WO2024092468A1 - 静电雾化装置 - Google Patents

静电雾化装置 Download PDF

Info

Publication number
WO2024092468A1
WO2024092468A1 PCT/CN2022/128805 CN2022128805W WO2024092468A1 WO 2024092468 A1 WO2024092468 A1 WO 2024092468A1 CN 2022128805 W CN2022128805 W CN 2022128805W WO 2024092468 A1 WO2024092468 A1 WO 2024092468A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization device
electrostatic atomization
liquid
nozzle
auxiliary electrode
Prior art date
Application number
PCT/CN2022/128805
Other languages
English (en)
French (fr)
Inventor
万文龙
李卫华
杨俊�
王开元
Original Assignee
思摩尔国际控股有限公司
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思摩尔国际控股有限公司, 深圳麦克韦尔科技有限公司 filed Critical 思摩尔国际控股有限公司
Priority to PCT/CN2022/128805 priority Critical patent/WO2024092468A1/zh
Publication of WO2024092468A1 publication Critical patent/WO2024092468A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station

Definitions

  • the present invention relates to the field of atomization, and more particularly to an electrostatic atomization device.
  • the existing electronic atomization device uses a heating component to atomize the medium to be atomized at a temperature of about 300°C. A series of chemical reactions will occur at high temperatures, resulting in the production of harmful substances, such as aldehydes and ketones.
  • the particle size of the smoke atomized by the existing electronic atomization device is about 1 micron, which cannot be adjusted over a large range.
  • the mature electrostatic atomization technology in related technologies is mainly used in mass spectrometry, pesticide spraying, painting and environmental disinfection, and mature products have not yet been seen in other application fields.
  • mass spectrometry although the particle size meets the standard ( ⁇ 2um), the flow rate is very small, which is one tenth of the target flow rate of the electronic atomization device, and cannot meet the demand for aerosol volume.
  • the related electrostatic atomization technology can meet the atomization particle size requirements while ensuring a larger flow rate.
  • due to the introduction of auxiliary electrodes there is a problem of liquid accumulation, and it is easy to cause a short circuit in the circuit, and in severe cases, it is easy to burn out related components.
  • the technical problem to be solved by the present invention is how to absorb the accumulated liquid to prevent the circuit from short-circuiting, and to provide an electrostatic atomization device capable of absorbing the accumulated liquid.
  • the technical solution adopted by the present invention to solve its technical problems is: constructing an electrostatic atomization device, including a nozzle assembly, an auxiliary electrode and a liquid absorption structure; the nozzle assembly forms a liquid matrix into first aerosol particles with a first charge and sprays them out by connecting to a first high voltage; the auxiliary electrode is coaxially arranged with the nozzle assembly; the liquid absorption structure is arranged on the auxiliary electrode and is a liquid absorption structure for absorbing accumulated liquid.
  • the nozzle assembly includes a nozzle body; the nozzle body is coaxial with the auxiliary electrode and is spaced apart;
  • the auxiliary electrode comprises at least one through hole
  • the through holes are arranged in one-to-one correspondence with the nozzles; the nozzle portion is arranged through the center of the through hole or the nozzle end of the nozzle is located at the center of the through hole;
  • the liquid suction structure includes at least one via hole arranged in one-to-one correspondence with the nozzle; the via hole is coaxially arranged with the through hole.
  • a size of the via hole is larger than a size of the through hole.
  • the through hole has a diameter of 3 mm to 20 mm.
  • the diameter of the via hole is 0.4 mm to 0.7 mm larger than the diameter of the through hole.
  • a portion of the nozzle is disposed through the through hole, and a length of the portion of the nozzle that passes through the through hole is 1 mm to 5 mm.
  • the shape of the liquid wicking structure is adapted to the shape of the auxiliary electrode.
  • the liquid wicking structure is adapted to a cross-sectional dimension of the auxiliary electrode.
  • the thickness of the liquid absorbing structure is 0.8 mm to 6 mm.
  • the wicking structure comprises at least one wicking layer.
  • the liquid absorbing layer is a multi-layer structure, and the multi-layer liquid absorbing layer is arranged side by side along the axial direction of the auxiliary electrode.
  • the wicking structure comprises a porous insulating structure.
  • the material of the liquid-absorbing structure includes one or more of liquid-absorbing cotton, ceramics, cellulose, and organic polymers.
  • the auxiliary electrode has a thickness of 0.2 mm.
  • a connection structure is provided between the auxiliary electrode and the liquid absorption structure.
  • connection structure includes an adhesive structure or a snap-fit structure.
  • it also includes a charge removal structure coaxially arranged with the nozzle assembly, and the charge removal structure generates an ion wind with a second charge by connecting to a second high voltage to neutralize the first aerosol particles with the first charge.
  • a liquid storage structure connected to the spray head assembly is also included.
  • the electrostatic atomization device implemented in the present invention has the following beneficial effects: the electrostatic atomization device arranges a liquid absorption structure on the auxiliary electrode to absorb the accumulated liquid on the auxiliary electrode, thereby preventing the accumulated liquid from discharging, and further preventing the accumulated liquid from being connected to the nozzle assembly to cause a short circuit in the circuit or even burn out the related components, thereby greatly improving the stable operation time of the electrostatic atomization device.
  • FIG1 is a schematic structural diagram of an electrostatic atomization device according to a first embodiment of the present invention.
  • FIG2 is a schematic diagram of a partial structure of the electrostatic atomization device shown in FIG1 ;
  • FIG3 is a cross-sectional view of the electrostatic atomization device shown in FIG2 ;
  • FIG4 is a schematic diagram of the structural decomposition of the electrostatic atomization device shown in FIG2 ;
  • FIG5 is a schematic structural diagram of the electrostatic atomization device shown in FIG4 from another angle;
  • FIG6 is a schematic structural diagram of a liquid absorption structure in the electrostatic atomization device shown in FIG5 ;
  • FIG. 7 is a schematic structural diagram of an electrostatic atomization device according to a second embodiment of the present invention.
  • FIG8 is a schematic structural diagram of the electrostatic atomization device shown in FIG7 from another angle;
  • FIG9 is a schematic diagram of the structural decomposition of the electrostatic atomization device shown in FIG7 ;
  • FIG. 10 is a schematic structural diagram of the liquid absorption structure in the electrostatic atomization device shown in FIG. 9 .
  • FIG1 shows an electrostatic atomization device 1 in the first embodiment of the present invention.
  • the electrostatic atomization device 1 can be applied to the fields of medical treatment, cosmetology, electronic atomization, etc.
  • the electrostatic atomization device 1 can atomize liquid substrates with high viscosity at room temperature and high flow rate, and can regulate the particle size of aerosol particles formed by atomization, greatly reducing the generation of harmful substances.
  • the electrostatic atomization device 1 can adjust the control parameters (such as flow rate, voltage, inter-electrode spacing, number of nozzles and aperture, etc.) so that the particle size of the sprayed aerosol can be adjusted from a few microns to tens of microns.
  • the electrostatic atomization technology used by the electrostatic atomization device 1 atomizes the same mass of liquid substrate, and the power used is about 50% of the traditional electronic atomization technology, which greatly reduces energy consumption.
  • electrostatic atomization technology refers to the process in which a liquid overcomes its own surface tension and breaks into droplets under the action of an electric field force.
  • the process of implementing electrostatic spraying is relatively simple. Usually, it is only necessary to inject a liquid matrix with sufficient conductivity and moderate surface tension into a metal capillary; the capillary is connected to a DC voltage (about several thousand volts); and the ground electrode is several centimeters away from the capillary.
  • the resistivity of the liquid matrix is generally selected to be greater than 200ohm-m, and more preferably greater than 250ohm-m; the surface tension of the liquid matrix is 15-20 dynes/cm, and more preferably 20-35 dynes/cm; the dielectric constant of the liquid matrix is less than 65, and more preferably less than 45; the viscosity is less than 100cp, and more preferably less than 50cp.
  • the liquid meniscus at the outlet of the capillary is conical, and an extremely fine jet is ejected from the cone tip. This jet splits into a fine spray of charged droplets downstream of the tip of the Taylor cone.
  • this mode is called the cone-jet mode.
  • the electrostatic spraying in cone tip jet mode has the following advantages: good monodispersity of aerosol particles, a wide range of aerosol particle diameters, nozzles that are not easily clogged, extremely low theoretical spray consumption ratio, and high deposition efficiency.
  • the electrostatic atomization device 1 includes a nozzle assembly 10, a charge removal structure 20, an auxiliary electrode 30, and a liquid absorption structure 40.
  • the nozzle assembly 10 forms a first aerosol particle with a first charge from a liquid matrix by connecting to a first high voltage, and sprays it out.
  • the charge removal structure 20 is coaxially arranged with the nozzle assembly 10, and is used to generate an ion wind with a second charge to neutralize the first aerosol particle with a first charge, so that it forms a second aerosol particle without a charge to be used by the user.
  • the first charge and the second charge are charges of opposite polarity.
  • the auxiliary electrode 30 is arranged near the nozzle of the nozzle assembly 10, and is coaxially arranged with the nozzle assembly 10, and can be grounded, and can cooperate with the nozzle assembly 10 to form a sufficiently strong electric field, so that the nozzle assembly 10 can smoothly spray out the first aerosol particle with the first charge.
  • the role of the auxiliary electrode 30 can also reduce the influence of space charge, ensuring that each nozzle assembly 10 can stably spray out the first aerosol particle with the first charge.
  • the liquid absorption structure 40 is arranged on the auxiliary electrode 30, and is used to absorb the accumulated liquid on the auxiliary electrode 30, to prevent the accumulated liquid from discharging, and further to prevent the accumulated liquid from being connected to the nozzle assembly, causing a short circuit in the circuit or even burning out the related components, thereby greatly improving the stable operation time of the electrostatic atomization device.
  • the electrostatic atomization device also includes a liquid storage structure 50, which is connected to the nozzle assembly 10, and is used to store the liquid matrix and output the liquid matrix to the nozzle assembly 10.
  • the nozzle assembly 10 includes a nozzle body 11 and a nozzle 12.
  • the nozzle body 11 can be cylindrical and is a hollow structure with an opening 111 at one end, and a temporary liquid storage chamber 112 is formed inside.
  • An end cap 13 is provided at the opening 111 to cover it, and it can be connected to the liquid storage structure 50 through the end cap 13.
  • the temporary liquid storage chamber 112 is connected to the liquid storage structure 50 and is used to store the liquid matrix output by the liquid storage structure 50.
  • the nozzle body 11 is not limited to being cylindrical.
  • the nozzle 12 is arranged on the end surface of the nozzle assembly 10 where the opening 111 is arranged, and is connected to the temporary liquid storage chamber 112, and can form the liquid matrix into first aerosol particles with a first charge by connecting to the first high voltage, and spray out the first aerosol particles with the first charge.
  • the nozzle 12 may be multiple, and the multiple nozzles 12 are arranged on the end surface of the nozzle body 11 away from the liquid storage structure 50.
  • the multiple nozzles 12 may be arranged at intervals along the circumference of the nozzle body 11.
  • the multiple nozzles 12 may be arranged around a circle and arranged in a circular manner, so that the number of arrangements is the largest and independent of each other.
  • the multiple nozzles 12 may be arranged in multiple circles.
  • the multiple nozzles 12 may also be arranged in an array.
  • Each nozzle 12 may be connected to the temporary liquid storage chamber 112 to atomize the liquid matrix to form aerosol particles.
  • the nozzle 12 may be a capillary metal tube, specifically, the nozzle 12 may be a metal needle tube.
  • a nozzle 121 is formed at one end of each nozzle 12 away from the nozzle body 11, and the nozzle 121 may be circular.
  • the nozzle 121 is not limited to being circular, and may be square, elliptical or other shapes. It can be understood that in some other embodiments, the nozzle 12 is not limited to be multiple, and in some other embodiments, the nozzle 12 can be one.
  • the first high voltage connected to the nozzle assembly 10 may be positive high voltage.
  • the first charge may be positive, that is, the first aerosol particles ejected from the nozzle 12 carry positive charge.
  • the first high voltage may also be negative high voltage, and the first charge may also be negative.
  • the static-eliminating structure 20 is annular and can be arranged at one end of the nozzle body 11 away from the nozzle 12, and is spaced apart from the nozzle body 11 in the axial direction, that is, an ion wind can be formed upstream of the flow direction of the first aerosol particles, thereby further reducing the adsorption of the first aerosol particles ejected from the nozzle 12 on the static-eliminating structure 20.
  • the static-eliminating structure 20 is coaxially arranged with the nozzle body 11.
  • the flow direction of the first aerosol particles ejected from the nozzle assembly 10 can be consistent with the flow direction of the ion wind, thereby better neutralizing the ejected first aerosol particles (so that the first aerosol particles will not be adsorbed on the inner wall of the nozzle 12 during the outflow process and cannot be ejected).
  • the static elimination structure 20 includes an annular body 21 and a plurality of ion generating parts 22.
  • the annular body 21 may be formed by winding a metal sheet. Of course, it is understood that in some other embodiments, the annular body 21 is not limited to being formed by winding a metal sheet.
  • the annular body 21 may be in the shape of a circular ring. Of course, it is understood that in some other embodiments, the annular body 21 may also be in the shape of an elliptical ring, a rectangular ring, etc.
  • the plurality of ion generating parts 22 are arranged at one end of the annular body 21 away from the base 30, and may be arranged at intervals along the axial direction of the annular body 21, and respectively extend along the axial direction of the annular body 21 toward the nozzle 12.
  • the extension direction of the plurality of ion generating parts 22 is the same as the ejection direction of the nozzle assembly 10, that is, the flow direction of the generated ion wind is consistent with the flow direction of the first aerosol particles ejected by the nozzle assembly 10.
  • Each ion generating portion 22 includes a tip 221, which can extend in the ejection direction of the nozzle assembly 10, and the tip 221 is used to generate ions with a second charge to neutralize the first aerosol particles with a first charge.
  • the ion generating portion 22 is serrated and can be formed by laser cutting a metal sheet. It should be noted that the so-called ion wind refers to the flow of ions with a set charge instead of gas molecules in the space.
  • the second high voltage connected to the charge removal structure 20 is negative high voltage
  • the second charge can be a negative charge
  • the ion wind is a negative ion wind.
  • the negative ion can be a negative oxygen ion, which can be formed by combining oxygen molecules in the air with free electrons.
  • the reason for choosing to form negative oxygen ions is that negative oxygen ions can effectively strengthen the ciliary movement of the tracheal mucosal epithelium, affect the activity of respiratory enzymes in the epithelial villi, improve the secretory function of the alveoli and the ventilation and ventilation function of the lungs, relieve bronchospasm, increase vital capacity, adjust respiratory rate, and relieve cough.
  • Negative ions can also promote the regeneration of nasal mucosal epithelial cells and restore the secretory function of the mucosa. It has good effects on diseases such as asthma, tracheitis, and whooping cough in children.
  • negative ions can also enhance human immunity, improve human self-healing power, and effectively prevent and treat diseases such as diabetes and tumors. It is an ideal choice for people's daily health care. That is, negative ions are generated while spraying, and the side effects produced for users are relatively small or even non-existent, which is beneficial to the user's body.
  • the charge removal structure 20 can be a negative ion generating device.
  • the charge removal structure 20 is not limited to the design of the present invention. Other charge removal structures that can generate negative ion wind can be used in the present invention, such as a carbon brush.
  • the charge removal structure 20 when the first charge is a negative charge, can also be a positive ion generating device, and the second charge can also be a positive charge.
  • the auxiliary electrode 30 is coaxial with the nozzle body 11 and is spaced apart, and the cross section of the auxiliary electrode 30 may be greater than or equal to the cross section of the nozzle body 11.
  • the auxiliary electrode 30 includes a first side 30a and a second side 30b. The first side 30a, wherein the first side 30a may be arranged opposite to the nozzle body 11. The second side 30b may be arranged opposite to the first side.
  • the auxiliary electrode 30 is in the form of a sheet, including a sheet body 31 and a plurality of through holes 32.
  • the sheet body 31 is generally circular.
  • the plurality of through holes 32 are arranged at intervals on the sheet body 31, and are arranged at intervals along the circumference of the sheet body 31.
  • the nozzle 12 can be arranged in a one-to-one correspondence with the through holes 32.
  • the nozzle 12 can be arranged on the central axis of the through hole 32.
  • the through hole 32 is a circular hole, and the nozzle 12 can be located on the same straight line as the center of the through hole 32, and part of it is penetrated through the center of the through hole 32.
  • the length of the part of the nozzle 12 that passes through the through hole 32 can be 1mm to 5mm, thereby improving the atomization effect, better forming a Taylor cone, and the liquid suction structure 40 prevents liquid accumulation at the tip of the nozzle 12, and avoids a short circuit between the tip of the nozzle 12 and the auxiliary electrode 30.
  • the nozzle 121 of the nozzle 12 is located at the center of the through hole 32, that is, it is arranged to coincide with the center of the through hole 32.
  • the aperture of the through hole 32 is larger than the aperture of the nozzle 12 (that is, the aperture of the nozzle 12 is smaller than the aperture of the through hole 32), and a strong electric field is formed in the gap between the nozzle 12 and the hole wall of the through hole 32.
  • the through hole 32 When the diameter of the through hole 32 is less than 3 mm, the through hole 32 is prone to discharge due to accumulation of liquid, resulting in the inability of the device to operate. If the through hole 32 is larger than 20mm, the required voltage will be too high, resulting in energy waste. It can be understood that in some embodiments, the through hole 32 is not limited to multiple, and can be one. In some embodiments, the through hole 32 is not limited to a circular hole, and may be a square hole or other shapes.
  • the auxiliary electrode 30 further includes a connecting arm 33, and the connecting arm 33 may be two, and the two connecting arms 33 may be symmetrically arranged along the radial direction of the sheet-like body 31, for connecting and fixing the auxiliary electrode 30.
  • the connecting arm 33 is not limited to two, and may be one or more than two.
  • the connecting arm 33 may be integrally formed with the sheet-like body 31.
  • the connecting arm 33 may also be omitted.
  • the auxiliary electrode 30 may be fixed by other structures.
  • the overall thickness of the auxiliary electrode 30 can be 0.2 mm.
  • the thickness of the auxiliary electrode 30 may not be limited to 0.2 mm.
  • the liquid absorbing structure 40 is disposed on the second side 30 b of the auxiliary electrode 30.
  • the liquid absorbing structure 40 can be connected and fixed to the auxiliary electrode 30 by providing a connecting structure.
  • the connecting structure can be an adhesive structure, that is, the auxiliary electrode 30 and the liquid absorbing structure 40 can be fixed by adhesive bonding through the adhesive structure.
  • the connecting structure is not limited to an adhesive structure, and can be a snap-fit structure or others.
  • the shape of the liquid absorbing structure 40 is adapted to the shape of the auxiliary electrode 30, and the cross-sectional size of the liquid absorbing structure 40 is adapted to the cross-sectional size of the auxiliary electrode 30.
  • the liquid absorbing structure 40 is a porous insulating structure, and the liquid absorbing structure 40 includes a liquid absorbing body 41, and the liquid absorbing body 41 is a layer.
  • the liquid absorbing body 41 is not limited to a layer, and in some other embodiments, the liquid absorbing body 41 can be multiple layers. The multiple layers of liquid absorbing structures 41 can be arranged side by side in sequence along the axial direction of the auxiliary electrode 30.
  • the material of the liquid absorbing liquid 41 can be liquid absorbing cotton, which has a low processing cost and is widely used in the field of atomization. Since the auxiliary electrode 20 and the nozzle assembly 10 form an electric field, a better atomization effect can be achieved, and the liquid absorbing cotton can effectively solve the problem of adsorbed liquid accumulation on the auxiliary electrode 20, so that electrostatic atomization can be effectively achieved.
  • the material of the liquid absorbing structure 40 is not limited to liquid absorbing cotton, and can be one or more insulating liquid absorbing materials such as ceramics, cellulose, and organic polymers (such as PI).
  • the overall thickness of the liquid absorbing structure 40 can be 0.8mm ⁇ 6mm, which is conducive to absorbing more accumulated liquid.
  • the thickness of the liquid absorbing structure 40 is not limited to 0.8mm ⁇ 6mm, and the thickness of the liquid absorbing structure 40 can be increased or decreased according to actual conditions.
  • the liquid-absorbing liquid 41 may include a main body 411 and a connecting portion 412.
  • the main body 411 may be circular, and its cross-sectional shape and size may be comparable to the cross-sectional shape and size of the sheet-like body 31.
  • the connecting portion 412 is not limited to two, and can be one or more than two. In some other embodiments, the connecting portion 412 can be omitted.
  • the liquid absorbing structure 40 further includes a via hole 42, and the via hole 42 may be multiple, and the multiple via holes 42 are arranged on the main body 411, and are arranged at intervals along the circumference of the main body 411, and are arranged through the thickness direction of the main body 411.
  • the multiple via holes 42 may be arranged in a one-to-one correspondence with the through hole 32, that is, in a one-to-one correspondence with the nozzle 12.
  • the via hole 42 may be coaxially arranged with the through hole 32, and its shape may be the same as the shape of the through hole 32.
  • the via hole 42 may be a circular hole.
  • the via hole 42 is not limited to a circular hole, and may be a square hole or other shapes.
  • the size of the via hole 42 may be larger than the size of the through hole 32.
  • the radial size of the via hole 42 may be slightly larger than the radial size of the through hole 32.
  • the aperture of the via hole 42 is 0.4 mm-0.7 mm larger than the aperture of the through hole 32 of the auxiliary electrode 30, thereby avoiding errors in the assembly of the auxiliary electrode 20 and the liquid absorption structure 40, and avoiding the main body 411 blocking the through hole 32 on the auxiliary electrode 30 to cause a short circuit risk.
  • the electrostatic atomization device also includes a power mechanism 60, which can be connected to the liquid storage structure 50, and is used to output the liquid matrix in the liquid storage structure 50 to the nozzle assembly 40.
  • the power mechanism 60 can be a booster pump, specifically, the power mechanism 60 can be a micro booster pump, which is conducive to the miniaturization of the electrostatic atomization device structure.
  • the power mechanism 60 can increase the pressure of the liquid matrix in the liquid storage structure 50, so that the liquid matrix in the liquid storage structure 50 flows smoothly down to the temporary liquid storage chamber 112 along the lower liquid channel 12. It can be understood that in some other embodiments, the power mechanism 60 is not limited to a booster pump.
  • the electrostatic atomization device also includes a voltage controller 70, which can be connected to the booster pump to regulate the booster pump, thereby controlling the compression volume in the liquid storage structure 50, thereby controlling the mass of the liquid matrix pushed out of the liquid storage structure 50 to achieve quantitative atomization. It can be understood that in some other embodiments, the voltage controller 70 can be omitted.
  • the electrostatic atomization device further includes a first high voltage generating structure 80, which can be used to apply a first high voltage to the nozzle assembly.
  • the first high voltage is a positive high voltage.
  • the voltage of the first high voltage can be +3kV ⁇ +10kV. It can be understood that in some other embodiments, the voltage of the first high voltage is not limited to +3kV ⁇ +10kV.
  • the first high voltage can directly or indirectly act on the liquid matrix in the temporary liquid storage chamber 112 or on the liquid matrix in the nozzle 12, so that the first aerosol particles ejected from the nozzle 12 are positively charged.
  • the first high voltage can be a negative high voltage.
  • the electrostatic atomization device further includes a second high voltage generating structure 90, which can be connected to the de-static structure 20, and can apply a second high voltage to the de-static structure 20.
  • the second high voltage can be a negative high voltage, and the voltage can be -3KV to -5KV. It can be understood that in some other embodiments, the voltage of the second high voltage is not limited to -3KV to -5KV.
  • the second high voltage will ionize the air passing through the de-static structure 20 to form an ion wind with a second charge.
  • the second high voltage is not limited to negative high voltage, and when the first high voltage is negative high voltage, the second high voltage is positive high voltage.
  • Figures 7 to 10 show a second embodiment of the electrostatic atomization device of the present invention, which differs from the first embodiment in that the cross-sections of the nozzle body 11, the static removal structure 20, the sheet body 31 of the auxiliary electrode 30 and the main body 41 of the liquid absorption structure 40 are rectangular, and the nozzle 12, the through hole 32 and the via 42 are arranged in an array.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

静电雾化装置(1),其包括喷头组件(10)、辅助电极(30)以及吸液结构(40);喷头组件(10)通过接入第一高压电将液态基质形成带有第一电荷的第一气溶胶颗粒并喷出;辅助电极(30)与喷头组件(10)同轴设置;吸液结构(40)设置于辅助电极(30)上用于吸附积液;静电雾化装置(1)通过在辅助电极(30)上设置吸液结构(40),吸附辅助电极(30)上的积液,防止存在积液放电现象,进而防止积液与喷头组件(10)导通而导致电路出现短路甚至使得相关部件被烧坏,从而极大地提高静电雾化装置(1)稳定运行时间。

Description

静电雾化装置 技术领域
本发明涉及雾化领域,更具体地说,涉及一种静电雾化装置。
背景技术
现有的电子雾化装置是用发热组件在300℃左右的温度下雾化待雾化介质。高温下会发生一系列的化学反应,导致有害物质的产生,例如醛酮等。并且现有的电子雾化装置雾化出的烟气粒径在1微米左右,无法大范围调控。
相关技术中的成熟静电雾化技术主要应用在质谱、农药喷洒、喷漆及环境消杀,其他应用领域暂未见到成熟的产品。在质谱的应用中,虽然粒径达标(<2um),但流量非常小,是电子雾化装置目标流量的十分之一,无法满足气雾量的需求。
技术问题
相关的静电雾化技术在保证较大的流量的同时也可以满足雾化粒径要求,但是由于引入辅助电极进而存在积液问题,并且容易导致电路发生短路,严重时容易烧坏相关部件。
技术解决方案
本发明要解决的技术问题在于如何吸附积液进而防止电路短路,提供一种能够吸附积液的静电雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种静电雾化装置,包括喷头组件、辅助电极以及吸液结构;所述喷头组件通过接入第一高压电将液态基质形成带有第一电荷的第一气溶胶颗粒并喷出;所述辅助电极与所述喷头组件同轴设置;所述吸液结构设置于所述辅助电极上用于吸附积液的吸液结构。
在一些实施例中,所述喷头组件包括喷头本体;所述喷头本体与所述辅助电极同轴且间隔设置;
所述辅助电极包括与所述喷头本体相对设置的第一侧、以及与所述第一侧相背设置的第二侧;所述吸液结构设置于所述第二侧。
在一些实施例中,所述喷头组件包括至少一个喷嘴;
所述辅助电极包括至少一个通孔;
所述通孔与所述喷嘴一一对应设置;所述喷嘴部分穿设于所述通孔的中心或者所述喷嘴的喷口端位于所述通孔的中心;
所述吸液结构包括与所述喷嘴一一对应设置的至少一个过孔;所述过孔与所述通孔同轴设置。
在一些实施例中,所述过孔的尺寸大于所述通孔的尺寸。
在一些实施例中,所述通孔的孔径为3mm-20mm。
在一些实施例中,所述过孔的孔径相比于所述通孔的孔径大0.4 mm -0.7mm。
在一些实施例中,所述喷嘴的部分从所述通孔穿出设置,且所述喷嘴穿出所述通孔的部分的长度为1mm~5mm。
在一些实施例中,所述吸液结构的形状与所述辅助电极的形状相适配。
在一些实施例中,所述吸液结构与所述辅助电极的横截面尺寸相适配。
在一些实施例中,所述吸液结构的厚度为0.8mm~6mm。
在一些实施例中,所述吸液结构包括至少一层吸液体。
在一些实施例中,所述吸液体为多层,多层所述吸液体沿所述辅助电极的轴向并排设置。
在一些实施例中,所述吸液结构包括多孔绝缘结构。
在一些实施例中,所述吸液结构的材料包括吸液棉、陶瓷、纤维素、有机高分子中的一种或者多种。
在一些实施例中,所述辅助电极的厚度为0.2mm。
在一些实施例中,所述辅助电极与所述吸液结构之间设置有连接结构。
在一些实施例中,所述连接结构包括粘贴结构、或者卡扣结构。
在一些实施例中,还包括与所述喷头组件同轴设置的除电结构,所述除电结构通过接入第二高压电产生带有第二电荷的离子风中和所述带有第一电荷的第一气溶胶颗粒。
在一些实施例中,还包括与所述喷头组件连接的储液结构。
有益效果
实施本发明的静电雾化装置,具有以下有益效果:该静电雾化装置通过在辅助电极上设置吸液结构,吸附辅助电极上的积液,防止存在积液放电现象,进而防止积液与喷头组件导通而导致电路出现短路甚至使得相关部件被烧坏,从而极大地提高静电雾化装置稳定运行时间。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例静电雾化装置的结构示意图;
图2是图1所示静电雾化装置的局部结构示意图;
图3是图2所示静电雾化装置的剖视图;
图4是图2所示静电雾化装置的结构分解示意图;
图5是图4所示静电雾化装置另一角度的结构示意图;
图6是图5所示静电雾化装置中吸液结构的结构示意图;
图7是本发明第二实施例静电雾化装置的结构示意图;
图8是图7所示静电雾化装置另一角度的结构示意图;
图9是图7所示静电雾化装置的结构分解示意图;
图10是图9所示静电雾化装置中吸液结构的结构示意图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1示出了本发明第一实施例中的静电雾化装置1。该静电雾化装置1可应用于医疗、美容、电子雾化等领域。该静电雾化装置1可在常温且高流量的情况下雾化粘度较大的液态基质,并且可以调控雾化形成的气溶胶颗粒的粒径,极大地减少有害物质的产生。具体地,该静电雾化装置1可通过调节控制参数(如流量,电压,极间距,喷头数目和孔径等),使得喷出气溶胶粒径可调范围为几微米到几十微米。与传统电子雾化技术(陶瓷和棉芯)相比,该静电雾化装置1所采用的静电雾化技术雾化相同质量的液态基质,所用的功率约为传统电子雾化技术的50%,大大降低了能耗。
需要说明的是,上述静电雾化技术是指液体在电场力的作用下克服自身表面张力破碎成液滴的过程。静电喷雾的实现过程比较简单,通常只需将具有足够电导率和适度表面张力的液态基质注入金属毛细管;毛细管接通直流电压(约数千伏);距离毛细管若干厘米处是地极。其中,液态基质的电阻率一般选择为大于200ohm-m,更优选的是大于250ohm-m;液态基质的表面张力为15-20 dynes/cm,更优选的是20-35 dynes/cm;该液态基质的介电常数小于65,更优选的是小于45;粘度小于100cp,更优选的是小于50cp。在电场作用下,毛细管出口处的液体弯月面呈锥形,锥尖喷出极细的射流。这股射流在泰勒锥的锥尖下游分裂成为细小的带电液滴喷雾。鉴于液体弯月面的形态,这种模式称为锥尖射流(cone-jet)模式。锥尖射流模式的静电喷雾具有如下优点:气溶胶颗粒单分散性好、可获得气溶胶颗粒直径范围广、喷嘴不容易堵塞、理论雾耗比极低、沉积效率高。
如图1所示,在本实施例中,该静电雾化装置1包括喷头组件10、除电结构20、辅助电极30、以及吸液结构40。该喷头组件10通过接入第一高压电,将液态基质形成带有第一电荷的第一气溶胶颗粒,并将其喷出。该除电结构20与喷头组件10同轴设置,用于产生带有第二电荷的离子风中和带有第一电荷的第一气溶胶颗粒,使其形成不带电荷的第二气溶胶颗粒被用户使用。在本实施例中,该第一电荷以及第二电荷为极性相反的电荷。该辅助电极30设置靠近所述喷头组件10的喷口设置,并与所述喷头组件10同轴设置,可接地设置,可与喷头组件10配合形成足够强的电场,从而使得喷头组件10顺利喷出带有第一电荷的第一气溶胶颗粒。另外辅助电极30的作用还可减小空间电荷的影响,确保每个喷头组件10能够稳定地喷出带有第一电荷的第一气溶胶颗粒。该吸液结构40设置于该辅助电极30上,用于吸附位于辅助电极30上的积液,防止存在积液放电现象,进而防止积液与喷头组件导通而导致电路出现短路甚至使得相关部件被烧坏,从而极大地提高静电雾化装置稳定运行时间。在本实施例中,该静电雾化装置还包括储液结构50,该储液结构50与喷头组件10连接,用于储存液态基质,并将所述液体基质输出至喷头组件10。
如图2至图3所示,在本实施例中,该喷头组件10包括喷头本体11、以及喷嘴12。喷头本体11可呈圆柱状,且为一端设置有开口111的中空结构,内侧形成有临时储液腔112。该开口111处设置端盖13盖合,并且可通过端盖13与储液结构50连接。该临时储液腔112与储液结构50连通,用于储存储液结构50输出的液体基质。在一些实施例中,该喷头本体11不限于呈圆柱状。该喷嘴12设置于该喷头组件10与开口111相被设置的端面上,并与临时储液腔112连通,并可通过接入第一高压电将液态基质形成带有第一电荷的第一气溶胶颗粒,并喷出带有第一电荷的第一气溶胶颗粒。
在本实施例中,该喷嘴12可以为多个,该多个喷嘴12设置于该喷头本体11远离储液结构50的端面上。在本实施例中,该多个喷嘴12可沿喷头本体11的周向间隔设置,在本实施例中,该多个喷嘴12可以围绕形成一圈,呈圆周排布,从而使得排布的数量最多又相互独立。当然,可以理解地,在其他一些实施例中,该多个喷嘴12可形成多圈排布。当然,可以理解地,在其他一些实施例中,该多个喷嘴12也可呈阵列式排布。每一喷嘴12可与临时储液腔112连通,用于雾化液态基质使其形成气溶胶颗粒。在本实施例中,该喷嘴12可以为毛细金属管,具体地,该喷嘴12可以为金属针管。每一喷嘴12远离该喷头本体11的一端形成有喷口121,该喷口121可以呈圆形。当然,可以理解地,在其他一些实施例中,该喷口121不限于呈圆形,可以呈方形、椭圆形或者其他形状。可以理解地,在其他一些实施例中,该喷嘴12不限于为多个,在其他一些实施例中,该喷嘴12可以为一个。
在本实施例中,该喷头组件10所接入的第一高压电可以为正高压电。该第一电荷可以为正电荷,也即该喷嘴12喷出的第一气溶胶颗粒带有正电荷。当然,可以理解地,在其他一些实施例中,该第一高压电也可以为负高压电,该第一电荷也可以为负电荷。
如图3至图4所示,在本实施例中,该除电结构20呈环状,可设置于喷头本体11远离该喷嘴12的一端,并与喷头本体11在轴向上间隔设置,也即可在第一气溶胶颗粒流动方向的上游形成离子风,从而进一步减少喷嘴12喷出的第一气溶胶颗粒在除电结构20上的吸附。该除电结构20与喷头本体11同轴设置,通过将除电结构20与喷头本体11同轴设置,可使得喷头组件10喷出第一气溶胶颗粒的流动方向与离子风的流动方向一致,进而可以更好地中和喷出的第一气溶胶颗粒(使得该第一气溶胶颗粒在流出的过程中不会被吸附与喷嘴12内侧壁上而无法喷出)。
除电结构20包括环状体21以及多个离子产生部22。该环状体21可以为金属薄片卷绕形成。当然,可以理解地,在其他一些实施例中,该环状体21不限于为金属薄片卷绕形成。在本实施例中,该环状体21可以为圆环状。当然,可以理解地,在其他一些实施例中,该环状体21也可以为椭圆环状、矩形环状等。在本实施例中,该多个离子产生部22设置于该环状体21远离该基座30的一端,且可沿该环状体21的轴向间隔设置,且分别沿该环状体21的轴向向喷嘴12方向延伸。该多个离子产生部22的延伸方向与喷头组件10喷出方向相同,也即产生的离子风的流动方向与喷头组件10喷出第一气溶胶颗粒的流动方向一致。每一离子产生部22包括尖端221,该尖端221可朝喷头组件10的喷出方向延伸,该尖端221是用于产生带有第二电荷的离子,以中和带有第一电荷的第一气溶胶颗粒。在本实施例中,该离子产生部22呈锯齿状,可通过激光切割金属薄片形成。需要说明的是,所谓的离子风是指空间中流动的不是气体分子而是被电离形成带有设定电荷的离子。
在本实施例中,该除电结构20所接入的第二高压电为负高压电,该第二电荷可以为负电荷,也即该离子风为负离子风,具体地,该负离子可以为负氧离子,可以通过空气中的氧分子结合了自由电子形成,而之所以选择形成负氧离子,是因为负氧离子能有效加强气管粘膜上皮的纤毛运动,影响上皮绒毛内呼吸酶的活性,改善肺泡的分泌功能及肺的通气和换气功能,缓解支气管痉挛、增加肺活量、调整呼吸频率、镇咳等。负离子还能促进鼻粘膜上皮细胞的再生,恢复粘膜的分泌功能。哮喘、气管炎、儿童百日咳等疾病有良好效果此外,负离子还可以增强人体免疫力,提高人体自愈力,有效防治糖尿病,肿瘤等疾病,是人们日常养生保健的理想选择。也即喷雾的同时产生负离子,对用户而言产生的副作用相对较小,甚至没有,反而对用户身体是有益的。
在本实施例中,该除电结构20可采用负离子发生装置,该除电结构20不限于本发明的这种设计,其他能够产生负离子风的除电结构可以用于本发明中,比如碳刷。在其他一些实施例中,当该第一电荷为负电荷时,该除电结构20也可以为正离子发生装置,该第二电荷也可以为正电荷。
在本实施例中,该辅助电极30与喷头本体11同轴且间隔设置,该辅助电极30的横截面可大于或等于喷头本体11的横截面。在本实施例中,该辅助电极30包括第一侧30a以及第二侧30b。该第一侧30a,其中第一侧30a可与喷头本体11相对设置。该第二侧30b可与第一侧相背设置。
在本实施例中,该辅助电极30呈片状,包括片状本体31以及多个通孔32。该片状本体31大致呈圆形。该多个通孔32间隔设置于片状本体31上,且沿该片状本体31的周向间隔设置。该喷嘴12可与通孔32一一对应设置。该喷嘴12可设置于该通孔32的中轴线上。在本实施例中,该通孔32为圆孔,该喷嘴12可与该通孔32的圆心位于同一直线上,且部分穿设于通孔32的中心。该喷嘴12穿出通孔32部分的长度可以为1mm~5mm,进而可提高雾化效果,更好地形成泰勒锥,以及吸液结构40防止喷嘴12尖端积液,避免喷嘴12尖端与辅助电极30之间产生短路。在其他一些实施例中,喷嘴12的喷口121位于通孔32的中心,也即与通孔32的圆心重合设置。该通孔32的孔径大于喷嘴12的孔径(也即喷嘴12的孔径小于通孔32的孔径),该喷嘴12与该通孔32孔壁之间的间隙形成有强电场。在一些实施例中,该通孔32的孔径可以为3mm-20mm,进而可提高辅助电极通孔32与喷嘴12之间形成的电场强度,从而提高第一气溶胶颗粒受到的电场力,需要说明的是,在在匀强电场中根据E=U/d的计算公式可知,电压一定时,两极之间的距离越短,电场强度越大,在根据E=F/q的计算公式可知,也即该第一气溶胶颗粒受到的电场力越大。该通孔32的直径小于3 mm时,该通孔32容易积液放电,导致设备无法运行,若通孔32大于20mm,则需要的电压会过高,造成能源浪费。可以理解地,在一些实施例中,该通孔32不限于为多个,可以为一个。在一些实施例中,该通孔32不限于为圆孔,可以为方孔或者其他形状。
在本实施例中,辅助电极30还包括连接臂33,该连接臂33可以为两个,该两个连接臂33可沿该片状本体31的径向对称设置,用于辅助电极30的连接固定。当然,可以理解地,在其他一些实施例中,该连接臂33不限于为两个,可以为一个或者大于两个。在本实施例中,该连接臂33可与片状本体31一体成型。当然,可以理解地,在其他一些实施例中,该连接臂33也可以省去。该辅助电极30可采用其他结构固定。
在本实施例中,该辅助电极30的整体厚度可以为0.2mm,通过将该辅助电极30的厚度设置为0.2mm,进而可便于吸液结构40的安装固定,且可减小整体结构的尺寸。当然,可以理解地,在其他一些实施例中,该辅助电极30的厚度可以不限于0.2mm。
如图3至图6所示,在本实施例中,该吸液结构40设置于该辅助电极30的第二侧30b。该吸液结构40可通过设置连接结构连接固定于辅助电极30上。在本实施例中,该连接结构可以为粘贴结构,也即该辅助电极30与该吸液结构40可通过粘贴结构粘贴固定。当然,可以理解地,在其他一些实施例中,该连接结构不限于为粘贴结构,可以为卡扣结构或者其他。
在本实施例中,该吸液结构40的形状与该辅助电极30的形状相适配,且该吸液结构40的横截面尺寸与辅助电极30的横截面尺寸相适配。在本实施例中,该吸液结构40为多孔绝缘结构,该吸液结构40包括吸液体41,该吸液体41为一层。当然,可以理解地,在其他一些实施例中,该吸液体41不限于为一层,在其他一些实施例中,该吸液体41可以为多层。该多层吸液结构41可沿辅助电极30的轴向依次并排设置。
在本实施例中,该吸液体41的材料可以为吸液棉,该吸液棉加工成本较低,且在雾化领域应用广泛,由于辅助电极20与喷头组件10形成电场可以达到更好的雾化效果,加上吸液棉可以有效地解决辅助电极20上的吸附积液问题,从而使静电雾化得以有效的实现。当然,可以理解地,在其他一些实施例中,该吸液结构40的材料不限于为吸液棉,可以为陶瓷、纤维素、有机高分子(比如PI)等绝缘吸液材料中的一种或多种。
在本实施例中,该吸液结构40的整体厚度可以为0.8mm~6mm,进而有利于吸附较多积液,当然,可以理解地,在其他一些实施例中,该吸液结构40的厚度不限于为0.8mm~6mm,该吸液结构40的厚度可根据实际情况增加或减小。
在本实施例中,该吸液体41可包括主体部411以及连接部412。该主体部411可呈圆形,其横截面形状以及尺寸可与片状本体31的横截面形状以及尺寸相当。该连接部412为两个,该两个连接部412沿该主体部411的径向设置,且设置于该主体部411的两相对侧,且与连接臂33一一对应设置,该连接部412可用于与外置结构连接固定。当然,可以理解地,在其他一些实施例中,该连接部412不限于为两个,可以为一个或者大于两个。在其他一些实施例中,该连接部412可以省去。
在本实施例中,该吸液结构40还包括过孔42,该过孔42可以为多个,该多个过孔42设置于该主体部411上,且沿该主体部411的周向间隔设置,并沿该主体部411的厚度方向贯穿设置。该多个过孔42可与该通孔32一一对应设置,也即与喷嘴12一一对应设置。在本实施例中,该过孔42可与通孔32同轴设置,其形状可与该通孔32的形状相同。在本实施例中,该过孔42可以为圆孔。当然,可以理解地,在其他一些实施例中,过孔42不限于为圆孔,可以为方孔或者其他形状。在本实施例中,该过孔42的尺寸可大于该通孔32的尺寸,具体地,该过孔42的径向尺寸可略大于通孔32的径向尺寸,可以选择地,该过孔42的孔径相比于辅助电极30的通孔32的孔径大0.4 mm -0.7mm,进而可避免辅助电极20与吸液结构40装配存在误差,且可避免主体部411遮挡住辅助电极30上的通孔32而造成短路风险。
经试验验证:未设置吸液结构40的静电雾化装置1在持续雾化0.1ml/min后,辅助电极30表面因吸附液态基质(吸附率40%)过多导致与喷嘴12发生短路;当贴附吸液结构40后,在同样的吸附率情况下1mm厚度的吸液棉,可以提升三倍工作时间;当吸液结构40体积增大(加大厚度或增加层数)储液量同时增加、雾化比提升、吸附率降低到常规水准<10%时,可以满足正常电子雾化装置雾化需求。
再如图1所示,在本实施例中,该静电雾化装置还包括动力机构60,该动力机构60可与储液结构50连接,用于将储液结构50中的液态基质输出至喷头组件40。在本实施例中,该动力机构60可以为增压泵,具体地,该动力机构60可以为微型增压泵,进而有利于静电雾化装置结构小型化需求。该动力机构60可向储液结构50中的液态基质增加压力,使得储液结构50中的液态基质沿下液通道12顺利下流至临时储液腔112。可以理解地,在其他一些实施例中,该动力机构60不限于为增压泵。
在本实施例中,静电雾化装置还包括电压控制器70,该电压控制器70可与增压泵连接,用于对增压泵进行调控,进而控制该储液结构50中的压缩体积,从而控制储液结构50中液态基质被推出的质量,实现定量雾化,可以理解地,在其他一些实施例中,该电压控制器70可以省去。
在本实施例中,该静电雾化装置还包括第一高压发生结构80,该第一高压发生结构80可用于向喷头组件施加第一高压电。该第一高压电为正高压电。该第一高压电的电压可以为+3kV~+10kV。可以理解地,其他一些实施例中,该第一高压电的电压不限于为+3kV~+10kV。该第一高压电可直接或间接作用于临时储液腔112中的液态基质或者作用于喷嘴12中的液态基质,使得喷嘴12喷出的第一气溶胶颗粒带正电荷。当然,可以理解地,在其他一些实施例中,该第一高压电可以为负高压电。
在本实施例中,该静电雾化装置还包括第二高压发生结构90,该第二高压发生结构90可与该除电结构20连接,可向除电结构20施加第二高压电。在本实施例中,该第二高压电可以为负高压电,电压可以为-3KV~ -5KV。可以理解地,在其他一些实施例中,该第二高压电的电压不限于为-3KV~ -5KV。该第二高压电将经过该除电结构20的空气被电离形成带有第二电荷的离子风。在其他一些实施例中,该第二高压电不限于为负高压电,当该第一高压电为负高压电时,该第二高压电为正高压电。
图7至图10示出了本发明静电雾化装置的第二实施例,其与第一实施例的区别在于,该喷头本体11、除电结构20、辅助电极30的片状本体31以及吸液结构40的主体部41的横截面呈矩形,该喷嘴12、通孔32以及过孔42呈阵列示排布。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (19)

  1. 一种静电雾化装置,其特征在于,包括喷头组件(10)、辅助电极(30)以及吸液结构(40);所述喷头组件(10)通过接入第一高压电将液态基质形成带有第一电荷的第一气溶胶颗粒并喷出;所述辅助电极(30)与所述喷头组件(10)同轴设置;所述吸液结构(40)设置于所述辅助电极(30)上用于吸附积液。
  2. 根据权利要求1所述的静电雾化装置,其特征在于,所述喷头组件(10)包括喷头本体(11);所述喷头本体(11)与所述辅助电极(30)同轴且间隔设置;
    所述辅助电极(30)包括与所述喷头本体(11)相对设置的第一侧、以及与所述第一侧相背设置的第二侧;所述吸液结构(40)设置于所述第二侧。
  3. 根据权利要求1所述的静电雾化装置,其特征在于,所述喷头组件(10)包括至少一个喷嘴(12);
    所述辅助电极(30)包括至少一个通孔(32);
    所述通孔(32)与所述喷嘴(12)一一对应设置;所述喷嘴(12)部分穿设于所述通孔(32)的中心或者所述喷嘴(12)的喷口端位于所述通孔(32)的中心;
    所述吸液结构(40)包括与所述喷嘴(12)一一对应设置的至少一个过孔(42);所述过孔(42)与所述通孔(32)同轴设置。
  4. 根据权利要求3所述的静电雾化装置,其特征在于,所述过孔(42)的尺寸大于所述通孔(32)的尺寸。
  5. 根据权利要求3所述的静电雾化装置,其特征在于,所述通孔(32)的孔径为3mm-20mm。
  6. 根据权利要求3所述的静电雾化装置,其特征在于,所述过孔(42)的孔径相比于所述通孔(32)的孔径大0.4 mm -0.7mm。
  7. 根据权利要求3所述的静电雾化装置,其特征在于,所述喷嘴(12)的部分从所述通孔(32)穿出设置,且所述喷嘴(12)穿出所述通孔(32)的部分的长度为1mm~5mm。
  8. 根据权利要求1所述的静电雾化装置,其特征在于,所述吸液结构(40)的形状与所述辅助电极(30)的形状相适配。
  9. 根据权利要求1所述的静电雾化装置,其特征在于,所述吸液结构(40)与所述辅助电极(30)的横截面尺寸相适配。
  10. 根据权利要求1所述的静电雾化装置,其特征在于,所述吸液结构(40)的厚度为0.8mm~6mm。
  11. 根据权利要求1所述的静电雾化装置,其特征在于,所述吸液结构(40)包括至少一层吸液体(41)。
  12. 根据权利要求11所述的静电雾化装置,其特征在于,所述吸液体(41)为多层,多层所述吸液体(41)沿所述辅助电极(30)的轴向并排设置。
  13. 根据权利要求1所述的静电雾化装置,其特征在于,所述吸液结构(40)包括多孔绝缘结构。
  14. 根据权利要求1所述的静电雾化装置,其特征在于,所述吸液结构(40)的材料包括吸液棉、陶瓷、纤维素、有机高分子中的一种或者多种。
  15. 根据权利要求1所述的静电雾化装置,其特征在于,所述辅助电极(30)的厚度为0.2mm。
  16. 根据权利要求1所述的静电雾化装置,其特征在于,所述辅助电极(30)与所述吸液结构(40)之间设置有连接结构。
  17. 根据权利要求16所述的静电雾化装置,其特征在于,所述连接结构包括粘贴结构、或者卡扣结构。
  18. 根据权利要求1所述的静电雾化装置,其特征在于,还包括与所述喷头组件(10)同轴设置的除电结构(20),所述除电结构(20)通过接入第二高压电产生带有第二电荷的离子风中和所述带有第一电荷的第一气溶胶颗粒。
  19. 根据权利要求1所述的静电雾化装置,其特征在于,还包括与所述喷头组件(10)连接的储液结构(50)。
     
PCT/CN2022/128805 2022-10-31 2022-10-31 静电雾化装置 WO2024092468A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128805 WO2024092468A1 (zh) 2022-10-31 2022-10-31 静电雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128805 WO2024092468A1 (zh) 2022-10-31 2022-10-31 静电雾化装置

Publications (1)

Publication Number Publication Date
WO2024092468A1 true WO2024092468A1 (zh) 2024-05-10

Family

ID=90929058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128805 WO2024092468A1 (zh) 2022-10-31 2022-10-31 静电雾化装置

Country Status (1)

Country Link
WO (1) WO2024092468A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181835A (ja) * 2007-04-06 2007-07-19 Matsushita Electric Works Ltd 静電霧化装置
US20130153690A1 (en) * 2010-09-27 2013-06-20 Panasonic Corporation Electrostatic atomization device
WO2013100766A1 (en) * 2011-12-29 2013-07-04 Gilbert Technologies B.V. System and method for delivering sprayed particles by electrospraying
WO2019102894A1 (ja) * 2017-11-24 2019-05-31 パナソニックIpマネジメント株式会社 静電霧化装置
US20220088627A1 (en) * 2019-01-25 2022-03-24 Spraying Systems Co. Induction device for electrostatic spray nozzle assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181835A (ja) * 2007-04-06 2007-07-19 Matsushita Electric Works Ltd 静電霧化装置
US20130153690A1 (en) * 2010-09-27 2013-06-20 Panasonic Corporation Electrostatic atomization device
WO2013100766A1 (en) * 2011-12-29 2013-07-04 Gilbert Technologies B.V. System and method for delivering sprayed particles by electrospraying
WO2019102894A1 (ja) * 2017-11-24 2019-05-31 パナソニックIpマネジメント株式会社 静電霧化装置
US20220088627A1 (en) * 2019-01-25 2022-03-24 Spraying Systems Co. Induction device for electrostatic spray nozzle assembly

Similar Documents

Publication Publication Date Title
JP6670956B2 (ja) コットンフリー型超音波アトマイザー及び電子タバコ
JP4677102B2 (ja) エーロゾル給送装置及びエーロゾル小滴を給送する方法
CN105499048B (zh) 一种气助式低频静电超声雾化喷头
JP3544350B2 (ja) 噴霧ノズル装置
WO2019011222A1 (zh) 雾化器及其电子烟
US20220273031A1 (en) An aerosol-generating device and a method of generating a mixed aerosol
HU217222B (hu) Inhalálókészülék és azzal ellátott adagolókészülék
US20210053085A1 (en) Microporous atomization plate
JP2006204968A (ja) 霧化装置
WO2024092468A1 (zh) 静电雾化装置
CN108926759A (zh) 一种雾化片用核微孔膜及其制备方法
WO2024065108A1 (zh) 静电雾化装置
CN117983433A (zh) 静电雾化装置
CN117797964A (zh) 静电雾化装置
CN219377559U (zh) 静电雾化装置
CN117983432A (zh) 静电雾化装置
CN211301573U (zh) 一种基于多微米孔阵列静电雾化的医用雾化装置
CN101823043A (zh) 一种材料表面功能化综合处理系统
CN110812628B (zh) 一种基于多微米孔阵列静电雾化的医用雾化装置
CN220123119U (zh) 一种低温等离子体装置
CN114713390A (zh) 一种气体辅助雾化喷嘴及其喷雾器
CN117983434A (zh) 静电雾化系统
CN220967828U (zh) 静电雾化装置
JP2007263416A (ja) 加湿装置
CN218354620U (zh) 超声雾化器及超声雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963787

Country of ref document: EP

Kind code of ref document: A1