WO2024067476A1 - 一种通信方法、装置、计算机可读存储介质和程序产品 - Google Patents

一种通信方法、装置、计算机可读存储介质和程序产品 Download PDF

Info

Publication number
WO2024067476A1
WO2024067476A1 PCT/CN2023/121081 CN2023121081W WO2024067476A1 WO 2024067476 A1 WO2024067476 A1 WO 2024067476A1 CN 2023121081 W CN2023121081 W CN 2023121081W WO 2024067476 A1 WO2024067476 A1 WO 2024067476A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
feedback
terminal device
cot
pssch
Prior art date
Application number
PCT/CN2023/121081
Other languages
English (en)
French (fr)
Inventor
易凤
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067476A1 publication Critical patent/WO2024067476A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates generally to the field of telecommunications, and more particularly to a communication method, apparatus, computer-readable storage medium, and computer program product.
  • Wireless communication technology has experienced rapid development in the past few decades, and has experienced the first generation of wireless communication systems based on analog communication systems, 2G wireless communication systems represented by the Global System for Mobile Communication (GSM), 3G wireless communication systems represented by Wideband Code Division Multiple Access (WCDMA), and now the Long Term Evolution (LTE) 4G wireless communication system, which has been widely used in the world and has achieved great success.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the services supported by wireless communication systems have also evolved from the initial voice and text messages to the current support for wireless high-speed data communications.
  • D2D device-to-device
  • 3GPP the air interface for direct communication between users is PC5, so it is also called PC5 communication; from the perspective of the link, the link for direct communication between users is defined as the sidelink (SL), which can also be called sidelink communication, corresponding to the uplink and downlink in the current communication system.
  • SL sidelink
  • the present application provides a communication method and apparatus, a communication apparatus, a computer-readable storage medium and a computer program product, which are used to ensure that the channel occupation time (COT) will not be lost, and make the common PSFCH (physical sidelink feedback channel) under the subcarrier spacing configuration of 60KHz meet the minimum occupied channel bandwidth requirement, and also solve the problem of mapping relationship interruption caused by PSSCH-PSFCH (physical sidelink shared channel-physical sidelink feedback channel) across COT.
  • COT channel occupation time
  • a communication method wherein the execution subject of the method may be a first terminal device, or a chip applied to the first terminal device.
  • the first terminal device determines a common feedback resource, receives first data from a second terminal device on a first time-frequency resource, determines a first feedback resource corresponding to the first time-frequency resource, the first feedback resource belongs to the common feedback resource, and the first terminal device sends a first signal on the first feedback resource.
  • COT channel occupancy time
  • the first data corresponds to a unicast type
  • the first terminal device sends feedback information on a second feedback resource corresponding to the first time-frequency resource, wherein the feedback information is a confirmation response or a negative response corresponding to the first data, and the second feedback resource does not belong to a public feedback resource.
  • the channel occupation time COT
  • the first data corresponds to the second multicast type
  • the first terminal device sends feedback information on the second feedback resource corresponding to the first time-frequency resource, wherein the feedback information is a confirmation response or a negative response to the first data, and the second feedback resource does not belong to the public feedback resource.
  • the channel occupation time COT
  • the first terminal device when the first data corresponds to the first multicast type and the hybrid automatic repeat request confirmation information corresponding to the first data is a negative response, the first terminal device sends feedback information on the second feedback resource corresponding to the first time-frequency resource, wherein the feedback information is a negative response to the first data. In this way, it is ensured that the channel occupation time (COT) will not be lost under the second multicast service type.
  • COT channel occupation time
  • the first signal is feedback information or other signals other than feedback information.
  • sending a signal not limited to feedback information can ensure that the channel occupation time (COT) will not be lost.
  • the common feedback resource is used for the first terminal device and other terminal devices other than the first terminal device to send signals.
  • the common feedback resource is used to provide the terminal device with a signal to avoid the loss of channel occupancy time due to no feedback in the PSFCH time slot.
  • resource blocks in the common feedback resources are associated with a first bitmap, so that resource blocks used to send feedback information can be indicated by bit values in the bitmap to meet OCB regulatory requirements.
  • the bits with a bit value of 1 in the first bitmap correspond to resource blocks in the common feedback resource.
  • the interlaced resource blocks can also be indicated by a bitmap, thereby meeting the OCB regulatory requirements and ensuring the integrity of the common PSFCH resources under various SCS configurations.
  • the number of bits indicated in the first bitmap for sending feedback information is greater than a preset value, thereby better meeting OCB regulatory requirements.
  • the first feedback resource and the first time-frequency resource belong to the same set of resource blocks, and/or the first feedback resource and the second feedback resource belong to the same set of resource blocks.
  • a communication method is provided, and the execution subject of the method can be a first terminal device, or a chip applied to the first terminal device.
  • the first terminal device receives the first data from the second terminal device; the first terminal device determines the physical side link feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain, and the first terminal device sends feedback information corresponding to the first data to the second terminal device on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the first terminal device sends feedback information of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device.
  • the first terminal device receives indication information sent by the second terminal device on the second COT, and the indication information indicates that the first terminal device sends feedback information on the second time-frequency resource in the time-frequency resource set in the second COT, so that the second terminal device indicates the time-frequency resource position of dynamic feedback to the first terminal device.
  • the time-frequency resource set includes M resource blocks, which are determined by the second bit map, and/or the first frequency domain offset value, and/or the second frequency domain offset value, and the second bit map is configured by the network side, or pre-configured, or specified by the protocol; the time-frequency resource set includes resources corresponding to the bits with a bit value of 1 in the second bit map corresponding to the PSFCH resources. This ensures that the PSSCH and its corresponding PSFCH can still be dynamically fed back in an orderly manner after crossing the COT.
  • the frequency domain resource position of the second time-frequency resource is determined based on the order of feedback information corresponding to the feedback of the first terminal device indicated in the indication information; or the time domain resource position of the second time-frequency resource is determined based on the position of the feedback time unit indicated in the indication information, and/or the time offset.
  • the order of feedback information corresponding to the feedback of the first terminal device is determined according to one or more of the indication field in the indication information, the hybrid automatic repeat request processing identifier associated with the physical sidelink shared channel PSSCH, or the new data identifier associated with the PSSCH, or the source device information associated with the PSSCH, or the destination device information associated with the PSSCH, or the group identification information associated with the PSSCH. This allows the order of feedback information to be indicated explicitly or implicitly, and the indication method is flexible.
  • the frequency domain resource position corresponding to the first terminal device is related to the first identifier for PSSCH transmission pre-configured for each terminal device, or is determined based on a combination of the first identifier and the source address identifier in the control information, so that the terminal devices in the group can be uniquely distinguished to ensure that there is no conflict.
  • the frequency domain resource location is determined based on the bit value in the indication information indicating the use of sending feedback information across feedback time units. PSFCH resource conflicts between (semi-)static feedback within a COT and dynamic feedback across COTs can be avoided.
  • the feedback information sent in the third COT is in the sidelink control information, the medium access control control element, or the physical sidelink shared channel PSSCH, thereby providing a feedback method of dynamic feedback displayed by the second terminal device.
  • the feedback information sent in the third COT, the frequency domain position (e.g., the starting position) of the feedback information is indicated by the side link control information, and the feedback information may be in the form of a HARQ-ACK codebook, which is different from the sequence feedback method in the R16/R17 design.
  • the feedback information may be in the form of a HARQ-ACK codebook, which is different from the sequence feedback method in the R16/R17 design.
  • the feedback information sent by the first terminal device on the third COT includes: a hybrid automatic repeat request processing identifier associated with the PSSCH, or a new data identifier associated with the PSSCH, or source device information associated with the PSSCH, or destination device information associated with the PSSCH, or group identification information associated with the PSSCH, and a positive response or a negative response associated with the PSSCH.
  • a communication method is provided, and the beneficial effects can be found in the description of the second aspect and will not be repeated here. It can be a second terminal device or a chip used in the second terminal device. The following description is made by taking the execution subject being the second terminal device as an example.
  • the second terminal device sends the first data to the first terminal device; the second terminal device determines the physical sidelink feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain, and the second terminal device receives the feedback information corresponding to the first data on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the second terminal device receives the feedback information of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device.
  • it also includes: the second terminal device sends indication information to the first terminal device on the second COT, and the indication information instructs the first terminal device to send feedback information on the second time-frequency resource in the time-frequency resource set in the second COT.
  • the time-frequency resource set includes M resource blocks, and the M resource blocks are determined by a second bit map, and/or a first frequency domain offset value, and/or a second frequency domain offset value, and the second bit map is configured by the network side, or pre-configured, or specified by a protocol; the time-frequency resource set includes resources corresponding to the bits with a bit value of 1 in the second bit map corresponding to the PSFCH resources.
  • the frequency domain resource position of the second time-frequency resource is indicated by indicating an order of feedback information corresponding to feedback of the first terminal device in the indication information; or the time domain resource position of the second time-frequency resource is indicated by the position of the feedback time unit indicated in the indication information, and/or the time offset.
  • the order of feedback information corresponding to the feedback of the first terminal device is indicated by one or more of an indication field in the indication information, a hybrid automatic repeat request processing identifier associated with a physical sidelink shared channel PSSCH, or a new data identifier associated with the PSSCH, or source device information associated with the PSSCH, or destination device information associated with the PSSCH, or group identification information associated with the PSSCH.
  • the frequency domain resource position corresponding to the first terminal device is related to the first identifier for PSSCH transmission pre-configured for each terminal device, or is indicated based on a combination of the first identifier and the source address identifier carried in the control information.
  • the frequency domain resource location is indicated by indicating a bit value in the indication information that is used to send the feedback information across the feedback time unit.
  • the feedback information received within the third COT is in sidelink control information, a medium access control control element, or a physical sidelink shared channel PSSCH.
  • the feedback information received within the third COT is in a channel, and the frequency domain location of the feedback information is indicated by the sidelink control information.
  • the feedback information received by the second terminal device on the third COT includes: a hybrid automatic repeat request processing identifier associated with the PSSCH, or a new data identifier associated with the PSSCH, or source device information associated with the PSSCH, or destination device information associated with the PSSCH, or group identification information associated with the PSSCH, and a positive response or a negative response associated with the PSSCH.
  • the second terminal device when the second terminal device occupies all frequency domain resources on a resource block set or the occupied frequency domain resources exceed a preset threshold, it indicates a PSFCH resource set within the first COT or the third COT, and the PSFCH resource set is used for the first terminal device or other terminal devices other than the first terminal device to send feedback information.
  • a communication device in a fourth aspect, is provided, and the beneficial effects can be found in the description of the first aspect and will not be repeated here.
  • the device has the function of implementing the behavior in the method instance of the first aspect.
  • the function can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing unit for determining a common feedback resource; a receiving unit for receiving first data from a second terminal device on a first time-frequency resource; the processing unit is also used to determine a first feedback resource corresponding to the first time-frequency resource, and the first feedback resource belongs to a common feedback resource; a sending unit is used to send a first signal on the first feedback resource.
  • a communication device in a fifth aspect, is provided, and the beneficial effects can be found in the description of the second aspect and will not be repeated here.
  • the device has the function of implementing the behavior in the method example of the second aspect.
  • the function can be implemented by hardware, or by hardware executing the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a receiving unit for receiving first data from a second terminal device; a processing unit for determining a physical sidelink feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain, and the device also includes a sending unit for sending feedback information corresponding to the first data to the second terminal device on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the sending unit is used to send feedback information of the first data in the second COT or the third COT, and the second COT is a COT initiated by the second terminal device, and the third COT is a COT initiated by the first terminal device.
  • a communication device is provided.
  • the beneficial effects can be found in the description of the second aspect and will not be repeated here.
  • the device has the following features:
  • the function can be implemented by hardware, or it can be implemented by hardware executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a sending unit for sending first data to a first terminal device; a processing unit for determining a physical sidelink feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain, and the device also includes a receiving unit for receiving feedback information corresponding to the first data on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the receiving unit is used to receive feedback information of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device.
  • a communication device comprising: a processor, and a memory storing instructions, wherein when the instructions are executed by the processor, the electronic device executes any method according to the first aspect and its implementation manner.
  • a communication device comprising: a processor, and a memory storing instructions, wherein when the instructions are executed by the processor, the electronic device executes any method according to the second aspect and its implementation manner.
  • a communication device comprising: a processor, and a memory storing instructions, wherein when the instructions are executed by the processor, the electronic device executes any method according to the third aspect and its implementation method.
  • a computer-readable storage medium stores instructions, and when the instructions are executed by an electronic device, the electronic device executes the method executed by the first terminal device or the second terminal device in the above aspects.
  • a computer program product comprising instructions, which when executed by an electronic device causes the electronic device to execute the method executed by the first terminal device or the second terminal device in the above aspects.
  • the present application provides a chip system, the chip system including a processor, for implementing the functions of the first terminal device or the second terminal device in the above-mentioned methods.
  • the chip system also includes a memory for storing program instructions and/or data.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the present application also provides a communication system, comprising: a first terminal device for executing the method of the first aspect and a second terminal device involved therein, or a first terminal device for executing the method of the second aspect and a second terminal device for executing the method of the third aspect.
  • FIGS. 1A to 1D are schematic diagrams of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an example flow chart of a communication method in an embodiment of the present disclosure.
  • FIG. 2A is a schematic diagram of a common feedback resource in an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of a scenario in which a COT is lost according to an embodiment of the present disclosure.
  • Figure 4 shows a schematic diagram of common PSFCH resources according to an embodiment of the present disclosure.
  • Figure 5 shows another schematic diagram of common PSFCH resources according to an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of PSFCH transmission of various service types according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an interlace structure according to an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of using a bit map to represent common PSFCH resources in a resource pool in some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram showing the configuration of PSFCH resources in a resource pool.
  • FIG. 10 shows a schematic diagram of a PSFCH resource bit map indication.
  • FIG11 shows a schematic diagram of time domain resources corresponding to PSFCH of PSSCH according to an embodiment of the present disclosure.
  • FIG12 shows a schematic diagram of PSFCH frequency domain resource allocation.
  • Figure 13 shows a schematic diagram of the common interlace structure of PSFCH format 0.
  • FIG. 14 is another example flow chart of the communication method in the embodiment of the present application.
  • FIG. 15 is a schematic diagram of a scenario in which the PSSCH-PSFCH mapping relationship targeted by an embodiment of the present disclosure may be broken.
  • FIG. 16 shows an example flow chart of a communication method according to some embodiments of the present disclosure.
  • FIG. 17 shows the fields that need to be included in the COT indication of some embodiments of the present disclosure.
  • Figure 18 is a schematic diagram of a TX UE display indicating the PSFCH feedback position in some embodiments of the present disclosure.
  • Figure 19 is another schematic diagram of the TX UE display indicating the PSFCH feedback position in some embodiments of the present disclosure.
  • FIG. 20 is a schematic diagram showing HARQ and data transmitted together according to some embodiments of the present disclosure.
  • FIG. 21 is a schematic diagram showing HARQ and SCI transmitted together according to some embodiments of the present disclosure.
  • FIG. 22 shows a flowchart implemented at a first terminal device in some embodiments of the present disclosure.
  • FIG. 23 shows a flowchart implemented at a first terminal device in some other embodiments of the present disclosure.
  • FIG. 24 shows a flowchart implemented at a second terminal device in some other embodiments of the present disclosure.
  • FIG. 25 shows a simplified block diagram of an example device for a possible implementation of an embodiment of the present application.
  • FIG. 26 shows a simplified block diagram of an example device for a possible implementation of an embodiment of the present application.
  • Embodiments of the present disclosure may be implemented according to any appropriate communication protocol, including but not limited to cellular communication protocols such as third generation (3rd Generation, 3G), fourth generation (4G), fifth generation (5G) and future communication protocols (for example, sixth generation (6G)), wireless local area network communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocol currently known or developed in the future.
  • cellular communication protocols such as third generation (3rd Generation, 3G), fourth generation (4G), fifth generation (5G) and future communication protocols (for example, sixth generation (6G)
  • wireless local area network communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocol currently known or developed in the future.
  • IEEE Institute of Electrical and Electronics Engineers
  • GPRS General Packet Radio Service
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution
  • UMTS Universal Mobile Telecommunications Service
  • LTE Long Term Evolution
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • TD-SCDMA Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G fifth generation
  • NR New Radio
  • 6G sixth generation
  • the embodiments of the present disclosure are described below with the 5G communication system in 3GPP as the background.
  • the embodiments of the present disclosure are not limited to the communication system, but can be applied to any communication system with similar problems, such as wireless local area network (WLAN), wired communication system, or other communication systems developed in the future.
  • WLAN wireless local area network
  • wired communication system or other communication systems developed in the future.
  • terminal refers to any terminal device that can communicate with network devices or with each other by wire or wirelessly.
  • Terminal devices may sometimes be referred to as user equipment (UE).
  • Terminal devices may be any type of mobile terminal, fixed terminal or portable terminal.
  • Terminal devices may be various wireless communication devices with wireless communication capabilities.
  • IOT Internet of Things
  • more and more devices that did not previously have communication capabilities such as but not limited to household appliances, vehicles, tools and equipment, service equipment and service facilities, have begun to obtain wireless communication capabilities by configuring wireless communication units, so that they can access wireless communication networks and accept remote control.
  • Such devices have wireless communication capabilities because they are configured with wireless communication units, and therefore also fall into the category of wireless communication devices.
  • the terminal device may include a mobile cellular phone, a cordless phone, a mobile terminal (MT), a mobile station, a mobile device, a wireless terminal, a handheld device, a client, a subscription station, a portable subscription station, an Internet node, a communicator, a desktop computer, a laptop computer, a notebook computer, a tablet computer, a personal communication system device, a personal navigation device, a personal digital assistant (PDA), a wireless data card, a wireless modem (Modulator demodulator, Modem), a positioning device, a radio broadcast receiver, an e-book device, a gaming device, an Internet of Things (IoT) device, a vehicle-mounted device, an aircraft, a virtual reality (VR) device, an augmented reality (AR) device, a wearable device (e.g., a smart watch, etc.), a terminal device in a 5G network or any terminal device in an evolved public land mobile network (PLMN), other devices that can be used for communication,
  • network node or “network device” used in this disclosure refers to an entity or node that can be used to communicate with a terminal device, such as an access network device.
  • An access network device can be a device deployed in a wireless access network to provide wireless communication functions for a mobile terminal, such as a radio access network (RAN) network device.
  • Access network devices can include various types of base stations. Base stations are used To provide wireless access services for terminal devices. Specifically, each base station corresponds to a service coverage area, and the terminal devices entering the area can communicate with the base station through wireless signals to receive the wireless access services provided by the base station.
  • the access network equipment may include a macro base station providing a macro cell, a micro base station for providing a micro cell, a micro base station for providing a micro cell, and a micro base station for providing a femto cell.
  • the access network equipment may also include various forms of relay stations, access points, remote radio units (RRUs), radio heads (RHs), remote radio heads (RRHs), and the like.
  • the names of access network devices may be different, for example, in the Long Term Evolution (LTE) network, it is called evolved NodeB (eNB or eNodeB), in the 3G network, it is called NodeB (NB), in the 5G network, it can be called g NodeB (gNB) or NR NodeB (NR NB), and so on.
  • the access network equipment may include a centralized unit (CU) and/or a distributed unit (DU).
  • the CU and DU can be placed in different places, for example: the DU is remote and placed in an area with high traffic volume, and the CU is placed in a central computer room. Alternatively, the CU and DU can also be placed in the same computer room.
  • the CU and DU can also be different components under one rack.
  • network devices the above-mentioned devices that provide wireless communication functions for mobile terminals are collectively referred to as network devices, and the embodiments of the present disclosure are no longer specifically limited.
  • D2D refers to the technology of direct communication between two or more user equipment (UE). Typical D2D devices include Bluetooth, WiFi-Direct, etc.
  • UE user equipment
  • Typical D2D devices include Bluetooth, WiFi-Direct, etc.
  • the air interface for direct communication between users is PC5, so it is also called PC5 communication; from the perspective of the link, the link for direct communication between users is defined as sidelink (SL), which can also be called sidelink communication.
  • Sidelink communication includes a variety of usage scenarios, such as the communication between Vehicle-to-everything (V2X) and smart terminals.
  • V2X Vehicle-to-everything
  • Vehicle-to-everything is the communication between cars and other vehicles or devices that may affect cars, including vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-infrastructure (V2I), and vehicle-to-network (V2N).
  • the transmission is based on side transmission, which can be regarded as the application of side transmission in the vehicle-to-everything (V2X).
  • Typical examples of communication between smart terminals include communication between mobile phones and wearable devices, communication between AR/VR helmets or glasses and smart screens, and communication between sensors.
  • frequency bands can be divided into licensed bands and unlicensed bands according to the different frequency bands used.
  • the licensed band users use spectrum resources based on the scheduling of the central node.
  • LTE Long Term Evolution
  • LAA Licensed Assisted Access
  • MulteFire MulteFire
  • unlicensed bands have been used by some wireless communication devices, such as Wi-Fi.
  • the LTE system introduces a listen-before-talk (LBT) mechanism to enable it to coexist with Wi-Fi devices, while enabling LTE Uu interface communication on the unlicensed band.
  • LBT listen-before-talk
  • PC5 interface which is a communication interface between user equipment (UE) and UE.
  • the transmission link in the PC5 interface is defined as a sidelink (SL).
  • SL-U sidelink
  • UEs working through SL-U also need to coexist with nearby Wi-Fi devices based on the LBT mechanism.
  • the transmitting node needs to use the spectrum resources in a competitive manner. Specifically, it competes for the channel by listening before talking (LBT).
  • LBT listening before talking
  • the LBT mechanism is essentially a channel access rule based on random back-off. Before accessing the channel and starting to send data, the UE needs to sense whether the channel is idle. If the channel has been idle for a certain period of time, it can occupy the channel. If the channel is not idle, it needs to wait for the channel to be idle again before occupying the channel.
  • the reason why the LBT mechanism has become a mandatory feature of the unlicensed frequency band is that various regions of the world have regulatory requirements for the use of unlicensed frequency bands. UEs of various forms working in different communication protocols can only use unlicensed frequency bands if they meet the regulations, thereby using spectrum resources relatively fairly and efficiently.
  • the UE Before transmission, the UE must perform LBT on each 20MHz channel. In order to avoid interference between different channels, the UE cannot send data on the entire 20MHz bandwidth, but reserves a portion of the frequency band resources as the guard band, and only sends data on the remaining frequency domain resources. This part of the available resources is called a resource block set (RB set).
  • RB set resource block set
  • the guard bandwidth between two RB sets can be used to transmit data, improving resource utilization.
  • Unlicensed spectrum resources can be shared between different user devices, that is, as long as the network devices 130 and 140 comply with certain regulations, they can use the spectrum to receive and send information.
  • a user device obtains a transmission opportunity through LBT, the length of time that can continuously send information corresponding to the transmission opportunity is called channel occupancy time (COT for short).
  • COT channel occupancy time
  • the user device After the user device obtains the COT, it can share the spectrum with other user devices and send the shared resources in the COT, including the corresponding time and frequency domain position, to other user devices.
  • other user equipment can use the specified frequency domain resources to send information at the specified time.
  • the equipment used in D2D technology is generally a half-duplex equipment, that is, the UE can only be in the state of receiving or sending information at the same time, and does not have the ability to send and receive at the same time.
  • the communication method provided in the embodiments of the present application can be applied to scenarios supported by Sidelink communication, and supports communication scenarios with and without network coverage.
  • the terminal devices 110 and 120 can be UEs (user equipment), such as UE-A and UE-B.
  • Network devices 130 and 140 can be base stations.
  • UE-A shown in Figures 1A, 1B and 1C is in a scenario with network coverage, UE-A can use Sidelink to communicate with UE-B through base station scheduling.
  • the resource can be called an authorized resource or an authorized frequency band.
  • the base station scheduling mode can also be not used for communication.
  • the UE-A can select resources by itself, that is, select resources for sidelink communication from the resource pool.
  • the resource can be called an unauthorized resource or an unauthorized frequency band.
  • the resource self-selection method can be used to build a Sidelink link for communication.
  • the resources in the embodiments disclosed in this application refer to time-frequency resources.
  • the spectrum used for Sidelink communication can be an unlicensed frequency band, a licensed frequency band and/or a dedicated frequency band. Before using an unlicensed frequency band for transmission, it is necessary to meet regional regulatory requirements and perform channel access, such as LBT.
  • the network devices 130 and 140 in the embodiments disclosed in the present application may be network devices 130 and 140 under different network systems, such as base stations, etc.
  • UE user equipment
  • UE user equipment
  • the network devices 130 and 140 may be any device with wireless transceiver functions, including but not limited to: in the traditional UMTS/LTE (Universal Mobile Telecommunications System/Long Term Evolution) wireless communication system, it may be a traditional macro base station eNB (evolved node B); in the HetNet (Heterogeneous Network) scenario, it may be a micro base station eNB; in the distributed base station scenario, it may be a baseband processing unit BBU (Base Band Unit) and a radio frequency unit RRU (Remote Radio Unit); in the CRAN (Cloud Radio Access Network) scenario, it may be a baseband pool BBU pool and a radio frequency unit RRU; in the future wireless communication system, it may be a gNB, a base station of subsequent evolution of 3GPP, an access node in a WiFi system, a wireless relay node, a wireless backhaul node, etc.
  • UMTS/LTE Universal Mobile Telecommunications System/Long Term Evolution
  • eNB evolved no
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • the network devices 130 and 140 may also be servers, wearable devices, or vehicle-mounted devices.
  • User equipment can be a vehicle-mounted communication module or other embedded communication module, a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a tactile terminal device, a vehicle-mounted terminal device, a wireless terminal in unmanned driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a wearable terminal device, etc.
  • VR virtual reality
  • AR augmented reality
  • FIG2 is a schematic diagram of an example flow of a communication method 200 in an embodiment of the present disclosure.
  • a first terminal device determines (210) a common feedback resource.
  • a second terminal device sends (220) first data 205 to the first terminal device, and accordingly, the first terminal device receives (230) the first data 205 from the second terminal device on a first time-frequency resource.
  • the first terminal device determines (240) a first feedback resource corresponding to the first time-frequency resource, and the first feedback resource belongs to a common feedback resource.
  • the first terminal device sends (250) a first signal on the first feedback resource.
  • common feedback resources are used for the first terminal device or other terminal devices to send signals.
  • the signals or data transmitted by the common feedback resources are not data or signals that a certain terminal device expects to be correctly decoded or deciphered.
  • the common feedback resources are not resources exclusive to a certain type of transmission or a certain terminal device.
  • the common feedback resource may include two discontinuous resource blocks, the frequency domain interval between the two discontinuous resource blocks is offset (offset value) resource blocks, and the two resource blocks may be the first resource block and the last resource block in the second frequency domain resource, respectively, and the second frequency domain resource is the frequency domain resource used by the first terminal device to send feedback information.
  • the frequency domain interval here refers to the number of resource blocks between the two discontinuous resource blocks.
  • the common feedback resource may be indicated by the network device, or may be preconfigured, or predefined.
  • the common feedback resource set is located on a first channel, the first channel includes at least one 20 MHz bandwidth, or the first channel includes at least one nominal bandwidth, or the first channel includes at least one resource block set.
  • the bandwidth corresponding to the (offset+2) resource blocks is greater than or equal to the product of the bandwidth of the first channel and the first coefficient.
  • the bandwidth corresponding to the second frequency domain resource is greater than or equal to the product of the bandwidth of the first channel and the first coefficient, wherein the first coefficient is greater than 0. and is less than 1.
  • the first coefficient is the minimum proportion of the first bandwidth occupied to meet the OCB requirement. The purpose of this design is to enable the first terminal device to send feedback information through the second frequency domain resources to meet the OCB requirement.
  • the second frequency domain resources may also include at least one resource block between the two discontinuous resource blocks.
  • the resource block numbers RB#n and RB#m in the common feedback resource are not adjacent.
  • the common feedback resource is the mth interlaced resource/subchannel in a resource pool or a resource block set (RB set), and the interlaced resource/subchannel includes at least two resource blocks interlaced in the frequency domain, where m is an integer greater than or equal to 1, and less than or equal to the total number of interlaced resources in the resource pool or the resource block set, where the value of m is predefined, or a preconfigured value, or is indicated or configured to the first terminal device by the network device through DCI (downlink control information) or RRC (radio resource control) signaling or SIB (system information block) information or MIB information. Therefore, the network device may indicate, or preconfigure or predefine, so that the first terminal device determines that the mth interlaced resource/subchannel of the first channel is a common feedback resource.
  • the common feedback resource is, for example, interlace resource #1 (interlace #1) shown in FIG. 7 below as the common feedback resource.
  • interlace resource #1 interlace #1
  • all PRBs included in interlace resource #1 in FIG. 7 are common feedback resources, or the resource block with the smallest index and the resource block with the largest index included in interlace resource #1 are common feedback resources.
  • the common feedback resource is the mth subchannel in a resource pool or a resource block set (RB set), the subchannel comprising at least two resource blocks interleaved in the frequency domain, wherein m is an integer greater than or equal to 1, and less than or equal to the total number of subchannels in the resource pool or the resource block set, wherein the value of m is predefined, or a preconfigured value, or is indicated or configured to the first terminal device by the network device through DCI or RRC signaling or SIB information or MIB information. Therefore, the network device may indicate, or preconfigure or predefine, the first terminal device to determine that the mth subchannel of the first channel is a common feedback resource.
  • RB set resource block set
  • interleaved resource #1 is used as a common feedback resource.
  • all PRBs included in interleaved resource #1 in FIG7 are common feedback resources, or the resource block with the smallest index and the resource block with the largest index included in interleaved resource #1 are common feedback resources.
  • resource blocks in the common feedback resource are associated with a first bitmap.
  • NR-SL supports unicast, multicast type 1 (NACK-only) and multicast type 2 (NACK and ACK feedback) feedback. For broadcast, no feedback is required.
  • multicast type 1 (NACK-only) scenario if the user in the group can correctly decode the PSCCH corresponding to the PSSCH, but the PSSCH decoding fails, the PSFCH sequence carrying the NACK information is fed back, otherwise no information is fed back.
  • the service transmission type indicator (Cast type indicator) field in the second-order SCI (including SCI-format 2-A) is "11", it indicates multicast type 1.
  • the second-order SCI implicitly or explicitly indicates that the HARQ-ACK feedback information corresponding to the current data only includes NACK, the service type is multicast type 1.
  • the users in the group can correctly decode the PSCCH corresponding to the PSSCH, according to the HARQ enable indication information of the control information, if the PSSCH decoding fails, the PSFCH sequence carrying the NACK information is fed back, otherwise the PSFCH sequence carrying the NACK information is fed back.
  • service transmission type indicator (Cast type indicator) field value in the second-order SCI (including SCI-format 2-A) is "01", it indicates multicast type 2.
  • the terminal In the unlicensed frequency band, the terminal must perform the LBT operation before sending data.
  • the terminal can send data in the COT only after the LBT is successful.
  • the transmission interruption time in the COT may be greater than 25us, bringing the risk of COT loss.
  • the disclosed embodiment can ensure that the COT is not lost by sending the first signal on the first feedback resource belonging to the public feedback resource.
  • the signal on the common feedback resource may be feedback information or other signals other than feedback information.
  • the signal on the common feedback resource may represent the corresponding PSSCH reception state, or may be other data or signals.
  • the signal sent by the first terminal device on the first feedback resource may be referred to as a first signal, and the first signal may be feedback information from the first terminal device to the second terminal device or other signals other than the feedback information.
  • the first data corresponds to a unicast type
  • the first terminal device sends feedback information on a second feedback resource corresponding to the first time-frequency resource, wherein the feedback information is a confirmation response or a negative response to the first data.
  • the second feedback resource does not belong to a common feedback resource.
  • the second feedback resource and the first feedback resource may not overlap in the frequency domain.
  • the first data corresponds to a first multicast type (or multicast type 1)
  • the first terminal device sends feedback information on a second feedback resource corresponding to the first time-frequency resource, wherein the feedback information is a confirmation response or a negative response to the first data. It is a public feedback resource.
  • the first terminal device when the first data corresponds to a second multicast type (or multicast type 2), and the hybrid automatic repeat request confirmation information corresponding to the first data is a negative response, the first terminal device sends feedback information on a second feedback resource corresponding to the first time-frequency resource, wherein the feedback information is a negative response to the first data.
  • the first feedback resource and the first time-frequency resource belong to the same resource block set, and/or the first feedback resource and the second feedback resource belong to the same resource block set.
  • the service scenarios supporting PSFCH feedback in the embodiments of the present disclosure can specifically support three scenarios: unicast, multicast, and broadcast.
  • Physical layer HARQ feedback is supported for unicast and multicast.
  • the unicast scenario a transmitting user and a receiving user form a unicast connection pair. After the receiving user correctly receives a control message from the transmitting user, the receiving user sends a PSFCH sequence carrying ACK information to the transmitting user based on the HARQ enable indication information of the control information. If the PSSCH is correctly decoded, the PSFCH sequence carrying NACK information is fed back. Otherwise, the PSFCH sequence carrying NACK information is fed back.
  • the multicast type 1 NACK-only
  • the PSSCH decoding fails, the PSFCH sequence carrying NACK information is fed back, otherwise no information is fed back.
  • the multicast type 2 NACK/ACK
  • the PSSCH decoding fails, the PSFCH sequence carrying the NACK information is fed back, otherwise the PSFCH sequence carrying the NACK information is fed back.
  • NR-SL supports unicast, multicast type 1 (NACK-only) and multicast type 2 (NACK and ACK feedback) feedback. For broadcast, no feedback is required.
  • the LBT access method generally adopts energy-based detection and signal type detection.
  • NR-U adopts energy detection
  • WiFi adopts a combination of the two detection methods.
  • Energy-based detection requires setting a detection threshold (Energy Detection Threshold). When the detected energy exceeds the detection threshold, it is judged that the channel is busy and access to the channel is not allowed. When the detected energy is lower than the detection threshold, if it continues for more than a period of time, access to the channel is allowed.
  • OCB occupied channel bandwidth
  • 20MHz the minimum occupied channel bandwidth
  • OCB occupied channel bandwidth
  • the 3GPP NR-U system introduces the concept of interlaced RB (interlaced resource block) and defines interlacem ⁇ 0, 1, ..., M-1 ⁇ to include multiple ⁇ m, M+m, 2M+m, 3M+m, ... ⁇ RBs.
  • LBT mechanisms are generally divided into the following four categories:
  • Category 1 LBT Send immediately after a short switching gap. Also known as Category 1 LBT, it is used for communication equipment to send immediately after the switching gap from the receiving state to the sending state during the Channel Occupancy Time (COT). COT refers to the time that the communication equipment is allowed to occupy the channel after successfully accessing the channel; the switching gap cannot be greater than 16us.
  • COT Channel Occupancy Time
  • Category 2 LBT LBT without random backoff. Also called Cat 2 LBT, it is used for communication equipment to send without random backoff after it detects that the channel is idle for a certain period of time.
  • Category 3 LBT LBT with random backoff and fixed-size contention window. Also called Cat 3 LBT, it is used for communication equipment to generate a random number N based on a fixed-size contention window and to send after the channel is detected to be idle for a period of time determined by the random number N.
  • the size of the contention window is related to the minimum and maximum values of N.
  • Category 4 LBT LBT with random backoff and variable-sized contention window. Also known as Category 4 LBT, it is used for a communication device to generate a random number N based on a variable-sized contention window and to send after detecting that the channel is idle for a period of time determined by the random number N.
  • the size of the contention window is related to the minimum and maximum values of N, and the communication device can change the size of the contention window.
  • NR-U devices follow the 3GPP protocol and use the LBT mechanism as the channel access method. Specifically, NR-U devices use the following types of LBT:
  • Type 1 LBT Cat 4 LBT.
  • NR-U devices need to perform random backoff before they can access the channel and send data.
  • the network devices 130, 140 or the terminal devices 110, 120 may initiate transmission after first sensing that the channel is idle during a sensing slot duration of an extended duration (defer sensing, denoted as Td ) and after the counter N in the following step 4 is zero. Specifically, the counter N is adjusted by sensing the channel to obtain an additional sensing slot duration according to the following steps:
  • N init N init , where N init is a random number uniformly distributed between 0 and CW p , and execute step 4;
  • m p , CW min,p and CW max,p are based on the channel access priority level p associated with the network device 130 , 140 or terminal device 110 , 120 transmission, as shown in the following table.
  • the channel occupancy time (COT) of the network device 130, 140 or the terminal device 110, 120 transmitting on the channel does not exceed Tmcot,p , wherein the channel access process is performed based on the channel access priority level p associated with the transmission of the network device 130, 140 or the terminal device 110, 120.
  • the network devices 130, 140 or the terminal devices 110, 120 maintain the contention window value CWp , and adjust the value of CWp according to the following steps before step 1:
  • the CW p value corresponding to each priority class p ⁇ 1, 2, 3, 4 ⁇ is increased to the next higher allowed value and used in step 2; otherwise, step 1 is executed.
  • the reference subframe k is the starting subframe of the most recent transmission of the network device 130, 140 or the terminal device 110, 120 on the channel.
  • Type 2A LBT Cat 2 LBT with 25us interval.
  • the NR-U device can access the channel and send data after detecting that the channel is idle for 25us.
  • Type 2B LBT Cat 2 LBT with 16us interval.
  • the NR-U device can access the channel and send data after detecting that the channel is idle for 16us.
  • Type 2C LBT Cat 1 LBT with a maximum interval of 16us.
  • the NR-U device does not need to listen to the channel and can directly access the channel and send data after a transition interval of up to 16us within the COT.
  • the NR-U device can be used as a load-based equipment (Load Based Equipment, LBE), which can perform channel sensing and competitive access at any time point without considering frame boundaries.
  • LBE load-based equipment
  • FBE frame-based equipment
  • the NR-U device is only allowed to obtain COT through competitive access to the channel on the frame boundary synchronized within the system.
  • the "frame” here means a fixed frame period (Fixed Frame Period, FFP).
  • the specific period value is configured by the Radio Resource Control (Radio Resource Control, RRC) signaling.
  • the period value supported by the current protocol is 1ms, 2ms, 2.5ms, 4ms, 5ms and 10ms can all be divided evenly into 2 radio frame durations, that is, 20ms.
  • the corresponding PSSCH resource in a certain COT does not need to be fed back, since a PSFCH feedback occupies 3 OFDM symbols (including the 2 OFDM symbols mentioned above and the transceiver conversion interval (gap)), it only occupies one PRB (physical resource block) resource.
  • the corresponding PSFCH time slot may not have user transmission.
  • the transmission interruption time in the COT may be greater than 25us, bringing the risk of COT loss.
  • Figure 3 it is a schematic diagram of the COT loss scenario for the embodiment of the present disclosure.
  • the COT is a broadcast service type
  • the corresponding PSFCH resource has no terminal for HARQ-ACK feedback. At this time, the terminal of the different system may pass the LBT and seize the COT.
  • a common PSFCH resource set is defined in a resource pool, and the common PSFCH resource includes one or more PRB resources.
  • the significance of the common PSFCH resource set is that the resources defined therein can be used by all UEs to send signals, rather than PRB resources dedicated to a certain PSFCH transmission, but the signals sent on the common PSFCH resources may not be used for the real feedback information of the corresponding PSSCH data, that is, the TX UE only receives and decodes the HARQ information on those dedicated PSFCH resources.
  • the time slot where the PSFCH is located may have feedback information from multiple users or multiple service types, and each feedback UE may not be able to fully determine the feedback type of other users, or whether there is feedback information.
  • the RX UE an example of the first terminal device
  • the RX UE must send signals on these common PSFCH resources, especially for NACK-only and blind retransmission types.
  • the RX UE does not need to feedback any information, but in order to ensure that the COT is not lost, the scheme of the embodiment of the present disclosure requires the RX UE to send the first signal on the common PSFCH resource, thereby ensuring that the COT is not lost.
  • the first signal sent can be feedback information or other information, or it can be the reception status information corresponding to the current PSSCH, that is, NACK or ACK, etc.
  • the RX UE not only needs to send the first signal on the common PSFCH resource, but also needs to transmit feedback information on the dedicated PSFCH resource.
  • OCB regulations in some regions require that signal transmission occupy 80% of the nominal bandwidth (20MHz).
  • OCB can be met by multiplexing the NRU design, that is, introducing an interlace structure.
  • PSFCH transmission also needs to meet OCB requirements.
  • the common PSFCH resource can be a common interlace, which is an interlaced structure.
  • the common PSFCH resource set it should be at the resource pool level and can be (pre) configured or agreed upon by protocol. If it is (pre) configured, it can be indicated by bitmap. If it is agreed upon by protocol, for areas without OCB requirements, the RBs contained in the common PSFCH resource set can be the first RB on each RB set, or the last RB, or the RB at a specific location; for areas with OCB requirements, the common PSFCH resource set can be the PRB resources contained in interlace#0 in the resource pool, or a certain interlace resource can be selected.
  • the PRB resources contained in the interlace do not belong to the guard band.
  • RB resources that belong only to the RB set should be preferred, and resources that belong to the guard band should be avoided.
  • PRBs that are not on the guard band can be selected to send PSFCH.
  • the common PSFCH resources include several RBs, and these RB resources should be distributed on various RB sets in the resource pool.
  • the common PSFCH resources should include interlace RBs on all RB sets in the resource pool.
  • FIG4 shows a schematic diagram of the common PSFCH resources of an embodiment of the present disclosure.
  • the resource pool includes two RB sets, and the common PSFCH resources include two RBs, one on RB set 0 and the other on RB set 1, while FIG5 shows another schematic diagram of the common PSFCH resources of an embodiment of the present disclosure.
  • the PRB resources on interlace 0 on two RB sets in the resource pool are included.
  • FIG6 it is a schematic diagram of PSFCH transmission of each service type in an embodiment of the present disclosure.
  • the resource pool adopts an interlace structure to transmit data.
  • the PSSCH transmitted by UE1 is of unicast type. Therefore, the receiving UE corresponding to UE1 (i.e., the UE receiving the PSSCH transmission of the unicast type) not only needs to send the first signal on the common PSFCH interlace, but also needs to send feedback information on the dedicated PSFCH.
  • UE2 transmits a broadcast type service and does not need feedback information. Therefore, the receiving UE corresponding to UE2 only needs to transmit the first signal on the common PSFCH.
  • the transmission is multicast type 1.
  • the receiving UE with a receiving status of NACK needs to provide feedback. Therefore, for the receiving UE corresponding to UE3, if the receiving status corresponding to the received data is ACK, it only needs to send the first signal on the common PSFCH interlace; if the receiving status corresponding to the received data is NACK, the RX UE needs to send signals on the common interlace and dedicated PSFCH at the same time, specifically, send the first signal on the common interlace and send feedback information on the dedicated PSFCH.
  • the signal (i.e., feedback information) sent on the dedicated PSFCH resource is used by the transmitting UE (or TX UE, an example of the second terminal device) to determine the PSSCH reception state, i.e., the receiving end
  • the UE (or RX UE) must provide feedback on the reception status of the PSSCH on the dedicated PSFCH resource.
  • the signal on the common interlace i.e., the first signal
  • a common PSFCH resource may contain RB resources of multiple RB sets in the resource pool, and PSSCH transmission does not necessarily occupy the entire resource pool, but LBT is required before data is transmitted (if required), that is, the larger the transmission bandwidth, the higher the requirement for LBT.
  • the main purpose of transmitting common PSFCH resources is to ensure that COT is not lost and to meet the OCB requirements of certain regions. Therefore, the use of common PSFCH resources in the embodiments of the present disclosure can be based on some criteria. Specifically, common PSFCH resources may span multiple RB sets, but LBT is required to send information. At least one of the following criteria can be considered:
  • RX UE transmits on all RBs on the common PSFCH resources. Under this rule, regardless of how many RB sets the common PSFCH resource set contains RBs, RX UE needs to transmit on these common PSFCH resources.
  • RX UE only sends on the common PSFCH resources on the RB set where PSSCH is located. For example, in Figures 4 and 5, UE1 sends information to UE2 on RB set0, and RX UE2 needs to send information on the common PSFCH resources included in RB set 0 where PSSCH is located.
  • RX UE sends on the common PSFCH resources on the RB set where the dedicated PSFCH (if any) is located. For example, in Figures 4 and 5, UE1 sends information to UE2 on RB set0, and its corresponding dedicated feedback resources are on RB set0, so RX UE2 needs to send information on the resources contained in RB set0 where the dedicated PSFCH resources are located.
  • RX UE sends on the common PSFCH resources in the RB set included in the shared COT.
  • UE1 initiates a COT on RB set0, and then UE1 sends information to UE2 on RB set0.
  • the COT initiator UE1 can instruct UE2 to use LBT type2 for PSFCH feedback on RB set0, so RX UE2 needs to send information on the common PSFCH resources on RB set0.
  • the resource block in the first feedback resource corresponds to the bit value indicating the sending of feedback information in the first bit map.
  • the subcarrier spacing corresponding to the first feedback resource is 60KHZ, and in the first bit map, the value 0 indicates that the corresponding PRB (physical resource block) is not used for the sending and receiving of PSFCH, and the value 1 indicates that the corresponding PRB (physical resource block) is used for the sending and receiving of PSFCH.
  • 1 indicates that the corresponding resource block is used to send feedback information
  • 0 indicates that the corresponding resource block is not used to send feedback information.
  • 1 indicates that the corresponding resource block does not send feedback information and 0 indicates that the corresponding resource block is used to send feedback information.
  • the number of 0s or 1s indicated for sending feedback information in the first bit map is greater than a preset value.
  • interlace transmission is one of the methods to meet OCB requirements.
  • the NRU does not support the interlace structure under the 60KHz SCS (subcarrier spacing) configuration, so the 60KHz interlace structure cannot be used to meet the OCB regulatory requirements.
  • the above-mentioned common interlace method is no longer applicable. Therefore, some embodiments of the present disclosure define a bitmap set to achieve an effect similar to common interlace.
  • the bitmap set that is, the first bitmap, is used to define the PRB resources of the common PSFCH.
  • the length of the bitmap is equal to the number of RBs in the resource pool, that is, the bit value corresponds to the RB in the resource pool.
  • the bit value of 1 in the first bitmap represents that the PRB is used for the common PSFCH, and the bit value of 0 represents that the value is not used for the common PSFCH.
  • the bit value of 0 represents that the PRB is used for the common PSFCH, and the bit value of 1 represents that the value is not used for the common PSFCH. From the perspective of the receiving end user, it is best to interleave 1s and 0s in the bitmap set within an RBset, that is, the intervals of "1" in the bitmap are equidistant.
  • the number of bit values indicating that it is used for common PSFCH needs to be greater than the preset value, that is, the number of 0s or 1s indicating that it is used to send the first feedback information is greater than the preset value. For example, if the bit value is 1, it means that the PRB is used for common PSFCH, then the number of "1"s in the bitmap is greater than or equal to 10. From the perspective of simple implementation, when a resource pool contains multiple RB sets, the configuration of the bitmap value on other RB sets can be a copy of a certain RB set.
  • the first bit value of the bitmap is "1", followed by 0, and is repeated in the manner of "1010", so that in the RB set, the number of RBs used to characterize the common PSFCH resources is greater than or equal to 10.
  • the configuration of the bitmap can be "10101010101010100000", that is, 10 of the first 20 bit values are "1", and the rest are all 0.
  • FIG8 A schematic diagram of using a bitmap to represent the common PSFCH resources in the resource pool in some embodiments of the present disclosure is shown in FIG8 . According to FIG8 , an example of the position of "1" in the bitmap being used for the common PSFCH resources is exemplarily shown.
  • the "sl-PSFCH-RB-Set” bitmap indicates the resources used for HARQ-ACK transmission.
  • the PRB resources corresponding to the bit value 1 in the bitmap can be used as HARQ-ACK feedback.
  • the "sl-RB-SetPSFCH” bitmap is used to indicate the Scheme 2 conflict indicator.
  • the bitmap with a value of 1 indicates that the corresponding PRB resource can be used as a conflict indication for scheme 2. Therefore, in some embodiments, the bitmap used for common PSFCH resources should not overlap with the position with a bit value of 1 in "sl-PSFCH-RB-Set" and "sl-RB-SetPSFCH".
  • the PSFCH feedback can be limited to the starting sub-channel occupied by the PSSCH transmission, or the PSSCH data of each sub-channel corresponds to the PSFCH feedback corresponding to each sub-channel, by configuring the parameter sl-PSFCH-CandidateResourceType.
  • the time and frequency resources of sidelink communication are configured based on the SL communication resource pool.
  • the SL communication resource pool can be regarded as a collection of time resources and frequency resources used for SL communication.
  • the base station uses a bit map and periodically repeats the bit map to indicate the set of subframes used for SL communication in all subframes in the system.
  • the available subframes for SL communication are indicated by a bit map in NR SL. For example, the number of symbols occupied by SL transmission in each subframe is fixed to M symbols, and M is defined as an SL time domain transmission duration, or time domain transmission unit.
  • the base station For the frequency resources of the SL communication resource pool, the base station divides the frequency band used for SL communication into several sub-channels, each of which contains a certain number of resource blocks.
  • the base station can indicate the sequence number of the first resource block of the frequency resources used for SL communication, the total number of sub-channels N contained in the communication resource pool, and the number of resource blocks nCH contained in each sub-channel.
  • SL transmission can occupy one or more sub-channels at a time.
  • scheduling SL communication resources scheduling is performed in the frequency domain with sub-channels as the granularity.
  • NR-V2X supports physical layer HARQ-ACK feedback, that is, for a PSSCH transmission, if the transmitting user equipment carries HARQ-ACK feedback enable information in the control information, the receiving user equipment needs to feedback the ACK/NACK information of the response based on the PSSCH decoding result, where the ACK/NACK information is transmitted through the PSFCH channel.
  • the PSFCH channel resource is a periodic resource configured in the resource pool, and its periodic configuration parameters Can be 0, 1, 2, 4. Indicates that there is no PSFCH resource configuration in the resource pool, and PSFCH transmission is not enabled in the resource, that is, physical layer HARQ feedback is not supported; Indicates that within a time window, There will be one PSFCH feedback time slot in each SL time slot.
  • FIG9 shows a schematic diagram of the PSFCH resource configuration in the resource pool. As shown in FIG9 , in the time slot where the physical resources of the PSFCH are located, the PSFCH occupies the last two symbols before the GAP.
  • PSFCH feedback resources are configured once every N time slots.
  • V2X transmission mode 2 unlike base station scheduling, users need to independently select PSSCH transmission resources based on their own listening results. Therefore, in order to simplify the PSFCH resource selection process, NR-V2X configures PSFCH feedback resources for each PSSCH subchannel.
  • the specific process of determining the PSFCH resources corresponding to each subchannel is as follows:
  • the resource pool is configured with a bitmap of PSFCH frequency domain resources to indicate whether a specific PRB on the frequency domain resources of the resource pool can be used as a PSFCH resource, that is, the length of the bit information contained in the bitmap is equal to the number of PRBs in the resource pool.
  • a 1 in the bitmap indicates that the corresponding PRB can be used for PSFCH transmission, and a bit 0 indicates that the corresponding PRB resource cannot be used for PSFCH transmission.
  • PSFCH resources can be used for HARQ-ACK transmission, and its resources are represented by the "sl-PSFCH-RB-Set" bitmap.
  • the bit value of 1 in the bitmap indicates that the corresponding PRB resource can be used for HARQR-ACK feedback.
  • PSFCH resources can also be used for Scheme 2 conflict indication, and its resources are represented by the "sl-RB-SetPSFCH” bitmap.
  • the bitmap value of 1 indicates that the corresponding PRB resource can be used as a Scheme 2 conflict indication. It should be noted that the positions where the bit value of 1 in "sl-PSFCH-RB-Set” and “sl-RB-SetPSFCH” do not overlap. As shown in Figure 10, it is a schematic diagram of the PSFCH resource bit map indication.
  • the bit map can be used to indicate the above-mentioned HARQ-ACK resources, and can also be used to indicate scheme 2 conflict resources.
  • the number of PSFCH feedback resources corresponding to each subchannel is in Indicates the number of PRBs of the PSFCH frequency domain resources, that is, the total number of bits with a value of 1 in the bit map indicating the PSFCH frequency domain resources.
  • FIG11 shows a schematic diagram of PSSCH time domain resources corresponding to PSFCH in an embodiment of the present disclosure.
  • K PSSCH carried on time slots 0 and 1 can be fed back on the PSFCH resources on time slot 3
  • PSSCH carried on time slots 2/3/4/5 can be fed back on the PSFCH resources on time slot 7. Since time slots 2/3/4/5 are fed back on the PSFCH resource of one time slot, it can be called a PSSCH bundling window length.
  • the PSFCH available resources in a PSFCH feedback time slot are allocated to each subchannel in the feedback cycle in a sequential manner in the time domain first and then in the frequency domain.
  • the PSFCH resources corresponding to each subchannel in the four bound PSSCH time slots are numbered as shown in Figure 12, that is, a PSFCH feedback resource of one PRB is allocated to each subchannel in each time slot.
  • a design that meets the OCB requirements is to introduce common PSFCH resources, which can be a common interlace or other common PRBs.
  • a common interlace structure is defined through the resource pool, and then the users in the resource pool transmit the corresponding HARQ feedback information on other non-Common PSFCH resources according to the PSSCH-PSFCH mapping rules of R16/R17.
  • the disclosed embodiment solves the COT loss problem caused by the absence of PSFCH transmission in the time slot where PSFCH transmission is located.
  • RX UE sends on the common interlace to solve the OCB problem and avoid the COT loss problem. Since the 60KHz interlace structure is not defined in the current NRU, the disclosed embodiment is designed to solve the problem of PSFCH transmission meeting OCB regulations without an interlace structure.
  • FIG. 13 it is a schematic diagram of the common interlace structure of PSFCH format 0.
  • UE1, UE2, and UE3 perform PSCCH/PSSCH transmission in a certain time slot within COT, but their corresponding structure UE not only does not need to provide feedback on the dedicated PSFCH transmission PRB resources, but also needs to send signals on the common interlace to meet the OCB requirements.
  • the PSFCH sequence generation method in the embodiment of the present disclosure is, specifically, that the PSFCH is based on a low peak-to-average ratio ZC sequence, which occupies 2 consecutive OFDM symbols in the time domain and 1 PRB in the frequency domain.
  • phase rotation value ⁇ is determined by the following formula.
  • NR-V2X Indicates the number of subcarriers in an RB.
  • NR defines this value as 12.
  • l′ indicates the symbol index relative to the first OFDM symbol on the current PSFCH transmission resource.
  • m 0 indicates the phase of ACK in a PSFCH feedback resource pair, and
  • m cs indicates the phase offset of the NACK sequence relative to the ACK sequence in a PSFCH feedback resource pair.
  • NR-V2X supports physical layer PSFCH feedback in unicast and multicast scenarios.
  • m cs For different service types, the value of m cs is determined according to Table 2 and Table 3, where Table 2 is the phase mapping relationship of a PSFCH feedback sequence pair in unicast and multicast type 2 scenarios, and Table 3 is the HARQ information mapping relationship of PUCCH format0 with SR request in multicast type 1 scenario.
  • the resource pool can also be configured Limit the PSFCH feedback resources that can be used by the PSSCH receiving user equipment.
  • the receiving end user equipment of the PSSCH can only use the PSFCH resources corresponding to its first subchannel, that is, As shown in FIG. 12 , when the PSSCH occupies two subchannels numbered 5 and 9 to transmit data, the receiving end user of the PSSCH can only use the PSFCH resource numbered 5 for feedback.
  • the receiving end user equipment of the PSSCH can use the PSFCH resources corresponding to all its sub-channels for feedback, that is,
  • the sending user equipment selects The resource feedback PSFCH corresponding to each PSFCH resource pair, wherein P ID represents the physical layer source address ID carried in the control information.
  • P ID represents the physical layer source address ID carried in the control information.
  • FIG14 is another example flow chart of the communication method in the embodiment of the present application.
  • the first terminal device receives (1410) the first data 1405 from the second terminal device; the first terminal device determines (1430) the physical side link feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain, and the first terminal device sends (1450) feedback information 1415 corresponding to the first data to the second terminal device on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the first terminal device sends (1450) in the second COT or the third COT.
  • the first data feedback information 1415, the second COT is a COT initiated by the second terminal device
  • the third COT is a COT initiated by the first terminal device.
  • the second terminal device sends (1420) the first data 1405 to the first terminal device; the second terminal device determines (1440) the physical side link feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain, and the second terminal device receives (1460) the feedback information 1415 corresponding to the first data on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the second terminal device receives (1460) the feedback information 1415 of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device.
  • the disclosed embodiment can avoid the situation where PSFCH cannot be fed back in an established manner due to the COT being preempted by other UEs. Since the period of PSFCH is (pre) configured, PSSCH-PSFCH corresponds one-to-one according to the mapping rules, and in the unlicensed frequency band, the terminal needs to perform LBT operation before sending a signal. When LBT fails, the one-to-one mapping relationship of PSSCH-PSFCH will be broken, resulting in PSFCH transmission failure. PSFCH appears periodically, and examples of PSSCH and PSFCH mapping one-to-one according to the mapping rules can be seen in Figures 11 and 12. In the unlicensed frequency band, the UE performs an LBT operation to seize resources.
  • FIG. 15 is a schematic diagram of a scenario in which the PSSCH-PSFCH mapping relationship targeted by an embodiment of the present disclosure may be broken.
  • the second terminal device sends indication information to the first terminal device on the second COT.
  • the first terminal device receives the indication information sent by the second terminal device on the second COT, and the indication information instructs the first terminal device to send feedback information on the second time-frequency resource in the time-frequency resource set in the second COT.
  • the time-frequency resource set includes M resource blocks, and the M resource blocks are determined by a second bit map, and/or a first frequency domain offset value, and/or a second frequency domain offset value.
  • the second bit map may be configured by the network side, or preconfigured, or specified by a protocol.
  • the bit corresponding to the bit value of 1 in the second bit map may correspond to a PSFCH resource, indicating that the corresponding resource can be used to send feedback information, and the bit corresponding to the bit value of 0 indicates that the corresponding resource is not used to send feedback information.
  • the time-frequency resource set includes resources corresponding to the bit value of 1 in the second bit map corresponding to the PSFCH resource.
  • the frequency domain resource position of the second time-frequency resource is determined according to the order of the feedback information corresponding to the feedback of the first terminal device indicated in the indication information; or, the time domain resource position of the second time-frequency resource is determined according to the position of the feedback time unit indicated in the indication information, and/or the time offset.
  • the feedback time unit is, for example, a time slot.
  • the first terminal device determines the order of feedback information corresponding to the feedback of the first terminal device based on one or more of the indication field in the indication information, the hybrid automatic repeat request process identifier (HARQ process ID) associated with the PSSCH, or the new data identifier (NDI) associated with the PSSCH, or the source device (Source ID) information associated with the PSSCH, or the destination device (destination ID) information associated with the PSSCH, or the group identification information associated with the PSSCH (e.g., the group ID in multicast type 2).
  • the order of feedback information can be displayed or implicitly indicated.
  • the displayed indication is reflected in a field (i.e., the above-mentioned indication field) directly indicating the position of the first terminal device in the group, and the implicit indication reflects the order of the HARQ process ID, NDI and other information related to the PSSCH indicated by the second terminal device.
  • a field i.e., the above-mentioned indication field
  • the frequency domain resource position corresponding to the first terminal device is related to the first identifier for PSSCH transmission pre-configured for each terminal device, or is determined based on the combination of the first identifier and the source address identifier carried in the control information.
  • the first identifier (MID) is an ID configured by the upper layer of each receiving user equipment for this PSSCH information transmission.
  • the source address identifier carried in the control information i.e., PID, is the physical layer source address ID carried in the control information.
  • the combination of the first identifier and the source address identifier carried in the control information is in the form of, for example:
  • the frequency domain resource location is indicated by a bit value in the indication information indicating the bit value used to send the feedback information across the feedback time unit.
  • a PSFCH time slot is indicated by a time offset for cross-time slot feedback.
  • the time slot position of the cross-time slot PSFCH feedback indicated by the time offset may overlap with the (pre)configured position.
  • the PSFCH feedback cycle can be 1, in which case each time slot has a PSFCH feedback.
  • Map is used to avoid PSFCH resource conflicts between (semi-)static feedback within a COT and dynamic feedback across COTs.
  • Map is used to avoid PSFCH resource conflicts between (semi-)static feedback within a COT and dynamic feedback across COTs.
  • a bit with a bit value of 1 in the second bit map corresponds to a PSFCH resource used to send feedback information across feedback time units.
  • the feedback information sent by the first terminal device or received by the second terminal device in the third COT is in the sidelink control information, the media access control control unit, or the physical sidelink shared channel PSSCH.
  • the first terminal device carries the HARQ process ID, NDI, source ID, destination ID + ACK/NACK information of the PSSCH that was not previously received in the 2nd order SCI, and sends the feedback information together with the data.
  • the feedback information sent by the first terminal device or received by the second terminal device in the third COT is in a channel, and the frequency domain position of the feedback information is indicated by the sidelink control information.
  • the first terminal device carries the HARQ process ID, NDI, source ID, destination ID + ACK/NACK information of the PSSCH that has not been received previously in a channel, and the SCI indicates the specific starting position occupied by these information and other related information.
  • the feedback information sent by the first terminal device or received by the second terminal device on the third COT includes: a hybrid automatic repeat request processing identifier associated with the PSSCH, or a new data identifier associated with the PSSCH, or source device information associated with the PSSCH, or destination device information associated with the PSSCH, or group identification information associated with the PSSCH, and a positive response or a negative response associated with the PSSCH.
  • a PSFCH resource set within the first COT or the third COT is indicated. Including the time domain and/or frequency domain position of a PSFCH resource in the PSFCH resource set, the PSFCH resource set is used for the first terminal device or other terminal devices other than the first terminal device to send feedback information.
  • the second terminal device receives feedback information carried in the sidelink control information within the third COT.
  • the second terminal device receives feedback information carried in a selected channel within the third COT, wherein a starting position of the feedback information in the channel is obtained through sidelink control information.
  • the feedback information received by the second terminal device on the third COT includes: a hybrid automatic repeat request processing identifier associated with the PSSCH, or a new data identifier associated with the PSSCH, or source device information associated with the PSSCH, or destination device information associated with the PSSCH, or group identification information associated with the PSSCH, and a positive response or a negative response associated with the PSSCH.
  • the disclosed embodiment combines (semi) static and dynamic feedback, i.e., utilizes a (semi) static one-to-one mapping mechanism to quickly and easily implement feedback, and introduces dynamic feedback to solve the problem of mapping relationship interruption caused by PSSCH-PSFCH crossing COT. Since the disclosed embodiment also designs a specific time-frequency position of dynamic feedback, unambiguous dynamic feedback is ensured.
  • the HARQ feedback process of the SL (sidelink) device in the unlicensed frequency band is described below, with reference to Figure 16, which shows an example flow chart of the communication method of some embodiments of the present disclosure, specifically showing the unlicensed frequency band HARQ feedback process of the embodiment of the present disclosure.
  • the PSFCH feedback period is still configured according to the resource pool level, that is, When PSSCH-PSFCH is in the same COT, there is a PSFCH feedback resource in one time slot out of every four time slots.
  • PSSCH-PSFCH When PSSCH-PSFCH is in the same COT, the one-to-one mapping relationship between PSSCH and PSFCH in R16/R17 is used.
  • the COT initiator implicitly or explicitly instructs the receiving UE of PSSCH in the COT to use LBT type2 access channel and provide feedback at a predetermined position; when PSSCH-PSFCH is not in the same COT, a dynamic feedback method is used. That is, the feedback timing of PSFCH is dynamic.
  • the TX UE initiates the COT itself, and then implicitly or explicitly instructs the RX UE to provide feedback in a time slot containing PSFCH.
  • the other is that the RX UE initiates the COT itself and feeds back the previous feedback information in its own COT.
  • the TX UE initiates the COT itself.
  • the TX UE actively seizes the COT in the subsequent time slot, and then indicates the HARQ process ID, NDI, source ID, destination ID and other information of the PSSCH that was not previously received, as well as the specific time-frequency resource location in a displayed manner.
  • the specific time slot location is: the first time slot of the COT + time offset bias (time offset).
  • the PRB of the specific feedback position is: frequency offset (frequency offset) + the order indicated by the TX UE.
  • the frequency offset can be the index offset relative to the first RB in the resource pool that can be used for PSFCH transmission, or it can be the index offset relative to the first RB in the COT that can be used for PSFCH transmission.
  • the order of the indication can be explicit or implicit.
  • the explicit indication is reflected in a field that directly indicates the position of the RX UE in this group.
  • the implicit indication reflects the order of the PSSCH-related HARQ process ID, NDI and other information indicated by the TX UE.
  • the RX UE provides feedback in the corresponding frequency domain position in order according to the above rules.
  • the TX UE should group different service type IDs.
  • the PSSCH information of non-multicast type 2 for example, including unicast, multicast type 1 and broadcast
  • the PSSCH related groups representing multicast type 2 can be grouped together.
  • the RX UE decodes different groups respectively to find the corresponding order of PSSCH in the group.
  • the TX UE can arrange the PSSCH-related feedback information in order of increasing order in the time domain first and then increasing order in the frequency domain.
  • the RX UE finds its own position in turn according to the service type, and then
  • the feedback order of multicast type 2 can be fed back in ascending or descending order of MID, or can be fed back according to other information, such as by The principle is to uniquely distinguish the members in the group and ensure that there is no conflict.
  • one implementation method is to add a Frequency offset 3, Frequency offset 4, etc. to indicate the feedback resources of other multicast PSSCH data.
  • Another implementation method is to define or (pre) configure or COT indicate an interval information to indicate the interval between different PSSCH transmissions of multicast type 2.
  • FIG17 shows the fields that need to be included in the COT indication of some embodiments of the present disclosure.
  • RX UE is the first terminal device
  • TX UE is the second terminal device
  • the COT indication is the indication information sent by the second terminal device to the first terminal device after occupying the COT.
  • the fields that need to be included include time offset, Frequency offset 1, Frequency offset 2, PSSCH-related fields, and a bitmap for cross-COT HARQ.
  • the time slot position of PSFCH obtained from time offset the first time slot of COT + time offset.
  • the PRB starting position of the HARQ feedback of packet 1 is obtained from Frequency offset 1.
  • packet 1 represents a service type of non-anchor type 2, that is, unicast and multicast type 1. Both types of feedback only require one PRB resource.
  • the PRB starting position of the HARQ feedback of packet 2 is obtained from Frequency offset 2.
  • packet 2 represents the service type of multicast type 2.
  • PRB resources need to be allocated to multiple users in the multicast.
  • the order of PRB resource allocation can be sorted according to the MID size value.
  • PSSCH-related fields include the HARQ process ID, NDI, source ID, destination ID, etc. of the previous PSSCH.
  • the bitmap used for cross-COT HARQ is specifically the PRB resource used for cross-time slot feedback. For example, the corresponding PRB with a bit value of "1" in the bitmap is used for cross-time slot HARQ feedback.
  • FIG. 18 it is a schematic diagram of the TX UE display indicating the PSFCH feedback position in some embodiments of the present disclosure.
  • UE1 sends data to UE2 and UE3 respectively in the last two time slots of COT#1. Due to the processing capacity limitation of the receiving end, UE1 cannot receive the feedback information from UE2 and UE3 in time in COT#1. At this time, UE1 can initiate a COT#2 by itself, and then dynamically indicate the PSFCH resources corresponding to the PSSCH that was not fed back previously.
  • UE1 Since the original one-to-one mapping relationship has been interrupted in COT#2, UE1 needs to explicitly indicate "HARQ process ID, NDI, source ID, destination ID of the previous PSSCH1 (UE1->UE2)" and "HARQ process ID, NDI, source ID, destination ID of the previous PSSCH2 (UE1->UE3)", as well as the corresponding time-frequency position of the PSFCH feedback.
  • time offset 2, so UE2 and UE3, which did not previously feed back to UE1, give feedback in slot n+1 after receiving the COT indication.
  • UE2 obtains the first position for feedback to group 1 as RB1 according to frequency offset1, and PSSCH 2 related to UE2 is in the first position, so UE2 feedbacks at the position shown in RB1, and UE3 feedbacks at RB2.
  • FIG. 19 another schematic diagram of the TX UE display indicating the PSFCH feedback position of some embodiments of the present disclosure is shown.
  • PSSCH1 UE1–>UE2
  • PSSCH2 UE1->UE3&UE4
  • UE2 can feedback in RB1 according to frequency offset1
  • UE3 and UE4 can feedback in RB3 and RB4 according to frequency offset2.
  • the feedback order of UE3 and UE4 can be determined according to the MID in the group.
  • the PRB resources between Frequency offset2+interval and Frequency offset2+2*interval can be used for PSSCH3 transmission feedback information.
  • a PSFCH time slot is indicated by time offset for cross-time slot feedback.
  • the time slot position of the cross-time slot PSFCH feedback indicated by time offset will overlap with the (pre) configured position.
  • the PSFCH feedback cycle can be 1, and at this time, each time slot has a PSFCH feedback.
  • some embodiments of the present disclosure introduce a bitmap, the length of which is the number of RBs in the resource pool, which can be RBs only included in the RB set.
  • the UE when the UE is doing PSFCH resources and RB resources in the resource pool, it should also skip the RB in the resource pool by default, which can be RBs in the RB set + RBs in the guard band, except that the bit value corresponding to the RB in the guard band is set to zero. That is, the guard band is not used for PSFCH feedback.
  • the RB with a bit value of "1" in the bitmap indicates that the RB is used to transmit cross-time slot PSFCH transmission, and the bit value of 0 indicates that it is not used for cross-time slot PSFCH transmission.
  • the RB with a bit value of "0" in the bitmap indicates that the RB is used to transmit cross-time slot PSFCH transmission, and the bit value of 1 indicates that it is not used for cross-time slot PSFCH transmission.
  • bitmap value When the bitmap value is included, the available RB resources in Figures 18 and 19 are indicated by the bitmap. It should be noted that the bitmap used for inter-slot should be mutually exclusive with the "1" position in the bitmap representing HARQ-ACK feedback and IUC scheme 2 resources, that is, it should be ensured that the use of the resources represented by the bitmap will not conflict with other uses at the same time.
  • the HARQ information corresponding to the PSSCH that has not been fed back before can be directly sent to the TX UE.
  • the HARQ process ID, NDI, source ID, destination ID+ACK/NACK information of the PSSCH that has not been received before can be carried in the 2nd order SCI by RX, and sent together with the data for feedback, as shown in FIG20, which shows a schematic diagram of sending HARQ and data together in some embodiments of the present disclosure.
  • FIG21 shows a schematic diagram of sending HARQ and SCI together in some embodiments of the present disclosure. It can be seen from FIG21 that the time slot structure of the embodiment of the present disclosure only has SCI and HARQ codebook information, which is a new type of time slot structure.
  • an interlace structure can be applied, or a common interlace structure can be introduced.
  • the COT initiator i.e., the terminal device that initiates COT
  • K should be less than or equal to the HARQ processing timeline
  • the time slot where the TX UE sends signals on the common PSFCH resources should also exclude the time slot that may be indicated by the above time offset.
  • the embodiments of the present disclosure are not only applicable to V2X, 5G vehicle networking, autonomous driving or assisted driving, but can also be used in other vehicle networking or D2D networks or cellular networks such as LTE and 5G.
  • Figure 22 shows a flowchart implemented at the first terminal device in some embodiments of the present disclosure.
  • the first terminal device determines a common feedback resource (2210); the first terminal device receives first data from the second terminal device on a first time-frequency resource (2220); the first terminal device determines a first feedback resource corresponding to the first time-frequency resource, and the first feedback resource belongs to the common feedback resource (2230); the first terminal device sends a first signal on the first feedback resource (2240).
  • Figure 23 shows a flowchart implemented at the first terminal device in some other embodiments of the present disclosure.
  • the first terminal device receives the first data from the second terminal device (2310); the first terminal device determines the physical sidelink feedback channel PSFCH resource associated with the first data (2320); the PSFCH resource belongs to the first channel occupation time COT in the time domain, and the first terminal device sends feedback information corresponding to the first data to the second terminal device on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the first terminal device sends feedback information of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device (2330).
  • Figure 24 shows a flowchart implemented at the second terminal device in some other embodiments of the present disclosure.
  • the second terminal device sends the first data to the first terminal device (2410); the second terminal device determines the physical sidelink feedback channel PSFCH resource associated with the first data (2420); the PSFCH resource belongs to the first channel occupation time COT in the time domain, and the second terminal device receives feedback information corresponding to the first data on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the second terminal device receives feedback information of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device (2430).
  • FIG25 is a schematic diagram of the structure of a possible communication device provided by an embodiment of the present application.
  • These communication devices can implement the functions of the first terminal device or the second terminal device in the above method embodiment, and thus can also achieve the beneficial effects of the above method embodiment.
  • the communication device can be the terminal device 110, 120 as shown in FIG1, or a module (such as a chip) applied to the terminal device 110, 120.
  • the communication device 2500 includes a processing unit 2510, a receiving unit 2520, and a sending unit 2530.
  • the communication device can be used to implement the functions of the terminal device in the method embodiments shown in Figure 2, Figure 14 or Figure 16.
  • the processing unit can be a processor
  • the sending unit can be a transmitter
  • the receiving unit can be a receiver.
  • the processing unit 2510 is used to determine the common feedback resource; the receiving unit 2520 is used to receive the first data from the second terminal device on the first time-frequency resource; the processing unit 2510 is also used to determine the first feedback resource corresponding to the first time-frequency resource, and the first feedback resource belongs to the common feedback resource; the sending unit 2530 is used to send the first signal on the first feedback resource.
  • the receiving unit 2520 is used to receive the first data from the second terminal device; the processing unit 2510 is used to determine the physical sidelink feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain; the sending unit 2530 is used to send the PSFCH resource to the PSFCH resource.
  • Feedback information corresponding to the first data is sent to the second terminal device, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the sending unit is used to send feedback information of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device.
  • the sending unit 2530 is used to send the first data to the first terminal device; the processing unit 2510 is used to determine the physical sidelink feedback channel PSFCH resource associated with the first data; the PSFCH resource belongs to the first channel occupancy time COT in the time domain, and the receiving unit 2520 is used to receive feedback information corresponding to the first data on the PSFCH resource, and the first COT is initiated by the first terminal device; or, the PSFCH resource does not belong to the first COT in the time domain, and the receiving unit 2520 is used to receive feedback information of the first data in the second COT or the third COT, the second COT is the COT initiated by the second terminal device, and the third COT is the COT initiated by the first terminal device.
  • the communication device 2600 includes a processor 2610 and an interface circuit 2620.
  • the processor 2610 and the interface circuit 2620 are coupled to each other.
  • the interface circuit 2620 may be a transceiver or an input/output interface.
  • the communication device 2600 may further include a memory 2630 for storing instructions executed by the processor 2610 or storing input data required by the processor 2610 to execute instructions or storing data generated after the processor 2610 executes instructions.
  • the processor 2610 is used to execute the function of the above processing module 602
  • the interface circuit 2620 is used to execute the functions of the above receiving unit 2520 and the sending unit 2530.
  • the terminal device chip When the communication device is a chip applied to the terminal devices 110 and 120, the terminal device chip implements the functions of the terminal devices 110 and 120 in the above method embodiments.
  • the terminal device chip receives information from other modules (such as radio frequency modules or antennas) in the terminal devices 110 and 120, and the information may be sent by other terminal devices 110 and 120; or, the terminal device chip sends information to other modules (such as radio frequency modules or antennas) in the terminal devices 110 and 120, and the information is sent to other terminal devices 110 and 120.
  • modules such as radio frequency modules or antennas
  • processors in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the embodiment of the present application provides a communication system.
  • the communication system may include the communication device involved in the embodiment shown in the above-mentioned FIG. 25, such as terminal devices 110 and 120.
  • the terminal devices 110 and 120 in the communication system may execute the communication method shown in any one of FIG. 2, FIG. 14, or FIG. 16.
  • the present application also provides a circuit, which can be coupled to a memory and can be used to execute the process related to the terminal device 110, 120 or the network device 130, 140 in any of the above method embodiments.
  • the chip system may include the chip and other components such as a memory or a transceiver.
  • processors mentioned in the embodiments of the present application may be a CPU, or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM synchronous RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) is integrated in the processor.
  • memory described herein is intended to include, without being limited to, these and any other suitable types of memory.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • modules and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the disclosed communication methods and devices can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the module is only a logical function division. There may be other division methods in actual implementation, such as multiple modules or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the function is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or the part that makes the contribution or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions to enable a computer device (which can be a personal computer, a server, or a network device 130, 140, etc.) to perform all or part of the steps of the method of each embodiment of the present application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • computer-readable media may include random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), universal serial bus flash disk, mobile hard disk, or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • universal serial bus flash disk mobile hard disk, or other optical disk storage
  • magnetic disk storage media or other magnetic storage devices or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer.
  • the term “including” and similar terms should be understood as open inclusion, i.e., “including but not limited to”.
  • the term “based on” should be understood as “based at least in part on”.
  • the term “one embodiment” or “the embodiment” should be understood as “at least one embodiment”.
  • the terms “first”, “second”, etc. can refer to different or identical objects, and are only used to distinguish the objects referred to, without implying a specific spatial order, temporal order, order of importance, etc. of the objects referred to.
  • values, processes, selected items, determined items, equipment, devices, means, components, assemblies, etc. are referred to as “best”, “lowest”, “highest”, “minimum”, “maximum”, etc.
  • the term “determine” can cover a variety of actions. For example, “determine” can include calculation, calculation, processing, export, investigation, search (e.g., search in a table, database or another data structure), ascertainment, etc. Additionally, “determining” may include receiving (eg, receiving information), accessing (eg, accessing data in a memory), etc. Furthermore, “determining” may include resolving, selecting, choosing, establishing, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开的实施例提供了一种通信方法、装置、计算机可读存储介质和产品,在该方法中,第一终端装置确定公共反馈资源,接收来自第二终端装置的第一数据,根据用于接收第一数据的第一时频资源确定第一反馈资源,第一反馈资源属于公共反馈资源,第一终端装置在第一反馈资源上发送第一信号。如此,本公开的实施例能够保证信道占用时间不会被丢失,并使得针对60KHz的子载波间隔配置下公共物理侧行链路反馈信道满足最小占用信道带宽的要求,还解决因为物理侧行链路共享信道-物理侧行链路反馈信道跨信道占用时间带来的映射关系中断的问题。

Description

一种通信方法、装置、计算机可读存储介质和程序产品
本公开要求于2022年9月30日提交中国专利局、申请号为202211216324.X、发明名称为“一种通信方法、装置、计算机可读存储介质和程序产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开总体上涉及电信领域,并且更具体地涉及一种通信方法、装置、计算机可读存储介质和计算机程序产品。
背景技术
无线通信技术在过去几十年经历了飞速的发展,先后经历了基于模拟通信系统的第一代无线通信系统,以全球移动通信系统(Global System for Mobile Communication,GSM)为代表的2G无线通信系统,以宽带码分多址(Wideband Code Division Multiple Access,WCDMA)为代表的3G无线通信系统,再到现在已经在全世界广泛商用并且取得巨大成功的长期演进(Long Term Evolution,LTE)4G无线通信系统。无线通信系统支持的业务也从最初的语音、短信,发展到现在支持无线高速数据通信。与此同时,全世界范围内的无线连接数量正在经历持续地高速增长,各种新的无线业务类型也大量涌现,例如物联网、自动驾驶等,这些都对下一代无线通信系统,也即5G系统,提出了更高的要求。
随着通信的需求场景越来越多,设备到设备(Device-to-Device,D2D)技术因为具有可以在有无网络基础设施的情况直接通信的优势,近年来快速发展。D2D技术的应用,可以减轻蜂窝网络的负担、减少用户设备的电池功耗、提高数据速率,并能很好地满足邻近服务的需求。在3GPP定义的无线通信网络中,用户和用户直接通信的空口(air interface)为PC5,所以也称为PC5通信;从链路的角度,定义用户和用户直接通信的链路为侧行链路(sidelink,简写为SL),也可以称为sidelink通信,与当前通信系统中的上行链路(uplink)、下行链路(downlink)相对应。
发明内容
本申请提供一种通信方法和装置、通信装置、计算机可读存储介质和计算机程序产品,用以保证信道占用时间(COT)不会被丢失,并使得针对60KHz的子载波间隔配置下公共PSFCH(物理侧行链路反馈信道)满足最小占用信道带宽的要求,还解决因为PSSCH-PSFCH(物理侧行链路共享信道-物理侧行链路反馈信道)跨COT带来的映射关系中断的问题。
第一方面,提供了一种通信方法,该方法的执行主体可以是第一终端装置,也可以是应用于第一终端装置中的芯片。下面以执行主体是第一终端装置为例进行描述。在该方法中,第一终端装置确定公共反馈资源,在第一时频资源上接收来自第二终端装置的第一数据,确定第一时频资源对应的第一反馈资源,第一反馈资源属于公共反馈资源,第一终端装置在第一反馈资源上发送第一信号。以此方式,保证信道占用时间(COT)不会被丢失。
在一些实现中,第一数据对应单播类型,第一终端装置在第一时频资源对应的第二反馈资源上发送反馈信息,其中反馈信息为第一数据对应的确认应答或否定应答,第二反馈资源不属于公共反馈资源。以此方式使得单播业务类型下保证信道占用时间(COT)不会被丢失。
在一些实现中,第一数据对应第二组播类型,第一终端装置在第一时频资源对应的第二反馈资源上发送反馈信息,其中反馈信息为针对第一数据的确认应答或否定应答,第二反馈资源不属于公共反馈资源。以此方式使得第二组播业务类型下保证信道占用时间(COT)不会被丢失。
在一些实现中,第一数据对应第一组播类型,且第一数据对应的混合自动重传请求确认信息为否定应答时,第一终端装置在第一时频资源对应的第二反馈资源上发送反馈信息,其中反馈信息为针对第一数据的否定应答。以此方式使得第二组播业务类型下保证信道占用时间(COT)不会被丢失。
在一些实现中,第一信号是反馈信息或除反馈信息之外的其他信号。从而在不需要发送反馈信息的业务场景,发送不限于反馈信息的信号即可保证信道占用时间(COT)不会被丢失。
在一些实现中,公共反馈资源用于第一终端装置和除第一终端装置之外的其他终端装置发送信号。通 过公共反馈资源来提供终端装置发送信号,避免因信道占用时间由于PSFCH时隙无人反馈而导致信道占用时间被丢失。
在一些实现中,公共反馈资源中的资源块与第一比特地图相关。使得用于发送反馈信息的资源块可以由比特地图中的比特值来指示,以满足OCB法规要求。
在一些实现中,第一比特地图中比特值为1的比特位对应公共反馈资源中的资源块。以此方式,使得例如子载波间隔为60KHZ下无法支持公共交错(common interlace)结构时,也可以通过比特地图(bitmap)来指示交错的资源块,从而满足OCB法规要求,保证了common PSFCH资源在各种SCS配置下的完整性。
在一些实现中,其中第一比特地图中指示用于发送反馈信息的比特位的数量大于预设值。从而更好地满足OCB法规要求。
在一些实现中,第一反馈资源和第一时频资源属于同一资源块集合,和/或第一反馈资源和第二反馈资源属于同一资源块集合。
第二方面,提供一种通信方法,该方法的执行主体可以是第一终端装置,也可以是应用于第一终端装置中的芯片。下面以执行主体是第一终端装置为例进行描述。在该方法中,第一终端装置接收来自第二终端装置的第一数据;第一终端装置确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT,第一终端装置在PSFCH资源上向第二终端装置发送对应第一数据的反馈信息,第一COT是由第一终端装置发起(initiate)的;或者,PSFCH资源在时域上不属于第一COT,第一终端装置在第二COT或第三COT内发送第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。解决因为PSSCH-PSFCH跨COT带来的PSSCH与其对应的PSFCH反馈资源一一映射关系中断的问题。
在一些实现中,第一终端装置接收第二终端装置在第二COT上发送的指示信息,指示信息指示第一终端装置在第二COT内的时频资源集合内的第二时频资源上发送反馈信息。从而实现由第二终端装置来向第一终端装置指示动态反馈的时频资源位置。
在一些实现中,时频资源集合包含M个资源块,M个资源块由第二比特地图,和/或第一频域偏移值,和/或第二频域偏移值确定,第二比特地图是由网络侧配置的,或者预配置的,或者通过协议规定的;时频资源集合包含PSFCH资源对应第二比特地图中比特值为1的比特位对应的资源。从而保证了PSSCH和其对应的PSFCH在跨COT后,依然能够有序地进行动态反馈。
在一些实现中,第二时频资源的频域资源位置是根据指示信息中指示第一终端装置反馈对应的反馈信息次序确定的;或者第二时频资源的时域资源位置是根据指示信息中指示的反馈时间单元的位置,和/或时间偏移确定的。
在一些实现中,根据指示信息中的指示字段、与物理侧行链路共享信道PSSCH相关联的混合自动重传请求处理标识、或与PSSCH相关联的新数据标识,或PSSCH相关联的源设备信息,或PSSCH相关联的目的设备信息,或与PSSCH相关联的分组标识信息表示的一者或多者,确定第一终端装置反馈对应的反馈信息次序。使得可以显示地或隐式地指示反馈信息次序,指示方式灵活。
在一些实现中,当第一数据对应第二组播类型时,第一终端装置对应的频域资源位置与预先为每个终端装置配置的用于PSSCH传输的第一标识有关,或者基于第一标识与控制信息中的源地址标识的组合来确定。使得组内终端装置能唯一区分,确保不会冲突。
在一些实现中,基于指示信息中指示用于跨反馈时间单元发送反馈信息的比特值,来确定频域资源位置。可以避免COT内的(半)静态反馈和跨COT的动态反馈的PSFCH资源冲突。
在一些实现中,在第三COT内发送的反馈信息在侧行链路控制信息、媒体访问控制控制单元、或物理侧行链路共享信道PSSCH中。从而提供了通过第二终端装置显示地动态反馈的一种反馈方式。
在一些实现中,在第三COT内发送的反馈信息,反馈信息的频域位置(例如起始位置)是由侧行链路控制信息指示的,该反馈信息的形式可以为HARQ-ACK码本的形式,该反馈形式与R16/R17设计中的序列反馈方式不同。从而提供了通过第二终端装置显示地动态反馈的另一种反馈方式,并实现了一种新型时隙结构。
在一些实现中,第一终端装置在第三COT上发送的反馈信息包括:与PSSCH相关联的混合自动重传请求处理标识、或与PSSCH相关联的新数据标识,或PSSCH相关联的源设备信息,或PSSCH相关联的目的设备信息,或与PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
第三方面,提供一种通信方法,有益效果可以参见第二方面的描述此处不再赘述。该方法的执行主体 可以是第二终端装置,也可以是应用于第二终端装置中的芯片。下面以执行主体是第二终端装置为例进行描述。在该方法中,第二终端装置向第一终端装置发送第一数据;第二终端装置确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT,第二终端装置在PSFCH资源上接收对应第一数据的反馈信息,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,第二终端装置在第二COT或第三COT内接收第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。
在一些实现中,还包括:第二终端装置在第二COT上向第一终端装置发送指示信息,指示信息指示第一终端装置在第二COT内的时频资源集合内的第二时频资源上发送反馈信息。
在一些实现中,时频资源集合包含M个资源块,M个资源块由第二比特地图,和/或第一频域偏移值,和/或第二频域偏移值确定,第二比特地图是由网络侧配置的,或者预配置的,或者通过协议规定的;时频资源集合包含PSFCH资源对应第二比特地图中比特值为1的比特位对应的资源。
在一些实现中,第二时频资源的频域资源位置通过指示信息中指示第一终端装置反馈对应的反馈信息次序来指示;或者第二时频资源的时域资源位置通过指示信息中指示的反馈时间单元的位置,和/或时间偏移来指示。
在一些实现中,通过指示信息中的指示字段、与物理侧行链路共享信道PSSCH相关联的混合自动重传请求处理标识、或与PSSCH相关联的新数据标识,或PSSCH相关联的源设备信息,或PSSCH相关联的目的设备信息,或与PSSCH相关联的分组标识信息表示的一者或多者,来指示第一终端装置反馈对应的反馈信息次序。
在一些实现中,当第一数据对应第二组播类型时,第一终端装置对应的频域资源位置与预先为每个终端装置配置的用于PSSCH传输的第一标识有关,或者基于第一标识与控制信息中承载的源地址标识的组合来指示。
在一些实现中,通过指示信息中指示用于跨反馈时间单元发送反馈信息的比特值,来指示频域资源位置。
在一些实现中,在第三COT内接收的反馈信息在侧行链路控制信息、媒体访问控制控制单元、或物理侧行链路共享信道PSSCH中。
在一些实现中,在第三COT内接收的反馈信息在一信道中,反馈信息的频域位置是由侧行链路控制信息来指示。
在一些实现中,第二终端装置在第三COT上接收的反馈信息包括:与PSSCH相关联的混合自动重传请求处理标识、或与PSSCH相关联的新数据标识,或PSSCH相关联的源设备信息,或PSSCH相关联的目的设备信息,或与PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
在一些实现中,第二终端装置在资源块集合上占用全部频域资源或所占用频域资源超过预设阈值的情况下,指示在第一COT或第三COT内的PSFCH资源集合,PSFCH资源集合用于第一终端装置或除第一终端装置之外的其他终端装置发送反馈信息。
第四方面,提供一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。该装置具有实现上述第一方面的方法实例中行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:处理单元,用于确定公共反馈资源;接收单元,用于在第一时频资源上接收来自第二终端装置的第一数据;处理单元,还用于确定第一时频资源对应的第一反馈资源,第一反馈资源属于公共反馈资源;发送单元,用于在第一反馈资源上发送第一信号。
第五方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。该装置具有实现上述第二方面的方法实例中行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:接收单元,用于接收来自第二终端装置的第一数据;处理单元,用于确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT,装置还包括发送单元,用于在PSFCH资源上向第二终端装置发送对应第一数据的反馈信息,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,发送单元用于在第二COT或第三COT内发送第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。
第六方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。该装置具有实现上 述第三方面的方法实例中行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:发送单元,用于向第一终端装置发送第一数据;处理单元,用于确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT,装置还包括接收单元,用于在PSFCH资源上接收对应第一数据的反馈信息,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,接收单元用于在第二COT或第三COT内接收第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。
第七方面,提供一种通信装置,包括:处理器、以及存储有指令的存储器,指令在被处理器执行时使得电子设备执行根据第一方面及其实现方式的任一方法。
第八方面,提供一种通信装置,包括:处理器、以及存储有指令的存储器,指令在被处理器执行时使得电子设备执行根据第二方面及其实现方式的任一方法。
第九方面,提供一种通信装置,包括:处理器、以及存储有指令的存储器,指令在被处理器执行时使得电子设备执行根据第三方面及其实现方式的任一方法。
第十方面,提供一种计算机可读存储介质,计算机可读存储介质存储有指令,指令在被电子设备执行时使得电子设备执行上述各方面中由第一终端装置或第二终端装置所执行的方法。
第十一方面,一种计算机程序产品,计算机程序产品包括指令,指令在被电子设备执行时使得电子设备执行上述各方面中由第一终端装置或第二终端装置所执行的方法。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中第一终端装置或第二终端装置的功能。在一种可能的设计中,芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十三方面,本申请还提供了一种通信系统,包括:用于执行第一方面方法的第一终端装置和其中涉及的第二终端装置,或者,用于执行第二方面方法的第一终端装置和用于执行第三方面方法的第二终端装置。
附图说明
图1A至图1D为本申请实施例的通信系统示意图。
图2为本公开实施例中通信方法的一个示例流程示意图。
图2A本公开实施例中公共反馈资源的示意图。
图3为本公开实施例所针对的COT丢失的场景的示意图。
图4示出了本公开实施例的common PSFCH资源的一个示意图。
图5示出了本公开实施例的common PSFCH资源的另一示意图。
图6为本公开实施例的各业务类型PSFCH传输示意图。
图7是本公开实施例的interlace(交错)结构的示意图。
图8是本公开的一些实施例的以比特地图来表示资源池中的common PSFCH资源的示意图。
图9示出了资源池中PSFCH资源配置的示意图。
图10示出了PSFCH资源比特地图指示示意图。
图11示出了本公开实施例的PSSCH对应PSFCH时域资源示意图。
图12示出了PSFCH频域资源分配示意图。
图13示出了PSFCH格式0的common interlace结构示意图。
图14为本申请实施例中通信方法的另一示例流程示意图。
图15是本公开实施例所针对的PSSCH-PSFCH映射关系可能被打破的场景示意图。
图16示出了本公开的一些实施例的通信方法的一个示例流程图。
图17示出了本公开一些实施例的COT指示需要包含的字段。
图18是本公开的一些实施例TX UE显示指示PSFCH反馈位置的一个示意图。
图19是本公开的一些实施例的TX UE显示指示PSFCH反馈位置的另一示意图。
图20示出了本公开的一些实施例的HARQ和数据一起发送的示意图。
图21示出了本公开的一些实施例的HARQ和SCI一起发送的示意图。
图22示出了本公开的一些实施例中在第一终端装置处实现的流程图。
图23示出了本公开的另一些实施例中在第一终端装置处实现的流程图。
图24示出了本公开的另一些实施例中在第二终端装置处实现的流程图。
图25示出了本申请实施例中一种可能实现方式的示例设备的简化框图。
图26示出了本申请实施例中一种可能实现方式的示例设备的简化框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
本公开的实施例可以根据任何适当的通信协议来实施,包括但不限于,第三代(3rd Generation,3G)、第四代(4G)、第五代(5G)以及未来的通信协议(例如,第六代(6G))等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本公开的实施例的技术方案应用于遵循任何适当通信协议的通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、通用移动通信系统(Universal Mobile Telecommunications Service,UMTS)、长期演进(Long Term Evolution,LTE)系统、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)、频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex,TDD)、第五代(5G)系统(例如,新无线电(New Radio,NR))以及未来的通信系统(例如,第六代(6G)系统),等等。
出于说明的目的,下文中以3GPP中的5G通信系统为背景来描述本公开的实施例。然而,应当理解,本公开的实施例不限于该通信系统,而是可以被应用到任何存在类似问题的通信系统中,例如无线局域网(WLAN)、有线通信系统、或者将来开发的其他通信系统等。
在本公开中使用的术语“终端”或“终端设备”指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以是任意类型的移动终端、固定终端或便携式终端。终端设备可以是具备无线通信功能的各种无线通信设备。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。作为示例,终端设备可以包括移动蜂窝电话、无绳电话、移动终端(Mobile Terminal,MT)、移动台、移动设备、无线终端、手持设备、客户端、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信系统设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、无线数据卡、无线调制解调器(Modulator demodulator,Modem)、定位设备、无线电广播接收器、电子书设备、游戏设备、物联网(Internet of Things,IoT)设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备(例如,智能手表等)、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本公开的实施例对此并不做限定。
在本公开中使用的术语“网络节点”或“网络设备”是可以用于与终端设备通信的实体或节点,例如可以是接入网设备。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。基站用 于为终端设备提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域,进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此可以同时由多个基站为该终端设备提供服务。根据所提供的服务覆盖区域的大小,接入网设备可以包括提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站、用于提供微微蜂窝的微微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站。此外,接入网设备还可以包括各种形式的中继站、接入点、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)等等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如在长期演进系统(Long Term Evolution,LTE)网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB),等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。为方便描述,本公开后续的实施例中,上述为移动终端提供无线通信功能的装置统称为网络设备,本公开的实施例不再具体限定。
D2D指的是两个用户设备或多个用户设备(User Equipment,简称为UE)之间直接通信的技术。典型的D2D设备有蓝牙,WiFi-Direct等。在3GPP定义的无线通信网络中,用户和用户直接通信的空口(air interface)为PC5,所以也称为PC5通信;从链路的角度,定义用户和用户直接通信的链路为侧行链路(sidelink,SL),也可以称为sidelink通信。sidelink通信包括多种使用场景,典型如车联网(Vehicle-to-everything,V2X)和智能终端之间的通信。车联网,简称V2X,是将汽车和其他车辆或是可能影响汽车的设备所进行的通讯,包括车与车的通信(Vehicle to Vehicle,简称为V2V)、车与行人的通信(Vehicle to Pedestrian,简称为V2P)、车与基础设施的通信(Vehicle to Infrastructure,简称为V2I)、车与网络的通信(Vehicle to Network,简称为V2N),其中的传输基于侧行传输,可以看成侧行传输在车联网中的应用。智能终端之间的通信典型比如手机和可穿戴设备之间的通信,AR/VR头盔或眼镜和智能屏幕之间的通信,传感器之间的通信等等。
在无线通信系统中,按照使用频段的不同,可以分为授权频段和非授权频段。在授权频段中,用户基于中心节点的调度使用频谱资源。4G长期演进(Long Term Evolution,LTE)系统中,蜂窝移动通信开始了对非授权频段的研究工作,催生了LTE-U(LTE in Unlicensed spectrum)、LAA(Licensed Assisted Access)、MulteFire等技术。然而,非授权频段原本已被一些无线通信设备使用,比如Wi-Fi。LTE系统引入基于先听后说(listen-before-talk,LBT)机制使得其与Wi-Fi设备可以共存,同时使能非授权频段上的LTE Uu接口通信。除了Uu接口外,还存在一种PC5接口,这是用户设备(User Equipment,UE)与UE间的通信接口。PC5接口中的传输链路被定义为侧行链路(Sidelink,SL)。在局域空间内使能非授权频段的SL通信是一个重要演进方向,相应协议技术可以统称为SL-U。与Uu接口类似,通过SL-U工作的UE也需要基于LBT机制与附近的Wi-Fi设备共存。
在非授权频段中,发射节点需要按照竞争的方式使用频谱资源,具体地,通过先听后说LBT(Listen-before Talk)的方式竞争信道。LBT机制本质是一种基于随机退避(random back-off)的信道接入规则。UE在接入信道并开始发送数据之前需要感知(sense)信道是否空闲(idle),如果信道已经保持空闲一定时间则可以占用信道,如果信道非空闲则需要等待信道重新恢复为空闲后才可以占用信道。之所以LBT机制会成为非授权频段的必选特性,是因为世界各个地区对于非授权频段的使用有法规(Regulation)要求。工作于不同通信协议的各种形态的UE,只有满足法规才能使用非授权频段,进而相对公平、高效地使用频谱资源。
对于FR1非授权频谱,在传输之前,UE必须在每个20MHz信道上执行LBT,为了避免不同信道的干扰,UE不能在整个20MHz带宽上发送数据,而是留有一部分频带资源作为保护带宽(guard band),只在剩余的这部分频域资源发送数据,这部分可用的资源被称作资源块集合(RB set)。当UE在连续多个20MHz信道上执行LBT操作并成功接入信道时,两个RB set间的保护带宽可以用来传输数据,提高资源利用率。
非授权频谱资源可以在不同用户设备之间共享,即只要符合一定法规的网络设备130、140,都可以使用该频谱进行信息的接收和发送。如果某个用户设备通过LBT获取发送机会,发送机会对应的可连续发送信息的时间长度称作信道占用时间(channel occupancy time,简称COT),用户设备获取到COT之后,可以将频谱共享给其他用户设备,并将COT内共享的资源,包括对应时刻和频域位置,发给给其他用户设 备,其他用户设备收到该共享信息后,可以在指定时刻上使用指定频域资源发送信息。除此之外,D2D技术使用的设备一般是半双工设备,即该UE在同一个时刻只能处于接收或者发送信息的状态,不具备同时收发的能力。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法、功能描述等也可以应用于装置实施例或系统实施例中。
如图1A至图1D所示,本申请实施例提供的通信方法可适用于Sidelink(侧行链路)通信支持的场景,支持有网络覆盖和无网络覆盖的通信场景。该场景中,终端设备110、120可以是UE(用户设备),例如UE-A、UE-B。网络设备130、140可以是基站,如图1A、图1B和图1C所示的UE-A在有网络覆盖的场景下,UE-A可以通过基站调度的方式使用Sidelink和UE-B通信,该资源可称为授权资源或授权频段,也可以不采用基站调度模式进行通信,可由第UE-A进行资源自选,即从资源池中选择用于侧行链路通信的资源,该资源可称为非授权资源或非授权频段。图1D中,由于UE-A和UE-B都处于非覆盖范围内,所以只可以采用资源自选的方式搭建Sidelink链路进行通信。
应理解,本申请公开的实施例中的资源是指时频资源。Sidelink通信使用的频谱可以是非授权频段、授权频段和/或专用频段。在使用非授权频段进行传输前,需要满足地区法规要求,进行信道接入,例如LBT。
本申请公开的实施例中的网络设备130、140可以是不同网络系统下的网络设备130、140,例如基站等。UE(用户设备)可以是各种用户通信设备。对于存在基站调度的情况,考虑Uu(UTRAN-to-UE)空口传输,无线通信的双方为网络设备130、140和用户通信设备;考虑SL空口传输情况,无线通信的收发端都是用户通信设备。
网络设备130、140可以是任意一种具有无线收发功能的设备。包括但不限于:传统UMTS/LTE(Universal Mobile Telecommunications System,通用移动通信系统/Long Term Evolution,长期演进)无线通信系统中可以是传统宏基站eNB(evolved node B),在HetNet(Heterogeneous Network,异构网络)场景下可以是微基站eNB,在分布式基站场景可以是基带处理单元BBU(Base Band Unit,基带单元)和射频单元RRU(Remote Radio Unit,射频拉远单元),在CRAN(Cloud Radio Access Netowrk,云无线接入网)场景下可以是基带池BBU pool和射频单元RRU,在未来无线通信系统中可以是gNB,,3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。网络设备130、140还可以是服务器,可穿戴设备,或车载设备等。
用户设备,可以是车载通信模块或其它嵌入式通信模块、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(VR)终端设备、增强现实(AR)终端设备、工业控制(industrial control)中的无线终端、触觉终端设备、车载终端设备、无人驾驶中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。
图2为本公开实施例中通信方法200的一个示例流程示意图。如图2所示,第一终端装置确定(210)公共反馈资源。第二终端装置向第一终端装置发送(220)第一数据205,相应地,第一终端装置在第一时频资源上接收(230)来自第二终端装置的第一数据205。第一终端装置确定(240)第一时频资源对应的第一反馈资源,该第一反馈资源属于公共反馈资源。第一终端装置在第一反馈资源上发送(250)第一信号。
在一些实施例中,公共反馈资源或者被称为common PSFCH资源,其用于第一终端装置或其他终端装置发送信号,公共反馈资源传输的信号或数据不是某一终端装置期望能够正确解码或译码的数据或信号,公共反馈资源不是针对某一类型传输或某一终端装置专属的资源。
在一些实施例中,公共反馈资源可包括两个不连续的资源块,这两个不连续的资源块之间的频域间隔为offset(偏移值)个资源块,这两个资源块可以分别是第二频域资源中的第一个资源块和最后一个资源块,第二频域资源是第一终端装置用于发送反馈信息的频域资源。这里的频域间隔是指这两个不连续的资源块之间的资源块的数量。公共反馈资源可以由网络设备指示,或者是预配置的,或者是预定义的。
在一些实施例中,公共反馈资源集合位于第一信道上,第一信道包含至少一个20MHz带宽,或者第一信道包含至少一个标称带宽,或者第一信道包含至少一个资源块集合。
在一些实施例中,(offset+2)个资源块对应的带宽大于或等于第一信道的带宽与第一系数的乘积,换言之,第二频域资源对应的带宽大于或等于第一信道的带宽与第一系数的乘积,其中,第一系数大于0 且小于1。例如,0.8<第一系数<1。在一些实施例中,第一系数为满足OCB需求的占用第一带宽的最小比例。该设计的目的是,使得第一终端装置通过第二频域资源发送反馈信息满足OCB的要求。在一些实施例中,第二频域资源还可包括这两个不连续的资源块之间的至少一个资源块。
如图2A所示,公共反馈资源中的资源块编号RB#n和RB#m不相邻。在一些实施例中,公共反馈资源为资源池内或资源块集合内(RB set)的第m个交错资源/子信道,该交错资源/子信道包含至少两个在频域上交错的资源块,其中m为大于或等于1,且,小于或等于资源池内或资源块集合中交错资源的总数的整数,其中,m的取值是预定义的,或是预配值,或是由网络设备通过DCI(下行链路控制信息)或RRC(无线资源控制)信令或SIB(系统信息块)信息或MIB信息指示或配置给第一终端装置的。因此,可由网络设备指示,或者通过预配置的方式或者通过预定义的方式使得第一终端装置确定第一信道的第m个交错资源/子信道为公共反馈资源。
公共反馈资源例如下文图7中所示的交错资源#1(interlace #1)作为公共反馈资源。可选的,图7中交错资源#1所包含的全部PRB为公共反馈资源,或者,交错资源#1所包含的索引最小的资源块和索引最大的资源块为公共反馈资源。
在一些实施例中,公共反馈资源为资源池内或资源块集合内(RB set)的第m个子信道,该子信道包含至少两个在频域上交错的资源块,其中m为大于或等于1,且,小于或等于资源池内或资源块集合中子信道的总数的整数,其中,m的取值是预定义的,或是预配值,或是由网络设备通过DCI或RRC信令或SIB信息或MIB信息指示或配置给第一终端装置的。因此,可由网络设备指示,或者通过预配置的方式或者通过预定义的方式使得第一终端装置确定第一信道的第m个子信道为公共反馈资源。
例如下文实施例的图7所示,交错资源#1作为公共反馈资源。可选的,图7中交错资源#1所包含的全部PRB为公共反馈资源,或者,交错资源#1所包含的索引最小的资源块和索引最大的资源块为公共反馈资源。
在一些实施例中,公共反馈资源中的资源块与第一比特地图相关。
PSFCH资源可占用2个OFDM符号,其周期由系统配置,N=1/2/4slots,且PSFCH反馈资源与PSSCH传输资源一一对应,目前NR-SL支持单播、组播类型1(NACK-only)和组播类型2(NACK和ACK反馈)反馈,对于广播,无需反馈。组播类型1(NACK-only)场景下,若组内用户能正确译码PSSCH对应的PSCCH,但是PSSCH译码失败,则反馈携带NACK信息的PSFCH序列,否则不反馈任何信息。或者,在二阶SCI中(包括SCI-format 2-A)中业务传输类型指示(Cast type indicator)域值为“11”时,表示组播类型1。或者,二阶SCI隐式或显示的指示当前数据对应的HARQ-ACK反馈信息只包括NACK时,该业务类型为组播类型1。
组播类型2(NACK/ACK)场景下,若组内用户能正确译码PSSCH对应的PSCCH,根据控制信息的HARQ使能指示信息,若PSSCH译码失败,则反馈携带NACK信息的PSFCH序列,否则反馈携带NACK信息的PSFCH序列。
或者在二阶SCI中(包括SCI-format 2-A)中业务传输类型指示(Cast type indicator)域值为“01”时,表示组播类型2。
在非授权频段中,终端在发送数据前得先执行LBT操作,LBT成功后终端方可在COT内发送数据。当某个COT内对应的PSSCH资源无需进行反馈时,由于一个PSFCH反馈占用3个OFDM符号(包括上文提及的2个OFDM符号和收发转换间隔(gap)占用的1个OFDM符号),此时COT内的传输中断时间可能大于25us,带来COT丢失的风险。本公开实施例通过在属于公共反馈资源上的第一反馈资源上发送第一信号,可以保证COT不丢失。
在一些实施例中,公共反馈资源上的该信号可以是反馈信息或除反馈信息之外的其他信号,例如公共反馈资源上的信号可以表征对应PSSCH接收状态,也可以是其他数据或信号。第一终端装置在第一反馈资源上发送的信号可以被称为第一信号,第一信号可以是第一终端装置向第二终端装置的反馈信息或除该反馈信息之外的其他信号。
在一些实施例中,第一数据对应单播类型,第一终端装置在第一时频资源对应的第二反馈资源上发送反馈信息,其中反馈信息为针对第一数据的确认应答或否定应答。第二反馈资源不属于公共反馈资源。在一些实施例中,第二反馈资源与第一反馈资源可以在频域上不重叠。
在一些实施例中,第一数据对应第一组播类型(或称组播类型1),第一终端装置在第一时频资源对应的第二反馈资源上发送反馈信息,其中反馈信息为针对第一数据的确认应答或否定应答。第二反馈资源不 属于公共反馈资源。
在一些实施例中,第一数据对应第二组播类型(或称组播类型2),且第一数据对应的混合自动重传请求确认信息为否定应答时,第一终端装置在第一时频资源对应的第二反馈资源上发送反馈信息,其中反馈信息为针对第一数据的否定应答。
第一反馈资源和第一时频资源属于同一资源块集合,和/或第一反馈资源和第二反馈资源属于同一资源块集合。
本公开实施例的支持PSFCH反馈的业务场景,具体可以支持单播、组播和广播3个场景,其中针对单播和组播支持物理层HARQ反馈,其中组播有两种场景,分为组播类型1和组播类型2。单播场景,就是一个发端用户和一个收端用户组成一个单播连接对,收端用户在正确接收到一个来自发端用户的控制信息后,根据控制信息的HARQ使能指示信息,若PSSCH正确译码,向发端用户发送携带ACK信息的PSFCH序列,否则反馈携带NACK信息的PSFCH序列。组播类型1(NACK-only)场景下,若组内用户能正确译码PSSCH对应的PSCCH,但是PSSCH译码失败,则反馈携带NACK信息的PSFCH序列,否则不反馈任何信息。组播类型2(NACK/ACK)场景下,若组内用户能正确译码PSSCH对应的PSCCH,根据控制信息的HARQ使能指示信息,若PSSCH译码失败,则反馈携带NACK信息的PSFCH序列,否则反馈携带NACK信息的PSFCH序列。
在一些方案中,PSFCH资源占用2个OFDM符号,其周期由系统配置,N=1/2/4slots,且PSFCH反馈资源与PSSCH传输资源一一对应,目前NR-SL支持单播、组播类型1(NACK-only)和组播类型2(NACK和ACK反馈)反馈,对于广播,无需反馈。
在非授权频段中,终端在发送数据前得先执行LBT操作,LBT成功后终端方可在COT内发送数据。LBT接入方式一般采用基于能量的检测和信号类型的检测,比如NR-U就是采用能量的检测,而WiFi采用两种相结合的检测方法。基于能量的检测需要设定一个检测门限(Energy Detection Threshold),当检测的能量超过检测门限时,判决为信道忙,则不允许接入信道。当检测的能量低于检测门限时,如果持续超过一段时间后,则允许接入信道。根据国家和地区对于使用非授权频段的法规要求,以5GHz频段为例,接入20MHz的一个信道,需要满足至少最小占用信道带宽(Occupied Channel Bandwidth,OCB)的要求,才可以占用信道,一般最小OCB要至少是正常带宽的80%,以20MHz为例,即至少需要占用16MHz的带宽才可以抢占该20MHz信道。3GPP NR-U系统引入交错RB(interlaced resource block)的概念,定义interlacem∈{0,1,...,M-1}包括多{m,M+m,2M+m,3M+m,...}个RB。
为了满足法规,LBT机制一般划分为如下四类:
一类LBT(Category 1 LBT):在短暂的转换间隔(switching gap)后立即发送。简称Cat 1 LBT,用于通信设备在信道占用时间(Channel Occupancy Time,COT)中由接收状态到发送状态的转换间隔后立即进行发送。其中,COT指通信设备在成功接入信道后允许占用信道的时间;转换间隔的时间不能大于16us。
二类LBT(Category 2 LBT):无随机退避的LBT。简称Cat 2 LBT,用于通信设备在侦听到信道处于空闲状态并持续一段确定时间后,不进行随机退避就可以进行发送。
三类LBT(Category 3 LBT):有固定大小竞争窗口(contention window)的随机退避的LBT。简称Cat 3 LBT,用于通信设备基于固定大小的竞争窗口产生随机数N,并在侦听到信道处于空闲状态且持续一段根据随机数N确定的时间后可以进行发送。其中,竞争窗口的大小与N的最小值与最大值有关。
四类LBT(Category 4 LBT):有可变大小竞争窗口的随机退避的LBT。简称Cat 4 LBT,用于通信设备基于可变大小的竞争窗口产生随机数N,并在侦听到信道处于空闲状态且持续一段根据随机数N确定的时间后可以进行发送。其中,竞争窗口的大小与N的最小值与最大值有关,该通信设备可以改变竞争窗口的大小。
NR-U设备遵循3GPP协议,采用LBT机制作为信道接入方法。具体地,NR-U设备使用如下几个类型的LBT:
Type 1 LBT:Cat 4 LBT。NR-U设备需要进行随机退避后才能接入信道并发送数据。
具体地,网络设备130、140或终端设备110、120可以在一段延长持续时间(defer sensing,记作Td)的侦听时隙时段(sensing slot duration)首次侦听信道为空闲之后,并且在如下步骤4中的计数器N为零之后,发起传输。具体地,根据以下步骤,通过侦听信道以获得额外的侦听时隙时段来调整计数器N:
设置N=Ninit,其中Ninit为均匀分布在0和CWp之间的随机数,执行步骤4;
如果N>0,网络设备130、140或终端设备110、120选择递减计数器,则设置N=N-1;
侦听信道以获得额外的侦听时隙时段,如果额外的侦听时隙时段的信道是空闲的,则转至步骤4;否则,转至步骤5;
如果N=0,停止;否则,执行步骤2。
侦听信道,直到在另一个Td内侦听到信道繁忙或侦听到另一个Td内所有侦听时隙都被检测为信道空闲;
如果在另一个Td内的侦听时隙都被检测为信道空闲,则执行步骤4;否则,执行步骤5;
Td包括持续时间Tf=16us紧随其后的是mp个连续的侦听时隙时段(记作Tsl),其中,Tf包括在其开始时的一个空闲的侦听时隙时段Tsl
CWmin,p≤CWp≤CWmax,p为竞争窗口。
在上述程序的步骤1之前选择CWmin,p和CWmax,p
mp、CWmin,p和CWmax,p是基于与网络设备130、140或终端设备110、120传输相关联的信道接入优先级等级p,如下表所示。
表1
网络设备130、140或终端设备110、120在信道上传输的信道占用时间(Channel Occupancy Time,COT)不超过Tmcot,p,其中信道接入过程是基于与网络设备130、140或终端设备110、120传输相关联的信道接入优先级等级p执行的。
网络设备130、140或终端设备110、120维护竞争窗口值CWp,并在步骤1之前根据以下步骤调整CWp的取值:
对于每个优先级类p∈{1,2,3,4},设置CWp=CWmin,p
网络设备130、140或终端设备110、120在参考子帧k中发送的数据所对应的反馈HARQ-ACK值中,如果至少Z=80%被确定为NACK,则将每个优先级类p∈{1,2,3,4}所对应的CWp值增加到下一个较高的允许值,在步骤2中使用;否则,执行步骤1。其中,参考子帧k是网络设备130、140或终端设备110、120在信道上最近的传输的起始子帧。
Type 2A LBT:25us间隔的Cat 2 LBT。NR-U设备在侦听到信道空闲25us后就可以接入信道并发送数据。
Type 2B LBT:16us间隔的Cat 2 LBT。NR-U设备在侦听到信道空闲16us后就可以接入信道并发送数据。
Type 2C LBT:至多16us间隔的Cat 1 LBT。NR-U设备不需要侦听信道,在COT内经过至多16us的转换间隔后可以直接接入信道并发送数据。
从执行LBT的设备类型角度,当NR-U设备和WiFi共存时,可以作为基于负载的设备(Load Based Equipment,LBE),其在任意时间点都可以进行信道侦听和竞争接入,而不需要考虑帧边界。除了支持作为LBE工作外还支持作为基于帧的设备(Frame Based Equipment,FBE)工作。此时NR-U设备仅允许在系统内同步的帧边界上通过信道的竞争接入取得COT,此处的“帧”表示固定帧周期(Fixed Frame Period,FFP),具体周期值由无线资源控制(Radio Resource Control,RRC)信令配置,当前协议支持的周期值为 1ms、2ms、2.5ms、4ms、5ms和10ms,均可以整除2个无线帧持续时间,即20ms。
当某个COT内对应的PSSCH资源无需进行反馈时,由于一个PSFCH反馈占用3个OFDM符号(包括上文提及的2个OFDM符号还包括收发转换间隔(gap)),只占据一个PRB(物理资源块)资源,当对于某些PSSCH传输没有该反馈信息时,例如盲重传和NACK-only这一组播类型,此时对应的PSFCH所在的时隙可能没有用户传输,此时COT内的传输中断时间可能大于25us,带来COT丢失的风险。如图3所示,为本公开实施例所针对的COT丢失的场景的示意图,当COT内为广播业务类型时,则对应的PSFCH资源无终端进行HARQ-ACK反馈,此时异系统终端可能LBT通过并抢占COT。
为此,本公开的一些实施例中,在资源池内定义common PSFCH资源集合,该common PSFCH资源包含1个或多个PRB资源。common PSFCH资源集合的意义在于,其中定义的资源对于所有UE而言都可以在其上面发送信号,而不是专门用于某一PSFCH传输的PRB资源,但在common PSFCH资源上发送的信号可以不用于对应PSSCH数据的真实反馈信息,即TX UE只在那些dedicate(专用)PSFCH资源去接收HARQ信息并解码。
由于PSFCH所在的时隙可能有多个用户或者多种业务类型的反馈信息,而各个反馈UE之间不一定能完全确定其他用户的反馈类型,或者是否有反馈信息。为了保证COT不被丢失,当资源池内定义了上述common PSFCH资源后,无论是什么业务类型,RX UE(为第一终端装置的示例)必须在这些common PSFCH资源上发送信号,尤其是对于NACK-only和盲重传类型,按照一些方案中的RX UE不需要进行反馈任何信息,但本公开实施例的方案为了保证COT不会丢失,RX UE都需要在common PSFCH资源发送第一信号,从而保证了COT不会被丢失。发送的第一信号可以是反馈信息或其他信息,也可以是当前PSSCH对应的接收状态信息,即NACK或者ACK,等等。而对于单播和组播类型2业务类型的用户,RX UE不仅需要在common PSFCH资源上发送第一信号,还需要在专用的PSFCH资源上传输反馈信息。
某些地区的OCB法规要求信号传输占据标称带宽(20MHz)的80%,在SL-U中,可以通过复用NRU的设计,即引入interlace结构,来满足OCB。同样的,对于PSFCH传输,同样需要满足OCB需求。
当某些地区有OCB要求时,此时的common PSFCH资源可以是一个common interlace,interlace是一种交错结构。对于这个common PSFCH资源集合,它应该是资源池级别的,可以被(预)配置的或通过协议约定的,若是(预)配置的,可以通过bitmap(比特地图)来指示,若是通过协议约定的,对于无OCB要求的地区,该common PSFCH资源集合内包含的RB可以是每个RB set(资源块集合)上的第一个RB,或者最后一个RB,或者具体某个位置的RB;对于有OCB需求的地区,该common PSFCH资源集合可以是资源池内的interlace#0包含的PRB资源,或者选择某一interlace资源,该interlace包含的PRB资源不属于guard band(保护频带)。对于common PSFCH资源,应该优先选择只属于RB set上的RB资源,而避免包含属于guard band的资源。当无法避免包含属于guard band的资源时,可以选择不在guard band上的PRB发送PSFCH。
对于没有OCB法规要求的地域,此时common PSFCH资源包含若干个RB,且这些RB资源应该分布在资源池内的各个RB set上。类似的,当此时为满足OCB要求,将common PSFCH资源定义为interlace结构时,此时common PSFCH资源应该包括资源池内所有RB set上的interlace RB。图4示出了本公开实施例的common PSFCH资源的一个示意图。在图4中,资源池包含两个RB set,此时common PSFCH资源结合包含两个RB,一个在RB set 0上,另一个在RB set1上,而图5示出了本公开实施例的common PSFCH资源的另一示意图。对于图5中的common PSFCH资源,包含资源池内两个RB set上interlace 0上的PRB资源。
如图6所示,为本公开实施例的各业务类型PSFCH传输示意图。资源池内采用interlace(交错)结构传输数据,UE1传输的PSSCH是单播类型,因此UE1对应的接收端UE(即接收该单播类型的PSSCH传输的UE)不仅需要在common PSFCH interlace上发送第一信号,还需要在dedicate PSFCH上发送反馈信息。而UE2传输的是广播类型的业务,并不需要反馈信息,因此UE2对应的接收端UE只需要在common PSFCH上传输第一信号。对于UE3传输的是组播类型1,只有接收状态为NACK的接收端UE才需要进行反馈,因此对于UE3对应的接收端UE,若其接收到的数据对应的接收状态时ACK时,则只需要在common PSFCH interlace上发送第一信号;若其接收到的数据对应的接收状态时NACK时,RX UE需要同时在common interlace和dedicate PSFCH上发送信号,具体即在common interlace上发送第一信号,以及在dedicate PSFCH上发送反馈信息。当存在有效的反馈信息时,dedicate PSFCH资源上发送的信号(即反馈信息)用于发送端UE(或称TX UE,为第二终端装置的示例)对PSSCH接收状态的确定,即接收端 UE(或称RX UE)必须在dedicate PSFCH资源上对PSSCH的接收状态进行反馈,common interlace上的信号(即第一信号)可以是表征对应PSSCH接收状态,也可以是其他数据或信号。图7是本公开实施例的interlace(交错)结构的示意图,如图7所示,对于15kHz SCS,有10个interlace,每个用第10个PRB。当子载波间隔为15KHz的时候,M=10,当子载波间隔为30KHz的时候,M=5。
如前,一个common PSFCH资源可能包含资源池内多个RB set的RB资源,而PSSCH传输不一定占据整个资源池,但发生数据之前需要做LBT(如果要求的话),也就是传输的带宽越大,对LBT的要求越高。而传输common PSFCH资源主要目的一是为了保证COT不被丢失,二是为了满足某些地区的OCB需求。因此本公开实施例对于common PSFCH资源的使用,可以基于一些准则,具体地,common PSFCH资源可能跨多个RB set,但发送信息需要做LBT,可以考虑以下至少一个准则:
RX UE在common PSFCH资源上的所有RB上进行发送。在此准则下,不管common PSFCH资源集合包含RB分布在多少个RB set上,RX UE都需要在这些common PSFCH资源上进行发送。
RX UE只在PSSCH所在的RB set上的common PSFCH资源发送。例如图4及图5中,UE1在RB set0上给UE2发送信息,而RX UE2需要在PSSCH所在RB set 0上包含的common PSFCH资源发送信息。
RX UE在dedicate PSFCH(若存在)所在的RB set上的common PSFCH资源上发送。例如图4及图5中,UE1在RB set0上给UE2发送信息,其对应的专有反馈资源在RB set0上,所以RX UE2需要在专有PSFCH资源所在RB set0上包含的资源发送信息。
RX UE在被共享的COT所包含的RB set内的common PSFCH资源发送。例如图4及图5中,UE1在RB set0上发起了一个COT,然后UE1在RB set0上给UE2发送信息,COT初始者UE1可以在RB set0指示UE2使用LBT type2进行PSFCH反馈,所以RX UE2需要在RB set0上的common PSFCH资源发送信息。
在一些实施例中,第一反馈资源中的资源块与第一比特地图中指示发送反馈信息的比特值相对应。在一些实施例中,第一反馈资源对应的子载波间隔为60KHZ,在第一比特地图中,值0表示对应的PRB(物理资源块)不用于PSFCH的发送和接收,而值1表示对应的PRB(物理资源块)用于PSFCH的发送和接收。换言之,1指示对应的资源块用于发送反馈信息,而0指示对应的资源块不用于发送反馈信息。在另一些实施例中,1指示对应的资源块不发送反馈信息而0指示对应的资源块用于发送反馈信息。在一些实施例中,第一比特地图中指示用于发送反馈信息的0或1的数量大于预设值。
在有OCB法规要求的地域,interlace传输是满足OCB需求的方法之一,而对于60KHz的SCS(子载波间隔)配置,在NRU中,不支持60KHz SCS(子载波间隔)配置下的interlace(交错)结构,因此60KHz不能采用interlace结构来满足OCB法规要求。当没有interlace结构时,上述common interlace的方法则不再适用,因此本公开的一些实施例通过定义bitmap集合,用来达到类似common interlace的效果。该bitmap集合,即第一比特地图,用于定义common PSFCH的PRB资源,bitmap的长度与资源池内的RB数相等,即bit(比特)值和资源池内的RB一一对应。在一些实施例中,第一比特地图中bit值为1代表该PRB用于common PSFCH,bit值为0表示该值不用于common PSFCH。在另一些实施例中bit值为0代表该PRB用于common PSFCH,bit值为1表示该值不用于common PSFCH。从接收端用户考虑,在一个RBset内该bitmap集合中1和0最好交错分布,即bitmap中“1”的间隔是等距的。且为了满足OCB需求,指示用于common PSFCH的比特值的数量需要大于预设值,即指示用于发送第一反馈信息的0或1的数量大于预设值,例如如果bit值为1代表该PRB用于common PSFCH,那么该bitmap中“1”的个数>=10。从实现简单的角度考虑,当一个资源池包含多个RB set时候,bitmap值在其他RB set上的配置,可以是某一RB set的复制。
如图6所示,假设该资源池只包含一个RB set,该bitmap的第一个bit值为“1”,然后是0,依次以“1010……”的方式重复,使得在该RB set内,用于表征common PSFCH资源的RB数>=10。例如假设资源池内一个RB set有24个RB,此时bitmap的配置可以为“101010101010101010100000”,即前面20个bit值有10个为“1”,剩余的全为0。当然bitmap值也可以从0开始,即“010101010101010101010000”,只需要保证bitmap中存在2N(N>=10)个bit值存在N个bit值为“1”。本公开的一些实施例的以比特地图来表示资源池中的common PSFCH资源的示意图如图8所示,根据图8,示例性地示出了bitmap中“1”的位置用于common PSFCH资源的示例。
在一些实施例中,“sl-PSFCH-RB-Set”bitmap表示用于HARQ-ACK传输的资源,bitmap中比特值为1标志对应的PRB资源可以用作HARQ-ACK反馈。“sl-RB-SetPSFCH”bitmap用于表示Scheme2冲突指 示,bitmap中为1标识其对应的PRB资源可以用作scheme 2冲突指示。因此,在一些实施例中,用于common PSFCH资源中bitmap应与“sl-PSFCH-RB-Set”和“sl-RB-SetPSFCH”中bit值为1的位置不重叠。
另外,在一些实施例中,当一个UE的传输占据多个子信道(sub-channel),可以通过配置参数sl-PSFCH-CandidateResourceType,将PSFCH反馈限定在PSSCH传输占据的起始sub-channel上,或者是各自的sub-channel的PSSCH数据对应各自sub-channel对应的PSFCH反馈。作为可选实施方式,在非授权频段中,当PSSCH和其对应的反馈PSFCH资源在同一RB set上时,应当限定sl-PSFCH-CandidateResourceType=allocSubCH,即此时那么当一个传输块占据多个RB set上的子信道时,可以保证在不同的RB set上均有PSFCH传输,因此即便没有commom interlace资源,也可以保证PSSCH所在的COT不会丢失。
sidelink通信的时频资源是基于SL通信资源池来进行配置的。SL通信资源池可以看做是用于SL通信的时间资源和频率资源的集合。对于时间资源,基站采用一个比特地图并且周期性重复该比特地图来指示系统中所有子帧中用于SL通信的子帧的集合,NR SL中通过比特地图来指示SL通信的可用子帧,例如每个子帧中SL传输占用的符号个数为固定M个符号,定义M为一个SL时域传输时长,或时域传输单元。
对于SL通信资源池的频率资源,基站将用于SL通信的频段分成若干个子信道,每个子信道包含一定数量的资源块。基站可以指示用于SL通信的频率资源的第一个资源块的序号,该通信资源池包含的总的子信道的数目N,每个子信道包含的资源块的数目nCH。SL的传输一次可以占用一个或者多个子信道。在调度SL通信资源时,在频域是以子信道为粒度来进行调度的。
NR-V2X支持物理层HARQ-ACK反馈,即针对一次PSSCH传输,若发送端用户设备在控制信息中携带HARQ-ACK反馈使能信息,接收端用户设备需要根据此次PSSCH译码结果反馈响应的ACK/NACK信息,其中ACK/NACK信息通过PSFCH信道传输。PSFCH信道资源是配置在资源池中周期性资源,其周期配置参数可以是0、1、2、4。其中表示该资源池中无PSFCH资源配置,该资源中没有使能PSFCH发送,即不支持物理层HARQ反馈;表示表示在一个时间窗内每个SL时隙会有一个PSFCH反馈时隙,图9示出了资源池中PSFCH资源配置的示意图,如图9所示,在PSFCH的物理资源所在时隙,PSFCH占用GAP前的最后两个符号上。
由图9可知,若资源池上配置了PSFCH反馈资源,则每N个时隙配置一次PSFCH反馈资源。在V2X传输模式二场景下,有别于基站调度,用户需要基于自身侦听结果自主选择PSSCH发送资源,因此为了简化PSFCH资源选择过程,NR-V2X为每个PSSCH子信道配置了PSFCH反馈资源。具体每个子信道对应的PSFCH资源确定过程如下:
资源池配置了PSFCH频域资源的比特地图(bitmap),用以指示资源池所在频域资源上的具体PRB是否可以用作PSFCH资源,即比特地图中包含的比特信息长度与资源池中的PRB个数相等,比特地图中的1表示对应的PRB可以用作PSFCH传输,比特0标志对应的PRB资源不可以用作PSFCH传输。特别的,PSFCH资源可用于HARQ-ACK传输,其资源用“sl-PSFCH-RB-Set”bitmap表示,bitmap中比特值为1标志对应的PRB资源可以用作HAQR-ACK反馈,PSFCH资源也可用于Scheme2冲突指示,其资源用“sl-RB-SetPSFCH”bitmap表示,bitmap中为1标识其对应的PRB资源可以用作scheme 2冲突指示,需要注意的是,“sl-PSFCH-RB-Set”和“sl-RB-SetPSFCH”中bit值为1的位置不重叠。如图10所示,是PSFCH资源比特地图指示示意图,在一个有PSFCH传输资源的时隙中,假设一个子信道包含10个PRB,且资源池中共有3个子信道,则资源池中指示PSFCH频域资源的比特地图共包含3*10=30个比特分别指示每个PRB是否可以用作PSFCH传输。如下图10中所示,比特地图指示每个子信道的前4个PRB可以用作PSFCH反馈,该比特图可以用于指示上述HARQ-ACK资源,也可以用于指示scheme2冲突资源。
由于每个N个PSSCH时隙对应一个PSFCH反馈时隙,对于包含Nsubch个子信道的资源池来说,每个子信道对应的PSFCH反馈资源数量为其中表示PSFCH频域资源的PRB个数,即指示PSFCH频域资源的比特地图中值为1的比特个数总和。
考虑收端用户设备的译码能力的限制,接收端用户设备不能在接收到PSSCH后立即进行反馈,因此标准定义一个PSSCH反馈的时间间隔K,即PSSCH在包含PSFCH资源的第一个可用的时隙上传输PSFCH,该时隙与PSSCH所在时隙至少为间隔K个时隙,K的值为资源池配置的。如图11所示,图11示出了本公开实施例的PSSCH对应PSFCH时域资源示意图,当K=2时,时隙0和1上承载的PSSCH可以在时隙3上的PSFCH资源上反馈,时隙2/3/4/5上承载的PSSCH在时隙7所在PSFCH资源上反馈,同 时由于时隙2/3/4/5在一个时隙的PSFCH资源上反馈,可以称为一个PSSCH绑定窗长。
一个PSFCH反馈时隙内的PSFCH可用资源按照先时域后频域的方式,顺序分配给反馈周期内的每个子信道。具体如下图12所示,图12示出了PSFCH频域资源分配示意图,当时,4个绑定的PSSCH时隙中每个子信道对应的PSFCH资源如图12中编号所示,即为每个时隙的每个子信道分配一个PRB的PSFCH反馈资源。用公式表示为,对于N个绑定的PSSCH时隙中的第i个时隙,若其资源池中频域子信道编号为j,那么其对应的PSFCH资源为若用户占用两个子信道传输,如图12中“5”和“9”对应的PSSCH,其对应的PSFCH资源也分别是5和9,在频域上不连续。
对于PSFCH格式0,一种满足OCB需求的设计为,引入common PSFCH资源,该common PSFCH资源可以是一个common interlace,或者其他common PRBs。通过资源池定义一个common interlace结构,然后资源池内用户再按照R16/R17的PSSCH-PSFCH映射规则,在其他非Common PSFCH资源上传输对应的HARQ反馈信息。
本公开实施例解决PSFCH传输所在的时隙无PSFCH传输时,带来的COT丢失问题。通过定义common interlace结构,然后限定在某些业务或所有业务类型下,RX UE都在common interlace上进行发送,以解决OCB问题,同时也避免COT丢失问题。由于当前NRU中未定义60KHz的interlace结构,因此本公开实施例设计了针对无interlace结构下,PSFCH传输满足OCB法规的问题。
如图13所示,为PSFCH格式0的common interlace结构示意图,UE1、UE2、UE3在COT内某一时隙进行PSCCH/PSSCH传输,但它们对应的结构UE不仅不需要在专用的PSFCH传输PRB资源上进行反馈,还需要在common interlace上发送信号,以满足OCB需求。
本公开实施例中的PSFCH序列生成方式,具体地,PSFCH是基于低峰均比的ZC序列,其时域占用2个连续的OFDM符号,频域为1个PRB。具体的生成方式是根据序列长度生成一个基础序列r(n),0≤n≥MZC,对基础序列r(n)进行相位旋转,按照如下方式生成可复用的低峰均比序列:
rα(n)=r*ejαn,0≤n<MZC
其中MZC=12,即支持多个用户采用不同α生成可以区分的PSFCH序列,各个PSFCH序列码分复用在一个RB上发送。由于UE需要反馈ACK和NACK信息,即一个用户至少被分配两个序列,分别对应不同的α值。相位旋转值α由如下公式确定。
其中表示一个RB中的子载波个数,NR定义该数值为12;表示在一个无线帧中当前子载波间隔μ对应的时隙号(slot number);l表示PSFCH传输时隙上的OFDM符号编号,l=0表示当前PSFCH传输资源的第一个OFDM符号;l′表示当前PSFCH传输资源上相对于第一个OFDM符号的符号索引。m0表示一个PSFCH反馈资源对中ACK的相位,mcs表示一个PSFCH反馈资源对中NACK序列相对于ACK序列的相位偏移。NR-V2X支持单播和组播场景下的物理层PSFCH反馈,针对不同的业务类型,确定mcs取值按照表2和表3确定,其中表2是单播和组播类型2场景下一个PSFCH反馈序列对的相位映射关系,表3是组播类型1场景下PUCCH format0有SR请求的HARQ信息映射关系。
表2
表3
函数ncs(nc,l)表示为
其中c(i)表示伪随机序列中序号i的数值,生成过程如下段所示;表示一个时隙中的连续时域符 号数量,值为14;生成伪随机序列的初始值为cinit=nID,nID高层配置,若高层没有配置则为0。
长度为MPN的伪随机序列c(n)由长度为31的gold序列循环移位生成,n=0,1,...,MPN-1。其中gold序列为两个m序列x1(n)和x2(n)生成过程如下:
c(n)=(x1(n+NC)+x2(n+NC))mod 2
x1(n+31)=(x1(n+3)+x1(n))mod 2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2
其中NC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2(n)由确定。
下面介绍PSFCH资源位置。若一个PSSCH占用个子信道,那么其对应个PSFCH反馈资源对,其中表示资源池配置的一个PRB的PSFCH资源上可以复用的PSFCH序列对的数量,每个子信道分配的PSFCH资源的PRB数量。同时资源池还可以通过配置限制PSSCH的接收端用户设备可以使用的PSFCH反馈资源。
在一些实施例中,若资源池配置该PSSCH的接收端用户设备只能使用其第一个子信道对应的PSFCH资源,即如图12所示,当PSSCH占用编号为5和9的两个子信道传输数据是,该PSSCH的收端用户只能使用编号为5的PSFCH资源进行反馈。
在另一些实施例中,若资源池配置该PSSCH的接收端用户设备可以使用其所有子信道对应的PSFCH资源进行反馈,即
发送端用户设备选择第个PSFCH资源对对应的资源反馈PSFCH,其中PID表示控制信息中承载的物理层源地址ID,对于组播类型2来说,MID为每个接收端用户设备的高层为本次PSSCH信息传递配置的ID,否则MID=0。个PSFCH资源对按照先频域索引,后码域索引增序排列所有PSFCH序列,即PSFCH反馈对应的PRB索引为在该PRB中PSFCH反馈对应的对应的由循环移位索引并由表4确定生成PSFCH反馈序列的m0
表4
从上述分析可以看出,由于MID不同,对于组播类型2来说,组内每个用户使用不同的PSFCH资源对进行反馈,发端用户相应的也会对每个资源对分别接收(前提是组内每个用户的MID,组内各个成员已知)。对于组播类型1来说,由于MID=0,所以对于源地址PID确定的PSSCH,组内每个成员采用相同的PSFCH反馈NACK信息。
图14为本申请实施例中通信方法的另一示例流程示意图。如图14所示,在第一终端装置侧,第一终端装置接收(1410)来自第二终端装置的第一数据1405;第一终端装置确定(1430)与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT,第一终端装置在PSFCH资源上向第二终端装置发送(1450)对应第一数据的反馈信息1415,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,第一终端装置在第二COT或第三COT内发送(1450) 第一数据的反馈信息1415,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。
在第二终端装置侧,第二终端装置向第一终端装置发送(1420)第一数据1405;第二终端装置确定(1440)与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT,第二终端装置在PSFCH资源上接收(1460)对应第一数据的反馈信息1415,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,第二终端装置在第二COT或第三COT内接收(1460)第一数据的反馈信息1415,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。
以此方式,本公开实施例能够避免因COT被其他UE抢占而导致PSFCH不能按照既定方式进行反馈的情况。由于PSFCH的周期是(预)配置的,PSSCH-PSFCH按照映射规则一一对应,而在非授权频段中,终端发送信号之前需要进行LBT操作,当LBT失败时,PSSCH-PSFCH一一映射的关系将会打破,导致PSFCH传输失败。PSFCH周期性出现,且PSSCH和PSFCH按照映射规则一一映射的示例可参见图11和图12。而在非授权频段中,UE执行LBT操作来抢占资源,当LBT成功时,UE可以在其抢占的COT内传输对应的资源。当COT结束之后,若接下来的时频资源被异系统(例如另外的UE或者WI-FI设备或者非3GPP定义的设备等)用户抢占,那么上述的PSSCH-PSFCH映射规则将被打破。图15是本公开实施例所针对的PSSCH-PSFCH映射关系可能被打破的场景示意图,如图15所示,当COT#1结束后,由于反馈处理需要时间,所以COT结尾的PSFCH来不及反馈,而随后的COT#2又被其他异系统用户占用,导致PSFCH不能按照既定方式进行反馈,而图14所示的示例流程能够避免因COT被其他UE抢占而导致PSFCH不能按照既定方式进行反馈的情况。
在一些实施例中,在第二终端装置侧,第二终端装置在第二COT上向第一终端装置发送指示信息。在第一终端装置侧,第一终端装置接收第二终端装置在第二COT上发送的指示信息,指示信息指示第一终端装置在第二COT内的时频资源集合内的第二时频资源上发送反馈信息。
在一些实施例中,时频资源集合包含M个资源块,M个资源块由第二比特地图,和/或第一频域偏移值,和/或第二频域偏移值确定,第二比特地图可以是由网络侧配置的,或者预配置的,或者通过协议规定的。在一些实施例中,第二比特地图中比特值为1对应的比特位可以与PSFCH资源相对应,表示对应的资源可用于发送反馈信息,比特值为0对应的比特位表示对应的资源不用来发反馈信息。时频资源集合包含PSFCH资源对应第二比特地图中比特值为1的比特位对应的资源。
在一些实施例中,第二时频资源的频域资源位置是根据指示信息中指示第一终端装置反馈对应的反馈信息次序确定的;或者,第二时频资源的时域资源位置是根据指示信息中指示的反馈时间单元的位置,和/或时间偏移确定的。反馈时间单元例如时隙。
在一些实施例中,第一终端装置根据指示信息中的指示字段、与PSSCH相关联的混合自动重传请求处理标识(HARQ process ID)、或与PSSCH相关联的新数据标识(NDI),或PSSCH相关联的源设备(Source ID)信息,或PSSCH相关联的目的设备(destination ID)信息,或与PSSCH相关联的分组标识信息(例如组播类型2中的组ID)表示的一者或多者,确定第一终端装置反馈对应的反馈信息次序。具体地,反馈信息次序可以是显示的或者隐式的指示的,显示的指示体现为有一个字段(即上述的指示字段)直接表明该第一终端装置在本组的第几个位置,隐式的指示体现第二终端装置所指示的PSSCH相关的HARQ process ID,NDI等信息的顺序。
在一些实施例中,当第一数据对应第二组播类型时,第一终端装置对应的频域资源位置与预先为每个终端装置配置的用于PSSCH传输的第一标识有关,或者基于第一标识与控制信息中承载的源地址标识的组合来确定。第一标识(MID)为每个接收端用户设备的高层为本次PSSCH信息传递配置的ID。控制信息中承载的源地址标识即PID,为控制信息中承载的物理层源地址ID。在一些实施例中,第一标识与控制信息中承载的源地址标识的组合的形式例如:
在一些实施例中,通过指示信息中指示用于跨反馈时间单元发送反馈信息的比特值,来指示频域资源位置。
跨反馈时间单元例如跨时隙,在一些实施例中,通过时间偏移(time offset)来指示一个PSFCH时隙用于跨时隙反馈,在这种情况下time offset指示的跨时隙PSFCH反馈所在的时隙位置可能与(预)配置的位置重叠,例如PSFCH反馈周期可以是1,那么在这种情况下每个时隙都有一个PSFCH反馈。为了避免COT内的(半)静态反馈和跨COT的动态反馈的PSFCH资源冲突,可以通过一个bitmap(称为第二比特 地图)来避免COT内的(半)静态反馈和跨COT的动态反馈的PSFCH资源冲突,例如第二比特地图中比特值为1的比特位对应用于跨反馈时间单元发送反馈信息的PSFCH资源。
在一些实施例中,在第三COT内由第一终端装置发送或由第二终端装置接收的反馈信息在侧行链路控制信息、媒体访问控制控制单元、或物理侧行链路共享信道PSSCH中。例如第一终端装置携带先前未收到的PSSCH的HARQ process ID,NDI,source ID,destination ID+ACK/NACK信息承载于2阶SCI中,随着数据一起发送反馈信息。
在一些实施例中,在第三COT内由第一终端装置发送或由第二终端装置接收的反馈信息在一信道中,反馈信息的频域位置是由侧行链路控制信息来指示的。例如第一终端装置携带先前未收到的PSSCH的HARQ process ID,NDI,source ID,destination ID+ACK/NACK信息承载于一信道中,SCI指示具体的这些信息所占据的起始位置等相关信息。
在一些实施例中,在第三COT上由第一终端装置发送或由第二终端装置接收的反馈信息包括:与PSSCH相关联的混合自动重传请求处理标识、或与PSSCH相关联的新数据标识,或PSSCH相关联的源设备信息,或PSSCH相关联的目的设备信息,或与PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
在一些实施例中,第二终端装置在资源块集合或标称信道或20MHz带宽上占用全部频域资源或所占用频域资源超过预设阈值的情况下,指示在第一COT或第三COT内的PSFCH资源集合。包括PSFCH资源集合中某一PSFCH资源的时域和/或频域位置,PSFCH资源集合用于第一终端装置或除第一终端装置之外的其他终端装置发送反馈信息。
在一些实施例中,第二终端装置在第三COT内接收承载于侧行链路控制信息中的反馈信息。
在一些实施例中,第二终端装置在第三COT内接收承载于选定的信道中的反馈信息,其中通过侧行链路控制信息得到反馈信息在信道的起始位置。
在一些实施例中,第二终端装置在第三COT上接收的反馈信息包括:与PSSCH相关联的混合自动重传请求处理标识、或与PSSCH相关联的新数据标识,或PSSCH相关联的源设备信息,或PSSCH相关联的目的设备信息,或与PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
本公开实施例通过(半)静态和动态反馈相结合的方式,即利用了(半)静态方式的一一映射机制,能够快速简单的实现反馈,又通过引入动态反馈的方式,解决因为PSSCH-PSFCH跨COT带来的映射关系中断的问题。由于本公开实施例同时设计了具体的动态反馈的时频位置,确保无歧义的动态反馈
对于在第一终端侧已经介绍过的与第二终端装置侧相对应的内容,不再重复说明。基于上述对图14的示例流程的介绍,下面对于非授权频段的SL(sidelink)设备的HARQ反馈流程进行描述,参考图16,图16示出了本公开的一些实施例的通信方法的一个示例流程图,具体示出了本公开实施例的非授权频段HARQ反馈流程。首先PSFCH反馈周期仍然按照资源池级别来配置,即时,每四个时隙有一个时隙存在PSFCH反馈资源。当PSSCH-PSFCH在同一COT时,沿用R16/R17的PSSCH与PSFCH之间一一映射的关系,COT初始者通过隐式或显示指示COT内PSSCH的接收UE采用LBT type2接入信道,在既定位置进行反馈;而当PSSCH-PSFCH不在同一COT,采用动态反馈的方式。即PSFCH的反馈时机是动态的,一种是TX UE自己发起COT,然后隐式或显示的指示RX UE在某一包含PSFCH的时隙进行反馈,另一种则是RX UE自己发起的COT,将先前的反馈信息在自己的COT中反馈。
下面首先对采用动态反馈的方式且TX UE自己发起COT的情况进行详细介绍。TX UE在后续时隙中主动抢占COT,然后通过显示的方式指示先前未收到的PSSCH的HARQ process ID,NDI,source ID,destination ID等信息,以及具体的时频资源位置。具体的时隙位置为:COT的第一个时隙+time offset偏置(时间偏置)。具体的反馈位置的PRB为:frequency offset(频率偏置)+TX UE指示的顺序。frequency offset可以是相对于资源池内第一个可用于PSFCH传输的RB的索引偏置,也可以是相对于COT内第一个可用于PSFCH传输的RB索引偏置。该指示的顺序可以是显示的或者隐式的,显示的指示体现为有一个字段直接表明该RX UE在本组的第几个位置,隐式的指示体现TX UE指示的PSSCH相关的HARQ process ID,NDI等信息的顺序。
RX UE按照上述规则,按照顺序在对应的频域位置进行反馈。在一些实施例中,TX UE在指示的时候,应该将不同的业务类型ID进行分组,例如可以将非组播类型2(例如包括单播、组播类型1和广播)的PSSCH信息放在一组,然后再将表征组播类型2的PSSCH相关组成一组,然后RX UE分别对不同的组进行解码,找到对应的PSSCH在组内的顺序。在另一些实施例中,TX UE可按照先时域增序,后频域增序的顺序依次将PSSCH相关的反馈信息顺序排列,然后RX UE根据业务类型进行依次找到自己的位置,然 后按顺序反馈即可。在一些实施例中,组播类型2的反馈顺序可以根据MID的增序或降序顺序依次反馈,也可以是根据其他信息进行反馈,例如通过方式查找对应位置,原则是能将组内成员唯一区分,并确保不会冲突即可。
当TX UE指示的PSSCH相关信息的字段有多个组播类型2时,一种实施方式是再添加一个Frequency offset 3,Frequency offset 4,……等方式来表示其他组播PSSCH数据的反馈资源。另一种实施方式是定义或(预)配置或者COT指示一个interval信息,来表示组播类型2不同的PSSCH传输之间的间隔。
图17示出了本公开一些实施例的COT指示需要包含的字段。RX UE即第一终端装置,TX UE即第二终端装置,COT指示即第二终端装置在占用COT后向第一终端装置发送的指示信息。如图17所示,COT指示的一个示例中,其需要包含的字段包括time offset(时间偏置)、Frequency offset 1(频率偏置1)、Frequency offset 2(频率偏置2)、PSSCH相关的字段、用于跨COT HARQ的bitmap。其中,由time offset得到PSFCH的时隙位置=COT的第一个时隙+time offset。由Frequency offset 1得到分组1的HARQ反馈的PRB起始位置,例如分组1表示非主播类型2的业务类型,即单播和组播类型1,这两种反馈都只需要一个PRB资源。由Frequency offset 2得到分组2的HARQ反馈的PRB起始位置,例如分组2表示组播类型2的业务类型,此时需要给组播内多个用户分配PRB资源。此时PRB资源分配的顺序可以是根据MID大小值排序。PSSCH相关的字段包括先前PSSCH的HARQ process ID,NDI,source ID,destination ID等等。用于跨COT HARQ的bitmap具体是用于跨时隙反馈时的PRB资源,例如bitmap中bit值为“1”的对应的PRB用于跨时隙HARQ反馈。
如图18所示,是本公开的一些实施例的TX UE显示指示PSFCH反馈位置的一个示意图。UE1在COT#1的最后两个时隙分别给UE2和UE3发送数据,由于接收端处理能力限制,UE1不能再COT#1内及时收到来自UE2和UE3的反馈信息,此时UE1可以自己发起一个COT#2,然后动态指示前面未反馈的PSSCH对应的PSFCH资源。由于在COT#2中,原有的一一映射关系已经被打断,因此UE1需要显式地指示“先前PSSCH1(UE1->UE2)的HARQ process ID,NDI,source ID,destination ID”“先前PSSCH2(UE1->UE3)的HARQ process ID,NDI,source ID,destination ID”,以及对应的PSFCH反馈的时频位置。在此处time offset=2,因此先前未反馈给UE1的UE2和UE3收到COT指示后,在slot n+1进行反馈。若PSSCH1和PSSCH2都是单播信号,则UE2根据frequency offset1,得到第一个给分组1反馈的位置为RB1,而UE2相关的PSSCH 2在第一顺位,因此UE2在RB1所示位置反馈,而UE3则在RB2进行反馈。此时由于没有分组2,因此frequency offset2=-1或其他值(无穷大)来表示此次没有分组类型2的反馈。也可以是frequency offset 2=4这种有效值,只需要保证分组1和分组2的频域资源不会重叠即可。
如图19所示,是本公开的一些实施例的TX UE显示指示PSFCH反馈位置的另一示意图。此时有两种分组类型,PSSCH1(UE1–>UE2)是单播类型,而PSSCH2(UE1->UE3&UE4)是组播类型2。此时UE2根据frequency offset1在RB1反馈即可,而UE3和UE4则根据frequency offset2在RB3和RB4进行反馈,此处UE3和UE4的反馈顺序可以是根据组内的MID确定。当图19中还有另一个组播类型2的PSSCH3需要反馈时,可以是Frequency offset2+interval到Frequency offset2+2*interval之间的PRB资源用于PSSCH3传输反馈信息。
在上述实施例中,通过time offset来指示一个PSFCH时隙用于跨时隙反馈,这个时候time offset指示的跨时隙PSFCH反馈所在的时隙位置将与(预)配置的位置重叠。例如PSFCH反馈周期可以是1,这个时候每个时隙都有一个PSFCH反馈。
为了避免COT内的(半)静态反馈和跨COT的动态反馈的PSFCH资源冲突,本公开的一些实施例引入一个bitmap,该bitmap的长度为资源池内RB的数目,可以是只有RB set内包含的RB,此时UE在做PSFCH资源与资源池内RB资源时,也应该默认跳过这个处于资源池的RB,可以是RB set的RB+guard band的RB,只不过将guard band中的RB对应的bit值置零即可。即guard band不用于PSFCH反馈。bitmap中bit值为“1”的RB表示该RB用于传输跨时隙PSFCH传输,比特值为0表示不用于跨时隙PSFCH传输。反之亦可,即bitmap中bit值为“0”的RB表示该RB用于传输跨时隙PSFCH传输,比特值为1表示不用于跨时隙PSFCH传输。
当包含bitmap值时,上述图18和图19中可用的RB资源则是由bitmap指示的。需要指出的时,该用于跨时隙bitmap应与表示HARQ-ACK反馈和IUC scheme2资源的bitmap中“1”位置互斥,即应该保证使用该bitmap所表示的资源不会同时与其他用途冲突。
下面对采用动态反馈的方式且RX UE发起COT的情况进行详细介绍。对于RX UE发起的COT,RX 可以将之前未反馈的PSSCH对应的HARQ信息直接发送给TX UE即可。在一些实施例中,可以RX携带先前未收到的PSSCH的HARQ process ID,NDI,source ID,destination ID+ACK/NACK信息承载于2阶SCI中,随着数据一起发送反馈,如图20所示,示出了本公开的一些实施例的HARQ和数据一起发送的示意图,若RX UE没有数据需要携带,在另一些实施例中,可以RX携带先前未收到的PSSCH的HARQ process ID,NDI,source ID,destination ID+ACK/NACK信息承载于某一信道中,然后SCI来指示具体的这些信息所占据的起始位置等相关信息。图21示出了本公开的一些实施例的HARQ和SCI一起发送的示意图,从图21可以看出,本公开实施例的该时隙结构只有SCI和HARQ码本信息,是一种新型的时隙结构。
在一些实施例中,为满足OCB需求,可以应用interlace结构,或者引入common interlace结构。特别的,对于PSSCH-PSFCH在同一COT内的静态或半静态反馈方式,以及PSSCH-PSFCH在不同COT的动态反馈方式,由于收端用户译码能力限制,接收端用户不能在接收到PSSCH后立即进行反馈,因此标准定义一个PSSCH反馈的时间间隔K,因此当PSFCH周期=1时,一个COT内最多有N=K个PSFCH时隙无UE反馈,当K=2/4时,一个COT内最多有N=1个PSFCH时隙无UE反馈。此时,COT初始者(即发起COT的终端装置)需在N个PSFCH反馈时隙所在的PSFCH无用户传输,则COT初始者可以在上述定义的common PSFCH资源上发送信号保证COT不丢失,此处K应该小于等于HARQ处理时间线,且TX UE在common PSFCH资源上发送信号的时隙,还应该排除上述time offset有可能指示的时隙。
本公开实施例不仅适用于V2X,5G车联网,自动驾驶或辅助驾驶,也可以用于其他车联网或者D2D网络中或者LTE、5G等蜂窝网中。
图22示出了本公开的一些实施例中在第一终端装置处实现的流程图。如图22所示,第一终端装置确定公共反馈资源(2210);第一终端装置在第一时频资源上接收来自第二终端装置的第一数据(2220);第一终端装置确定第一时频资源对应的第一反馈资源,第一反馈资源属于公共反馈资源(2230);第一终端装置在第一反馈资源上发送第一信号(2240)。
图23示出了本公开的另一些实施例中在第一终端装置处实现的流程图。如图23所示,第一终端装置接收来自第二终端装置的第一数据(2310);第一终端装置确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源(2320);PSFCH资源在时域上属于第一信道占用时间COT,第一终端装置在PSFCH资源上向第二终端装置发送对应第一数据的反馈信息,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,第一终端装置在第二COT或第三COT内发送第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT(2330)。
图24示出了本公开的另一些实施例中在第二终端装置处实现的流程图。如图24所示,第二终端装置向第一终端装置发送第一数据(2410);第二终端装置确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源(2420);PSFCH资源在时域上属于第一信道占用时间COT,第二终端装置在PSFCH资源上接收对应第一数据的反馈信息,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,第二终端装置在第二COT或第三COT内接收第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT(2430)。
图25为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以实现上述方法实施例中第一终端装置或第二终端装置的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备110、120,还可以是应用于终端设备110、120的模块(如芯片)。
如图25所示,通信装置2500包括处理单元2510、接收单元2520、发送单元2530。通信装置可用于实现上述图2、图14或图16所示的方法实施例中终端装置的功能。在一些实施例中,处理单元可以为处理器,发送单元可以为发送器,接收单元可以为接收器。
当通信装置2500用于实现上述图2所示的方法实施例中终端装置的功能时,处理单元2510,用于确定公共反馈资源;接收单元2520,用于在第一时频资源上接收来自第二终端装置的第一数据;处理单元2510,还用于确定第一时频资源对应的第一反馈资源,第一反馈资源属于公共反馈资源;发送单元2530,用于在第一反馈资源上发送第一信号。
当通信装置2500用于实现上述图14所示的方法实施例中终端装置的功能时,接收单元2520,用于接收来自第二终端装置的第一数据;处理单元2510,用于确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT;发送单元2530,用于在PSFCH资源上 向第二终端装置发送对应第一数据的反馈信息,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,发送单元用于在第二COT或第三COT内发送第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。
当通信装置2500用于实现上述图16所示的方法实施例中终端装置的功能时,发送单元2530,用于向第一终端装置发送第一数据;处理单元2510,用于确定与第一数据相关联的物理侧行链路反馈信道PSFCH资源;PSFCH资源在时域上属于第一信道占用时间COT,接收单元2520,用于在PSFCH资源上接收对应第一数据的反馈信息,第一COT是由第一终端装置发起的;或者,PSFCH资源在时域上不属于第一COT,接收单元2520用于在第二COT或第三COT内接收第一数据的反馈信息,第二COT是由第二终端装置发起的COT,第三COT是由第一终端装置发起的COT。
关于上述处理单元2510、接收单元2520、发送单元2530更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图26所示,通信装置2600包括处理器2610和接口电路2620。处理器2610和接口电路2620之间相互耦合。可以理解的是,接口电路2620可以为收发器或输入输出接口。可选的,通信装置2600还可以包括存储器2630,用于存储处理器2610执行的指令或存储处理器2610运行指令所需要的输入数据或存储处理器2610运行指令后产生的数据。
当通信装置2600用于实现上述方法实施例中的方法时,处理器2610用于执行上述处理模块602的功能,接口电路2620用于执行上述接收单元2520、发送单元2530的功能。
当上述通信装置为应用于终端设备110、120的芯片时,该终端设备芯片实现上述方法实施例中终端设备110、120的功能。该终端设备芯片从终端设备110、120中的其它模块(如射频模块或天线)接收信息,该信息可以是其他终端设备110、120发送的;或者,该终端设备芯片向终端设备110、120中的其它模块(如射频模块或天线)发送信息,该信息是发送给其他终端设备110、120的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请实施例提供一种通信系统。该通信系统可以包括上述的图25所示的实施例所涉及的通信装置,如终端设备110、120。可选的,该通信系统中的终端设备110、120可执行图2、图14、或图16中任一所示的通信方法。
本申请实施例还提供一种电路,该电路可与存储器耦合,可用于执行上述方法实施例中任一所示的实施例中与终端设备110、120或网络设备130、140相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的通信方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
该功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备130、140等)执行本申请各个实施例该方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
如本文所使用的,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象,并且仅用于区分所指代的对象,而不暗示所指代的对象的特定空间顺序、时间顺序、重要性顺序,等等。在一些实施例中,取值、过程、所选择的项目、所确定的项目、设备、装置、手段、部件、组件等被称为“最佳”、“最低”、“最高”、“最小”、“最大”,等等。应当理解,这样的描述旨在指示可以在许多可使用的功能选择中进行选择,并且这样的选择不需要在另外的方面或所有方面比其他选择更好、更低、更高、更小、更大或者以其他方式优选。如本文所使用的,术语“确定”可以涵盖各种各样的动作。例如,“确定”可以包括运算、计算、处理、导出、调查、查找(例如,在表格、数据库或另一数据结构中查找)、查明等。此外,“确定”可以包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)等。再者,“确定”可以包括解析、选择、选取、建立等。
以上所示,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (65)

  1. 一种通信方法,包括:
    第一终端装置确定公共反馈资源;
    所述第一终端装置在第一时频资源上接收来自第二终端装置的第一数据;
    所述第一终端装置确定所述第一时频资源对应的第一反馈资源,所述第一反馈资源属于所述公共反馈资源;
    所述第一终端装置在所述第一反馈资源上发送第一信号。
  2. 根据权利要求1所述的方法,还包括:
    所述第一数据对应单播类型,所述第一终端装置在所述第一时频资源对应的第二反馈资源上发送反馈信息,其中所述反馈信息为所述第一数据对应的确认应答或否定应答,所述第二反馈资源不属于所述公共反馈资源。
  3. 根据权利要求1所述的方法,还包括:
    所述第一数据对应第二组播类型,所述第一终端装置在所述第一时频资源对应的第二反馈资源上发送反馈信息,其中所述反馈信息为针对所述第一数据的确认应答或否定应答,所述第二反馈资源不属于所述公共反馈资源。
  4. 根据权利要求1所述的方法,还包括:
    所述第一数据对应第一组播类型,且所述第一数据对应的混合自动重传请求确认信息为否定应答时,所述第一终端装置在所述第一时频资源对应的第二反馈资源上发送反馈信息,其中所述反馈信息为针对所述第一数据的否定应答。
  5. 根据权利要求1至4中任一项所述的方法,所述第一信号是所述反馈信息或除所述反馈信息之外的其他信号。
  6. 根据权利要求1所述的方法,所述公共反馈资源用于所述第一终端装置和除所述第一终端装置之外的其他终端装置发送信号。
  7. 根据权利要求1所述的方法,所述公共反馈资源中的资源块与第一比特地图相关。
  8. 根据权利要求7所述的方法,所述第一比特地图中比特值为1的比特位对应所述公共反馈资源中的资源块。
  9. 根据权利要求8所述的方法,其中所述第一比特地图中指示用于发送所述反馈信息的比特位的数量大于预设值。
  10. 根据权利要求2-4中任一项所述的方法,其中所述第一反馈资源和所述第一时频资源属于同一资源块集合,和/或所述第一反馈资源和所述第二反馈资源属于同一资源块集合。
  11. 一种通信方法,包括:
    第一终端装置接收来自第二终端装置的第一数据;
    所述第一终端装置确定与所述第一数据相关联的物理侧行链路反馈信道PSFCH资源;
    所述PSFCH资源在时域上属于第一信道占用时间COT,所述第一终端装置在所述PSFCH资源上向所述第二终端装置发送对应所述第一数据的反馈信息,所述第一COT是由所述第一终端装置发起的;或者,
    所述PSFCH资源在时域上不属于所述第一COT,所述第一终端装置在第二COT或第三COT内发送所述第一数据的反馈信息,所述第二COT是由所述第二终端装置发起的COT,所述第三COT是由所述第一终端装置发起的COT。
  12. 根据权利要求11所述的方法,还包括:
    所述第一终端装置接收所述第二终端装置在所述第二COT上发送的指示信息,所述指示信息指示所述第一终端装置在所述第二COT内的时频资源集合内的第二时频资源上发送所述反馈信息。
  13. 根据权利要求12所述的方法,所述时频资源集合包含M个资源块,所述M个资源块由第二比特地图,和/或第一频域偏移值,和/或第二频域偏移值确定,所述第二比特地图是由网络侧配置的,或者预配置的,或者通过协议规定的;所述时频资源集合包含所述PSFCH资源对应所述第二比特地图中比特值为1的比特位对应的资源。
  14. 根据权利要求12所述的方法,所述第二时频资源的频域资源位置是根据所述指示信息中指示所述第一终端装置反馈对应的反馈信息次序确定的;或者
    所述第二时频资源的时域资源位置是根据所述指示信息中指示的反馈时间单元的位置,和/或时间偏移确定的。
  15. 根据权利要求14所述的方法,其中根据所述指示信息中的指示字段、与物理侧行链路共享信道PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息表示的一者或多者,确定所述第一终端装置反馈对应的反馈信息次序。
  16. 根据权利要求15所述的方法,当所述第一数据对应第二组播类型时,所述第一终端装置对应的频域资源位置与预先为每个终端装置配置的用于所述PSSCH传输的第一标识有关,或者基于所述第一标识与控制信息中的源地址标识的组合来确定。
  17. 根据权利要求14所述的方法,还包括:
    基于所述指示信息中指示用于跨反馈时间单元发送所述反馈信息的比特值,来确定所述频域资源位置。
  18. 根据权利要求13所述的方法,其中在所述第三COT内发送的所述反馈信息在侧行链路控制信息、媒体访问控制控制单元、或物理侧行链路共享信道PSSCH中。
  19. 根据权利要求13所述的方法,其中在所述第三COT内发送的所述反馈信息的频域位置是由侧行链路控制信息来指示的。
  20. 根据权利要求18或19所述的方法,所述第一终端装置在所述第三COT上发送的所述反馈信息包括:与所述PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
  21. 一种通信方法,包括:
    第二终端装置向第一终端装置发送第一数据;
    所述第二终端装置确定与所述第一数据相关联的物理侧行链路反馈信道PSFCH资源;
    所述PSFCH资源在时域上属于第一信道占用时间COT,所述第二终端装置在所述PSFCH资源上接收对应所述第一数据的反馈信息,所述第一COT是由所述第一终端装置发起的;或者,
    所述PSFCH资源在时域上不属于所述第一COT,所述第二终端装置在第二COT或第三COT内接收所述第一数据的反馈信息,所述第二COT是由所述第二终端装置发起的COT,所述第三COT是由所述第一终端装置发起的COT。
  22. 根据权利要求21所述的方法,还包括:
    所述第二终端装置在所述第二COT上向所述第一终端装置发送指示信息,所述指示信息指示所述第一终端装置在所述第二COT内的时频资源集合内的第二时频资源上发送所述反馈信息。
  23. 根据权利要求22所述的方法,所述时频资源集合包含M个资源块,所述M个资源块由第二比特地图,和/或第一频域偏移值,和/或第二频域偏移值确定,所述第二比特地图是由网络侧配置的,或者预配置的,或者通过协议规定的;所述时频资源集合包含所述PSFCH资源对应所述第二比特地图中比特值为1的比特位对应的资源。
  24. 根据权利要求22所述的方法,所述第二时频资源的频域资源位置通过所述指示信息中指示所述第一终端装置反馈对应的反馈信息次序来指示;或者
    所述第二时频资源的时域资源位置通过所述指示信息中指示的反馈时间单元的位置,和/或时间偏移来指示。
  25. 根据权利要求24所述的方法,其中通过所述指示信息中的指示字段、与物理侧行链路共享信道PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息表示的一者或多者,来指示所述第一终端装置反馈对应的反馈信息次序。
  26. 根据权利要求25所述的方法,当所述第一数据对应第二组播类型时,所述第一终端装置对应的频域资源位置与预先为每个终端装置配置的用于所述PSSCH传输的第一标识有关,或者基于所述第一标识与控制信息中承载的源地址标识的组合来指示。
  27. 根据权利要求24所述的方法,还包括:
    通过所述指示信息中指示用于跨反馈时间单元发送所述反馈信息的比特值,来指示所述频域资源位 置。
  28. 根据权利要求23所述的方法,其中在所述第三COT内接收的所述反馈信息在侧行链路控制信息、媒体访问控制控制单元、或物理侧行链路共享信道PSSCH中。
  29. 根据权利要求23所述的方法,其中在所述第三COT内接收的所述反馈信息在一信道中,所述反馈信息的频域位置是由侧行链路控制信息来指示的。
  30. 根据权利要求28或29所述的方法,所述第二终端装置在所述第三COT上接收的所述反馈信息包括:与所述PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
  31. 根据权利要求21所述的方法,所述第二终端装置在资源块集合上占用全部频域资源或所占用频域资源超过预设阈值的情况下,指示在所述第一COT或所述第三COT内的所述PSFCH资源集合,所述PSFCH资源集合用于所述第一终端装置或除所述第一终端装置之外的其他终端装置发送反馈信息。
  32. 一种通信装置,包括:
    处理单元,用于确定公共反馈资源;
    接收单元,用于在第一时频资源上接收来自第二终端装置的第一数据;
    所述处理单元,还用于确定所述第一时频资源对应的第一反馈资源,所述第一反馈资源属于所述公共反馈资源;
    发送单元,用于在所述第一反馈资源上发送第一信号。
  33. 根据权利要求32所述的装置,所述第一数据对应单播类型,所述发送单元还用于:
    在所述第一时频资源对应的第二反馈资源上发送反馈信息,其中所述反馈信息为所述第一数据对应的确认应答或否定应答,所述第二反馈资源不属于所述公共反馈资源。
  34. 根据权利要求32所述的装置,所述第一数据对应第二组播类型,所述发送单元还用于:
    在所述第一时频资源对应的第二反馈资源上发送反馈信息,其中所述反馈信息为针对所述第一数据的确认应答或否定应答,所述第二反馈资源不属于所述公共反馈资源。
  35. 根据权利要求32所述的装置,所述第一数据对应第一组播类型,且所述第一数据对应的混合自动重传请求确认信息为否定应答时,所述发送单元还用于:
    在所述第一时频资源对应的第二反馈资源上发送反馈信息,其中所述反馈信息为针对所述第一数据的否定应答。
  36. 根据权利要求32至35中任一项所述的装置,所述第一信号是所述反馈信息或除所述反馈信息之外的其他信号。
  37. 根据权利要求32所述的装置,所述公共反馈资源用于所述第一终端装置和除所述第一终端装置之外的其他终端装置发送信号。
  38. 根据权利要求32所述的装置,所述公共反馈资源中的资源块与第一比特地图相关。
  39. 根据权利要求38所述的装置,所述第一比特地图中比特值为1的比特位对应所述公共反馈资源中的资源块。
  40. 根据权利要求39所述的装置,其中所述第一比特地图中指示用于发送所述反馈信息的比特位的数量大于预设值。
  41. 根据权利要求33-35中任一项所述的装置,其中所述第一反馈资源和所述第一时频资源属于同一资源块集合,和/或所述第一反馈资源和所述第二反馈资源属于同一资源块集合。
  42. 一种通信装置,包括:
    接收单元,用于接收来自第二终端装置的第一数据;
    处理单元,用于确定与所述第一数据相关联的物理侧行链路反馈信道PSFCH资源;
    所述PSFCH资源在时域上属于第一信道占用时间COT,所述装置还包括发送单元,用于在所述PSFCH资源上向所述第二终端装置发送对应所述第一数据的反馈信息,所述第一COT是由所述第一终端装置发起的;或者,所述PSFCH资源在时域上不属于所述第一COT,所述发送单元用于在第二COT或第三COT内发送所述第一数据的反馈信息,所述第二COT是由所述第二终端装置发起的COT,所述第三COT是由所述第一终端装置发起的COT。
  43. 根据权利要求42所述的装置,还包括接收单元,用于:
    接收所述第二终端装置在所述第二COT上发送的指示信息,所述指示信息指示所述第一终端装置在所述第二COT内的时频资源集合内的第二时频资源上发送所述反馈信息。
  44. 根据权利要求43所述的装置,所述时频资源集合包含M个资源块,所述M个资源块由第二比特地图,和/或第一频域偏移值,和/或第二频域偏移值确定,所述第二比特地图是由网络侧配置的,或者预配置的,或者通过协议规定的;所述时频资源集合包含所述PSFCH资源对应所述第二比特地图中比特值为1的比特位对应的资源。
  45. 根据权利要求43所述的装置,所述第二时频资源的频域资源位置是根据所述指示信息中指示所述第一终端装置反馈对应的反馈信息次序确定的;或者
    所述第二时频资源的时域资源位置是根据所述指示信息中指示的反馈时间单元的位置,和/或时间偏移确定的。
  46. 根据权利要求45所述的装置,其中所述处理单元还用于:根据所述指示信息中的指示字段、与物理侧行链路共享信道PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息表示的一者或多者,确定所述第一终端装置反馈对应的反馈信息次序。
  47. 根据权利要求46所述的装置,当所述第一数据对应第二组播类型时,所述第一终端装置对应的频域资源位置与预先为每个终端装置配置的用于所述PSSCH传输的第一标识有关,或者基于所述第一标识与控制信息中的源地址标识的组合来确定。
  48. 根据权利要求45所述的装置,所述处理单元还用于:
    基于所述指示信息中指示用于跨反馈时间单元发送所述反馈信息的比特值,来确定所述频域资源位置。
  49. 根据权利要求44所述的装置,其中在所述第三COT内发送的所述反馈信息在侧行链路控制信息、媒体访问控制控制单元、或物理侧行链路共享信道PSSCH中。
  50. 根据权利要求44所述的装置,其中在所述第三COT内发送的所述反馈信息的频域位置是由侧行链路控制信息来指示的。
  51. 根据权利要求49或50所述的装置,所述第一终端装置在所述第三COT上发送的所述反馈信息包括:与所述PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
  52. 一种通信装置,包括:
    发送单元,用于向第一终端装置发送第一数据;
    处理单元,用于确定与所述第一数据相关联的物理侧行链路反馈信道PSFCH资源;
    所述PSFCH资源在时域上属于第一信道占用时间COT,所述装置还包括接收单元,用于在所述PSFCH资源上接收对应所述第一数据的反馈信息,所述第一COT是由所述第一终端装置发起的;或者,
    所述PSFCH资源在时域上不属于所述第一COT,所述接收单元用于在第二COT或第三COT内接收所述第一数据的反馈信息,所述第二COT是由所述第二终端装置发起的COT,所述第三COT是由所述第一终端装置发起的COT。
  53. 根据权利要求52所述的装置,所述发送单元还用于:
    在所述第二COT上向所述第一终端装置发送指示信息,所述指示信息指示所述第一终端装置在所述第二COT内的时频资源集合内的第二时频资源上发送所述反馈信息。
  54. 根据权利要求53所述的装置,所述时频资源集合包含M个资源块,所述M个资源块由第二比特地图,和/或第一频域偏移值,和/或第二频域偏移值确定,所述第二比特地图是由网络侧配置的,或者预配置的,或者通过协议规定的;所述时频资源集合包含所述PSFCH资源对应所述第二比特地图中比特值为1的比特位对应的资源。
  55. 根据权利要求53所述的装置,所述第二时频资源的频域资源位置通过所述指示信息中指示所述第一终端装置反馈对应的反馈信息次序来指示;或者
    所述第二时频资源的时域资源位置通过所述指示信息中指示的反馈时间单元的位置,和/或时间偏移来指示。
  56. 根据权利要求55所述的装置,其中通过所述指示信息中的指示字段、与物理侧行链路共享信道 PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息表示的一者或多者,来指示所述第一终端装置反馈对应的反馈信息次序。
  57. 根据权利要求56所述的装置,当所述第一数据对应第二组播类型时,所述第一终端装置对应的频域资源位置与预先为每个终端装置配置的用于所述PSSCH传输的第一标识有关,或者基于所述第一标识与控制信息中承载的源地址标识的组合来指示。
  58. 根据权利要求55所述的装置,还包括:
    通过所述指示信息中指示用于跨反馈时间单元发送所述反馈信息的比特值,来指示所述频域资源位置。
  59. 根据权利要求54所述的装置,其中在所述第三COT内接收的所述反馈信息在侧行链路控制信息、媒体访问控制控制单元、或物理侧行链路共享信道PSSCH中。
  60. 根据权利要求54所述的装置,其中在所述第三COT内接收的所述反馈信息在一信道中,所述反馈信息的频域位置是由侧行链路控制信息来指示的。
  61. 根据权利要求59或60所述的装置,在所述第三COT上接收的所述反馈信息包括:与所述PSSCH相关联的混合自动重传请求处理标识、或与所述PSSCH相关联的新数据标识,或所述PSSCH相关联的源设备信息,或所述PSSCH相关联的目的设备信息,或与所述PSSCH相关联的分组标识信息以及与PSSCH相关联的肯定应答或否定应答。
  62. 根据权利要求52所述的装置,所述处理单元还用于在资源块集合上占用全部频域资源或所占用频域资源超过预设阈值的情况下,指示在所述第一COT或所述第三COT内的所述PSFCH资源集合,所述PSFCH资源集合用于所述第一终端装置或除所述第一终端装置之外的其他终端装置发送反馈信息。
  63. 一种通信装置,包括:处理器、以及存储有指令的存储器,所述指令在被所述处理器执行时使得所述电子设备执行根据权利要求1至10中任一项或权利要求11至20中任一项或权利要求21至31中任一项所述的方法。
  64. 一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令在被电子设备执行时使得所述电子设备执行根据权利要求1至10中任一项或权利要求11至20中任一项或权利要求21至31中任一项所述的方法。
  65. 一种计算机程序产品,所述计算机程序产品包括指令,所述指令在被电子设备执行时使得所述电子设备执行根据权利要求1至10中任一项或权利要求11至20中任一项或权利要求21至31中任一项所述的方法。
PCT/CN2023/121081 2022-09-30 2023-09-25 一种通信方法、装置、计算机可读存储介质和程序产品 WO2024067476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211216324.XA CN117880969A (zh) 2022-09-30 2022-09-30 一种通信方法、装置、计算机可读存储介质和程序产品
CN202211216324.X 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067476A1 true WO2024067476A1 (zh) 2024-04-04

Family

ID=90476242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121081 WO2024067476A1 (zh) 2022-09-30 2023-09-25 一种通信方法、装置、计算机可读存储介质和程序产品

Country Status (2)

Country Link
CN (1) CN117880969A (zh)
WO (1) WO2024067476A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631968A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 一种数据反馈资源的确定方法及装置
CN112771962A (zh) * 2018-09-27 2021-05-07 康维达无线有限责任公司 用于nr v2x的基于uu的侧向链路控制
CN113517957A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种harq信息传输方法及装置
CN114830697A (zh) * 2020-01-03 2022-07-29 Oppo广东移动通信有限公司 无线通信的方法和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631968A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 一种数据反馈资源的确定方法及装置
CN112771962A (zh) * 2018-09-27 2021-05-07 康维达无线有限责任公司 用于nr v2x的基于uu的侧向链路控制
CN114830697A (zh) * 2020-01-03 2022-07-29 Oppo广东移动通信有限公司 无线通信的方法和终端设备
CN113517957A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种harq信息传输方法及装置

Also Published As

Publication number Publication date
CN117880969A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN111989974B (zh) 用于自主上行链路传输的方法、装置和介质
KR20230054818A (ko) 무선 통신 시스템에서 채널 접속 방법 및 장치
KR20200090949A (ko) NR 비면허 스펙트럼의 광대역 동작을 위한 LBT(Listen Before Talk)
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
WO2014176972A1 (zh) D2d通信中的数据发送方法和设备
US20230345433A1 (en) Configured grant resource configuration for new radio-unlicensed
WO2014187336A1 (zh) D2d通信中的数据传输方法和设备
KR20190017588A (ko) 비면허대역에서 상향링크 자발적 전송을 위한 채널엑세스, 데이터 자원 설정 방법, 및 재전송을 위한 장치 및 시스템
WO2023274012A1 (zh) 侧行链路反馈信息传输的方法和通信装置
KR20180039501A (ko) 비면허대역에서 상향링크 캐리어 채널엑세스 및 데이터 전송 방법, 장치 및 시스템
WO2023051086A1 (zh) 数据传输的方法、终端装置及系统
WO2024067476A1 (zh) 一种通信方法、装置、计算机可读存储介质和程序产品
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2024067429A1 (zh) 通信方法及通信装置
WO2024032324A1 (zh) 通信方法和通信装置
WO2024061072A1 (zh) 通信方法和装置
WO2023011218A1 (zh) 一种资源共享方法及通信装置
WO2024066989A1 (zh) 侧行链路通信的方法和装置
WO2024065475A1 (en) Method and device for performing sidelink communications
WO2024067522A1 (zh) 一种侧行链路同步信号块传输方法及装置
WO2024061092A1 (zh) 通信方法和装置
WO2023065363A1 (zh) 无线通信的方法和终端设备
WO2024051682A1 (zh) 资源确定的方法和装置
WO2024007981A1 (zh) 信息传输的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870707

Country of ref document: EP

Kind code of ref document: A1