WO2024090259A1 - 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品 - Google Patents

樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品 Download PDF

Info

Publication number
WO2024090259A1
WO2024090259A1 PCT/JP2023/037344 JP2023037344W WO2024090259A1 WO 2024090259 A1 WO2024090259 A1 WO 2024090259A1 JP 2023037344 W JP2023037344 W JP 2023037344W WO 2024090259 A1 WO2024090259 A1 WO 2024090259A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
epoxy
resin composition
group
compound
Prior art date
Application number
PCT/JP2023/037344
Other languages
English (en)
French (fr)
Inventor
健斗 目黒
篤志 齊藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024090259A1 publication Critical patent/WO2024090259A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00

Definitions

  • the present invention relates to a resin composition, an adhesive or sealant containing the resin composition, a cured product thereof, and a semiconductor device and an electronic component containing the cured product.
  • curable resin compositions are often used for the assembly and mounting of components used in semiconductor devices and electronic components, such as semiconductor chips, in order to maintain reliability.
  • adhesives and sealants used in the manufacture of such devices and components are required to exhibit sufficient curing properties even under low-temperature conditions.
  • curable compositions that use a thiol-based curing agent as a curing agent are known (for example, Patent Documents 1 and 2).
  • thermal stress is generated in each of the parts according to the thermal expansion coefficient of the material. Because the thermal stress is not uniform due to the difference in the thermal expansion coefficient, it is not offset and causes deformation of the assembly.
  • the stress associated with this deformation acts particularly on the joints between the parts, i.e., the cured adhesive, and in some cases can cause the joints to peel off or cracks to form in the cured adhesive. Such peeling and cracks are particularly likely to occur when the cured adhesive is brittle and lacks flexibility. Therefore, adhesives for bonding parts made of different materials need to be flexible enough to follow the deformation of the assembly caused by the thermal stress of the parts, i.e., they need stress relaxation properties after curing.
  • Patent Document 3 discloses an epoxy resin composition capable of providing a cured product that can follow the deformation of a substrate, the epoxy resin composition comprising (A1) a first epoxy resin that is liquid at 25°C and has an epoxy equivalent of 250 to 1000, (A2) a second epoxy resin that has an epoxy equivalent lower than that of the first epoxy resin, (B) a thiol compound that has two or more thiol groups in the molecule, and (C) an inorganic filler.
  • the present invention aims to provide a resin composition and adhesive that have excellent reactivity even when using epoxy compounds with a large epoxy equivalent.
  • a first embodiment of the present invention is the following resin composition.
  • (1) (A) a multifunctional epoxy compound having an epoxy equivalent of less than 215 g/eq; (B) a multifunctional epoxy compound having an epoxy equivalent of 215 g/eq or more; (C) a polyfunctional thiol compound, A resin composition comprising (D) a curing catalyst and (E) a monofunctional compound having one group (e) in the molecule, the group (e) including an unsaturated double bond and an electron-withdrawing group adjacent thereto.
  • (2) The resin composition according to (1) above, wherein component (E) is liquid at 25°C.
  • component (9) The resin composition according to any one of the above (1) to (8), wherein component (A) and component (B) contain a polyfunctional epoxy compound that is liquid at 25°C, and the amount of the polyfunctional epoxy compound that is liquid at 25°C is 50 parts by mass or more per 100 parts by mass of the combined total mass of component (A) and component (B).
  • a second embodiment of the present invention is (10) an adhesive or sealant containing the resin composition according to any one of (1) to (9) above.
  • a third embodiment of the present invention is (11) a cured product obtained by curing the resin composition according to any one of (1) to (9) above, or the adhesive or sealant according to (10) above.
  • a fourth embodiment of the present invention is (12) a semiconductor device or electronic component comprising the cured product according to (11) above.
  • One embodiment of the resin composition, adhesive, or sealant is (13) the resin composition according to any one of (1) to (9) above, or the adhesive or sealant according to (10) above, for use in curing by heat alone.
  • Another embodiment of the present invention is (14) use of the resin composition according to any one of (1) to (9) above, or the adhesive or sealant according to (10) above, in curing by heat alone.
  • a resin composition with excellent reactivity can be obtained. Furthermore, this resin composition generates a small total amount of heat during the curing reaction, and can suppress overheating of the adherend and its surrounding members during short-time curing.
  • an adhesive or sealant with excellent reactivity can be obtained.
  • a cured product with excellent stress relaxation properties can be obtained.
  • the fourth embodiment of the present invention since the cured product has excellent stress relaxation properties, semiconductor devices and electronic components with excellent reliability can be obtained.
  • the term “cured product having excellent stress relaxation properties” refers to a cured product that has a degree of flexibility that allows it to accommodate deformation of an assembly caused by thermal stress of parts.
  • the term “resin composition having excellent reactivity” refers to a resin composition having a low reaction initiation temperature for the curing reaction.
  • the resin composition according to the first embodiment of the present invention comprises: (A) a multifunctional epoxy compound having an epoxy equivalent of less than 215 g/eq; (B) a multifunctional epoxy compound having an epoxy equivalent of 215 g/eq or more; (C) a polyfunctional thiol compound,
  • the present embodiment includes a curing catalyst (D) and a monofunctional compound (E) having one group (e) containing an unsaturated double bond and an electron-withdrawing group adjacent thereto in the molecule. According to the present embodiment, a resin composition having excellent reactivity can be obtained.
  • the resin composition of this embodiment contains a combination of (A) a multifunctional epoxy compound having an epoxy equivalent of less than 215 g/eq (hereinafter also referred to as "component (A)") and (B) a multifunctional epoxy compound having an epoxy equivalent of 215 g/eq or more (hereinafter also referred to as "component (B)").
  • component (A) and component (B) in combination, both excellent adhesive strength of the resin composition and excellent stress relaxation property of the cured product are achieved.
  • a resin composition having a viscosity suitable for workability can be obtained.
  • the polyfunctional epoxy compounds as components (A) and (B) are not particularly limited as long as they are compounds having at least two epoxy groups, and conventionally used epoxy resins can be used as components (A) and (B).
  • epoxy resin is a general term for thermosetting resins that can be cured by forming a crosslinked network with epoxy groups present in the molecule, and includes prepolymer compounds before curing. In terms of ensuring heat resistance, compounds having 2 to 6 epoxy groups are more preferable as components (A) and (B), and compounds having 2 epoxy groups are even more preferable.
  • the epoxy equivalent of component (A) is less than 215 g/eq, preferably from 50 g/eq to less than 215 g/eq, more preferably from 100 g/eq to less than 215 g/eq, and even more preferably from 130 g/eq to less than 185 g/eq.
  • the epoxy equivalent of component (B) is 215 g/eq or more, preferably 215 to 1000 g/eq, more preferably 230 to 700 g/eq, even more preferably 280 to 7000 g/eq, and particularly preferably 280 to 440 g/eq.
  • the molecular weight of component (A) is preferably from 100 to 600, more preferably from 200 to 600, and even more preferably from 260 to 400.
  • the molecular weight of component (B) is preferably from 400 to 3000, more preferably from 460 to 1500, and even more preferably from 560 to 1000.
  • Component (A) and component (B) may be liquid or solid at 25 ° C., but are preferably liquid at 25 ° C. In one embodiment, the amount of component (A) and component (B) that are liquid at 25 ° C.
  • component (A) and component (B) include a polyfunctional epoxy compound that is liquid at 25 ° C. and a polyfunctional epoxy compound that is solid at 25 ° C., and the amount of component (A) and component (B) that are liquid at 25 ° C.
  • the polyfunctional epoxy compounds used as components (A) and (B) are broadly classified into aromatic polyfunctional epoxy compounds and polyfunctional epoxy compounds that do not have an aromatic ring.
  • Aromatic polyfunctional epoxy compounds are polyfunctional epoxy compounds having a structure containing an aromatic ring such as a benzene ring. Many of the epoxy resins that have been frequently used in the past, such as bisphenol A type epoxy compounds, are of this type.
  • aromatic polyfunctional epoxy compounds include: - bisphenol A type epoxy compounds; - Branched polyfunctional bisphenol A type epoxy compounds such as p-glycidyloxyphenyl dimethyl trisbisphenol A diglycidyl ether; - bisphenol F type epoxy compounds; -Novolac type epoxy compounds; -Tetrabromobisphenol A type epoxy compounds; - fluorene type epoxy compounds; -biphenyl aralkyl epoxy compounds; -Diepoxy compounds such as 1,4-phenyldimethanol diglycidyl ether; Biphenyl-type epoxy compounds such as 3,3',5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl; -glycidylamine type epoxy compounds
  • component (A) and component (B) contain an aromatic polyfunctional epoxy compound.
  • aromatic polyfunctional epoxy compound bisphenol F type epoxy compounds, bisphenol A type epoxy compounds, and glycidylamine type epoxy compounds are preferable.
  • the aromatic polyfunctional epoxy compound may be oxyalkylene-modified, such as EO (ethylene oxide)-modified or PO (propylene oxide)-modified.
  • the aromatic polyfunctional epoxy compound is liquid at 25°C.
  • the viscosity at 25°C is preferably 0.1 to 100 Pa ⁇ s, more preferably 0.5 to 100 Pa ⁇ s, and particularly preferably 1 to 100 Pa ⁇ s.
  • viscosity is expressed as a value measured in accordance with Japanese Industrial Standard JIS K6833. Specifically, it can be determined by measuring with an E-type viscometer at a rotation speed of 10 rpm. There are no particular restrictions on the equipment, rotor, or measurement range used.
  • Multifunctional epoxy compounds that do not have an aromatic ring include, for example, aliphatic multifunctional epoxy compounds and multifunctional epoxy compounds that have a heterocyclic ring.
  • aliphatic polyfunctional epoxy compounds include: - diepoxy compounds such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, polytetramethylene ether glycol diglycidyl ether, glycerin diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexane type diglycidyl ether, dicyclopentadiene type diglycidyl ether; - triepoxy compounds such as trimethylolpropane triglycidyl ether, glycerin triglycidyl ether; -alicyclic epoxy compounds such as vinyl(3,4-cyclol
  • polyfunctional epoxy compounds having a heterocycle examples include isocyanuric acid type epoxy resins (manufactured by Nissan Chemical Industries, Ltd.: TEPIC-S, TEPIC-L, TEPIC-PAS, TEPIC-VL, TEPIC-FL, TEPIC-UC) and glycoluril type epoxy resins (manufactured by Shikoku Kasei Co., Ltd.: TG-G).
  • the polyfunctional epoxy compounds having a heterocycle are liquid at 25°C.
  • the viscosity at 25°C is 100 to 50,000 mPa ⁇ s, and more preferably 100 to 5,000 mPa ⁇ s.
  • the polyfunctional epoxy compounds are solid at 25°C.
  • jER registered trademark
  • 825, 827, 828, 828EL, 828XA, 828US, 806, 806H, 807, 152, 871, 872, YL980, YL983U, YX8000, and YX8034 manufactured by Mitsubishi Chemical Corporation
  • EPICLON registered trademark
  • 840, 840S, 850, 850S, 850CRP 850-LC
  • EX Examples include, but are not limited to, A-830LVP, EXA-835LV, and N-730A (manufactured by DIC Corporation), Denacol (registered trademark) EP-4100, EP-4100G, EP-4100E, EP-4300E, EP-4530, EP-4901, and EP-4901E (manufactured by ADEKA Corporation), EX-810, E
  • jER registered trademark
  • EPICLON registered trademark 860, 1050, 1055. 2050, 3050, 4050, 7050, HM-091, HP-7200L, HP-7200, HP-7200H, HP-4700, HP-4770 (manufactured by DIC Corporation), but are not limited to these.
  • the content of component (B) is preferably 1 to 1000 parts by mass, and more preferably 1 to 100 parts by mass, per 100 parts by mass of component (A). From the viewpoint of stress relaxation, the content of component (B) is preferably 10 to 1000 parts by mass, and more preferably 25 to 1000 parts by mass, and even more preferably 50 to 1000 parts by mass, per 100 parts by mass of component (A). Furthermore, from the viewpoint of improving reactivity, the content of component (B) is preferably 1 part by mass or more and less than 100 parts by mass, and more preferably 10 parts by mass or more and less than 50 parts by mass, per 100 parts by mass of component (A).
  • the resin composition of this embodiment contains (C) polyfunctional thiol compound (hereinafter also referred to as "component (C)").
  • component (C) polyfunctional thiol compound
  • the (C) polyfunctional thiol compound is a compound containing two or more thiol groups, and the thiol group reacts with the epoxy groups in the components (A) and (B), and with the group (e) in the monofunctional compound (E) having one group (e) containing an unsaturated double bond and an electron-withdrawing group adjacent thereto in the molecule.
  • the (C) polyfunctional thiol compound preferably has three or more thiol groups.
  • the (C) polyfunctional thiol compound more preferably contains a trifunctional thiol compound and/or a tetrafunctional thiol compound.
  • the trifunctional and tetrafunctional thiol compounds refer to thiol compounds having three and four thiol groups, respectively.
  • the thiol equivalent of the (C) polyfunctional thiol compound is preferably 90 to 200 g/eq, more preferably 90 to 150 g/eq, even more preferably 90 to 140 g/eq, and particularly preferably 90 to 130 g/eq.
  • Polyfunctional thiol compounds are broadly classified into thiol compounds having a hydrolyzable partial structure such as an ester bond in the molecule (i.e., hydrolyzable) and thiol compounds not having such a partial structure (i.e., non-hydrolyzable).
  • hydrolyzable polyfunctional thiol compounds include trimethylolpropane tris(3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: TMMP), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate (manufactured by SC Organic Chemical Co., Ltd.: TEMPIC), pentaerythritol tetrakis(3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: PEMP), tetraethylene glycol bis(3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: Examples of the mercaptopropyl ether include dipentaerythritol hexakis(3-mercaptopropionate) (manufactured by SC Organic Chemicals Co., Ltd.: DPMP), pentaerythritol tetrakis(3-
  • non-hydrolyzable polyfunctional thiol compounds include 1,3,4,6-tetrakis(2-mercaptoethyl)glycoluril (manufactured by Shikoku Chemical Industry Co., Ltd.: TS-G), (1,3,4,6-tetrakis(3-mercaptopropyl)glycoluril (manufactured by Shikoku Chemical Industry Co., Ltd.: C3 TS-G), 1,3,4,6-tetrakis(mercaptomethyl)glycoluril, 1,3,4,6-tetrakis(mercaptomethyl)-3a-methylglycoluril, 1 ,3,4,6-tetrakis(2-mercaptoethyl)-3a-methylglycoluril, 1,3,4,6-tetrakis(3-mercaptopropyl)-3a-methylglycoluril, 1,3,4,6-tetrakis(mercaptomethyl)-3a,6a-di
  • the resin composition of the present embodiment contains (D) a curing catalyst (hereinafter also referred to as "component (D)").
  • component (D) a curing catalyst
  • the curing catalyst used in the present embodiment is not particularly limited as long as it is a curing catalyst for the polyfunctional epoxy compounds of components (A) and (B), and known curing catalysts can be used.
  • Component (D) is preferably a latent curing catalyst.
  • a latent curing catalyst is a compound that is inactive at room temperature, but is activated by heating to function as a curing catalyst. Examples include imidazole compounds that are solid at room temperature; solid-dispersed amine adduct-based latent curing catalysts such as reaction products of amine compounds and epoxy compounds (amine-epoxy adduct systems); and reaction products of amine compounds and isocyanate compounds or urea compounds (urea adduct systems). From the standpoint of pot life and curability, solid-dispersed amine adduct-based latent curing catalysts are preferred as component (D).
  • imidazole-isocyanuric acid adducts include, but are not limited to, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole-trimellitate, 1-cyanoethyl-2-phenylimidazole-trimellitate, N-(2-methylimidazolyl-1-ethyl)-urea, and N,N'-(2-methylimidazolyl-(1)-ethyl)-adiboyldiamide.
  • Epoxy compounds used as one of the raw materials for manufacturing solid dispersion type amine adduct latent curing catalysts include, for example, polyglycidyl ethers obtained by reacting epichlorohydrin with polyhydric phenols such as bisphenol A, bisphenol F, catechol, and resorcinol, or polyhydric alcohols such as glycerin and polyethylene glycol; glycidyl ether esters obtained by reacting epichlorohydrin with hydroxycarboxylic acids such as p-hydroxybenzoic acid and ⁇ -hydroxynaphthoic acid; polyglycidyl esters obtained by reacting epichlorohydrin with polycarboxylic acids such as phthalic acid and terephthalic acid; glycidyl amine compounds obtained by reacting epichlorohydrin with 4,4'-diaminodiphenylmethane or m-aminophenol; and polyfunctional epoxy compounds such as
  • the amine compound used as another manufacturing raw material for the solid dispersion type amine adduct latent curing catalyst may be any compound that has at least one active hydrogen atom capable of addition reacting with an epoxy group in the molecule, and at least one functional group selected from a primary amino group, a secondary amino group, and a tertiary amino group in the molecule. Examples of such amine compounds are shown below, but are not limited to these.
  • aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, and 4,4'-diamino-dicyclohexylmethane
  • aromatic amine compounds such as 4,4'-diaminodiphenylmethane and 2-methylaniline
  • heterocyclic compounds containing nitrogen atoms such as 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, piperidine, and piperazine; and the like, but are not limited to these.
  • compounds having a tertiary amino group in the molecule are raw materials that provide latent curing catalysts with excellent curing acceleration capabilities.
  • examples of such compounds include amine compounds such as dimethylaminopropylamine, diethylaminopropylamine, di-n-propylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, and N-methylpiperazine, and imidazole compounds such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
  • 2-dimethylaminoethanol 1-methyl-2-dimethylaminoethanol, 1-phenoxymethyl-2-dimethylaminoethanol, 2-diethylaminoethanol, 1-butoxymethyl-2-dimethylaminoethanol, 1-(2-hydroxy-3-phenoxypropyl)-2-methylimidazole, 1-(2-hydroxy-3-phenoxypropyl)-2-ethyl-4-methylimidazole, 1-(2-hydroxy 1-(2-hydroxy-3-butoxypropyl)-2-methylimidazole, 1-(2-hydroxy-3-butoxypropyl)-2-ethyl-4-methylimidazole, 1-(2-hydroxy-3-phenoxypropyl)-2-phenylimidazoline, 1-(2-hydroxy-3-butoxypropyl)-2-methylimidazoline, 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)phenol, N- ⁇ -hydroxyethyl, 2-dimethylaminomethyl)phenol, 2,4,6-tris(di
  • Isocyanate compounds used as another manufacturing raw material for solid dispersion type amine adduct latent curing catalysts include, for example, monofunctional isocyanate compounds such as n-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, and benzyl isocyanate; polyfunctional isocyanate compounds such as hexamethylene diisocyanate, toluylene diisocyanate, 1,5-naphthalene diisocyanate, diphenylmethane-4,4'-diisocyanate, isophorone diisocyanate, xylylene diisocyanate, paraphenylene diisocyanate, 1,3,6-hexamethylene triisocyanate, and bicycloheptane triisocyanate; and further, compounds containing terminal isocyanate groups obtained by reacting these polyfunctional isocyanate compounds with active hydrogen compounds.
  • monofunctional isocyanate compounds such as n-butyl iso
  • Examples of such compounds containing terminal isocyanate groups include, but are not limited to, an addition compound having a terminal isocyanate group obtained by reacting toluylene diisocyanate with trimethylolpropane, and an addition compound having a terminal isocyanate group obtained by reacting toluylene diisocyanate with pentaerythritol.
  • urea compounds include, but are not limited to, urea and thiourea.
  • the solid dispersion type latent curing catalyst that can be used in this embodiment is, for example, the above-mentioned combination of two components, (a) an amine compound and an epoxy compound, (b) a combination of three components, the above-mentioned two components and an active hydrogen compound, or (c) a combination of two or three components, an amine compound and an isocyanate compound and/or a urea compound.
  • Typical examples of commercially available latent curing catalysts include amine-epoxy adducts (amine adducts), such as “Amicure PN-23” (product name of Ajinomoto Fine Techno Co., Ltd.), “Amicure PN-40” (product name of Ajinomoto Fine Techno Co., Ltd.), “Amicure PN-50” (product name of Ajinomoto Fine Techno Co., Ltd.), and “Hardener X-3661S” (product name of ACR Co., Ltd.).
  • amine adducts such as "Amicure PN-23" (product name of Ajinomoto Fine Techno Co., Ltd.), “Amicure PN-40” (product name of Ajinomoto Fine Techno Co., Ltd.), “Amicure PN-50" (product name of Ajinomoto Fine Techno Co., Ltd.), and “Hardener X-3661S” (product name of ACR Co., Ltd.).
  • Examples of such compounds include, but are not limited to, "Fujicure FXR-1030" (product name of T&K TOKA Corporation), “Fujicure FXR1121” (product name of T&K TOKA Corporation), “Fujicure FXR1081” (product name of T&K TOKA Corporation), “Fujicure FXR1061” (product name of T&K TOKA Corporation), and “Fujicure FXR1171” (product name of T&K TOKA Corporation).
  • Component (D) may be used alone or in combination of two or more types.
  • Component (D) is preferably contained in an amount of 0.1 to 30 mass % relative to the total mass of the resin composition, and more preferably 0.5 to 20 mass %.
  • component (D) is provided in the form of a dispersion in an epoxy compound.
  • component (D) in such a form, it should be noted that the amount of the epoxy compound in which it is dispersed is included in the amount of component (A) or component (B) in the resin composition of this embodiment.
  • (E) Monofunctional compound having one group (e) containing an unsaturated double bond and an adjacent electron-withdrawing group in the molecule
  • the resin composition of this embodiment contains (E) a monofunctional compound (hereinafter also referred to as "component (E)") having one group (e) (hereinafter also simply referred to as "group (e)”) containing an unsaturated double bond and an adjacent electron-withdrawing group in the molecule.
  • component (E)) more specifically the unsaturated double bond in group (e) reacts with the thiol group in (C) the polyfunctional thiol compound.
  • component (E) is used for component (E) to mean that the molecule has one group (e) that reacts with a thiol group.
  • the electron-withdrawing group include a carbonyl group and a cyano group, and a carbonyl group is preferred.
  • the onset temperature of the exothermic peak is observed on the lower side compared to that not containing component (E).
  • the onset temperature can be defined as the curing reaction initiation temperature.
  • the unsaturated double bond of the group (e) in component (E) is highly reactive because the electron-withdrawing groups are adjacent to each other, and reacts with the thiol group in the polyfunctional thiol compound (C) before the epoxy group in the polyfunctional epoxy compound of component (A) and component (B), which is considered to have lowered the curing reaction initiation temperature.
  • component (E) is monofunctional, it does not form crosslinks, and can suppress an increase in internal stress in the cured product that would otherwise occur due to an excessively high crosslink density, thereby imparting flexibility to the cured product of the resulting resin composition.
  • component (E) is liquid at 25°C.
  • component (E) examples include monofunctional maleimide compounds, monofunctional (meth)acrylate compounds, and monofunctional acrylamide compounds.
  • group (e) examples include maleimide groups and (meth)acryloyl groups.
  • component (E) is preferably selected from monofunctional maleimide compounds and monofunctional (meth)acrylate compounds, and more preferably is a monofunctional (meth)acrylate compound.
  • a monofunctional maleimide compound is a compound having one maleimide group as the group (e), and examples thereof include maleimide; aliphatic hydrocarbon group-containing maleimides such as methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, and cyclohexylmaleimide; aromatic ring-containing maleimides such as phenylmaleimide, etc. These may be used alone or in combination of two or more.
  • the monofunctional (meth)acrylate compound is a compound having one (meth)acryloyl group as the group (e).
  • Examples of the monofunctional (meth)acrylate compound include: -ethyl (meth)acrylate, trifluoroethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, glycidyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, isoamyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, isobornyl (meth)acrylate esters of monohydric alcohols and (meth)acrylic acid, such as esters of 2-hydroxyethyl
  • the molecular weight of the monofunctional (meth)acrylate compound is preferably 450 or less, more preferably 400 or less, even more preferably 380 or less, even more preferably 350 or less, and particularly preferably 300 or less.
  • the monofunctional (meth)acrylate compound is preferably low volatile, and its molecular weight is preferably 100 or more, more preferably 120 or more, even more preferably 140 or more, and particularly preferably 160 or more.
  • the molecular weight of the monofunctional (meth)acrylate compound is preferably 100 to 450, more preferably 120 to 400, even more preferably 140 to 380, particularly preferably 180 to 350, and most preferably 200 to 320.
  • Component (E) may have a group capable of reacting with a thiol group, such as an epoxy group, in addition to group (e). However, from the viewpoint of flexibility of the resulting cured product, it may be preferable that component (E) does not contain a group capable of reacting with a thiol group, such as an epoxy group.
  • the ratio of the sum of the epoxy group equivalent number of component (A) and the epoxy group equivalent number of component (B) to the thiol group equivalent number of component (C) (([epoxy group equivalent number of component (A)] + [epoxy group equivalent number of component (B)]) / [thiol group equivalent number of component (C)]) is preferably 0.4 to 0.95, more preferably 0.4 to 0.9, still more preferably 0.45 to 0.9, even more preferably 0.5 to 0.9, and particularly preferably 0.55 to 0.9.
  • the ratio of the number of epoxy group equivalents of component (A) to the number of thiol group equivalents of component (C) is preferably 0.1 to 0.9, more preferably 0.15 to 0.85, even more preferably 0.15 to 0.80, and particularly preferably 0.2 to 0.8.
  • the ratio of the sum of the epoxy group equivalent number of component (A), the epoxy group equivalent number of component (B), and the group (e) equivalent number of component (E) to the thiol group equivalent number of component (C) ((([epoxy group equivalent number of component (A)] + [epoxy group equivalent number of component (B)] + [group (e) equivalent number of component (E)]) / [thiol group equivalent number of component (C)]) is preferably 0.7 to 1.5, more preferably 0.75 to 1.4, even more preferably 0.8 to 1.3, and most preferably 0.8 to 1.1.
  • component (C) is a certain amount of component (C) with respect to components (A), (B), and (E), it is possible to suppress the remaining unreacted components that cannot react with thiol groups, and to suppress bleeding due to the unreacted components. In addition, it is expected that volatile components will be suppressed.
  • bleeding refers to a phenomenon in which unreacted components seep out from the adhesive coating or cured product over time when an adhesive containing a curable resin composition is used to fix or adhere parts, and the seeped components themselves are sometimes referred to as "bleed.”
  • the ratio of the number of equivalents of group (e) of component (E) to the number of equivalents of thiol groups of component (C) is preferably 0.05 to 0.7, more preferably 0.1 to 0.6, and even more preferably 0.15 to 0.55.
  • component (E) contains an epoxy group
  • functional group equivalents such as thiol equivalent, epoxy equivalent, and (meth)acryloyl equivalent refer to the molecular weight of a compound per functional group
  • functional group equivalent numbers such as thiol group equivalent number, epoxy group equivalent number, and (meth)acryloyl equivalent number refer to the number of functional groups (equivalent number) per compound mass (charge amount).
  • the epoxy equivalent of each of components (A) and (B) is the molecular weight of each of components (A) and (B) divided by the number of epoxy groups in one molecule.
  • the actual epoxy equivalent can be determined by the method described in JIS K7236.
  • the epoxy group equivalent of each of components (A) and (B) is the number of epoxy groups (equivalent number) per mass (charge amount) of each of components (A) and (B), and is the quotient obtained by dividing the mass (g) of each epoxy compound of components (A) and (B) by the epoxy equivalent of that epoxy compound (if multiple epoxy compounds are included, the total of such quotients for each epoxy compound). If component (E) contains an epoxy group, its epoxy equivalent and epoxy group equivalent can be determined in the same manner.
  • the thiol equivalent of component (C) is the molecular weight of component (C) divided by the number of thiol groups in one molecule.
  • the actual thiol equivalent can be determined, for example, by measuring the thiol value using potential difference. This method is widely known and is disclosed, for example, in paragraph 0079 of JP 2012-153794 A.
  • the thiol group equivalent number of component (C) is the number of thiol groups (equivalent number) per mass (charge amount) of component (C), and is the quotient obtained by dividing the mass (g) of the polythiol compound (C) by the thiol equivalent of that polythiol compound (when multiple polythiol compounds are included, the sum of such quotients for each polythiol compound).
  • the (meth)acryloyl equivalent of component (E) is theoretically equal to the molecular weight of the (meth)acrylate compound divided by the number of acryloyl groups (or methacryloyl groups) in one molecule.
  • the actual (meth)acryloyl equivalent can be measured, for example, by NMR.
  • the (meth)acryloyl group equivalent number of component (E) is the number of (meth)acryloyl groups (equivalent number) per mass (charged amount) of component (E), and is the quotient obtained by dividing the mass (g) of the (meth)acrylate compound of component (E) by the (meth)acryloyl equivalent of that (meth)acrylate compound (when multiple (meth)acrylate compounds are included, the sum of such quotients for each (meth)acrylate compound).
  • the maleimide equivalent of component (E) is theoretically equal to the molecular weight of the maleimide compound divided by the number of maleimide groups in one molecule.
  • the actual maleimide equivalent can be measured, for example, by NMR.
  • the maleimide group equivalent number of component (E) is the number of maleimide groups (equivalent number) per mass (charge amount) of component (E), and is the quotient obtained by dividing the mass (g) of the maleimide compound of component (E) by the maleimide equivalent of that maleimide compound (when multiple maleimide compounds are included, the sum of such quotients for each maleimide compound).
  • the resin composition of this embodiment may contain optional components other than the above components (A) to (E), such as those described below, as necessary, if desired.
  • thermosetting compound other than component (A) and component (B) refers to a polyfunctional thermosetting compound other than component (A) and component (B) that can react with the thiol group of component (C), and does not include component (C).
  • thermosetting compounds other than component (A) and component (B) include (F) polyfunctional (meth)acrylate compounds, phenol compounds, bismaleimide compounds, cyanate compounds, episulfide compounds, etc.
  • An episulfide compound is a compound containing a thiirane ring in which all or part of the oxygen atoms of the oxirane ring of an epoxy compound are replaced with sulfur atoms.
  • Examples of episulfide compounds include compounds containing two or more thiirane rings in the molecule and compounds containing one or more of both a thiirane ring and an oxirane ring in the molecule.
  • the total amount of components (A) and (B) is preferably 50 parts by mass or more, for example, 51 parts by mass or more, for example, 55 parts by mass or more, for example, 60 parts by mass or more, for example, 65 parts by mass or more, for example, 70 parts by mass or more, for example, 75 parts by mass or more, for example, 80 parts by mass or more, for example, 85 parts by mass or more, for example, 90 parts by mass or more, relative to 100 parts by mass of the total mass of the thermosetting compound (excluding component (C)).
  • the resin composition of the present embodiment may contain (F) a polyfunctional (meth)acrylate compound (hereinafter also referred to as “component (F)”) within a range that does not impair the effects of the present invention.
  • component (F) a polyfunctional (meth)acrylate compound
  • polyfunctional (meth)acrylate compounds include diacrylate and/or dimethacrylate of tris(2-hydroxyethyl)isocyanurate; tris(2-hydroxyethyl)isocyanurate triacrylate and/or trimethacrylate; trimethylolpropane triacrylate and/or trimethacrylate, or oligomers thereof; pentaerythritol triacrylate and/or trimethacrylate, or oligomers thereof; dipentaerythritol polyacrylate and/or polymethacrylate; tris(acryloxyethyl)isocyanurate; caprolactone-modified tris(acryloxyethyl)isocyanurate; caprolactone-modified tris(methacryloxyethyl)isocyanurate; alkyl-modified tris(acryloxyethyl)isocyanurate; polyacrylate and/or polymethacrylate of caprolactone-modified dipentaerythrito
  • polyfunctional (meth)acrylate compounds include, for example, polyester acrylate (product name: EBECRYL810) manufactured by Daicel-Allnex Corporation, ditrimethylolpropane tetraacrylate (product name: EBECRYL140) manufactured by Daicel-Allnex Corporation, polyester acrylate (product name: M7100) manufactured by Toagosei Co., Ltd., dimethylol-tricyclodecane diacrylate (product name: Light Acrylate DCP-A) manufactured by Kyoeisha Chemical Co., Ltd., and neopentyl glycol modified trimethylolpropane diacrylate (product name: Kayarad R-604) manufactured by Nippon Kayaku Co., Ltd.
  • polyester acrylate product name: EBECRYL810
  • ditrimethylolpropane tetraacrylate product name: EBECRYL140
  • polyester acrylate product name: M7100
  • the resin composition of this embodiment may contain (G) filler (hereinafter also referred to as "component (G)”) within a range that does not impair the effects of the present invention.
  • component (G) a filler
  • the linear expansion coefficient of the cured product obtained by curing the resin composition can be reduced, and thermal cycle resistance is improved.
  • the filler has a low elastic modulus, the stress generated in the cured product can be alleviated, and long-term reliability is improved.
  • (G) filler is broadly classified into inorganic fillers and organic fillers.
  • the inorganic filler is not particularly limited as long as it is made of granular material formed from an inorganic material and has the effect of lowering the linear expansion coefficient by its addition.
  • inorganic materials that can be used include silica, talc, alumina, aluminum nitride, calcium carbonate, aluminum silicate, magnesium silicate, magnesium carbonate, barium sulfate, barium carbonate, lime sulfate, aluminum hydroxide, calcium silicate, potassium titanate, titanium oxide, zinc oxide, silicon carbide, silicon nitride, and boron nitride. Any one of the inorganic fillers may be used, or two or more of them may be used in combination.
  • the inorganic filler it is preferable to use silica filler, since it is possible to increase the loading amount.
  • silica amorphous silica is preferable.
  • the surface of the inorganic filler may be surface-treated with a coupling agent such as a silane coupling agent.
  • organic fillers examples include polytetrafluoroethylene (PTFE) fillers, silicone fillers, acrylic fillers, fillers with a urethane skeleton, fillers with a butadiene skeleton, and styrene fillers.
  • PTFE polytetrafluoroethylene
  • silicone fillers acrylic fillers
  • fillers with a urethane skeleton fillers with a butadiene skeleton
  • styrene fillers examples include polytetrafluoroethylene (PTFE) fillers, silicone fillers, acrylic fillers, fillers with a urethane skeleton, fillers with a butadiene skeleton, and styrene fillers.
  • the organic fillers may be surface-treated.
  • the shape of the filler is not particularly limited and may be spherical, flaky, needle-like, irregular, etc.
  • the average particle size of the filler is preferably 6.0 ⁇ m or less, more preferably 5.0 ⁇ m or less, and even more preferably 4.0 ⁇ m or less.
  • the average particle size refers to the volume-based median diameter (d 50 ) measured by a laser diffraction method in accordance with ISO-13320 (2009), unless otherwise specified.
  • the lower limit of the average particle size of the filler is not particularly limited, but from the viewpoint of the viscosity of the resin composition, it is preferably 0.005 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the average particle size of the (F) filler is preferably 0.01 ⁇ m to 5.0 ⁇ m, and more preferably 0.1 ⁇ m to 3.0 ⁇ m. Fillers having different average particle sizes may be used in combination. For example, a filler having an average particle size of 0.005 ⁇ m or more and less than 0.1 ⁇ m and a filler having an average particle size of 0.1 ⁇ m to 6.0 ⁇ m may be used in combination.
  • the filler content in the resin composition of this embodiment is preferably 15 to 50 mass %, more preferably 20 to 45 mass %, and even more preferably 20 to 40 mass %, relative to the total mass of the resin composition.
  • the resin composition of the present embodiment may contain (H) a photoradical initiator (hereinafter also referred to as "component (H)”) within a range that does not impair the effects of the present invention.
  • component (H) a photoradical initiator
  • the reaction of component (C) with component (E) and optional component (F) caused by light irradiation is promoted.
  • Examples of the photoradical initiator include alkylphenone compounds and acylphosphine oxide compounds.
  • alkylphenone compounds include benzyl dimethyl ketals such as 2,2-dimethoxy-1,2-diphenylethan-1-one (commercially available as Omnirad 651, manufactured by IGM Resins B.V.); ⁇ -aminoalkylphenones such as 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one (commercially available as Omnirad 907, manufactured by IGM Resins B.V.); 1-hydroxycyclohexylphenyl ketone (commercially available as IGM Resins B.V.); ⁇ -hydroxyalkylphenones such as Omnirad 184 manufactured by IGM Resins B.V.; 2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one (commercially available as Omnirad 379EG manufactured by IGM Resins B.V.), 2-benzyl-2-(dimethylamino)-4'-morpholino
  • acylphosphine oxide compounds include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (commercially available as Omnirad TPO H, manufactured by IGM Resins B.V.), bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (commercially available as Omnirad 819, manufactured by IGM Resins B.V.), etc.
  • photoradical initiators include, in addition to the above-mentioned photoradical initiators, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-(4-dodecylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)-phenyl(2-hydroxy-2-propyl)ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin phenyl ether ...
  • diethyl dimethyl ketal benzophenone, benzoyl benzoic acid, methyl benzoyl benzoate, 4-phenyl benzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3'-dimethyl-4-methoxybenzophenone, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenyl glyoxylate, benzyl, and camphorquinone.
  • the content of (H) photoradical initiator is preferably 0.1 to 10 parts by mass, and more preferably 0.2 to 8 parts by mass, per 100 parts by mass of the monofunctional (meth)acrylate compound and the polyfunctional (meth)acrylate compound in total, from the viewpoint of photoirradiation reactivity.
  • the resin composition of the present embodiment may contain (I) a stabilizer (hereinafter also referred to as "component (I)”), if desired, within a range that does not impair the effects of the present invention.
  • the stabilizer can improve the storage stability of the resin composition of the present embodiment and extend the pot life.
  • Various known stabilizers can be used as stabilizers, but at least one selected from the group consisting of liquid boric acid ester compounds, aluminum chelates, and organic acids is preferred because of its high effect of improving storage stability.
  • liquid boric acid ester compounds include 2,2'-oxybis(5,5'-dimethyl-1,3,2-oxaborinane), trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tripentyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, trioctyl borate, trinonyl borate, tridecyl borate, tridodecyl borate, trihexadecyl borate, trioctadecyl borate, tris(2-ethylhexyloxy)borane, bis(1,4,7,10-tetraoxaundecyl)(1,4,7,10,13-pentaoxatetradecyl)(1,4,7-trioxaundecyl)borane, tribenzyl borate, triphenyl borate,
  • the liquid boric acid ester compound is preferred because it is liquid at room temperature (25° C.) and can keep the viscosity of the compound low.
  • the aluminum chelate for example, Aluminum Chelate A (manufactured by Kawaken Fine Chemical Co., Ltd.) can be used.
  • the organic acid for example, barbituric acid can be used.
  • the stabilizers may be used alone or in combination of two or more.
  • the amount added is preferably 0.01 to 30 mass % relative to the total mass of the resin composition, more preferably 0.05 to 25 mass %, and even more preferably 0.1 to 20 mass %.
  • the resin composition of this embodiment may contain (J) a coupling agent (hereinafter also referred to as "component (J)”), if desired, within a range that does not impair the effects of the present invention.
  • the coupling agent has two or more different functional groups in the molecule, one of which is a functional group that chemically bonds with an inorganic material, and the other is a functional group that chemically bonds with an organic material.
  • coupling agents include, but are not limited to, silane coupling agents, aluminum coupling agents, titanium coupling agents, etc., depending on the type of functional group that chemically bonds with the inorganic material.
  • coupling agents include, but are not limited to, various coupling agents such as epoxy, amino, vinyl, methacryl, acrylic, and mercapto coupling agents depending on the type of functional group that chemically bonds with the organic material.
  • various coupling agents such as epoxy, amino, vinyl, methacryl, acrylic, and mercapto coupling agents depending on the type of functional group that chemically bonds with the organic material.
  • epoxy coupling agents containing epoxy groups are preferred from the viewpoint of moisture resistance reliability.
  • epoxy-based silane coupling agents include 3-glycidoxypropyltrimethoxysilane (product name: KBM403, Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropyltriethoxysilane (product name: KBE-403, Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropylmethyldiethoxysilane (product name: KBE-402, Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropylmethyldimethoxysilane (product name: KBM402, Shin-Etsu Chemical Co., Ltd.), 8-glycidoxyoctyltrimethoxysilane (product name: KBM-4803, Shin-Etsu Chemical Co., Ltd.), and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (product name: KBM-303, Shin-Etsu Chemical Co., Ltd.).
  • methacryl-based silane coupling agents include 3-methacryloxypropyltrimethoxysilane (product name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.), 3-methacryloxypropylmethyldimethoxysilane (product name: KBM502, manufactured by Shin-Etsu Chemical Co., Ltd.), 3-methacryloxypropylmethyldiethoxysilane (product name: KBE502, manufactured by Shin-Etsu Chemical Co., Ltd.), and 3-methacryloxypropyltriethoxysilane (product name: KBE503, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • a specific example of an acrylic silane coupling agent is 3-acryloxypropyltrimethoxysilane (product name: KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • methacrylic silane coupling agents and acrylic silane coupling agents differ from component (E) in that they have functional groups that chemically bond with inorganic materials, and are not included in component (E).
  • mercapto-based silane coupling agents include 3-mercaptopropyltrimethoxysilane (product name KBM803, manufactured by Shin-Etsu Chemical Co., Ltd.) and 3-mercaptopropylmethyldimethoxysilane (product name KBM802, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • any one of the coupling agents may be used, or two or more may be used in combination.
  • the amount of the coupling agent added is preferably 0.01% by mass to 30% by mass, and more preferably 0.1% by mass to 10% by mass, relative to the total mass of the resin composition, from the viewpoint of improving adhesive strength.
  • the resin composition of the present embodiment may further contain, if desired, other additives, such as carbon black, titanium black, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, a viscosity modifier, a flame retardant, a colorant, a solvent, etc., within the scope of the present embodiment.
  • additives such as carbon black, titanium black, an ion trapping agent, a leveling agent, an antioxidant, an antifoaming agent, a viscosity modifier, a flame retardant, a colorant, a solvent, etc.
  • the type and amount of each additive are the same as in the conventional method.
  • the method for producing the resin composition of this embodiment is not particularly limited.
  • components (A) to (E), and, if necessary, components (F), (G), (H), (I), (J), (K) and other additives can be introduced simultaneously or separately into an appropriate mixer, and stirred and mixed while melting by heating if necessary to obtain a homogeneous composition, thereby obtaining the resin composition of this embodiment.
  • This mixer is not particularly limited, but a Raikai mixer, Henschel mixer, triple roll mill, ball mill, planetary mixer, bead mill, or the like equipped with a stirring device and a heating device can be used. These devices may also be used in appropriate combination.
  • the resin composition thus obtained is thermosetting, and preferably cures within 5 hours, more preferably within 3 hours, and even more preferably within 1 hour, at a temperature of 80°C.
  • the curable composition of this embodiment is used to manufacture a semiconductor module including components that deteriorate under high temperature conditions, it is preferable to thermally cure the composition for 30 to 120 minutes at a temperature of 50 to 90°C.
  • the resin composition of this embodiment is a resin composition for use in curing with heat alone. Use of the above resin composition in curing with heat alone is also one embodiment of the present invention.
  • the resin composition of this embodiment contains component (F) and component (H), the resin composition can also be cured with light (UV).
  • UV light
  • the resin composition can be pre-cured by curing with light (UV) and then fully cured by curing with heat.
  • the resin composition of this embodiment can be used, for example, as an adhesive or sealant for fixing, joining, or protecting components that constitute a semiconductor device or electronic component, or as a raw material thereof.
  • the adhesive or sealant according to the second embodiment of the present invention includes the resin composition according to the first embodiment.
  • This adhesive or sealant enables good fixing, bonding or protection of engineering plastics (e.g., LCP (liquid crystal polymer), polyamide, polycarbonate, etc.), ceramics, and metals (e.g., copper, nickel, etc.), and can be used to fix, bond or protect components constituting a semiconductor device or electronic component.
  • engineering plastics e.g., LCP (liquid crystal polymer), polyamide, polycarbonate, etc.
  • ceramics e.g., copper, nickel, etc.
  • metals e.g., copper, nickel, etc.
  • semiconductor devices or electronic components include, but are not limited to, HDDs, semiconductor elements, sensor modules such as image sensor modules, camera modules, semiconductor modules, and integrated circuits.
  • the adhesive or sealant of the present embodiment is highly reactive and can provide a cured product with excellent stress relaxation properties, and therefore has high productivity and is suitable for use, for example, in the manufacture of semiconductor devices and electronic components in which multiple components made of different materials are joined and assembled.
  • the adhesive or sealant of the present embodiment generates a small total amount of heat during the curing reaction, and is therefore suitable for use, for example, in the manufacture of semiconductor modules equipped with miniaturized electronic components.
  • the adhesive or sealant of the present embodiment is an adhesive or sealant for use in heat only cure. The use of the adhesive or sealant described above in a heat only cure is also an embodiment of the present invention.
  • the cured product of the third embodiment of the present invention is a cured product obtained by curing the resin composition of the first embodiment or the adhesive or sealant of the second embodiment. This cured product has excellent stress relaxation properties.
  • the semiconductor device or electronic component of the fourth embodiment of the present invention includes the cured product of the third embodiment described above, and therefore has high reliability, particularly in semiconductor devices or electronic components assembled by joining multiple components made of different materials.
  • the semiconductor device refers to any device that can function by utilizing semiconductor characteristics, and includes electronic components, semiconductor circuits, modules incorporating these, electronic devices, etc. Examples of the semiconductor device or electronic component include, but are not limited to, HDDs, semiconductor elements, sensor modules such as image sensor modules, camera modules, semiconductor modules, and integrated circuits.
  • (A) Epoxy compound having an epoxy equivalent of less than 215 g/eq (component (A))
  • A-1 Bisphenol F type epoxy resin/bisphenol A type epoxy resin mixture (product name: EXA-835LV, manufactured by DIC Corporation, epoxy equivalent: 165 g/eq)
  • A-2) Epoxy resin in component (D-1) (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, epoxy equivalent: 180 g/eq)
  • B An epoxy compound having an epoxy equivalent of 215 g/eq or more (component (B))
  • B-1 Polyether type epoxy compound (product name: AER-9000, manufactured by Asahi Kasei Corporation, epoxy equivalent: 380 g/eq, liquid at 25°C, viscosity: 1 Pa s)
  • B-2 Liquid epoxy compound (product name: jER YX7400, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 450 g/eq, liquid at 25° C., viscosity: 170 mPa ⁇ s)
  • B-3 Bisphenol A type epoxy resin (product name: jER 1002, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 250 g/eq, solid at 25° C.)
  • C Polyfunctional thiol compound (component (C))
  • C-1 Pentaerythritol tetrakis(3-mercaptopropionate) (product name: PEMP, manufactured by SC Organic Chemicals, thiol equivalent: 122 g/eq)
  • C-2 1,3,4,6-tetrakis(2-mercaptoethyl)glycoluril (product name: TS-G, manufactured by Shikoku Chemical Industry Co., Ltd., thiol equivalent: 100 g/eq)
  • C-3) Pentaerythritol tripropanethiol (product name: PEPT, manufactured by SC Organic Chemicals, thiol equivalent: 124 g/eq)
  • C-4) Trimethylolpropane tris(3-mercaptopropionate) (product name: TMMP, manufactured by SC Organic Chemicals, thiol equivalent: 133 g/eq)
  • Curing catalyst component (D)
  • D-1 Amine-epoxy adduct-based latent curing catalyst (product name: Novacure HXA9322HP, manufactured by Asahi Kasei Corporation)
  • D-2) Urea-type adduct-based latent curing catalyst (product name: Fujicure FXR1121, manufactured by T&K Toka Corporation)
  • the epoxy resin constituting this dispersion is treated as being part of component (A). Therefore, in Table 1, the amount of only the latent curing catalyst in (D-1) is shown in the column for component (D), and the amount of epoxy resin in (D-1) is shown as component (A-2) in the column for component (A).
  • E A monofunctional compound having one group (e) containing an unsaturated double bond and an electron-withdrawing group adjacent thereto in the molecule (component (E)).
  • E-1 n-Octyl acrylate (product name: NOAA, manufactured by Osaka Organic Chemical Industry Co., Ltd., (meth)acrylate equivalent: 184 g/eq)
  • E-2) (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl acrylate (product name: MEDOL-10, manufactured by Osaka Organic Chemical Industry Co., Ltd., (meth)acrylate equivalent: 200 g/eq)
  • E-3) Cyclic trimethylolpropane formal acrylate (product name: Viscoat #200, manufactured by Osaka Organic Chemical Industry Co., Ltd., (meth)acrylate equivalent: 200 g/eq)
  • E-4) Dicyclopentanyl acrylate (product name: FA513AS, manufactured by Showa Denko Materials Co
  • G Filler (Component (G)) (G-1): Silica filler (product name: SE2300, manufactured by Admatechs Co., Ltd., average particle size: 0.6 ⁇ m)
  • ((A)+(B))/(C) represents the ratio of the sum of the epoxy group equivalents of component (A) and the epoxy group equivalents of component (B) to the thiol group equivalents of component (C) (([epoxy group equivalents of component (A)]+[epoxy group equivalents of component (B)])/[thiol group equivalents of component (C)]).
  • “(A)/(C)” represents the ratio of the number of epoxy group equivalents of component (A) to the number of thiol group equivalents of component (C) ([number of epoxy group equivalents of component (A)]/[number of thiol group equivalents of component (C)]).
  • “(B)/(C)” represents the ratio of the number of epoxy group equivalents of component (B) to the number of thiol group equivalents of component (C) ([number of epoxy group equivalents of component (B)]/[number of thiol group equivalents of component (C)]).
  • “(E)/(C)” represents the ratio of the number of equivalents of group (e) in component (E) to the number of equivalents of thiol groups in component (C) ([number of equivalents of group (e) in component (E)]/[number of equivalents of thiol groups in component (C)]).
  • (E')/(C) represents the ratio of the number of epoxy equivalents of component (E') to the number of thiol group equivalents of component (C) ([number of epoxy equivalents of component (E')]/[number of thiol group equivalents of component (C)]).
  • Examples 1 to 20 have lower onset temperatures and higher reactivity than Comparative Examples 1 to 3.
  • the onset temperature is preferably 85°C or lower, more preferably 83°C or lower, and even more preferably 80°C or lower.
  • (2) Exothermic Peak Area From the DSC curve data obtained in determining the onset temperature in (1) above, the exothermic peak area was calculated using analysis software (NETZSCH Proteus-Thermal Analysis version 8.0.2). The results are shown in Table 1.
  • the heat generation peak area in the DSC curve obtained by the above test represents the amount of heat generated by the resin composition during curing, and the smaller the area, the smaller the amount of heat generated, and the more likely it is that overheating of peripheral components during short-term curing can be suppressed.
  • the heat generation peak area in the DSC curve is preferably 420 J/g or less, more preferably 350 J/g or less, and even more preferably 300 J/g.
  • the present invention is a resin composition that gives a cured product with excellent reactivity and stress relaxation properties, and is extremely useful as an adhesive or sealant suitable for use in manufacturing semiconductor devices and electronic components that are assembled by joining multiple parts made of different materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)

Abstract

反応性に優れ、かつ優れた応力緩和性を有する硬化物を与える樹脂組成物及び接着剤を提供することを課題とする。 (A)エポキシ当量が215g/eq未満である多官能エポキシ化合物、 (B)エポキシ当量が215g/eq以上である多官能エポキシ化合物、 (C)多官能チオール化合物、 (D)硬化触媒、及び (E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)を1つ有する単官能化合物 を含む樹脂組成物が提供される。

Description

樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品
 本発明は、樹脂性組成物、それを含む接着剤又は封止材、その硬化物、その硬化物を含む半導体装置及び電子部品に関する。
 現在、半導体装置や電子部品に用いられる部品、例えば半導体チップの組み立てや装着には、信頼性の保持等を目的として、硬化性樹脂組成物、特にエポキシ樹脂組成物を含む接着剤、封止材等がしばしば用いられる。特に、高温条件下で劣化する部品を含む半導体装置や電子部品の場合、その製造工程はいずれも低温条件下で行う必要がある。したがって、そのような装置や部品の製造に使用される接着剤や封止材には、低温条件下でも十分な硬化性を示すことが要求される。このような低温硬化性のエポキシ樹脂組成物として、チオール系硬化剤を硬化剤として用いる硬化性組成物が知られている(例えば、特許文献1又は2)。
 各々異なる材料で作られた2つの部品が接着剤で互いに接合されてなる組み立て物の周囲の温度が変化すると(例えば、使用中の温度変化や、加熱硬化後の冷却過程の温度変化)、それらの部品には各々、その材料の熱膨張係数に応じて熱応力が発生する。この熱応力は、熱膨張係数の違いにより均一でないため相殺されず、組み立て物の変形をもたらす。この変形に伴う応力が特に部品の接合部、即ち接着剤の硬化物に作用し、場合によっては接合部の剥離や、硬化物にクラック等を発生させてしまう。このような剥離やクラックは、特に硬化物がもろく、柔軟性に乏しいときに生じやすい。したがって、異なる材料で作られた部品を接合するための接着剤には、部品の熱応力による組み立て物の変形に追従できる程度の柔軟性、すなわち、応力緩和特性が、硬化後に必要である。
 特許文献3には、基板の変形に追従できる硬化物を提供可能なエポキシ樹脂組成物として、(A1)25℃で液状であり、エポキシ当量が250~1000である、第1エポキシ樹脂、(A2)前記第1エポキシ樹脂よりも低いエポキシ当量を有する、第2エポキシ樹脂、(B)分子内に2以上のチオール基を有するチオール化合物、及び、(C)無機充填材を含む、エポキシ樹脂組成物が開示されている。
特開平6-211969号公報 特開平6-211970号公報 特開2019-143134号公報
 特許文献3に記載のエポキシ樹脂組成物では、エポキシ当量の小さなエポキシ化合物と、エポキシ当量の大きなエポキシ化合物とを併用することにより、その硬化物に応力緩和特性を付与している。しかしながら、そのような異なるエポキシ当量のエポキシ化合物を併用する場合、樹脂組成物の硬化反応開始が遅くなることが見出された。これは、エポキシ当量の大きなエポキシ化合物を使用することにより、当量の小さなエポキシを用いた場合よりも分子運動が制限され、反応確率が低くなったためと考えられる。それにより、硬化反応開始前に生じる、昇温に伴う樹脂組成物の粘度低下の時間が長くなることにより、液だれや意図しない濡れ広がりの問題が生じ得る。
 そこで、本発明は、エポキシ当量の大きなエポキシ化合物を使用しても反応性に優れる樹脂組成物及び接着剤を提供することを課題とする。
 前記課題を解決するための具体的手段は以下の通りである。
 本発明の第一の実施形態は、以下の樹脂組成物である。
(1)(A)エポキシ当量が215g/eq未満である多官能エポキシ化合物、
(B)エポキシ当量が215g/eq以上である多官能エポキシ化合物、
(C)多官能チオール化合物、
(D)硬化触媒、及び
(E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)を1つ有する単官能化合物
を含む樹脂組成物。
(2)成分(E)が、25℃において液状である、上記(1)に記載の樹脂組成物。
(3)成分(E)が、単官能マレイミド化合物及び単官能(メタ)アクリレート化合物から選択される、上記(1)又は(2)に記載の樹脂組成物。
(4)前記成分(B)の含有量が、前記成分(A)100質量部に対して、1~100質量部である、上記(1)~(3)のいずれか1項に記載の樹脂組成物。
(5)成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数])/[成分(C)のチオール基当量数])が、0.4~0.95である、上記(1)~(4)のいずれか1項に記載の樹脂組成物。
(6)成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数と成分(E)の基(e)当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数]+[成分(E)の基(e)当量数])/[成分(C)のチオール基当量数])が、0.7~1.5である、上記(1)~(5)のいずれか1項に記載の樹脂組成物。
(7)成分(C)のチオール基当量数に対する成分(E)の基(e)当量数の比([成分(E)の基(e)当量数])/[成分(C)のチオール基当量数])が、0.05~0.7である、上記(1)~(6)のいずれか1項に記載の樹脂組成物。
(8)熱硬化性化合物総質量100質量部に対して、成分(A)及び成分(B)の合計量は51質量部以上である、上記(1)~(7)のいずれか1項に記載の樹脂組成物。
(9)成分(A)及び成分(B)が、25℃で液状である多官能エポキシ化合物を含み、25℃で液状である多官能エポキシ化合物の量は、成分(A)及び成分(B)の合計総質量100質量部に対して、50質量部以上である、上記(1)~(8)のいずれか1項に記載の樹脂組成物。
 本発明の第二の実施形態は、(10)上記(1)~(9)のいずれか1項に記載の樹脂組成物を含む接着剤又は封止材である。
 本発明の第三の実施形態は、(11)上記(1)~(9)のいずれか1項に記載の樹脂組成物、もしくは上記(10)に記載の接着剤又は封止材が硬化された硬化物である。
 本発明の第四の実施形態は、(12)上記(11)に記載の硬化物を含む半導体装置又は電子部品である。
 上記樹脂組成物もしくは接着剤又は封止材の一態様は、(13)熱のみでの硬化に用いるための、上記(1)~(9)のいずれか1項に記載の樹脂組成物、もしくは上記(10)に記載の接着剤又は封止材である。
 本発明の別の実施形態は、(14)熱のみでの硬化における、上記(1)~(9)のいずれか1項に記載の樹脂組成物、もしくは上記(10)に記載の接着剤又は封止材の使用である。
 本発明の第一の実施態様によれば、反応性に優れる樹脂組成物を得ることができる。さらに、この樹脂組成物は、硬化反応中の総発熱量が小さく、短時間硬化における被着体及びその周辺部材の過熱を抑制可能である。また、本発明の第二の実施態様によれば、反応性に優れる接着剤又は封止材を得ることができる。さらに、本発明の第三の実施態様によれば、優れた応力緩和性を有する硬化物を得ることができる。本発明の第四の実施態様によれば、優れた応力緩和性を有する硬化物を含むため、信頼性に優れた半導体装置及び電子部品を得ることができる。
 本明細書においては、合成樹脂の分野における慣例に倣い、硬化前の硬化性樹脂組成物を構成する成分に対して、通常は高分子(特に合成高分子)を指す用語「樹脂」を含む名称を、その成分が高分子ではないにも関わらず、用いる場合がある。
 本明細書において、「優れた応力緩和性を有する硬化物」とは、部品の熱応力による組み立て物の変形に追従できる程度の柔軟性を有する硬化物を指す。
 本明細書において、「反応性に優れる樹脂組成物」とは、硬化反応の反応開始温度が低い樹脂組成物を指す。
[樹脂組成物]
 本発明の第一の実施形態である樹脂組成物は、
(A)エポキシ当量が215g/eq未満である多官能エポキシ化合物、
(B)エポキシ当量が215g/eq以上である多官能エポキシ化合物、
(C)多官能チオール化合物、
(D)硬化触媒、及び
(E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)を1つ有する単官能化合物
を含む。本実施形態によれば、反応性に優れる樹脂組成物を得ることができる。
(A)エポキシ当量が215g/eq未満である多官能エポキシ化合物及び(B)エポキシ当量が215g/eq以上である多官能エポキシ化合物
 本実施形態の樹脂組成物は、(A)エポキシ当量が215g/eq未満である多官能エポキシ化合物(以下、「成分(A)」とも言う)と(B)エポキシ当量が215g/eq以上である多官能エポキシ化合物(以下、「成分(B)」とも言う)とを組み合わせて含む。成分(A)と成分(B)の併用により、樹脂組成物の優れた接着強度と、硬化物の優れた応力緩和性との両立が達成される。また、作業性に適した粘度を有する樹脂組成物を得ることができる。
 成分(A)及び成分(B)としての多官能エポキシ化合物は、少なくとも2つのエポキシ基を有する化合物である限り、特に限定されず、従来常用されているエポキシ樹脂を、成分(A)及び成分(B)として用いることができる。なお、エポキシ樹脂とは、分子内に存在するエポキシ基で架橋ネットワーク化させることで硬化させることが可能な熱硬化性樹脂の総称であり、硬化前のプレポリマー化合物を含む。耐熱性を確保する点を考慮すると、成分(A)及び成分(B)としては、2~6個のエポキシ基を有する化合物がより好ましく、2個のエポキシ基を有する化合物がさらに好ましい。
 成分(A)のエポキシ当量は215g/eq未満であり、好ましくは50g/eq以上215g/eq未満であり、より好ましくは100g/eq以上215g/eq未満であり、さらに好ましくは130g/eq以上185g/eq未満である。
 成分(B)のエポキシ当量は215g/eq以上であり、好ましくは215~1000g/eqであり、より好ましくは230~700g/eqであり、さらに好ましくは280~7000g/eqであり、特に好ましくは280~440g/eqである。
 成分(A)の分子量は、100~600が好ましく、200~600がより好ましく、260~400がさらに好ましい。成分(B)の分子量は、400~3000が好ましく、460~1500がより好ましく、560~1000がさらに好ましい。
 成分(A)及び成分(B)は、25℃で液状であっても固形であってもよいが、25℃で液状であることが好ましい。一態様において、25℃で液状である成分(A)及び成分(B)の量は、成分(A)及び成分(B)の合計総質量100質量部に対して、50質量部以上であることが好ましく、例えば、60質量部以上であり、例えば、70質量部以上であり、例えば、80質量部以上であり、例えば、90質量部以上であり、例えば100質量部である。一態様において、成分(A)及び成分(B)は、25℃で液状である多官能エポキシ化合物及び25℃で固形である多官能エポキシ化合物を含み、25℃で液状である成分(A)及び成分(B)の量は、成分(A)及び成分(B)の合計総質量100質量部に対して、50質量部以上であることが好ましく、例えば、60質量部以上であり、例えば、70質量部以上であり、例えば、80質量部以上であり、例えば、90質量部以上である。
 成分(A)及び成分(B)としての多官能エポキシ化合物は、芳香族多官能エポキシ化合物と芳香環を有しない多官能エポキシ化合物に大別される。
 芳香族多官能エポキシ化合物は、ベンゼン環等の芳香環を含む構造を有する多官能エポキシ化合物である。ビスフェノールA型エポキシ化合物など、従来頻用されているエポキシ樹脂にはこの種のものが多い。芳香族多官能エポキシ化合物の例としては、
-ビスフェノールA型エポキシ化合物;
-p-グリシジルオキシフェニルジメチルトリスビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ化合物;
-ビスフェノールF型エポキシ化合物;
-ノボラック型エポキシ化合物;
-テトラブロモビスフェノールA型エポキシ化合物;
-フルオレン型エポキシ化合物;
-ビフェニルアラルキルエポキシ化合物;
-1,4-フェニルジメタノールジグリシジルエーテルのようなジエポキシ化合物;
-3,3',5,5'-テトラメチル-4,4'-ジグリシジルオキシビフェニルのようなビフェニル型エポキシ化合物;
-ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル-p-アミノフェノール、テトラグリシジル-m-キシリレンジアミンのようなグリシジルアミン型エポキシ化合物;及び
-ナフタレン環含有エポキシ化合物
などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。(C)多官能チオール化合物との相溶性の観点からは、成分(A)及び成分(B)は、芳香族多官能エポキシ化合物を含むことが好ましい。芳香族多官能エポキシ化合物としては、ビスフェノールF型エポキシ化合物、ビスフェノールA型エポキシ化合物及びグリシジルアミン型エポキシ化合物が好ましい。また、芳香族多官能エポキシ化合物は、EO(エチレンオキサイド)変性やPO(プロピレンオキサイド)変性などのオキシアルキレン変性がなされていてもよい。また、芳香族多官能エポキシ化合物は、25℃で液状であることが好ましい。また、25℃での粘度が0.1~100Pa・sであることが好ましく、0.5~100Pa・sであることがより好ましく、1~100Pa・sであることが特に好ましい。
 本明細書において、粘度は、別段の断りがない限り、日本工業規格JIS  K6833に従って測定した値で表記する。具体的には、E型粘度計を用いて、回転数10rpmで測定することにより求めることができる。使用する機器やローターや測定レンジに特に制限はない。
 芳香環を有しない多官能エポキシ化合物は、例えば、脂肪族多官能エポキシ化合物、複素環を有する多官能エポキシ化合物を含む。
脂肪族多官能エポキシ化合物の例としては、
-(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリテトラメチレンエーテルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサン型ジグリシジルエーテル、ジシクロペンタジエン型ジグリシジルエーテルのようなジエポキシ化合物;
-トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリエポキシ化合物;
-ビニル(3,4-シクロヘキセン)ジオキシド、2-(3,4-エポキシシクロヘキシル)-5,1-スピロ-(3,4-エポキシシクロヘキシル)-m-ジオキサンのような脂環式エポキシ化合物;
-水添ビスフェノールAジグリシジルエーテルのような水添ビスフェノールA型ジエポキシ化合物;
-テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ化合物;
-1,3-ジグリシジル-5-メチル-5-エチルヒダントインのようなヒダントイン型エポキシ化合物;及び
-1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサンのようなシリコーン骨格を有するエポキシ化合物
などが挙げられるが、これらに限定されるものではない。
脂肪族多官能エポキシ化合物は、25℃で液状であることが好ましい。また、25℃での粘度が10~10,000mPa・sであるものが好ましく、10~5,000mPa・sであるものがより好ましい。
複素環を有する多官能エポキシ化合物としては、イソシアヌル酸型エポキシ樹脂(日産化学株式会社製:TEPIC-S、TEPIC-L、TEPIC-PAS、TEPIC-VL、TEPIC-FL、TEPIC-UC)や、グリコールウリル型エポキシ樹脂(四国化成株式会社製:TG-G)が挙げられる。複素環を有する多官能エポキシ化合物は、作業性の観点からは、25℃で液状であることが好ましい。また、25℃での粘度が100~50,000mPa・sであるものが好ましく、100~5,000mPa・sであるものがより好ましい。一方、密着性の観点からは、25℃で固体のものが好ましい。
 成分(A)の多官能エポキシ化合物が含まれる市販品としては、例えばjER(登録商標)825、827、828、828EL、828XA、828US、806、806H、807、152、871、872、YL980、YL983U、YX8000、YX8034(三菱ケミカル株式会社製)、EPICLON(登録商標)840、840S、850、850S、850CRP、850-LC、830、835、EXA-830LVP、EXA-830LVP、EXA-835LV、N-730A(DIC株式会社製)、デナコール(登録商標)EP-4100、EP-4100G、EP-4100E、EP-4300E、EP-4530、EP-4901、EP-4901E(株式会社ADEKA製)、EX-810、EX-811、EX-850、EX-821、EXA-920、EX-201、EX-212(ナガセケムテックス株式会社製)等が挙げられるが、これらに限定されない。
 成分(B)の多官能エポキシ化合物が含まれる市販品としては、jER(登録商標)834、1001、1002、1003、1055、1004、1004AF、4005P、4007P、YX4000H(三菱ケミカル株式会社製)、EPICLON(登録商標)860、1050、1055。2050、3050,4050、7050、HM-091、HP-7200L、HP-7200、HP-7200H、HP-4700、HP-4770(DIC株式会社製)などが挙げられるが、これらに限定されない。
 成分(B)の含有量は、成分(A)100質量部に対して、1~1000質量部であることが好ましく、1~100質量部であることがより好ましい。応力緩和性の観点から、成分(B)の含有量は、成分(A)100質量部に対して、10~1000質量部であることが好ましく、25~1000質量部であることがより好ましく、50~1000質量部であることがさらに好ましい。また、反応性向上の観点から、成分(B)の含有量は、成分(A)100質量部に対して、1質量部以上100質量部未満であることが好ましく、10質量部以上50質量部未満であることがより好ましい。
(C)多官能チオール化合物
 本実施形態の樹脂組成物は、(C)多官能チオール化合物(以下、「成分(C)」とも言う)を含む。本実施形態において、(C)多官能チオール化合物は、チオール基を2個以上含む化合物であり、そのチオール基は、成分(A)及び成分(B)中のエポキシ基、並びに(E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)を1つ有する単官能化合物中の基(e)と反応する。本実施形態において、(C)多官能チオール化合物は、3個以上のチオール基を有することが好ましい。(C)多官能チオール化合物は、3官能チオール化合物及び/又は4官能チオール化合物を含むことがより好ましい。3官能及び4官能のチオール化合物とは、それぞれ、チオール基を3個及び4個有するチオール化合物のことである。(C)多官能チオール化合物のチオール当量は、90~200g/eqであることが好ましく、90~150g/eqであることがより好ましく、90~140g/eqであることがさらに好ましく、90~130g/eqであることが特に好ましい。
 多官能チオール化合物は、分子中にエステル結合等の加水分解性の部分構造を有する(即ち加水分解性の)チオール化合物と、そのような部分構造を有しない(即ち非加水分解性の)チオール化合物に大別される。
 加水分解性の多官能チオール化合物の例としては、トリメチロールプロパントリス(3-メルカプトプロピオネート)(SC有機化学株式会社製:TMMP)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学株式会社製:TEMPIC)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社製:PEMP)、テトラエチレングリコールビス(3-メルカプトプロピオネート)(SC有機化学株式会社製:EGMP-4)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)(SC有機化学株式会社製:DPMP)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製:カレンズMT(登録商標)PE1)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(昭和電工株式会社製:カレンズMT(登録商標)NR1)等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 一方、非加水分解性の多官能チオール化合物の例としては、1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル(四国化成工業株式会社製:TS-G)、(1,3,4,6-テトラキス(3-メルカプトプロピル)グリコールウリル(四国化成工業株式会社製:C3 TS-G)、1,3,4,6-テトラキス(メルカプトメチル)グリコールウリル、1,3,4,6-テトラキス(メルカプトメチル)-3a-メチルグリコールウリル、1,3,4,6-テトラキス(2-メルカプトエチル)-3a-メチルグリコールウリル、1,3,4,6-テトラキス(3-メルカプトプロピル)-3a-メチルグリコールウリル、1,3,4,6-テトラキス(メルカプトメチル)-3a,6a-ジメチルグリコールウリル、1,3,4,6-テトラキス(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、1,3,4,6-テトラキス(3-メルカプトプロピル)-3a,6a-ジメチルグリコールウリル、1,3,4,6-テトラキス(メルカプトメチル)-3a,6a-ジフェニルグリコールウリル、1,3,4,6-テトラキス(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、1,3,4,6-テトラキス(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、トリス(3-メルカプトプロピル)イソシアヌレート、1,3,5-トリス[3-(2-メルカプトエチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[2-(3-メルカプトプロポキシ)エチル]イソシアヌレート、ペンタエリスリトールトリプロパンチオール(SC有機化学株式会社製:PEPT)、3-[2,3-ビス(3-サルファニルプロポキシ)プロポキシ]プロパン-1-チオール、3-[2,2-ビス[(3-メルカプトプロポキシ)メチル]ブトキシ]-1-プロパンチオール、ペンタエリスリトールテトラプロパンチオール、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、1,1,5,5-テトラキス(メルカプトメチルチオ)-3-チアペンタン、1,1,6,6-テトラキス(メルカプトメチルチオ)-3,4-ジチアヘキサン、2,2-ビス(メルカプトメチルチオ)エタンチオール、3-メルカプトメチルチオ-1,7-ジメルカプト-2,6-ジチアヘプタン、3,6-ビス(メルカプトメチルチオ)-1,9-ジメルカプト-2,5,8-トリチアノナン、3-メルカプトメチルチオ-1,6-ジメルカプト-2,5-ジチアヘキサン、1,1,9,9-テトラキス(メルカプトメチルチオ)-5-(3,3-ビス(メルカプトメチルチオ)-1-チアプロピル)3,7-ジチアノナン、トリス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、トリス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、テトラキス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、テトラキス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、3,5,9,11-テトラキス(メルカプトメチルチオ)-1,13-ジメルカプト-2,6,8,12-テトラチアトリデカン、3,5,9,11,15,17-ヘキサキス(メルカプトメチルチオ)-1,19-ジメルカプト-2,6,8,12,14,18-ヘキサチアノナデカン、9-(2,2-ビス(メルカプトメチルチオ)エチル)-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3,4,8,9-テトラキス(メルカプトメチルチオ)-1,11-ジメルカプト-2,5,7,10-テトラチアウンデカン、3,4,8,9,13,14-ヘキサキス(メルカプトメチルチオ)-1,16-ジメルカプト-2,5,7,10,12,15-ヘキサチアヘキサデカン、8-[ビス(メルカプトメチルチオ)メチル]-3,4,12,13-テトラキス(メルカプトメチルチオ)-1,15-ジメルカプト-2,5,7,9,11,14-ヘキサチアペンタデカン、4,6-ビス[3,5-ビス(メルカプトメチルチオ)-7-メルカプト-2,6-ジチアヘプチルチオ]-1,3-ジチアン、4-[3,5-ビス(メルカプトメチルチオ)-7-メルカプト-2,6-ジチアヘプチルチオ]-6-メルカプトメチルチオ-1,3-ジチアン、1,1-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ビス(メルカプトメチルチオ)プロパン、1-[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-3-[2,2-ビス(メルカプトメチルチオ)エチル]-7,9-ビス(メルカプトメチルチオ)-2,4,6,10-テトラチアウンデカン、3-[2-(1,3-ジチエタニル)]メチル-7,9-ビス(メルカプトメチルチオ)-1,11-ジメルカプト-2,4,6,10-テトラチアウンデカン、9-[2-(1,3-ジチエタニル)]メチル-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3-[2-(1,3-ジチエタニル)]メチル-7,9,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,4,6,10,12,16-ヘキサチアヘプタデカン、4,6-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-6-[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ジチアン、4-[3,4,8,9-テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシル]-5-メルカプトメチルチオ-1,3-ジチオラン、4,5-ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-1,3-ジチオラン、4-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-5-メルカプトメチルチオ-1,3-ジチオラン、4-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]-5-メルカプトメチルチオ-1,3-ジチオラン、2-{ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メチル}-1,3-ジチエタン、2-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3,4,8,9-テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]メルカプトメチルチオメチル-1,3-ジチエタン、4-{1-[2-(1,3-ジチエタニル)]-3-メルカプト-2-チアプロピルチオ}-5-[1,2-ビス(メルカプトメチルチオ)-4-メルカプト-3-チアブチルチオ]-1,3-ジチオラン等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(D)硬化触媒
 本実施形態の樹脂組成物は、(D)硬化触媒(以下、「成分(D)」とも言う)を含む。成分(D)を用いることにより、本実施形態の樹脂組成物を低温条件下でも短時間で硬化させることができる。本実施形態において用いる硬化触媒は、成分(A)及び成分(B)の多官能エポキシ化合物の硬化触媒であれば特に限定されず、公知のものを使用することができる。
 成分(D)は、潜在性硬化触媒であることが好ましい。潜在性硬化触媒とは、室温では不活性の状態で、加熱することにより活性化されて、硬化触媒として機能する化合物であり、例えば、常温で固体のイミダゾール化合物;アミン化合物とエポキシ化合物の反応生成物(アミン-エポキシアダクト系)等の固体分散型アミンアダクト系潜在性硬化触媒;アミン化合物とイソシアネート化合物または尿素化合物の反応生成物(尿素型アダクト系)等が挙げられる。成分(D)としては、ポットライフ、硬化性の観点から、固体分散型アミンアダクト系潜在性硬化触媒が好ましい。
 常温で固体のイミダゾール化合物としては、例えば、2-ヘプタデシルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2-メチルイミダゾリル-(1))-エチル-S-トリアジン、2,4-ジアミノ-6-(2′-メチルイミダゾリル-(1)′)-エチル-S-トリアジン・イソシアヌール酸付加物、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール-トリメリテイト、1-シアノエチル-2-フェニルイミダゾール-トリメリテイト、N-(2-メチルイミダゾリル-1-エチル)-尿素、N,N′-(2-メチルイミダゾリル-(1)-エチル)-アジボイルジアミド等が挙げられるが、これらに限定されるものではない。
 固体分散型アミンアダクト系潜在性硬化触媒(アミン-エポキシアダクト系)の製造原料の一つとして用いられるエポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、カテコール、レゾルシノール等の多価フェノール、又はグリセリンやポリエチレングリコールのような多価アルコールとエピクロロヒドリンとを反応させて得られるポリグリシジルエーテル;p-ヒドロキシ安息香酸、β-ヒドロキシナフトエ酸のようなヒドロキシカルボン酸とエピクロロヒドリンとを反応させて得られるグリシジルエーテルエステル;フタル酸、テレフタル酸のようなポリカルボン酸とエピクロロヒドリンとを反応させて得られるポリグリシジルエステル;4,4′-ジアミノジフェニルメタンやm-アミノフェノールなどとエピクロロヒドリンとを反応させて得られるグリシジルアミン化合物;さらに、エポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィンなどの多官能性エポキシ化合物やブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルメタクリレートなどの単官能性エポキシ化合物等が挙げられるが、これらに限定されるものではない。
 固体分散型アミンアダクト系潜在性硬化触媒のもう一つの製造原料として用いられるアミン化合物は、エポキシ基と付加反応しうる活性水素を分子内に1個以上有し、かつ1級アミノ基、2級アミノ基及び3級アミノ基の中から選ばれた官能基を少なくとも分子内に1個以上有するものであればよい。このような、アミン化合物の例を以下に示すが、これらに限定されるものではない。例えば、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4′-ジアミノ-ジシクロヘキシルメタンのような脂肪族アミン類;4,4′-ジアミノジフェニルメタン、2-メチルアニリンなどの芳香族アミン化合物;2-エチル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾリン、2,4-ジメチルイミダゾリン、ピペリジン、ピペラジンなどの窒素原子が含有された複素環化合物;等が挙げられるが、これらに限定されるものではない。
 また、この中で特に分子内に3級アミノ基を有する化合物は、優れた硬化促進能を有する潜在性硬化触媒を与える原料であり、そのような化合物の例としては、例えば、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジ-n-プロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、N-メチルピペラジンなどのアミン化合物や、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾールなどのイミダゾール化合物のような、分子内に3級アミノ基を有する1級もしくは2級アミン類;2-ジメチルアミノエタノール、1-メチル-2-ジメチルアミノエタノール、1-フェノキシメチル-2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、1-ブトキシメチル-2-ジメチルアミノエタノール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾール、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-エチル-4-メチルイミダゾール、1-(2-ヒドロキシ-3-フェノキシプロピル)-2-フェニルイミダゾリン、1-(2-ヒドロキシ-3-ブトキシプロピル)-2-メチルイミダゾリン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール、N-β-ヒドロキシエチルモルホリン、2-ジメチルアミノエタンチオール、2-メルカプトピリジン、2-ベンゾイミダゾール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾチアゾール、4-メルカプトピリジン、N,N-ジメチルアミノ安息香酸、N,N-ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸、N,N-ジメチルグリシンヒドラジド、N,N-ジメチルプロピオン酸ヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジド等のような、分子内に3級アミノ基を有するアルコール類、フェノール類、チオール類、カルボン酸類及びヒドラジド類等が挙げられるが、これらに限定されるものではない。
 固体分散型アミンアダクト系潜在性硬化触媒に、さらに、もう一つの製造原料として用いられるイソシアネート化合物としては、例えば、n-ブチルイソシアネート、イソプロピルイソシアネート、フェニルイソシアネート、ベンジルイソシアネートなどの単官能イソシアネート化合物;ヘキサメチレンジイソシアネート、トルイレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、パラフェニレンジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネートなどの多官能イソシアネート化合物;さらに、これら多官能イソシアネート化合物と活性水素化合物との反応によって得られる、末端イソシアネート基含有化合物等も用いることができる。このような末端イソシアネート基含有化合物の例としては、トルイレンジイソシアネートとトリメチロールプロパンとの反応により得られる末端イソシアネート基を有する付加化合物、トルイレンジイソシアネートとペンタエリスリトールとの反応により得られる末端イソシアネート基を有する付加化合物などが挙げられるが、これらに限定されるものではない。
 また、尿素化合物としては、例えば、尿素、チオ尿素などが挙げられるが、これらに限定されるものではない。
 本実施形態に用いることのできる固体分散型潜在性硬化触媒は、例えば、上記の(a)アミン化合物とエポキシ化合物の2成分、(b)この2成分と活性水素化合物の3成分、又は(c)アミン化合物とイソシアネート化合物及び/又は尿素化合物の2成分もしくは3成分の組合せである。これらは、各成分を採って混合し、室温から200℃の温度において反応させた後、冷却固化してから粉砕するか、あるいは、メチルエチルケトン、ジオキサン、テトラヒドロフラン等の溶媒中で反応させ、脱溶媒後、固形分を粉砕することにより容易に作製することが出来る。
 潜在性硬化触媒の市販品の代表的な例としては、アミン-エポキシアダクト系(アミンアダクト系)としては、「アミキュアPN-23」(味の素ファインテクノ(株)品名)、「アミキュアPN-40」(味の素ファインテクノ(株)品名)、「アミキュアPN-50」(味の素ファインテクノ(株)品名)、「ハードナーX-3661S」(エー・シー・アール(株)品名)、「ハードナーX-3670S」(エー・シー・アール(株)品名)、「ノバキュアHX-3742」(旭化成(株)品名)、「ノバキュアHX-3721」(旭化成(株)品名)、「ノバキュアHXA9322HP」(旭化成(株)品名)、「ノバキュアHXA3922HP」(旭化成(株)品名)、「ノバキュアHXA3932HP」(旭化成(株)品名)、「ノバキュアHXA5945HP」(旭化成(株)品名)、「ノバキュアHXA5911HP」(旭化成(株)品名)、「ノバキュアHXA9382HP」(旭化成(株)品名)などが挙げられ、また、尿素型アダクト系としては、「フジキュアーFXE-1000」(T&K TOKA(株)品名)、フジキュアーFXR1020」(T&K TOKA(株)品名)、「フジキュアーFXR-1030」(T&K TOKA(株)品名)、「フジキュアーFXR1121」(T&K TOKA(株)品名)、「フジキュアーFXR1081」(T&K TOKA(株)品名)、「フジキュアーFXR1061」(T&K TOKA(株)品名)、「フジキュアーFXR1171」(T&K TOKA(株)品名)等が挙げられるが、これらに限定されるものではない。成分(D)は、いずれか1種を用いてもよいし、2種以上を併用してもよい。
 成分(D)は、樹脂組成物の総質量に対し0.1~30質量%含まれることが好ましく、0.5~20質量%含まれることがより好ましい。
 なお、成分(D)には、エポキシ化合物に分散された分散液の形態で提供されるものがある。そのような形態の成分(D)を使用する場合、それが分散しているエポキシ化合物の量も、本実施形態の樹脂組成物における成分(A)又は成分(B)の量に含まれることに注意すべきである。
(E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)を1つ有する単官能化合物
 本実施形態の樹脂組成物は、(E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)(以下、単に「基(e)」とも言う)を1つ有する単官能化合物(以下、「成分(E)」とも言う)を含む。本実施形態において、成分(E)中の基(e)、より具体的には基(e)中の不飽和二重結合は、(C)多官能チオール化合物中のチオール基と反応する。本明細書中において、成分(E)について、チオール基と反応する基(e)を分子中に1つ有することを意味して「単官能」との用語を用いる。電子吸引性基の例としては、カルボニル基やシアノ基が挙げられ、カルボニル基が好ましい。
 本実施形態に係る樹脂組成物について、DSC測定すると、成分(E)を含まないものと比較して、発熱ピークのオンセット温度が低温側に観察される。ここで、オンセット温度は、硬化反応開始温度と定義できる。成分(E)中の基(e)の不飽和二重結合は、電子吸引性基が隣接しているため反応性が高く、成分(A)及び成分(B)の多官能エポキシ化合物中のエポキシ基よりも先に(C)多官能チオール化合物中のチオール基と反応するため、硬化反応開始温度が低下したと考えられる。これにより、硬化反応開始前に生じる、昇温に伴う樹脂組成物の粘度低下時間が短縮され、液だれや意図しない濡れ広がりが抑制され、塗布物の形状保持性に優れる。
 また、本実施形態に係る樹脂組成物について、例えば80℃での硬化反応条件においてDSC測定すると、成分(E)を含まないものと比較して、総発熱量が小さい。エポキシ-チオールの反応は、エポキシの開環反応に起因する反応熱が生じるのに対し、成分(E)の反応は、開環を伴わないため、発熱量が低下したと考えられる。これにより、短時間硬化における被着体及びその周辺部材の過熱を抑制可能である。
 また、成分(E)は、単官能であるため、架橋を形成せず、架橋密度が高くなりすぎることによる硬化物の内部応力上昇を抑制することができ、得られる樹脂組成物の硬化物に柔軟性を与えることができる。
 成分(E)は、樹脂組成物の粘度の観点から、25℃において液状であることが好ましい。
 成分(E)の例としては、単官能マレイミド化合物、単官能(メタ)アクリレート化合物、単官能アクリルアミド化合物等が挙げられる。基(e)としては、マレイミド基、(メタ)アクリロイル基が挙げられる。本実施形態において、成分(E)は、好ましくは、単官能マレイミド化合物及び単官能(メタ)アクリレート化合物から選択され、より好ましくは、単官能(メタ)アクリレート化合物である。
 単官能マレイミド化合物は、基(e)としてマレイミド基を1つ有する化合物であり、その例としては、マレイミド;メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、シクロヘキシルマレイミド等の脂肪族炭化水素基含有マレイミド;フェニルマレイミド等の芳香環含有マレイミド、等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 単官能(メタ)アクリレート化合物は、基(e)として(メタ)アクリロイル基を1つ有する化合物である。単官能(メタ)アクリレート化合物の例としては、
-エチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-エチルヘキシルジエチレングリコール(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、3-フェノキシベンジル(メタ)アクリレート等の、1価アルコールと(メタ)アクリル酸のエステル;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、オクチルアクリレート、ノニルアクリレート、アクリル酸イソノニル、3,3,5-トリメチルシクロヘキシルアクリレート、環状トリメチロールプロパンホルマールアクリレート、1-ナフタレンメチル(メタ)アクリレート、1-エチルシクロヘキシル(メタ)クリレート、1-メチルシクロヘキシル(メタ)クリレート、1-エチルシクロペンチル(メタ)アクリレート、1-メチルシクロペンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロジシクロペンタジエニル(メタ)アクリレート、2-(o-フェニルフェノキシ)エチル(メタ)アクリレート、イソボルニルシクロヘキシル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、3-ヒドロキシ-1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンタニル(メタ)アクリレート、2-エチル-2-アダマンタニル(メタ)アクリレート、2-イソプロピルアダマンタン-2-イル(メタ)アクリレート、3-ヒドロキシ-1-アダマンチル(メタ)アクリレート、(アダマンタン-1-イルオキシ)メチル(メタ)アクリレート、2-イソプロピル-2-アダマンチル(メタ)アクリレート、1-メチル-1-エチル-1-アダマンチルメタノール(メタ)アクリレート、1,1-ジエチル-1-アダマンチルメタノール(メタ)アクリレート、2-シクロヘキシルプロパン-2-イル(メタ)アクリレート、1-イソプロピルシクロヘキシル(メタ)アクリレート、1-メチルシクロヘキシル(メタ)アクリレート、1-エチルシクロペンチル(メタ)アクリレート、1-メチルシクロヘキシル(メタ)アクリレート、テトラヒドロピラニル(メタ)アクリレート、テトラヒドロ-2-フラニル(メタ)アクリレート、2-オキソテトラヒドロフラン-3-イル(メタ)アクリレート、(5-オキソテトラヒドロフラン-2-イル)メチル(メタ)アクリレート、(2-オキソ-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、α-アクリロイル-ω-メトキシポリ(オキシエチレン)、1-エトキシエチル(メタ)アクリレート等の、多価アルコールのモノ(メタ)アクリレート又は1価アルコールと(メタ)アクリル酸のエステル
等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。単官能(メタ)アクリレート化合物は、硬化物の応力緩和性の観点から、その分子量が450以下であることが好ましく、400以下であることがより好ましく、380以下であることがさらに好ましく、350以下であることがさらに好ましく、300以下であることが特に好ましい。また、揮発による周辺部材の汚染を防止するため、単官能(メタ)アクリレート化合物は、低揮発性であることが好ましく、その分子量が100以上であることが好ましく、120以上であることがより好ましく、140以上であることがさらに好ましく、160以上であることが特に好ましい。ある態様においては、単官能(メタ)アクリレート化合物の分子量は、100~450であることが好ましく、120~400であることがより好ましく、140~380であることがさらに好ましく、180~350であることが特に好ましく、200~320であることが最も好ましい。
 成分(E)は、基(e)以外に、エポキシ基等のチオール基と反応し得る基を有していてもよい。ただし、得られる硬化物の柔軟性の観点から、成分(E)は、エポキシ基等のチオール基と反応し得る基を含まないことが好ましい場合がある。
 本実施形態において、柔軟性と接着強度との両立の観点から、成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数])/[成分(C)のチオール基当量数])が、0.4~0.95であることが好ましく、0.4~0.9であることがより好ましく、0.45~0.9であることがより好ましく、0.5~0.9であることがさらに好ましく、0.55~0.9であることが特に好ましい。
 本実施形態において、成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数の比([成分(A)のエポキシ基当量数]/[成分(C)のチオール基当量数])が、0.1~0.9であることが好ましく、0.15~0.85であることがより好ましく、0.15~0.80であることがさらに好ましく、0.2~0.8であることが特に好ましい
 本実施形態において、成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数と成分(E)の基(e)当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数]+[成分(E)の基(e)当量数])/[成分(C)のチオール基当量数])が、0.7~1.5であることが好ましく、0.75~1.4であることがより好ましく、0.8~1.3であることがさらに好ましく、0.8~1.1であることが最も好ましい。特に、成分(A)、成分(B)及び成分(E)に対して、成分(C)を一定量配合することで、チオール基と反応できない未反応成分の残存を抑制し、未反応成分によるブリードを抑制することができる。また、揮発成分が抑制されることも期待される。なお、本明細書中において、ブリードとは、部品の固定や接着に硬化性樹脂組成物を含む接着剤を使用した際に、未反応成分が時間経過とともに接着剤塗布物又は硬化物から染み出る現象であり、染み出した成分そのものを「ブリード」と呼ぶこともある。
 本実施形態において、成分(C)のチオール基当量数に対する成分(E)の基(e)当量数の比([成分(E)の基(e)当量数])/[成分(C)のチオール基当量数])が、0.05~0.7であることが好ましく、0.1~0.6であることがより好ましく、0.15~0.55であることがさらに好ましい。
 なお、成分(E)がエポキシ基を含む場合、成分(E)のエポキシ基当量数を成分(A)及び成分(B)のエポキシ基当量数に加算した上で、上記当量数の関係式を満たすようにすることが好ましい。
 本明細書中において、チオール当量、エポキシ当量、(メタ)アクリロイル当量などの官能基当量とは、官能基1個当たりの化合物の分子量を表し、チオール基当量数、エポキシ基当量数、(メタ)アクリロイル当量数などの官能基当量数とは、化合物質量(仕込み量)当たりの官能基の個数(当量数)を表す。
 成分(A)及び成分(B)の各々のエポキシ当量は、理論的には、成分(A)及び成分(B)の各々の分子量を、1分子中のエポキシ基の数で割った数になる。実際のエポキシ当量は、JIS K7236に記載されている方法により求めることができる。成分(A)及び成分(B)の各々のエポキシ基当量数は、成分(A)及び成分(B)の各々の質量(仕込み量)当たりのエポキシ基の個数(当量数)であり、成分(A)及び成分(B)の各々のエポキシ化合物の質量(g)を、そのエポキシ化合物のエポキシ当量で割った商(エポキシ化合物が複数含まれる場合は、各エポキシ化合物についてのそのような商の合計)である。なお、成分(E)がエポキシ基を含む場合、そのエポキシ当量及びエポキシ基当量数は同様に求められる。
 成分(C)のチオール当量は、理論的には、成分(C)の分子量を、1分子中のチオール基の数で割った数になる。実際のチオール当量は、例えば電位差測定によってチオール価を求めることで、決定できる。この方法は広く知られており、例えば、特開2012-153794号の段落0079に開示されている。成分(C)のチオール基当量数は、成分(C)の質量(仕込み量)当たりのチオール基の個数(当量数)であり、(C)ポリチオール化合物の質量(g)を、そのポリチオール化合物のチオール当量で割った商(ポリチオール化合物が複数含まれる場合は、各ポリチオール化合物についてのそのような商の合計)である。
 基(e)が(メタ)アクリロイル基の場合、成分(E)の(メタ)アクリロイル当量は、理論的には、(メタ)アクリレート化合物の分子量を、1分子中のアクリロイル基(もしくはメタクリロイル基)の数で割った数に等しい。実際の(メタ)アクリロイル当量は、例えば、NMRによって測定できる。成分(E)の(メタ)アクリロイル基当量数は、成分(E)の質量(仕込み量)当たりの(メタ)アクリロイル基の個数(当量数)であり、成分(E)の(メタ)アクリレート化合物の質量(g)を、その(メタ)アクリレート化合物の(メタ)アクリロイル当量で割った商((メタ)アクリレート化合物が複数含まれる場合は、各(メタ)アクリレート化合物についてのそのような商の合計)である。
 基(e)がマレイミド基の場合、成分(E)のマレイミド当量は、理論的には、マレイミド化合物の分子量を、1分子中のマレイミド基の数で割った数に等しい。実際のマレイミド当量は、例えば、NMRによって測定できる。成分(E)のマレイミド基当量数は、成分(E)の質量(仕込み量)当たりのマレイミド基の個数(当量数)であり、成分(E)のマレイミド化合物の質量(g)を、そのマレイミド化合物のマレイミド当量で割った商(マレイミド化合物が複数含まれる場合は、各マレイミド化合物についてのそのような商の合計)である。
 本実施形態の樹脂組成物は、所望であれば、上記成分(A)~(E)以外の任意成分、例えば以下に述べるものを必要に応じて含有してもよい。
 本実施形態の樹脂組成物は、本発明の効果を損なわない範囲で、成分(A)及び成分(B)以外の熱硬化性化合物を含有していてもよい。本明細書中、「成分(A)及び成分(B)以外の熱硬化性化合物」とは、成分(A)及び成分(B)以外の、成分(C)のチオール基と反応し得る多官能熱硬化性化合物をいい、成分(C)は含まれない。成分(A)及び成分(B)以外の熱硬化性化合物としては、例えば、(F)多官能(メタ)アクリレート化合物、フェノール化合物、ビスマレイミド化合物、シアネート化合物、エピスルフィド化合物等が挙げられる。エピスルフィド化合物とは、エポキシ化合物のオキシラン環の酸素原子の全て又は一部が硫黄原子に置き換えられている、チイラン環を含む化合物である。エピスルフィド化合物の例としては、分子内に2つ以上のチイラン環を含む化合物、分子内にチイラン環とオキシラン環の両方を1つ以上含む化合物が挙げられる。但し、本実施形態の樹脂組成物では、熱硬化性化合物(成分(C)を除く)総質量100質量部に対して、成分(A)及び成分(B)の合計量は50質量部以上であることが好ましく、例えば、51質量部以上であり、例えば、55質量部以上であり、例えば、60質量部以上であり、例えば、65質量部以上であり、例えば、70質量部以上であり、例えば、75質量部以上であり、例えば、80質量部以上であり、例えば、85質量部以上であり、例えば、90質量部以上である。
(F)多官能(メタ)アクリレート化合物
 本実施形態の樹脂組成物は、本発明の効果を損なわない範囲で、(F)多官能(メタ)アクリレート化合物(以下、「成分(F)」とも言う)を含有していてもよい。
 多官能(メタ)アクリレート化合物の例としては、トリス(2-ヒドロキシエチル)イソシアヌレートのジアクリレート及び/又はジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート及び/又はトリメタクリレート;トリメチロールプロパントリアクリレート及び/又はトリメタクリレート、又はそのオリゴマー;ペンタエリスリトールトリアクリレート及び/又はトリメタクリレート、又はそのオリゴマー;ジペンタエリスリトールのポリアクリレート及び/又はポリメタクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリアクリレート及び/又はポリメタクリレート;カプロラクトン変性ジペンタエリスリトールのポリアクリレート及び/又はポリメタクリレート;エトキシ化ビスフェノールAジアクリレート及び/又はエトキシ化ビスフェノールAジメタクリレート;ジヒドロシクロペンタジエチルアクリレート及び/又はジヒドロシクロペンタジエチルメタクリレート、ならびにポリエステルアクリレート及び/又はポリエステルメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ジトリメチロールプロパンのポリ(メタ)アクリレート、1分子中に2個以上の(メタ)アクリロイル基を有するポリウレタン、1分子中に2個以上の(メタ)アクリロイル基を有するポリエステル等が挙げられる。
 多官能(メタ)アクリレート化合物は、上述した多官能(メタ)アクリレート化合物のうち、いずれか1種を用いてもよいし、2種以上を併用してもよい。
 多官能(メタ)アクリレート化合物の市販品としては、例えば、ダイセル・オルネクス株式会社製ポリエステルアクリレート(品名:EBECRYL810)、ダイセル・オルネクス株式会社製ジトリメチロールプロパンテトラアクリレート(品名:EBECRYL140)、東亜合成株式会社製ポリエステルアクリレート(品名:M7100)、共栄社化学株式会社製ジメチロール-トリシクロデカンジアクリレート(品名:ライトアクリレートDCP-A)、日本化薬社製ネオペンチルグリコール変性トリメチロールプロパンジアクリレート(品名:カヤラッドR-604)等が挙げられる。
(G)フィラー
 本実施形態の樹脂組成物は、本発明の効果を損なわない範囲で、(G)フィラー(以下、「成分(G)」とも言う)を含有していてもよい。(G)フィラーを樹脂組成物に含有することによって、樹脂組成物を硬化させた硬化物の線膨張係数を下げることができ、耐サーマルサイクル性が向上する。また、低弾性率のフィラーであれば、硬化物に生じる応力を緩和することができ、長期信頼性が向上する。(G)フィラーは、無機フィラー及び有機フィラーに大別される。
 無機フィラーは、無機材料によって形成された粒状体からなり、添加により線膨張係数を下げる効果を有するものであれば、特に限定されない。無機材料としては、シリカ、タルク、アルミナ、窒化アルミニウム、炭酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、炭酸マグネシウム、硫酸バリウム、炭酸バリウム、硫酸石灰、水酸化アルミニウム、ケイ酸カルシウム、チタン酸カリウム、酸化チタン、酸化亜鉛、炭化ケイ素、窒化ケイ素、窒化ホウ素等を用いることができる。無機フィラーは、いずれか1種を用いてもよいし、2種以上を併用してもよい。無機フィラーとしては、充填量を高くできることから、シリカフィラーを用いることが好ましい。シリカは、非晶質シリカが好ましい。無機フィラーは、その表面がシランカップリング剤等のカップリング剤で表面処理されていてもよい。
 有機フィラーの例としては、ポリテトラフルオロエチレン(PTFE)フィラー、シリコーンフィラー、アクリルフィラー、ウレタン骨格を有するフィラー、ブタジエン骨格を有するフィラー、スチレンフィラー等が挙げられる。有機フィラーは、表面処理されていてもよい。
 フィラーの形状は、特に限定されず、球状、りん片状、針状、不定形等のいずれであってもよい。
 フィラーの平均粒径は、6.0μm以下であることが好ましく、5.0μm以下であることがより好ましく、4.0μm以下であることがさらに好ましい。本明細書において、平均粒径とは、特に断りのない限り、ISO-13320(2009)に準拠してレーザー回折法によって測定した体積基準のメジアン径(d50)を指す。フィラーの平均粒径を上限以下とすることにより、フィラーの沈降を抑制することができ、また、粗粒の形成を抑制し、ジェットディスペンサーのノズルの摩耗や、ジェットディスペンサーのノズルから吐出される樹脂組成物の所望の領域外への飛散を抑制することができる。フィラーの平均粒径の下限は特に限定されないが、樹脂組成物の粘度の観点から、0.005μm以上であることが好ましく、0.1μm以上であることがより好ましい。本実施形態のある態様において、(F)フィラーの平均粒径は、好ましくは0.01μm~5.0μmであり、より好ましくは0.1μm~3.0μmである。平均粒径が異なるフィラーを組み合わせて用いてもよい。例えば、平均粒径0.005μm以上0.1μm未満のフィラーと、平均粒径0.1μm~6.0μmのフィラーとを組み合わせて用いてもよい。
 本実施形態の樹脂組成物におけるフィラーの含有量は、樹脂組成物の総質量に対し、15~50質量%であることが好ましく、20~45質量%であることがより好ましく、20~40質量%であることが更に好ましい。フィラーの含有量を上記範囲とすることにより、耐サーマルサイクル性が向上し、また、樹脂組成物の粘度を適切な範囲とし、ディスペンスへの適用性が向上する。
(H)光ラジカル開始剤
 本実施形態の樹脂組成物は、本発明の効果を損なわない範囲で、(H)光ラジカル開始剤(以下、「成分(H)」とも言う)を含有してもよい。(H)光ラジカル開始剤を含むことにより、成分(C)と成分(E)及び任意の成分(F)との光照射による反応が促進される。
 (H)光ラジカル開始剤としては、例えば、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物等が挙げられる。
 アルキルフェノン系化合物の例としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(市販品としてIGM Resins B.V.社製Omnirad 651)等のベンジルジメチルケタール;2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(市販品としてIGM Resins B.V.社製Omnirad 907)等のα-アミノアルキルフェノン;1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(市販品としてIGM Resins B.V.社製Omnirad 184)等のα-ヒドロキシアルキルフェノン;2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン(市販品としてIGM Resins B.V.社製Omnirad 379EG)、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン(市販品としてIGM Resins B.V.社製Omnirad 369)等が挙げられる。
 アシルフォスフィンオキサイド系化合物の例としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(市販品としてIGM Resins B.V.社製Omnirad TPO H)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(市販品としてIGM Resins B.V.社製Omnirad 819)等が挙げられる。
 (H)光ラジカル開始剤としては、上述の光ラジカル開始剤の他に、例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、チオキサンソン、2-クロルチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフインオキサイド、メチルフェニルグリオキシレート、ベンジル、カンファーキノンなどが挙げられる。
 (H)光ラジカル開始剤の含有量は、光照射反応性の観点から、単官能(メタ)アクリレート化合物及び多官能(メタ)アクリレート化合物の合計100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.2~8質量部である。
(I)安定化剤
 本実施形態の樹脂組成物は、所望であれば、本発明の効果を損なわない範囲で、(I)安定化剤(以下、「成分(I)」とも言う)を含んでもよい。安定化剤は、本実施形態の樹脂組成物に、その貯蔵安定性を向上させ、ポットライフを長くすることができる。安定化剤として公知の種々の安定化剤を使用することができるが、貯蔵安定性を向上させる効果の高さから、液状ホウ酸エステル化合物、アルミキレート及び有機酸からなる群から選択される少なくとも1つが好ましい。
 液状ホウ酸エステル化合物の例としては、2,2'-オキシビス(5,5'-ジメチル-1,3,2-オキサボリナン)、トリメチルボレート、トリエチルボレート、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレート、トリペンチルボレート、トリアリルボレート、トリヘキシルボレート、トリシクロヘキシルボレート、トリオクチルボレート、トリノニルボレート、トリデシルボレート、トリドデシルボレート、トリヘキサデシルボレート、トリオクタデシルボレート、トリス(2-エチルヘキシロキシ)ボラン、ビス(1,4,7,10-テトラオキサウンデシル)(1,4,7,10,13-ペンタオキサテトラデシル)(1,4,7-トリオキサウンデシル)ボラン、トリベンジルボレート、トリフェニルボレート、トリ-o-トリルボレート、トリ-m-トリルボレート、トリエタノールアミンボレート等が挙げられる。液状ホウ酸エステル化合物は常温(25℃)で液状であるため、配合物粘度を低く抑えられるため好ましい。アルミキレートとしては、例えばアルミキレートA(川研ファインケミカル株式会社製)を用いることができる。有機酸としては、例えばバルビツール酸を用いることができる。
 安定化剤は、いずれか1種を用いてもよいし、2種以上を併用してもよい。
 安定化剤を添加する場合、その添加量は、樹脂組成物の総質量に対して、0.01~30質量%であることが好ましく、0.05~25質量%であることがより好ましく、0.1~20質量%であることが更に好ましい。
(J)カップリング剤
 本実施形態の樹脂組成物は、所望であれば、本発明の効果を損なわない範囲で、(J)カップリング剤(以下、「成分(J)」とも言う)を含んでもよい。カップリング剤は、分子中に2つ以上の異なった官能基を有しており、その一つは、無機質材料と化学結合する官能基であり、他の一つは、有機質材料と化学結合する官能基である。樹脂組成物がカップリング剤を含有することによって、樹脂組成物の基板等への接着強度が向上する。
 (J)カップリング剤の例として、無機質材料と化学結合する官能基の種類に応じて、シランカップリング剤、アルミニウムカップリング剤、チタンカップリング剤等が挙げられるが、これらに限定されない。
 カップリング剤の例としては、有機質材料と化学結合する官能基の種類に応じて、エポキシ系、アミノ系、ビニル系、メタクリル系、アクリル系、メルカプト系等の各種カップリング剤が挙げられるが、これらに限定されない。これらの中でも、エポキシ基を含むエポキシ系カップリング剤が、耐湿信頼性の観点から、好ましい。
 エポキシ系シランカップリング剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン(品名:KBM403、信越化学株式会社製)、3-グリシドキシプロピルトリエトキシシラン(品名:KBE-403、信越化学株式会社製)、3-グリシドキシプロピルメチルジエトキシシラン(品名:KBE-402、信越化学株式会社製)、3-グリシドキシプロピルメチルジメトキシシラン(品名:KBM402、信越化学株式会社製)、8-グリシドキシオクチルトリメトキシシラン(品名:KBM-4803、信越化学工業株式会社)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(品名:KBM-303、信越化学工業株式会社)等が挙げられる。
 メタクリル系シランカップリング剤の具体例としては、3-メタクリロキシプロピルトリメトキシシラン(品名:KBM503、信越化学株式会社製)、3-メタクリロキシプロピルメチルジメトキシシラン(品名:KBM502、信越化学株式会社製)、3-メタクリロキシプロピルメチルジエトキシシラン(品名:KBE502、信越化学株式会社製)、3-メタクリロキシプロピルトリエトキシシラン(品名:KBE503、信越化学株式会社製)等が挙げられる。
 アクリル系シランカップリング剤の具体例としては、3-アクリロキシプロピルトリメトキシシラン(品名:KBM-5103、信越化学株式会社製)等が挙げられる。
 なお、本実施形態において、メタクリル系シランカップリング剤及びアクリル系シランカップリング剤は、無機質材料と化学結合する官能基を有する点において成分(E)と異なり、成分(E)には含まれない。
 メルカプト系シランカップリング剤の具体例としては、3-メルカプトプロピルトリメトキシシラン(品名KBM803、信越化学工業株式会社製)、3-メルカプトプロピルメチルジメトキシシラン(品名KBM802、信越化学工業株式会社製)が挙げられる。
 カップリング剤は、いずれか1種を用いてもよいし、2種以上を併用してもよい。
 カップリング剤を添加する場合、カップリング剤の添加量は、接着強度向上の観点から、樹脂組成物の総質量に対して0.01質量%~30質量%であることが好ましく、0.1質量%~10質量%であることがより好ましい。
(K)その他の添加剤
 本実施形態の樹脂組成物は、所望であれば、本実施形態の趣旨を損なわない範囲で、その他の添加剤、例えばカーボンブラック、チタンブラック、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、粘度調整剤、難燃剤、着色剤、溶剤等をさらに含有してもよい。各添加剤の種類、添加量は常法通りである。
 本実施形態の樹脂組成物を製造する方法は、特に限定されない。例えば、成分(A)~成分(E)、及び必要に応じて成分(F)、成分(G)、成分(H)、成分(I)、成分(J)、(K)その他添加剤等を、適切な混合機に同時に、または別々に導入して、必要であれば加熱により溶融しながら撹拌して混合し、均一な組成物とすることにより、本実施形態の樹脂組成物を得ることができる。この混合機は特に限定されないが、撹拌装置及び加熱装置を備えた、ライカイ機、ヘンシェルミキサー、3本ロールミル、ボールミル、プラネタリーミキサー、及びビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。
 このようにして得られた樹脂組成物は、熱硬化性であり、温度80℃の条件下では、5時間以内に硬化することが好ましく、3時間以内に硬化することがより好ましく、1時間以内に硬化することがさらに好ましい。本実施形態の硬化性組成物を、高温条件下で劣化する部品を含む半導体モジュールの製造に使用する場合、同組成物を50~90℃の温度で、30~120分熱硬化させることが好ましい。一態様において、本実施形態の樹脂組成物は、熱のみでの硬化に用いるための樹脂組成物である。熱のみでの硬化における、上記の樹脂組成物の使用もまた、本発明の一実施形態である。
 本実施形態の樹脂組成物が成分(F)及び成分(H)を含む場合、樹脂組成物は、光(UV)で硬化させることもできる。例えば、光(UV)での硬化により予備硬化した後に、熱での硬化により本硬化させることができる。
 本実施形態の樹脂組成物は、例えば、半導体装置又は電子部品を構成する部品同士を固定、接合又は保護するための接着剤又は封止材、もしくはその原料として用いられることができる。
[接着剤又は封止材]
 本発明の第二の実施形態である接着剤又は封止材は、上述の第一の実施形態の樹脂組成物を含む。この接着剤又は封止材は、エンジニアリングプラスチック(例えば、LCP(液晶ポリマー)、ポリアミド、ポリカーボネート等)、セラミックス、及び金属(例えば、銅、ニッケル等)に対して、良好な固定、接合又は保護を可能にし、半導体装置又は電子部品を構成する部品同士を固定、接合又は保護するために使用することができる。半導体装置又は電子部品としては、例えば、HDD、半導体素子、イメージセンサモジュール等のセンサモジュール、カメラモジュール、半導体モジュール、集積回路などが挙げられるが、これらに限定されない。
 本実施形態の接着剤又は封止材は、反応性が高く、かつ優れた応力緩和性を有する硬化物を与えることができるため、生産性が高く、例えば、異なる材料で作られた複数の部品を接合して組み立てられる半導体装置や電子部品製造時の使用に適している。また、本実施形態の接着剤又は封止材は、硬化反応中の総発熱量が小さいため、例えば、小型化された電子部品を備える半導体モジュール製造時の使用に適している。
 一態様において、本実施形態の接着剤又は封止材は、熱のみでの硬化に用いるための接着剤又は封止材である。熱のみでの硬化における、上記の接着剤又は封止材の使用もまた、本発明の一実施形態である。
[樹脂組成物もしくは接着剤又は封止材の硬化物]
 本発明の第三の実施形態の硬化物は、上述の第一実施形態の樹脂組成物もしくは第二実施形態の接着剤又は封止材が硬化された硬化物である。この硬化物は、優れた応力緩和性を有している。
[半導体装置、電子部品]
 本発明の第四の実施形態の半導体装置又は電子部品は、上述の第三実施形態の硬化物を含むため、特に異なる材料で作られた複数の部品を接合して組み立てられる半導体装置又は電子部品において高い信頼性を有する。ここで、半導体装置とは、半導体特性を利用することで機能し得る装置全般を指し、電子部品、半導体回路、これらを組み込んだモジュール、電子機器等を含むものである。半導体装置又は電子部品は、例えば、HDD、半導体素子、イメージセンサモジュール等のセンサモジュール、カメラモジュール、半導体モジュール、集積回路などが挙げられるが、これらに限定されない。
 以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の実施例において、部、%は断りのない限り、質量部、質量%を示す。
[実施例1~20、比較例1~3]
 表1に示す配合に従って、3本ロールミルを用いて所定の量の各成分を混合することにより、樹脂組成物を調製した。表1において、各成分の量は質量部(単位:g)で表されている。実施例及び比較例において用いた成分は、以下の通りである。
・(A)エポキシ当量が215g/eq未満であるエポキシ化合物(成分(A))
 (A-1)ビスフェノールF型エポキシ樹脂・ビスフェノールA型エポキシ樹脂混合物(品名:EXA-835LV、DIC株式会社製、エポキシ当量:165g/eq)
 (A-2):成分(D-1)中のエポキシ樹脂(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物、エポキシ当量:180g/eq)
・(B)エポキシ当量が215g/eq以上であるエポキシ化合物(成分(B))
 (B-1)ポリエーテル型エポキシ化合物(品名:AER-9000、旭化成株式会社製、エポキシ当量:380g/eq、25℃で液体、粘度:1Pa・s)
 (B-2)液状エポキシ化合物(品名:jER YX7400、三菱ケミカル株式会社製、エポキシ当量:450g/eq、25℃で液体、粘度:170mPa・s)
 (B-3)ビスフェノールA型エポキシ樹脂(品名:jER 1002、三菱ケミカル株式会社製、エポキシ当量:250g/eq、25℃で固体)
・(C)多官能チオール化合物(成分(C))
 (C-1):ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(品名:PEMP、SC有機化学製、チオール当量:122g/eq)
 (C-2):1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル(品名:TS-G、四国化成工業株式会社製、チオール当量:100g/eq)
 (C-3):ペンタエリスリトールトリプロパンチオール(品名:PEPT、SC有機化学製、チオール当量:124g/eq)
 (C-4):トリメチロールプロパントリス(3-メルカプトプロピオネート)(品名:TMMP、SC有機化学製、チオール当量:133g/eq)
・(D)硬化触媒(成分(D))
 (D-1):アミン-エポキシアダクト系潜在性硬化触媒(品名:ノバキュアHXA9322HP、旭化成株式会社製)
 (D-2):尿素型アダクト系潜在性硬化触媒(品名:フジキュアーFXR1121、T&K TOKA株式会社製)
 前記潜在性硬化触媒(D-1)は、微粒子状の潜在性硬化触媒が、エポキシ樹脂(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物(エポキシ当量:180g/eq))に分散されてなる分散液(潜在性硬化触媒/ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物=33/67(質量比))の形態で提供される。この分散液を構成するエポキシ樹脂は、成分(A)の一部をなすものとして扱われる。よって表1では、(D-1)中の潜在性硬化触媒のみの量を成分(D)の欄に示し、(D-1)中のエポキシ樹脂の量は成分(A)の欄に成分(A-2)として示す。
・(E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)を1つ有する単官能化合物(成分(E))
 (E-1):n-オクチルアクリレート(品名:NOAA、大阪有機化学工業株式会社製、(メタ)アクリレート当量:184g/eq)
 (E-2):(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート(品名:MEDOL-10、大阪有機化学工業株式会社製、(メタ)アクリレート当量:200g/eq)
 (E-3):環状トリメチロールプロパンホルマールアクリレート(品名:ビスコート#200、大阪有機化学工業株式会社製、(メタ)アクリレート当量:200g/eq) (E-4):ジシクロペンタニルアクリレート(品名:FA513AS、昭和電工マテリアルズ株式会社製、(メタ)アクリレート当量:206g/eq)
 (E-5):イソボルニルアクリレート(品名:IBXA、共栄社化学株式会社製、(メタ)アクリレート当量:208g/eq)
 (E-6):m-フェノキシベンジルアクリレート(品名:ライトアクリレートPOB-A、共栄社化学株式会社製、(メタ)アクリレート当量:254g/eq)
 (E-7):2-(o-フェニルフェノキシ)エチルアクリレート(品名:HRD-01、日触テクノファインケミカル株式会社製、(メタ)アクリレート当量:268g/eq)
・(E’)単官能エポキシ化合物(成分(E’))
 (E’-1):p-tert-ブチルフェニルグリシジルエーテル(品名:ED509S、株式会社ADEKA製、エポキシ当量:205g/eq)
・(G)フィラー(成分(G))
 (G-1):シリカフィラー(品名:SE2300、株式会社アドマテックス製、平均粒径:0.6μm)
 表1中、「当量数計算」の欄の記号は、以下の意味を表す。
 「((A)+(B)+(E))/(C)」は、成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数と成分(E)の基(e)当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数]+[成分(E)の基(e)当量数])/[成分(C)のチオール基当量数])を表す。
 「((A)+(B))/(C)」は、成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数])/[成分(C)のチオール基当量数])を表す。
 「(A)/(C)」は、成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数の比([成分(A)のエポキシ基当量数]/[成分(C)のチオール基当量数])を表す。
 「(B)/(C)」は、成分(C)のチオール基当量数に対する成分(B)のエポキシ基当量数の比([成分(B)のエポキシ基当量数]/[成分(C)のチオール基当量数])を表す。
 「(E)/(C)」は、成分(C)のチオール基当量数に対する成分(E)の基(e)当量数の比([成分(E)の基(e)当量数]/[成分(C)のチオール基当量数])を表す。
 「(E’)/(C)」は、成分(C)のチオール基当量数に対する成分(E’)のエポキシ当量数の比([成分(E’)のエポキシ当量数]/[成分(C)のチオール基当量数])を表す。
 実施例及び比較例においては、樹脂組成物の特性を、以下のようにして測定した。
[DSC測定]
(1)オンセット温度
 各樹脂組成物をDSC用アルミパンに5mg入れ、蓋をしたのち、蓋に孔をあけ、示差走査熱量計(DSC、NETZSCH製:DSC204 F1 Phoenix(登録商標))にて窒素雰囲気下、25℃から250℃まで5℃/minで昇温する過程のDSC曲線を求めた。得られたDSC曲線に複数のオンセット温度が観察された場合には、低温側の値をオンセット温度とした。これを表1に示す。
 上記試験により得られたオンセット温度は反応性を示しており、反応性が高いほどオンセット温度は低温である。比較例1~3に比べて実施例1~20はオンセット温度が低く、反応性が高いことが分かる。オンセット温度は85℃以下であることが好ましく、83℃以下であることがより好ましく、80℃以下であることがさらに好ましい。
(2)発熱ピーク面積
 上記(1)オンセット温度を求める際に得たDSC曲線のデータから、解析ソフト(NETZSCH Proteus-Thermal Analysis バージョン8.0.2)を用いて発熱ピーク面積を算出した。これを表1に示す。
 上記試験により得られたDSC曲線における発熱ピーク面積は、樹脂組成物が硬化中に発する熱量を表し、面積が小さいほど発熱量が小さく、短時間硬化における周辺部材の過熱を抑制可能である。DSC曲線における発熱ピーク面積は420J/g以下であることが好ましく、350J/g以下であることがより好ましく、300J/gであることがさらに好ましい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~20の樹脂組成物と、成分(B)及び成分(E)を含まない比較例1の樹脂組成物と、成分(B)を含み、かつ成分(E)の代わりに成分(E’)を含む比較例3の樹脂組成物との比較により、成分(B)を含むことでオンセット温度が高くなること、成分(E)を含むことによりオンセット温度を低下させることができること、成分(E’)ではオンセット温度を成分(E)ほどは低下させることができないことがわかる。
 また、実施例1~20の樹脂組成物と、成分(B)及び成分(E)を含まない比較例1の樹脂組成物と、成分(B)を含まず、かつ成分(E)の代わりに成分(E’)を含む比較例2の樹脂組成物との比較により、成分(E’)を含むことにより、発熱ピーク面積が大きくなるのに対し、成分(E)を含むことにより、発熱ピーク面積が小さくなること、がわかる。
 本発明は、反応性に優れ、かつ優れた応力緩和性を有する硬化物を与える樹脂組成物であり、異なる材料で作られた複数の部品を接合して組み立てられる半導体装置や電子部品製造時の使用に適した接着剤又は封止材として、非常に有用である。
 日本国特許出願2022-173403号(出願日:2022年10月28日)の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (14)

  1.  (A)エポキシ当量が215g/eq未満である多官能エポキシ化合物、
    (B)エポキシ当量が215g/eq以上である多官能エポキシ化合物、
    (C)多官能チオール化合物、
    (D)硬化触媒、及び
    (E)分子中に不飽和二重結合とそれに隣接する電子吸引性基とを含む基(e)を1つ有する単官能化合物
    を含む樹脂組成物。
  2.  成分(E)が、25℃において液状である、請求項1に記載の樹脂組成物。
  3.  成分(E)が、単官能マレイミド化合物及び単官能(メタ)アクリレート化合物から選択される、請求項1又は2に記載の樹脂組成物。
  4.  前記成分(B)の含有量が、前記成分(A)100質量部に対して、1~100質量部である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数])/[成分(C)のチオール基当量数])が、0.4~0.95である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  成分(C)のチオール基当量数に対する成分(A)のエポキシ基当量数と成分(B)のエポキシ基当量数と成分(E)の基(e)当量数との合計の比(([成分(A)のエポキシ基当量数]+[成分(B)のエポキシ基当量数]+[成分(E)の基(e)当量数])/[成分(C)のチオール基当量数])が、0.7~1.5である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  成分(C)のチオール基当量数に対する成分(E)の基(e)当量数の比([成分(E)の基(e)当量数])/[成分(C)のチオール基当量数])が、0.05~0.7である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  熱硬化性化合物総質量100質量部に対して、成分(A)及び成分(B)の合計量は51質量部以上である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  成分(A)及び成分(B)が、25℃で液状である多官能エポキシ化合物を含み、25℃で液状である多官能エポキシ化合物の量は、成分(A)及び成分(B)の合計総質量100質量部に対して、50質量部以上である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  請求項1~9のいずれか1項に記載の樹脂組成物を含む接着剤又は封止材。
  11.  請求項1~9のいずれか1項に記載の樹脂組成物、もしくは請求項10に記載の接着剤又は封止材が硬化された硬化物。
  12.  請求項11に記載の硬化物を含む半導体装置又は電子部品。
  13.  熱のみでの硬化に用いるための、請求項1~9のいずれか1項に記載の樹脂組成物、もしくは請求項10に記載の接着剤又は封止材。
  14.  熱のみでの硬化における、請求項1~9のいずれか1項に記載の樹脂組成物、もしくは請求項10に記載の接着剤又は封止材の使用。
PCT/JP2023/037344 2022-10-28 2023-10-16 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品 WO2024090259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173403 2022-10-28
JP2022-173403 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090259A1 true WO2024090259A1 (ja) 2024-05-02

Family

ID=90830737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037344 WO2024090259A1 (ja) 2022-10-28 2023-10-16 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品

Country Status (1)

Country Link
WO (1) WO2024090259A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001867A (ja) * 2006-06-26 2008-01-10 Three Bond Co Ltd 硬化性樹脂組成物
JP2019156965A (ja) * 2018-03-13 2019-09-19 ナミックス株式会社 エポキシ樹脂組成物
WO2021033329A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物
WO2021033327A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物
WO2021033325A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物
JP2021075698A (ja) * 2019-10-31 2021-05-20 味の素株式会社 硬化性組成物
WO2022210261A1 (ja) * 2021-03-30 2022-10-06 ナミックス株式会社 硬化性樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001867A (ja) * 2006-06-26 2008-01-10 Three Bond Co Ltd 硬化性樹脂組成物
JP2019156965A (ja) * 2018-03-13 2019-09-19 ナミックス株式会社 エポキシ樹脂組成物
WO2021033329A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物
WO2021033327A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物
WO2021033325A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物
JP2021075698A (ja) * 2019-10-31 2021-05-20 味の素株式会社 硬化性組成物
WO2022210261A1 (ja) * 2021-03-30 2022-10-06 ナミックス株式会社 硬化性樹脂組成物

Similar Documents

Publication Publication Date Title
JP4976575B1 (ja) 樹脂組成物
KR102451905B1 (ko) 수지 조성물, 접착제 및 봉지제
TWI826714B (zh) 環氧樹脂組成物
JP6603004B1 (ja) エポキシ樹脂組成物
TWI771320B (zh) 樹脂組成物、接著劑、密封劑、壩劑(dam agent)及半導體裝置
WO2021033327A1 (ja) エポキシ樹脂組成物
WO2023276773A1 (ja) 樹脂組成物及び接着剤
JP7217565B1 (ja) 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品
WO2024090259A1 (ja) 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品
JP2023030721A (ja) 樹脂組成物及び接着剤
JP7217566B1 (ja) 樹脂組成物、接着剤、封止材、硬化物及び半導体装置
JP2021031666A (ja) エポキシ樹脂組成物
WO2023017752A1 (ja) 樹脂組成物及び接着剤
WO2023042599A1 (ja) ジェットディスペンス用樹脂組成物、電子部品用接着剤、及びそれらの硬化物、並びに電子部品
WO2023042600A1 (ja) 樹脂組成物、電子部品用接着剤、及びそれらの硬化物、並びに電子部品
WO2023026872A1 (ja) エポキシ樹脂組成物
WO2023181846A1 (ja) 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品
WO2023181845A1 (ja) 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品
WO2023181831A1 (ja) 樹脂組成物、接着剤又は封止材、硬化物、半導体装置及び電子部品
WO2023181847A1 (ja) 樹脂組成物、接着剤、封止材、硬化物、半導体装置及び電子部品
WO2023286701A1 (ja) 硬化性樹脂組成物
JPWO2021033329A1 (ja) エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882465

Country of ref document: EP

Kind code of ref document: A1