WO2024065108A1 - 静电雾化装置 - Google Patents

静电雾化装置 Download PDF

Info

Publication number
WO2024065108A1
WO2024065108A1 PCT/CN2022/121457 CN2022121457W WO2024065108A1 WO 2024065108 A1 WO2024065108 A1 WO 2024065108A1 CN 2022121457 W CN2022121457 W CN 2022121457W WO 2024065108 A1 WO2024065108 A1 WO 2024065108A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization device
electrostatic atomization
nozzle
charge
nozzle assembly
Prior art date
Application number
PCT/CN2022/121457
Other languages
English (en)
French (fr)
Inventor
李卫华
杨俊�
王开元
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2022/121457 priority Critical patent/WO2024065108A1/zh
Publication of WO2024065108A1 publication Critical patent/WO2024065108A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages

Definitions

  • the present invention relates to the field of atomization, and more particularly to an electrostatic atomization device.
  • the existing electronic atomization device uses a heating component to atomize the medium to be atomized at a temperature of about 300°C. A series of chemical reactions will occur at high temperatures, resulting in the production of harmful substances, such as aldehydes and ketones.
  • the particle size of the smoke atomized by the existing electronic atomization device is about 1 micron, which cannot be adjusted over a large range.
  • the mature electrostatic atomization technology in the related art is mainly used in mass spectrometry, pesticide spraying, painting and environmental disinfection. No mature products have been seen in other application fields. If the electrostatic atomization technology is applied in the medical field, the aerosol particles generated need to be neutralized under the premise of meeting the atomization volume before they can reach the targeted parts of the lungs, such as the bronchioles, alveoli, etc. Otherwise, aerosols with too large particle size will mainly deposit in the mouth and throat. In this case, the application of electrostatic atomization technology is limited and can only be applied to the field of throat or oral treatment, and cannot be applied to other medical fields. The electrostatic atomization device in the related technology is not designed with a neutralization unit, so the aerosol particles cannot enter the lungs.
  • the technical problem to be solved by the present invention is how to neutralize charged aerosol particles so that the aerosol particles meet the requirements of entering the lungs. Therefore, it is necessary to provide an electrostatic atomization device that can neutralize charged aerosol particles.
  • an electrostatic atomization device which includes a liquid storage structure, a nozzle assembly, and a charge removal structure; the nozzle assembly is connected to the liquid storage structure, and the liquid matrix output by the liquid storage structure is formed into first aerosol particles with a first charge and sprayed out by connecting to a first high voltage electricity; the charge removal structure is coaxially arranged with the nozzle assembly, and the ion wind with a second charge is generated by connecting to a second high voltage electricity to neutralize the first aerosol particles with the first charge.
  • the static elimination structure includes an annular body and a plurality of ion generating parts; the plurality of ion generating parts are disposed at one end of the annular body, are spaced apart along the circumference of the annular body, and extend along the axial direction of the annular body respectively;
  • the extending direction of the ion generating portion is the same as the ejection direction of the ejection head assembly.
  • each of the ion generating portions includes a tip extending toward a spraying direction of the spray head assembly.
  • a cavity and an air intake structure are included;
  • the nozzle assembly and the charge removal structure are at least partially disposed in the cavity, and the cavity is used for neutralizing the first aerosol particles with the first charge with the ion wind with the second charge;
  • the air inlet structure is in communication with the cavity so that external air can enter the cavity and form the ion wind with the second charge through the charge removal structure.
  • the static elimination structure and the nozzle assembly are provided with an isolation structure for insulating the static elimination structure from the nozzle assembly.
  • an auxiliary electrode is further included.
  • the auxiliary electrode is disposed in the spraying direction of the nozzle assembly and cooperates with the nozzle assembly to form an electric field, so that the nozzle assembly can stably spray the first aerosol particles with the first charge.
  • the spray head assembly includes at least one spray hole
  • the auxiliary electrode comprises at least one through hole, the through hole is arranged corresponding to the spray hole, the spray hole is arranged on the central axis of the through hole, and the hole diameter is smaller than the hole diameter of the through hole.
  • the diameter of the nozzle hole is 100 microns to 300 microns, and the diameter of the through hole is 3-20 mm.
  • the plurality of through holes are arranged at intervals and correspond one to one with the spray holes.
  • the auxiliary electrode is in a sheet shape.
  • a hollow structure is disposed in the middle of the auxiliary electrode.
  • the nozzle assembly includes a nozzle body and at least one nozzle; the nozzle body is connected to the liquid storage structure; the nozzle is arranged on the nozzle body and extends toward the through hole, and the spray hole is formed on the nozzle.
  • the nozzle comprises a capillary.
  • a first high voltage generating structure for applying the first high voltage to the nozzle assembly is also included.
  • a second high voltage generating structure for applying the second high voltage to the static eliminating structure is further included.
  • a power mechanism is further included, wherein the power mechanism is connected to the liquid storage structure and is used to output the liquid matrix in the liquid storage structure to the spray head assembly.
  • the power mechanism includes a boost pump
  • the electrostatic atomization device also includes a voltage controller connected to the booster pump.
  • the electrostatic atomization device implemented in the present invention has the following beneficial effects: by providing a nozzle assembly that can form and spray first aerosol particles with a first charge, and by coaxially arranging a charge-removing structure with the nozzle assembly, the charge-removing structure can generate ion wind with a second charge to neutralize the first aerosol particles with the first charge, and the flow direction of the first aerosol particles is made consistent with the flow direction of the ion wind, so that the first aerosol particles with the first charge can be better neutralized and the neutralized aerosol particles can be taken out, thereby meeting the needs of users in the medical field for aerosol to enter the lungs and broadening the application field of the electrostatic atomization device.
  • FIG1 is a schematic structural diagram of an electrostatic atomization device according to a first embodiment of the present invention.
  • FIG2 is a schematic diagram of a partial structure of the electrostatic atomization device shown in FIG1 ;
  • FIG3 is a partial structural cross-sectional view of the electrostatic atomization device shown in FIG2 ;
  • FIG4 is a schematic diagram of a partial structure of the electrostatic atomization device shown in FIG2 from another angle;
  • FIG5 is a schematic diagram of a partial structural decomposition of the electrostatic atomization device shown in FIG2 ;
  • FIG6 is a schematic structural diagram of the static removal structure of the electrostatic atomization device shown in FIG5 ;
  • FIG7 is a schematic structural diagram of an auxiliary electrode of the electrostatic atomization device shown in FIG5 ;
  • FIG. 8 is a schematic structural diagram of an auxiliary electrode of an electrostatic atomization device according to a second embodiment of the present invention.
  • FIG9 is a schematic diagram of a partial structure of an electrostatic atomization device according to a third embodiment of the present invention.
  • FIG10 is a schematic diagram of a partial structure of the electrostatic atomization device shown in FIG9 from another angle;
  • FIG11 is a schematic structural diagram of the static elimination structure of the electrostatic atomization device shown in FIG10;
  • FIG12 is a schematic structural diagram of an auxiliary electrode of the electrostatic atomization device shown in FIG10 ;
  • FIG. 13 is a schematic diagram of the structure of the auxiliary electrode of the electrostatic atomization device according to the fourth embodiment of the present invention.
  • FIG1 shows an electrostatic atomization device 1 in the first embodiment of the present invention.
  • the electrostatic atomization device 1 can be applied to the fields of medical treatment, cosmetology, electronic atomization, etc.
  • the electrostatic atomization device 1 can atomize liquid substrates with high viscosity at room temperature and high flow rate, and can regulate the particle size of aerosol particles formed by atomization, greatly reducing the generation of harmful substances.
  • the electrostatic atomization device 1 can adjust the control parameters (such as flow rate, voltage, inter-electrode spacing, number of nozzles and aperture, etc.) so that the particle size of the sprayed aerosol can be adjusted from a few microns to tens of microns.
  • the electrostatic atomization technology used by the electrostatic atomization device 1 atomizes the same mass of liquid substrate, and the power used is about 50% of the traditional electronic atomization technology, which greatly reduces energy consumption.
  • electrostatic atomization technology refers to the process in which a liquid overcomes its own surface tension and breaks into droplets under the action of an electric field force.
  • the process of implementing electrostatic spraying is relatively simple. Usually, it is only necessary to inject a liquid matrix with sufficient conductivity and moderate surface tension into a metal capillary; the capillary is connected to a DC voltage (about several thousand volts); and the ground electrode is several centimeters away from the capillary.
  • the resistivity of the liquid matrix is generally selected to be greater than 200ohm-m, and more preferably greater than 250ohm-m; the surface tension of the liquid matrix is 15-20 dynes/cm, and more preferably 20-35 dynes/cm; the dielectric constant of the liquid matrix is less than 65, and more preferably less than 45; the viscosity is less than 100cp, and more preferably less than 50cp.
  • the liquid meniscus at the outlet of the capillary is conical, and an extremely fine jet is ejected from the cone tip. This jet splits into a fine spray of charged droplets downstream of the tip of the Taylor cone.
  • this mode is called the cone-jet mode.
  • the electrostatic spraying in cone tip jet mode has the following advantages: good monodispersity of aerosol particles, a wide range of aerosol particle diameters, nozzles that are not easily clogged, extremely low theoretical spray consumption ratio, and high deposition efficiency.
  • the electrostatic atomization device 1 includes a liquid storage structure 10, a housing 20, a base 30, a nozzle assembly 40 and a charge removal structure 50.
  • the liquid storage structure 10 is mounted on the base 30 and connected to the nozzle assembly 40.
  • the liquid storage structure 10 can be used to store a liquid matrix and supply the liquid matrix to the nozzle assembly 40.
  • the housing 20 is disposed on the base 30 and is used to accommodate the nozzle assembly 40 and the charge removal structure 50.
  • the nozzle assembly 40 is mounted on the base 30, is located in the housing 20, and is connected to the liquid storage structure 10, so that the liquid matrix output by the liquid storage structure 10 forms a first aerosol particle with a first charge and sprays it out.
  • the charge removal structure 50 is mounted on the base 30 and is located in the housing 10. It is disposed on the periphery of the nozzle assembly 40 and is coaxially disposed with the nozzle assembly 40 to generate an ion wind with a second charge to neutralize the first aerosol particles with a first charge, so that the first aerosol particles with no charge are formed and used by the user.
  • the first charge and the second charge are charges of opposite polarity.
  • the liquid storage structure 10 may be columnar, specifically, in the present embodiment, the liquid storage structure 10 is cylindrical.
  • the liquid storage structure 10 is arranged at the central axis of the base 30, and may partially penetrate into the housing 20, be connected to the nozzle assembly 40, and may be in fluid communication with the nozzle assembly 40.
  • the liquid storage structure 10 is a hollow structure, and a liquid storage cavity 11 is formed inside, and the liquid storage cavity 11 is used to store liquid matrix.
  • a lower liquid pipe 12 is provided at one end of the liquid storage structure 10 that penetrates into the housing 20, one end of the lower liquid pipe 12 is in communication with the liquid storage cavity 11, and the other end is in communication with the nozzle assembly 40.
  • a lower liquid channel 120 is formed inside the lower liquid pipe 12, and the lower liquid channel 120 is used to output the liquid matrix in the liquid storage cavity 11 to the nozzle assembly 40. It can be understood that in some other embodiments, the liquid storage structure 10 may not be limited to being cylindrical.
  • the housing 20 may be a cylindrical structure with two ends through, and a cavity 21 is formed inside, which is used to accommodate the nozzle assembly 40 and the charge removal structure 50, and to provide the ion wind with the second charge to neutralize the first aerosol particles with the first charge.
  • the housing 20 is not limited to being cylindrical, and may be a cylindrical structure with a square or elliptical cross section. In some other embodiments, the housing 20 may be omitted.
  • the cavity 21 may be formed in the base 30.
  • the base 30 is disposed at the opening of one end of the housing 20 and is coaxially disposed with the housing 20.
  • the cross section of the base 30 may be roughly circular.
  • the base 30 may include an end wall 30a and a side wall 30b.
  • the end 30a is disposed at one end of the side wall 30b and is surrounded by the end wall 30a to form a space in communication with the cavity 21.
  • the end of the side wall 30b away from the end wall 30a may be connected to the housing 20.
  • the cross section of the base 30 may not be limited to being circular, but may be elliptical, rectangular, square or other shapes.
  • the liquid storage structure 10 is disposed at the central axis of the end wall 30a.
  • the liquid storage structure 10 may form an integral structure with the base 30, and specifically, the liquid storage structure 10 may form an integral structure with the base 30 by injection molding. It can be understood that in some other embodiments, the liquid storage structure 10 may also be detachably connected to the base 30.
  • the electrostatic atomization device further comprises an air intake structure 31, which is disposed on the base 30.
  • the air intake structure 31 is disposed on the end wall 30a and is in communication with the cavity 21, and is used to allow external gas to enter the cavity 21, and for the deionization structure 50 to ionize to form an ion wind with a second charge.
  • the air intake structure 31 comprises a plurality of air intake holes 310, which may be distributed at intervals along the circumference of the end wall 30a, and the plurality of air intake holes 310 may be disposed on the periphery of the liquid storage structure 10, and may be located on the periphery of the nozzle assembly 40.
  • the nozzle assembly 40 includes a nozzle body 41.
  • the nozzle body 41 is a columnar structure, and the cross-section of the nozzle body 41 may be roughly circular.
  • the nozzle body 41 may be coaxially arranged with the base 30, and may be coaxially arranged with the liquid storage structure 10.
  • a temporary liquid storage cavity 411 is arranged inside the nozzle body 41, and the temporary liquid storage cavity 411 may be an annular cavity, and may be connected to the lower liquid channel 120 and the nozzle 42.
  • the nozzle body 41 may be made of metal. Of course, it can be understood that in some other embodiments, the nozzle body 41 may not be limited to metal.
  • the nozzle assembly 40 further includes a nozzle 42, and the nozzle 42 can be multiple, and the multiple nozzles 42 are arranged on the end surface of the nozzle body 41 away from the liquid storage structure 10.
  • the multiple nozzles 42 can be arranged at intervals along the circumference of the nozzle body 41.
  • the multiple nozzles 42 can be arranged around a circle and arranged in a circular manner, so that the number of arrangements is the largest and independent of each other.
  • the multiple nozzles 42 can form a multi-circle arrangement.
  • the multiple nozzles 42 can also be arranged in an array.
  • Each nozzle 42 can be connected to the temporary liquid storage cavity 411 to atomize the liquid matrix to form aerosol particles.
  • the nozzle 42 can be a capillary metal tube, specifically, the nozzle 42 can be a metal needle tube.
  • the length of the nozzle 42 is less than the depth of the cavity 21, that is, a set distance is left between the nozzle 42 and the opening at one end of the cavity 21.
  • a spray hole 43 is formed in each nozzle 42.
  • Each spray hole 43 is arranged in a one-to-one correspondence with the nozzle 42.
  • the spray hole 43 is a capillary hole and can be a circular hole.
  • the aperture of the spray hole 43 can be 100 microns to 300 microns.
  • the spray holes 43 are arranged in a circular manner, and the use of a circular arrangement method can maximize the number of spray holes 43 and be independent of each other. It can be understood that in some other embodiments, the nozzle 42 is not limited to multiple, and in some other embodiments, the nozzle 42 can also be one, that is, the spray hole 43 can also be one.
  • the particle size of the aerosol particles ejected by the spray hole 43 there is a negative correlation between the particle size of the aerosol particles ejected by the spray hole 43 and the number of the spray holes 43, that is, the more the number of spray holes 43, the smaller the particle size of the aerosol particles ejected.
  • the size of the aerosol particles is positively correlated with the flow rate.
  • the purpose of adjusting the size of the aerosol particles can be achieved by increasing or decreasing the number of nozzle holes 43.
  • the nozzle assembly 40 can be connected to the first high voltage electricity and form first aerosol particles with a first charge under the action of the first high voltage electricity, and sprayed through the nozzle 42.
  • the first high voltage electricity can be positive high voltage electricity.
  • the first charge can be a positive charge, that is, the first aerosol particles sprayed by the nozzle 42 have a positive charge.
  • the first high voltage electricity can also be a negative high voltage electricity, and the first charge can also be a negative charge.
  • the de-static structure 50 is annular, one end of which can be connected to the base 30, and can be located on the periphery of the nozzle body 41, that is, the cross-section of the de-static structure 50 and the nozzle body 41 can be on the same plane, that is, on the cross-section of the electrostatic atomization device, the two can form a concentric circle structure.
  • the de-static structure 50 can be arranged at one end of the nozzle body 41 away from the nozzle 42, and can be spaced apart from the nozzle body 41 in the axial direction, that is, an ion wind can be formed upstream of the flow direction of the first aerosol particles, thereby further reducing the adsorption of the first aerosol particles ejected from the nozzle 42 on the de-static structure 50.
  • the static-eliminating structure 50 is coaxially arranged with the nozzle body 41.
  • the flow direction of the first aerosol particles sprayed out of the nozzle assembly 40 can be consistent with the flow direction of the ion wind, thereby better neutralizing the sprayed first aerosol particles (so that the first aerosol particles will not be adsorbed on the inner wall of the nozzle 42 during the outflow process and cannot be sprayed out).
  • the static elimination structure 50 includes an annular body 51 and a plurality of ion generating parts 52.
  • the annular body 51 may be formed by winding a metal sheet. Of course, it is understood that in some other embodiments, the annular body 51 is not limited to being formed by winding a metal sheet.
  • the annular body 51 may be in the shape of a circular ring. Of course, it is understood that in some other embodiments, the annular body 51 may also be in the shape of an elliptical ring, a rectangular ring, etc.
  • the plurality of ion generating parts 52 are arranged at one end of the annular body 51 away from the base 30, and may be arranged at intervals along the axial direction of the annular body 51, and respectively extend along the axial direction of the annular body 51 toward the direction of the nozzle 42.
  • the extension direction of the plurality of ion generating parts 52 is the same as the ejection direction of the nozzle assembly 40, that is, the flow direction of the generated ion wind is consistent with the flow direction of the first aerosol particles ejected by the nozzle assembly 40.
  • Each ion generating portion 52 includes a tip 521, which can extend toward the ejection direction of the nozzle assembly 40, and the tip 521 is used to generate ions with a second charge to neutralize the first aerosol particles with a first charge.
  • the ion generating portion 52 is sawtooth-shaped and can be formed by laser cutting a metal sheet.
  • the charge removal structure 50 is connected to the second high voltage electricity and ionizes the air entering the cavity 21 through the ion generating unit 52 to form an ion wind with a second charge.
  • the so-called ion wind refers to ions with a set charge that are not gas molecules flowing in the space.
  • the second high voltage electricity is negative high voltage electricity
  • the second charge can be a negative charge, that is, the ion wind is a negative ion wind.
  • the negative ion can be a negative oxygen ion, which can be formed by combining free electrons with oxygen molecules in the air.
  • negative oxygen ions can effectively enhance the ciliary movement of the tracheal mucosal epithelium, affect the activity of respiratory enzymes in the epithelial villi, improve the secretory function of the alveoli and the ventilation and gas exchange function of the lungs, relieve bronchospasm, increase vital capacity, adjust respiratory rate, and relieve cough.
  • Negative ions can also promote the regeneration of nasal mucosal epithelial cells and restore the secretory function of the mucosa. It has good effects on asthma, tracheitis, whooping cough in children and other diseases.
  • negative ions can also enhance human immunity, improve the body's self-healing ability, effectively prevent and treat diabetes, tumors and other diseases, and are an ideal choice for people's daily health care. That is, negative ions are generated while spraying, and the side effects for users are relatively small or even non-existent, but beneficial to the user's body.
  • the charge removal structure 50 can be a negative ion generating device.
  • the charge removal structure 50 is not limited to the design of the present invention.
  • Other charge removal structures that can generate negative ion wind can be used in the present invention, such as a carbon brush.
  • the charge removal structure 50 when the first charge is a negative charge, can also be a positive ion generating device, and the second charge can also be a positive charge.
  • an isolation structure 412 is provided between the static removal structure 50 and the nozzle assembly 40.
  • the isolation structure 412 is sleeved on the nozzle body 41.
  • it can be an insulating partition, and the insulating partition forms an integral structure with the nozzle body 41.
  • the isolation structure 412 it can be used to insulate the static removal structure 50 from the nozzle assembly 40, that is, to isolate the positive and negative electrodes, to prevent the air between the positive and negative electrodes from being broken through, thereby connecting the positive and negative electrodes and causing safety hazards.
  • the isolation structure can be a gap left between the static removal structure 50 and the nozzle assembly 40, or an insulating layer coated on the outer surface of the nozzle body 41.
  • the isolation structure 412 can be omitted.
  • the nozzle body 41 can be made of an insulating material as a whole.
  • the electrostatic atomization device further includes an auxiliary electrode 60.
  • the auxiliary electrode 60 is located on the inner side of the housing 20, close to one end of the housing 10 away from the base 30, and located in the spraying direction of the nozzle assembly 40.
  • the auxiliary electrode 60 can be grounded and can cooperate with the nozzle assembly 40 to form a sufficiently strong electric field, so that the first aerosol particles with the first charge sprayed out by the nozzle assembly 40.
  • the auxiliary electrode 60 can also reduce the influence of space charge, ensuring that each nozzle assembly 40 can stably spray out the first aerosol particles with the first charge.
  • the particle size of the first aerosol particles can be 1-5 microns.
  • the first aerosol particles carry the first charge, and are neutralized by the ion wind with the second charge and carried out of the cavity 21.
  • the auxiliary electrode 60 is in the form of a sheet, and includes a sheet body 61 and a plurality of through holes 62.
  • the sheet body 61 is roughly circular.
  • the plurality of through holes 62 are arranged at intervals on the sheet body 61, and are arranged at intervals along the circumference of the sheet body 61.
  • the spray hole 43 can be arranged in a one-to-one correspondence with the through hole 62.
  • the spray hole 43 can be arranged on the central axis of the through hole.
  • the through hole 62 is a circular hole, and the spray hole 43 can be located on the same straight line as the center of the through hole 62 or can be arranged to coincide with the center of the through hole 62.
  • the aperture of the through hole 62 is larger than the aperture of the spray hole 43 (that is, the aperture of the spray hole 43 is smaller than the aperture of the through hole 62), and a strong electric field is formed in the gap between the spray hole 43 and the hole wall of the through hole 62.
  • the through hole 62 is 3-20 mm. When the diameter of the through hole 62 is less than 3 mm, the through hole 62 is prone to liquid accumulation and discharge, causing the device to fail to operate. If the through hole 62 is larger than 20 mm, the required voltage will be too high, resulting in energy waste.
  • the arrangement of the through hole 62 can be the same as the arrangement of the nozzle 43. In some other embodiments, the through hole 62 is not limited to multiple, and in some other embodiments, the through hole 62 can also be one.
  • the auxiliary electrode 60 further includes a hollow structure 63, which can be arranged in the middle of the auxiliary electrode.
  • the through hole 62 can be arranged at intervals along the circumference of the hollow structure 63.
  • the hollow structure 63 can be a circular hole.
  • the hollow structure 63 is not limited to a circular hole, and can be a square hole or a hole of other shapes.
  • the auxiliary electrode 60 can be connected to the side wall of the housing 20 by setting a connecting structure 64.
  • the connecting structure 64 can be integrally formed on the side wall of the sheet body 61, which can be a connecting rib, and one end can be clamped or welded to the housing 20.
  • the electrostatic atomization device also includes a power mechanism 70, which can be connected to the liquid storage structure 10, and is used to output the liquid matrix in the liquid storage structure 10 to the nozzle assembly 40.
  • the power mechanism 70 can be a booster pump, specifically, the power mechanism 70 can be a micro booster pump, which is conducive to the miniaturization of the electrostatic atomization device structure.
  • the power mechanism 70 can increase the pressure of the liquid matrix in the liquid storage chamber 11, so that the liquid matrix in the liquid storage chamber 11 flows smoothly down to the temporary liquid storage chamber 411 along the lower liquid channel 12. It can be understood that in some other embodiments, the power mechanism 70 is not limited to a booster pump.
  • the electrostatic atomization device also includes a voltage controller 80, which can be connected to the booster pump to regulate the booster pump, thereby controlling the compression volume in the liquid storage chamber 11, thereby controlling the mass of the liquid matrix pushed out of the liquid storage chamber 11 to achieve quantitative atomization. It can be understood that in some other embodiments, the voltage controller 80 can be omitted.
  • the electrostatic atomization device further includes a first high voltage generating structure 90, which can be used to apply a first high voltage to the nozzle assembly.
  • the first high voltage is a positive high voltage.
  • the voltage of the first high voltage can be +3.5kv ⁇ +5kv. It can be understood that in some other embodiments, the voltage of the first high voltage is not limited to +3.5kv ⁇ +5kv.
  • the first high voltage can directly or indirectly act on the liquid matrix in the temporary liquid storage chamber 411 or on the liquid matrix in the nozzle 42, so that the first aerosol particles ejected from the nozzle 42 are positively charged.
  • the first high voltage can be a negative high voltage.
  • the electrostatic atomization device further includes a second high voltage generating structure 100, which can be connected to the de-static structure 50, and can apply a second high voltage to the de-static structure 50.
  • the second high voltage can be a negative high voltage, and the voltage can be -3KV to -5KV. It can be understood that in some other embodiments, the voltage of the second high voltage is not limited to -3KV to -5KV.
  • the second high voltage will ionize the air passing through the de-static structure 50 to form an ion wind with a second charge.
  • the second high voltage is not limited to negative high voltage, and when the first high voltage is negative high voltage, the second high voltage is positive high voltage.
  • FIG8 shows a second embodiment of the electrostatic atomization device of the present invention, which differs from the first embodiment in that the hollow structure 63 is omitted.
  • FIG. 9 to 12 show a third embodiment of the electrostatic atomization device of the present invention, which is different from the second embodiment in that the housing 20 can be omitted and the cavity 21 is formed in the base 30.
  • the cross section of the base 30 can be roughly rectangular.
  • the nozzle assembly 40 and the sheet body 61 of the auxiliary electrode 60 are all rectangular, and the nozzle holes 43 and the through holes 62 can be arranged in a matrix.
  • the annular body 51 of the static elimination structure 50 can be an annular body with a rectangular cross section.
  • FIG13 shows a fourth embodiment of the electrostatic atomization device of the present invention, which differs from the third embodiment in that the auxiliary electrode 60 further includes a hollow structure 63 disposed in the middle of the sheet body 61 to reduce adsorption of aerosol particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

一种静电雾化装置(1),其包括储液结构(10)、喷头组件(40)、除电结构(50)。喷头组件(40)与储液结构(10)连接,通过接入第一高压电使储液结构(10)输出的液态基质形成带有第一电荷的第一气溶胶颗粒并喷出,除电结构(50)与喷头组件(40)同轴设置,通过接入第二高压电产生带有第二电荷的离子风中和带有第一电荷的第一气溶胶颗粒。该静电雾化装置(1)满足了医疗领域用户对气溶胶入肺的需求,拓宽了静电雾化装置的应用领域。

Description

静电雾化装置 技术领域
本发明涉及雾化领域,更具体地说,涉及一种静电雾化装置。
背景技术
现有的电子雾化装置是用发热组件在300℃左右的温度下雾化待雾化介质。高温下会发生一系列的化学反应,导致有害物质的产生,例如醛酮等。并且现有的电子雾化装置雾化出的烟气粒径在1微米左右,无法大范围调控。
技术问题
相关技术中的成熟静电雾化技术主要应用在质谱、农药喷洒、喷漆及环境消杀,其他应用领域暂未见到成熟的产品。如果将静电雾化技术应用在医疗领域,满足雾化量的前提下,产生的气溶胶颗粒需要被中和,才能到达肺的靶向部位,例如细支气管、肺泡等。否则粒径过大的气溶胶会主要沉积在口喉。这种情况下,静电雾化技术的应用被局限,只能应用在喉部或口腔治疗领域,无法应用在医疗的其他领域。相关技术中的静电雾化装置没有设计中和单元,无法使得气溶胶颗粒入肺。
技术解决方案
本发明要解决的技术问题在于如何中和带电荷的气溶胶颗粒使得所述气溶胶颗粒满足入肺需求,因此有必要提供一种能够中和带电荷的气溶胶颗粒的静电雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种静电雾化装置,其包括储液结构、喷头组件、除电结构;所述喷头组件与所述储液结构连接,通过接入第一高压电使所述储液结构输出的液态基质形成带有第一电荷的第一气溶胶颗粒并喷出,所述除电结构与所述喷头组件同轴设置,通过接入第二高压电产生带有第二电荷的离子风中和所述带有第一电荷的第一气溶胶颗粒。
在一些实施例中,所述除电结构包括环状体以及多个离子产生部;多个所述离子产生部设置于所述环状体的一端,沿所述环状体的周向间隔设置,且分别沿所述环状体的轴向延伸;
所述离子产生部延伸的方向与所述喷头组件的喷出方向相同。
在一些实施例中,每一所述离子产生部包括朝所述喷头组件的喷出方向延伸的尖端。
在一些实施例中,包括腔体以及进气结构;
所述喷头组件以及所述除电结构至少部分设置于所述腔体中,所述腔体用于所述带有第二电荷的离子风中和所述带有第一电荷的第一气溶胶颗粒;
所述进气结构与所述腔体连通,以供外部气体进入所述腔体中通过所述除电结构形成所述带有第二电荷的离子风。
在一些实施例中,所述除电结构与所述喷头组件设置有隔离结构,用于将所述除电结构与所述喷头组件绝缘。
在一些实施例中,还包括辅助电极,所述辅助电极设置于所述喷头组件的喷出方向上,并与所述喷头组件配合形成电场,从而使所述喷头组件稳定地喷出所述带有第一电荷的第一气溶胶颗粒。
在一些实施例中,所述喷头组件包括至少一个喷孔;
所述辅助电极包括至少一个通孔,所述通孔与所述喷孔对应设置,所述喷孔设置于所述通孔的中轴线上,且孔径小于所述通孔的孔径。
在一些实施例中,所述喷孔的孔径为100微米~300微米,所述通孔的孔径为3-20mm。
在一些实施例中,所述喷孔为多个,多个所述喷孔间隔设置;
所述通孔为多个,多个所述通孔间隔设置且与所述喷孔一一对应设置。
在一些实施例中,所述辅助电极呈片状。
在一些实施例中,所述辅助电极的中部设置有镂空结构。
在一些实施例中,所述喷头组件包括喷头本体以及至少一个喷嘴;所述喷头本体与储液结构连通;所述喷嘴设置于所述喷头本体上,且朝所述通孔延伸,所述喷孔形成于所述喷嘴上。
在一些实施例中,所述喷嘴包括毛细管。
在一些实施例中,还包括用于向所述喷头组件施加所述第一高压电的第一高压发生结构。
在一些实施例中,还包括用于向所述除电结构施加所述第二高压电的第二高压发生结构。
在一些实施例中,还包括动力机构,所述动力机构与所述储液结构连接,用于将所述储液结构中的液态基质输出至所述喷头组件。
在一些实施例中,所述动力机构包括增压泵;
所述静电雾化装置还包括与所述增压泵连接的电压控制器。
有益效果
实施本发明的静电雾化装置,具有以下有益效果:通过设置可形成并喷出带有第一电荷的第一气溶胶颗粒的喷头组件,并通过将除电结构与喷头组件同轴设置,进而可通过除电结构产生带有第二电荷的离子风中和带有第一电荷的第一气溶胶颗粒,且使得第一气溶胶颗粒的流动方向与离子风的流动方向一致,从而可更好中和带有第一电荷的第一气溶胶颗粒并将中和后的气溶胶颗粒带出,满足了医疗领域用户对气溶胶入肺的需求,拓宽了静电雾化装置的应用领域。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例静电雾化装置的结构示意图;
图2是图1所示静电雾化装置的局部结构示意图;
图3是图2所示静电雾化装置的局部结构剖视图;
图4是图2所示静电雾化装置的局部结构另一角度示意图;
图5是图2所示静电雾化装置的局部结构分解示意图;
图6是图5所示静电雾化装置的除电结构的结构示意图;
图7是图5所示静电雾化装置的辅助电极的结构示意图;
图8是本发明第二实施例静电雾化装置的辅助电极的结构示意图;
图9是本发明第三实施例静电雾化装置的局部结构示意图;
图10是图9所示静电雾化装置的局部结构另一角度示意图;
图11是图10所示静电雾化装置的除电结构的结构示意图;
图12是图10所示静电雾化装置的辅助电极的结构示意图;
图13是本发明第四实施例静电雾化装置的辅助电极的结构示意图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1示出了本发明第一实施例中的静电雾化装置1。该静电雾化装置1可应用于医疗、美容、电子雾化等领域。该静电雾化装置1可在常温且高流量的情况下雾化粘度较大的液态基质,并且可以调控雾化形成的气溶胶颗粒的粒径,极大地减少有害物质的产生。具体地,该静电雾化装置1可通过调节控制参数(如流量,电压,极间距,喷头数目和孔径等),使得喷出气溶胶粒径可调范围为几微米到几十微米。与传统电子雾化技术(陶瓷和棉芯)相比,该静电雾化装置1所采用的静电雾化技术雾化相同质量的液态基质,所用的功率约为传统电子雾化技术的50%,大大降低了能耗。
需要说明的是,上述静电雾化技术是指液体在电场力的作用下克服自身表面张力破碎成液滴的过程。静电喷雾的实现过程比较简单,通常只需将具有足够电导率和适度表面张力的液态基质注入金属毛细管;毛细管接通直流电压(约数千伏);距离毛细管若干厘米处是地极。其中,液态基质的电阻率一般选择为大于200ohm-m,更优选的是大于250ohm-m;液态基质的表面张力为15-20 dynes/cm,更优选的是20-35 dynes/cm;该液态基质的介电常数小于65,更优选的是小于45;粘度小于100cp,更优选的是小于50cp。在电场作用下,毛细管出口处的液体弯月面呈锥形,锥尖喷出极细的射流。这股射流在泰勒锥的锥尖下游分裂成为细小的带电液滴喷雾。鉴于液体弯月面的形态,这种模式称为锥尖射流(cone-jet)模式。锥尖射流模式的静电喷雾具有如下优点:气溶胶颗粒单分散性好、可获得气溶胶颗粒直径范围广、喷嘴不容易堵塞、理论雾耗比极低、沉积效率高。
如图1至图5所示,在本实施例中,该静电雾化装置1包括储液结构10、外壳20、基座30、喷头组件40以及除电结构50。在本实施例中,该储液结构10安装于基座30上,且与喷头组件40连接,该储液结构10可用于储存液态基质,并将液态基质供应至喷头组件40。该外壳20设置于基座30上,用于收容喷头组件40以及除电结构50。该喷头组件40安装于基座30上,且位于该外壳20中,并与储液结构10连接,用于使得储液结构10输出的液态基质形成带有第一电荷的第一气溶胶颗粒,并将其喷出。该除电结构50安装于该基座30上,且位于该外壳10中,并设置于喷头组件40的外周且与喷头组件40同轴设置,用于产生带有第二电荷的离子风中和带有第一电荷的第一气溶胶颗粒,使其形成不带电荷的第二气溶胶颗粒被用户使用。在本实施例中,该第一电荷以及第二电荷为极性相反的电荷。
在本实施例中,该储液结构10可呈柱状,具体地,在本实施例中,该储液结构10为圆柱状。该储液结构10设置于基座30的中轴处,并且可部分穿入该外壳20中,与喷头组件40连接,且可与喷头组件40流体连通。该储液结构10为中空结构,内侧形成储液腔11,该储液腔11用于储存液态基质。该储液结构10穿入外壳20中的一端设置有下液管12,该下液管12的一端与储液腔11连通,另一端与喷头组件40连通。该下液管12内侧形成下液通道120,该下液通道120用于供储液腔11中的液态基质输出至喷头组件40。可以理解地,在其他一些实施例中,该储液结构10可不限于呈圆柱状。
在本实施例中,该外壳20可以为两端贯通的圆筒状结构,内侧形成腔体21,用于收容喷头组件40以及除电结构50,并供带有第二电荷的离子风中和带有第一电荷的第一气溶胶颗粒。在其他一些实施例中,该外壳20不限于呈圆筒状,可以为横截面为方形或者椭圆形的筒状结构。在其他一些实施例中,该外壳20可以省去。该腔体21可形成于基座30中。
在本实施例中,该基座30设置于该外壳20一端的开口处,且与外壳20同轴设置。该基座30的横截面可大致呈圆形。在本实施例中,该基座30可包括端壁30a以及侧壁30b。该端部30a设置于该侧壁30b的一端,且与端壁30a围设形成于腔体21连通的空间。该侧壁30b远离该端壁30a的一端可与外壳20相接。在其他一些实施例中,该基座30的横截面可不限于呈圆形,可以呈椭圆形、长方形、正方形或者其他形状。该储液结构10设置于该端壁30a的中轴处。在本实施例中,该储液结构10可与基座30形成一体结构,具体地,该储液结构10可与基座30通过注塑形成一体结构。可以理解地,在其他一些实施例中,该储液结构10也可与基座30可拆卸连接。
在本实施例中,该静电雾化装置还包括进气结构31,该进气结构31设置于基座30上,具体地,在本实施例中,该进气结构31设置于端壁30a上,且与腔体21连通,用于供外部气体进入腔体21中,供除电结构50电离形成带有第二电荷的离子风。在本实施例中,该进气结构31包括多个进气孔310,该多个进气孔310可沿该端壁30a的周向间隔分布,该多个进气孔310可设置于该储液结构10的外周,且可位于该喷头组件40的外周。
在本实施例中,该喷头组件40包括喷头本体41。在本实施例中,喷头本体41为柱状结构,该喷头本体41的横截面可大致呈圆形。该喷头本体41可与该基座30同轴设置,并可与该储液结构10同轴设置。该喷头本体41内侧设置有临时储液腔411,该临时储液腔411可以为环腔,且可与下液通道120以及喷嘴42连通。在本实施例中,该喷头本体41可采用金属材质。当然,可以理解地,在其他一些实施例中,该喷头本体41也可不限于为金属材质。
在本实施例中,在本实施例中,该喷头组件40还包括喷嘴42,该喷嘴42可以为多个,该多个喷嘴42设置于该喷头本体41远离储液结构10的端面上。在本实施例中,该多个喷嘴42可沿喷头本体41的周向间隔设置,在本实施例中,该多个喷嘴42可以围绕形成一圈,呈圆周排布,从而使得排布的数量最多又相互独立。当然,可以理解地,在其他一些实施例中,该多个喷嘴42可形成多圈排布。当然,可以理解地,在其他一些实施例中,该多个喷嘴42也可呈阵列式排布。每一喷嘴42可与临时储液腔411连通,用于雾化液态基质使其形成气溶胶颗粒。在本实施例中,该喷嘴42可以为毛细金属管,具体地,该喷嘴42可以为金属针管。该喷嘴42的长度小于腔体21的深度,也即该喷嘴42到腔体21一端的开口之间留设有设定距离。该每一喷嘴42中形成有喷孔43。每一喷孔43与喷嘴42一一对应设置。该喷孔43为毛细孔,且可以为圆孔。该喷孔43的孔径可以为100微米~300微米。若喷孔43的孔径小于100微米,则对形成工艺要求较高,目前工艺较难达到该要求。若喷孔43大于300微米,喷出的气溶胶颗粒的粒径较大,不能达到相关领域的使用标准。在本实施例中,该喷孔43对应地采用圆周排布,而采用圆周排布方式可使得喷孔43的数量最多,又相互独立。可以理解地,在其他一些实施例中,该喷嘴42不限于为多个,在其他一些实施例中,该喷嘴42也可以为一个,也即该喷孔43也可以为一个。在本实施例中,喷孔43喷出的气溶胶颗粒的粒径和喷孔43孔数之间存在负相关关系,也即喷孔43数越多,喷出的气溶胶颗粒的粒径越小。喷孔43数越多,相当于每个喷嘴42分配到的流量越小。气溶胶颗粒粒径大小和流量成正相关。可以通过增减喷孔43的数目来达到调节气溶胶颗粒粒径的目的。
该喷头组件40可通过接入第一高压电并在第一高压电的作用下形成带有第一电荷的第一气溶胶颗粒,且通过喷嘴42喷出。在本实施例中,该第一高压电可以为正高压电。该第一电荷可以为正电荷,也即该喷嘴42喷出的第一气溶胶颗粒带有正电荷。当然,可以理解地,在其他一些实施例中,该第一高压电也可以为负高压电,该第一电荷也可以为负电荷。
如图3至图6所示,在本实施例中,该除电结构50呈环状,一端可与基座30相接,且可位于该喷头本体41的外周,也即该除电结构50与喷头本体41的横截面可在同一平面上,也即在静电雾化装置的横截面上,二者可形成同心圆结构。当然,可以理解地,在其他一些实施例中,该除电结构50可设置于喷头本体41远离该喷嘴42的一端,并与喷头本体41在轴向上间隔设置,也即可在第一气溶胶颗粒流动方向的上游形成离子风,从而进一步减少喷嘴42喷出的第一气溶胶颗粒在除电结构50上的吸附。该除电结构50与喷头本体41同轴设置,通过将除电结构50与喷头本体41同轴设置,可使得喷头组件40喷出第一气溶胶颗粒的流动方向与离子风的流动方向一致,进而可以更好地中和喷出的第一气溶胶颗粒(使得该第一气溶胶颗粒在流出的过程中不会被吸附与喷嘴42内侧壁上而无法喷出)。
除电结构50包括环状体51以及多个离子产生部52。该环状体51可以为金属薄片卷绕形成。当然,可以理解地,在其他一些实施例中,该环状体51不限于为金属薄片卷绕形成。在本实施例中,该环状体51可以为圆环状。当然,可以理解地,在其他一些实施例中,该环状体51也可以为椭圆环状、矩形环状等。在本实施例中,该多个离子产生部52设置于该环状体51远离该基座30的一端,且可沿该环状体51的轴向间隔设置,且分别沿该环状体51的轴向向喷嘴42方向延伸。该多个离子产生部52的延伸方向与喷头组件40喷出方向相同,也即产生的离子风的流动方向与喷头组件40喷出第一气溶胶颗粒的流动方向一致。每一离子产生部52包括尖端521,该尖端521可朝喷头组件40的喷出方向延伸,该尖端521是用于产生带有第二电荷的离子,以中和带有第一电荷的第一气溶胶颗粒。在本实施例中,该离子产生部52呈锯齿状,可通过激光切割金属薄片形成。
在本实施例中,该除电结构50通过接入第二高压电并通过离子产生部52将入该腔体21中的空气电离形成带有第二电荷的离子风。所谓的离子风是指空间中流动的不是气体分子而是被电离形成带有设定电荷的离子。在本实施例中,该第二高压电为负高压电,该第二电荷可以为负电荷,也即该离子风为负离子风,具体地,该负离子可以为负氧离子,可以通过空气中的氧分子结合了自由电子形成,而之所以选择形成负氧离子,是因为负氧离子能有效加强气管粘膜上皮的纤毛运动,影响上皮绒毛内呼吸酶的活性,改善肺泡的分泌功能及肺的通气和换气功能,缓解支气管痉挛、增加肺活量、调整呼吸频率、镇咳等。负离子还能促进鼻粘膜上皮细胞的再生,恢复粘膜的分泌功能。哮喘、气管炎、儿童百日咳等疾病有良好效果此外,负离子还可以增强人体免疫力,提高人体自愈力,有效防治糖尿病,肿瘤等疾病,是人们日常养生保健的理想选择。也即喷雾的同时产生负离子,对用户而言产生的副作用相对较小,甚至没有,反而对用户身体是有益的。
在本实施例中,该除电结构50可采用负离子发生装置,该除电结构50不限于本发明的这种设计,其他能够产生负离子风的除电结构可以用于本发明中,比如碳刷。在其他一些实施例中,当该第一电荷为负电荷时,该除电结构50也可以为正离子发生装置,该第二电荷也可以为正电荷。
在本实施例中,该除电结构50与喷头组件40之间设置有隔离结构412。该隔离结构412套设于喷头本体41上。在本实施例中,可以为绝缘隔板,该绝缘隔板与该喷头本体41形成一体结构。通过设置该隔离结构412,可用于将除电结构50与喷头组件40绝缘设置,也即隔离正极和负极,避免正负极之间的空气被击穿从而连通正负极,产生安全隐患。当然,可以理解地,在一些实施例中,该隔离结构可以为该除电结构50与喷头组件40之间留设的间隔,或者涂覆于该喷头本体41外表面的绝缘层。当然,可以理解地,在其他一些实施例中,该隔离结构412可以省去。该喷头本体41可整体为绝缘材质制成。
如图7所示,在本实施例中,该静电雾化装置还包括辅助电极60。该辅助电极60位于该外壳20的内侧,且靠近外壳10远离该基座30的一端,并位于该喷头组件40喷出方向上。该辅助电极60可接地设置,可与喷头组件40配合形成足够强的电场,从而使得喷头组件40喷出的所述带有第一电荷的第一气溶胶颗粒。另外辅助电极60的作用还可减小空间电荷的影响,确保每个喷头组件40能够稳定地喷出带有第一电荷的第一气溶胶颗粒。在本实施例中,该第一气溶胶颗粒的粒径可以为1-5微米。该第一气溶胶颗粒带第一电荷,并被带第二电荷的离子风中和以及带出腔体21。
在本实施例中,该辅助电极60呈片状,包括片状本体61以及多个通孔62。该片状本体61大致呈圆形。该多个通孔62间隔设置于片状本体61上,且沿该片状本体61的周向间隔设置。该喷孔43可与通孔62一一对应设置。该喷孔43可设置于该通孔的中轴线上。在本实施例中,该通孔62为圆孔,该喷孔43可与该通孔62的圆心位于同一直线上或与通孔62的圆心重合设置。该通孔62的孔径大于喷孔43的孔径(也即喷孔43的孔径小于通孔62的孔径),该喷孔43与该通孔62孔壁之间的间隙形成有强电场。在本实施例中,该通孔62为3-20mm。该通孔62的直径小于3 mm时,该通孔62容易积液放电,导致设备无法运行,若通孔62大于20mm,则需要的电压会过高,造成能源浪费。在本实施例中,该通孔62的排布方式可与该喷孔43的排布方式相同。在其他一些实施例中,该通孔62不限于为多个,在其他一些实施例中,该通孔62也可以为一个。
在本实施例中,该辅助电极60还包括镂空结构63,该镂空结构63可设置于该辅助电极的中部。具体地,在本实施例中,该通孔62可沿该镂空结构63的周向间隔设置。该镂空结构63可以为圆孔,当然,可以理解地,在其他一些实施例中,该镂空结构63可不限于为圆孔,可以为方孔或者其他形状的孔。通过设置该镂空结构63可减少雾化后的气溶胶颗粒的吸附。当然,可以理解地,在其他一些实施例中,该镂空结构63可以省去。在本实施例中,该辅助电极60可通过设置连接结构64连接于外壳20的侧壁上,在一些实施例中,该连接结构64可一体成型于该片状本体61的侧壁,其可以为连接凸筋,一端可与外壳20卡接或者焊接固定。
再如图1所示,在本实施例中,该静电雾化装置还包括动力机构70,该动力机构70可与储液结构10连接,用于将储液结构10中的液态基质输出至喷头组件40。在本实施例中,该动力机构70可以为增压泵,具体地,该动力机构70可以为微型增压泵,进而有利于静电雾化装置结构小型化需求。该动力机构70可向储液腔11中的液态基质增加压力,使得储液腔11中的液态基质沿下液通道12顺利下流至临时储液腔411。可以理解地,在其他一些实施例中,该动力机构70不限于为增压泵。
在本实施例中,静电雾化装置还包括电压控制器80,该电压控制器80可与增压泵连接,用于对增压泵进行调控,进而控制该储液腔11中的压缩体积,从而控制储液腔11中液态基质被推出的质量,实现定量雾化,可以理解地,在其他一些实施例中,该电压控制器80可以省去。
在本实施例中,该静电雾化装置还包括第一高压发生结构90,该第一高压发生结构90可用于向喷头组件施加第一高压电。该第一高压电为正高压电。该第一高压电的电压可以为+3.5kv~ +5kv。可以理解地,其他一些实施例中,该第一高压电的电压不限于为+3.5kv~ +5kv。该第一高压电可直接或间接作用于临时储液腔411中的液态基质或者作用于喷嘴42中的液态基质,使得喷嘴42喷出的第一气溶胶颗粒带正电荷。当然,可以理解地,在其他一些实施例中,该第一高压电可以为负高压电。
在本实施例中,该静电雾化装置还包括第二高压发生结构100,该第二高压发生结构100可与该除电结构50连接,可向除电结构50施加第二高压电。在本实施例中,该第二高压电可以为负高压电,电压可以为-3KV~ -5KV。可以理解地,在其他一些实施例中,该第二高压电的电压不限于为-3KV~ -5KV。该第二高压电将经过该除电结构50的空气被电离形成带有第二电荷的离子风。在其他一些实施例中,该第二高压电不限于为负高压电,当该第一高压电为负高压电时,该第二高压电为正高压电。
图8示出了本发明静电雾化装置的第二实施例,其与该第一实施例的区别在于,该镂空结构63省去。
图9至图12示出了本发明静电雾化装置的第三实施例,其与该第二实施例的区别在于,该外壳20可以省去,该腔体21形成于该基座30中。该基座30的横截面可大致呈长方形。该喷头组件40、以及辅助电极60的片状本体61均长方形,该喷孔43以及该通孔62可呈矩阵排布。该除电结构50的环状体51可以为横截面呈长方形的环状。
图13示出了本发明静电雾化装置的第四实施例,其与该第三实施例的区别在于,该辅助电极60还包括镂空结构63,该镂空结构63设置于该片状本体61的中部,用于减少气溶胶颗粒吸附。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (18)

  1. 一种静电雾化装置,其特征在于,包括储液结构(10)、喷头组件(40)、除电结构(50);所述喷头组件(40)与所述储液结构(10)连接,通过接入第一高压电使所述储液结构(10)输出的液态基质形成带有第一电荷的第一气溶胶颗粒并喷出,所述除电结构(50)与所述喷头组件(40)同轴设置,通过接入第二高压电产生带有第二电荷的离子风中和所述带有第一电荷的第一气溶胶颗粒。
  2. 根据权利要求1所述的静电雾化装置,其特征在于,所述除电结构(50)包括环状体(51)以及多个离子产生部(52);多个所述离子产生部(52)设置于所述环状体(51)的一端,沿所述环状体(51)的周向间隔设置,且分别沿所述环状体(51)的轴向延伸;
    所述离子产生部(52)延伸的方向与所述喷头组件(40)的喷出方向相同。
  3. 根据权利要求2所述的静电雾化装置,其特征在于,每一所述离子产生部(52)包括朝所述喷头组件(40)的喷出方向延伸的尖端(521)。
  4. 根据权利要求1所述的静电雾化装置,其特征在于,包括腔体(21)以及进气结构(31);
    所述喷头组件(40)以及所述除电结构(50)至少部分设置于所述腔体(21)中,所述腔体(21)用于所述带有第二电荷的离子风中和所述带有第一电荷的第一气溶胶颗粒;
    所述进气结构(31)与所述腔体(21)连通,以供外部气体进入所述腔体(21)中通过所述除电结构(50)形成所述带有第二电荷的离子风。
  5. 根据权利要求1所述的静电雾化装置,其特征在于,所述除电结构(50)与所述喷头组件(40)设置有隔离结构(412),用于将所述除电结构(50)与所述喷头组件(40)绝缘。
  6. 根据权利要求1所述的静电雾化装置,其特征在于,还包括辅助电极(60),所述辅助电极(60)设置于所述喷头组件(40)的喷出方向上,并与所述喷头组件(40)配合形成电场,从而使所述喷头组件(40)稳定地喷出所述带有第一电荷的第一气溶胶颗粒。
  7. 根据权利要求6所述的静电雾化装置,其特征在于,所述喷头组件(40)包括至少一个喷孔(43);
    所述辅助电极(60)包括至少一个通孔(62),所述通孔(62)与所述喷孔(43)对应设置,所述喷孔(43)设置于所述通孔(62)的中轴线上,且孔径小于所述通孔(62)的孔径。
  8. 根据权利要求7所述的静电雾化装置,其特征在于,所述喷孔(43)的孔径为100微米~300微米。
  9. 根据权利要求7所述的静电雾化装置,其特征在于,所述通孔(62)的孔径为3-20mm。
  10. 根据权利要求7所述的静电雾化装置,其特征在于,所述喷孔(43)为多个,多个所述喷孔(43)间隔设置;
    所述通孔(62)为多个,多个所述通孔(62)间隔设置且与所述喷孔(43)一一对应设置。
  11. 根据权利要求6所述的静电雾化装置,其特征在于,所述辅助电极(60)呈片状。
  12. 根据权利要求6所述的静电雾化装置,其特征在于,所述辅助电极(60)的中部设置有镂空结构(63)。
  13. 根据权利要求7述的静电雾化装置,其特征在于,所述喷头组件(40)包括喷头本体(41)以及至少一个喷嘴(42);所述喷头本体(41)与储液结构(10)连通;所述喷嘴(42)设置于所述喷头本体(41)上,且朝所述通孔(62)延伸,所述喷孔(43)形成于所述喷嘴(42)上。
  14. 根据权利要求13述的静电雾化装置,其特征在于,所述喷嘴(42)包括毛细金属管。
  15. 根据权利要求1所述的静电雾化装置,其特征在于,还包括用于向所述喷头组件(40)施加所述第一高压电的第一高压发生结构(90)。
  16. 根据权利要求1所述的静电雾化装置,其特征在于,还包括用于向所述除电结构(50)施加所述第二高压电的第二高压发生结构(100)。
  17. 根据权利要求1所述的静电雾化装置,其特征在于,还包括动力机构(70),所述动力机构(70)与所述储液结构(10)连接,用于将所述储液结构(10)中的液态基质输出至所述喷头组件(40)。
  18. 根据权利要求17述的静电雾化装置,其特征在于,所述动力机构(70)包括增压泵;
    所述静电雾化装置还包括与所述增压泵连接的电压控制器(80)。
PCT/CN2022/121457 2022-09-26 2022-09-26 静电雾化装置 WO2024065108A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121457 WO2024065108A1 (zh) 2022-09-26 2022-09-26 静电雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121457 WO2024065108A1 (zh) 2022-09-26 2022-09-26 静电雾化装置

Publications (1)

Publication Number Publication Date
WO2024065108A1 true WO2024065108A1 (zh) 2024-04-04

Family

ID=90475187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121457 WO2024065108A1 (zh) 2022-09-26 2022-09-26 静电雾化装置

Country Status (1)

Country Link
WO (1) WO2024065108A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181328A (ja) * 2002-12-02 2004-07-02 Toto Ltd シャワーヘッド
CN113678807A (zh) * 2021-06-28 2021-11-23 浙江普莱得电器股份有限公司 一种泵体式静电雾化器
CN113731660A (zh) * 2020-05-29 2021-12-03 太仓市金港植保器械科技有限公司 静电喷雾装置和静电喷雾方法
CN114307881A (zh) * 2021-11-29 2022-04-12 中国长城工业集团有限公司 一种微胶囊制备方法及微胶囊制备装置
CN114777270A (zh) * 2022-05-18 2022-07-22 珠海格力电器股份有限公司 净化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181328A (ja) * 2002-12-02 2004-07-02 Toto Ltd シャワーヘッド
CN113731660A (zh) * 2020-05-29 2021-12-03 太仓市金港植保器械科技有限公司 静电喷雾装置和静电喷雾方法
CN113678807A (zh) * 2021-06-28 2021-11-23 浙江普莱得电器股份有限公司 一种泵体式静电雾化器
CN114307881A (zh) * 2021-11-29 2022-04-12 中国长城工业集团有限公司 一种微胶囊制备方法及微胶囊制备装置
CN114777270A (zh) * 2022-05-18 2022-07-22 珠海格力电器股份有限公司 净化装置

Similar Documents

Publication Publication Date Title
US6302331B1 (en) Directionally controlled EHD aerosol sprayer
EP1802400B1 (en) Electrostatic spray nozzle with internal and external electrodes
JP3544350B2 (ja) 噴霧ノズル装置
EP1596915B1 (en) Improved nozzle for handheld pulmonary aerosol delivery device
JPH09510653A (ja) 分配装置
EP2800634B1 (en) System and method for delivering sprayed particles by electrospraying
US20220273031A1 (en) An aerosol-generating device and a method of generating a mixed aerosol
CN110394038B (zh) 一种利用低温等离子体活化水净化空气的装置及方法
CN102032618A (zh) 含有静电雾化器的送风装置
WO2024065108A1 (zh) 静电雾化装置
CN117797964A (zh) 静电雾化装置
WO2024092468A1 (zh) 静电雾化装置
CN219377559U (zh) 静电雾化装置
CN117983432A (zh) 静电雾化装置
CN117983433A (zh) 静电雾化装置
CN211301573U (zh) 一种基于多微米孔阵列静电雾化的医用雾化装置
CN110812628B (zh) 一种基于多微米孔阵列静电雾化的医用雾化装置
CN117983434A (zh) 静电雾化系统
CN117399192A (zh) 静电雾化系统
CN117399191A (zh) 静电雾化系统
CN113678807A (zh) 一种泵体式静电雾化器
CN220967828U (zh) 静电雾化装置
CN107570343B (zh) 一种气液双流体静电雾化装置
KR20130012400A (ko) 콘젯 모드 정전기 스프레이 장치
CN214077316U (zh) 一种气溶胶雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959760

Country of ref document: EP

Kind code of ref document: A1