装置
WO2024016121A1 (zh) 侧行传输方法、终端和网络设备
US20240073868A1 (en) Wireless communication method, and device
WO2024067476A1 (zh) 一种通信方法、装置、计算机可读存储介质和程序产品
WO2023130282A1 (zh) 资源排除方法、装置、设备、存储介质及程序产品
WO2024066975A1 (zh) 一种通信方法及装置
WO2022205370A1 (zh) 载波选择方法、装置、终端及存储介质
WO2022141593A1 (zh) 一种通信方法及装置
WO2024093649A1 (zh) 一种侧行通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964052

Country of ref document: EP

Kind code of ref document: A1