WO2024067522A1 - 一种侧行链路同步信号块传输方法及装置 - Google Patents

一种侧行链路同步信号块传输方法及装置 Download PDF

Info

Publication number
WO2024067522A1
WO2024067522A1 PCT/CN2023/121247 CN2023121247W WO2024067522A1 WO 2024067522 A1 WO2024067522 A1 WO 2024067522A1 CN 2023121247 W CN2023121247 W CN 2023121247W WO 2024067522 A1 WO2024067522 A1 WO 2024067522A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
time
synchronization signal
time unit
duration
Prior art date
Application number
PCT/CN2023/121247
Other languages
English (en)
French (fr)
Inventor
易凤
苏宏家
向铮铮
齐鸿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067522A1 publication Critical patent/WO2024067522A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technology, and in particular to a method and device for transmitting a sidelink synchronization signal block.
  • the frequency bands used by communication devices can be divided into licensed spectrum and unlicensed spectrum.
  • the licensed spectrum communication devices use spectrum resources based on the scheduling of the central node.
  • the unlicensed frequency band communication devices compete for channels through channel access mechanisms (for example, the listen-before-talk (LBT) mechanism).
  • LBT listen-before-talk
  • An important evolution direction of the sidelink (SL) is to enable SL communication in unlicensed spectrum in the local space. This part of the technology can be collectively referred to as SL unlicensed (SL-unlicensed, SL-U) communication.
  • the terminal device can broadcast the sidelink synchronization signal block (S-SSB), and the terminal device that receives the S-SSB can complete time synchronization.
  • S-SSB sidelink synchronization signal block
  • the terminal device needs to compete for the channel through the LBT method first, and can only send the S-SSB after the LBT is passed. This causes the S-SSB to be unable to be sent in time, so that the devices cannot be synchronized in time, and the communication performance between the devices is reduced.
  • the present application provides a sidelink synchronization signal block transmission method and device to increase the transmission opportunities of sending S-SSB in an unlicensed spectrum and improve communication performance.
  • the present application provides a sidelink synchronization signal block transmission method, which is applicable to scenarios of unlicensed spectrum communications such as V2X and SL-U.
  • the execution subject of the method is a terminal device or a module in the terminal device, and the first terminal device is used as the execution subject for description here.
  • the method includes: the first terminal device determines N time units within the first cycle according to the first configuration information, N is an integer greater than 0, and the N time units are candidate time units for sending sidelink synchronization signal blocks; the first terminal device fails to send the sidelink synchronization signal block in the first time unit of the N time units, or the number of time units in which the first terminal device fails to send the sidelink synchronization signal block in the N time units is greater than the first threshold, and the first terminal device sends the sidelink synchronization signal block to the second terminal device in the second time unit; the second time unit is located in the first cycle and is a time unit outside the N time units.
  • the first terminal device sends a sidelink synchronization signal block in a time unit other than N time units, which increases the chances of sending the sidelink synchronization signal block and improves the synchronization performance of the system.
  • the present application provides a sidelink synchronization signal block transmission method, which is applicable to scenarios of unlicensed spectrum communications such as V2X and SL-U.
  • the execution subject of the method is a terminal device or a module in the terminal device, and the second terminal device is used as the execution subject for description here.
  • the method includes: the second terminal device determines N time units within the first cycle according to the first configuration information, N is an integer greater than 0, and the N time units are candidate time units for sending sidelink synchronization signal blocks; the second terminal device fails to receive the sidelink synchronization signal block in the first time unit of the N time units, or the number of time units in which the second terminal device fails to receive the sidelink synchronization signal block in the N time units is greater than the first threshold, and the second terminal device receives the sidelink synchronization signal block in the second time unit; the second time unit is located in the first cycle and is a time unit outside the N time units.
  • the method also includes: the first terminal device determines M time units based on the first configuration information, M is an integer greater than 0, the M time units are candidate time units for sending the sidelink synchronization signal block, the second time unit belongs to the M time units, and the M time units are time units other than the N time units in the first period.
  • the method further includes: the first terminal device sends first sidelink control information to the second terminal device, and the first sidelink control information is used to determine the second time unit.
  • the first sidelink control information is also used to determine one or more of the following: the position of the second time unit; the position of the subchannel or staggered resource block set occupied by the sidelink synchronization signal block in the second time unit.
  • the second time unit is separated from the first time unit or the last time unit among the N time units by a first duration.
  • the first duration is a duration configured by the network device; or, the first duration is a preconfigured duration; or, the first duration is a duration specified by a protocol.
  • the first time unit and the second time unit are separated by a second duration.
  • the second duration is a duration configured by the network device; or, the second duration is a preconfigured duration; or, the second duration is a duration specified by the protocol.
  • the offset value between the starting point of the frequency domain resources occupied by the sidelink synchronization signal block and the starting point of the frequency domain resources occupied by the channel of the first terminal device is a first frequency domain offset value; the first frequency domain offset value is preset, or the first frequency domain offset value is determined by the first terminal device, or the first frequency domain offset value is configured by the network device.
  • the method also includes: the second terminal device determines M time units based on the first configuration information, M is an integer greater than 0, the M time units are candidate time units for sending the side link synchronization signal block, the second time unit belongs to the M time units, and the M time units are time units other than the N time units in the first period.
  • the method also includes: the second terminal device receives first sidelink control information from the first terminal device, and the first sidelink control information is used to determine the second time unit.
  • the second time unit includes first side information
  • the third time unit before the second time unit includes a cyclic prefix extended CPE
  • the CPE and the first side information come from the first terminal device
  • the third time unit and the second time unit are adjacent in the time domain
  • the duration of the CPE is the first transmission duration
  • the CPE also includes second side line information before, and the gap between the second side line information and the CPE is smaller than the first gap; the first gap is predefined, preconfigured, or network configured; the duration of the first gap is 16 microseconds or 25 microseconds.
  • the CPE includes a first type CPE and a second type CPE
  • the first type CPE is a CPE that sends a side synchronization signal to the first terminal device
  • the second type CPE is a CPE that sends a side shared channel to the first terminal device
  • the duration of the first type CPE is different from the duration of the second type CPE.
  • the duration of the first type of CPE is greater than the duration of the second type of CPE.
  • the method also includes: the first terminal device obtains first indication information; the first indication information is used to indicate that the duration of the first type of CPE is greater than the duration of the second type of CPE; or the duration of the CPE sending the side line synchronization signal is less than the duration of the CPE sending the first terminal sending side line shared channel; the first indication information is pre-configured or network configured.
  • the present application provides a sidelink synchronization signal block transmission method, which is applicable to scenarios of unlicensed spectrum communications such as V2X and SL-U.
  • the executor of the method is a terminal device or a module in the terminal device, and is described here by taking the first terminal device as the executor as an example.
  • the method includes: a first terminal device generates a link synchronization signal block; the first terminal device sends a sidelink synchronization signal block to a second terminal device; wherein the synchronization signal block includes a physical broadcast sidelink channel and a sidelink synchronization sequence.
  • the present application provides a sidelink synchronization signal block transmission method, which is applicable to scenarios of unlicensed spectrum communications such as V2X and SL-U.
  • the execution subject of the method is a terminal device or a module in the terminal device, and is described here by taking the second terminal device as the execution subject as an example.
  • the method includes: the second terminal device receives a sidelink synchronization signal block from the first terminal device; the second terminal device synchronizes according to the sidelink synchronization signal block; wherein the synchronization signal block includes a physical broadcast sidelink channel and a sidelink synchronization sequence.
  • the physical broadcast sidelink channel occupies a plurality of continuous resources. block or multiple non-contiguous resource blocks; the sidelink synchronization sequence occupies multiple consecutive resource blocks, or the sidelink synchronization sequence occupies multiple non-contiguous resource blocks.
  • a possible implementation method is that when the subcarrier spacing of the channel occupied by the first terminal device is less than 60kHz, the resource blocks occupied by the physical broadcast sidelink channel are located in the first frequency domain resources and/or the second frequency domain resources.
  • a possible implementation method is that the first frequency domain resource is located on a subchannel or a set of staggered resource blocks, the second frequency domain resource is a resource block, and the first frequency domain resource and the second frequency domain resource are adjacent to each other.
  • a possible implementation manner is that when the resource blocks occupied by the physical broadcast sidelink channel are located in two interlaces, the positions of the two interlaces are adjacent.
  • a possible implementation manner is that when the resource blocks occupied by the physical broadcast sidelink channel are located in two sub-channels, the positions of the two sub-channels are adjacent.
  • a possible implementation method is that the physical broadcast sidelink channel occupies Z resource blocks, Z is less than or equal to 11, and Z is network configured, pre-configured, or agreed upon by protocol.
  • a possible implementation method is that when the subcarrier spacing of the channel is equal to 15kHz, the number of resource blocks occupied by the sidelink synchronization sequence is equal to 12.
  • a possible implementation method is that when the subcarrier spacing of the channel occupied by the first terminal device is equal to 60kHz, the physical broadcast sidelink channel occupies 11 non-continuous resource blocks, and there is an interval of 1 resource block between two adjacent resource blocks in the 11 resource blocks, or the physical broadcast sidelink channel occupies at least 23 consecutive resource blocks; the sidelink synchronization sequence occupies 11 consecutive resource blocks.
  • a possible implementation method is that when the physical broadcast sidelink channel occupies 11 non-contiguous resource blocks, the method also includes: the first terminal device sends a bit map indication information to the second terminal device, and the bit map indication information is used to indicate the position of the 11 resource blocks occupied by the physical broadcast sidelink channel in the channel.
  • the method also includes: the first terminal device sends offset value indication information to the second terminal device, and the offset value indication information is used to indicate a frequency domain offset value, and the frequency domain offset value is an offset value between a starting point of a frequency domain resource of the sidelink synchronization sequence and a starting point of a frequency domain resource of the channel occupied by the first terminal device.
  • the present application further provides a communication device, which has the function of implementing any method provided in any one of the first to fourth aspects.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, the processor is configured to support the communication device to perform the corresponding functions of the network device in the method shown above.
  • the communication device may also include a memory, which may be coupled to the processor and stores the necessary program instructions and data of the communication device.
  • the communication device also includes an interface circuit, which is used to support communication between the communication device and a terminal device or other device.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a processing unit and a communication unit, which can perform corresponding functions in the above method examples.
  • a processing unit and a communication unit, which can perform corresponding functions in the above method examples.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement any one of the first to fourth aspects and any possible implementation method of any one of the aspects through logic circuits or execution code instructions.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement the functional modules of the method in any one of the first to fourth aspects and any possible implementation method of any one of the aspects through logic circuits or execution code instructions.
  • a computer-readable storage medium in which a computer program or instruction is stored.
  • the computer program or instruction is executed by a processor, the method of any one of the first to fourth aspects and any possible implementation of any aspect is implemented.
  • a computer program product storing instructions, which, when executed by a processor, implements the first aspect.
  • a chip including a processor and a memory, for implementing the method in any one of the first to fourth aspects and any possible implementation of any one of the aspects.
  • the chip may be composed of a chip, or may include a chip and other discrete devices.
  • Figures 1(a) to 1(c) are schematic diagrams of a network architecture provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a channel structure provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a channel structure provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of channel division provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of channel division provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a sidelink synchronization signal block transmission period provided in an embodiment of the present application.
  • FIG7 is a schematic flow chart of a sidelink synchronization signal block transmission method provided in an embodiment of the present application.
  • FIG8(a) to FIG8(c) are schematic diagrams of side information transmission provided in an embodiment of the present application.
  • FIG8( d) is a schematic diagram of a sidelink synchronization signal block transmission provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a sidelink synchronization signal block transmission provided by an embodiment of the present application.
  • FIG10 is a schematic diagram of a sidelink synchronization signal block transmission provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a sidelink synchronization signal block transmission provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of a sidelink synchronization signal block transmission provided in an embodiment of the present application.
  • FIG13 is a schematic flow chart of a sidelink synchronization signal block transmission method provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of a sidelink synchronization signal block structure provided by an embodiment of the present application.
  • FIG15 is a schematic diagram of a sidelink synchronization signal block structure provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of a sidelink synchronization signal block structure provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of a sidelink synchronization signal block structure provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of a sidelink synchronization signal block structure provided in an embodiment of the present application.
  • FIG19 is a schematic diagram of a sidelink synchronization signal block structure provided in an embodiment of the present application.
  • FIG20 is a schematic diagram of a sidelink synchronization signal block structure provided in an embodiment of the present application.
  • FIG21 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG22 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the method provided in the embodiment of the present application can be applied to the fifth generation (5G) communication system, such as the 5G new radio (NR), or to various future communication systems, such as the sixth generation (6G) communication system.
  • the method provided in the embodiment of the present application can be applied to the fields of vehicle to everything (V2X) communication, vehicle networking, autonomous driving, assisted driving, etc.
  • V2X vehicle to everything
  • the method and device provided in the embodiments of the present application are based on the same or similar technical concepts. Since the principles of solving problems by the method and the device are similar, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • the network device involved in the embodiments of the present application may be a device in a wireless network.
  • the network device may be a device deployed in a wireless access network to provide wireless communication functions for a terminal device.
  • the network device may be a radio access network (RAN) node that connects a terminal device to a wireless network, and may also be referred to as an access network device.
  • RAN radio access network
  • the network equipment includes, but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc. It can also be a network equipment in 5G mobile communication system.
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • AP access point
  • WIFI wireless fidelity
  • TP transmission point
  • TRP transmission and reception point
  • next generation NodeB in NR system gNB
  • transmission reception point TRP
  • TP transmission reception point
  • the network device can also be a network node constituting a gNB or a transmission point.
  • BBU or, distributed unit (DU), etc.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the gNB functions, and the DU implements some of the gNB functions.
  • the CU is responsible for processing non-real-time protocols and services, and implements the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC), media access control (MAC) and physical (PHY) layers.
  • the AAU implements some physical layer processing functions, RF processing, and related functions of active antennas.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU may be classified as a network device in the RAN, or the CU may be classified as a network device in the core network (CN), which is not limited in this application.
  • the terminal device involved in the embodiments of the present application may be a wireless terminal device capable of receiving network device scheduling and indication information.
  • the terminal device may be a device that provides voice and/or data connectivity to a user, or a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • Terminal equipment is a device that includes wireless communication functions (providing voice/data connectivity to users).
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Terminal equipment is a device that includes wireless communication functions (providing voice/data connectivity to users).
  • handheld devices with wireless connection functions or vehicle-mounted devices, vehicle-mounted modules, etc.
  • terminal equipment are: mobile phones, tablet computers, laptops, PDAs, mobile Internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in the Internet of Vehicles, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety (transportat
  • the terminal device may be a wireless terminal in a smart city, a wireless terminal in a smart home, a device-to-device (D2D) communication terminal device, a vehicle-to-everything (V2X) communication terminal device, an intelligent vehicle, a telematics box (T-box), a machine-to-machine/machine-type communications (M2M/MTC) terminal device, an Internet of Things (IoT) terminal device, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • T-box telematics box
  • M2M/MTC machine-
  • the terminal device may be an on-board device, a vehicle device, an on-board module, a vehicle, an on-board unit (OBU), a roadside unit (RSU), a T-box, a chip or a system on chip (SOC), etc., and the above chip or SOC may be installed in a vehicle, an OBU, an RSU or a T-box.
  • the wireless terminal in industrial control may be a camera, a robot, etc.
  • Wireless terminals in smart homes can be TVs, air conditioners, sweepers, speakers, set-top boxes, etc.
  • the present application is applicable to scenarios that support sidelink communications, and supports communication scenarios with and without network coverage, wherein the sidelink may also be referred to as a sidelink, and is referred to as a sidelink in the present application.
  • the sidelink may also be referred to as a sidelink, and is referred to as a sidelink in the present application.
  • FIGs 1(a) to 1(c) it is a schematic diagram of a network architecture applicable to the present application.
  • terminal device A and terminal device B are both within the signal coverage of the network device; in Figure 1(b), terminal device A is within the signal coverage of the network device, but terminal device B is outside the signal coverage of the network device.
  • terminal device A and terminal device B are both outside the signal coverage of the network device.
  • the terminal device A and the terminal device B in Figure 1(a) and Figure 1(b) can communicate using a side link through resources scheduled by the network device, and the resources may be authorized resources or authorized frequency bands.
  • the terminal device A and the terminal device B may also select resources by themselves, that is, select resources for side link communication from a resource pool, and the resources may be unauthorized resources or unauthorized frequency bands.
  • Terminal device A and terminal device B in FIG1( c ) are both outside the signal coverage of the network device, and therefore can only communicate via the side link in a resource self-selection manner.
  • spectrum resources can be divided into licensed spectrum and unlicensed spectrum.
  • Licensed spectrum can only be used by specific operators in a certain place, while unlicensed spectrum can be used by any operator and is a shared spectrum resource.
  • unlicensed spectrum can include technologies such as wireless fidelity (Wi-Fi), Bluetooth, and Zigbee.
  • Wi-Fi wireless fidelity
  • Bluetooth Bluetooth
  • Zigbee Zigbee
  • cellular mobile communication technology such as 5G communication technology
  • 5G communication technology has also conducted research on the introduction of unlicensed spectrum, such as NR-U And other technologies.
  • LBT listen-before-talk
  • OCB occupied channel bandwidth
  • LBT-based channel access generally uses energy-based detection and signal type detection.
  • NR-U technology uses energy-based detection
  • Wi-Fi technology uses a combination of the two detection methods.
  • energy-based detection requires setting an energy detection threshold (energy detection threshold).
  • energy detection threshold When the energy detected by the communication device (terminal device or network device) exceeds the detection threshold, the communication device determines that the channel is busy and does not allow access to the channel; when the detected energy is lower than the detection threshold and lasts for more than a period of time, the communication device determines that the channel is idle and allows access to the channel.
  • the detected energy can be the reference signal received power (RSRP), and accordingly, the detection threshold can be the RSRP threshold.
  • RSRP reference signal received power
  • the terminal equipment can adopt the following types of LBT:
  • Type 1LBT Terminal devices or network devices using type 1LBT need to perform random backoff before accessing the channel for information transmission.
  • the terminal device can transmit information after listening (listening can also be replaced by sensing) that the channel is idle during a sensing slot duration (denoted as Tsl ) of an extended duration (defer sensing, denoted as Td), and after the counter N in the terminal device is zero; wherein the sensing slot duration can be 9 microseconds ( ⁇ s).
  • Type 2A LBT A terminal device or network device using type 2A LBT can access the channel and send data after sensing that the channel is idle for at least 25 ⁇ s.
  • 3Type 2B LBT A terminal device or network device using type 2B LBT can access the channel and send data after sensing that the channel is idle for at least 16 ⁇ s.
  • Type 2C LBT Terminal devices or network devices using type 2C LBT do not need to sense the channel. They can directly access the channel and send data after a conversion interval of up to 16 ⁇ s within the COT.
  • the channel access of the unlicensed frequency band in the embodiment of the present application can adopt the above-type LBT, but the embodiment of the present application does not limit the use of other channel access methods permitted by the laws and regulations of other countries/regions for channel access of the unlicensed spectrum.
  • the information transmitted through the sidelink may be referred to as sidelink information.
  • the sidelink information may include sidelink control information (SCI) and/or sidelink data. It is understandable that the sidelink information may also include other possible information.
  • the sidelink information including SCI and/or sidelink data will be described as an example.
  • SCI can be carried on the physical sidelink control channel (physical sidelink control channel, PSCCH) and/or the physical sidelink shared channel (physical sidelink shared channel, PSSCH), and the sidelink data can be carried on PSSCH.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the SCI carried by PSCCH can be called the first-level SCI
  • the SCI carried by PSSCH can be called the second-level SCI.
  • the scheduling granularity of PSCCH or PSSCH is a time unit in the time domain, and a frequency unit or multiple consecutive frequency units in the frequency domain. That is to say, the resources used by the terminal device for sidelink communication must be an integer multiple of the time unit in the time domain, and must be an integer multiple of the frequency domain unit in the frequency domain.
  • a time unit can be a time slot (slot) or a mini-slot (mini-slot), which is not specifically limited.
  • a time unit will be described as a time slot as an example; the frequency domain unit can be one RB, multiple RBs, one subchannel, multiple subchannels, one interleaved resource or multiple interleaved resources, which is not specifically limited.
  • the minimum OCB requirement must be met before a channel can be occupied.
  • the minimum OCB requirement may mean that the occupied channel bandwidth is at least 80% of the nominal channel bandwidth, where the nominal channel bandwidth refers to the bandwidth allocated to a single channel. For example, if the channel bandwidth is 20MHz, at least 16MHz of bandwidth must be occupied to seize the 20MHz channel.
  • the terminal device can independently select resources in the resource pool. For example, the terminal device can first select resources in the resource pool and reserve them, and then send side information on the reserved resources after completing channel access.
  • the terminal device after selecting resources in the resource pool, can send SCI, which is used to indicate the resources (including time domain resources and frequency domain resources) of the side information sent by the terminal device. After receiving the SCI of the terminal device, other terminal devices can know the terminal device. The resources reserved by the terminal device can be excluded from the resources reserved by the terminal device when selecting resources.
  • the specific implementation of the terminal device selecting resources from the resource pool can refer to the prior art.
  • a resource pool may also be referred to as an SL resource pool.
  • a resource pool may be pre-configured; for example, within the network coverage, a network device sends resource pool information to a terminal device in the cell via a system information block (SIB), cell-specific radio resource control (RRC) signaling, or UE-specific RRC signaling, and the resource pool information is used to indicate the resource pool.
  • SIB system information block
  • RRC radio resource control
  • UE-specific RRC signaling UE-specific RRC signaling
  • a resource pool for data transmission can be pre-configured, and a resource pool can include one or more channels. In one implementation, the bandwidth size of each channel is 20MHz.
  • the resource block included in the resource pool is the resource block corresponding to the resource block (RB) set in the channel.
  • RB resource block
  • a channel includes an RB set and a protection bandwidth located at both ends. The protection bandwidth is used to ensure that the signal/energy on the current channel does not interfere with adjacent channels.
  • the frequency domain resources within the RB set can be used for data transmission.
  • the resource pool includes resource blocks of RB sets and partial protection bandwidth. For example, as shown in FIG3 , channel 1 includes RB set 1, channel 2 includes RB set 2, and the resource pool includes RB set 1, RB set 2, and the protection bandwidth between RB set 1 and RB set 2.
  • the resources available to the terminal device are not only the resources on the RB sets in the two channels, but also the protection bandwidth between two adjacent RB sets.
  • an RB set can be divided into multiple subsets.
  • the resource blocks in the RB set can be divided into M subsets in an interlaced manner.
  • each subset includes resource blocks with M resource blocks between two adjacent resource blocks.
  • each subset can be called an interlace or interlaced resource block set. Assuming that the identifier of a subset is m, m ⁇ 0,1,...,M-1 ⁇ , and the index of the starting resource block of the channel is 0, then the index of the resource blocks included in the channel of the subset is: ⁇ m,M+m,2M+m,3M+m,... ⁇ .
  • the channel includes 105 RBs.
  • M 10
  • the indexes of the resource blocks included in the subset identified as #0 in the RB set are: ⁇ 0, 10, 20, 30, ... 100 ⁇
  • the indexes of the resource blocks included in the subset identified as #1 in the RB set are: ⁇ 1, 11, 21, 31, ... 101 ⁇ , and so on for other cases.
  • multiple consecutive resource blocks in an RB set can be divided into a subset, and the resource blocks in an RB set can be divided into M subsets.
  • the resource blocks included in the subset are continuous, and each subset can be called a subchannel. Assuming that a subset is identified as m, m ⁇ 0,1,...,M-1 ⁇ , and the index of the starting resource block of the channel is 0, then the index of the resource blocks included in the channel of the subset is: ⁇ m,m+1,m+2,m+3,... ⁇ .
  • the terminal device can broadcast S-SSB to other terminal devices so that the terminal devices are synchronized.
  • the time domain position and frequency domain position of the transmitted S-SSB can be determined according to the S-SSB configuration information in the radio resource control (RRC) signaling or the pre-configured S-SSB configuration information.
  • RRC radio resource control
  • the RRC signaling is the control information sent by the gNB or eNB to the terminal device
  • the pre-configured S-SSB configuration information is the control information recorded in the hardware and/or software of the terminal device.
  • the S-SSB configuration information includes the following three parameters:
  • the terminal device can determine the time domain position of transmitting S-SSB.
  • the cycle length is 160ms
  • the time domain position of S-SSB transmission in one cycle is shown in Figure 6.
  • the terminal device transmits the S-SSB signal in the two time slots marked as shaded in the figure.
  • An S-SSB includes a physical sidelink broadcast channel (PSBCH), a sidelink primary synchronization signal (S-PSS), and a sidelink secondary synchronization signal (S-SSS).
  • PSBCH physical sidelink broadcast channel
  • S-PSS sidelink primary synchronization signal
  • S-SSS sidelink secondary synchronization signal
  • the time slot length is 14 orthogonal OFDM (orthogonal frequency division multiplexing) symbols, where the 0th symbol is used for automatic gain control (AGC); the 1st and 2nd symbols are used to transmit S-PSS.
  • the 3rd and 4th symbol positions are used to transmit S-SSS; the last symbol is left blank, i.e. the gap symbol, for switching between transmission and reception, and the remaining symbols in the real-time slot are used to transmit PSBCH.
  • the terminal device In the unlicensed frequency band, the terminal device needs to compete for the channel before sending S-SSB. It can only send S-SSB after successfully competing for the channel. If the terminal device fails to compete for the channel at the time slot position indicated by the configuration information, the S-SSB cannot be sent in time, so that the devices cannot be synchronized in time, and the communication performance between the devices is reduced. To this end, the present application provides a method that can increase the transmission opportunity of S-SSB so that the devices can be synchronized in time.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 7 a schematic flow chart of a sidelink synchronization signal block transmission method provided in an embodiment of the present application is provided, and the method includes:
  • Step 701 The first terminal device determines N time units within a first period according to first configuration information.
  • N is an integer greater than 0, and the N time units are candidate time units for sending the sidelink synchronization signal block.
  • the first period is 160ms or other predefined, preconfigured or configured values.
  • the first configuration information may come from the RRC signaling of the network device.
  • the first configuration information may also be information pre-configured in the terminal device, that is, by pre-given the number of S-SSBs in a cycle, the time slot offset value between the first S-SSB transmitted in a cycle and the starting point of the cycle, and the time slot interval value between two adjacent S-SSBs in a cycle, etc., the specific positions of the N time units in the first cycle can be determined, and the above information is pre-configured when the terminal device leaves the factory.
  • the time unit may be a time slot, or a mini time slot, or a subframe, or a time unit similar to a time slot.
  • the first configuration information may indicate the period length of the first period, and may also indicate the position of each time unit in the N time units.
  • the first configuration information may also indicate the frequency domain position occupied by the sidelink synchronization signal block.
  • the first configuration information may also indicate that the offset value between the starting point of the frequency domain resource occupied by the sidelink synchronization signal block and the starting point of the frequency domain resource occupied by the first terminal device is the first frequency domain offset value.
  • the first frequency domain offset value may also be configured by the network device through a separate configuration information, or the first frequency domain offset value may also be preset, or the first frequency domain offset value is determined by the first terminal device, which is not limited in the present application.
  • the first frequency domain offset value may also be the starting point of the frequency domain resource occupied by the sidelink synchronization signal block relative to the end point position of the frequency domain resource occupied by the first terminal device, or an offset value at a certain position in the middle; or, the first frequency domain offset value may also be a certain position in the middle of the frequency domain resource occupied by the sidelink synchronization signal block relative to the starting point/end point position of the frequency domain resource occupied by the first terminal device, or an offset value at a certain position in the middle.
  • Step 702 The first terminal device fails to send a sidelink synchronization signal block in the first time unit among N time units, or the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units is greater than a first threshold, and the first terminal device sends a sidelink synchronization signal block to the second terminal device in a second time unit.
  • the first threshold value is preset, may be configured by the network device, or may be determined by the first terminal device.
  • the first threshold value may be an integer greater than 0.
  • the first time unit is any time unit among the N time units.
  • the first terminal device if the first terminal device successfully sends a sidelink synchronization signal block in the first time unit among N time units, or the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units is less than or equal to a first threshold, or the number of time units in which the first terminal device successfully sends a sidelink synchronization signal block in N time units is greater than or equal to a second threshold, the first terminal device does not send a sidelink synchronization signal block in the second time unit.
  • the first terminal device may send other data or signals in addition to the sidelink synchronization signal block in the second time unit, such as physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • the second threshold value may be preset, configured by the network device, or determined by the first terminal device.
  • the second threshold value may be an integer greater than 0.
  • the first terminal device sends the first side information in the second time unit, and the first side information is a side link synchronization signal block or PSSCH (side data).
  • the first side information is a side link synchronization signal block or PSSCH (side data).
  • PSSCH side data
  • a third time unit may also be included, and the third time unit and the second time unit are adjacent in the time domain.
  • the first terminal device may also send a cyclic prefix extension (CPE) in the third time unit for a duration equal to the first transmission duration.
  • CPE cyclic prefix extension
  • the CPE also includes second side information, and the gap between the second side information and the CPE is smaller than the first gap; the first gap is predefined, preconfigured, or network configured. For example, the duration of the first gap is 16 microseconds.
  • the second side information may be sent by the first terminal device or another terminal device.
  • the gap between the second side information and the CPE is smaller than the first gap, which may mean that the gap between the end position of the second side information and the start position of the CPE is smaller than the first gap.
  • the gap may not be used to transmit information or signals.
  • the CPE also includes second side information before it, and the gap between the second side information and the CPE is larger than the second gap; the second gap is predefined, preconfigured, or network configured. For example, the duration of the first gap is 25 microseconds.
  • the second side information may be sent by the first terminal device or by other terminal devices.
  • the gap between the second side information and the CPE is larger than the second gap, which may mean that the gap between the end position of the second side information and the start position of the CPE is larger than the second gap.
  • the gap may not be used to transmit information or signals.
  • the second gap is smaller than an OFDM symbol duration, and the duration of OFDM is related to the subcarrier spacing.
  • the duration of the first gap is 25 microseconds; for example, the third terminal device sends the second sideline information, the first terminal device sends CPE in the third time unit, the first terminal device is shared to access the channel and sends PSCCH/PSSCH in the second time unit, that is, the first terminal device sends the first sideline information in the second time unit, then the duration of the first gap is 25 microseconds.
  • the first terminal device since the second time unit is shared to send PSCCH/PSSCH, the first terminal device will send CPE in the third time unit so that the first gap is less than 25 microseconds.
  • the process of other terminals trying to access the channel through type 2A LBT will be terminated, making it impossible to send S-SSB in the second time unit, so the conflict of sending S-SSB and PSCCH/PSSCH at the same time in the second time unit can be avoided.
  • the duration of the first gap is 25 microseconds.
  • the first terminal device sends the second sideline information
  • the first terminal device sends CPE in the third time unit
  • the first terminal device is shared and sends S-SSB in the second time unit, that is, the first terminal device sends the first sideline information in the second time unit, then the duration of the first gap is 25 microseconds.
  • the first terminal device will send CPE in the third time unit so that the first gap is greater than 25 microseconds, for example, 34us. Since the first gap is greater than 25 microseconds, other terminal devices can preempt in advance through type 2A at this time, so the conflict of sending S-SSB and PSCCH/PSSCH at the same time in the second time unit can be avoided. At this time, the transmission performance of S-SSB in the system is prioritized.
  • the CPE includes a first type CPE and a second type CPE, the first type CPE is a CPE that sends a side synchronization signal to the first terminal device, and the second type CPE is a CPE that sends a side shared channel to the first terminal device, and the duration of the first type CPE is different from the duration of the second type CPE.
  • the duration of the first type of CPE is greater than the duration of the second type of CPE.
  • the duration of the first type of CPE is shorter than the duration of the second type of CPE.
  • the first terminal device obtains first indication information; the first indication information is used to indicate that the duration of the first type of CPE is greater than the duration of the second type of CPE; or the first indication information is used to indicate that the duration of the first type of CPE is less than the duration of the second type of CPE.
  • the first indication information is pre-configured or network configured.
  • the second time unit is time slot 2
  • the third time unit is time slot 1
  • UE1 sends CPE on the GAP symbol of time slot 1 (i.e., the last symbol of time slot 1).
  • UE1 sends a sideline synchronization signal on time slot 2.
  • Symbols before the last symbol of time slot 1, for example, symbols 0 to 12, also include second sideline information.
  • the second sideline information may be sent by UE1 or other UEs.
  • UE 1 sends the CPE on the last OFDM symbol (i.e., GAP symbol) in time slot 1, so that the blank gap between the information in time slot 1 and the CPE in time slot 1 is less than 25 ⁇ s. There is no side information transmission in the blank gap.
  • UE 1 sends the CPE on the last OFDM symbol (i.e., GAP symbol) in time slot 1, so that the blank gap between the information in time slot 1 and the CPE in time slot 1 is less than 16 ⁇ s. There is no side information transmission in the blank gap.
  • the first terminal device sends the first side information in the second time unit.
  • the third time unit before the second time unit includes the third side information, and the third side information occupies the last symbol of the third time unit (does not occupy the last symbol). all time domain positions of the first side information). If the first side information occupies the starting symbol of the second time unit, the transmission gap between the third side information and the first side information is smaller than the third gap; the third gap is predefined, preconfigured, or network configured. For example, the duration of the third gap is 16 microseconds or 25 microseconds.
  • the third side information may be sent by the first terminal device or by other terminal devices.
  • the transmission gap between the third side information and the first side information is smaller than the third gap, which can be replaced by the gap between the end position of the third side information and the starting position of the second time unit is smaller than the third gap.
  • This gap may not be used to transmit information or signals.
  • the third time unit can also include fourth side information, and the fourth side information is sent before the third side information.
  • the third side information and the fourth side information can be sent by different terminal devices, or can be sent by the same side information, and this application does not limit this.
  • the duration of the second gap is 25 microseconds; for example, the third terminal device sends the third sideline information, the first terminal device shares the access channel and sends SCCH/PSSCH in the second time unit, that is, the first terminal device sends the first sideline information in the second time unit, then the duration of the second gap is 25 microseconds.
  • the sideline terminal can send PSCCH/PSSCH in multiple time slots continuously, and the duration of the second gap is 16 microseconds.
  • the first terminal device sends the third sideline information, the first terminal device is shared access channel and sends PSCCH/PSSCH in the second time unit, that is, the first terminal device sends the first sideline information in the second time unit, then the duration of the second gap is 16 microseconds.
  • the second time unit is time slot 2
  • the third time unit is time slot 1
  • the third sideline information occupies symbols 0 to 9 of time slot 1.
  • UE1 sends a sideline synchronization signal in time slot 2.
  • fourth sideline information may also be included.
  • the fourth sideline information may be sent by UE1 or other UEs.
  • the blank gap between time slot 1 and time slot 2 is made less than 25 ⁇ s.
  • the gap between the third side information and the first side information is less than 16 ⁇ s, the blank gap between time slot 1 and time slot 2 is made less than 16 ⁇ s. No side information is transmitted in the blank gap.
  • UE1 sends sideline information on the PSFCH symbols (i.e., symbols 11 and 12) of time slot 1, and UE1 sends the third sideline information on symbol 13 of time slot 1. If UE 2 sends a sideline synchronization signal on time slot 2, then the gap between the third sideline information and the sideline synchronization signal sent by UE 2 is less than 16 ⁇ s or 25 ⁇ s.
  • the first terminal device sends a sidelink synchronization signal block in the second time unit:
  • the ratio of the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units to the number of time units in which the first terminal device successfully sends a sidelink synchronization signal block in N time units is greater than or equal to a first factor, and the first factor is greater than or equal to 0;
  • the ratio of the number of time units in which the first terminal device successfully sends a sidelink synchronization signal block in N time units to the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units is less than or equal to a second factor, and the second factor is greater than or equal to 0;
  • the ratio of the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units to the N time units is greater than or equal to a third factor, and the third factor is greater than or equal to 0;
  • the ratio of the number of time units in which the first terminal device successfully sends the side link synchronization signal block in N time units to the N time units is less than or equal to a fourth factor, and the fourth factor is greater than or equal to 0.
  • the first factor, the second factor, the third factor, and the fourth factor are preset, may be configured by the network device, or may be determined by the first terminal device.
  • the first terminal device does not send a sidelink synchronization signal block in the second time unit, or sends other data or signals except the sidelink synchronization signal block, such as physical sidelink shared channel data, and/or physical sidelink shared channel data in the second time unit:
  • the ratio of the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units to the number of time units in which the first terminal device successfully sends a sidelink synchronization signal block in N time units is less than or equal to a fifth factor, and the fifth factor is greater than or equal to 0;
  • the ratio of the number of time units in which the first terminal device successfully sends the side link synchronization signal block in N time units to the number of time units in which the first terminal device fails to send the side link synchronization signal block in N time units is greater than or equal to a sixth factor, and the sixth factor is greater than or equal to 0;
  • the ratio of the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units to the N time units is less than or equal to a seventh factor, and the seventh factor is greater than or equal to 0;
  • the ratio of the number of time units in which the first terminal device successfully sends the side link synchronization signal block in N time units to the N time units is greater than or equal to an eighth factor, and the eighth factor is greater than or equal to 0.
  • the fifth factor, the sixth factor, the seventh factor, and the eighth factor are preset, may be configured by the network device, or may be determined by the first terminal device.
  • the second time unit is located in the first cycle and is a time unit outside the N time units.
  • the first terminal device competes for the channel before sending the sidelink synchronization signal block in each time unit. If the channel competition is successful, the first terminal device sends the sidelink synchronization signal block in the time unit; if the channel competition fails, the first terminal device does not send the sidelink synchronization signal block in the time unit.
  • the way to compete for the channel may be by performing an LBT operation. If the first terminal device succeeds in LBT before the time unit for sending the sidelink synchronization signal block, the first terminal device sends the sidelink synchronization signal block on the time unit; if the first terminal device fails in LBT before the time unit for sending the sidelink synchronization signal block, the first terminal device does not send the sidelink synchronization signal block on the time unit. For this reason, in the present application, the failure of the first terminal device to send the sidelink synchronization signal block in the first time unit may refer to:
  • the first terminal device fails to successfully compete for the channel before the first time unit, resulting in failure to send a sidelink synchronization signal block in the first time unit;
  • the first terminal device fails to send the sidelink synchronization signal block in the first time unit because the LBT is not successful before the first time unit;
  • the first terminal device succeeds in LBT before the first time unit, but the sidelink synchronization signal block sent in the first time unit is not successfully sent to the second terminal device.
  • Step 703 The second terminal device determines N time units within the first period according to the first configuration information.
  • Step 704 The second terminal device fails to receive the sidelink synchronization signal block in the first time unit among N time units, or the number of time units in which the second terminal device fails to receive the sidelink synchronization signal block in N time units is greater than a first threshold, and the second terminal device receives the sidelink synchronization signal block in the second time unit.
  • the second terminal device can perform synchronization according to the received sidelink synchronization signal block, and the specific process is not repeated. After the second terminal device completes synchronization according to the sidelink synchronization signal block, it can communicate with the first terminal device, and the specific process is not repeated.
  • the second terminal device may no longer receive the sidelink synchronization signal block in the second time unit; or the second terminal device receives other data or signals except the sidelink synchronization signal block in the second time unit, such as receiving physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • the failure of the second terminal device to receive the sidelink synchronization signal block in the first time unit may mean: the second terminal device does not receive the sidelink synchronization signal block in the first time unit; or, the second terminal device receives the sidelink synchronization signal block in the first time unit, but fails to decode the sidelink synchronization signal block.
  • additional M time units may be configured, and the second time unit belongs to the M time units, where M is an integer greater than 0.
  • the M time units are also candidate time units for sending the sidelink synchronization signal block. That is, the first configuration information may be used to determine the N time units in the first cycle, and the first configuration information may also be used for the N time units in the first cycle and the M time units in the first cycle.
  • the first terminal device fails to send a sidelink synchronization signal block in the first time unit of N time units, it sends a sidelink synchronization signal block in the second time unit. If the block is successful, no sidelink synchronization signal block is sent in the second time unit.
  • the second terminal device fails to receive the sidelink synchronization signal block in the first time unit among the N time units, it receives the sidelink synchronization signal block in the second time unit. If the second terminal device successfully receives the sidelink synchronization signal block in the first time unit among the N time units, it does not receive the sidelink synchronization signal block in the second time unit; or receives other data or signals except the sidelink synchronization signal block in the second time unit, such as physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • the sidelink synchronization signal block is sent in a second time unit. If the number of time units in which the first terminal device fails to send a sidelink synchronization signal block in N time units is less than or equal to the first threshold, or the number of time units in which the first terminal device successfully sends a sidelink synchronization signal block in N time units is greater than or equal to a second threshold, then the sidelink synchronization signal block is not sent in the second time unit.
  • the first terminal device may send other data or signals in addition to the sidelink synchronization signal block in the second time unit, such as physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • the sidelink synchronization signal block is received in the second time unit. If the number of time units in which the second terminal device fails to receive the sidelink synchronization signal block in N time units is less than or equal to the first threshold, or the number of time units in which the second terminal device successfully receives the sidelink synchronization signal block in N time units is greater than or equal to the second threshold, the second terminal device does not receive the sidelink synchronization signal block in the second time unit, or the second terminal device receives other data or signals in addition to the sidelink synchronization signal block in the second time unit, such as physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • the first terminal device sends a sidelink synchronization signal block in each of M time units.
  • the first terminal device fails to send a sidelink synchronization signal block in X time units out of N time units, then the first terminal device sends a sidelink synchronization signal block in at most X time units out of M time units, and may no longer send a sidelink synchronization signal block in time units other than X time units out of M time units, where X is an integer greater than 0 and less than or equal to N.
  • the time domain positions of the M time units can be configured through the first configuration information, so that the first terminal device can determine the M time units according to the first configuration information.
  • the time domain positions of the M time units can also be configured through a separate configuration information, for example, through the second configuration information.
  • the time domain positions of the M time units can also be preset, which is not limited in this application.
  • the M time units only include the second time unit, and the second time unit can be configured by a first duration, where the first duration represents the interval between the second time unit and one of the N time units, for example, the first duration is the interval between the second time unit and the first or last time unit of the N time units.
  • the first duration is the duration configured by the network device, for example, the first duration is configured by the first configuration information; or, the first duration is a preconfigured duration; or, the first duration is a duration specified by the protocol.
  • the S-SSB in Figure 8(d) represents a sidelink synchronization signal block
  • the second time unit in (a) in Figure 8(d), is separated from the last time unit among the N time units by the first time length; in (b) in Figure 8(d), the second time unit is separated from the first time unit among the N time units by the first time length.
  • the M time units when M is greater than 1, the M time units include other time units in addition to the second time unit.
  • the M time units can be configured by the first duration and the first interval duration.
  • the first duration represents the interval between a time unit (for example, the second time unit) in the M time units and a time unit in the N time units, for example, the duration of the interval between the second time unit in the M time units and the first time unit or the last time unit in the N time units;
  • the first interval duration represents the time slot interval between two adjacent time units in the M time units.
  • the configuration method of the interval duration can refer to the first duration, which will not be repeated here.
  • the S-SSB in the figure represents a sidelink synchronization signal block
  • the interval between two adjacent time units in M time units is a first interval duration, which can be equal to the interval duration between two adjacent time units in N time units.
  • the first time unit in the M time units and the last time unit in the N time units are separated by the first duration; in (b) of Figure 9, the first time unit in the M time units and the first time unit in the N time units are separated by the first duration.
  • a second time unit is configured for a first time unit among N time units.
  • the first time unit is associated with the second time unit.
  • the first terminal device fails to send a sidelink synchronization signal block in the first time unit, it sends a sidelink synchronization signal block in the second time unit. If the first terminal device successfully sends a sidelink synchronization signal block in the first time unit, it does not send a sidelink synchronization signal block in the second time unit.
  • the second terminal device fails to receive the sidelink synchronization signal block in the first time unit, it receives the sidelink synchronization signal block in the second time unit. If the second terminal device successfully receives the sidelink synchronization signal block in the first time unit among the N time units, it does not receive the sidelink synchronization signal block in the second time unit; or receives other data or signals except the sidelink synchronization signal block in the second time unit, such as physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • the first time unit and the second time unit are separated by a second duration, wherein the second duration is a duration configured by the network device, for example, the second duration is configured by the network device through the first configuration information, or the second duration can also be configured through a separate configuration information; or, the second duration is a preconfigured duration; or, the second duration is a duration specified by the protocol.
  • the second duration is a duration configured by the network device, for example, the second duration is configured by the network device through the first configuration information, or the second duration can also be configured through a separate configuration information; or, the second duration is a preconfigured duration; or, the second duration is a duration specified by the protocol.
  • a second time unit may be configured for each of the N time units.
  • the intervals between different time units and their associated second time units may be the same (for example, both are the second duration), or the intervals between different time units and their associated second time units may be different.
  • the S-SSB in the figure represents a sidelink synchronization signal block
  • each of the N time units is configured with a second time unit
  • the interval between each time unit and its associated second time unit is the second duration.
  • the white grid represents the time unit in the N time units
  • the black grid represents the second time unit.
  • the first terminal device if the first terminal device fails to send a sidelink synchronization signal block in the first time unit, then the sidelink synchronization signal block is sent in a second time unit associated with the first time unit. If the first terminal device successfully sends a sidelink synchronization signal block in the first time unit, then the sidelink synchronization signal block is not sent in the second time unit associated with the first time unit.
  • the first terminal device may send other data or signals in addition to the sidelink synchronization signal block in the second time unit, such as physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • the second terminal device if the second terminal device fails to receive the sidelink synchronization signal block in the first time unit, it receives the sidelink synchronization signal block in the second time unit associated with the first time unit. If the second terminal device successfully receives the sidelink synchronization signal block in the first time unit, it does not receive the sidelink synchronization signal block in the second time unit associated with the first time unit.
  • the second terminal device can receive other data or signals in addition to the sidelink synchronization signal block in the second time unit, such as physical sidelink shared channel data, and/or physical sidelink shared channel data.
  • multiple second time units may be configured for each of the N time units.
  • the interval between two adjacent second time units in the multiple second time units associated with the time unit is the second interval duration.
  • the configuration method of the second interval duration can refer to the second duration, which will not be repeated here.
  • the S-SSB in the figure represents a sidelink synchronization signal block, and each of the N time units is configured with two second time units.
  • the white grid represents the time unit in the N time units
  • the black grid represents the second time unit.
  • the first time unit of the two second time units corresponding to each time unit is separated from the time unit by a second duration.
  • the first terminal device if the first terminal device fails to send a sidelink synchronization signal block in the first time unit, then at least one of the multiple second time units associated with the first time unit sends a sidelink synchronization signal block. If the first terminal device successfully sends a sidelink synchronization signal block in the first time unit, then it does not send a sidelink synchronization signal block in the multiple second time units associated with the first time unit.
  • the second terminal device fails to receive the sidelink synchronization signal block in the first time unit, it receives the sidelink synchronization signal block in at least one second time unit among the multiple second time units associated with the first time unit. If the second terminal device successfully receives the sidelink synchronization signal block in the first time unit, it does not receive the sidelink synchronization signal block in the multiple second time units associated with the first time unit.
  • the first terminal device may send first sidelink control information to the second terminal device.
  • the first sidelink control information can be carried by the first-order sidelink control information ( 1st -stage SCI), or by the second-order sidelink control information ( 2nd -stage SCI), or by the medium access control (medium access control, MAC) control element (control element, CE), but the present application does not limit this.
  • the first sidelink control information may include one or more of the following functions:
  • the first sidelink control information is used to determine the second time unit
  • the first sidelink control information is used to indicate sidelink synchronization signal block information outside the N time units in the first cycle, for example, to indicate whether other sidelink synchronization signal block information is included outside the N time units in the first cycle, or to indicate other sidelink synchronization signal block resource location information outside the N time units in the first cycle;
  • the first sidelink control information is used to indicate that a sidelink synchronization signal block is included in the second time unit;
  • the first sidelink control information is used to indicate whether a sidelink synchronization signal block is included in the second time unit.
  • the first terminal device sends the first sidelink control information only when it sends a sidelink synchronization signal block N time units away.
  • the first sidelink control information is used to indicate that a sidelink synchronization signal block is included in the second time unit, or the first sidelink control information is used to indicate that other sidelink synchronization signal blocks are included outside N time units.
  • the first terminal device when the first terminal device fails to send a sidelink synchronization signal block in a first time unit, or the number of time units in which the sidelink synchronization signal block fails to be sent is greater than a first threshold, the first terminal device may first send the first sidelink control information, and then send the sidelink synchronization signal block in a second time unit.
  • the second terminal device when the second terminal device receives the first sidelink control information, it determines to receive the sidelink synchronization signal block outside the N time units in the first cycle, or determines to receive the sidelink synchronization signal block in the second time unit.
  • the first terminal device does not send the above-mentioned first sidelink control information
  • the first terminal device does not send a sidelink synchronization signal block outside the N time units in the first cycle.
  • the second terminal device does not receive the first sidelink control information, it is determined not to receive a sidelink synchronization signal block outside the N time units in the first cycle, or it is determined not to receive a sidelink synchronization signal block in the second time unit.
  • the first sidelink control information may also be used to determine the second time unit.
  • the second time unit may correspond to the first sidelink control information, and the present application does not limit how the second time unit specifically corresponds to the first sidelink control information.
  • a time unit that is separated from the first sidelink control information by a third time length may be used as the second time unit.
  • the second terminal device receives a sidelink synchronization signal block in a time unit separated from the first sidelink control information by a third time length.
  • the SCI in the figure represents the first sidelink control information
  • the time unit including the S-SSB in the figure represents a time unit among N time units.
  • For how to configure the third time length refer to the configuration method of the second time length, which will not be repeated here.
  • the first sidelink control information may also be used to determine one or more of the following: the location of the second time unit; the location of the subchannel or staggered resource block set occupied by the sidelink synchronization signal block in the second time unit.
  • the second terminal device determines the second time unit according to the first sidelink control information, thereby receiving the sidelink synchronization signal block in the second time unit.
  • the first sidelink control information includes Y1 bits, and the value of the Y1 bits can indicate the position of the second time unit.
  • the relationship between the value of Y1 and the position of the second time unit may be as shown in Table 2.
  • Y1 bit In conjunction with Table 2, if the value of Y1 bit is 00, it indicates the preset position of the second time unit in the COT; if Y1 bit is The value of is 01, indicating that the second time unit is the second time unit after the first time unit in the COT, and other situations are not described in detail.
  • the first sidelink control information may also include Y2 bits, and the values of the Y2 bits may indicate the position of the subchannel or interleaved resource block set occupied by the sidelink synchronization signal block.
  • Y2 bits indicates the frequency domain position of the subchannel preset in the COT; when the value of Y1 bits is other values, it indicates the offset value of the subchannel from the lowest subchannel in the preset RB set (the RB set with the lowest index or the RB set with the highest index) in the COT.
  • the index number of the lowest subchannel in the preset RB set is n
  • the value of Y1 bits is 01
  • the offset value is 2, indicating that the index number of the subchannel is n+2
  • the value of Y1 bits is 02
  • the offset value is 3, indicating that the index number of the subchannel is n+3.
  • the first sidelink control information is sent regardless of whether the first terminal device sends a sidelink synchronization signal block outside N time units.
  • the first sidelink control information is used to indicate whether a sidelink synchronization signal block is included in the second time unit, or the first sidelink control information is used to indicate whether other sidelink synchronization signal blocks are included outside N time units.
  • the first sidelink control information may include two values: a first value and a second value.
  • the first sidelink control information corresponds to the first value; when the first terminal device does not send a sidelink synchronization signal block outside N time units, the first sidelink control information corresponds to the second value.
  • the first sidelink control information sent by the first terminal device corresponds to a first value, which is used to indicate that a sidelink synchronization signal block is included in addition to the N time units in the first cycle, or is used to indicate that a sidelink synchronization signal block is also included in the second time unit.
  • the second terminal device determines that the received first sidelink control information corresponds to the first value, and then receives the sidelink synchronization signal block outside N time units, or receives the sidelink synchronization signal block in the second time unit.
  • the first sidelink control information sent by the first terminal device corresponds to a second value, which is used to indicate that the sidelink synchronization signal block is not included outside the N time units in the first cycle, or is used to indicate that the sidelink synchronization signal block is not included in the second time unit.
  • the second terminal device determines that the received first sidelink control information corresponds to the second value, and then does not receive the sidelink synchronization signal block outside N time units, or does not receive the sidelink synchronization signal block in the second time unit.
  • the first sidelink control information may also be used to determine the second time unit.
  • the first sidelink control information may also be used to determine the second time unit.
  • the position of the second time unit is not fixed, but is determined by the first terminal device according to actual conditions. For example, the first terminal device fails to send a sidelink synchronization signal block in the first time unit, or the time unit in which the sidelink synchronization signal block fails to be sent. When the number of elements is greater than the first threshold, the first terminal device attempts to perform LBT operation in a time unit other than N time units. If LBT passes, a side link synchronization signal block can be sent.
  • the position of the second time unit is dynamic, and the second terminal device can attempt to receive the sidelink synchronization signal block in a time unit other than N time units.
  • the first terminal device sends a sidelink synchronization signal block in a time unit other than N time units, which increases the chances of sending the sidelink synchronization signal block and improves the synchronization performance of the system.
  • FIG 13 it is a flow chart of a side link synchronization signal block transmission method provided in an embodiment of the present application.
  • the structures of various side link synchronization signal blocks described in the flow chart of Figure 13 are also applicable to the flow chart shown in Figure 7 and will not be separately illustrated here.
  • Step 1301 The first terminal device generates a sidelink synchronization signal block
  • Step 1302 The first terminal device sends a sidelink synchronization signal block to the second terminal device; correspondingly, the second terminal device receives the sidelink synchronization signal block from the first terminal device.
  • Step 1303 The second terminal device is synchronized according to the sidelink synchronization signal block.
  • the sidelink synchronization signal block includes PSBCH, S-SSS and S-PSS, where S-SSS and S-PSS can be collectively referred to as sidelink synchronization sequence.
  • PSBCH occupies multiple consecutive resource blocks or multiple non-continuous resource blocks; the sidelink synchronization sequence occupies multiple consecutive resource blocks or resource elements (resource element), or the sidelink synchronization sequence occupies multiple non-continuous resource blocks or resource elements.
  • PSBCH occupies Z resource blocks, Z is a positive integer, and Z is network configured, or pre-configured, or agreed upon by the protocol.
  • the number of resource blocks occupied by the sidelink synchronization sequence is equal to 11 or 12.
  • the sidelink synchronization signal block includes PSBCH, S-SSS and S-PSS, where S-SSS and S-PSS can be collectively referred to as sidelink synchronization sequences.
  • PSBCH occupies multiple non-contiguous resource blocks; the sidelink synchronization sequence occupies multiple non-contiguous resource blocks or resource elements (resource element).
  • S-SSB occupies Z1 resource blocks, where Z1 is a positive integer, and Z1 is network configured, or pre-configured, or agreed upon by the protocol.
  • the sidelink synchronization sequence and PSBCH occupy 132 consecutive subcarriers. Assuming that the 132 subcarriers are numbered 0 to 131, when an RB contains 12 subcarriers, the 132 subcarriers correspond to 11 RBs. When a sidelink synchronization signal block occupies 11 RBs, the PSBCH occupies all subcarriers corresponding to the 11 RBs, that is, the PSBCH occupies 132 subcarriers numbered 0 to 131; and the sidelink synchronization sequence occupies 127 subcarriers among the 132 subcarriers.
  • the sidelink synchronization sequence occupies 127 consecutive subcarriers numbered 2 to 128, and is set to 0 on subcarriers No. 0, 1, 129, 130, and 131. That is, the starting resource element (RE) occupied by the sidelink synchronization sequence is offset by 2 REs relative to the starting RE or the lowest index RE occupied by PSBCH, and the starting and ending REs occupied by the sidelink synchronization sequence are offset by 3 REs relative to the ending RE occupied by PSBCH, where RE is defined as a resource unit with a length of an OFDM symbol in time and a width of one subcarrier in frequency.
  • RE is defined as a resource unit with a length of an OFDM symbol in time and a width of one subcarrier in frequency.
  • the first terminal device may also indicate the frequency domain position occupied by the sidelink synchronization signal block.
  • the first terminal device may also indicate that the offset value between the starting point of the frequency domain resources occupied by the sidelink synchronization signal block and the starting point of the frequency domain resources occupied by the first terminal device is a first frequency domain offset value.
  • the first frequency domain offset value may also be preset, which is not limited in the present application.
  • the first frequency domain offset value may also be the offset value of the starting point of the frequency domain resources occupied by the sidelink synchronization signal block relative to the end position of the frequency domain resources of the channel, or a certain position in the middle.
  • the first terminal device may also indicate the frequency domain position occupied by the sidelink synchronization sequence.
  • the first terminal device may indicate a second frequency domain offset value between the starting point of the frequency domain resources occupied by the sidelink synchronization sequence and the starting point of the frequency domain resources occupied by the channel by the first terminal device.
  • the second frequency domain offset value may also be preset, which is not limited in the present application.
  • the second frequency domain offset value may also be an offset value of the starting point of the frequency domain resources occupied by the sidelink synchronization sequence relative to the end position of the frequency domain resources of the channel, or a certain position in the middle.
  • the number of resource blocks occupied by the sidelink synchronization sequence and the PSBCH may be different, which are described separately below.
  • Implementation method 1 The subcarrier spacing of the channel occupied by the first terminal device is less than 60kHz.
  • the resource blocks occupied by the PSBCH are located in the first frequency domain resources and/or the second frequency domain resources.
  • the first frequency domain resources are located on a subchannel or a staggered resource block set, the second frequency domain resources are resource blocks, and the first frequency domain resources and the second frequency domain resources are adjacent to each other.
  • the resource block occupied by the S-SSB is located in the first frequency domain resource and/or the second frequency domain resource.
  • the first frequency domain resource is located on a subchannel or a staggered resource block set
  • the second frequency domain resource is a resource block
  • the first frequency domain resource and the second frequency domain resource are located on a subchannel or a staggered resource block set. Domain resources are located adjacently.
  • the Z resource blocks occupied by the PSBCH are located on one interlace/subchannel and one resource block, and the one resource block is adjacent to one resource block in the one interlace/subchannel.
  • the Z1 resource blocks occupied by the S-SSB are located on 1 interlace/subchannel and 1 resource block, and the 1 resource block is adjacent to the 1 resource block in the 1 interlace/subchannel.
  • the PSBCH occupies Z resource blocks and is located in 1 or 2 interlaces, or in 1 or 2 subchannels.
  • the positions of the 2 interlaces are adjacent.
  • the positions of the 2 subchannels are adjacent.
  • the S-SSB occupies Z resource blocks in 1 or 2 interlaces, or in 1 or 2 subchannels.
  • the positions of the 2 interlaces are adjacent.
  • the positions of the 2 subchannels are adjacent.
  • the PSBCH occupies 10 RBs.
  • Such a sidelink synchronization signal block can meet the occupied channel bandwidth (OCB) requirement.
  • OCB occupied channel bandwidth
  • the S-SSB occupies 10 RBs.
  • Such a sidelink synchronization signal block can meet the occupied channel bandwidth requirement.
  • the starting RB number of the RB set where the sidelink synchronization signal block is located is 0.
  • the PSBCH occupies 10 non-continuous RBs, for example, 10 RBs in the interleaved resource block set with an index of 0; the second frequency domain offset value is 10, indicating that the link synchronization sequence occupies 127 consecutive REs starting from the 10th RB, or 11 consecutive RBs starting from the 10th RB (the first 3 RE data starting from the 10th RB are set to 0 in this implementation).
  • the starting RB of the RB set where the sidelink synchronization signal block is located is numbered 0.
  • the PSBCH occupies 10 RBs in the staggered resource block set with index 0, and the indexes of these 10 RBs are: ⁇ 0, 10, 20, 30, ... 90 ⁇ ;
  • the sidelink synchronization sequence occupies 11 RBs with indexes from 0 to 10, but the starting RE occupied by the sidelink synchronization sequence is offset by 3 REs relative to the starting RE occupied by the PSBCH, that is, the RE occupied by the sidelink synchronization sequence in the RB with index 0 starts from the 4th RE.
  • the starting RB number of the RB set where the sidelink synchronization signal block is located is 0.
  • the PSBCH occupies 10 RBs in the interleaved resource block set with index 0, and the indexes of these 10 RBs are: ⁇ 0, 10, 20, 30, ... 90 ⁇ ; the sidelink synchronization sequence occupies 11 RBs with indexes from 80 to 90, but the end RE occupied by the sidelink synchronization sequence is offset by 2 REs relative to the end RE occupied by the PSBCH, that is, the last RE occupied by the sidelink synchronization sequence in the RB with index 90 is the 10th RE in the RB.
  • the PSBCH occupies 11 RBs, and the resource blocks occupied by the PSBCH are located in 1 or 2 interlaces, or the resource blocks occupied by the PSBCH are located in 1 or 2 subchannels.
  • S-SSB occupies 11 RBs, and the resource blocks occupied by S-SSB are located in 1 or 2 interlaces, or the resource blocks occupied by S-SSB are located in 1 or 2 subchannels.
  • the starting RB number of the RB set where the sidelink synchronization signal block is located is 0.
  • the PSBCH occupies 10 RBs in the interleaved resource block set with index 0 and 1 RB in the interleaved resource block set with index 0.
  • the indexes of these 11 RBs are: ⁇ 0, 1, 10, 20, 30, ... 90 ⁇ .
  • the sidelink synchronization sequence can occupy 134 REs in 12 RBs.
  • 7 REs in the 134 REs can be filled, for example, in any of the following ways:
  • Method 1 Copy all/part of the data or signals on one or more RBs on the PBSCH, and then fill them at both ends or one end of the sidelink synchronization sequence.
  • the data or signal in the RB with the lowest index occupied by the PBSCH can be copied, and then filled at the REs at both ends of the sidelink synchronization sequence, and only greater than or equal to 7 REs can be filled. It is also possible to fill only at one end of the sidelink synchronization sequence, for example, placing the copied signal or data at the beginning or end of the sidelink synchronization sequence.
  • Method 2 Sequence padding is performed on both ends or one end of the sidelink synchronization sequence.
  • the padding sequence can be a newly generated sequence.
  • the newly generated sequence and the original sidelink synchronization sequence should meet the criterion of minimum peak-to-average power ratio after interaction.
  • the padding sequence can be a copy of the original sidelink synchronization sequence. In this case, only a sequence length of 7 REs needs to be copied. Of course, it can also be a sequence length greater than 7 REs. This 7 RE sequence length can be a complete copy from a certain continuous sequence, or a copy and padding of the two ends of the original sidelink synchronization sequence.
  • the frequency domain rules of the extended S-SSB signal can meet the following requirements: 1) The starting position of the padded data or signal can be the beginning of an RB or the lowest RB number indexed in an interleaved resource set (if the beginning of the sequence is padded); 2) Then it is followed by the original sidelink synchronization sequence; 3) Finally, It is the padding data or sequence at the end (if there is padding at the end of the sequence).
  • the padding data may start from the beginning of one RB
  • the sidelink synchronization sequence may also start from the beginning of one RB, that is, some REs between the padding data and the sidelink synchronization sequence may be set to 0, and their frequency domain positions are not necessarily adjacent.
  • Implementation method two the subcarrier spacing of the channel occupied by the first terminal device is equal to 60kHz.
  • the PSBCH occupies non-continuous resource blocks
  • the number of occupied resource blocks is 11, and there is one resource block between two adjacent resource blocks in the 11 resource blocks; the sidelink synchronization sequence occupies 11 consecutive resource blocks.
  • bitmap indication information may be introduced, and the bitmap indication information is used to indicate the location of the resource block occupied by the PSBCH in the channel.
  • the length of the bitmap indication information is equal to the number of available RBs in the RB set in the channel or the channel or at least one nominal channel or at least one 20MHz channel bandwidth. For example, under the 60kHz subcarrier spacing configuration, the number of available RBs in the 20MHz frequency domain bandwidth is equal to 24, then the length of the bitmap indication information is equal to 24.
  • bitmap indication information For example, if the value of a bit in the bitmap indication information is "1", it indicates that the RB corresponding to the bit is used to transmit PSBCH, and if the value of a bit in the bitmap indication information is "0", it indicates that the RB corresponding to the bit is not used to transmit PSBCH. For example, as shown in FIG19, when an RB set contains 24 RBs, the indexes of these 24 RBs are 0 to 23 respectively, if the RBs occupied by PSBCH are ⁇ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 ⁇ .
  • the corresponding bitmap indication information can be: 1010101010101010101000.
  • bitmap indication information is pre-configured, or configured by the network device, or agreed upon by the protocol, or may also be indicated by the first terminal device to the second terminal device.
  • PSBCH occupies continuous resource blocks, in order to meet the OCB requirements, PSBCH occupies at least 23 continuous resource blocks, as shown in Figure 20.
  • the data corresponding to the original PSBCH can be rate matched, expanded from 11 RBs to 23 RBs, or the data corresponding to PSBCH can be expanded to the RB set in the entire channel.
  • the original continuous sequence transmission is still maintained, that is, occupying 11 continuous resource blocks.
  • a specific S-SSB frequency domain structure and position are defined to meet the regulatory requirements for sideline communications in unlicensed frequency bands, and based on the configuration of the protection bandwidth of the resource pool, possible frequency domain structures of S-SSB under different configurations are given, thereby providing synchronization efficiency.
  • the methods provided by the embodiments of the present application are introduced from the perspective of interaction between various devices.
  • the first terminal device or the second terminal device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a function of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into a processor, or may exist physically separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules may be implemented in the form of hardware or in the form of software functional modules.
  • the embodiment of the present application further provides a communication device 2100 for implementing the functions of the first terminal device or the second terminal device in the above method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the communication device 2100 may include: a processing unit 2101 and a communication unit 2102.
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively used to execute the sending and receiving steps performed by the first terminal device or the second terminal device in the above method embodiment.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, etc.
  • the communication unit may also be referred to as a transceiver, a transceiver, or a transceiver circuit, etc.
  • the communication unit may include a sending unit and/or a receiving unit.
  • the sending unit may also be referred to as a transmitter, a transmitter, or a transmitting circuit, etc.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit and the receiving unit may be an integrated unit or two independent units.
  • the communication device 2100 may perform the following functions:
  • a processing unit configured to determine, according to the first configuration information, N time units within a first period, where N is an integer greater than 0, and the N time units are candidate time units for sending a sidelink synchronization signal block;
  • processing unit is further configured to:
  • M time units are determined according to the first configuration information, where M is an integer greater than 0, and the M time units are candidate time units for sending the sidelink synchronization signal block.
  • the second time unit belongs to the M time units, and the M time units are time units other than the N time units in the first cycle.
  • the communication unit is further configured to:
  • First sidelink control information is sent to the second terminal device, and the first sidelink control information is used to determine the second time unit.
  • the first sidelink control information is further used to determine one or more of the following:
  • the second time unit is separated from the first time unit or the last time unit among the N time units by a first duration.
  • the offset value between the starting point of the frequency domain resources occupied by the sidelink synchronization signal block and the starting point of the frequency domain resources occupied by the channel of the first terminal device is a first frequency domain offset value; the first frequency domain offset value is preset, or the first frequency domain offset value is determined by the first terminal device, or the first frequency domain offset value is configured by a network device.
  • the communication device 2100 may perform the following functions:
  • a processing unit configured to determine, according to the first configuration information, N time units within a first period, where N is an integer greater than 0, and the N time units are candidate time units for sending a sidelink synchronization signal block;
  • processing unit is further configured to:
  • M time units are determined according to the first configuration information, where M is an integer greater than 0, and the M time units are candidate time units for sending the sidelink synchronization signal block.
  • the second time unit belongs to the M time units, and the M time units are time units other than the N time units in the first cycle.
  • the communication unit is further used to: receive first sidelink control information from the first terminal device, and the first sidelink control information is used to determine the second time unit.
  • the first sidelink control information is further used to determine one or more of the following:
  • the position of the second time unit the position of the subchannel or interleaved resource block set occupied by the sidelink synchronization signal block in the second time unit.
  • the second time unit is separated from the first time unit or the last time unit among the N time units by a first duration.
  • processing unit 2101 and the communication unit 2102 may also perform other functions.
  • processing unit 2101 and the communication unit 2102 may also perform other functions.
  • processing unit 2101 and the communication unit 2102 may also perform other functions.
  • FIG22 a communication device 2200 provided in an embodiment of the present application is shown.
  • the device shown in FIG22 may be a hardware circuit implementation of the device shown in FIG21.
  • the communication device may be applicable to the flowchart shown above to perform the functions of the first terminal device or the second terminal device in the above method embodiment.
  • FIG22 only shows the main components of the communication device.
  • the communication device 2200 includes a processor 2210 and an interface circuit 2220.
  • the processor 2210 and the interface circuit 2220 are coupled to each other.
  • the interface circuit 2220 may be a transceiver or an input/output interface.
  • the communication device 2200 may further include a memory 2230 for storing instructions executed by the processor 2210 or storing input data required by the processor 2210 to execute instructions or storing data generated after the processor 2210 executes instructions.
  • the processor 2210 is used to implement the function of the processing unit 2101
  • the interface circuit 2220 is used to implement the function of the communication unit 2102.
  • the chip of the terminal device implements the functions of the terminal device in the above method embodiment.
  • the chip of the terminal device receives information from other modules in the terminal device (such as a radio frequency module or an antenna); or the chip of the terminal device sends information to other modules in the terminal device (such as a radio frequency module or an antenna).
  • the processor in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the processor may be a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a register, a hard disk, a mobile hard disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the ASIC may be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in a network device or a terminal device.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种侧行链路同步信号块传输方法及装置,适用于V2X,智能驾驶,车联网,辅助驾驶,自动驾驶等领域,其中方法包括:第一终端设备在N个时间单元中的第一时间单元发送所述侧行链路同步信号块失败,或者,所述第一终端设备在所述N个时间单元中发送所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,所述第一终端设备在第二时间单元向第二终端设备发送所述侧行链路同步信号块;所述第二时间单元为所述N个时间单元之外的时间单元。通过本申请提供的方法,第一终端设备在N个时间单元之外的时间单元中发送侧行链路同步信号块,增加了侧行链路同步信号块的发送机会,提高系统的同步性能。

Description

一种侧行链路同步信号块传输方法及装置
相关申请的交叉引用
本申请要求在2022年09月30日提交中国专利局、申请号为202211216273.0、申请名称为“一种侧行链路同步信号块传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2023年04月07日提交中国专利局、申请号为202310404254.9、申请名称为“一种侧行链路同步信号块传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种侧行链路同步信号块传输方法及装置。
背景技术
在无线通信系统中,通信设备使用的频段可以分为授权(licensed)频谱和非授权(unlicensed)频谱。在授权频谱中,通信设备基于中心节点的调度使用频谱资源。在非授权频段中,通信设备通过信道接入机制(比如,先听后说(listen-before-talk,LBT)机制)竞争信道。侧行链路(sidelink,SL)的一个重要演进方向是在局域空间内使能非授权频谱的SL通信,这部分技术可以统称为SL非授权(SL-unlicensed,SL-U)通信。
在无线通信中,通信设备之间在进行通信之前,需要维持时间同步。例如,NR SL系统中,终端设备可以广播侧行链路同步信号块(sidelink synchronization signal block,S-SSB),接收到该S-SSB的终端设备从而可以完成时间同步。然而在非授权频谱中,终端设备需要先通过LBT方式竞争信道,只有LBT通过之后才能发送S-SSB,这样导致S-SSB无法及时发送,使得设备之间不能及时地进行同步,设备之间的通信性能下降。
发明内容
本申请提供一种侧行链路同步信号块传输方法及装置,用以增加在非授权频谱中发送S-SSB的传输机会,提高通信性能。
第一方面,本申请提供一种侧行链路同步信号块传输方法,该方法适用于V2X以及SL-U等非授权频谱通信的场景。该方法的执行主体为终端设备或终端设备中的一个模块,这里以第一终端设备为执行主体为例进行描述。该方法包括:第一终端设备根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;所述第一终端设备在所述N个时间单元中的第一时间单元发送所述侧行链路同步信号块失败,或者,所述第一终端设备在所述N个时间单元中发送所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,所述第一终端设备在第二时间单元向第二终端设备发送所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
通过本申请提供的方法,第一终端设备在N个时间单元之外的时间单元中发送侧行链路同步信号块,增加了侧行链路同步信号块的发送机会,提高系统的同步性能。
第二方面,本申请提供一种侧行链路同步信号块传输方法,该方法适用于V2X以及SL-U等非授权频谱通信的场景。该方法的执行主体为终端设备或终端设备中的一个模块,这里以第二终端设备为执行主体为例进行描述。该方法包括:第二终端设备根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;所述第二终端设备在所述N个时间单元中的第一时间单元接收所述侧行链路同步信号块失败,或者,所述第二终端设备在所述N个时间单元中接收所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,所述第二终端设备在第二时间单元接收所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
结合第一方面,一种可能的实现方式中,所述方法还包括:第一终端设备根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
结合第一方面,一种可能的实现方式中,所述方法还包括:第一终端设备向所述第二终端设备发送第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
结合第一方面或第二方面,一种可能的实现方式中,所述第一侧行链路控制信息还用于确定以下一项或多项:所述第二时间单元的位置;所述第二时间单元中的所述侧行链路同步信号块占用的子信道或交错资源块集合的位置。
结合第一方面或第二方面,一种可能的实现方式中,所述第二时间单元与所述N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。
结合第一方面或第二方面,一种可能的实现方式中,所述第一时长为网络设备配置的时长;或者,所述第一时长为预配置的时长;或者,所述第一时长为协议规定的时长。
结合第一方面或第二方面,一种可能的实现方式中,所述第一时间单元与所述第二时间单元之间间隔第二时长。
结合第一方面或第二方面,一种可能的实现方式中,所述第二时长为网络设备配置的时长;或者,所述第二时长为预配置的时长;或者,所述第二时长为协议规定的时长。
结合第一方面或第二方面,一种可能的实现方式中,所述侧行链路同步信号块占用的频域资源的起始点与所述第一终端设备占用信道的频域资源的起始点之间的偏移值为第一频域偏移值;所述第一频域偏移值为预设的,或者所述第一频域偏移值为所述第一终端设备确定的,或者所述第一频域偏移值为网络设备配置的。
结合第二方面,一种可能的实现方式中,所述方法还包括:第二终端设备根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
结合第二方面,一种可能的实现方式中,所述方法还包括:第二终端设备接收来自所述第一终端设备的第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
结合第一方面或第二方面,一种可能的实现方式中,所述第二时间单元包括第一侧行信息,所述第二时间单元之前的第三时间单元包括循环前缀扩展CPE,所述CPE和所述第一侧行信息来自所述第一终端设备,所述第三时间单元和所述第二时间单元在时域上相邻,所述CPE的时长为第一传输时长。
结合第一方面或第二方面,一种可能的实现方式中,所述CPE之前还包括第二侧行信息,所述第二侧行信息与CPE的间隙小于第一间隙;所述第一间隙是预定义的,预配置的,或者网络配置的;所述第一间隙的时长取值为16微秒或者25微秒。
结合第一方面或第二方面,一种可能的实现方式中,所述CPE包括第一类型CPE和第二类型CPE,所述第一类型CPE为第一终端设备发送侧行同步信号的CPE,所述第二类型CPE为第一终端设备发送侧行共享信道的CPE,所述第一类型CPE的时长与所述第二类型CPE的时长不同。
结合第一方面或第二方面,一种可能的实现方式中,第一类型CPE的时长大于第二类型CPE的时长。
结合第一方面或第二方面,一种可能的实现方式中,所述方法还包括:第一终端设备获取第一指示信息;所述第一指示信息用于指示所述第一类型CPE的时长大于所述第二类型CPE的时长;或者发送侧行同步信号的CPE时长小于发送第一终端发送侧行共享信道的CPE的时长;所述第一指示信息是预配置的或者网络配置的。
第三方面,本申请提供一种侧行链路同步信号块传输方法,该方法适用于V2X以及SL-U等非授权频谱通信的场景。该方法的执行主体为终端设备或终端设备中的一个模块,这里以第一终端设备为执行主体为例进行描述。该方法包括:第一终端设备生成链路同步信号块;所述第一终端设备向第二终端设备发送侧行链路同步信号块;其中,所述同步信号块包括物理广播侧行链路信道和侧行链路同步序列。
第四方面,本申请提供一种侧行链路同步信号块传输方法,该方法适用于V2X以及SL-U等非授权频谱通信的场景。该方法的执行主体为终端设备或终端设备中的一个模块,这里以第二终端设备为执行主体为例进行描述。该方法包括:第二终端设备接收来自第一终端设备的侧行链路同步信号块;第二终端设备根据侧行链路同步信号块进行同步;其中,所述同步信号块包括物理广播侧行链路信道和侧行链路同步序列。
结合第三方面或第四方面,一种可能的实现方式,所述物理广播侧行链路信道占用多个连续的资源 块或者多个非连续的资源块;所述侧行链路同步序列占用多个连续的资源块,或者所述侧行链路同步序列占用多个非连续的资源块。
结合第三方面或第四方面,一种可能的实现方式,所述第一终端设备占用的所述信道的子载波间隔小于60kHz时,所述物理广播侧行链路信道占用的资源块位于第一频域资源,和/或第二频域资源。
结合第三方面或第四方面,一种可能的实现方式,第一频域资源位于子信道或交错资源块集合上,所述第二频域资源为资源块,所述第一频域资源和第二频域资源位置相邻。
结合第三方面或第四方面,一种可能的实现方式,所述物理广播侧行链路信道占用的资源块位于2个交错中时,所述2个交错的位置相邻。
结合第三方面或第四方面,一种可能的实现方式,所述物理广播侧行链路信道占用的资源块位于2个子信道时,所述2个子信道的位置相邻。
结合第三方面或第四方面,一种可能的实现方式,所述物理广播侧行链路信道占用的Z个资源块,Z小于或等于11,Z是网络配置的,或者预配置的,或者协议约定的。
结合第三方面或第四方面,一种可能的实现方式,所述信道的子载波间隔等于15kHz时,所述侧行链路同步序列占用的资源块数量等于12。
结合第三方面或第四方面,一种可能的实现方式,所述第一终端设备占用的所述信道的子载波间隔等于60kHz时,所述物理广播侧行链路信道占用非连续的11个资源块,所述11个资源块中位置相邻的两个资源块之间间隔1个资源块,或者所述物理广播侧行链路信道占用至少连续的23个资源块;所述侧行链路同步序列占用连续的11个资源块。
结合第三方面或第四方面,一种可能的实现方式,所述物理广播侧行链路信道占用非连续的11个资源块时,所述方法还包括:第一终端设备向所述第二终端设备发送比特位图指示信息,所述比特位图指示信息用于指示所述物理广播侧行链路信道在所述信道中占用的11个资源块的位置。
结合第三方面或第四方面,一种可能的实现方式,所述方法还包括:第一终端设备向所述第二终端设备发送偏移值指示信息,所述偏移值指示信息用于指示频域偏移值,所述频域偏移值为所述侧行链路同步序列的频域资源的起始点与所述第一终端设备占用的所述信道的频域资源的起始点之间的偏移值。
第五方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面至第四方面中任一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与终端设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面至第四方面中任一方面提供的方法中的描述,此处不做赘述。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法的功能模块。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。
第九方面,提供了一种存储有指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方 面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。
第十方面,提供一种芯片,该芯片包括处理器,还可以包括存储器,用于实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。该芯片可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1(a)至图1(c)为本申请实施例提供的一种网络架构示意图;
图2为本申请实施例提供的一种信道结构示意图;
图3为本申请实施例提供的一种信道结构示意图;
图4为本申请实施例提供的一种信道划分示意图;
图5为本申请实施例提供的一种信道划分示意图;
图6为本申请实施例提供的一种侧行链路同步信号块传输周期示意图;
图7为本申请实施例提供的一种侧行链路同步信号块传输方法流程示意图;
图8(a)至图8(c)为本申请实施例提供的一种侧行信息传输示意图;
图8(d)为本申请实施例提供的一种侧行链路同步信号块传输示意图;
图9为本申请实施例提供的一种侧行链路同步信号块传输示意图;
图10为本申请实施例提供的一种侧行链路同步信号块传输示意图;
图11为本申请实施例提供的一种侧行链路同步信号块传输示意图;
图12为本申请实施例提供的一种侧行链路同步信号块传输示意图;
图13为本申请实施例提供的一种侧行链路同步信号块传输方法流程示意图;
图14为本申请实施例提供的一种侧行链路同步信号块结构示意图;
图15为本申请实施例提供的一种侧行链路同步信号块结构示意图;
图16为本申请实施例提供的一种侧行链路同步信号块结构示意图;
图17为本申请实施例提供的一种侧行链路同步信号块结构示意图;
图18为本申请实施例提供的一种侧行链路同步信号块结构示意图;
图19为本申请实施例提供的一种侧行链路同步信号块结构示意图;
图20为本申请实施例提供的一种侧行链路同步信号块结构示意图;
图21为本申请实施例提供的一种通信装置结构示意图;
图22为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例提供的方法可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统,例如,第六代(6th generation,6G)通信系统。具体的,本申请实施例提供的方法可应用于车与任何事物(vehicle to everything,V2X)通信、车联网、自动驾驶、辅助驾驶等领域。
本申请实施例提供的方法和装置是基于同一或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,首先对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例中涉及的网络设备,可以为无线网络中的设备。例如,网络设备可以是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,NR系统中的下一代基站(next generation NodeB, gNB),传输接收点(transmission reception point,TRP),TP;或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,BBU,或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请实施例中涉及的终端设备,可以是能够接收网络设备调度和指示信息的无线终端设备。终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备是包括无线通信功能(向用户提供语音/数据连通性)的设备。例如,具有无线连接功能的手持式设备、或车载设备、车载模块等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端、设备到设备通信(device-to-device,D2D)终端设备、车与任何事物(vehicle to everything,V2X)通信终端设备、智能车辆、车机系统(或称车载发送单元)(telematics box,T-box)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备等。例如,终端设备可以为车载设备、整车设备、车载模块、车辆、车载单元(on board unit,OBU)、路边单元(roadside unit,RSU)、T-box、芯片或片上系统(system on chip,SOC)等,上述芯片或SOC可以安装于车辆、OBU、RSU或T-box中。工业控制中的无线终端可以为摄像头、机器人等。智慧家庭中的无线终端可以为电视、空调、扫地机、音箱、机顶盒等。
本申请适用于支持侧行链路通信的场景,并支持有网络覆盖和无网络覆盖的通信场景,其中侧行链路也可以称为侧链路,本申请中均称为侧行链路。如图1(a)至图1(c)所示,为适用于本申请的一种网络架构示意图。在图1(a)中,终端设备A和终端设备B都在网络设备的信号覆盖范围内;图1(b)中,终端设备A在网络设备的信号覆盖范围内,但是终端设备B在网络设备的信号覆盖范围外。图1(c)中,终端设备A和终端设备B都在网络设备的信号覆盖范围外。
图1(a)和图1(b)中的终端设备A和终端设备B之间,可以通过网络设备调度的资源使用侧行链路进行通信,该资源可以为授权资源或授权频段;终端设备A和终端设备B之间也可以由终端设备进行资源自选,即从资源池中选择用于侧行链路通信的资源,该资源为非授权资源或非授权频段。
图1(c)中的终端设备A和终端设备B,都在网络设备的信号覆盖范围外,因此只能采用资源自选的方式通过侧行链路进行通信。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
非授权频谱上的通信:
在无线通信系统中,频谱资源可以分为授权频谱和非授权频谱。授权频谱在某个地方只能由特定运营商使用,而非授权频谱可以由任何运营商使用,是共享的频谱资源。
非授权频谱的使用,可以包括无线保真(wireless fidelity,Wi-Fi)、蓝牙、无线个域网(Zigbee)等技术。此外,蜂窝移动通信技术(比如5G通信技术)也对引入非授权频谱进行了研究工作,例如NR-U 等技术。
非授权频谱上的通信需要遵守某些规定,例如基于先听后说(listen-before-talk,LBT)的信道接入和占用信道带宽(occupied channel bandwidth,OCB)需求,用于保证在非授权频谱上运行的各种设备之间的接入公平性。
基于LBT的信道接入:
基于LBT的信道接入一般采用基于能量的检测和信号类型的检测,比如NR-U技术采用基于能量的检测,而Wi-Fi技术采用两种相结合的检测方法。其中,基于能量的检测需要设定一个能量的检测门限(energy detection threshold),当通信设备(终端设备或网络设备)检测的能量超过检测门限时,通信设备判决为信道忙碌,则不允许接入信道;当检测的能量低于检测门限,且持续超过一段时间时,则通信设备判决信道空闲,允许接入信道。比如,检测的能量可以是参考信号接收功率(reference signal received power,RSRP),相应的,检测门限可以是RSRP门限。
以NR-U技术中的终端设备为例,终端设备可采用以下几种类型(type)的LBT:
①类型1LBT(type 1LBT):使用type 1LBT的终端设备或网络设备需要进行随机退避后才能接入信道进行信息传输。
具体来说,终端设备可以在一段延长持续时间(defer sensing,记作Td)的感知时隙时段(sensing slot duration,记作Tsl)侦听(侦听也可以替换为感知)信道为空闲之后,并且在终端设备中的计数器N为零之后,可以进行信息传输;其中,感知时隙时段可以为9微妙(μs)。
②类型2A LBT(type 2A LBT):使用type 2A LBT的终端设备或网络设备在感知到信道空闲至少25μs后就可以接入信道并发送数据。
③类型2B LBT(type 2B LBT):使用type 2B LBT的终端设备或网络设备在感知到信道空闲至少16μs后就可以接入信道并发送数据。
④类型2C LBT(type 2C LBT):使用type 2C LBT的终端设备或网络设备不需要感知信道,在COT内经过至多16μs的转换间隔后可以直接接入信道并发送数据。
本申请实施例中的非授权频段的信道接入可以采用如上类型的LBT,但本申请实施例不限制采用其他国家/地区法律法规所允许的其它信道接入方式进行非授权频谱的信道接入。
侧行信息:
本申请实施例中,通过侧行链路传输的信息可以称为侧行信息。比如,侧行信息可以包括侧行控制信息(sidelink control information,SCI)和/或侧行数据。可以理解的是,侧行信息也可以包括其它可能的信息,本申请实施例中将以侧行信息包括SCI和/或侧行数据为例进行描述。
其中,SCI可以承载于物理层侧行控制信道(physical sidelink control channel,PSCCH)和/或物理层侧行链路共享信道(physical sidelink shared channel,PSSCH),侧行数据可以承载于PSSCH。PSCCH承载的SCI可以称为第一级SCI,PSSCH承载的SCI可以称为第二级SCI。
进一步地,PSCCH或PSSCH的调度粒度在时域上的单位为一个时间单元,在频域上的单位为一个频域单元或者连续的多个频域单元。也就是说,终端设备进行侧行链路通信所使用的资源在时域上必须是时间单元的整数倍,在频域上必须是频域单元的整数倍。其中,一个时间单元可以为一个时隙(slot)或者一个迷你时隙(mini-slot),具体不做限定,本申请实施例中将以一个时间单元为一个时隙为例进行描述;频域单元可以为一个RB、多个RB、一个子信道、多个子信道、一个交错资源或多个交错资源,具体不做限定。
OCB需求:
根据国家和地区对于使用非授权频谱的法规要求,需要满足最小OCB需求,才可以占用信道。例如,一种实现方式中,最小OCB需求可以是指:占用信道带宽至少是名义信道带宽的80%,名义信道带宽是指分配给单个信道的带宽。以信道带宽为20MHz为例,即至少需要占用16MHz的带宽才可以抢占该20MHz的信道。
资源的选择和预约:
如前文所述,终端设备可以在资源池中自主选择资源。比如,终端设备可以先在资源池中选择资源并预约,进而完成信道接入后,在预约的资源上发送侧行信息。
在一个示例中,终端设备在资源池中选择资源后,可以发送SCI,SCI用于指示终端设备发送的侧行信息的资源(包括时域资源和频域资源)。其它终端设备接收到该终端设备的SCI后,可以获知该终 端设备预约的资源,进而其它终端设备在选择资源时可以排除已被该终端设备预约的资源。其中,终端设备从资源池中选择资源的具体实现可以参见现有技术。
资源池(resource pool)也可以称为SL资源池。可选的,资源池可以是预先配置的;比如,在网络覆盖范围下,网络设备通过系统信息块(system information block,SIB)、小区专用(cell-specific)的无线资源控制(radio resource control,RRC)信令,或者用户专用(UE-specific)RRC信令向本小区内的终端设备发送资源池信息,资源池信息用于指示资源池。或者,资源池也可以是预先定义的。
在非授权频段中,终端设备在通信之前,通过LBT方式竞争信道。终端设备信道接入成功后,允许占用信道的时间称为信道占用时间(channel occupancy time,COT)。在SL中,可以预配置用于数据传输的资源池,一个资源池可以包括一个或多个信道。一种实现方式中,每个信道的带宽大小为20MHz。当一个资源池包括一个信道时,该资源池包括的资源块为该信道中资源块(resource block,RB)集合(set)对应的资源块。例如,如图2所示,在非授权频段中,一个信道包括RB集合和位于两端的保护带宽,保护带宽用于保证在当前信道上的信号/能量不会对相邻信道造成干扰。RB集合内的频域资源可用于数据传输。
如果一个资源池包括多个信道,那么该资源池包括RB集合和部分保护带宽的资源块。例如,如图3所示,信道1包括RB集合1,信道2包括RB集合2,那么资源池包括RB集合1、RB集合2以及RB集合1与RB集合2之间的保护带宽。当一个终端设备在这两个信道上LBT成功,且要在这两个RB集合中发送数据时,终端设备可用的资源不仅是两个信道中RB集合上的资源,还包括两相邻RB集合之间的保护带宽。
本申请中,一个RB集合可以划分为多个子集合。一种实现方式中,可以按照交错的方式将RB集合中的资源块划分为M个子集合,在该实现方式中,每个子集合包括的资源块中,相邻两个资源块之间间隔M个资源块。在该实现方式中,每个子集合可以称为交错(interlace)或交错资源块集合。假设一个子集合的标识为m,m∈{0,1,…,M-1},信道的起始资源块的索引为0,那么该子集合在信道中包括的资源块的索引为:{m,M+m,2M+m,3M+m,…}。例如,如图4所示,对于15kHz子载波间隔的信道,该信道包括105个RB,M=10时,RB集合中标识为#0的子集合包括的资源块的索引为:{0,10,20,30,…100},RB集合中标识为#1的子集合包括的资源块的索引为:{1,11,21,31,…101},其他情况以此类推。
另一种实现方式中,可以将RB集合中多个连续的资源块划分为一个子集合,一个RB集合中的资源块划分为M个子集合。在该实现方式中,子集合中包括的资源块为连续的,每个子集合可以称为子信道。假设一个子集合的标识为m,m∈{0,1,…,M-1},信道的起始资源块的索引为0,那么该子集合在信道中包括的资源块的索引为:{m,m+1,m+2,m+3,…}。例如,如图5所示,对于15kHz子载波间隔的信道,该信道包括105个RB,M=10时,RB集合中标识为#0的子集合包括的资源块的索引为:{0,1,2,3,…10},RB集合中标识为#1的子集合包括的资源块的索引为:{11,12,13,…21},其他情况以此类推。
本申请中,终端设备可以向其它终端设备广播S-SSB,从而使得终端设备之间保持同步。当终端设备需要广播S-SSB时,可以根据无线资源控制(radio resource control,RRC)信令中的S-SSB配置信息或者预配置(pre-configuration)的S-SSB配置信息确定传输S-SSB的时域位置和频域位置。其中,该RRC信令为gNB或eNB向终端设备发送的控制信息,该预配置的S-SSB配置信息为终端设备的硬件和/或软件中记录的控制信息。举例来说,对于S-SSB的时域位置,该S-SSB配置信息包括如下三个参数:
表示一个周期内传输的S-SSB的数目;
表示一个周期内传输的第一个S-SSB与该周期起始点间的时隙偏移;
表示一个周期内相邻的两个S-SSB间的时隙间隔,其中,大于1。该值在S-SSB周期内存在多个S-SSB时适用。
根据以上三个参数,终端设备可以确定传输S-SSB的时域位置。示例性的,当 时,周期时长为160ms时,如图6所示,示意出一个周期内S-SSB传输的时域位置。对于每个160ms的周期,终端设备将在图中标记为阴影的两个时隙上传输S-SSB信号。
一个S-SSB包括物理侧行链路控制信道(physical sidelink broadcast channel,PSBCH)、侧行链路主同步信号(sidelink primary synchronization signal,S-PSS)以及侧行链路辅同步信号S-SSS(sidelink secondary synchronization signal,S-SSS)。对于一个用于传输S-SSB的时隙,该时隙长度为14个正交 频分复用(orthogonal frequency division multiplexing,OFDM)符号,其中第0个符号用于自动增益控制(automatic gain control,AGC);第1、2个符号用于传输S-PSS。第3、4个符号位置用于传输S-SSS;最后一个符号置空,即间隔(gap)符号,用于收发切换,该实时隙中的剩余符号则用于传输PSBCH。
在非授权频段中,终端设备在发送S-SSB前需要先竞争信道,竞争信道成功后才可以发送S-SSB,如果在配置信息指示的时隙位置,终端设备竞争信道失败,这样导致S-SSB无法及时发送,使得设备之间不能及时地进行同步,设备之间的通信性能下降。为此,本申请提供一种方法,可以提高S-SSB的传输机会,使得设备之间能及时地进行同步。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图7所示,为本申请实施例提供的一种侧行链路同步信号块传输方法流程示意图,该方法包括:
步骤701:第一终端设备根据第一配置信息确定第一周期内的N个时间单元。
其中,N为大于0的整数,N个时间单元为候选的用于发送侧行链路同步信号块的时间单元。第一周期为160ms或其他预定义的、预配置或配置的数值。
本申请中,第一配置信息可以来自网络设备的RRC信令。第一配置信息也可以为终端设备中预配置的信息,即通过预先给定一个周期内S-SSB数目,一个周期内传输的第一个S-SSB与该周期起始点间的时隙偏移值和一个周期内相邻的两个S-SSB间的时隙间隔值等信息,可以确定第一周期内的N个时间单元的具体位置,上述信息在终端设备出厂时预配置。时间单元可以为时隙,或者迷你时隙,或者子帧,也可以为类似时隙的时间单元。
第一配置信息可以指示第一周期的周期时长,还可以指示N个时间单元中每个时间单元的位置。
本申请中,第一配置信息还可以指示侧行链路同步信号块占用的频域位置。例如,第一配置信息还可以指示侧行链路同步信号块占用的频域资源的起始点与第一终端设备占用信道的频域资源的起始点之间的偏移值为第一频域偏移值。该第一频域偏移值还可以为网络设备通过一个单独的配置信息配置的,或者该第一频域偏移值还可以为预设的,或者第一频域偏移值为第一终端设备确定的,本申请对此并不限定。该第一频域偏移值也可以是侧行链路同步信号块占用的频域资源的起始点相对第一终端设备占用信道的频域资源的结束点位置,或者中间某一位置的偏置值;或者,该第一频域偏移值也可以是侧行链路同步信号块占用的频域资源的中间某一位置相对第一终端设备占用信道的频域资源的起始点/结束点位置,或者中间某一位置的偏置值。
步骤702:第一终端设备在N个时间单元中的第一时间单元发送侧行链路同步信号块失败,或者,第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量大于第一阈值,第一终端设备在第二时间单元向第二终端设备发送侧行链路同步信号块。
其中,第一阈值为预设的,也可以为网络设备配置的,还可以为第一终端设备确定的。第一阈值可以为大于0的整数。第一时间单元为N个时间单元中的任一时间单元。
另一种实现方式中,第一终端设备在N个时间单元中的第一时间单元发送侧行链路同步信号块成功,或者,第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量小于或等于第一阈值,或者,第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量大于或等于第二阈值,第一终端设备不在第二时间单元发送侧行链路同步信号块。例如第一终端设备可以在第二时间单元发送除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据。
其中,第二阈值为预设的,也可以为网络设备配置的,还可以为第一终端设备确定的。第二阈值可以为大于0的整数。
一种实现方式中,第一终端设备在第二时间单元上发送第一侧行信息,第一侧行信息为侧行链路同步信号块或PSSCH(侧行数据)。在第二时间单元之前,还可以包括第三时间单元,第三时间单元和所述第二时间单元在时域上相邻。
第一终端设备还可以在第三时间单元发送循环前缀扩展(cyclic prefix extension,CPE)的时长为第一传输时长。CPE的结束位置可以为第三时间单元的结束位置。
一种实现方式中,CPE之前还包括第二侧行信息,所述第二侧行信息与CPE的间隙小于第一间隙;所述第一间隙是预定义的,预配置的,或者网络配置的。举例来说,所述第一间隙的时长取值为16微 秒或者25微秒。第二侧行信息可以是第一终端设备发送的,也可以是其它终端设备发送的。其中,第二侧行信息与CPE的间隙小于第一间隙,可以是指第二侧行信息的结束位置与CPE的起始位置之间的间隙小于第一间隙。该间隙可以不用于传输信息或信号。
一种实现方式中,CPE之前还包括第二侧行信息,所述第二侧行信息与CPE的间隙大于第二间隙;所述第二间隙是预定义的,预配置的,或者网络配置的。举例来说,所述第一间隙的时长取值25微秒。第二侧行信息可以是第一终端设备发送的,也可以是其它终端设备发送的。其中,第二侧行信息与CPE的间隙大于第二间隙,可以是指第二侧行信息的结束位置与CPE的起始位置之间的间隙大于第二间隙。该间隙可以不用于传输信息或信号。
在该实现方式中,可选的,第二间隙小于一个OFDM符号持续时间,OFDM的持续时间与子载波间隔有关。
举例来说,当资源池内或者SL BWP内,侧行终端可以通过type 2B的方式被共享接入信道并在第二时间单元发送PSCCH/PSSCH时,第一间隙的时长取值为25微秒;例如,第三终端设备发送第二侧行信息,第一终端设备在第三时间单元发送CPE,第一终端设备被共享接入信道并在第二时间单元发送PSCCH/PSSCH,即第一终端设备在第二时间单元上发送第一侧行信息,那么第一间隙的时长取值为25微秒。此时由于第二时间单元被共享发送PSCCH/PSSCH,第一终端设备将在第三时间单元上发送CPE使得第一间隙小于25微秒。由于第一间隙小于25微秒,其他终端想通过type 2A LBT接入信道的过程将被终端,使得无法在第二时间单元上发送S-SSB,因此可以避免第二时间单元上出现同时发送S-SSB和PSCCH/PSSCH的冲突。
当资源池内或者SL BWP内,侧行终端可以通过type 2A的方式接入信道并在第二时间单元发送S-SSB,而需要通过type 2A被共享接入信道并在第二时间单元上发送PSCCH/PSSCH时,第一间隙的时长取值为25微秒。例如,第一终端设备发送第二侧行信息,第一终端设备在第三时间单元发送CPE,第一终端设备被共享接入信道并在第二时间单元发送S-SSB,即第一终端设备在第二时间单元上发送第一侧行信息,那么第一间隙的时长取值为25微秒。此时由于第二时间单元通过type 2A主动接入信道发送S-SSB,第一终端设备将在第三时间单元上发送CPE使得第一间隙大于25微秒,例如34us。由于第一间隙大于25微秒,这个时候其他终端设备可以通过type 2A提前抢占,因此可以避免第二时间单元上出现同时发送S-SSB和PSCCH/PSSCH的冲突。此时优先保证了系统内S-SSB的发送性能。
所述CPE包括第一类型CPE和第二类型CPE,所述第一类型CPE为第一终端设备发送侧行同步信号的CPE,所述第而类型CPE为第一终端设备发送侧行共享信道的CPE,所述第一类型CPE的时长与所述第二类型CPE的时长不同。
一种实现方式中,所述第一类型CPE的时长大于所述第二类型CPE的时长。
一种实现方式中,所述第一类型CPE的时长小于所述第二类型CPE的时长。
一种实现方式中,所述第一终端设备获取第一指示信息;所述第一指示信息用于指示所述第一类型CPE的时长大于所述第二类型CPE的时长;或者所述第一指示信息用于指示所述第一类型CPE的时长小于所述第二类型CPE的时长。
一种实现方式中,所述第一指示信息是预配置的或者网络配置的。
举例来说,如图8(a)所示,假设一个时隙包含14个OFDM符号,所述第二时间单元为时隙2,所述第三时间单元为时隙1,UE1在时隙1的GAP符号(即时隙1的最后一个符号)上发送CPE。如图中所示,UE1在时隙2上发送侧行同步信号。
时隙1的最后一个符号之前的符号,例如符号0至符号12中还包括第二侧行信息,第二侧行信息可以是UE1发送的,也可以是其它UE发送的。
若此时第二侧行信息与CPE的间隙小于25μs,则UE 1在时隙1内最后一个OFDM符号(即GAP符号)上发送CPE,使得时隙1中的信息与时隙1中的CPE之间的空白间隙小于25μs。其中,空白间隙中无侧行信息传输。
若此时第二侧行信息与CPE的间隙小于16μs,则UE 1在时隙1内最后一个OFDM符号(即GAP符号)上发送CPE,使得时隙1中的信息与时隙1中的CPE之间的空白间隙小于16μs。其中,空白间隙中无侧行信息传输。
一种实现方式中,第一终端设备在第二时间单元上发送第一侧行信息。第二时间单元之前的第三时间单元包括第三侧行信息,第三侧行信息占用第三时间单元的最后一个符号(没有占用该最后一个符号 的全部时域位置)。假如第一侧行信息占用第二时间单元的起始符号,第三侧行信息与第一侧行信息之间的传输间隙小于第三间隙;所述第三间隙是预定义的,预配置的,或者网络配置的。举例来说,所述第三间隙的时长取值为16微秒或者25微秒。第三侧行信息可以是第一终端设备发送的,也可以是其它终端设备发送的。其中,第三侧行信息与第一侧行信息之间的传输间隙小于第三间隙,可以替换为第三侧行信息的结束位置与第二时间单元的起始位置之间的间隙小于第三间隙。该间隙可以不用于传输信息或信号。
其中,第三时间单元中还可以包括第四侧行信息,第四侧行信息位于第三侧行信息之前发送,第三侧行信息和第四侧行信息可以为不同的终端设备发送的,也可以同一个侧行信息发送的,本申请对此并不限定。
举例来说,当资源池内或者SL BWP内,侧行终端可以通过type 2A的方式被共享接入信道并在第二时间单元发送PSCCH/PSSCH时,第二间隙的时长取值为25微秒;例如,第三终端设备发送第三侧行信息,第一终端设备被共享接入信道并在第二时间单元发送SCCH/PSSCH,即第一终端设备在第二时间单元上发送第一侧行信息,那么第二间隙的时长取值为25微秒。
举例来说,当资源池内或者SL BWP内,侧行终端可以连续多时隙发送PSCCH/PSSCH,第二间隙的时长取值为16微秒。例如,第一终端设备发送第三侧行信息,第一终端设备被共享接入信道并在第二时间单元发送PSCCH/PSSCH,即第一终端设备在第二时间单元上发送第一侧行信息,那么第二间隙的时长取值为16微秒。
举例来说,如图8(b)所示,假设一个时隙包含14个OFDM符号,所述第二时间单元为时隙2,所述第三时间单元为时隙1,第三侧行信息占用时隙1的符号0至符号9。如图中所示,UE1在时隙2上发送侧行同步信号。
时隙1的第三侧行信息之前,例如符号8和符号9中还可以包括第四侧行信息,第四侧行信息可以是UE1发送的,也可以是其它UE发送的。
若此时第三侧行信息与第一侧行信息的间隙小于25μs,则使得时隙1与时隙2之间的空白间隙小于25μs。
若此时第三侧行信息与第一侧行信息的间隙小于16μs,则使得时隙1与时隙2之间的空白间隙小于16μs。其中,空白间隙中无侧行信息传输。
应理解,上述两种实现方式同样适用于UE1发送物理侧链路反馈信道(physical sidelink feedback channel,PSFCH)的情况,例如,如图8(c)所示,假设一个时隙包含14个OFDM符号,所述第二时间单元为时隙2,所述第三时间单元为时隙1。
UE1在时隙1的PSFCH符号(即符号11和符号12)上发送侧行信息,UE1在时隙1的符号13上发送第三侧行信息,若UE 2在时隙2上发送侧行同步信号,那么此时第三侧行信息与UE 2发送的侧行同步信号之间的间隙小于16μs或25μs。
另一种实现方式中,在以下任一情况下,第一终端设备在第二时间单元发送侧行链路同步信号块:
第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量与第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量的比值大于或等于第一因子,所述第一因子大于或等于0;
或者第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量与第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量的比值小于或等于第二因子,所述第二因子大于或等于0;
或者第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量与所述N个时间单元的比值大于或等于第三因子,所述第三因子大于或等于0;
或者第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量与所述N个时间单元的比值小于或等于第四因子,所述第四因子大于或等于0。
其中,第一因子、第二因子、第三因子、第四因子为预设的,也可以为网络设备配置的,还可以为第一终端设备确定的。
另一种实现方式中,在以下任一情况下,第一终端设备不在第二时间单元发送侧行链路同步信号块,或者在第二时间单元发送除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据:
第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量与第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量的比值小于或等于第五因子,所述第五因子大于等于0;
或者第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量与第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量的比值大于或等于第六因子,所述第六因子大于等于0;
或者第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量与所述N个时间单元的比值小于或等于第七因子,所述第七因子大于等于0;
或者第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量与所述N个时间单元的比值大于或等于第八因子,所述第八因子大于等于0。
其中,第五因子、第六因子、第七因子、第八因子为预设的,也可以为网络设备配置的,还可以为第一终端设备确定的。
本申请中,第二时间单元位于第一周期内,且为N个时间单元之外的时间单元。
本申请中,第一终端设备在每个时间单元发送侧行链路同步信号块之前竞争信道,若信道竞争成功,则第一终端设备在该时间单元发送侧行链路同步信号块;若信道竞争失败,则第一终端设备不在该时间单元发送侧行链路同步信号块,例如竞争信道的方式可以是通过执行LBT操作。如果第一终端设备在发送侧行链路同步信号块的时间单元之前LBT成功,第一终端设备则在该时间单元上发送侧行链路同步信号块;如果第一终端设备在发送侧行链路同步信号块的时间单元之前LBT失败,第一终端设备则不在该时间单元上发送侧行链路同步信号块。为此,本申请中,第一终端设备在第一时间单元发送侧行链路同步信号块失败可以是指:
第一终端设备由于没有在第一时间单元之前竞争信道成功,导致无法在第一时间单元中发送侧行链路同步信号块;
或者,第一终端设备由于没有在第一时间单元之前LBT成功,导致无法在第一时间单元中发送侧行链路同步信号块;
或者,第一终端设备在第一时间单元之前LBT成功,但是在第一时间单元中发送的侧行链路同步信号块没有成功发送至第二终端设备。
步骤703:第二终端设备根据第一配置信息确定第一周期内的N个时间单元。
步骤704:第二终端设备在N个时间单元中的第一时间单元接收侧行链路同步信号块失败,或者,第二终端设备在N个时间单元中接收侧行链路同步信号块失败的时间单元的数量大于第一阈值,第二终端设备在第二时间单元接收侧行链路同步信号块。
第二终端设备可以根据接收到的侧行链路同步信号块执行同步操作,具体过程不再赘述。第二终端设备根据侧行链路同步信号块完成同步之后,可以与第一终端设备进行通信,具体过程不再赘述。
另第一种实现方式中,第二终端设备在N个时间单元中的第一时间单元接收侧行链路同步信号块成功,或者,第二终端设备在N个时间单元中接收侧行链路同步信号块失败的时间单元的数量小于或等于第一阈值,或者第二终端设备在N个时间单元中接收侧行链路同步信号块成功的时间单元的数量大于或等于第二阈值,那么第二终端设备可以不再第二时间单元接收侧行链路同步信号块;或者第二终端设备在第二时间单元中接收除侧行链路同步信号块的其他数据或信号,例如接收物理侧行共享信道数据,和/或物理侧行共享信道数据。
本申请中,第二终端设备在第一时间单元接收侧行链路同步信号块失败可以是指:第二终端设备在第一时间单元中没有接收到侧行链路同步信号块;或者,第二终端设备在第一时间单元中接收到侧行链路同步信号块,但是对侧行链路同步信号块解码失败。
本申请中,第二时间单元可能存在多种实现方式,下面分别举例描述。
第一种实现方式,在第一周期内,还可以配置附加的(additional)M个时间单元,第二时间单元属于M个时间单元,M为大于0的整数。这M个时间单元也为候选的用于发送侧行链路同步信号块的时间单元。即,第一配置信息可以用于确定第一周期内的所述N个时间单元,第一配置信息也可以用于第一周期内的所述N个时间单元和第一周期内的所述M个时间单元。
在该实现方式中,第一终端设备在N个时间单元中的第一时间单元发送侧行链路同步信号块失败,则在第二时间单元中发送侧行链路同步信号块。第一终端设备在第一时间单元中发送侧行链路同步信号 块成功,则不在第二时间单元中发送侧行链路同步信号块。
相应的,第二终端设备在N个时间单元中的第一时间单元接收侧行链路同步信号块失败,则在第二时间单元中接收侧行链路同步信号块。第二终端设备在N个时间单元中的第一时间单元接收侧行链路同步信号块成功,则不在第二时间单元中接收侧行链路同步信号块;或者在第二时间单元中接收除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据。
或者,在该实现方式中,第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量大于第一阈值,则在第二时间单元中发送侧行链路同步信号块。第一终端设备在N个时间单元中发送侧行链路同步信号块失败的时间单元的数量小于或等于第一阈值,或者第一终端设备在N个时间单元中发送侧行链路同步信号块成功的时间单元的数量大于或等于第二阈值,则不在第二时间单元中发送侧行链路同步信号块。例如第一终端设备可以在第二时间单元发送除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据。
相应的,第二终端设备在N个时间单元中接收侧行链路同步信号块失败的时间单元的数量大于第一阈值,则在第二时间单元中接收侧行链路同步信号块。第二终端设备在N个时间单元中接收侧行链路同步信号块失败的时间单元的数量小于或等于第一阈值,或者第二终端设备在N个时间单元中接收侧行链路同步信号块成功的时间单元的数量大于或等于第二阈值,则第二终端设备不在第二时间单元中接收侧行链路同步信号块,或者第二终端设备在第二时间单元中接收除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据。
一种可能实现方式中,第一终端设备在M个时间单元中的每个时间单元中发送侧行链路同步信号块。
一种可能实现方式中,如果第一终端设备在N个时间单元中的X个时间单元发送侧行链路同步信号块失败,那么第一终端设备在M个时间单元中的至多X个时间单元中发送侧行链路同步信号块,在M个时间单元中除了X个时间单元之外的时间单元可以不再发送侧行链路同步信号块,X为大于0且小于或等于N的整数。
在该实现方式中,这M个时间单元的时域位置,可以通过第一配置信息进行配置,这样第一终端设备可以根据第一配置信息确定M个时间单元。这M个时间单元的时域位置,也可以通过一个单独的配置信息进行配置,例如通过第二配置信息进行配置。这M个时间单元的时域位置,还可以为预设的,本申请对此并不限定。
具体如何配置M个时间单元的时域位置,可能存在多种实现方式。一种可能的实现方式中,M=1时,M个时间单元只包括第二时间单元,可以通过第一时长配置第二时间单元,该第一时长表示第二时间单元与N个时间单元中的一个时间单元之间的间隔,例如,第二时间单元与N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。其中,第一时长为网络设备配置的时长,例如第一时长为通过第一配置信息配置的;或者,第一时长为预配置的时长;或者,第一时长为协议规定的时长。
举例来说,如图8(d)所示,图8(d)中的S-SSB表示侧行链路同步信号块,图8(d)中的(a)中,第二时间单元与N个时间单元中的最后一个时间单元之间间隔第一时长;图8(d)中的(b)中,第二时间单元与N个时间单元中的第一个时间单元之间间隔第一时长。
一种可能的实现方式中,M大于1时,M个时间单元除了包括第二时间单元之外,还包括其它时间单元。在该实现方式中,可以通过第一时长和第一间隔时长配置M个时间单元。其中,第一时长,表示M个时间单元中的一个时间单元(例如第二时间单元)与N个时间单元中的一个时间单元之间的间隔,例如,M个时间单元中的第二时间单元与N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔的时长;第一间隔时长,表示M个时间单元内相邻的两个时间单元间的时隙间隔。间隔时长的配置方式可以参考第一时长,在此不再赘述。
举例来说,如图9所示,图中的S-SSB表示侧行链路同步信号块,M个时间单元内相邻的两个时间单元间的间隔为第一间隔时长,该第一间隔时长可以与N个时间单元内相邻的两个时间单元间的间隔时长相等。其中,图9中的(a)中,M个时间单元中的第一个时间单元与N个时间单元中的最后一个时间单元之间间隔第一时长;图9中的(b)中,M个时间单元中的第一个时间单元与N个时间单元中的第一个时间单元之间间隔第一时长。
第二种实现方式,为N个时间单元中的第一时间单元配置一个第二时间单元,在该实现方式中, 第一时间单元和第二时间单元相关联。
在该实现方式中,第一终端设备在第一时间单元发送侧行链路同步信号块失败,则在第二时间单元中发送侧行链路同步信号块。第一终端设备在第一时间单元中发送侧行链路同步信号块成功,则不在第二时间单元中发送侧行链路同步信号块。
相应的,第二终端设备在第一时间单元接收侧行链路同步信号块失败,则在第二时间单元中接收侧行链路同步信号块。第二终端设备在N个时间单元中的第一时间单元接收侧行链路同步信号块成功,则不在第二时间单元中接收侧行链路同步信号块;或者在第二时间单元中接收除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据。
在该实现方式中,第一时间单元与第二时间单元之间间隔第二时长。其中,第二时长为网络设备配置的时长,例如第二时长为网络设备通过第一配置信息配置的,或者第二时长也可以通过一个单独的配置信息进行配置;或者,第二时长为预配置的时长;或者,第二时长为协议规定的时长。
一种可能实现方式中,还可以为N个时间单元中的每个时间单元配置一个第二时间单元。不同时间单元与其关联的第二时间单元之间的间隔可以相同(例如均为第二时长),或者,不同时间单元与其关联的第二时间单元之间的间隔也可以不相同。
举例来说,如图10所示,图中的S-SSB表示侧行链路同步信号块,N个时间单元中的每个时间单元都配置了一个第二时间单元,且每个时间单元与其关联的第二时间单元之间的间隔为第二时长。图中,白色的格子表示N个时间单元中的时间单元,黑色的格子表示第二时间单元。
在该实现方式中,对于N个时间单元中的任一时间单元,例如第一时间单元,第一终端设备在第一时间单元发送侧行链路同步信号块失败,则在该第一时间单元关联的第二时间单元中发送侧行链路同步信号块。第一终端设备在该第一时间单元中发送侧行链路同步信号块成功,则不在该第一时间单元关联的第二时间单元中发送侧行链路同步信号块。例如第一终端设备可以在第二时间单元发送除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据。
相应的,对于N个时间单元中的任一时间单元,例如第一时间单元,第二终端设备在第一时间单元接收侧行链路同步信号块失败,则在该第一时间单元关联的第二时间单元中接收侧行链路同步信号块。第二终端设备在该第一时间单元接收侧行链路同步信号块成功,则不在该第一时间单元关联的第二时间单元中接收侧行链路同步信号块。例如第二终端设备可以在第二时间单元接收除侧行链路同步信号块的其他数据或信号,例如物理侧行共享信道数据,和/或物理侧行共享信道数据。
一种可能实现方式中,还可以为N个时间单元中的每个时间单元配置多个第二时间单元。对于N个时间单元中的任一时间单元,该时间单元关联的多个第二时间单元中相邻的两个第二时间单元之间的间隔为第二间隔时长。第二间隔时长的配置方式可以参考第二时长,在此不再赘述。
举例来说,如图11所示,图中的S-SSB表示侧行链路同步信号块,N个时间单元中的每个时间单元都配置了2个第二时间单元,图中,白色的格子表示N个时间单元中的时间单元,黑色的格子表示第二时间单元。每个时间单元对应的2个第二时间单元中的第一个时间单元与该时间单元之间间隔第二时长。
在该实现方式中,对于N个时间单元中的任一时间单元,例如第一时间单元,第一终端设备在第一时间单元发送侧行链路同步信号块失败,则在该第一时间单元关联的多个第二时间单元中的至少一个第二时间单元发送侧行链路同步信号块。第一终端设备在该第一时间单元中发送侧行链路同步信号块成功,则不在该第一时间单元关联的多个第二时间单元中发送侧行链路同步信号块。
相应的,对于N个时间单元中的任一时间单元,例如第一时间单元,第二终端设备在第一时间单元接收侧行链路同步信号块失败,则在该第一时间单元关联的多个第二时间单元中的至少一个第二时间单元中接收侧行链路同步信号块。第二终端设备在该第一时间单元接收侧行链路同步信号块成功,则不在该第一时间单元关联的多个第二时间单元中接收侧行链路同步信号块。
第三种实现方式,第一终端设备确定在第二时间单元中发送侧行链路同步信号块之后,可以向第二终端设备发送第一侧行链路控制信息。
本申请中,第一侧行链路控制信息可以由一阶侧行链路控制信息(1st-stage SCI)承载,也可以由二阶侧行链路控制信息(2nd-stage SCI)承载,还可以通过媒体接入控制(medium access control,MAC)控制元素(control element,CE)承载,本申请对此并不限定。
本申请中,第一侧行链路控制信息可以包括以下一项或多项功能:
第一侧行链路控制信息用于确定第二时间单元;
第一侧行链路控制信息用于指示在第一周期中的N个时间单元之外的侧行链路同步信号块信息,例如用于指示在第一周期中的N个时间单元之外的是否包含其他侧行链路同步信号块信息,或者用于指示在第一周期中的N个时间单元之外的其他侧行链路同步信号块资源位置信息;
第一侧行链路控制信息用于指示在第二时间单元中包括侧行链路同步信号块;
第一侧行链路控制信息用于指示在第二时间单元中是否包括侧行链路同步信号块。
一种实现方式中,第一终端设备只有在N个时间单元之外发送侧行链路同步信号块时,才发送第一侧行链路控制信息。
在该实现方式中,第一侧行链路控制信息用于指示在第二时间单元中包括侧行链路同步信号块,或者,第一侧行链路控制信息用于指示在N个时间单元之外包括其他侧行链路同步信号块。
在该实现方式中,第一终端设备在第一时间单元发送侧行链路同步信号块失败,或者发送侧行链路同步信号块失败的时间单元的数量大于第一阈值时,第一终端设备可以先发送第一侧行链路控制信息,再在第二时间单元中发送侧行链路同步信号块。
相应的,第二终端设备接收到第一侧行链路控制信息,则确定在第一周期中的N个时间单元之外接收侧行链路同步信号块,或者确定在第二时间单元接收侧行链路同步信号块。
在该实现方式中,如果第一终端设备不发送上述第一侧行链路控制信息,那么第一终端设备不在第一周期中的N个时间单元之外发送侧行链路同步信号块。相应的,第二终端设备没有接收到第一侧行链路控制信息,则确定不在第一周期中的N个时间单元之外接收侧行链路同步信号块,或者确定不在第二时间单元接收侧行链路同步信号块。
示例性的,在该实现方式中,第一侧行链路控制信息还可以用于确定第二时间单元。
举例来说,第二时间单元可以与该第一侧行链路控制信息对应,第二时间单元具体如何与该第一侧行链路控制信息对应,本申请对此并不限定。举例来说,如图12所示,可以将与第一侧行链路控制信息间隔第三时长的时间单元作为第二时间单元。这样第二终端设备在接收到第一侧行链路控制信息之后,在与其间隔第三时长的时间单元接收侧行链路同步信号块。图中的SCI表示第一侧行链路控制信息,图中的包括S-SSB的时间单元表示N个时间单元中的时间单元。第三时长如何配置,可以参考第二时长的配置方法,在此不再赘述。
再举例来说,第一侧行链路控制信息还可以用于确定以下一项或多项:第二时间单元的位置;第二时间单元中的侧行链路同步信号块占用的子信道或交错资源块集合的位置。
这样第二终端设备在接收到第一侧行链路控制信息之后,根据第一侧行链路控制信息确定第二时间单元,从而在第二时间单元接收侧行链路同步信号块。
例如,第一侧行链路控制信息包括Y1个比特,这Y1个比特的取值可以指示第二时间单元的位置。
举例来说,假设Y1=2,Y1的取值与第二时间单元的位置关系可以如表1所示。
表1
结合表1,如果Y1个比特的取值为00,表示第二时间单元在COT内预设的位置,其他情况不再赘述。
再举例来说,Y1的取值与第二时间单元的位置关系可以如表2所示。
表2
结合表2,如果Y1个比特的取值为00,表示第二时间单元在COT内预设的位置;如果Y1个比特 的取值为01,表示第二时间单元为COT内第一个时间单元之后的第2个时间单元,其他情况不再赘述。
例如,第一侧行链路控制信息还可以包括Y2个比特,这Y2个比特的取值可以指示侧行链路同步信号块占用的子信道或交错资源块集合的位置。
举例来说,假设Y2=2,Y2的取值与子信道的位置关系可以如表3所示。
表3
再举例来说,Y2的取值与子信道的位置关系可以如表4所示。
表4
结合表4,如果Y2个比特的取值为00,表示子信道在COT内预设的频域位置;Y1个比特的取值为其它值时,表示子信道与COT内预设RB集合(索引最低的RB集合或者索引最高的RB集合)中最低的子信道的偏移值。例如,该预设RB集合中最低的子信道的索引编号为n,Y1个比特的取值为01,偏移值为2,表示子信道的索引编号为n+2;Y1个比特的取值为02,偏移值为3,表示子信道的索引编号为n+3。
一种实现方式中,不论第一终端设备是否在N个时间单元之外发送侧行链路同步信号块,都发送第一侧行链路控制信息。
在该实现方式中,第一侧行链路控制信息用于指示在第二时间单元中是否包括侧行链路同步信号块,或者,第一侧行链路控制信息用于指示在N个时间单元之外是否包括其他侧行链路同步信号块。
在该实现方式中,第一侧行链路控制信息可以包括两种取值:第一取值和第二取值。当第一终端设备在N个时间单元之外发送侧行链路同步信号块时,第一侧行链路控制信息对应第一取值;当第一终端设备不在N个时间单元之外发送侧行链路同步信号块时,第一侧行链路控制信息对应第二取值。
在该实现方式中,第一终端设备在第一时间单元发送侧行链路同步信号块失败,或者发送侧行链路同步信号块失败的时间单元的数量大于第一阈值时,第一终端设备发送的第一侧行链路控制信息对应第一取值,用于指示在第一周期中的N个时间单元之外还包括侧行链路同步信号块,或者用于指示在第二时间单元中还包括侧行链路同步信号块。
相应的,第二终端设备确定接收到的第一侧行链路控制信息对应第一取值,则在N个时间单元之外接收侧行链路同步信号块,或者在第二时间单元中接收侧行链路同步信号块。
在该实现方式中,第一终端设备在第一时间单元发送侧行链路同步信号块成功,或者发送侧行链路同步信号块失败的时间单元的数量小于或等于第一阈值时,第一终端设备发送的第一侧行链路控制信息对应第二取值,用于指示在第一周期中的N个时间单元之外不包括侧行链路同步信号块,或者用于指示在第二时间单元中不包括侧行链路同步信号块。
相应的,第二终端设备确定接收到的第一侧行链路控制信息对应第二取值,则不在N个时间单元之外接收侧行链路同步信号块,或者不在第二时间单元中接收侧行链路同步信号块。
在该实现方式中,第一侧行链路控制信息也可以用于确定第二时间单元,具体可以参考前面的描述,在此不再赘述。
第四种实现方式,第二时间单元的位置并不固定,是第一终端设备根据实际情况确定的。例如,第一终端设备在第一时间单元发送侧行链路同步信号块失败,或者发送侧行链路同步信号块失败的时间单 元的数量大于第一阈值时,第一终端设备在N个时间单元之外的时间单元中尝试进行LBT操作,若LBT通过,则可以发送侧行链路同步信号块。
在该实现方式中,第二时间单元的位置是动态的,第二终端设备可以在N个时间单元之外的时间单元中尝试接收侧行链路同步信号块。
通过本申请提供的方法,第一终端设备在N个时间单元之外的时间单元中发送侧行链路同步信号块,增加了侧行链路同步信号块的发送机会,提高系统的同步性能。
如图13所示,为本申请实施例提供的一种侧行链路同步信号块传输方法流程示意图,图13的流程描述的各种侧行链路同步信号块的结构,也适用于图7所示的流程,在此不再单独举例说明。
步骤1301:第一终端设备生成侧行链路同步信号块;
步骤1302:第一终端设备向第二终端设备发送侧行链路同步信号块;相应的,第二终端设备接收来自第一终端设备的侧行链路同步信号块。
步骤1303:第二终端设备根据侧行链路同步信号块进行同步。
一种实现方式中,侧行链路同步信号块包括PSBCH、S-SSS以及S-PSS,其中S-SSS和S-PSS可以统称侧行链路同步序列。在本申请一种可能的同步信号块的物理结构中,PSBCH占用多个连续的资源块或者多个非连续的资源块;侧行链路同步序列占用多个连续的资源块或资源元素(resource element),或者侧行链路同步序列占用多个非连续的资源块或资源元素。其中,PSBCH占用Z个资源块,Z为正整数,Z是网络配置的,或者预配置的,或者协议约定的。侧行链路同步序列占用的资源块数量等于11或12。
一种实现方式中,侧行链路同步信号块包括PSBCH、S-SSS以及S-PSS,其中S-SSS和S-PSS可以统称侧行链路同步序列。在本申请一种可能的同步信号块的物理结构中,PSBCH占用多个非连续的资源块;侧行链路同步序列占用多个非连续的资源块或资源元素(resource element)。其中,S-SSB占用Z1个资源块,Z1为正整数,Z1是网络配置的,或者预配置的,或者协议约定的。
一种实现方式中,如图14所示,在频域,侧行链路同步序列和PSBCH占用连续的132个子载波,假设该132个子载波编号为0~131,当一个RB包含12个子载波时,该132个子载波对应11个RB。一个侧行链路同步信号块占用11个RB时,PSBCH占用这11个RB对应的所有子载波,即PSBCH占用编号为0~131的132个子载波;而侧行链路同步序列占用这132个子载波中的127个子载波,具体的,侧行链路同步序列占用编号为2~128的127个连续的子载波,第0,1,129,130,131号子载波上设置为0。即侧行链路同步序列占用的起始资源元素(resource element,RE)相对于PSBCH占用的起始RE或者最低索引RE偏移了2个RE,侧行链路同步序列占用的起结束RE相对于PSBCH占用的结束RE偏移了3个RE,其中RE定义为时间上一个OFDM符号长度,频率上一个子载波宽度的资源单元。
本申请中,如果侧行链路同步序列位于第一终端设备的资源池内传输,第一终端设备还可以指示侧行链路同步信号块占用的频域位置。例如,第一终端设备还可以指示侧行链路同步信号块占用的频域资源的起始点与第一终端设备占用信道的频域资源的起始点之间的偏移值为第一频域偏移值。该第一频域偏移值还可以为预设的,本申请对此并不限定。该第一频域偏移值也可以是侧行链路同步信号块占用的频域资源的起始点相对信道的频域资源结束位置,或者中间某一位置的偏置值。
本申请中,第一终端设备还可以指示侧行链路同步序列占用的频域位置。例如,第一终端设备可以指示侧行链路同步序列占用的频域资源的起始点与第一终端设备占用信道的频域资源的起始点之间的第二频域偏移值。该第二频域偏移值还可以为预设的,本申请对此并不限定。该第二频域偏移值也可以是侧行链路同步序列占用的频域资源的起始点相对信道的频域资源结束位置,或者中间某一位置的偏置值。
本申请中,第一终端设备占用的信道的子载波间隔不同时,侧行链路同步序列和PSBCH占用的资源块数量可能不同,下面分别进行描述。
实现方式一,第一终端设备占用的信道的子载波间隔小于60kHz。
在该实现方式中,PSBCH占用的资源块位于第一频域资源,和/或第二频域资源。其中,第一频域资源位于子信道或交错资源块集合上,所述第二频域资源为资源块,所述第一频域资源和第二频域资源位置相邻。
或者,在该实现方式中,S-SSB占用的资源块位于第一频域资源,和/或第二频域资源。其中,第一频域资源位于子信道或交错资源块集合上,所述第二频域资源为资源块,所述第一频域资源和第二频 域资源位置相邻。
一种实现方式中,PSBCH占用的Z个资源块位于1个交错/子信道和1个资源块上,所述1个资源块和所述1个交错/子信道中的1个资源块相邻。
一种实现方式中,S-SSB占用的Z1个资源块位于1个交错/子信道和1个资源块上,所述1个资源块和所述1个交错/子信道中的1个资源块相邻。
一种实现方式中,PSBCH占用Z个资源块位于1或2个交错中,或位于1或2个子信道中。其中,PSBCH占用的资源块位于2个交错中时,这2个交错的位置相邻。或者,PSBCH占用的资源块位于2个子信道时,这2个子信道的位置相邻。
一种实现方式中,S-SSB占用Z个资源块位于1或2个交错中,或位于1或2个子信道中。其中,PSBCH占用的资源块位于2个交错中时,这2个交错的位置相邻。或者,PSBCH占用的资源块位于2个子信道时,这2个子信道的位置相邻。
一种实现方式中,PSBCH占用10个RB。这样的侧行链路同步信号块可以满足占用的信道带宽(occupied channel bandwidth,OCB)需求。
一种实现方式中,S-SSB占用10个RB。这样的侧行链路同步信号块可以满足占用的信道带宽需求。
举例来说,如图15所示,侧行链路同步信号块所在的RB set的起始RB编号为0。PSBCH占用非连续的10个RB,例如占用索引为0的交错资源块集合中的10个RB;第二频域偏移值为10,表示链路同步序列从第10个RB开始占用连续的127个RE,或者是从第10个RB开始占用连续的11个RB(该实现方式中第10个RB开始的前3个RE数据置0)。
举例来说,如图16所示,侧行链路同步信号块所在的RB set的起始RB编号为0。PSBCH占用索引为0的交错资源块集合中的10个RB,这10个RB的索引为:{0,10,20,30,…90};侧行链路同步序列占用索引为0至10的11个RB,但是侧行链路同步序列占用的起始RE相对于PSBCH占用的起始RE偏移了3个RE,即侧行链路同步序列在索引为0的RB中占用的RE从第4个RE开始。
举例来说,如图17所示,侧行链路同步信号块所在的RB set的起始RB编号为0。PSBCH占用索引为0的交错资源块集合中的10个RB,这10个RB的索引为:{0,10,20,30,…90};侧行链路同步序列占用索引为80至90的11个RB,但是侧行链路同步序列占用的结束RE相对于PSBCH占用的结束RE偏移了2个RE,即侧行链路同步序列在索引为90的RB中占用的最后一个RE为该RB中的第10个RE。
一种实现方式中,PSBCH占用11个RB,此时PSBCH占用的资源块位于1或2个交错中,或者PSBCH占用的资源块位于1或2个子信道中。
一种实现方式中,S-SSB占用11个RB,此时S-SSB占用的资源块位于1或2个交错中,或者S-SSB占用的资源块位于1或2个子信道中。
举例来说,如图18所示,侧行链路同步信号块所在的RB set的起始RB编号为0。PSBCH占用索引为0的交错资源块集合中的10个RB和索引为0的交错资源块集合中的1个RB,这11个RB的索引为:{0,1,10,20,30,…90}。
一种实现方式中,当信道的子载波间隔为15kHz时,侧行链路同步序列可以占用12个RB中的134个RE。此时可以对134个RE中的7个RE进行填充,例如可以采用以下任一方式:
方式1:对PBSCH上1个或者多个RB上全部/部分数据或信号进行复制,然后分别在侧行链路同步序列的两端或某一端进行填充。举例来说,可以复制PBSCH占用的索引最低的RB中的数据或信号,然后分别在侧行链路同步序列的两端的RE进行填充,可以只填充大于或等于7个RE。也可以只在侧行链路同步序列的一端填充,例如将复制的信号或者数据置于侧行链路同步序列的开始端或结束端。
方式2:对侧行链路同步序列两端或某一端进行序列填充,填充序列可以是新产生的序列,此时新产生的序列和原有的侧行链路同步序列作用后,应满足峰均功率比最小的准则;填充序列可以是对原侧行链路同步序列的一个复制,此时只需要复制7个RE大小的序列长度即可,当然也可以是大于7个RE的序列长度,这7个RE序列长度可以是来自某一段连续序列的完整复制,也可以是原侧行链路同步序列两端的复制和填充。
另外,当对侧行链路同步序列的开始端或结束端进行填充后,扩展的S-SSB信号的频域规则可以满足:1)填充的数据或信号的开始位置可以是一个RB的开始或者是一个交错资源集合中索引的最低RB编号开始(如果序列开始端有填充);2)然后紧接着是原有的侧行链路同步序列;3)最后紧接着 是结束端的填充数据或序列(如果序列结束端有填充)。特别的,此时该填充数据可以是从1个RB的起始位置开始,然后侧行链路同步序列也可以是从一个RB的起始位置开始,即此时填充数据和侧行链路同步序列之间可以有些RE是置0的,其频域位置不一定相邻。
实现方式二,第一终端设备占用的信道的子载波间隔等于60kHz。
在该实现方式中,如果PSBCH占用非连续的资源块,占用的资源块数量为11,这11个资源块中位置相邻的两个资源块之间间隔1个资源块;侧行链路同步序列占用连续的11个资源块。
在该实现方式中,可以引入比特位图指示信息,比特位图指示信息用于指示PSBCH在信道中占用的资源块的位置。比特位图指示信息的长度与信道中的RB set或信道或至少一个标称信道或至少一个20MHz信道带宽中的可用RB数相等,例如60kHz子载波间隔配置下,20MHz频域带宽可用的RB数等于24,那么比特位图指示信息的长度等于24。
举例来说,比特位图指示信息中一个比特的值为“1”,表示该比特对应的RB用于传输PSBCH,比特位图指示信息中一个比特的值为“0”,表示该比特对应的RB不用于传输PSBCH。例如,如图19所示,一个RB set包含24个RB时,这24个RB的索引分别为0~23时,如果PSBCH占用的RB为{0,2,4,6,8,10,12,14,16,18,20}。相应的比特位图指示信息可以为:101010101010101010101000。
在该实现方式中,比特位图指示信息是预配置的,或者网络设备配置的,或者协议约定的,或者还可以是第一终端设备向第二终端设备指示的。
如果PSBCH占用连续的资源块,为了满足OCB要求,则PSBCH占用至少连续的23个资源块,具体可以参考图20所示。此时可以将原有PSBCH对应的数据,进行速率匹配,从11个RB扩充至23个RB,或者将PSBCH对应的数据扩充至整个信道中的RB集合上。而对于侧行链路同步序列,仍然保持原有的连续序列传输,即占用连续的11个资源块。
通过本申请提供的方法,通过定义了具体的S-SSB频域结构和位置,以满足侧行通信在非授权频段的法规要求,并根据资源池的保护带宽的配置情况,给出了不同配置下,S-SSB可能的频域结构,从而提供同步效率。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一终端设备或第二终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图21所示,本申请实施例还提供一种通信装置2100用于实现上述方法中第一终端设备或第二终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该通信装置2100可以包括:处理单元2101和通信单元2102。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中第一终端设备或第二终端设备执行的发送和接收的步骤。
以下,结合图21至图22详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
处理单元也可以称为处理器,处理单板,处理模块、处理装置等。通信单元有时也可以称为收发机、收发器、或收发电路等。通信单元可以包括发送单元和/或接收单元,发送单元有时也可以称为发射机、发射器或者发射电路等;接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元和接收单元可以是集成在一起的一个单元,也可以是两个独立的单元。
一种实现方式中,通信装置2100可以执行以下功能:
处理单元,用于根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;
通信单元,用于在所述N个时间单元中的第一时间单元发送所述侧行链路同步信号块失败,或者,在所述N个时间单元中发送所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,在第二时间单元向第二终端设备发送所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
一种实现方式中,所述处理单元还用于:
根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
一种实现方式中,所述通信单元还用于:
向所述第二终端设备发送第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
一种实现方式中,所述第一侧行链路控制信息还用于确定以下一项或多项:
所述第二时间单元的位置;
所述第二时间单元中的所述侧行链路同步信号块占用的子信道或交错资源块集合的位置。
一种实现方式中,所述第二时间单元与所述N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。
一种实现方式中,所述侧行链路同步信号块占用的频域资源的起始点与所述第一终端设备占用信道的频域资源的起始点之间的偏移值为第一频域偏移值;所述第一频域偏移值为预设的,或者所述第一频域偏移值为所述第一终端设备确定的,或者所述第一频域偏移值为网络设备配置的。
一种实现方式中,通信装置2100可以执行以下功能:
处理单元,用于根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;
通信单元,用于在所述N个时间单元中的第一时间单元接收所述侧行链路同步信号块失败,或者,在所述N个时间单元中接收所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,在第二时间单元接收所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
一种实现方式中,所述处理单元还用于:
根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
一种实现方式中,所述通信单元还用于:接收来自所述第一终端设备的第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
一种实现方式中,所述第一侧行链路控制信息还用于确定以下一项或多项:
所述第二时间单元的位置;所述第二时间单元中的所述侧行链路同步信号块占用的子信道或交错资源块集合的位置。
一种实现方式中,所述第二时间单元与所述N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。
以上只是示例,处理单元2101和通信单元2102还可以执行其他功能,更详细的描述可以参考前面所示的方法实施例中相关描述,这里不加赘述。
如图22所示为本申请实施例提供的通信装置2200,图22所示的装置可以为图21所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中第一终端设备或第二终端设备的功能。为了便于说明,图22仅示出了该通信装置的主要部件。
如图22所示,通信装置2200包括处理器2210和接口电路2220。处理器2210和接口电路2220之间相互耦合。可以理解的是,接口电路2220可以为收发器或输入输出接口。可选的,通信装置2200还可以包括存储器2230,用于存储处理器2210执行的指令或存储处理器2210运行指令所需要的输入数据或存储处理器2210运行指令后产生的数据。
当通信装置2200用于实现前面所示的方法时,处理器2210用于实现上述处理单元2101的功能,接口电路2220用于实现上述通信单元2102的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备的芯片实现上述方法实施例中终端设备的功能。该终端设备的芯片从终端设备中的其它模块(如射频模块或天线)接收信息;或者,该终端设备的芯片向终端设备中的其它模块(如射频模块或天线)发送信息。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (43)

  1. 一种侧行链路同步信号块传输方法,其特征在于,包括:
    第一终端设备根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;
    所述第一终端设备在所述N个时间单元中的第一时间单元发送所述侧行链路同步信号块失败,或者,所述第一终端设备在所述N个时间单元中发送所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,所述第一终端设备在第二时间单元向第二终端设备发送所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
  4. 根据权利要求3所述的方法,其特征在于,所述第一侧行链路控制信息还用于确定以下一项或多项:
    所述第二时间单元的位置;
    所述第二时间单元中的所述侧行链路同步信号块占用的子信道或交错资源块集合的位置。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述第二时间单元与所述N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。
  6. 根据权利要求5所述的方法,其特征在于,所述第一时长为网络设备配置的时长;
    或者,所述第一时长为预配置的时长;
    或者,所述第一时长为协议规定的时长。
  7. 根据权利要求1至4任一所述的方法,其特征在于,所述第一时间单元与所述第二时间单元之间间隔第二时长。
  8. 根据权利要求7所述的方法,其特征在于,所述第二时长为网络设备配置的时长;
    或者,所述第二时长为预配置的时长;
    或者,所述第二时长为协议规定的时长。
  9. 根据权利要求1至8任一所述的方法,其特征在于,所述侧行链路同步信号块占用的频域资源的起始点与所述第一终端设备占用信道的频域资源的起始点之间的偏移值为第一频域偏移值;所述第一频域偏移值为预设的,或者所述第一频域偏移值为所述第一终端设备确定的,或者所述第一频域偏移值为网络设备配置的。
  10. 根据权利要求1至8任一所述的方法,其特征在于,所述第二时间单元包括第一侧行信息,所述第二时间单元之前的第三时间单元包括循环前缀扩展CPE,所述CPE和所述第一侧行信息来自所述第一终端设备,所述第三时间单元和所述第二时间单元在时域上相邻,所述CPE的时长为第一传输时长。
  11. 根据权利要求10所述的方法,其特征在于,所述CPE之前还包括第二侧行信息,所述第二侧行信息与CPE的间隙小于第一间隙;所述第一间隙是预定义的,预配置的,或者网络配置的;所述第一间隙的时长取值为16微秒或者25微秒。
  12. 根据权利要求10或11所述的方法,其特征在于,所述CPE包括第一类型CPE和第二类型CPE,所述第一类型CPE为第一终端设备发送侧行同步信号的CPE,所述第二类型CPE为第一终端设备发送侧行共享信道的CPE,所述第一类型CPE的时长与所述第二类型CPE的时长不同。
  13. 根据权利要求12所述的方法,其特征在于,所述第一类型CPE的时长大于所述第二类型CPE的时长。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第一指示信息;所述第一指示信息用于指示所述第一类型CPE的时长大于所述第二类型CPE的时长;或者发送侧行同步信号的CPE时长小于发送第一终端发送侧行共享信道的 CPE的时长;所述第一指示信息是预配置的或者网络配置的。
  15. 一种侧行链路同步信号块传输方法,其特征在于,包括:
    第二终端设备根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;
    所述第二终端设备在所述N个时间单元中的第一时间单元接收所述侧行链路同步信号块失败,或者,所述第二终端设备在所述N个时间单元中接收所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,所述第二终端设备在第二时间单元接收所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收来自所述第一终端设备的第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
  18. 根据权利要求17所述的方法,其特征在于,所述第一侧行链路控制信息还用于确定以下一项或多项:
    所述第二时间单元的位置;
    所述第二时间单元中的所述侧行链路同步信号块占用的子信道或交错资源块集合的位置。
  19. 根据权利要求15至18任一所述的方法,其特征在于,所述第二时间单元与所述N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。
  20. 根据权利要求19所述的方法,其特征在于,所述第一时长为网络设备配置的时长;
    或者,所述第一时长为预配置的时长;
    或者,所述第一时长为协议规定的时长。
  21. 根据权利要求15至18任一所述的方法,其特征在于,所述第一时间单元与所述第二时间单元之间间隔第二时长。
  22. 根据权利要求21所述的方法,其特征在于,所述第二时长为网络设备配置的时长;
    或者,所述第二时长为预配置的时长;
    或者,所述第二时长为协议规定的时长。
  23. 根据权利要求15至22任一所述的方法,其特征在于,所述侧行链路同步信号块占用的频域资源的起始点与所述第一终端设备占用信道的频域资源的起始点之间的偏移值为第一频域偏移值;所述第一频域偏移值为预设的,或者所述第一频域偏移值为所述第一终端设备确定的,或者所述第一频域偏移值为网络设备配置的。
  24. 根据权利要求15至23任一所述的方法,其特征在于,所述第二时间单元包括第一侧行信息,所述第二时间单元之前的第三时间单元包括循环前缀扩展CPE,所述CPE和所述第一侧行信息来自所述第一终端设备,所述第三时间单元和所述第二时间单元在时域上相邻,所述CPE的时长为第一传输时长。
  25. 根据权利要求24所述的方法,其特征在于,所述CPE之前还包括第二侧行信息,所述第二侧行信息与CPE的间隙小于第一间隙;所述第一间隙是预定义的,预配置的,或者网络配置的;所述第一间隙的时长取值为16微秒或者25微秒。
  26. 根据权利要求24或25所述的方法,其特征在于,所述CPE包括第一类型CPE和第二类型CPE,所述第一类型CPE为第一终端设备发送侧行同步信号的CPE,所述第二类型CPE为第一终端设备发送侧行共享信道的CPE,所述第一类型CPE的时长与所述第二类型CPE的时长不同。
  27. 根据权利要求26所述的方法,其特征在于,所述第一类型CPE的时长大于所述第二类型CPE的时长。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备获取第一指示信息;所述第一指示信息用于指示所述第一类型CPE的时长大于所述第二类型CPE的时长;或者发送侧行同步信号的CPE时长小于发送第一终端发送侧行共享信道的 CPE的时长;所述第一指示信息是预配置的或者网络配置的。
  29. 一种第一终端设备,其特征在于,包括:
    处理单元,用于根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;
    通信单元,用于在所述N个时间单元中的第一时间单元发送所述侧行链路同步信号块失败,或者,在所述N个时间单元中发送所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,在第二时间单元向第二终端设备发送所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
  30. 根据权利要求29所述的第一终端设备,其特征在于,所述处理单元还用于:
    根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
  31. 根据权利要求29所述的第一终端设备,其特征在于,所述通信单元还用于:
    向所述第二终端设备发送第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
  32. 根据权利要求31所述的第一终端设备,其特征在于,所述第一侧行链路控制信息还用于确定以下一项或多项:
    所述第二时间单元的位置;
    所述第二时间单元中的所述侧行链路同步信号块占用的子信道或交错资源块集合的位置。
  33. 根据权利要求29至32任一所述的第一终端设备,其特征在于,所述第二时间单元与所述N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。
  34. 根据权利要求29至33任一所述的第一终端设备,其特征在于,所述侧行链路同步信号块占用的频域资源的起始点与所述第一终端设备占用信道的频域资源的起始点之间的偏移值为第一频域偏移值;所述第一频域偏移值为预设的,或者所述第一频域偏移值为所述第一终端设备确定的,或者所述第一频域偏移值为网络设备配置的。
  35. 一种第二终端设备,其特征在于,包括:
    处理单元,用于根据第一配置信息确定第一周期内的N个时间单元,N为大于0的整数,所述N个时间单元为候选的用于发送侧行链路同步信号块的时间单元;
    通信单元,用于在所述N个时间单元中的第一时间单元接收所述侧行链路同步信号块失败,或者,在所述N个时间单元中接收所述侧行链路同步信号块失败的时间单元的数量大于第一阈值,在第二时间单元接收所述侧行链路同步信号块;所述第二时间单元位于所述第一周期内,且为所述N个时间单元之外的时间单元。
  36. 根据权利要求35所述的第二终端设备,其特征在于,所述处理单元还用于:
    根据所述第一配置信息确定M个时间单元,M为大于0的整数,所述M个时间单元为候选的用于发送所述侧行链路同步信号块的时间单元,所述第二时间单元属于所述M个时间单元,所述M个时间单元为所述第一周期内所述N个时间单元之外的时间单元。
  37. 根据权利要求35所述的第二终端设备,其特征在于,所述通信单元还用于:
    接收来自所述第一终端设备的第一侧行链路控制信息,所述第一侧行链路控制信息用于确定所述第二时间单元。
  38. 根据权利要求37所述的第二终端设备,其特征在于,所述第一侧行链路控制信息还用于确定以下一项或多项:
    所述第二时间单元的位置;
    所述第二时间单元中的所述侧行链路同步信号块占用的子信道或交错资源块集合的位置。
  39. 根据权利要求35至38任一所述的第二终端设备,其特征在于,所述第二时间单元与所述N个时间单元中的第一个时间单元或者最后一个时间单元之间间隔第一时长。
  40. 一种通信装置,其特征在于,包括处理器和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,使得所述通信装置实现权利要求1至28中任意一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机实现如权利要求1至28中任意一项所述的方法。
  42. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,使得所述芯片实现权利要求1至28中任意一项所述的方法。
  43. 一种通信系统,其特征在于,包括:第一终端设备,所述第一终端设备用于实现权利要求1至14中任意一项所述的方法;
    第二终端设备,所述第一终端设备用于实现权利要求15至28中任意一项所述的方法。
PCT/CN2023/121247 2022-09-30 2023-09-25 一种侧行链路同步信号块传输方法及装置 WO2024067522A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211216273.0 2022-09-30
CN202211216273 2022-09-30
CN202310404254.9 2023-04-07
CN202310404254.9A CN117812689A (zh) 2022-09-30 2023-04-07 一种侧行链路同步信号块传输方法及装置

Publications (1)

Publication Number Publication Date
WO2024067522A1 true WO2024067522A1 (zh) 2024-04-04

Family

ID=90432245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121247 WO2024067522A1 (zh) 2022-09-30 2023-09-25 一种侧行链路同步信号块传输方法及装置

Country Status (2)

Country Link
CN (1) CN117812689A (zh)
WO (1) WO2024067522A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021237607A1 (zh) * 2020-05-28 2021-12-02 Oppo广东移动通信有限公司 一种同步信号块ssb的传输方法及终端设备
US20220061005A1 (en) * 2019-05-03 2022-02-24 Lg Electronics Inc. Method and device for transmitting and receiving s-ssb in nr v2x
CN114503483A (zh) * 2019-09-30 2022-05-13 华为技术有限公司 一种同步信号块序号的指示方法、装置及系统
CN114980125A (zh) * 2022-05-13 2022-08-30 南京星思半导体有限公司 通信方法、装置及相关设备
WO2022186627A1 (ko) * 2021-03-03 2022-09-09 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 송수신 방법 및 이에 대한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220061005A1 (en) * 2019-05-03 2022-02-24 Lg Electronics Inc. Method and device for transmitting and receiving s-ssb in nr v2x
CN114503483A (zh) * 2019-09-30 2022-05-13 华为技术有限公司 一种同步信号块序号的指示方法、装置及系统
WO2021237607A1 (zh) * 2020-05-28 2021-12-02 Oppo广东移动通信有限公司 一种同步信号块ssb的传输方法及终端设备
WO2022186627A1 (ko) * 2021-03-03 2022-09-09 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 송수신 방법 및 이에 대한 장치
CN114980125A (zh) * 2022-05-13 2022-08-30 南京星思半导体有限公司 通信方法、装置及相关设备

Also Published As

Publication number Publication date
CN117812689A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US11277864B2 (en) Method and apparatus for determining LBT mode and method for LBT mode switching
CN108476539B (zh) 在物联网环境中考虑覆盖等级和子载波间隔配置和/或多频配置的随机接入方法
EP3818768B1 (en) Method and user equipment for performing random access channel procedure for unlicensed operation
US10638516B2 (en) Controlling transmissions from multiple user devices via a request-clear technique
EP3222103B1 (en) Channel access in listen before talk systems
US11304220B2 (en) Method and device for scheduling transmissions based on channel numerology
KR101607377B1 (ko) 무선랜 시스템에서의 채널 접근 방법 및 장치
WO2016187853A1 (zh) 一种信道接入方法及装置
WO2020168946A1 (zh) 传输数据的方法和通信装置
EP3500041B1 (en) Method for transmitting service data, access point and station
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
EP3703455A1 (en) Method, terminal device and network device for data transmission
US10693618B2 (en) Multiplexed messaging in wireless network
US11317438B2 (en) Floating-instant coordinated multipoint for new radio-unlicensed
WO2016171595A1 (en) Controlling access to a radio medium for wireless communication
WO2024067522A1 (zh) 一种侧行链路同步信号块传输方法及装置
WO2024067476A1 (zh) 一种通信方法、装置、计算机可读存储介质和程序产品
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2024066989A1 (zh) 侧行链路通信的方法和装置
WO2024032418A1 (zh) 一种通信方法及装置
WO2022077470A1 (zh) 数据信道的传输方法
WO2024099173A1 (zh) 一种通信方法及装置
WO2024066975A1 (zh) 一种通信方法及装置
WO2024032565A1 (zh) 资源排除方法和相关产品
WO2024067656A1 (zh) 上行传输的方法和通信装置