WO2024090805A1 - 폐암 진단용 메틸화 마커 및 이의 조합 - Google Patents
폐암 진단용 메틸화 마커 및 이의 조합 Download PDFInfo
- Publication number
- WO2024090805A1 WO2024090805A1 PCT/KR2023/014409 KR2023014409W WO2024090805A1 WO 2024090805 A1 WO2024090805 A1 WO 2024090805A1 KR 2023014409 W KR2023014409 W KR 2023014409W WO 2024090805 A1 WO2024090805 A1 WO 2024090805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base
- methylation
- group
- gene
- lung cancer
- Prior art date
Links
- 230000011987 methylation Effects 0.000 title claims abstract description 143
- 238000007069 methylation reaction Methods 0.000 title claims abstract description 143
- 201000005202 lung cancer Diseases 0.000 title claims abstract description 72
- 208000020816 lung neoplasm Diseases 0.000 title claims abstract description 72
- 206010058467 Lung neoplasm malignant Diseases 0.000 title claims abstract description 71
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 66
- 230000003247 decreasing effect Effects 0.000 claims abstract description 9
- -1 RRP1P Proteins 0.000 claims description 44
- 238000004458 analytical method Methods 0.000 claims description 44
- 108020004414 DNA Proteins 0.000 claims description 43
- 108091029795 Intergenic region Proteins 0.000 claims description 32
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical class NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000523 sample Substances 0.000 claims description 27
- 101000798222 Homo sapiens Antizyme inhibitor 2 Proteins 0.000 claims description 23
- 108091008146 restriction endonucleases Proteins 0.000 claims description 23
- 102100031251 1-acylglycerol-3-phosphate O-acyltransferase PNPLA3 Human genes 0.000 claims description 21
- 102100035623 ATP-citrate synthase Human genes 0.000 claims description 21
- 102100032959 Alpha-actinin-4 Human genes 0.000 claims description 21
- 102100032252 Antizyme inhibitor 2 Human genes 0.000 claims description 21
- 102100038643 Four and a half LIM domains protein 3 Human genes 0.000 claims description 21
- 102100034048 Heat shock factor 2-binding protein Human genes 0.000 claims description 21
- 102100030636 Homeobox protein OTX1 Human genes 0.000 claims description 21
- 101001129184 Homo sapiens 1-acylglycerol-3-phosphate O-acyltransferase PNPLA3 Proteins 0.000 claims description 21
- 101000782969 Homo sapiens ATP-citrate synthase Proteins 0.000 claims description 21
- 101000797282 Homo sapiens Alpha-actinin-4 Proteins 0.000 claims description 21
- 101001031716 Homo sapiens Four and a half LIM domains protein 3 Proteins 0.000 claims description 21
- 101001016882 Homo sapiens Heat shock factor 2-binding protein Proteins 0.000 claims description 21
- 101000584392 Homo sapiens Homeobox protein OTX1 Proteins 0.000 claims description 21
- 101001039157 Homo sapiens Leucine-rich repeat-containing protein 25 Proteins 0.000 claims description 21
- 101000978726 Homo sapiens Probable E3 ubiquitin-protein ligase MARCHF10 Proteins 0.000 claims description 21
- 101000925087 Homo sapiens Protein EFR3 homolog B Proteins 0.000 claims description 21
- 101000875526 Homo sapiens Protein FAM110D Proteins 0.000 claims description 21
- 101000780643 Homo sapiens Protein argonaute-2 Proteins 0.000 claims description 21
- 101000920971 Homo sapiens Rootletin Proteins 0.000 claims description 21
- 101000605835 Homo sapiens Serine/threonine-protein kinase PINK1, mitochondrial Proteins 0.000 claims description 21
- 101000794432 Homo sapiens Uncharacterized protein C1orf50 Proteins 0.000 claims description 21
- 102100040695 Leucine-rich repeat-containing protein 25 Human genes 0.000 claims description 21
- 102100023193 Probable E3 ubiquitin-protein ligase MARCHF10 Human genes 0.000 claims description 21
- 102100033970 Protein EFR3 homolog B Human genes 0.000 claims description 21
- 102100035974 Protein FAM110D Human genes 0.000 claims description 21
- 102100034207 Protein argonaute-2 Human genes 0.000 claims description 21
- 102100032198 Rootletin Human genes 0.000 claims description 21
- 102100038376 Serine/threonine-protein kinase PINK1, mitochondrial Human genes 0.000 claims description 21
- 108010090763 Shiga Toxin 2 Proteins 0.000 claims description 21
- 102100035936 Syntaxin-2 Human genes 0.000 claims description 21
- 102100030192 Uncharacterized protein C1orf50 Human genes 0.000 claims description 21
- 210000000349 chromosome Anatomy 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- 239000003550 marker Substances 0.000 claims description 16
- 239000012472 biological sample Substances 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 238000003745 diagnosis Methods 0.000 claims description 9
- 239000012634 fragment Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 8
- 238000007855 methylation-specific PCR Methods 0.000 claims description 8
- 238000012163 sequencing technique Methods 0.000 claims description 8
- 108091029523 CpG island Proteins 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 7
- 238000007481 next generation sequencing Methods 0.000 claims description 7
- 230000009870 specific binding Effects 0.000 claims description 7
- 210000001519 tissue Anatomy 0.000 claims description 7
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 208000019693 Lung disease Diseases 0.000 claims description 5
- 102000023732 binding proteins Human genes 0.000 claims description 5
- 108091008324 binding proteins Proteins 0.000 claims description 5
- 238000012706 support-vector machine Methods 0.000 claims description 5
- 230000008030 elimination Effects 0.000 claims description 4
- 238000003379 elimination reaction Methods 0.000 claims description 4
- 238000002493 microarray Methods 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 238000002105 Southern blotting Methods 0.000 claims description 3
- 230000027455 binding Effects 0.000 claims description 3
- 238000001369 bisulfite sequencing Methods 0.000 claims description 3
- 210000001124 body fluid Anatomy 0.000 claims description 3
- 239000010839 body fluid Substances 0.000 claims description 3
- 210000002381 plasma Anatomy 0.000 claims description 3
- 238000012175 pyrosequencing Methods 0.000 claims description 3
- 238000003753 real-time PCR Methods 0.000 claims description 3
- 210000002700 urine Anatomy 0.000 claims description 3
- 108091023037 Aptamer Proteins 0.000 claims description 2
- 101100190541 Caenorhabditis elegans pink-1 gene Proteins 0.000 claims description 2
- 238000000018 DNA microarray Methods 0.000 claims description 2
- 101150089038 FAM110D gene Proteins 0.000 claims description 2
- 101150088979 FHL3 gene Proteins 0.000 claims description 2
- 101100171885 Homo sapiens EFR3B gene Proteins 0.000 claims description 2
- 101100071464 Homo sapiens HSF2BP gene Proteins 0.000 claims description 2
- 101150050565 LRRC25 gene Proteins 0.000 claims description 2
- 101150001411 STX2 gene Proteins 0.000 claims description 2
- 101150117471 Septin4 gene Proteins 0.000 claims description 2
- 241000270295 Serpentes Species 0.000 claims description 2
- 238000000540 analysis of variance Methods 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 238000003556 assay Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 210000000601 blood cell Anatomy 0.000 claims description 2
- 238000010224 classification analysis Methods 0.000 claims description 2
- 238000003066 decision tree Methods 0.000 claims description 2
- 238000007847 digital PCR Methods 0.000 claims description 2
- 238000012252 genetic analysis Methods 0.000 claims description 2
- 238000004949 mass spectrometry Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 238000003757 reverse transcription PCR Methods 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 238000012417 linear regression Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 description 37
- 201000011510 cancer Diseases 0.000 description 34
- 201000010099 disease Diseases 0.000 description 25
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 25
- 108091029430 CpG site Proteins 0.000 description 16
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 11
- 238000000513 principal component analysis Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- CTMZLDSMFCVUNX-VMIOUTBZSA-N cytidylyl-(3'->5')-guanosine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(N=C(N)N3)=O)N=C2)O)[C@@H](CO)O1 CTMZLDSMFCVUNX-VMIOUTBZSA-N 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 8
- 238000010801 machine learning Methods 0.000 description 8
- 229940104302 cytosine Drugs 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 230000007067 DNA methylation Effects 0.000 description 6
- 230000002759 chromosomal effect Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000011304 droplet digital PCR Methods 0.000 description 6
- 238000007477 logistic regression Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004445 quantitative analysis Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 206010041067 Small cell lung cancer Diseases 0.000 description 4
- 108700009124 Transcription Initiation Site Proteins 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 208000000587 small cell lung carcinoma Diseases 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 206010035664 Pneumonia Diseases 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 238000013276 bronchoscopy Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 3
- 108020003589 5' Untranslated Regions Proteins 0.000 description 2
- AILRADAXUVEEIR-UHFFFAOYSA-N 5-chloro-4-n-(2-dimethylphosphorylphenyl)-2-n-[2-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidine-2,4-diamine Chemical compound COC1=CC(N2CCC(CC2)N2CCN(C)CC2)=CC=C1NC(N=1)=NC=C(Cl)C=1NC1=CC=CC=C1P(C)(C)=O AILRADAXUVEEIR-UHFFFAOYSA-N 0.000 description 2
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- 108091092584 GDNA Proteins 0.000 description 2
- 102100030708 GTPase KRas Human genes 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- KDGFLJKFZUIJMX-UHFFFAOYSA-N alectinib Chemical compound CCC1=CC=2C(=O)C(C3=CC=C(C=C3N3)C#N)=C3C(C)(C)C=2C=C1N(CC1)CCC1N1CCOCC1 KDGFLJKFZUIJMX-UHFFFAOYSA-N 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229950004272 brigatinib Drugs 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 230000017858 demethylation Effects 0.000 description 2
- 238000010520 demethylation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 229960003301 nivolumab Drugs 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229960002621 pembrolizumab Drugs 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- 229940126585 therapeutic drug Drugs 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- BSPLGGCPNTZPIH-IPZCTEOASA-N (e)-n-[4-(3-chloro-4-fluoroanilino)-7-methoxyquinazolin-6-yl]-4-piperidin-1-ylbut-2-enamide;hydrate Chemical compound O.C=12C=C(NC(=O)\C=C\CN3CCCCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 BSPLGGCPNTZPIH-IPZCTEOASA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 208000010126 Chondromatosis Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 230000006429 DNA hypomethylation Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 101000654734 Homo sapiens Septin-4 Proteins 0.000 description 1
- 206010069755 K-ras gene mutation Diseases 0.000 description 1
- 239000002146 L01XE16 - Crizotinib Substances 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 108091008640 NR2F Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102100032743 Septin-4 Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 210000001766 X chromosome Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 229960001686 afatinib Drugs 0.000 description 1
- ULXXDDBFHOBEHA-CWDCEQMOSA-N afatinib Chemical compound N1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC1=CC=C(F)C(Cl)=C1 ULXXDDBFHOBEHA-CWDCEQMOSA-N 0.000 description 1
- 229940083773 alecensa Drugs 0.000 description 1
- 229960001611 alectinib Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229960003852 atezolizumab Drugs 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000005773 cancer-related death Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229960001602 ceritinib Drugs 0.000 description 1
- VERWOWGGCGHDQE-UHFFFAOYSA-N ceritinib Chemical compound CC=1C=C(NC=2N=C(NC=3C(=CC=CC=3)S(=O)(=O)C(C)C)C(Cl)=CN=2)C(OC(C)C)=CC=1C1CCNCC1 VERWOWGGCGHDQE-UHFFFAOYSA-N 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229960005061 crizotinib Drugs 0.000 description 1
- KTEIFNKAUNYNJU-GFCCVEGCSA-N crizotinib Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NC=1)N)=CC=1C(=C1)C=NN1C1CCNCC1 KTEIFNKAUNYNJU-GFCCVEGCSA-N 0.000 description 1
- LVXJQMNHJWSHET-AATRIKPKSA-N dacomitinib Chemical compound C=12C=C(NC(=O)\C=C\CN3CCCCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 LVXJQMNHJWSHET-AATRIKPKSA-N 0.000 description 1
- 229950002205 dacomitinib Drugs 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013079 data visualisation Methods 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229950009791 durvalumab Drugs 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008995 epigenetic change Effects 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 230000006718 epigenetic regulation Effects 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- 201000010934 exostosis Diseases 0.000 description 1
- 206010016629 fibroma Diseases 0.000 description 1
- 206010049444 fibromatosis Diseases 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 201000010930 hyperostosis Diseases 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- 230000007786 learning performance Effects 0.000 description 1
- 208000000680 lipomatosis Diseases 0.000 description 1
- 238000011528 liquid biopsy Methods 0.000 description 1
- 201000006385 lung benign neoplasm Diseases 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000007837 multiplex assay Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- QOFFJEBXNKRSPX-ZDUSSCGKSA-N pemetrexed Chemical compound C1=N[C]2NC(N)=NC(=O)C2=C1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QOFFJEBXNKRSPX-ZDUSSCGKSA-N 0.000 description 1
- 229960005079 pemetrexed Drugs 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000007841 sequencing by ligation Methods 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229940066453 tecentriq Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
Definitions
- the present invention relates to methylation markers and combinations thereof for diagnosing lung cancer. More specifically, it relates to methylation markers that specifically show decreased or increased methylation in the genes of lung cancer patients, combinations thereof, and methods for diagnosing lung cancer using the same.
- Lung cancer is a major public health problem and the leading cause of cancer-related deaths worldwide. More than 50% of newly diagnosed lung cancer patients are found to have distant metastases, and the 5-year survival rate for these patients does not exceed 10% based on SEER data from 2011 to 2017. Efforts have been made to improve this situation by advancing treatment strategies and increasing the accuracy of diagnostic tests to enable therapeutic intervention at an earlier stage.
- LDCT low-dose computed tomography
- bronchoalveolar lavage fluid (BALF) collected during bronchoscopy contains many cancer cells shed from lung tissue. This fluid can be sampled globally over a specific area rather than relying on an exact point, making it an advantageous sample for detecting lung cancer.
- Mutation screening using alveolar lavage fluid has been proposed as a potential method for lung cancer screening.
- mutation screening has high analytical sensitivity for detecting lung cancer, its practical sensitivity is limited because there are lung cancers without hotspot mutations, which may lower the sensitivity when used as an actual diagnostic test.
- DNA methylation analysis is an epigenetic modification that plays an important role in regulating gene expression and has potential as a biomarker for cancer detection. Unlike hotspot mutations, which often evade detection due to their sparse and rare nature, global hypomethylation that accumulates from early to advanced stages of cancer provides a significant pool of detectable markers. These multiple markers significantly increase detection rates, enabling effective identification even of low-grade cancers.
- the present inventor studied to develop a DNA methylation marker specific for lung cancer, and as a result discovered a methylation marker and/or a combination thereof that can very accurately predict even early lung cancer using alveolar lavage fluid, and completed the present invention.
- the object of the present invention is HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 and PNPLA3.
- a composition for diagnosing lung cancer comprising an agent for measuring the methylation level in one or more markers selected from the group consisting of a gene group and an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906 is provided.
- Another object of the present invention is to provide a kit for diagnosing lung cancer comprising the composition.
- Another object of the present invention is (a) extracting DNA from a biological sample of a subject; and (b) a gene family consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1, and PNPLA3; And measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906. will be.
- Another object of the present invention is to prepare a composition for lung cancer diagnosis, HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F -Providing the use of an agent for measuring the methylation level in any one or more markers selected from the group consisting of the gene group consisting of AS1 and PNPLA3, and the intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906. will be.
- Another object of the present invention is (a) extracting DNA from a biological sample of a subject; (b) Genes consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 and PNPLA3 from the sample Measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906; and (C) diagnosing lung cancer when the methylation level in the gene and/or intergenic region of the subject is increased or decreased compared to the control group.
- the present invention is HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, Lung cancer comprising an agent for measuring the methylation level in any one or more markers selected from the group consisting of the gene group consisting of NR2F-AS1 and PNPLA3, and the intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906.
- a diagnostic composition is provided.
- the present invention provides a kit for diagnosing lung cancer comprising the composition.
- the present invention includes the steps of (a) extracting DNA from a biological sample of a subject; and (b) a gene family consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1, and PNPLA3; and measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906. .
- the present invention provides HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, Methylation level in any one or more markers selected from the group consisting of ACLY, AGO2, ACTN4, NR2F-AS1 and PNPLA3, and the intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 and Chr22_22006906 measure Provides the use of the preparation.
- the present invention includes the steps of (a) extracting DNA from a biological sample of a subject; (b) Genes consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 and PNPLA3 from the sample Measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906; and (C) diagnosing lung cancer when the methylation level in the gene and/or intergenic region of the subject is increased or decreased compared to the control group.
- the present invention relates to a gene group consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 and PNPLA3, and Provided is a lung cancer diagnostic composition comprising an agent for measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906.
- lung cancer diagnosis means confirming the presence or characteristics of a pathological condition in a subject, and for the purpose of one aspect of the present invention, diagnosis may mean confirming whether lung cancer has developed.
- the composition, kit, or method according to one aspect of the present invention can be used to delay the onset of lung cancer or prevent it from developing through special and appropriate management for any specific patient at high risk of developing lung cancer. Additionally, the composition, kit, or method according to one aspect of the present invention can be used clinically to diagnose lung cancer at an early stage and determine treatment by selecting the most appropriate treatment method.
- the nucleotide sequence of the human genome chromosomal region is expressed according to The February 2009 Human reference sequence (GRCh37/hg19), but the specific sequence of the human genomic chromosomal region is expressed somewhat as the results of genome sequence research are updated.
- the expression of the human genome chromosomal region of the present invention may be different. Therefore, the human genome chromosomal region expressed according to The February 2009 Human reference sequence (GRCh37/hg19) of the present invention has been updated as a human reference sequence after the filing date of the present invention, and the expression of the human genomic chromosomal region has been updated. Even if it is changed differently from now, it is clear that the scope of the present invention extends to the changed human genome chromosomal region. These changes can be easily known by anyone with ordinary knowledge in the technical field to which the present invention pertains.
- methylation means adding a methyl group to the 5th carbon of a cytosine residue in DNA.
- the term “methylation” refers to the attachment of a methyl group to a base constituting DNA.
- methylation refers to whether methylation occurs at the fifth carbon of a cytosine residue in a specific CpG site of a specific gene. When methylation occurs, the binding of transcription factors is disrupted and the expression of a specific gene is suppressed. Conversely, when unmethylation or hypomethylation occurs, the expression of a specific gene increases.
- the genomic DNA of mammalian cells contains a fifth base called 5-methylcytosine (5-mC), which has a methyl group attached to the fifth carbon of the cytosine ring.
- 5-methylcytosine occurs only at the C of CG dinucleotide (5'-mCG-3'), called CpG, and methylation of CpG suppresses the expression of alu or transposon and repetitive sequences of the genome.
- CpG thymine
- CpG region or “CpG island” refers to a genomic region where CpGs are gathered at an exceptionally high frequency, with a C+G content of 50% or more and a CpG ratio of 3.75% or more, with an average length of 0.2 to 3 kb. means the part of
- C represents cytosine
- G represents guanine
- p represents the phosphodiester bond between cytosine and guanine.
- CpG islands there are approximately 45,000 CpG islands in the human genome, most of which are found in promoter regions that control gene expression; in fact, CpG islands are found in the promoters of housekeeping genes, representing approximately 50% of human genes. .
- the CpG island in the housekeeping gene promoter region is unmethylated, and genes that are not expressed during development, such as imprinted genes and genes on the inactive X chromosome, are methylated.
- the methylation level in any one or more markers selected from the group consisting of intergenic regions consisting of Chr17_37365505, Chr1_205512532, Chr6_34130415 and Chr22_22006906 is reduced compared to the control group, and/or selected from the group consisting of OTX1 and NR2F-AS1 If the methylation level in one or more markers is increased compared to the control group, lung cancer can be determined.
- methylation levels of 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 types are measured and the results are combined to determine the occurrence or onset of lung cancer. Possibilities can be predicted.
- the CpG site of the gene refers to the CpG site present on the DNA of the gene.
- the DNA of the gene is a concept that includes a series of structural units that are necessary for the expression of the gene and are operably linked to each other, for example, a promoter region, a protein coding region (open reading frame, ORF), and an intron. , exons, 5'-UTR and terminator regions. Therefore, the CpG site of each gene may be present in the promoter region, protein coding region (open reading frame, ORF), intron, exon, 5'-UTR, and terminator region of the gene.
- the methylation of the HSF2BP gene is methylation at a base selected from the group consisting of base 45079687, base 45079507, base 45079390, and base 45078945 of chromosome 21;
- Methylation of the RRP1P gene is methylation at a base selected from the group consisting of the 45079687th base, the 45079507th base, the 45079390th base, the 45078945th base, the 45092120th base, and the 45139158th base on chromosome 21;
- Methylation of the SEPTIN4 gene is methylation at a base selected from the group consisting of base 56609232, base 56609218, base 56609373, and base 56609683 of chromosome 17;
- Methylation of the STX2 gene is methylation at a base selected from the group consisting of base 131323597, base 131246665, base 131303158, base 131303619 and base 131323735
- Methylation of the LRRC25 gene is methylation at a base selected from the group consisting of base 18507682, base 18504913, and base 18506355 of chromosome 19;
- Methylation of the AZIN2 gene is methylation at base 33546792 of chromosome 1;
- Methylation of the FHL3 gene is methylation at a base selected from the group consisting of base 38470929, base 38461728, base 38461917, base 28462627, base 38470949 and base 38471267 of chromosome 1;
- Methylation of the LINC02210-CRHR1 gene is methylation at a base selected from the group consisting of base 43698054th base, base 43685977th base, base 43697880th base, base 43698142nd base, base 43698179th base, and base 43698294th base of chromosome 17;
- the agent for measuring the methylation level of the gene includes a compound that modifies an unmethylated cytosine base, a methylation-sensitive restriction enzyme, a primer capable of amplifying a fragment containing a methylated base, and a fragment containing a methylated base.
- the compound that modifies the unmethylated cytosine base may be bisulfite or a salt thereof, but is not limited thereto, and is preferably sodium bisulfite.
- a method of detecting methylation of a CpG site by modifying an unmethylated cytosine residue using bisulfite is widely known in the art.
- the methylation-sensitive restriction enzyme is a restriction enzyme that can specifically detect methylation of a CpG site and may be a restriction enzyme that contains CG as a recognition site of the restriction enzyme. Examples include SmaI, SacII, EagI, HpaII, MspI, BssHII, BstUI, NotI, etc., but are not limited thereto. Depending on methylation or unmethylation at C of the restriction enzyme recognition site, cleavage by restriction enzymes varies and can be detected through PCR or Southern Blot analysis. Other methylation-sensitive restriction enzymes other than the above restriction enzymes are well known in the art.
- DNA is obtained from a biological sample of a subject, and the obtained DNA is treated with a compound that modifies unmethylated cytosine bases or a methylation-sensitive restriction enzyme. Afterwards, the treated DNA can be amplified by PCR using primers and measured by confirming the presence or absence of the amplified product.
- the agent of the present invention may include a primer specific for the methylated allele sequence and a primer specific for the unmethylated allele sequence of each gene.
- the term "primer” refers to a short nucleic acid sequence having a short free 3 terminal hydroxyl group, which can form base pairs with a complementary template and serves as a starting point for copying the template strand.
- Primers can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization (i.e., DNA polymerase or reverse transcriptase) in an appropriate buffer solution and temperature.
- primers, both sense and antisense nucleic acids with a sequence of 7 to 50 nucleotides may incorporate additional features that do not change the basic nature of the primer, which serves as an initiation point for DNA synthesis.
- the primers of the present invention can be preferably designed according to the sequence of a specific CpG site to be analyzed for methylation, and each primer pair is capable of specifically amplifying a cytosine that is methylated and has not been modified by bisulfite, And it may be a primer pair that can specifically amplify cytosine that is not methylated and thus modified by bisulfite.
- compositions and kits may additionally include polymerase, agarose, and buffer solutions required for electrophoresis.
- the composition may be provided in the form of a “kit”.
- the “kit” refers to a collection of reagents for performing nucleic acid amplification or methylation level analysis, and the kit is selected from the group consisting of RT-PCR kit, microarray chip kit, DNA kit, and protein chip kit. It may be characterized as any one of the following, but is not limited thereto.
- the present invention also includes the steps of (a) extracting DNA from a biological sample of a subject; and (b) a gene family consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1, and PNPLA3; and measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906. .
- the “biological sample” includes, but is not limited to, samples such as alveolar lavage fluid (BAL), tissue, cells, blood (including whole blood, serum, and plasma), and body fluids (saliva, sputum, or urine). .
- BAL alveolar lavage fluid
- tissue cells
- blood including whole blood, serum, and plasma
- body fluids body fluids
- body fluids saliva, sputum, or urine.
- it may be alveolar lavage fluid, blood, or body fluid sample, and most preferably, it may be alveolar lavage fluid.
- the DNA in order to obtain DNA from a subject and measure the methylation level, the DNA can be obtained using a phenol/chloroform extraction method, SDS extraction method, CTAB separation method, or a commercially available DNA extraction kit commonly used in the art. However, it is not limited to this.
- the step of measuring the methylation level of the gene in step (b) includes PCR, methylation specific PCR (methylation specific PCR), methyl-sequencing, real time methylation specific PCR (real time methylation specific PCR), MethyLight PCR, MehtyLight digital PCR, EpiTYPER, PCR using methylated DNA-specific binding protein, quantitative PCR, DNA chip, pyrosequencing, bisulfite sequencing, Southern blot method, RLGS method, SNuPE method, CpG island microarray, single-nucleotide primer extension method, COBRA It can be performed by a method selected from the group consisting of a combined bisulfite-restriction analysis (MIRA) method, methylated-CpG island recovery assay (MIRA), mass spectrometry, and next-generation sequencing.
- MIRA combined bisulfite-restriction analysis
- MIRA methylated-CpG island recovery assay
- the step of measuring the methylation level of the gene in step (b) includes a compound that modifies an unmethylated cytosine base or a methylation-sensitive restriction enzyme, a primer specific for the methylated sequence of the CpG site of the gene, and This can be performed using primers specific for the methylated sequence.
- the treated DNA was subjected to methylation-specific polymerase chain reaction and real-time methylation-specific polymerase chain reaction using primers capable of amplifying the methylation site of the CpG region of the gene. reaction), PCR using a methylated DNA-specific binding protein, quantitative PCR, pyrosequencing, and bisulfite sequencing.
- the compound that modifies the unmethylated cytosine base may be bisulfite, preferably sodium bisulfite.
- a method for detecting gene methylation by modifying unmethylated cytosine residues using bisulfite is widely known in the art.
- the methylation sensitive restriction enzyme is a restriction enzyme that can specifically detect methylation of a specific CpG site and may be a restriction enzyme containing CG as the recognition site of the restriction enzyme, for example, SmaI , SacII, EagI, HpaII, MspI, BssHII, BstUI, NotI, etc., but are not limited thereto.
- the primers can be preferably designed according to the sequence of the specific CpG site to be analyzed for methylation, and can specifically amplify cytosines that have been methylated and have not been modified by bisulfite. It may be a primer pair or a primer pair that can specifically amplify cytosine that is not methylated and thus modified by bisulfite.
- Methylation level can be measured by methods known in the art, for example, electrophoresis, depending on whether a band at a desired position is detected.
- a primer pair that can specifically amplify cytosine that is methylated and has not been modified by bisulfite there are two types of primer pairs: a primer pair that can specifically amplify cytosine that is methylated and has not been modified by bisulfite, and a primer pair that is capable of amplifying a cytosine that is not methylated and has not been modified by bisulfite.
- the degree of methylation can be determined depending on the presence or absence of PCR results amplified by a primer pair that can specifically amplify the modified cytosine.
- a bisulfite genome sequencing method e.g., next-generation sequencing, Next-generation sequencing
- Next-generation sequencing can be used to determine methylation.
- mock DNA refers to sample DNA that has been isolated from the sample and has not undergone any treatment.
- the information provision method of the present invention may further include the step of comparing the methylation level of the gene of the subject with the methylation level of a control group, and as a result of the comparison, the methylation level of the gene and/or the intergenic region of the subject is If it is increased or decreased compared to the control group, it can be characterized as lung cancer.
- Lung cancer can be characterized when the methylation level in one or more selected markers is increased compared to the control group.
- control group may be a normal person or a benign lung disease patient group.
- the benign lung disease may include a lung disease that causes a benign lung tumor rather than a malignant lung tumor, and may include, for example, pulmonary nodules, bronchial plexus, schizophrenia, fibroma, lipoma, chondroma, and hyperostosis. Infections, pneumonia, tuberculosis, and various respiratory diseases that cause the pulmonary nodules may also be included, but are not limited thereto.
- the method of the present invention may further include the step of correlating the methylation level of each gene or a combination thereof with determining whether lung cancer occurs.
- the methylation level of each gene varies in the level of quantitative analysis depending on the patient's condition, so it is not easy to use only the fragmentary quantitative analysis level of the protein to determine whether or not depression has occurred. Therefore, the quantitative analysis of each protein is not easy. By analyzing the combination of analysis levels, it can be used to determine whether lung cancer has occurred.
- a method of determining the occurrence of lung cancer can be used by individually or in combination the quantitative analysis levels of each protein measured in a serum sample.
- a conventional statistical analysis method can be used.
- the statistical analysis method that can be used is not particularly limited thereto, but examples include linear or nonlinear regression analysis methods; Prior or non-linear classification analysis method; ANOVA; Neural network analysis method; genetic analysis method; Support vector machine analysis method; Hierarchical analysis or clustering analysis method; Hierarchical algorithm using decision tree, or Kernel principal components analysis method; Markov Blanket analysis method; recursive feature elimination or entropy-basic recursive feature elimination analysis method; Forward floating search or backward floating search analysis methods can be used singly or in combination.
- the combination of the methylation level analysis results for each gene may be performed using a computer algorithm that can automatically perform the statistical method.
- the present invention also provides HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 for producing a composition for lung cancer diagnosis. and PNPLA3, and an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906.
- the present invention also includes the steps of (a) extracting DNA from a biological sample of a subject; (b) Genes consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 and PNPLA3 from the sample Measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906; and (C) diagnosing lung cancer when the methylation level in the gene and/or intergenic region of the subject is increased or decreased compared to the control group.
- the invention provides a method of diagnosing and treating lung cancer in an individual comprising the following steps:
- genes consisting of HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 and PNPLA3 from the sample Measuring the methylation level in one or more markers selected from the group consisting of an intergenic region consisting of Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415, and Chr22_22006906;
- step iv) the individual diagnosed with the disease in step iii) is administered cisplatin, carboplatin, vinorelbine, paclitaxel, docetaxel, gemcitabine, Pemetrexed, Iressa (gefitinib), Tarceva (Erlotinib), Geotrip (Afatinib), Vizimpro (dacomitinib), Zelkori (Crizotinib), Zycadia (ceritinib), Alecensa (alectinib), Alunbrig ( The treatment of the above diseases is carried out through means such as surgery and administration of therapeutic drugs such as brigatinib, Avastin (bevacizumab), Keytruda (pembrolizumab), Opdivo (nivolumab), Tecentriq (Atezolizumab), and Impinzju (durvalumab). It's a step.
- therapeutic drugs such as brigatinib, Avastin (
- the 'treatment' of the present invention comprehensively refers to improving the symptoms of lung cancer or the disease, which may include curing, substantially preventing, or improving the condition resulting from the disease. This includes, but is not limited to, alleviating, curing or preventing one or most symptoms.
- the 'sample' of the present invention is obtained separately from an individual suspected of having a disease and includes, but is not limited to, cells, tissues, blood, serum, plasma, saliva, and sputum. It may be selected from the group consisting of mucosal fluid and urine, and the 'individual' or 'subject' may be an animal, preferably a mammal, especially an animal including a human, and may be a cell, tissue, organ, etc. derived from an animal. It may be possible. The subject may be a patient in need of the treatment effect.
- Each methylation marker or combination thereof according to the present invention can be very useful in accurately diagnosing the onset of lung cancer.
- the methylation marker or a combination thereof according to the present invention can be used to very accurately diagnose early stage lung cancer using alveolar lavage fluid.
- Figure 1a shows a principal component analysis (PCA) plot using the 500 markers with the highest coefficient of variance (CV). For dimensionality reduction analysis, the top 500 markers with the highest CV were selected.
- PCA principal component analysis
- Figure 1b is a graph showing the eigenvalues of each component in PCA.
- Figure 1C shows a volcano plot of differences in methylation levels. The proportion of demethylated reads in lung cancer samples was compared to samples from benign diseases using all 55,249 markers.
- Figure 1D shows a bar graph comparing the number of hypermethylated and hypomethylated markers in lung cancer samples at different p-value thresholds (0.1, 0.05, and 0.01).
- Figure 2a shows ROC curves of various machine learning models. It was performed on 21 lung cancer samples and 19 benign disease samples.
- Figure 2b is a diagram showing predicted probability values by logistic regression for 21 lung cancer and 19 benign disease samples.
- Figures 2c to 2f are the results of analyzing factors affecting cancer (2c: cancer probability of cancer patients stratified by T stage, 2d: cancer probability for cancers of various sizes, 2e: cancer subtype, adenocarcinoma, squamous cell Cancer probability for cancer (SCQQ), undifferentiated cancer (NOS) and small cell lung cancer (SCLC), 2f: Cancer probability for patients with benign disease types (pneumonia, etc.).
- Figure 3A is a bar graph showing the number of markers meeting p-value thresholds (0.001 and 0.0001) for the base data set and 10 random shuffle sets.
- Figure 3b is a hierarchical clustering heatmap based on 24 selected markers with a p-value of less than 0.0001 in the primary data set, confirming that cancer and benign disease groups can be distinguished.
- Figure 3c is a diagram showing the top 24 markers with p-values of 0.0001 or less and their p-values and t-values.
- Figure 4a shows the results of identifying a set of seven markers among 55,249 markers with the lowest p-value, representing an AUC value of approximately 0.990, using logistic regression analysis.
- Figure 4b shows the results of distinguishing cancer and benign diseases using a set of seven selected markers. It showed a sensitivity of 100% and specificity of 89.5%.
- Alveolar lavage fluid was collected from each participant using standard bronchoscopy procedures. After collection, alveolar lavage fluid was transferred to sterile containers and stored at room temperature until processing. The samples were then centrifuged at 2500 rpm for 10 min at room temperature to separate cellular components from the fluid. The resulting cell pellet was resuspended in 200 ⁇ l of phosphate-buffered saline (PBS) and further processed for methylation analysis and next-generation sequencing (NGS) using MRE-seq.
- PBS phosphate-buffered saline
- gDNA was first fragmented into fragments 150–200 base pairs in length using a Covaris instrument. Next, the fragmented gDNA (20ng) underwent end-repair and A-tailing processes. After end-repair and A-tailing, the p7 adapter was ligated to the DNA fragment using T4 ligase (NEB, MA, USA), which contains Unique Molecular Identifiers (UMI) to identify individual molecules [ 31].
- T4 ligase N4 ligase
- UMI Unique Molecular Identifiers
- the DNA library is then digested using the SacII enzyme, which recognizes specific sequences within the insert. After cutting with SacII enzyme, the p5 adapter containing the SacII enzyme site is linked to the DNA fragment. The library is then amplified using 17 cycles of universal primers. Each library was pooled and sequenced with a 100-cycle kit (paired-end reads) on an Illumina NovaSeq 6000 (Illumina).
- the lung cancer cell line A549 (ATCC, catalog number: CCL-185) was used to generate the DNA mixture, and the normal cell line GM12878 (Coriell) DNA was extracted using the QIAamp DNA mini kit (Qiagen, Hilden, Germany). The two cell lines were then serially diluted to obtain GM12878 and specific ratios (A549 100%, 10%, 3%, 1%, 0.1%, and 0%) and mixed thoroughly. Mixed DNA fragmentation was performed using an M220 Focused-ultrasonicator (Covaris, MA, USA) and microTUBE-50 AFA Fiber Screw-Cap (Covaris). A total of 50 ⁇ L of mixed DNA was sheared to generate DNA fragments with a peak centered at 200 bp.
- M220 Focused-ultrasonicator Covaris, MA, USA
- microTUBE-50 AFA Fiber Screw-Cap Covaris
- Shear conditions were as follows: duty factor 20%, peak power 50, cycles/burst 200, according to manufacturer's instructions.
- the resulting DNA fragment size was analyzed using High Sensitivity D1000 ScreenTape (Agilent, CA, USA) on an Agilent 4200 TapeStation (Agilent).
- Droplet digital PCR was performed using the ddPCR KRAS G12/G13 Screening Kit (Bio-Rad, CA, USA). For each of the three reactions, a total reaction volume of 20 ⁇ L containing 10 ⁇ L of 2 ⁇ ddPCR Supermix for probe (without dUTP), 0.5 ⁇ L of 20x ddPCR KRAS G12/G13 Screening Multiplex Assay, and 20 ng of DNA template was used. (or 2 ⁇ L nuclease-free water for no-template control).
- the QX200 Droplet Generator split samples (20 ⁇ l, ⁇ 10,000 drops) for PCR amplification.
- PCR conditions included an initial step of 10 min at 95°C followed by 40 cycles of a two-step thermal profile (30°s at 94°C and 60°s at 55°C, ramp rate 2°C/60°C). did. Final incubation at 98°C for 10 min and then cooled to 4°C. After thermal cycling, the plates were transferred to a QX200 droplet reader (Bio-Rad) for analysis. QuantaSoft software version 1.7.4, as recommended by the manufacturer, was used for data analysis.
- Machine learning analysis using a Python library was used to evaluate the prediction performance of DNA methylation patterns obtained from MRE-seq. Feature selection was performed using a t-test with the 'SelectKBest' and 'f_classif' functions of the 'sklearn.feature_selection' Python module to identify the most informative CpG sites. These selected features were then used for model training and evaluation. To address overfitting and improve generalization, regularization methods such as L1 penalty and alpha value have been incorporated into other machine learning algorithms. Models used in the analysis included logistic regression, Support Vector Machine (SVM), XGBoost, and Multilayer Perceptron (MLP).
- SVM Support Vector Machine
- XGBoost XGBoost
- MLP Multilayer Perceptron
- sequencing reads for each restriction enzyme site were trimmed and mapped, and duplicates were removed using UMI. This ensured consistency across all comparison groups by maintaining similar lead numbers. As a result, we achieved an average on-target mapping read depth of approximately 250 per sample across all samples.
- PCA principal component analysis
- Machine learning was performed using various algorithms such as logistic regression, SVM, XGBoost, and MLP, and analysis performance was evaluated using LOOCV.
- the analysis results showed high performance with AUC of over 0.845.
- logistic regression showed a particularly high AUC of 0.975 with 100% sensitivity and 89.5% specificity ( Figures 2a and 2b). This accuracy persisted when comparing early and late patients ( Figure 2c).
- a high probability of cancer was observed in 3 out of 4 samples even for cancers smaller than 3 cm. Even the smallest cancer measuring 1.2 cm had a carcinogenic probability of 0.904, showing good discrimination against small cancers (Figure 2d).
- Positive disease samples used as controls included 10 cases of pneumonia, 2 cases of organized pneumonia, and 1 case of each of the seven respiratory diseases (Table 1). All three samples with false positive results or higher scores were from the “Other” category, which contained unique cases of disease among the control samples. Additionally, our results remained consistent regardless of demographic factors such as gender, smoking status, or age.
- the baseline data set consisted of methylation patterns from 21 cancer and 19 benign disease samples.
- the random shuffle set was created by randomly shuffling the original 40 alveolar lavage fluid samples, with each set consisting of 21 case samples and 19 control samples.
- Marker p-values were calculated for each random shuffle set and base data set via a modified leave-one-out procedure. Average p-values were compared to confirm the robustness and statistical significance of the analysis ( Figure 3a and Table 2). As the p-value threshold became stringent, the base data set had an increasing fold difference in the number of significant markers compared to the random shuffle set, peaking at 60-fold at 0.0001. Hierarchical clustering was performed using the top 24 markers satisfying a 0.0001 threshold, demonstrating the ability to distinguish between sample categories ( Figures 3b and 3c). The above 24 markers are ranked in descending order of p-value and are listed in order as follows:
- markers are ranked in descending order of p-value and are listed in order as follows:
- chr21_45079687 HSF2BP, RRP1P
- chr1_20960028 PINK1
- chr17_43698054 LINC02210-CRHR1
- Each methylation marker or combination thereof according to the present invention can be very useful in accurately diagnosing the onset of lung cancer.
- the methylation marker or combination thereof according to the present invention can be used to very accurately diagnose early lung cancer using alveolar lavage fluid, so its industrial applicability is very high.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 폐암 진단용 메틸화 마커 및 이의 조합에 관한 것으로, 보다 상세하게는 폐암 환자의 유전자에서 특이적으로 메틸화가 감소 또는 증가되어 나타나는 메틸화 마커, 이의 조합 및 이를 이용한 폐암 진단방법에 관한 것이다.
Description
본 출원은 2022년 10월 27일에 출원된 대한민국 특허출원 제 10-2022-0140731호 및 2023년 7월 28일에 출원된 대한민국 특허출원 제 10-2023-0098982 호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.
본 발명은 폐암 진단용 메틸화 마커 및 이의 조합에 관한 것으로, 보다 상세하게는 폐암 환자의 유전자에서 특이적으로 메틸화가 감소 또는 증가되어 나타나는 메틸화 마커, 이의 조합 및 이를 이용한 폐암 진단방법에 관한 것이다.
폐암은 주요 공중 보건 문제이며 전 세계적으로 암 관련 사망의 주요 원인이다. 새로 진단된 폐암 환자의 50% 이상이 원격 전이가 있는 것으로 밝혀졌으며 이들 환자의 5년 생존율은 2011-2017년 SEER 데이터를 기준으로 10%를 초과하지 않는다. 치료 전략의 발전과 조기 단계에서 치료적 개입이 가능하도록 진단 테스트의 정확도를 높임으로써 이러한 상황을 개선하기 위한 노력이 이루어졌다. 그러나 저선량 컴퓨터 단층촬영(LDCT)을 폐암 진단에서 골드 스탠다드 조직 생검을 보조하는 중요한 진단 방법으로 구현했음에도 불구하고 폐암 사망률의 약 20% 상대적 감소와 96.4%의 위양성 결과를 나타냈을 뿐, 보다 정확한 진단법 개발의 필요성이 증가하고 있다.
이러한 문제를 해결하기 위해 폐암 진단을 위한 대체 방법으로 액체 생검이 탐색되었다. 기관지경 검사 중에 채취한 폐포세척액(bronchoalveolar lavage fluid, BALF)에는 폐 조직에서 떨어져 나온 많은 암세포가 포함되어 있다. 이 유체는 정확한 지점에 의존하지 않고 특정 영역에 걸쳐 전역적으로 샘플링할 수 있으므로 폐암을 발견하는 데 유리한 샘플이 된다. 폐포세척액을 이용한 돌연변이 스크리닝은 폐암 스크리닝의 잠재적인 방법으로 제안되었다. 그러나 돌연변이 스크리닝은 폐암 검출에 대한 분석적 민감도가 높더라도 핫스팟 돌연변이가 없는 폐암이 존재하기 때문에 실제적 민감도가 제한되어 실제 진단 검사로 사용할 경우 민감도가 낮아질 수 있다.
DNA 메틸화 분석은 유전자 발현 조절에 중요한 역할을 하는 후생유전학적 변형이며 암 검출을 위한 바이오마커로서의 잠재력을 가지고 있다. 희박하고 드문 특성으로 인해 종종 탐지를 피하는 핫스팟 돌연변이와 달리, 암의 초기 단계에서 진행 단계까지 축적되는 전반적인 저메틸화는 탐지 가능한 마커의 상당한 풀을 제공한다. 이러한 다수의 마커는 검출률을 크게 높여 낮은 수준의 암에서도 효과적인 식별을 가능하게 한다.
실제로 전립선암, 결장암, 자궁암, 유방암 등 다양한 암 세포에서 CpG 섬에서의 비정상적인 메틸화/탈메틸화가 보고되었으며, 이들이 암 형성 초기에 중요한 역할을 하고 있다는 점이 밝혀지고 있어서 DNA 메틸화 경향이 유력한 암 조기진단의 마커로서 주목받고 있다. 하지만, 암을 진단할 수 있을 정도로 충분한 수의 마커가 부족하여 암 특이적인 DNA 메틸화 경향을 보이는 마커의 지속적인 개발이 요구되고 있는 실정이다.
이에, 본 발명자는 폐암에 특이적인 DNA 메틸화 마커를 개발하기 위하여 연구한 결과, 폐포세척액을 이용해 초기 폐암까지도 매우 정확하게 예측할 수 있는 메틸화 마커 및/또는 이들의 조합을 발견하고 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제를 포함하는 폐암 진단용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 조성물을 포함하는 폐암 진단용 키트를 제공하는 것이다.
본 발명의 다른 목적은 (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계; 및 (b) HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계를 포함하는, 폐암 진단을 위한 정보제공방법을 제공하는 것이다.
본 발명의 다른 목적은 폐암 진단용 조성물을 제조하기 위한 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제의 용도를 제공하는 것이다.
본 발명의 다른 목적은 (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계; (b) 상기 시료로부터 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계; 및 (C) 상기 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준이 대조군과 비교해 증가 또는 감소되어 있는 경우 폐암으로 진단하는 단계를 포함하는, 폐암 진단 방법을 제공하는 것이다
전술한 본 발명의 목적을 달성하기 위하여, 본 발명은 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제를 포함하는 폐암 진단용 조성물을 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 조성물을 포함하는 폐암 진단용 키트를 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계; 및 (b) HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계를 포함하는, 폐암 진단을 위한 정보제공방법을 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 폐암 진단용 조성물을 제조하기 위한 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제의 용도를 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계; (b) 상기 시료로부터 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계; 및 (C) 상기 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준이 대조군과 비교해 증가 또는 감소되어 있는 경우 폐암으로 진단하는 단계를 포함하는, 폐암 진단 방법을 제공한다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명은 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제를 포함하는 폐암 진단용 조성물을 제공한다.
본 발명에서 폐암 진단이란 피험자에 대하여 병리 상태의 존재 또는 특징을 확인하는 것을 의미하며, 본 발명의 일 측면에 따른 목적상, 진단은 폐암의 발병 여부를 확인하는 것을 의미할 수 있다. 본 발명의 일 측면에 따른 조성물, 키트 또는 방법은 임의의 특정 환자에 대한 폐암 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 일 측면에 따른 조성물, 키트 또는 방법은 폐암을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.
본 발명에서는 상기 인간 게놈 염색체 부위의 염기서열은 The February 2009 Human reference sequence(GRCh37/hg19)에 따라 표현하였지만, 상기 인간 게놈 염색체 부위의 구체적 서열은 게놈 서열 연구 결과가 업데이트됨에 따라서 그 표현이 다소 변경될 수 있으며, 이러한 변경에 따라 본 발명의 상기 인간 게놈 염색체 부위의 표현이 상이해질 수 있다. 따라서, 본 발명의 The February 2009 Human reference sequence(GRCh37/hg19)에 따라 표현된 인간 게놈 염색체 부위는 본 발명의 출원일 이후 인간 표준 염기서열(human reference sequence)이 업데이트되어 상기 인간 게놈 염색체 부위의 표현이 지금과 다르게 변경된다고 하여도, 본 발명의 범위가 상기 변경된 인간 게놈 염색체 부위에 미치게 됨은 자명하다고 할 것이다. 이러한 변경 내용은 본 발명이 속하는 기술분야의 통상의 지식을 가진 자라면 누구라도 용이하게 알 수 있는 사항이다.
본 발명에서 상기 "메틸화(methylation)"는 DNA의 시토신(cytosine) 잔기의 5번째 탄소에 메틸기가 첨가되는 것을 의미한다. 본 발명에서 용어, "메틸화(methylation)"는 DNA를 구성하는 염기에 메틸기가 부착되는 것을 말한다. 바람직하게, 본 발명에서 메틸화 여부는 특정 유전자의 특정 CpG 부위의 시토신 잔기의 다섯 번째 탄소에서 일어나는 메틸화 여부를 의미한다. 메틸화가 일어난 경우 그로 인하여 전사인자의 결합이 방해를 받게 되어 특정 유전자의 발현이 억제되며, 반대로, 비메틸화 또는 저메틸화가 일어나는 경우 특정 유전자의 발현이 증가하게 된다.
포유동물 세포의 게놈 DNA 에는 A, C, G 및 T에 더하여, 시토신 링의 다섯 번째 탄소에 메틸 그룹이 부착된 5-메틸시토신(5-methylcytosine, 5-mC)이라는 5번째 염기가 존재한다. 5-메틸시토신의 메틸화는 CpG라고 불리는 CG 디뉴클레오티드(5'-mCG-3')의 C에서만 일어나고, CpG의 메틸화는 alu 또는 트랜스포존과 게놈의 반복서열이 발현되는 것을 억제한다. 또한, 상기 CpG의 5-mC가 자연적으로 탈아미노화하여 티민(T)이 되기 쉽기 때문에, CpG는 포유동물 세포에서 대부분의 후성유전학적 변화가 자주 일어나는 부위이다.
본 발명에서 상기 "CpG 영역" 또는 "CpG 섬"은 CpG가 예외적으로 높은 빈도로 모여 있는 게놈 영역을 의미하며, C+G 함유량이 50%이상이고, CpG 비율이 3.75%이상인 평균 0.2 내지 3kb 길이의 부위를 의미한다.
CpG에서, C는 시토신을, G는 구아닌을 나타내며 p는 시토신과 구아닌과의 사이에 있는 포스포다이에스테르 결합을 의미한다.
인간 게놈에는 약 45,000개의 CpG 섬이 있으며, 이들 대부분이 유전자의 발현을 조절하는 프로모터 부위에서 발견되며, 실제로, CpG 섬은 인간 유전자의 약 50%에 달하는 하우스키핑(housekeeping) 유전자의 프로모터에서 발견된다.
정상인의 체세포에서, 상기 하우스키핑 유전자 프로모터 부위의 CpG 섬은 비메틸화되어 있으며, 임프린티드(imprinted) 유전자 및 비활성화 상태의 X 염색체 상의 유전자와 같이 발달과정 동안 발현되지 않는 유전자들은 메틸화되어 있다.
본 발명에서는 (i) HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, C1orf50, CROCC, ACLY, AGO2, ACTN4, 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서 메틸화 수준이 대조군과 비교해 감소되어 있는 경우, 및/또는 OTX1 및 NR2F-AS1로 이루어진 군에서 선택된 어느 하나 이상의 마커에서 메틸화 수준이 대조군과 비교해 증가되어 있는 경우 폐암으로 판정할 수 있다. 구체적으로, 상기 나열된 총 24종의 마커들 중 1종, 2종, 3종, 4종, 5종, 6종, 7종, 8종, 9종, 10종, 11종, 12종, 13종, 14종, 15종, 16종, 17종, 18종, 19종, 20종, 21종, 22종, 23종 또는 24종의 메틸화 수준을 측정하여 그 결과를 조합함으로써 폐암의 발병 여부 또는 발병 가능성을 예측해볼 수 있다.
본 발명에서 상기 유전자의 CpG 부위란, 상기 유전자의 DNA 상에 존재하는 CpG 부위를 말한다. 상기 유전자의 DNA는, 상기 유전자가 발현하는데 필요하며 서로 작동가능하게 연결되어 있는 일련의 구성 단위를 모두 포함하는 개념으로, 예를 들어, 프로모터 영역, 단백질 코딩 영역(open reading frame, ORF), 인트론, 엑손, 5'-UTR 및 터미네이터 영역을 포함한다. 따라서, 상기 각 유전자의 CpG 부위는 해당 유전자의 프로모터 영역, 단백질 코딩 영역(open reading frame, ORF), 인트론, 엑손, 5'-UTR 및 터미네이터 영역 등에 존재할 수 있다.
바람직하게는, 상기 HSF2BP 유전자의 메틸화는 21번 염색체의 45079687번째 염기 45079507번째 염기, 45079390번째 염기 및 45078945번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 RRP1P 유전자의 메틸화는 21번 염색체의 45079687번째 염기 45079507번째 염기, 45079390번째 염기 및 45078945번째 염기, 45092120번째 염기 및 45139158번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 SEPTIN4 유전자의 메틸화는 17번째 염색체의 56609232번째 염기, 56609218번째 염기, 56609373번째 염기 및 56609683번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 STX2 유전자의 메틸화는 12번 염색체의 131323597번째 염기, 131246665번째 염기, 131303158번째 염기, 131303619번째 염기 및 131323735번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 PINK1 유전자의 메틸화는 1번 염색체의 20960028번째 염기, 20959909번째 염기, 20960064번째 염기 및 20960163번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 FAM110D 유전자의 메틸화는 1번 염색체의 26490959번째 염기, 26488127번째 염기, 26488567번째 염기, 26488601번째 염기, 26488765번째 염기, 26490770번째 염기, 26490782번째 염기, 26490839번째 염기 및 26490987번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 LRRC25 유전자의 메틸화는 19번 염색체의 18507682번째 염기, 18504913번째 염기 및 18506355번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 AZIN2 유전자의 메틸화는 1번 염색체의 33546792번째 염기에서의 메틸화이며; 상기 FHL3 유전자의 메틸화는 1번 염색체의 38470929번째 염기, 38461728번째 염기, 38461917번째 염기, 28462627번째 염기, 38470949번째 염기 및 38471267번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 LINC02210-CRHR1 유전자의 메틸화는 17번 염색체의 43698054번쨰 염기, 43685977번째 염기, 43697880번째 염기, 43698142번째 염기, 43698179번째 염기 및 43698294번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 및 상기 EFR3B 유전자의 메틸화는 2번 염색체의 25265722번째 염기, 25265024번째 염기, 25265218번째 염기, 25265588번째 염기, 25352890번째 염기, 25354342번째 염기, 25354408번째 염기, 25355253번째 염기, 25355839번째 염기 및 25366563번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화인 것을 특징으로 할 수 있다.
본 발명에서, 상기 유전자의 메틸화 수준을 측정하는 제제는 비메틸화 시토신 염기를 변형시키는 화합물, 메틸화 민감성 제한효소, 메틸화된 염기를 포함하는 단편을 증폭할 수 있는 프라이머, 메틸화된 염기를 포함하는 단편에 혼성화할 수 있는 프로브, 메틸화된 염기와 결합할 수 있는 메틸화 특이적 결합 단백질, 메틸화 특이적 결합 항체 또는 압타머, 메틸화 민감성 제한 엔도뉴클라아제, 시퀀싱 프라이머, 시퀀싱 바이 신세시스 프라이머, 및 시퀀싱 바이 라이게이션 프라이머를 포함할 수 있다.
상기 비메틸화 시토신 염기를 변형시키는 화합물은 바이설파이트(bisulfite) 또는 이의 염일 수 있으나 이에 제한되지 않으며, 바람직하게는 소듐 바이설파이트일 수 있다. 이러한 바이설파이트를 이용하여 비메틸화 시토신 잔기를 변형시켜 CpG 부위의 메틸화 여부를 검출하는 방법은 당 업계에 널리 공지되어 있다.
또한, 상기 메틸화 민감성 제한효소는 CpG 부위의 메틸화를 특이적으로 검출할 수 있는 제한효소로서 제한효소의 인식부위로 CG를 함유하는 제한효소일 수 있다. 예를 들면, SmaI, SacII, EagI, HpaII, MspI, BssHII, BstUI, NotI 등이 있으며 이에 제한되지 않는다. 상기 제한효소 인식부위의 C에서의 메틸화 또는 비메틸화에 따라 제한효소에 의한 절단 여부가 달라지고 이를 PCR 또는 서던블롯(Southern Blot) 분석을 통해 검출할 수 있게 된다. 상기 제한효소 이외의 다른 메틸화 민감성 제한효소는 당 업계에 잘 알려져 있다.
본 발명에 따른 상기 각 유전자에서의 메틸화 수준을 측정하는 예시적인 방법으로, 피검자의 생물학적 시료에서 DNA를 수득하고, 수득한 DNA에 메틸화되지 않은 시토신 염기를 변형시키는 화합물 또는 메틸화 민감성 제한효소를 처리한 후, 상기 처리된 DNA를 프라이머를 이용하여 PCR에 의해 증폭시키고 그 증폭된 결과물의 존부를 확인하는 것을 통해 측정할 수 있다.
따라서, 본 발명의 제제는 상기 각 유전자의 메틸화된 대립형질 서열에 특이적인 프라이머 및 비메틸화된 대립형질 서열에 특이적인 프라이머를 포함할 수 있다. 본 발명에서, 용어 "프라이머"는 짧은 자유 3 말단 수산화기를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 중합효소 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다. 또한, 프라이머는, 7개 내지 50개의 뉴클레오타이드 서열을 가진 센스 및 안티센스 핵산으로서, DNA 합성의 개시점으로 작용하는 프라이머의 기본 성질을 변화시키지 않는 추가의 특징을 혼입할 수 있다.
본 발명의 프라이머는 메틸화 여부를 분석하는 대상이 되는 특정 CpG 부위의 서열에 따라 바람직하게 디자인될 수 있으며, 각각 메틸화되어 바이설파이트에 의해 변형되지 않았던 시토신을 특이적으로 증폭할 수 있는 프라이머쌍, 및 메틸화되지 않아 바이설파이트에 의해 변형된 시토신을 특이적으로 증폭할 수 있는 프라이머쌍일 수 있다.
상기 조성물 및 키트에는 상기 제제 이외에도, 중합효소, 아가로스, 전기영동에 필요한 완충용액 등이 추가로 포함될 수 있다.
본 발명의 일 구현예에 따르면, 상기 조성물은 “키트”의 형태로 제공될 수 있다.
본 발명에서 상기 “키트”는 핵산 증폭 또는 메틸화 수준 분석을 수행하기 위한 시약의 집합체를 의미하며, 상기 키트는 RT-PCR 키트, 마이크로어레이 칩 키트, DNA 키트, 및 단백질 칩 키트로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명은 또한 (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계; 및 (b) HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계를 포함하는, 폐암 진단을 위한 정보제공방법을 제공한다.
본 발명에서 상기 "생물학적 시료"란 폐포세척액(BAL), 조직, 세포, 혈액(전혈, 혈청, 혈장을 포함), 체액(타액, 객담 또는 뇨)와 같은 시료 등을 포함하나, 이에 제한되지 않는다. 바람직하게는, 폐포세척액, 혈액 또는 체액 시료일 수 있고, 가장 바람직하게는, 폐포세척액일 수 있다.
먼저, 피험자로부터 DNA를 수득하여 메틸화 수준을 측정하기 위하여, DNA의 수득은 당 업계에서 통상적으로 사용되는 페놀/클로로포름 추출법, SDS 추출법, CTAB 분리법 또는 상업적으로 판매되는 DNA 추출 키트를 이용하여 수행할 수 있으나, 이에 제한되는 것은 아니다.
상기 단계 (b)의 유전자의 메틸화 수준을 측정하는 단계는, PCR, 메틸화 특이 PCR(methylation specific PCR), methyl-sequencing, 실시간 메틸화 특이 PCR(real time methylation specific PCR), MethyLight PCR, MehtyLight digital PCR, EpiTYPER, 메틸화 DNA 특이적 결합 단백질을 이용한 PCR, 정량 PCR, DNA 칩, 파이로시퀀싱, 바이설파이트 시퀀싱, 서던블롯법, RLGS법, SNuPE법, CpG 섬 마이크로어레이, single-nucleotide primer extension법, COBRA법 (a combined bisulfite-restriction analysis), MIRA법 (methylated-CpG island recovery assay), 질량 스펙트럼법 및 차세대 염기서열 시퀀싱으로 이루어진 군에서 선택되는 방법으로 수행될 수 있다.
본 발명의 일 양태에서, 상기 단계 (b)의 유전자의 메틸화 수준을 측정하는 단계는 비메틸화 시토신 염기를 변형시키는 화합물 또는 메틸화 민감성 제한효소, 유전자 CpG 부위의 메틸화된 서열에 특이적인 프라이머, 및 비메틸화된 서열에 특이적인 프라이머를 이용하여 수행될 수 있다.
보다 상세하게는, 수득된 시료 내 DNA를 비메틸화 시토신 염기를 변형시키는 화합물 또는 메틸화 민감성 제한효소로 처리하는 단계; 및
상기 처리된 DNA를 유전자 CpG 부위의 메틸화 부위를 증폭할 수 있는 프라이머를 이용하여 메틸화 특이적 중합효소반응(methylation-specific polymerase chain reaction), 실시간 메틸화 특이적 중합효소반응(real time methylation-specific polymerase chain reaction), 메틸화 DNA 특이적 결합 단백질을 이용한 PCR, 정량 PCR, 파이로시퀀싱 및 바이설파이트 시퀀싱으로 구성된 군에서 선택되는 하나 이상을 선택하여 메틸화 수준을 측정하는 단계에 의해 수행될 수 있다.
상기에서, 비메틸화 시토신 염기를 변형시키는 화합물은 바이설파이트일 수 있으며, 바람직하게는 소듐 바이설파이트일 수 있다. 이러한 바이설파이트를 이용하여 비메틸화 시토신 잔기를 변형시켜 유전자 메틸화 여부를 검출하는 방법은 당 업계에 널리 공지되어 있다.
또한, 상기 메틸화 민감성 제한효소는 위에서 설명한 바와 같이, 특정 CpG 부위의 메틸화를 특이적으로 검출할 수 있는 제한효소로서 제한효소의 인식부위로 CG를 함유하는 제한효소일 수 있으며, 예를 들면, SmaI, SacII, EagI, HpaII, MspI, BssHII, BstUI, NotI 등이 있으며, 이에 제한되지 않는다.
상기 프라이머는 위에서 설명한 바와 같이, 메틸화 여부를 분석하는 대상이 되는 특정 CpG 부위의 서열에 따라 바람직하게 디자인될 수 있으며, 각각 메틸화되어 바이설파이트에 의해 변형되지 않았던 시토신을 특이적으로 증폭할 수 있는 프라이머쌍 및 메틸화되지 않아 바이설파이트에 의해 변형된 시토신을 특이적으로 증폭할 수 있는 프라이머 쌍일 수 있다.
메틸화 수준의 측정은, 당업계에 공지된 방법, 예를 들면 전기영동을 수행하여 원하는 위치의 밴드의 검출 여부에 따라서 수행될 수 있다. 예를 들면, 비메틸화 시토신 잔기를 변형시키는 화합물을 사용한 경우 두 종류의 프라이머쌍, 즉 메틸화되어 바이설파이트에 의해 변형되지 않았던 시토신을 특이적으로 증폭할 수 있는 프라이머쌍 및 메틸화되지 않아 바이설파이트에 의해 변형된 시토신을 특이적으로 증폭할 수 있는 프라이머쌍에 의해 각각 증폭된 PCR 결과물의 존부에 따라 메틸화 정도를 판단할 수 있다. 바람직하게, 샘플 게놈 DNA를 바이설파이트로 처리하고, 해당 유전자의 CpG 부위를 PCR로 증폭하고, 증폭된 부위의 염기서열을 분석하는 바이설파이트 게놈 시퀀싱 방법(예를 들어, 차세대 염기서열 시퀀싱, next-generation sequencing)을 사용하여 메틸화 여부를 판단할 수 있다.
또한, 제한효소를 이용한 경우에도 당업계에 공지된 방법, 예를 들어 mock DNA에서 PCR 결과물이 나타난 상태에서, 제한효소로 처리된 DNA에서 PCR 결과물이 있는 경우는 유전자가 메틸화된 것으로 판단하고, 제한효소로 처리된 DNA에서 PCR 결과물이 없는 경우는 유전자가 비메틸화 한 것으로 판단하는 것에 따라 그 메틸화 여부를 판단할 수 있으며, 이는 당업자에게 자명하다. 상기에서 mock DNA란 시료에서 분리되고 아무런 처리를 하지 않은 상태의 시료 DNA를 의미한다.
본 발명의 상기 정보제공방법은 상기 피험자의 상기 유전자의 메틸화 수준과 대조군의 메틸화 수준을 비교하는 단계를 추가로 포함할 수 있으며, 비교 결과 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준이 대조군과 비교해 증가 또는 감소되어 있는 경우 폐암으로 판단하는 것을 특징으로 할 수 있다.
구체적으로는, (i) HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, C1orf50, CROCC, ACLY, AGO2, ACTN4, 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서 메틸화 수준이 대조군과 비교해 감소되어 있는 경우, 및/또는 OTX1 및 NR2F-AS1로 이루어진 군에서 선택된 어느 하나 이상의 마커에서 메틸화 수준이 대조군과 비교해 증가되어 있는 경우 폐암으로 판단하는 것을 특징으로 할 수 있다.
본 발명에서 상기 대조군은 정상인 또는 양성(benign) 폐질환 환자군일 수 있다.
상기 양성 폐질환이란 악성 폐종양이 아닌 양성 폐종양의 원인이 된 폐질환을 포함할 수 있으며, 예를 들어, 폐결절, 기관지선총, 유취종, 섬유종, 지방종, 연골종, 과조종을 포함할 수 있으며, 상기 폐결절의 원인이 되는 감염증, 폐렴, 결핵 및 각종 호흡기 질환도 포함할 수 있으나, 이에 제한되는 것은 아니다.
한편, 본 발명의 상기 방법은 상기 각 유전자의 메틸화 수준 또는 이의 조합을 폐암 발병여부 판별과 연관시키는 단계를 추가로 포함할 수 있다.
즉, 상기 각 유전자의 메틸화 수준은 환자의 컨디션에 따라, 정량분석 수준에 편차가 있으므로, 상기 단백질의 단편적인 정량분석 수준만으로는, 우울증 발병여부 판별에 사용하기가 용이하지 않으므로, 상기 각 단백질의 정량분석 수준을 조합하여 분석함으로써, 폐암의 발병여부를 판별하는데 사용할 수 있다.
상기 단백질에 대한 각각의 정량분석 결과를 조합하여 분석하는 방법의 일 예로서, 혈청시료에서 측정된 각 단백질의 정량분석수준을 단독으로 또는 조합하여 폐암 발병여부를 판별하는 방법을 사용할 수 있다.
상기 유전자의 메틸화 수준 분석 결과를 조합하여 폐암을 판별하는 방법의 예로서, 통상적인 통계분석방법을 사용할 수 있다. 이때, 사용될 수 있는 통계분석방법은 특별히 이에 제한되지 않으나, 일 예로서, 선형 또는 비선형 회귀 분석방법; 선행 또는 비선형 classification 분석방법; ANOVA; 신경망 분석방법; 유전적 분석방법; 서포트 벡터 머신 분석방법; 계층 분석 또는 클러스터링 분석방법; 결정 트리를 이용한 계층 알고리즘, 또는 Kernel principal components 분석방법; Markov Blanket 분석방법; recursive feature elimination 또는 엔트로피-기본 recursive feature elimination 분석방법; 전방 floating search 또는 후방 floating search 분석방법 등을 단독으로 또는 조합하여 사용할 수 있다.
또한, 상기 각 유전자의 메틸화 수준 분석 결과의 조합은 상기 통계방법을 자동적으로 수행할 수 있는 컴퓨터 알고리즘을 이용하여 수행할 수도 있다.
본 발명은 또한 폐암 진단용 조성물을 제조하기 위한 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제의 용도를 제공한다.
본 발명은 또한 (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계; (b) 상기 시료로부터 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계; 및 (C) 상기 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준이 대조군과 비교해 증가 또는 감소되어 있는 경우 폐암으로 진단하는 단계를 포함하는, 폐암 진단 방법을 제공한다.
하나의 실시양태에서, 본 발명은 하기 단계를 포함하는 개체의 폐암을 진단 및 치료하는 방법을 제공한다:
(i) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계;
(ii) 상기 시료로부터 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계;
(iii) 상기 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준이 대조군과 비교해 증가 또는 감소되어 있는 경우 폐암으로 진단하는 단계; 및
(iv) 상기 진단된 피검체에 폐암을 치료하기 위한 치료 약물을 투여하거나 수술을 통해 상기 질환을 치료하는 단계.
상기 i) 내지 iv) 단계를 포함하는 방법들은, 전술한 a) 내지 c) 단계를 포함하는 방법에 준하여 이해된다.
상기 iv) 단계는 상기 iii) 단계에서 질환이 진단된 개체에 시스플라틴(cisplatin), 카보플라틴(carboplatin), 비노렐빈(vinorelbine), 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 젬시타빈(gemcitabine), 페메트렉세드(pemetrexed), 이레사(gefitinib), 타세바(Erlotinib), 지오트립(Afatinib), 비짐프로(dacomitinib), 젤코리(Crizotinib), 자이카디아(ceritinib), 알레센자(alectinib), 알룬브릭(brigatinib), 아바스틴(bevacizumab), 키트루다(pembrolizumab), 옵디보(nivolumab), 티센트릭(Atezolizumab), 임핀지주(durvalumab) 등과 같은 치료 약물 투여, 수술 등의 수단을 통해 상기 질환의 치료를 수행하는 단계이다.
본 발명의 상기 '치료'는 폐암 또는 상기 질환의 증상을 개선시키는 것을 포괄적으로 지칭하고, 이는 상기 질환을 치유하거나, 실질적으로 예방하거나, 또는 상태를 개선시키는 것을 포함할 수 있으며, 상기 질환으로부터 비롯된 한 가지 증상 또는 대부분의 증상을 완화시키거나, 치유하거나 예방하는 것을 포함하나, 이에 제한되는 것은 아니다.
본 발명의 상기 '시료'는 질환이 의심되는 개체로부터 분리 수득되는 것으로서, 이에 제한되지는 않으나, 세포, 조직, 혈액, 혈청, 혈장, 타액, 객담. 점막액 및 뇨로 이루어진 군에서 선택될 수 있으며, 상기 '개체' 또는 '피검체'란 동물, 바람직하게는 포유동물, 특히 인간을 포함하는 동물일 수 있으며, 동물에서 유래한 세포, 조직, 기관 등일 수도 있다. 상기 개체는 상기 치료 효과가 필요한 환자(patient) 일 수 있다.
본 발명에 따른 각 메틸화 마커 또는 이들의 조합은 폐암의 발병 여부를 정확하게 진단하는데 매우 유용하게 활용될 수 있다. 특히, 본 발명에 따른 메틸화 마커 또는 이들의 조합은 폐포세척액을 이용하여 초기 폐암도 매우 정확하게 진단하는데 활용될 수 있다.
도 1a는 분산계수(CV)가 가장 높은 500개 마커를 사용한 주성분 분석(PCA) 플롯을 나타낸다. 차원 축소 분석을 위해 CV가 가장 높은 상위 500개 마커를 선택했다.
도 1b는 PCA에서 각 구성요소의 고유값을 나타낸 그래프이다.
도 1c는 메틸화 수준의 차이에 대한 볼케이노 플롯을 나타낸 것이다. 모든 55,249개의 마커를 사용하여 폐암 샘플의 탈메틸화된 리드 수 비율을 양성 질환의 샘플과 비교한 것이다.
도 1d는 서로 다른 p-값 임계값(0.1, 0.05 및 0.01)에서 폐암 샘플의 과메틸화 및 저메틸화 마커의 수를 비교하는 막대 그래프를 나타낸다.
도 2a는 다양한 기계학습 모델의 ROC 곡선을 나타낸다. 21개의 폐암 샘플과 19개의 양성 질환 샘플에 대해 수행되었다.
도 2b는 21개의 폐암 및 19개의 양성 질환 샘플에 대한 로지스틱 회귀에 의한 예측 확률값을 나타낸 도면이다.
도 2c 내지 2f는 암 영향을 미치는 요인을 분석한 결과이다(2c: T 병기로 계층화된 암 환자의 암 확률, 2d: 다양한 크기의 암에 대한 암 확률, 2e: 암 아형별, 선암종, 편평 세포암(SCQQ), 구분되지 않은 암(NOS) 및 소세포폐암(SCLC)에 대한 암 확률, 2f: 양성 질병 유형(폐렴 등) 환자의 암 확률).
도 3a는 기본 데이터 세트 및 10개의 무작위 셔플 세트에 대한 p-값 임계값(0.001 및 0.0001)을 충족하는 마커 수를 나타내는 막대 그래프이다.
도 3b는 1차 데이터 세트에서 p-값이 0.0001 미만인 24개의 선택된 마커를 기반으로 하는 계층적 클러스터링 히트맵으로, 암과 양성 질병 그룹을 구별할 수 있음을 확인한 결과이다.
도 3c는 p-값이 0.0001 이하인 상위 24개 마커와 이들의 p-값 및 t-값을 나타낸 도면이다.
도 4a는 55,249개의 마커 중에서 로지스틱 회귀 분석으로 약 0.990의 AUC 값을 나타내는 p-값이 가장 낮은 7개의 마커 세트를 식별한 결과를 나타낸다.
도 4b는 선택된 7개의 마커 세트를 이용하여 암과 양성 질환을 구분한 결과를 나타낸다. 100%의 민감도와 89.5%의 특이도를 나타냈다.
이하, 본 발명을 하기 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 이들에 의해 제한되는 것은 아니다.
실험방법
1. 연구 설계 및 샘플 등록
모든 연구 참여자는 의료 과정에서 폐암 또는 양성 폐 질환에 대한 기관지경 검사, 폐포세척액 검사 및 폐 CT 스캔이 필요했으며 조직 생검을 통해 폐암의 최종 진단을 확인했다. 이 환자들의 의료 기록은 철저하게 검토되었다. 모든 임상 정보는 비식별화된 방식으로 익명으로 제공되었다.
이 연구는 가톨릭대학교 성빈센트 병원 임상시험심사위원회(Institutional Review Board of the St. Vincent's Hospital of the Catholic University of Korea, Grant Number: VC21TISI0149)의 승인을 받았으며 헬싱키 선언문 및 이후 개정된 선언문의 원칙에 따라 수행되었다. 모든 환자는 이 연구에 참여하기 위해 서면 동의서를 제공했다.
폐포세척액은 표준 기관지경 검사 절차를 사용하여 각 참가자로부터 수집되었다. 수집 후, 폐포세척액을 멸균 용기로 옮기고 처리할 때까지 실온에서 저장소에 두었다. 그런 다음 샘플을 실온에서 10분 동안 2500rpm에서 원심분리하여 유체에서 세포 성분을 분리했다. 생성된 세포 펠릿을 200μl의 인산완충식염수(PBS)에 재현탁하고 메틸화 분석 및 MRE-seq를 사용한 차세대 시퀀싱(NGS)을 위해 추가로 처리했다.
2. MRE-seq용 라이브러리 구축
gDNA는 먼저 Covaris 기기를 사용하여 길이가 150-200 염기쌍인 조각으로 조각났다. 다음으로, 조각난 gDNA(20ng)는 end-repair 및 A-tailing 프로세스를 거쳤다. end-repair 및 A-tailing 후, p7 어댑터는 T4 ligase(NEB, MA, USA)를 사용하여 DNA 단편에 결찰되었으며, 이 어댑터에는 개별 분자를 식별하기 위한 Unique Molecular Identifiers(UMI)가 포함되어 있다[31]. 그런 다음 삽입물 내의 특정 서열을 인식하는 SacII 효소를 사용하여 DNA 라이브러리를 절단한다. SacII 효소로 절단한 후 SacII 효소 부위를 포함하는 p5 어댑터를 DNA 조각에 연결한다. 그런 다음 라이브러리는 17주기의 범용 프라이머를 사용하여 증폭된다. 각각의 라이브러리를 풀링하고 Illumina NovaSeq 6000(Illumina)에서 100주기 키트(쌍 끝 리드)로 시퀀싱했다.
3. 세포주에서 혼합 DNA 샘플 준비
DNA 혼합물을 생성하기 위해 폐암 세포주 A549(ATCC, 카탈로그 번호: CCL-185)를 사용하고 정상 세포주 GM12878(Coriell) DNA를 QIAamp DNA mini 키트(Qiagen, Hilden, Germany)를 사용하여 추출했다. 이어서 두 세포주를 순차적으로 희석하여 GM12878과 특정 비율(A549 100%, 10%, 3%, 1%, 0.1% 및 0%)을 얻고 완전히 혼합했다. M220 Focused-ultrasonicator(Covaris, MA, USA) 및 microTUBE-50 AFA Fiber Screw-Cap(Covaris)을 사용하여 혼합 DNA 단편화를 수행했다. 총 50μL의 혼합 DNA를 전단하여 200bp를 중심으로 피크가 있는 DNA 단편을 생성했다. 전단 조건은 다음과 같다: 듀티 팩터 20%, 피크 전력 50, 사이클/버스트 200, 제조업체의 지침에 따름. 생성된 DNA 조각 크기는 Agilent 4200 TapeStation(Agilent)에서 High Sensitivity D1000 ScreenTape(Agilent, CA, USA)를 사용하여 분석되었다.
4. ddPCR을 통한 KRAS 돌연변이 검출
ddPCR(Droplet digital PCR)은 ddPCR쪠 KRAS G12/G13 Screening Kit(Bio-Rad, CA, USA)를 사용하여 수행되었다. 각 3회 반응에 대해 프로브용 2Х ddPCR Supermix 10μL(dUTP 없음), 20x ddPCR KRAS G12/G13 Screening Multiplex Assay 0.5μL, DNA 템플릿 20ng을 포함하는 총 반응 부피 20μL를 사용했다. (또는 템플릿이 없는 대조군의 경우 뉴클레아제가 없는 물 2μL). QX200 Droplet Generator는 PCR 증폭을 위해 샘플(20 μl, ≥10,000 방울)을 분할했다. PCR 조건은 95°C에서 10분의 초기 단계에 이어 2단계 열 프로파일(94°C에서 30°s 및 55°C에서 60°s, 램프 속도 2°C/60°C)의 40주기를 포함했다. 98°C에서 10분 동안 최종 배양한 다음 4°C로 냉각한다. 열 순환 후 플레이트를 분석을 위해 QX200 액적 판독기(Bio-Rad)로 옮겼다. 제조업체가 권장하는 QuantaSoft 소프트웨어 버전 1.7.4를 데이터 분석에 사용했다.
5. MRE-seq 데이터 수집 및 처리
이 연구에서는 암과 양성 질환을 구별하기 위해 MRE-seq 방법을 사용했다. NGS 데이터의 다운스트림 분석에는 Base Calls(BCL)에서 BAM(Binary Alignment Map) 파일로의 전환이 포함되었다. 처음에 BCL 파일은 역다중화되고 bcl2fastq 소프트웨어를 사용하여 FASTQ 형식으로 변환되었다. 그런 다음 FastQC[32]를 사용하여 이러한 FASTQ 파일에 품질 관리를 적용했다. 그 후, 고품질 리드(read)는 BWA(Burrows-Wheeler Aligner)[33]를 사용하여 hg19 인간 참조 게놈에 매핑되어 SAMtools[34]를 사용하여 보다 압축된 BAM 형식으로 변환된 SAM(Sequence Alignment Map) 파일을 생성했다. 이 변환 후 당사는 자체 UMI(Unique Molecular Identifier) 중복 제거 프로세스를 적용하여 데이터를 정제하여 PCR 증폭에서 발생하는 중복 판독을 제거했다.
6. 데이터 시각화
차원 축소 분석을 위해 전체 세트 중 분산 계수(CV)가 가장 높은 500개의 CpG 사이트를 선택하고 Python의 'sklearn.manifold' 모듈의 PCA 함수를 사용하여 주성분 분석(PCA)을 적용했다. 또한 암과 양성 질병(benign diseases) 샘플 사이의 차별적 메틸화 패턴을 시각화하기 위해 볼케이노 플롯을 생성했다. z-점수 변환으로 인해 부적절한 폴드 변경 계산이 발생할 수 있으므로 PCA 및 볼케이노 플롯 분석은 샘플 내 정규화된 데이터를 사용하여 수행되었다. Seaborn의 '클러스터맵' 기능을 활용하여 샘플 간 정규화된 데이터에 대한 계층적 클러스터링을 수행하여 메틸화 프로필을 기반으로 샘플 간의 관계와 유사성을 탐색할 수 있다.
7. DNA 메틸화 프로파일의 기계 학습 분석
MRE-seq에서 얻은 DNA 메틸화 패턴의 예측 성능을 평가하기 위해 Python 라이브러리를 활용한 기계 학습 분석을 사용했다. 기능 선택은 가장 유익한 CpG 사이트를 식별하기 위해 'sklearn.feature_selection' Python 모듈의 'SelectKBest' 및 'f_classif' 기능과 함께 t-테스트를 사용하여 수행되었다. 그런 다음 이러한 선택된 기능을 모델 교육 및 평가에 사용했다. 오버피팅을 해결하고 일반화를 개선하기 위해 L1 페널티 및 알파 값과 같은 정규화 방법이 다른 기계 학습 알고리즘에 통합되었다. 분석에 사용된 모델에는 로지스틱 회귀, SVM(Support Vector Machine), XGBoost 및 MLP(Multilayer Perceptron)가 포함되었다. 각 기계 학습 알고리즘에 대한 최적의 기능 수를 식별하기 위해 'sklearn.feature_selection' 모듈의 'RFE' 기능을 사용하여 선택된 기능 수량 범위를 테스트했다. 'sklearn.model_selection'의 'LeaveOneOut' 함수를 통해 LOOCV(leave-one-out cross-validation)를 사용하여 각 모델의 성능을 추정했다. 이를 통해 다양한 수의 선택된 기능으로 각 모델의 성능을 평가하고 각 알고리즘에 가장 적합한 기능 세트를 결정할 수 있었다. 마지막으로 'sklearn.metrics' 모듈의 'roc_auc_score' 및 'roc_curve' 함수를 사용하여 모델 및 기능 선택의 각 조합에 대해 AUROC(Receiver Operating Characteristic) 플롯 아래 영역을 계산했다.
8. 1차 및 랜덤 셔플 데이터 세트의 마커 유의성 비교를 통한 견고성 평가
제한된 샘플로 분석의 견고성을 확인하기 위해 기본 MRE-seq 파생 데이터 세트와 여러 무작위 세트 간의 마커 중요성을 대조했다. 21개의 암 샘플과 19개의 양성 질병 샘플을 포함하는 40개의 폐포세척액 샘플을 무작위로 섞어 각각 21개의 사례 샘플과 19개의 대조군 샘플로 나누어진 10개의 개별 세트를 생성했다. 교차 검증을 위해 수정된 leave-one-out 접근 방식을 적용하여 한 번에 각 셔플 세트에서 하나의 샘플을 제외했다. 이후 기계학습 특징 선택 전략과 유사하게 실제 테스트보다는 p-값 계산에 초점을 맞춰 나머지 샘플에서 마커 p-값을 계산하기 위해 t-테스트를 수행했다. 각 마커의 평균 p-값은 각 랜덤 셔플 세트의 40개 샘플에서 계산되었으며 이 값을 기본 데이터 세트와 비교했다. 서로 다른 p-값 임계값을 충족하는 마커 수를 각 샘플 세트에서 비교하여 기본 데이터 세트에서 마커의 중요성을 확인했다.
실험결과
1. MRE-seq 분석의 샘플 수집 및 데이터 처리
폐포세척액 샘플에서 암과 양성 질환을 구별하는 MRE-seq 방법의 성능을 평가했다. 연구를 수행하기 위해 21명의 암 환자와 19명의 양성 질환 환자로부터 샘플을 수집했다(표 1). 건강한 개인의 폐포세척액 샘플은 수득하는 것이 용이하지 않기 때문에 양성 질환(benign diseases) 환자의 샘플을 대조군으로 사용했다.
데이터 처리 단계에서 각 제한 효소 사이트에 대한 시퀀싱 리드를 다듬고 매핑했으며 UMI를 사용하여 중복을 제거했다. 이것은 유사한 리드 수를 유지함으로써 모든 비교 그룹에서 일관성을 보장했다. 결과적으로 모든 샘플에서 샘플당 약 250의 평균 온타겟 매핑 리드 깊이를 달성했다.
균일한 판독 깊이를 얻은 후 두 가지 정규화 단계를 적용했다. 모든 SacII REsites에 대한 목표 깊이의 트리밍 평균을 사용하는 샘플 내 정규화와 각 사이트에 대한 40개 샘플에 대한 표준화를 사용하는 샘플 간 정규화로 샘플 비교 가능성을 보장한다. 본 발명자는 hg19 인간 게놈에서 65,499개의 SacII 사이트를 확인했으며 그 중 63,266개의 상염색체 사이트를 분석에 사용했다. 또한 샘플의 50% 이상에서 누락된 값이 있는 CpG 사이트가 제거되어 후속 분석을 위해 55,249개의 유익한 CpG 사이트의 최종 집합이 남았다.
2. MRE-seq 마커의 예비 분석 및 시각화
폐암과 양성 질환을 구별하는 MRE-seq 방법의 능력을 평가하기 위해 PCA(principal component analysis)를 수행하고 40개 샘플의 정규화된 깊이 데이터를 사용하여 볼케이노 플롯으로 마커 분포를 시각화했다. CV(coefficient of variance)가 가장 높은 상위 500개의 마커를 사용하여 PCA를 수행했다. 전체 분산의 90% 이상을 차지하는 주성분(PC) 1, 2 및 3의 분석을 수행했다. 이러한 차원에서 양성 질병 샘플은 뚜렷한 클러스터 또는 라인을 형성하는 반면 암 샘플은 데이터 공간에서 이질적인 표현을 나타내는 분산을 나타냈다(도 1a 및 1b).
본 데이터가 암의 특징으로 DNA 저메틸화를 보고한 이전 연구와 일치하는지 여부를 조사하기 위해 볼케이노 플롯으로 마커 분포를 시각화했다. 도 1C에 도시된 바와 같이, 상당히 많은 수의 저메틸화된 마커가 암 샘플에서 관찰되었다. 대조군에 비해 55,249개 마커 중 1,155개가 암 샘플에서 저메틸화의 최소 4배 증가를 보인 반면, 7개 마커만이 반대 경향을 보였다. 또한, 총 8,694개의 마커 중 7,677개(88.3%)가 암 샘플에서 저메틸화를 나타냈으며, p-값은 0.05 미만이었다(도 1c 및 1d).
이러한 일관된 변형은 본 데이터가 암 게놈의 특성을 정확하게 반영하고 두 그룹을 구별하는 방법의 잠재력을 강조한다는 것을 시사한다.
3. 폐암 및 양성 질환 판별에서의 기계 학습 성능
로지스틱 회귀, SVM, XGBoost, MLP 등 다양한 알고리즘을 사용하여 기계 학습을 수행하고 LOOCV를 사용하여 분석 성능을 평가했다. 분석 결과 AUC가 0.845 이상으로 높은 성능을 보였다. 그 중 로지스틱 회귀는 100% 민감도와 89.5% 특이도로 0.975의 특히 높은 AUC를 나타냈다(도 2a 및 2b). 이 정확도는 초기 환자와 후기 환자를 비교할 때도 지속되었다(도 2c). 놀랍게도, 3cm 미만의 암에서도 4개 샘플 중 3개에서 높은 암 확률이 관찰되었다. 1.2cm 크기의 가장 작은 암도 발암확률이 0.904로 작은 크기의 암에 대한 판별력도 양호함을 보였다(도. 2d). 아형별 암확률 분석에서는 비소세포폐암(NSCLC)보다 소세포폐암(SCLC)에서 변별력이 더 효과적인 것으로 나타났다. NSCLC 그룹 내에서 다른 하위 유형에 비해 SQCC에 대해 더 높은 수준의 차별이 관찰되었다(도 2e).
대조군으로 사용된 양성 질병 샘플에는 폐렴 10건, 조직화 폐렴 2건, 7가지 호흡기 질환 각각 1건이 포함되었다(표 1). 가양성 결과 또는 더 높은 점수를 보인 3개의 샘플은 모두 "기타" 범주에서 유래했으며, 여기에는 대조군 샘플 중 고유한 질병 사례가 포함되었다. 또한, 본 결과는 성별, 흡연 상태 또는 연령과 같은 인구통계학적 요인에 관계없이 일관되게 유지되었다.
4. 제한된 샘플 크기에서 통계적으로 유의미한 마커의 견고성 평가
제한된 샘플 크기의 제약에도 불구하고 마커의 통계적 유의성을 엄격하게 평가했다. 본 발명자는 MRE-seq에서 파생된 기본 데이터 세트와 10개의 서로 다른 랜덤 셔플 데이터 세트 간에 비교 분석을 수행했다. 기본 데이터 세트는 21개의 암과 19개의 양성 질병 샘플의 메틸화 패턴으로 구성되었다. 반면 무작위 셔플 세트는 원래 40개의 폐포세척액 샘플을 무작위로 섞음으로써 생성되었으며 각 세트는 21개의 사례 샘플과 19개의 대조군 샘플로 구성된다.
수정된 leave-one-out 절차를 통해 각 랜덤 셔플 세트 및 기본 데이터 세트에 대한 마커 p-값을 계산했다. 평균 p-값을 비교하여 분석의 견고성과 통계적 유의성을 확인했다(도 3a 및 표 2). p-값 임계값이 엄격해짐에 따라 기본 데이터 세트는 무작위 셔플 세트와 비교하여 중요한 마커 수의 배수 차이가 증가하여 0.0001에서 60배로 정점에 도달했다. 0.0001 임계값을 만족하는 상위 24개 마커를 사용하여 계층적 클러스터링을 수행하여 샘플 범주를 구별할 수 있는 능력을 입증했다(도 3b 및 3c). 상기 24개의 마커를 p-값이 작은 순서대로 순위를 매겨 순서대로 나열하면 아래와 같다:
상기 24개의 마커를 p-값이 작은 순서대로 순위를 매겨 순서대로 나열하면 아래와 같다:
chr21_45079687: HSF2BP, RRP1P
chr17_56609232: SEPTIN4
chr12_131323597: STX2
chr1_20960028: PINK1
chr1_26490959: FAM110D
chr19_18507682: LRRC25
chr1_33546792: AZIN2
chr1_38470929: FHL3
chr17_43698054: LINC02210-CRHR1
chr2_25265722: EFR3B
Chr17_60781454: MARCHF10
Chr15_37134904: intergenic region
Chr2_63281154: OTX1
Chr17_37365505: intergenic region
Chr1_205512532: intergenic region
Chr1_43233123: C1orf50
Chr1_17240803: CROCC
Chr17_40074333: ACLY
Chr8_141645034: AGO2
Chr6_34130415: intergenic region
Chr22_22006906: intergenic region
Chr19_39203304: ACTN4
Chr5_92909105: NR2F-AS1
Chr22_44351495: PNPLA3
5. 폐암 검출을 위한 매우 중요한 마커의 최소 세트 선택
가능한 가장 적은 수의 마커를 사용하여 폐암 진단 가능성을 조사했다. 로지스틱 회귀에서 마커 수를 점진적으로 늘리고 55,249개 마커 중에서 가장 낮은 p-값으로 정렬하여 AUC가 0.990이 되는 7개 마커 세트를 확인했다(도 4a). 상기 7개 마커 세트는 상기 나열된 24개의 마커들의 상위 7개 세트이다. 암 확률 점수는 100%의 민감도와 89.5%의 특이도를 보였다(도 4b). 이러한 결과는 이 선택된 마커 세트가 암과 양성 질환을 효과적으로 구별할 수 있으며 잠재적으로 폐암 검출을 위한 진단 도구 역할을 할 수 있음을 시사한다.
앞서 살펴본, p-값이 0.0001 미만인 24개 마커의 경우 상위 10개 마커에 대한 관련 유전자를 조사했다. 상위 10개의 CpG 사이트 외에도 이를 포함하는 유전자의 주변 지역에서 모든 CpG 사이트를 검사하고 전사 시작 사이트(TSS)로부터의 거리를 평가했다. 본 발명자는 전사 시작 사이트에 근접한 SacII 사이트에서 상당한 탈메틸화를 관찰했으며, 근처의 SacII 사이트도 p-값이 0.05 미만인 마커 클러스터를 형성했다(표 3). 이러한 결과는 TSS 부근에서 중요한 마커의 클러스터링 경향을 시사하며, 후생유전학적 조절에서 이들 영역의 잠재적 중요성을 강조한다.
본 발명에 따른 각 메틸화 마커 또는 이들의 조합은 폐암의 발병 여부를 정확하게 진단하는데 매우 유용하게 활용될 수 있다. 특히, 본 발명에 따른 메틸화 마커 또는 이들의 조합은 폐포세척액을 이용하여 초기 폐암도 매우 정확하게 진단하는데 활용될 수 어 산업상 이용가능성이 매우 높다.
Claims (17)
- HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제를 포함하는 폐암 진단용 조성물.
- 제1항에 있어서, 상기 메틸화 수준을 측정할 수 있는 제제는 비메틸화 시토신 염기를 변형시키는 화합물, 메틸화 민감성 제한효소, 메틸화된 염기를 포함하는 단편을 증폭할 수 있는 프라이머, 메틸화된 염기를 포함하는 단편에 혼성화할 수 있는 프로브, 메틸화된 염기와 결합할 수 있는 메틸화 특이적 결합 단백질, 메틸화 특이적 결합 항체 또는 압타머, 메틸화 민감성 제한 엔도뉴클라아제, 시퀀싱 프라이머, 시퀀싱 바이 신세시스 프라이머, 및 시퀀싱 바이 라이게이션 프라이머로 이루어진 군에서 선택되는 것을 특징으로 하는 폐암 진단용 조성물.
- 제1항에 있어서, 상기 HSF2BP 유전자의 메틸화는 21번 염색체의 45079687번째 염기 45079507번째 염기, 45079390번째 염기 및 45078945번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 RRP1P 유전자의 메틸화는 21번 염색체의 45079687번째 염기 45079507번째 염기, 45079390번째 염기 및 45078945번째 염기, 45092120번째 염기 및 45139158번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 SEPTIN4 유전자의 메틸화는 17번째 염색체의 56609232번째 염기, 56609218번째 염기, 56609373번째 염기 및 56609683번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 STX2 유전자의 메틸화는 12번 염색체의 131323597번째 염기, 131246665번째 염기, 131303158번째 염기, 131303619번째 염기 및 131323735번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 PINK1 유전자의 메틸화는 1번 염색체의 20960028번째 염기, 20959909번째 염기, 20960064번째 염기 및 20960163번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 FAM110D 유전자의 메틸화는 1번 염색체의 26490959번째 염기, 26488127번째 염기, 26488567번째 염기, 26488601번째 염기, 26488765번째 염기, 26490770번째 염기, 26490782번째 염기, 26490839번째 염기 및 26490987번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 LRRC25 유전자의 메틸화는 19번 염색체의 18507682번째 염기, 18504913번째 염기 및 18506355번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 AZIN2 유전자의 메틸화는 1번 염색체의 33546792번째 염기에서의 메틸화이며; 상기 FHL3 유전자의 메틸화는 1번 염색체의 38470929번째 염기, 38461728번째 염기, 38461917번째 염기, 28462627번째 염기, 38470949번째 염기 및 38471267번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 상기 LINC02210-CRHR1 유전자의 메틸화는 17번 염색체의 43698054번쨰 염기, 43685977번째 염기, 43697880번째 염기, 43698142번째 염기, 43698179번째 염기 및 43698294번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화이며; 및 상기 EFR3B 유전자의 메틸화는 2번 염색체의 25265722번째 염기, 25265024번째 염기, 25265218번째 염기, 25265588번째 염기, 25352890번째 염기, 25354342번째 염기, 25354408번째 염기, 25355253번째 염기, 25355839번째 염기 및 25366563번째 염기로 이루어진 군에서 선택된 염기에서의 메틸화인 것을 특징으로 하는 폐암 진단용 조성물.
- 제1항 내지 제3항 중 어느 한 항의 조성물을 포함하는 폐암 진단용 키트.
- 제4항에 있어서, 상기 키트는 RT-PCR 키트, 마이크로어레이 칩 키트, DNA 키트, 및 단백질 칩 키트로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 키트.
- (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계; 및(b) HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계를 포함하는, 폐암 진단을 위한 정보제공방법.
- 제6항에 있어서, 상기 정보제공방법은 상기 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준과 대조군의 메틸화 수준을 비교하는 단계를 추가로 포함하는 것을 특징으로 하는 정보제공방법.
- 제7항에 있어서, 상기 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준이 대조군과 비교해 증가 또는 감소되어 있는 경우 폐암으로 판단하는 것을 특징으로 하는 정보제공방법.
- 제8항에 있어서, (i) HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, C1orf50, CROCC, ACLY, AGO2, ACTN4, 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서 메틸화 수준이 대조군과 비교해 감소되어 있는 경우, 및/또는 OTX1 및 NR2F-AS1로 이루어진 군에서 선택된 어느 하나 이상의 마커에서 메틸화 수준이 대조군과 비교해 증가되어 있는 경우 폐암으로 판단하는 것을 특징으로 하는 정보제공방법.
- 제7항에 있어서, 상기 대조군은 양성(benign) 폐질환 환자군인 것을 특징으로 하는 정보제공방법.
- 제6항에 있어서, 상기 생물학적 시료는 피험자의 폐포세척액, 조직, 세포, 혈액, 혈장, 대변, 소변 및 체액으로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 정보제공방법.
- 제6항에 있어서, 상기 유전자의 메틸화 수준을 측정하는 단계는 PCR, 메틸화 특이 PCR(methylation specific PCR), methyl-sequencing, 실시간 메틸화 특이 PCR(real time methylation specific PCR), MethyLight PCR, MehtyLight digital PCR, EpiTYPER, 메틸화 DNA 특이적 결합 단백질을 이용한 PCR, 정량 PCR, DNA 칩, 파이로시퀀싱, 바이설파이트 시퀀싱, 서던블롯법, RLGS법, SNuPE법, CpG 섬 마이크로어레이, single-nucleotide primer extension법, COBRA법 (a combined bisulfite-restriction analysis), MIRA법 (methylated-CpG island recovery assay), 질량 스펙트럼법 및 차세대 염기서열 시퀀싱으로 이루어진 군에서 선택되는 방법으로 수행되는 것을 특징으로 하는 정보제공방법.
- 제6항에 있어서, 상기 분석된 마커의 메틸화 수준을 폐암 발병여부 판별과 연관시키는 단계를 추가로 포함하는 것을 특징으로 하는 정보제공방법.
- 제13항에 있어서, 상기 연관시키는 단계는 상기 각 마커의 메틸화 수준 분석 결과를 조합하여 수행되는 것을 특징으로 하는 정보제공방법.
- 제14에 있어서, 상기 결과의 조합은 선형 또는 비선형 회귀 분석방법; 선행 또는 비선형 classification 분석방법; ANOVA; 신경망 분석방법(Deep neural network); 유전적 분석방법; 서포트 벡터 머신 분석방법; 계층 분석 또는 클러스터링 분석방법; 결정 트리를 이용한 계층 알고리즘, 또는 Kernel principal components 분석방법; Markov Blanket 분석방법; recursive feature elimination 또는 엔트로피-기본 recursive feature elimination 분석방법; 전방 floating search 또는 후방 floating search 분석방법; 및 이들의 조합으로 이루어진 군에서 선택되는 분석방법을 이용하여 수행되는 것을 특징으로 하는 정보제공방법.
- 폐암 진단용 조성물을 제조하기 위한 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 제제의 용도.
- (a) 피험자의 생물학적 시료로부터 DNA를 추출하는 단계;(b) 상기 시료로부터 HSF2BP, RRP1P, STX2, PINK1, FAM110D, LRRC25, AZIN2, FHL3, LINC02210-CRHR1, EFR3B, MARCHF10, OTX1, C1orf50, CROCC, ACLY, AGO2, ACTN4, NR2F-AS1 및 PNPLA3로 이루어진 유전자군, 및 Chr15_37134904, Chr17_37365505, Chr1_205512532, Chr6_34130415 및 Chr22_22006906로 이루어진 인터제닉 영역(intergenic region)으로 이루어진 군에서 선택된 어느 하나 이상의 마커에서의 메틸화 수준을 측정하는 단계; 및(C) 상기 피험자의 상기 유전자 및/또는 인터제닉 영역에서의 메틸화 수준이 대조군과 비교해 증가 또는 감소되어 있는 경우 폐암으로 진단하는 단계를 포함하는, 폐암 진단 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0140731 | 2022-10-27 | ||
KR20220140731 | 2022-10-27 | ||
KR1020230098982A KR20240059529A (ko) | 2022-10-27 | 2023-07-28 | 폐암 진단용 메틸화 마커 및 이의 조합 |
KR10-2023-0098982 | 2023-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024090805A1 true WO2024090805A1 (ko) | 2024-05-02 |
Family
ID=90831331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/014409 WO2024090805A1 (ko) | 2022-10-27 | 2023-09-21 | 폐암 진단용 메틸화 마커 및 이의 조합 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024090805A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100058449A (ko) * | 2007-06-22 | 2010-06-03 | 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 | 종양 특이적 dna 서열의 특이적 증폭 |
KR20170071724A (ko) * | 2015-12-16 | 2017-06-26 | 연세대학교 산학협력단 | 간암 발생 특이적 유전자 발현에 관여하는 유전자 구조 내 cpg 섬의 dna 메틸화 변이를 이용한 간암의 예측 또는 진단 방법 |
KR101757174B1 (ko) * | 2016-02-18 | 2017-07-13 | 한양대학교 에리카산학협력단 | 휘발성 유기 화합물의 노출 시간별 특이적 메틸화 바이오마커 및 이를 이용한 휘발성 유기 화합물의 노출 여부 확인 방법 |
KR20180100546A (ko) * | 2015-10-26 | 2018-09-11 | 메디베이션 테크놀로지즈 엘엘씨 | Parp 저해제를 이용한 소-세포성 폐암의 치료 방법 |
KR20210106369A (ko) * | 2020-02-20 | 2021-08-30 | 이원다이애그노믹스(주) | 핵산의 메틸화 차이를 이용한 마커 선별방법, 메틸 또는 탈메틸 마커 및 이 마커를 이용한 진단방법 |
-
2023
- 2023-09-21 WO PCT/KR2023/014409 patent/WO2024090805A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100058449A (ko) * | 2007-06-22 | 2010-06-03 | 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 | 종양 특이적 dna 서열의 특이적 증폭 |
KR20180100546A (ko) * | 2015-10-26 | 2018-09-11 | 메디베이션 테크놀로지즈 엘엘씨 | Parp 저해제를 이용한 소-세포성 폐암의 치료 방법 |
KR20170071724A (ko) * | 2015-12-16 | 2017-06-26 | 연세대학교 산학협력단 | 간암 발생 특이적 유전자 발현에 관여하는 유전자 구조 내 cpg 섬의 dna 메틸화 변이를 이용한 간암의 예측 또는 진단 방법 |
KR101757174B1 (ko) * | 2016-02-18 | 2017-07-13 | 한양대학교 에리카산학협력단 | 휘발성 유기 화합물의 노출 시간별 특이적 메틸화 바이오마커 및 이를 이용한 휘발성 유기 화합물의 노출 여부 확인 방법 |
KR20210106369A (ko) * | 2020-02-20 | 2021-08-30 | 이원다이애그노믹스(주) | 핵산의 메틸화 차이를 이용한 마커 선별방법, 메틸 또는 탈메틸 마커 및 이 마커를 이용한 진단방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012081898A2 (ko) | 위암의 예후 예측용 마커 및 이를 이용하는 위암의 예후 예측 방법 | |
WO2020171573A1 (ko) | 혈중 무세포 dna 기반 간암 치료 예후예측 방법 | |
KR102587176B1 (ko) | 혈장으로부터 태아 또는 종양 메틸롬의 비침습적 결정 | |
WO2011055916A2 (ko) | 장암 진단을 위한 장암 특이적 메틸화 마커 유전자의 메틸화 검출방법 | |
WO2014073785A1 (ko) | 위용종 및 위암 특이적 메틸화 마커 유전자를 이용한 위용종 및 위암의 검출방법 | |
EP2420578B1 (en) | A method for screening cancer | |
WO2009113771A1 (ko) | 폐암특이적 메틸화 마커 유전자를 이용한 폐암 검출방법 | |
WO2021075797A2 (ko) | 특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도 | |
WO2019139363A1 (ko) | 무세포 dna를 포함하는 샘플에서 순환 종양 dna를 검출하는 방법 및 그 용도 | |
WO2021154009A1 (ko) | 특정 유전자의 CpG 메틸화 변화를 이용한 방광암 진단용 조성물 및 이의 용도 | |
US8048634B2 (en) | Cancer screening method | |
WO2012023648A1 (ko) | Hoxa11 유전자의 메틸화 수준을 측정하는 제제를 포함하는 비소세포폐암 진단용 조성물 및 이를 이용한 비소세포폐암 진단방법 | |
WO2018169145A1 (ko) | 진행성 위암 환자의 수술 후 예후 또는 항암제 적합성 예측 시스템 | |
WO2024080731A1 (ko) | 췌장암 진단을 위한 메틸화 마커 유전자 및 이의 용도 | |
WO2012081928A2 (ko) | 장암 진단을 위한 장암 특이적 메틸화 마커 gpm6a 유전자의 메틸화 검출방법 | |
WO2022075788A1 (ko) | LINC01798 유전자의 CpG 메틸화 변화를 이용한 대장암, 직장암 또는 대장 선종 진단용 조성물 및 이의 용도 | |
WO2023063562A1 (ko) | 세포 유리 dna를 이용한 대장암 진단을 위한 메틸화 마커 유전자 및 이의 용도 | |
WO2022098086A1 (ko) | 비기능성 전사체를 이용한 parp 저해제 또는 dna 손상 약물 감수성 판정방법 | |
WO2024091028A1 (ko) | Cell-free dna를 이용한 건강 및 질병관리 시스템 및 방법 | |
WO2021167413A1 (ko) | 핵산의 메틸화 차이를 이용한 마커 선별방법, 메틸 또는 탈메틸 마커 및 이 마커를 이용한 진단방법 | |
WO2022097844A1 (ko) | 유전자 복제수 변이 정보를 이용하여 췌장암 환자의 생존 예후를 예측하는 방법 | |
WO2011132989A2 (ko) | 자궁경부암 진단용 메틸화 마커 | |
WO2024090805A1 (ko) | 폐암 진단용 메틸화 마커 및 이의 조합 | |
WO2022108407A1 (ko) | 핵산 길이 비를 이용한 암 진단 및 예후예측 방법 | |
WO2024096536A1 (ko) | 폐암 진단용 dna 메틸화 마커 및 이의 용도 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23882912 Country of ref document: EP Kind code of ref document: A1 |