WO2024090177A1 - 顕微ラマン装置および顕微ラマン装置の制御方法 - Google Patents

顕微ラマン装置および顕微ラマン装置の制御方法 Download PDF

Info

Publication number
WO2024090177A1
WO2024090177A1 PCT/JP2023/036490 JP2023036490W WO2024090177A1 WO 2024090177 A1 WO2024090177 A1 WO 2024090177A1 JP 2023036490 W JP2023036490 W JP 2023036490W WO 2024090177 A1 WO2024090177 A1 WO 2024090177A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
objective lens
sample
raman
Prior art date
Application number
PCT/JP2023/036490
Other languages
English (en)
French (fr)
Inventor
哲朗 古田
直也 藤原
友香 森谷
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2024090177A1 publication Critical patent/WO2024090177A1/ja

Links

Images

Definitions

  • This disclosure relates to a Raman microscope and a method for controlling the Raman microscope, and more specifically, to focus adjustment control in the Raman microscope.
  • Patent Document 1 discloses a microscopic Raman spectroscopic analysis device (hereinafter also referred to as a "microscopic Raman device").
  • the microscopic Raman device described in Patent Document 1 is equipped with a laser light source for excitation and a spectroscopic detector.
  • a laser beam from the laser light source is irradiated onto a sample, thereby generating Raman scattered light from the sample.
  • the generated Raman scattered light is dispersed by the spectroscopic detector, and the intensity distribution of the dispersed Raman scattered light is detected to perform analysis of the components contained in the sample.
  • a configuration that generally combines an optical microscope with a Raman spectrometer is used.
  • the visible light source used in the optical microscope and the laser light source used in the Raman spectrometer are used in the same optical system.
  • Some Raman microscopes are configured to have multiple laser light sources with different wavelengths, and to be able to switch between these laser light sources for analysis.
  • a Raman microscope In a Raman microscope, light emitted from a light source is focused by an objective lens and then irradiated onto a sample.
  • the focusing position of the objective lens changes depending on the relative difference in the wavelengths of the light from the light sources. Therefore, whenever the light source is switched, it is necessary to adjust the focal length (i.e., the focus) between the objective lens and the sample.
  • the height from the sample stage varies for each measurement object, and automatic adjustment of the focal length requires calculation processing based on the captured image, making automatic adjustment of the focal length itself difficult.
  • the present disclosure has been made to solve these problems, and its purpose is to facilitate focus adjustment when switching light sources in a Raman microscope device that has multiple light source devices, and to reduce variability in measurement results.
  • a Raman microscope apparatus includes a light source unit, an objective lens unit, a detection device, a drive device, and a control device for controlling the drive device.
  • the light source unit includes a plurality of light source devices configured to generate light of different wavelengths.
  • the objective lens unit focuses and irradiates the light from the light source unit onto a sample to be analyzed.
  • the detection device detects Raman scattered light generated from the sample.
  • the drive device changes the relative distance between the sample and the objective lens unit.
  • the control device is configured to correct the relative distance according to the wavelength of light irradiated from the light source device being used.
  • a control method for a microscopic Raman device relates to a control method for a microscopic Raman device including a light source unit, an objective lens unit, a detection device, and a drive unit.
  • the light source unit includes a plurality of light source devices configured to generate light of different wavelengths.
  • the objective lens unit collects light from the light source unit and irradiates the light onto a sample to be analyzed.
  • the detection device detects Raman scattered light generated from the sample.
  • the drive unit changes the relative distance between the sample and the objective lens unit.
  • the control method includes the steps of (a) acquiring information on the plurality of light source devices, (b) calculating a correction value for the relative distance according to the wavelength of light irradiated from the light source device being used, and (c) driving the drive unit based on the correction value to change the relative distance.
  • the Raman microscopy device in a configuration equipped with multiple light source devices, can facilitate focus adjustment associated with switching between light source devices and reduce variability in measurement results.
  • FIG. 1 is a schematic diagram showing a configuration of a Raman microscope apparatus according to a first embodiment.
  • 1 is a diagram illustrating an example of a configuration of a light source device according to a first embodiment.
  • 1 is a diagram for explaining an overview of focus correction control in the first embodiment.
  • FIG. FIG. 4 is a diagram showing an example of information stored in a storage device in the first embodiment.
  • 11A and 11B are diagrams for explaining correction of a driving range of a stage accompanying focus correction control.
  • 5 is a flowchart showing details of focus correction control according to the first embodiment.
  • FIG. 11 is a diagram showing the configuration of a Raman microscope apparatus according to a second embodiment. 11 is a diagram for explaining an overview of focus correction control in embodiment 2.
  • FIG. FIG. 11 is a diagram showing an example of information stored in a storage device in the second embodiment.
  • 10 is a flowchart showing details of focus correction control according to the second embodiment.
  • Fig. 1 is a schematic diagram showing the configuration of a micro-Raman apparatus 100 according to the first embodiment.
  • the micro-Raman apparatus 100 includes, as an optical system configuration, a light source unit 110, a collimator lens 120, beam splitters 130 and 135, an objective lens unit 140, a stage 150 for placing a sample SMP, a detection unit 160, a filter 162, condenser lenses 164 and 175, a slit 166, an imaging unit 170, and a driving unit 180.
  • the micro-Raman apparatus 100 further includes a control unit 200 for controlling the entire apparatus.
  • the mounting surface of the stage 150 is set as an XY plane, and the normal direction of the mounting surface is set as a Z-axis direction.
  • the light source unit 110 includes a plurality of light source devices, as described later in FIG. 2.
  • the plurality of light source devices may be, for example, a visible light source, a laser light source, an infrared light source, and/or an ultraviolet light source.
  • the light emitted from the light source unit 110 is approximately collimated by the collimator lens 120 and travels in the positive direction of the Z axis in FIG. 1.
  • the light that passes through the collimator lens 120 further passes through the beam splitters 130 and 135 and enters the objective lens unit 140.
  • the light is focused in the objective lens unit 140 and irradiated onto the sample SMP placed on the stage 150.
  • the light source device is a visible light source
  • the light reflected by the sample SMP passes through the objective lens section 140 and is reflected by the reflecting surface of the beam splitter 135.
  • the light is then focused by the focusing lens 175 and irradiated onto the imaging device 170.
  • the imaging device 170 is, for example, a CCD camera.
  • the image of the sample SMP captured by the imaging device 170 is output to the control device 200.
  • the Raman microscopy device 100 functions as an optical microscope.
  • the light source device is a laser light source
  • laser light is irradiated onto the sample SMP
  • Raman scattered light corresponding to the irradiated laser light is generated from the sample SMP.
  • the generated Raman scattered light passes through the beam splitter 135 and is reflected by the reflecting surface of the beam splitter 130.
  • the Raman scattered light reflected by the beam splitter 130 is incident on the filter 162.
  • the Raman microscope device 100 functions as a Raman spectroscopy device.
  • Filter 162 is a long-pass filter, an optical filter that passes light on the long wavelength side and blocks light on the short wavelength side.
  • the cutoff wavelength of filter 162 is set slightly longer than the wavelength of the laser light (illumination light) emitted from the light source device.
  • filter 162 blocks reflected light from the sample SMP and Raman scattered light (anti-Stokes light) on the shorter wavelength side than the illumination light, and passes Raman scattered light (Stokes light) on the longer wavelength side than the illumination light.
  • a filter suitable for each laser light source is selectively used.
  • the Raman scattered light that passes through the filter 162 is focused by the focusing lens 164.
  • An aperture 166 with a minute aperture (pinhole) is disposed at the focusing point 167 of the Raman scattered light.
  • the Raman scattered light that passes through the pinhole of the aperture 166 enters the detection device 160.
  • the detection device 160 is provided with a spectroscope and a line sensor for detecting the intensity of the dispersed scattered light, neither of which are shown in the figure.
  • the spectroscope is typically a diffraction grating.
  • the line sensor may be, for example, a CCD detector.
  • the spectral intensity detected by the detection device 160 is output to the control device 200.
  • the reflected light from the sample SMP is spectroscopically measured by the detection device 160, and the substances contained in the sample SMP are identified from the light absorption by the sample SMP.
  • the control device 200 includes a CPU 201, which is an arithmetic device, and a storage device 202.
  • the storage device 202 includes non-volatile or volatile memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and/or a large-capacity storage device such as a HDD (Hard Disc Drive) or an SSD (Solid State Drive).
  • the CPU 201 reads out the programs and data stored in the storage device 202 and provides overall control of the Raman microscopy device 100.
  • An input device 210 and a display device 220 are connected to the control device 200.
  • the input device 210 is, for example, a keyboard, a mouse, a pointing device, a touch panel, etc., and accepts user operations.
  • the display device 220 is, for example, a liquid crystal display (LCD) or an organic EL (Electro Luminescence) display, etc., and displays an image of the sample SMP captured by the imaging device 170, the intensity distribution of the Raman scattered light detected by the detection device 160, and the operating status of the device, etc.
  • LCD liquid crystal display
  • organic EL Electro Luminescence
  • the stage 150 is configured to be able to move in the X-axis, Y-axis, and Z-axis directions by a driving device 180 that operates according to commands from the control device 200.
  • a driving device 180 that operates according to commands from the control device 200.
  • the stage 150 By moving the stage 150 in the X-axis and/or Y-axis directions, the measurement position on the sample SMP can be changed.
  • the relative distance between the objective lens unit 140 and the sample SMP can be changed to adjust the focus of the objective lens unit 140. Note that instead of moving the stage 150, the measurement position can be changed and the focus can be adjusted by moving the optical system including the objective lens unit 140.
  • FIG. 2 is a diagram for explaining an example of the configuration of the light source section 110 in the Raman microscopy apparatus 100 of the first embodiment.
  • the light source section 110 includes multiple light source devices including a visible light source 111, laser light sources 112 and 113, and an infrared light source 114, and mirrors M1 to M4.
  • the laser light sources 112 and 113 are laser light sources with different wavelengths.
  • Mirror M1 is disposed on the optical axis connecting the visible light source 111 and the objective lens section 140.
  • Mirror M1 passes visible light L1 from the visible light source 111 and reflects light L2 to L4 from mirrors M2 to M4.
  • Mirror M2 is disposed on the optical axis of the laser light source 112, reflects laser light L2 from the laser light source 112, and passes light L3 and L4 from mirrors M3 and M4.
  • Mirror M3 is disposed on the optical axis of the laser light source 113, reflects laser light L3 from the laser light source 113, and passes infrared light L4 from mirror M4.
  • Mirror M4 is disposed on the optical axis of the infrared light source 114, and reflects infrared light L4 from the infrared light source 114.
  • the visible light L1 that passes through mirror M1, and the laser light L2, L3 and infrared light L4 reflected by mirror M1 pass through beam splitters 130, 135 and objective lens section 140 and are irradiated onto the sample SMP.
  • Reflected light L5 from the sample SMP for visible light L1 from the visible light source 111 passes through the objective lens unit 140, and is further reflected by the beam splitter 135 to enter the imaging device 170.
  • Raman scattered light L6, L7 from the laser light sources 112, 113 passes through the objective lens unit 140 and the beam splitter 135, and is reflected by the beam splitter 130 to enter the detection device 160.
  • Reflected light L8 from the sample SMP for infrared light L4 from the infrared light source 114 passes through the objective lens unit 140 and the beam splitter 135, and is reflected by the beam splitter 130 to enter the detection device 160.
  • Each light source device may be switched by switching the supply and cut-off of power to each light source device, or by opening and closing a shutter (not shown) disposed between each light source device and its corresponding mirror.
  • a shutter not shown
  • FIG. 2 the configuration of the light source unit 110 shown in FIG. 2 is one example, and a configuration other than that shown in FIG. 2 may be used as long as it is possible to switch between multiple light source devices.
  • a plurality of light source devices such as a visible light source, a laser light source, an infrared light source, and/or an ultraviolet light source, are used as the light source unit 110 for irradiating the sample SMP. Since the wavelengths of light used in these different light source devices are different from each other, when the light source device to be used is switched, the focusing position (focal length) of the objective lens unit 140 changes depending on the relative difference in the wavelengths of light from the light source devices. Therefore, each time the light source device is switched, it is necessary to adjust the focal length (focus adjustment) between the objective lens unit 140 and the sample SMP.
  • the height from the sample stage varies for each measurement object, and automatic adjustment of the focal length requires calculation processing based on the captured image, making automatic adjustment of the focal length itself difficult.
  • a correction value corresponding to the relative wavelength of the light source device to be used is stored in advance in a storage device, and when switching light sources, focus correction control is performed to automatically adjust the focus according to the correction value of the light source device to be used.
  • focus correction control it is possible to reduce the workload and shorten the work time compared to manual focus adjustment, and also reduce variation in the measurement results.
  • FIG. 3 is a diagram for explaining an overview of focus correction control in embodiment 1.
  • the left diagram (A) in FIG. 3 shows the state in which the focus is adjusted on the sample SMP when the visible light source 111 is used.
  • the coordinate of the stage 150 at this time is z.
  • the focusing position of the laser light L2 by the objective lens unit 140 changes from the position on the sample SMP in the left diagram (A) to a position "a" above. In other words, the focus becomes out of focus.
  • the control device 200 pre-stores in the storage device 202 a correction amount corresponding to the amount of deviation "a" of the focal position of the laser light L2 relative to the focal position of the visible light L1, as shown in the right diagram (C) of Figure 3, and when the light source device to be used is switched, the control device 200 moves the stage 150 to a position (coordinate z+a) that takes into account the correction amount.
  • FIG. 4 is a diagram showing an example of information stored in the storage device 202.
  • the information includes the wavelength of light emitted from each light source device and a reference correction value for the focal position.
  • the correction value for each light source device may be calculated and set by theoretical calculation based on the relative wavelength of each light source device, or the deviation amount when experimentally adjusted using a reference sample or the like may be set as the correction value.
  • only the wavelength of each light source device may be stored in the storage device 202, and the correction value may be calculated each time the light source device is switched based on the wavelength difference before and after switching.
  • the thickness of the sample is unknown, so focus adjustment is performed manually by the operator or using the autofocus function.
  • the CPU 201 of the control device 200 refers to the information stored in the storage device 202 and drives the stage 150 based on the difference in the reference correction values of the light source device before and after the switch. Through this control, focus adjustment to a focal position suitable for the light source device being used is automatically performed.
  • the user can set whether the automatic correction function for focus adjustment is enabled (ON) or disabled (OFF) by setting a hardware switch or a software switch on the display screen.
  • the position of the stage 150 is automatically adjusted by focus correction control, and the coordinates of the stage 150 displayed on the display device 220 change, the user may mistakenly believe that the focal position has shifted due to an incorrect operation on his/her part. Therefore, when focus correction control is performed, it is preferable that the display of the stage position on the display device 220 is not reflected, and the display coordinates of the stage 150 are not changed.
  • the displayed operable range of the stage 150 may exceed the mechanical operable range, as shown in the upper part of FIG. 5.
  • the upper operable range may exceed the upper limit of the machine. Therefore, as shown in the lower part of FIG. 5, when the position of the stage 150 is changed by the correction amount a due to the focus correction control, the operable range is changed corresponding to the correction amount a.
  • the upper limit max of the operable range is changed to (max-a), and the lower limit min is changed to (min-a). This makes it possible to suppress movement that exceeds the mechanical operable range and prevent damage to the machine when the user manually raises or lowers the stage 150 after the focus correction control is performed.
  • the change in the display of the coordinates of the stage 150 accompanying the focus correction control as described above is automatically reset when the sample to be measured is changed and/or when focus adjustment is performed manually or by the autofocus function. Alternatively, it may be possible to reset it by user operation.
  • FIG. 6 is a flowchart showing details of focus correction control in embodiment 1.
  • the flowcharts shown in FIG. 6 and FIG. 10 described later are realized by CPU 201 executing a program stored in storage device 202 of control device 200. Note that some or all of the processing in the flowchart may be realized by a hardware circuit in control device 200.
  • step (hereinafter, "step” is abbreviated as S) 100
  • the control device 200 determines whether or not this is the first measurement of the sample SMP to be measured. If it is the first measurement (YES in S100), the focus of the objective lens unit 140 has not been adjusted for the sample SMP, so processing proceeds to S170, and the control device 200 adjusts the focus of the objective lens unit 140 using an existing autofocus function. Alternatively, the control device 200 outputs a display to the display device 220 to prompt the user to perform manual focus adjustment.
  • the control device 200 proceeds to S110 and determines whether the light source device to be used has been switched.
  • the light source switching may be detected based on an input by the user to the input device 210, or may be detected automatically based on the ON/OFF operation of the light source device or the opening and closing operation of the shutter.
  • the processing proceeds to S130, where the control device 200 reads out the information stored in the storage device 202 (FIG. 4) and acquires the wavelength and/or reference correction values for the light source device before and after switching. Then, in S140, the control device 200 uses the acquired information to calculate a correction value based on the wavelength difference between the light source device before and after switching. Furthermore, in S150, the control device 200 corrects the operable range in the Z-axis direction of the stage 150 as described in FIG. 5. Thereafter, in S160, the control device 200 drives the Z-axis of the stage 150 based on the calculated correction value to perform focus adjustment.
  • focus adjustment can be automatically performed according to the light source device to be used. This reduces the burden on the operator and shortens the work time compared to when focus adjustment is performed manually, and also reduces the variability in the measurement results.
  • the “visible light source 111" in embodiment 1 corresponds to the "first light source device” in this disclosure.
  • the “laser light source 112" and “laser light source 113" in embodiment 1 correspond to the “second light source device” and “third light source device” respectively in this disclosure.
  • the “infrared light source 114" in embodiment 1 corresponds to the "fourth light source device” in this disclosure.
  • Raman microscopes are equipped with multiple objective lenses in order to change the magnification of the measurement area of the sample being measured. Even if the same light source device is used, switching objective lenses requires refocusing because the size and focal length of the lenses used are different.
  • FIG. 7 is a diagram showing the configuration of a Raman microscope apparatus 100A according to the second embodiment.
  • the objective lens section 140 in the Raman microscope apparatus 100 described in FIG. 2 is replaced with an objective lens section 140A.
  • FIG. 7 the description of the elements that overlap with FIG. 2 will not be repeated.
  • the objective lens section 140A of the Raman microscope apparatus 100A includes objective lenses 141-143 with different focal lengths.
  • the objective lenses 141-143 are attached to a rotating or sliding holder (not shown), and are configured so that the desired objective lens can be selected by moving the holder.
  • the difference in focal position between the objective lenses to be used is stored in the memory device 202 as a correction value, and when switching objective lenses, the stage 150 is moved according to that correction value, allowing automatic focus adjustment as shown in the right diagram (C) of Figure 8.
  • FIG. 9 is a diagram showing an example of information stored in storage device 202 in embodiment 2.
  • the information includes the wavelength of light emitted from each light source device and a reference correction value corresponding to each objective lens.
  • Control device 200 can automatically perform focus correction control using the correction values shown in FIG. 9.
  • the display of the stage position during focus correction control is maintained, and the operable range is corrected.
  • the equipment size (length in the optical axis direction) of the objective lens changes depending on the magnification, so when correcting the operable range, it is preferable to set the operable range taking into account the equipment size of the objective lens.
  • the larger the magnification the larger the equipment size becomes, and so the sample SMP and the objective lens become more likely to come into contact. Therefore, the lower limit of the operable range in particular needs to be set taking into account the equipment size in addition to the difference in focal length.
  • FIG. 10 is a flowchart showing the details of focus correction control in embodiment 2. Note that the flowchart in FIG. 10 explains a case where only the objective lens is switched without switching the light source device to be used.
  • the control device 200 determines whether or not this is the first measurement of the sample SMP to be measured. If this is the first measurement (YES in S200), the focus of the objective lens unit 140A has not been adjusted for the sample SMP, so processing proceeds to S270, and the control device 200 adjusts the focus of the objective lens unit 140 using an existing autofocus function. Alternatively, the control device 200 outputs a display to the display device 220 to prompt the user to perform manual focus adjustment.
  • control device 200 proceeds to S210 to determine whether the objective lens to be used has been switched.
  • the processing proceeds to S230, where the control device 200 reads out the information stored in the storage device 202 (FIG. 9) and obtains the reference correction value corresponding to the type (focal length) of the objective lens before and after the switch. Then, in S240, the control device 200 uses the obtained information to calculate a correction value based on the difference in focal length of the objective lens before and after the switch.
  • the control device 200 corrects the operable range of the stage 150 in the Z-axis direction.
  • the operable range is set taking into account the equipment size of the objective lens in addition to the correction value based on the focal length.
  • the control device 200 drives the Z-axis of the stage 150 based on the calculated correction value to adjust the focus.
  • the correction values shown in Figure 9 can be used to adjust the focus according to the wavelength of the light emitted from the light source device and the type of objective lens.
  • focus adjustment can be automatically performed according to the objective lens being used. This reduces the burden on the operator and shortens the work time compared to when focus adjustment is performed manually, and also reduces the variability in the measurement results.
  • a Raman microscope apparatus includes a light source unit, an objective lens unit, a detection device, a drive device, and a control device for controlling the drive device.
  • the light source unit includes a plurality of light source devices configured to generate light of different wavelengths.
  • the objective lens unit focuses and irradiates the light from the light source unit onto a sample to be analyzed.
  • the detection device detects Raman scattered light generated from the sample.
  • the drive device changes the relative distance between the sample and the objective lens unit.
  • the control device is configured to correct the relative distance according to the wavelength of light irradiated from the light source device being used.
  • the relative distance between the objective lens and the sample is corrected according to the wavelength of the light source device being used.
  • the focus is automatically adjusted according to the difference in the wavelength of the light source before and after the switch. Therefore, in a Raman microscope apparatus having multiple light source devices, focus adjustment accompanying light source switching can be easily performed, and the variability in the measurement results can be reduced.
  • the control device includes a processor and a storage device in which a correction value from a reference distance between the sample and the objective lens unit is stored for each of the multiple light source devices.
  • the processor obtains the correction value corresponding to the light source device being used from the storage device and corrects the above-mentioned relative distance.
  • the Raman microscope apparatus described in paragraph 2 allows the processor of the control device to adjust the focus based on the correction value stored in the storage device. This makes it easy to adjust the focus when switching the light source, and reduces the variation in the measurement results.
  • control device includes a processor and a storage device in which the wavelengths of each of the multiple light source devices are stored.
  • the processor obtains the wavelengths of the light source device before and after the change from the storage device, and corrects the relative distance according to the relative difference in wavelength between the light source devices.
  • the processor can adjust the focus based on the wavelength information of each light source device stored in the storage device. Therefore, it is possible to easily adjust the focus when switching between light sources, and to reduce the variation in the measurement results.
  • the multiple light source devices include a first light source device that generates visible light and a second light source device that generates laser light of a first wavelength.
  • the Raman microscope device described in paragraph 4 can automatically adjust the focus between the visible light source and the laser light source.
  • the plurality of light source devices further includes a third light source device that generates laser light of a second wavelength different from the first wavelength.
  • the Raman microscope device described in paragraph 5 can automatically adjust the focus between the visible light source and two laser light sources with different wavelengths.
  • the plurality of light source devices further includes a fourth light source device that generates infrared light.
  • the Raman microscope apparatus described in paragraph 6 can automatically adjust the focus between the infrared light source and the visible light source and/or laser light source when using an infrared light source.
  • the multiple light source devices include a second light source device that generates laser light of a first wavelength, and a third light source device that generates laser light of a second wavelength different from the first wavelength.
  • the Raman microscope device described in paragraph 7 can automatically adjust the focus between two laser light sources with different wavelengths.
  • the Raman microscope apparatus described in any one of 1 to 7 further includes a stage for placing the sample.
  • the driving device drives the stage to change the relative distance.
  • control device can adjust the focus by moving the stage on which the sample is placed using the drive device.
  • the Raman microscope apparatus described in Clause 8 further includes a display device for displaying the position of the stage. Even if the relative distance is corrected by changing the light source device used, the control device does not reflect this in the display of the stage position on the display device.
  • control device is configured to be able to set whether or not to perform a correction of the relative distance according to the light source device being used.
  • the Raman microscope apparatus described in paragraph 10 allows the user to set whether or not to perform automatic focus adjustment when the light source device is switched. This makes it possible to prevent risks such as a collision between the objective lens and the sample when performing automatic focus adjustment.
  • the objective lens section includes a plurality of objective lenses having different focal lengths.
  • the control device is configured to correct the relative distance according to the objective lens used.
  • the Raman microscope apparatus described in paragraph 11 can automatically adjust the focus according to the objective lens in a configuration having multiple objective lenses. Therefore, in a Raman microscope apparatus having multiple objective lenses, it is possible to easily adjust the focus when switching between objective lenses, and to reduce the variation in the measurement results.
  • a control method for a microscopic Raman device relates to a control method for a microscopic Raman device including a light source unit, an objective lens unit, a detection device, and a drive unit.
  • the light source unit includes a plurality of light source devices configured to generate light of different wavelengths.
  • the objective lens unit collects light from the light source unit and irradiates the light onto a sample to be analyzed.
  • the detection device detects Raman scattered light generated from the sample.
  • the drive unit changes the relative distance between the sample and the objective lens unit.
  • the control method includes the steps of (a) acquiring information on the plurality of light source devices, (b) calculating a correction value for the relative distance according to the wavelength of light irradiated from the light source device being used, and (c) driving the drive unit based on the correction value to change the relative distance.
  • the relative distance between the objective lens and the sample is corrected according to the wavelength of the light source device being used.
  • focus adjustment is automatically performed according to the difference in wavelength of the light source before and after the switch. Therefore, in a Raman microscope apparatus having multiple light source devices, focus adjustment accompanying light source switching can be easily performed, and variation in measurement results can be reduced.

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

顕微ラマン装置(100)は、光源部(110)と、対物レンズ部(140)と、検出装置(160)と、駆動装置(180)と、駆動装置(180)を制御するための制御装置(200)とを備える。光源部(110)は、互いに異なる波長の光を発生するように構成された複数の(111~114)を含む。対物レンズ部(140)は、分析対象のサンプル(SMP)に光源部(110)からの光を集光して照射する。検出装置(160)は、サンプル(SMP)から発生されるラマン散乱光を検出する。駆動装置(180)は、サンプル(SMP)と対物レンズ部(140)との間の相対距離を変化させる。制御装置(200)は、使用される光源装置から照射される光の波長に応じて上記相対距離を補正するように構成される。

Description

顕微ラマン装置および顕微ラマン装置の制御方法
 本開示は、顕微ラマン装置および顕微ラマン装置の制御方法に関し、より特定的には、顕微ラマン装置におけるピント調整制御に関する。
 特開2021-117022号公報(特許文献1)には、顕微ラマン分光分析装置(以下、「顕微ラマン装置」とも称する。)が開示されている。特許文献1に記載の顕微ラマン装置は、励起用のレーザ光源および分光検出器を備えている。特許文献1の顕微ラマン装置においては、レーザ光源からのレーザビームがサンプルに照射されることによって、サンプルからラマン散乱光が発生する。発生したラマン散乱光は、分光検出器で分散されるとともに、分散されたラマン散乱光の強度分布を検出することによって、サンプルに含まれる成分の分析等が行なわれる。
特開2021-117022号公報
 顕微ラマン装置においては、一般的に光学顕微鏡とラマン分光装置とが組み合わされた構成が用いられる。このような構成においては、光学顕微鏡で用いる可視光源、および、ラマン分光装置で用いるレーザ光源が同じ光学系において使用される。また、いくつかの顕微ラマン装置においては、互いに波長が異なる複数のレーザ光源を有し、これらのレーザ光源を切換えて分析を行なうことが可能に構成されているものがある。
 顕微ラマン装置においては、光源から照射される光は、対物レンズによって集光されてサンプルに照射される。上記のように、同じ光学系において複数の光源が用いられる顕微ラマン装置の場合、光源からの光の波長の相対差によって対物レンズの集光位置が変化する。そのため、光源が切換えられた際には、その都度、対物レンズとサンプルとの間の焦点距離(すなわち、ピント)を調整することが必要となる。
 このような調整を光源切換の都度行なうと、調整に時間がかかってしまうため、作業者への負担が大きくなる。また、レーザ光源のピント調整には経験および技術が必要であるため、当該ピント調整を手動で行なう場合、調整を行なう作業者によって測定結果にばらつきが生じる可能性がある。
 また、測定対象ごとに、試料台からの高さが異なっており、焦点距離を自動調整するためには、撮影画像に基づいた演算処理が必要であるため、焦点距離を自動調整すること自体にも困難性がある。
 本開示は、このような課題を解決するためになされたものであって、その目的は、複数の光源装置を有する顕微ラマン装置において、光源切換に伴うピント調整を容易にするとともに、測定結果のばらつきを低減することである。
 本開示のある局面に係る顕微ラマン装置は、光源部と、対物レンズ部と、検出装置と、駆動装置と、駆動装置を制御するための制御装置とを備える。光源部は、互いに異なる波長の光を発生するように構成された複数の光源装置を含む。対物レンズ部は、分析対象のサンプルに光源部からの光を集光して照射する。検出装置は、サンプルから発生されるラマン散乱光を検出する。駆動装置は、サンプルと対物レンズ部との間の相対距離を変化させる。制御装置は、使用される光源装置から照射される光の波長に応じて上記相対距離を補正するように構成される。
 本開示の他の局面に係る顕微ラマン装置の制御方法は、光源部と、対物レンズ部と、検出装置と、駆動装置とを備える顕微ラマン装置の制御方法に関する。光源部は、互いに異なる波長の光を発生するように構成された複数の光源装置を含む。対物レンズ部は、光源部からの光を集光して分析対象のサンプルに照射する。検出装置は、サンプルから発生されるラマン散乱光を検出する。駆動装置は、サンプルと対物レンズ部との間の相対距離を変化させる。制御方法は、(a)複数の光源装置の情報を取得するステップと、(b)使用される光源装置から照射される光の波長に応じて相対距離の補正値を演算するステップと、(c)補正値に基づいて駆動装置を駆動して相対距離を変化させるステップとを含む。
 本開示に係る顕微ラマン装置によれば、複数の光源装置を備えた構成において、光源装置の切換に伴うピント調整を容易にすることができるとともに、測定結果のばらつきを低減することができる。
実施の形態1の顕微ラマン装置の構成を示す概略図である。 実施の形態1の光源装置の構成の一例を示す図である。 実施の形態1におけるピント補正制御の概要を説明するための図である。 実施の形態1において記憶装置に記憶された情報の一例を示す図である。 ピント補正制御に伴うステージの駆動範囲修正を説明するための図である。 実施の形態1のピント補正制御の詳細を示すフローチャートである。 実施の形態2の顕微ラマン装置の構成を示す図である。 実施の形態2におけるピント補正制御の概要を説明するための図である。 実施の形態2において記憶装置に記憶された情報の一例を示す図である。 実施の形態2のピント補正制御の詳細を示すフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (顕微ラマン装置の構成)
 図1は、実施の形態1に係る顕微ラマン装置100の構成を示す概略図である。図1を参照して、顕微ラマン装置100は、光学系の構成として、光源部110と、コリメータレンズ120と、ビームスプリッタ130,135と、対物レンズ部140と、サンプルSMPを載置するためのステージ150と、検出装置160と、フィルタ162と、集光レンズ164,175と、スリット166と、撮像装置170と、駆動装置180とを備える。また、顕微ラマン装置100は、装置全体を統括的に制御するための制御装置200をさらに備えている。なお、図1において、ステージ150の載置面をXY平面とし、載置面の法線方向をZ軸方向とする。
 光源部110は、図2で後述するように、複数の光源装置を含んでいる。複数の光源装置としては、たとえば、可視光源、レーザ光源、赤外光源、および/または、紫外光源を用いることができる。
 光源部110から放射された光は、コリメータレンズ120によって略平行化されて、図1のZ軸の正方向に進む。コリメータレンズ120を通過した光は、ビームスプリッタ130,135をさらに通過して、対物レンズ部140に入射する。光は、対物レンズ部140において集光されて、ステージ150上に載置されたサンプルSMPへ照射される。
 光源装置が可視光源の場合、サンプルSMPで反射した光は、対物レンズ部140を通過してビームスプリッタ135の反射面で反射される。そして、集光レンズ175により集光されて撮像装置170へ照射される。撮像装置170は、たとえばCCDカメラである。撮像装置170で撮像されたサンプルSMPの画像は、制御装置200へ出力される。この場合、顕微ラマン装置100は、光学顕微鏡として機能する。
 光源装置がレーザ光源の場合、サンプルSMPにレザー光が照射されることによって、照射されたレーザ光に応じたラマン散乱光がサンプルSMPから発生する。発生したラマン散乱光は、ビームスプリッタ135を通過し、ビームスプリッタ130の反射面で反射される。ビームスプリッタ130で反射されたラマン散乱光は、フィルタ162に入射する。この場合、顕微ラマン装置100は、ラマン分光装置として機能する。
 フィルタ162は、ロングパスフィルタであり、長波長側の光を通過させ、短波長側の光を遮断する光学フィルタである。フィルタ162のカットオフ波長は、光源装置から照射されるレーザ光(照射光)の波長よりも僅かに長波長側に設定されている。これにより、フィルタ162は、サンプルSMPによる反射光、および、照射光よりも短波長側のラマン散乱光(アンチストークス光)を遮断し、照射光よりも長波長側のラマン散乱光である(ストークス光)を通過させる。なお、波長の異なる複数のレーザ光源が用いられる場合には、各レーザ光源に適したフィルタが選択的に用いられる。
 フィルタ162を通過したラマン散乱光は、集光レンズ164によって集光される。ラマン散乱光の集光点167には、微小開口(ピンホール)が形成された絞り166が配置されている。絞り166のピンホールを通過したラマン散乱光は、検出装置160に入光する。
 検出装置160には、いずれも図示しないが、分光器、および、分光された散乱光の強度を検出するためのラインセンサが設けられている。分光器は、代表的には回折格子(グレーティング)である。また、ラインセンサとしては、たとえばCCD検出器が用いられる。検出装置160で検出された分光強度は、制御装置200へ出力される。
 また、光源装置として赤外光源または紫外光源が用いられる場合には、サンプルSMPからの反射光を検出装置160により分光および測定し、サンプルSMPによる吸光からサンプルSMPに含まれる物質を特定する。
 制御装置200は、演算装置であるCPU201と、記憶装置202とを含む。記憶装置202は、ROM(Read Only Memory)あるいはRAM(Random Access Memory)などの不揮発性メモリあるいは揮発性メモリ、および/または、HDD(Hard Disc Drive)あるいはSSD(Solid State Drive)などの大容量記憶装置を含む。CPU201は、記憶装置202に記憶されたプログラムおよびデータを読み出して、顕微ラマン装置100を統括的に制御する。
 制御装置200には、入力装置210および表示装置220が接続される。入力装置210は、たとえば、キーボード、マウス、ポインティングデバイス、タッチパネルなどであり、ユーザの操作を受け付ける。表示装置220は、たとえば、液晶ディスプレイ(LCD:Liquid Crystal Display)あるいは有機EL(Electro Luminescence)ディスプレイなどであり、撮像装置170で撮像されたサンプルSMPの画像、検出装置160で検出されたラマン散乱光の強度分布、および、装置の動作状態などを表示する。
 ステージ150は、制御装置200からの指令によって動作する駆動装置180によってX軸方向、Y軸方向およびZ軸方向に移動することが可能に構成されている。ステージ150をX軸方向および/またはY軸方向に移動することによって、サンプルSMPにおける測定位置を変更することができる。また、ステージ150をZ軸方向に移動することによって、対物レンズ部140とサンプルSMPとの間の相対距離を変化させて対物レンズ部140のピントを調整することができる。なお、ステージ150の移動に代えて、対物レンズ部140を含む光学系を移動させることによって、測定位置の変更およびピントの調整を行なう構成としてもよい。
 図2は、実施の形態1の顕微ラマン装置100における光源部110の構成の一例を説明するための図である。図2の例においては、光源部110は、可視光源111、レーザ光源112,113、および、赤外光源114を含む複数の光源装置と、ミラーM1~M4とを含む。レーザ光源112,113は、互いに異なる波長のレーザ光源である。
 ミラーM1は、可視光源111と対物レンズ部140とを結ぶ光軸上に配置されている。ミラーM1は、可視光源111からの可視光L1を通過させるとともに、ミラーM2~M4からの光L2~L4を反射させる。ミラーM2は、レーザ光源112の光軸上に配置され、レーザ光源112からのレーザ光L2を反射させるとともにミラーM3,M4からの光L3,L4を通過させる。ミラーM3は、レーザ光源113の光軸上に配置され、レーザ光源113からのレーザ光L3を反射させるとともにミラーM4からの赤外光L4を通過させる。ミラーM4は、赤外光源114の光軸上に配置され、赤外光源114からの赤外光L4を反射させる。
 ミラーM1を通過した可視光L1、および、ミラーM1により反射されたレーザ光L2,L3および赤外光L4は、ビームスプリッタ130,135および対物レンズ部140を通過して、サンプルSMPに照射される。
 可視光源111からの可視光L1についてのサンプルSMPからの反射光L5は、対物レンズ部140を通過し、さらに、ビームスプリッタ135により反射されて撮像装置170へ入光する。レーザ光源112,113からのレーザ光L2,L3によるラマン散乱光L6,L7は、対物レンズ部140およびビームスプリッタ135を通過し、ビームスプリッタ130により反射されて検出装置160に入光する。赤外光源114からの赤外光L4についてのサンプルSMPからの反射光L8は、対物レンズ部140およびビームスプリッタ135を通過し、ビームスプリッタ130により反射されて検出装置160に入光する。
 各光源装置の切換えについては、各光源装置への電源の供給および遮断を切換えることによって切換えてもよいし、各光源装置とそれに対応するミラーとの間に配置されたシャッタ(図示せず)の開閉によって切換えてもよい。なお、図2に示した光源部110の構成は一例であり、複数の光源装置を切換えて使用することができれば、図2以外の構成を用いてもよい。
 (ピント補正制御の説明)
 上述のような顕微ラマン装置100においては、サンプルSMPに照射する光源部110として、可視光源、レーザ光源、赤外光源、および/または紫外光源などの複数の光源装置が用いられる。これらの異なる光源装置において用いられる光の波長は互いに異なっているため、使用する光源装置を切換えた場合、光源装置からの光の波長の相対差によって対物レンズ部140の集光位置(焦点距離)が変化する。そのため、光源装置が切換えられた際には、その都度、対物レンズ部140とサンプルSMPとの間の焦点距離の調整(ピント調整)をすることが必要となる。
 このようなピント調整を光源切換の都度行なうと、調整作業に時間がかかってしまうため、トータルの作業時間が長くなり作業者への負担が大きくなる。また、レーザ光源を用いる場合には、発生するラマン散乱光の強度のピークを観察しながらピント調整をすることが必要であるが、当該調整作業には経験および技術が必要であるため、当該ピント調整を手動で行なう場合、調整を行なう作業者によって測定結果にばらつきが生じる可能性がある。
 また、測定対象ごとに、試料台からの高さが異なっており、焦点距離を自動調整するためには、撮影画像に基づいた演算処理が必要であるため、焦点距離を自動調整すること自体にも困難性がある。
 そこで、本実施の形態1においては、使用予定の光源装置の相対波長に応じた補正値を予め記憶装置に記憶させておき、光源切換の際に、使用対象の光源装置の補正値に従って自動でピント調整を行なうピント補正制御を行なう。このようなピント補正制御を行なうことによって、ピント調整を手動で行なう場合に比べて、作業負担の軽減および作業時間の短縮を行なうとともに、測定結果におけるばらつきを低減することができる。
 図3は、実施の形態1におけるピント補正制御の概要を説明するための図である。図3における左図(A)は、可視光源111を用いた場合に、サンプルSMPにピントを合わせた状態である。このときのステージ150の座標をzとする。
 左図(A)の状態において、可視光源111からレーザ光源112に切換えると(中図(B))、可視光L1とレーザ光L2との間の波長の違いにより、対物レンズ部140によるレーザ光L2の集光位置が、左図(A)におけるサンプルSMP上の位置から「a」だけ上方の位置に変化する。すなわち、ピントが外れた状態となる。
 制御装置200は、図3の右図(C)のように、可視光L1のピント位置に対するレーザ光L2のピント位置のズレ量「a」に対応した補正量を記憶装置202に予め記憶しており、使用される光源装置が切換えられると、当該補正量を考慮した位置(座標z+a)にステージ150を移動させる。
 図4は、記憶装置202に記憶された情報の一例を示す図である。図4の例においては、情報は、各光源装置から照射される光の波長と、焦点位置の基準補正値を含む。ここで、基準補正値は、たとえば、可視光源111(光源1)の場合の焦点位置を基準(補正値=0)とし、各光源装置について可視光源111の場合の焦点距離からのズレ量を補正値とする。なお、各光源装置の補正値については、各光源装置の相対波長に基づいて理論計算により算出して設定してもよいし、基準サンプルなどを用いて実験的に調整した際のズレ量を補正値として設定してもよい。また、各光源装置の波長のみを記憶装置202に記憶しておき、切換前後の波長差に基づいて、補正値を光源装置の切換えの都度算出してもよい。
 対象のサンプルSMPの初回の測定においては、サンプルの厚みが未知であるため、作業者による手動あるいはオートフォーカス機能を用いてピント調整が行なわれる。その後、使用対象の光源装置が切換えられると、制御装置200のCPU201は、記憶装置202に記憶された情報を参照し、切換前後の光源装置の基準補正値の差に基づいてステージ150を駆動する。このような制御によって、使用される光源装置に適した焦点位置へのピント調整が自動で行なわれる。なお、ユーザは、ハードウェアスイッチあるいは表示画面内のソフトウェアスイッチの設定によって、当該ピント調整の自動補正機能を有効(ON)とするか無効(OFF)とするかを設定することができる。
 ここで、ピント補正制御によってステージ150の位置が自動調整された場合に、表示装置220に表示されるステージ150の座標が変化すると、ユーザは自身の誤った操作等によって焦点位置がずれてしまったと誤認する可能性がある。そのため、ピント補正制御が行なわれた場合、表示装置220におけるステージ位置の表示には反映せず、ステージ150の表示座標を変化させないことが好ましい。
 一方で、ステージ150の表示位置と実際の位置とが異なる状態となった場合、当該表示位置に基づいてステージ150を動作させると、図5の上段に示されるように、ステージ150の表示上の動作可能範囲が、機械的な動作可能範囲を超えてしまうおそれがある。たとえば、図3のように焦点位置をZ軸の正方向(機械の上昇方向)に補正量aだけ補正した場合には、上限側の動作可能範囲が機械上限を上回る可能性がある。そのため、図5の下段に示されるように、ピント補正制御によって補正量aだけステージ150の位置が変更された場合には、動作可能範囲が補正量aに対応して変更される。具体的には、動作可能範囲の上限値maxが(max-a)に変更され、下限値minが(min-a)に変更される。これによって、ピント補正制御実施後に、ユーザが手動でステージ150を昇降させたような場合に、機械的な動作可能範囲を超えた移動を抑制することができ、機械破損を防止することができる。
 なお、上記のようなピント補正制御に伴うステージ150の座標の表示変更は、測定対象のサンプルが変更された場合、および/または、手動あるいはオートフォーカス機能によるピント調整が行なわれた場合に自動的にリセットされることが好ましい。あるいは、ユーザの操作によってリセットできるようにしてもよい。
 図6は、実施の形態1のピント補正制御の詳細を示すフローチャートである。図6および後述する図10に示されるフローチャートは、一例においては、制御装置200の記憶装置202に記憶されたプログラムをCPU201が実行することによって実現される。なお、フローチャートにおける一部あるいはすべての処理が、制御装置200内のハードウェア回路で実現されてもよい。
 図6を参照して、制御装置200は、ステップ(以下、「ステップ」をSと略す。)100にて、測定対象のサンプルSMPに対する初回の測定であるか否かを判定する。初回測定である場合(S100にてYES)は、サンプルSMPに対して対物レンズ部140のピント調整がなされていないため、S170に処理が進められ、制御装置200は、既存のオートフォーカス機能によって対物レンズ部140のピント調整を行なう。あるいは、制御装置200は、ユーザに対して手動によるピント調整を行なうことを促す表示を表示装置220に出力する。
 初回測定ではない場合、すなわち、測定対象のサンプルSMPについてピント調整がすでに行なわれている場合(S100にてNO)、制御装置200は、S110に処理を進めて、使用する光源装置が切換えられたか否かを判定する。光源切換の検出は、ユーザによる入力装置210への入力に基づいて検出してもよいし、光源装置のON/OFFあるいはシャッタの開閉動作に基づいて自動的に検出してもよい。
 光源切換が行なわれていない場合(S110にてNO)は、以降の処理がスキップされて、現状の設定を維持して測定が継続される。光源切換が行なわれた場合(S110にてYES)は、処理がS120に進められて、制御装置200は、ピントの自動補正機能が有効とされているか否かを判定する。
 自動補正機能が無効とされている場合(S120にてNO)は、以降の処理がスキップされる。この場合には、ユーザによって手動でピント調整が実行される。自動補正機能が有効とされている場合(S120にてYES)は、処理がS130に進められて、制御装置200は、記憶装置202に記憶された情報(図4)を読み出して、切換前後の光源装置についての波長/または基準補正値を取得する。そして、S140にて、制御装置200は、取得した情報を用いて、切換前後の光源装置の波長差に基づく補正値を演算により求める。さらに、制御装置200は、S150にて、図5で説明したように、ステージ150のZ軸方向の動作可能範囲を修正する。その後、制御装置200は、S160にて、算出した補正値に基づいてステージ150のZ軸を駆動してピント調整を行なう。
 以上のような処理に従って制御を行なうことによって、複数の光源装置を有する顕微ラマン装置において、使用対象の光源装置に対応してピント調整を自動で実行することができる。これによって、ピント調整を手動で行なう場合に比べて、作業者の作業負担の軽減および作業時間の短縮を行なうとともに、測定結果におけるばらつきを低減することができる。
 実施の形態1における「可視光源111」は、本開示における「第1光源装置」に対応する。実施の形態1における「レーザ光源112」および「レーザ光源113」は、本開示における「第2光源装置」および「第3光源装置」のそれぞれに対応する。実施の形態1における「赤外光源114」は、本開示における「第4光源装置」に対応する。
 [実施の形態2]
 実施の形態1においては、使用対象の光源装置を切換えた場合に、各光源装置からの光の波長に応じてピント調整を自動で行なう構成について説明した。
 一方で、顕微ラマン装置においては、測定対象のサンプルの測定領域の拡大倍率を変更するために、複数の対物レンズが設けられる場合がある。同じ光源装置を用いている場合でも、対物レンズを切換えると、使用レンズのサイズおよび焦点距離が異なるために再度のピント調整を行なうことが必要となる。
 実施の形態2においては、複数の対物レンズが設けられた顕微ラマン装置において、測定に使用される対物レンズに応じてピント調整を自動で行なう構成について説明する。
 図7は、実施の形態2の顕微ラマン装置100Aの構成を示す図である。顕微ラマン装置100Aにおいては、図2で説明した顕微ラマン装置100における対物レンズ部140が、対物レンズ部140Aに置き換わった構成となっている。図7において、図2と重複する要素の説明は繰り返さない。
 図7を参照して、顕微ラマン装置100Aの対物レンズ部140Aは、互いに焦点距離が異なる対物レンズ141~143を含む。対物レンズ141~143は、回転型あるいはスライド型のホルダ(図示せず)に取り付けられており、当該ホルダを移動させることによって所望の対物レンズに切換えることが可能に構成されている。
 一般的に、対物レンズは、拡大倍率が大きくなるほど焦点距離が長くなる。そのため、ある対物レンズでピント調整が完了した状態であっても、別の対物レンズに切換えると焦点位置が変化する。
 たとえば、図8の左図(A)のように、対物レンズ142でピント調整が完了した状態において、対物レンズ142よりも焦点距離が短い対物レンズ141に切換えると(中図(B))、集光位置が左図(A)におけるサンプルSMP上の位置から「b」だけ上方の位置に変化する。逆に、対物レンズ142よりも焦点距離が長い対物レンズ143に切換えると、集光位置がサンプルSMP上の位置よりも下方の位置に変化する。
 対物レンズの焦点位置の仕様は予めわかっているため、使用対象の対物レンズ間の焦点位置の差を補正値として記憶装置202に記憶させておき、対物レンズの切換えの際に当該補正値に従ってステージ150を移動させることによって、図8の右図(C)のように自動でピント調整を行なうことができる。
 図9は、実施の形態2において記憶装置202に記憶された情報の一例を示す図である。図9の例においては、情報は、各光源装置から照射される光の波長と、各対物レンズに対応する基準補正値とを含む。基準補正値は、可視光源111において焦点位置の最も短い対物レンズ141(レンズ1)を用いた場合の焦点位置を基準(補正値=0)とし、対物レンズを切換えた場合の焦点距離のズレ量、および、光源装置を切換えた場合のズレ量を考慮した補正値が設定されている。制御装置200は、図9に示される補正値を利用してピント補正制御を自動で行なうことができる。
 また、実施の形態2においても、実施の形態1と同様に、ピント補正制御の際のステージ位置の表示の保持、および、動作可能範囲の修正が行なわれる。なお、上述のように、対物レンズは拡大倍率によって機器サイズ(光軸方向の長さ)が変わるため、動作可能範囲の修正においては、対物レンズの機器サイズも考慮して動作可能範囲を設定することが好ましい。拡大倍率が大きくなるほど機器サイズは大きくなるため、サンプルSMPと対物レンズとが接触しやすくなる。そのため、特に動作可能範囲の下限については、焦点距離の差に加えて機器サイズを考慮して設定する必要がある。
 図10は、実施の形態2のピント補正制御の詳細を示すフローチャートである。なお、図10のフローチャートにおいては、使用する光源装置を切換えない状態で、対物レンズのみを切換える場合について説明する。
 図10を参照して、制御装置200は、S200にて測定対象のサンプルSMPに対する初回の測定であるか否かを判定する。初回測定である場合(S200にてYES)は、サンプルSMPに対して対物レンズ部140Aのピント調整がなされていないため、S270に処理が進められ、制御装置200は、既存のオートフォーカス機能によって対物レンズ部140のピント調整を行なう。あるいは、制御装置200は、ユーザに対して手動によるピント調整を行なうことを促す表示を表示装置220に出力する。
 初回測定ではない場合、すなわち、測定対象のサンプルSMPについてピント調整がすでに行なわれている場合(S200にてNO)、制御装置200は、S210に処理を進めて、使用する対物レンズが切換えられたか否かを判定する。
 対物レンズが切換えられていない場合(S210にてNO)は、以降の処理がスキップされて、現状の設定を維持して測定が継続される。対物レンズの切換えが行なわれた場合(S210にてYES)は、処理がS220に進められて、制御装置200は、ピントの自動補正機能が有効とされているか否かを判定する。
 自動補正機能が無効とされている場合(S220にてNO)は、以降の処理がスキップされる。この場合には、ユーザによって手動でピント調整が実行される。自動補正機能が有効とされている場合(S220にてYES)は、処理がS230に進められて、制御装置200は、記憶装置202に記憶された情報(図9)を読み出して、切換前後の対物レンズについての種類(焦点距離)に対応した基準補正値を取得する。そして、S240にて、制御装置200は、取得した情報を用いて、切換前後の対物レンズの焦点距離差に基づく補正値を演算により求める。
 さらに、制御装置200は、S250にて、ステージ150のZ軸方向の動作可能範囲を修正する。このとき、焦点距離に基づく補正値に加えて、対物レンズの機器サイズを考慮して動作可能範囲が設定される。その後、制御装置200は、S260にて、算出した補正値に基づいてステージ150のZ軸を駆動してピント調整を行なう。
 なお、対物レンズに加えて光源装置が切換えられる場合にも、図9で示した補正値を用いることによって、光源装置から照射される光の波長、および、対物レンズの種類に応じたピント調整を行なうことができる。
 以上のような処理に従って制御を行なうことによって、複数の対物レンズを有する顕微ラマン装置において、使用対象の対物レンズに対応してピント調整を自動で実行することができる。これによって、ピント調整を手動で行なう場合に比べて、作業者の作業負担の軽減および作業時間の短縮を行なうとともに、測定結果におけるばらつきを低減することができる。
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)一態様に係る顕微ラマン装置は、光源部と、対物レンズ部と、検出装置と、駆動装置と、駆動装置を制御するための制御装置とを備える。光源部は、互いに異なる波長の光を発生するように構成された複数の光源装置を含む。対物レンズ部は、分析対象のサンプルに光源部からの光を集光して照射する。検出装置は、サンプルから発生されるラマン散乱光を検出する。駆動装置は、サンプルと対物レンズ部との間の相対距離を変化させる。制御装置は、使用される光源装置から照射される光の波長に応じて上記相対距離を補正するように構成される。
 第1項に記載の顕微ラマン装置によれば、複数の光源装置を備えた構成において、使用される光源装置の波長に応じて対物レンズとサンプルとの間の相対距離が補正される。すなわち、光源装置が切換えられた場合に、切換前後の光源の波長の違いに応じて自動的にピント調整が行なわれる。したがって、複数の光源装置を有する顕微ラマン装置において、光源切換に伴うピント調整を容易に行なうことができるとともに、測定結果のばらつきを低減することができる。
 (第2項)第1項に記載の顕微ラマン装置において、制御装置は、プロセッサと、複数の光源装置の各々について、サンプルと対物レンズ部との間の基準距離からの補正値が記憶された記憶装置とを含む。プロセッサは、使用される光源装置に対応する補正値を記憶装置から取得して、上記相対距離を補正する。
 第2項に記載の顕微ラマン装置によれば、制御装置のプロセッサによって、記憶装置に記憶された補正値に基づいてピント調整を行なうことができる。したがって、光源切換に伴うピント調整を容易に行なうことができるとともに、測定結果のばらつきを低減することができる。
 (第3項)第1項に記載の顕微ラマン装置において、制御装置は、プロセッサと、複数の光源装置の各々の波長が記憶された記憶装置とを含む。
 プロセッサは、使用される光源装置が変更された場合に、記憶装置から変更前後の光源装置の波長を取得し、光源装置間の波長の相対差に応じて相対距離を補正する。
 第3項に記載の顕微ラマン装置によれば、プロセッサは、記憶装置に記憶された各光源装置の波長の情報に基づいてピント調整を行なうことができる。したがって、光源切換に伴うピント調整を容易に行なうことができるとともに、測定結果のばらつきを低減することができる。
 (第4項)第1項~第3項のいずれか1項に記載の顕微ラマン装置において、複数の光源装置は、可視光を発生させる第1光源装置と、第1波長のレーザ光を発生させる第2光源装置とを含む。
 第4項に記載の顕微ラマン装置によれば、可視光源とレーザ光源との間でのピントのズレを自動で調整することができる。
 (第5項)第4項に記載の顕微ラマン装置において、複数の光源装置は、上記第1波長とは異なる第2波長のレーザ光を発生させる第3光源装置をさらに含む。
 第5項に記載の顕微ラマン装置によれば、可視光源と、異なる波長の2つのレーザ光源との間でのピントのズレを自動で調整することができる。
 (第6項)第4項または5項に記載の顕微ラマン装置において、複数の光源装置は、赤外光を発生させる第4光源装置をさらに含む。
 第6項に記載の顕微ラマン装置によれば、赤外光源を用いる際に、赤外光源と、可視光源および/またはレーザ光源との間でのピントのズレを自動で調整することができる。
 (第7項)第1項~第3項のいずれか1項に記載の顕微ラマン装置において、複数の光源装置は、第1波長のレーザ光を発生させる第2光源装置と、第1波長とは異なる第2波長のレーザ光を発生させる第3光源装置とを含む。
 第7項に記載の顕微ラマン装置によれば、異なる波長の2つのレーザ光源間でのピントのズレを自動で調整することができる。
 (第8項)第1項~第7項のいずれか1項に記載の顕微ラマン装置は、上記サンプルを載置するためのステージをさらに備える。駆動装置は、ステージを駆動して上記相対距離を変化させる。
 第8項に記載の顕微ラマン装置によれば、制御装置は、駆動装置によりサンプルを載置するためのステージを移動させることによってピント調整することができる。
 (第9項)第8項に記載の顕微ラマン装置は、ステージの位置を表示するための表示装置をさらに備える。制御装置は、使用される光源装置の変更によって相対距離を補正した場合でも、表示装置におけるステージの位置の表示には反映させない。
 第9項に記載の顕微ラマン装置によれば、光源装置の切換えによって自動でピント調整を行なった場合でも、表示装置におけるステージ位置の表示を変更しない。これによって、ユーザにおいて、誤った操作を行なったとの誤認を防止することができる。
 (第10項)第1項~第9項のいずれか1項に記載の顕微ラマン装置において、制御装置は、使用される光源装置に応じた相対距離の補正を実行するか否かを設定可能に構成される。
 第10項に記載の顕微ラマン装置によれば、ユーザは、光源装置の切換えに伴う自動ピント調整の実行可否を設定することができる。これによって、自動ピント調整を行なう際に、対物レンズとサンプルとの衝突などのリスクが予測される場合に、当該リスクを予防することができる。
 (第11項)第1項~第10項のいずれか1項に記載の顕微ラマン装置において、対物レンズ部は、互いに異なる焦点距離を有する複数の対物レンズを含む。制御装置は、使用される対物レンズに応じて上記相対距離を補正するように構成される。
 第11項に記載の顕微ラマン装置によれば、複数の対物レンズを有する構成において、対物レンズに応じて自動的にピント調整を行なうことができる。したがって、複数の対物レンズを有する顕微ラマン装置において、対物レンズの切換えに伴うピント調整を容易に行なうことができるとともに、測定結果のばらつきを低減することができる。
 (第12項)他の態様に係る顕微ラマン装置の制御方法は、光源部と、対物レンズ部と、検出装置と、駆動装置とを備える顕微ラマン装置の制御方法に関する。光源部は、互いに異なる波長の光を発生するように構成された複数の光源装置を含む。対物レンズ部は、光源部からの光を集光して分析対象のサンプルに照射する。検出装置は、サンプルから発生されるラマン散乱光を検出する。駆動装置は、サンプルと対物レンズ部との間の相対距離を変化させる。制御方法は、(a)複数の光源装置の情報を取得するステップと、(b)使用される光源装置から照射される光の波長に応じて相対距離の補正値を演算するステップと、(c)補正値に基づいて駆動装置を駆動して相対距離を変化させるステップとを含む。
 第12項に記載の顕微ラマン装置の制御方法によれば、複数の光源装置を備えた構成において、使用される光源装置の波長に応じて対物レンズとサンプルとの間の相対距離が補正される。すなわち、光源装置が切換えられた場合に、切換前後の光源の波長の違いに応じて自動的にピント調整が行なわれる。したがって、複数の光源装置を有する顕微ラマン装置において、光源切換に伴うピント調整を容易に行なうことができるとともに、測定結果のばらつきを低減することができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100,100A 顕微ラマン装置、110 光源部、111 可視光源、112,113 レーザ光源、114 赤外光源、120 コリメータレンズ、130,135 ビームスプリッタ、140,140A 対物レンズ部、141~143 対物レンズ、150 ステージ、180 駆動装置、160 検出装置、162 フィルタ、164,175 集光レンズ、166 スリット、167 集光点、170 撮像装置、200 制御装置、201 CPU、202 記憶装置、210 入力装置、220 表示装置、M1~M4 ミラー、SMP サンプル。

Claims (12)

  1.  互いに異なる波長の光を発生するように構成された複数の光源装置を含む光源部と、
     分析対象のサンプルに、前記光源部からの光を集光して照射する対物レンズ部と、
     前記サンプルから発生されるラマン散乱光を検出する検出装置と、
     前記サンプルと前記対物レンズ部との間の相対距離を変化させるための駆動装置と、
     前記駆動装置を制御するための制御装置とを備え、
     前記制御装置は、使用される光源装置から照射される光の波長に応じて前記相対距離を補正するように構成される、顕微ラマン装置。
  2.  前記制御装置は、
      プロセッサと、
      前記複数の光源装置の各々について、前記サンプルと前記対物レンズ部との間の基準距離からの補正値が記憶された記憶装置とを含み、
     前記プロセッサは、使用される光源装置に対応する補正値を前記記憶装置から取得して、前記相対距離を補正する、請求項1に記載の顕微ラマン装置。
  3.  前記制御装置は、
      プロセッサと、
      前記複数の光源装置の各々の波長が記憶された記憶装置とを含み、
     前記プロセッサは、使用される光源装置が変更された場合に、前記記憶装置から変更前後の光源装置の波長を取得し、光源装置間の波長の相対差に応じて前記相対距離を補正する、請求項1に記載の顕微ラマン装置。
  4.  前記複数の光源装置は、
      可視光を発生させる第1光源装置と、
      第1波長のレーザ光を発生させる第2光源装置とを含む、請求項1に記載の顕微ラマン装置。
  5.  前記複数の光源装置は、前記第1波長とは異なる第2波長のレーザ光を発生させる第3光源装置をさらに含む、請求項4に記載の顕微ラマン装置。
  6.  前記複数の光源装置は、赤外光を発生させる第4光源装置をさらに含む、請求項4に記載の顕微ラマン装置。
  7.  前記複数の光源装置は、
      第1波長のレーザ光を発生させる第2光源装置と、
      前記第1波長とは異なる第2波長のレーザ光を発生させる第3光源装置とを含む、請求項1に記載の顕微ラマン装置。
  8.  前記サンプルを載置するためのステージをさらに備え、
     前記駆動装置は、前記ステージを駆動して前記相対距離を変化させる、請求項1に記載の顕微ラマン装置。
  9.  前記ステージの位置を表示するための表示装置をさらに備え、
     前記制御装置は、使用される光源装置の変更によって前記相対距離を補正した場合でも、前記表示装置における前記ステージの位置の表示には反映させない、請求項8に記載の顕微ラマン装置。
  10.  前記制御装置は、使用される光源装置に応じた前記相対距離の補正を実行するか否かを設定可能に構成される、請求項1に記載の顕微ラマン装置。
  11.  前記対物レンズ部は、互いに異なる焦点距離を有する複数の対物レンズを含み、
     前記制御装置は、使用される対物レンズに応じて前記相対距離を補正するように構成される、請求項1に記載の顕微ラマン装置。
  12.  顕微ラマン装置の制御方法であって、
     前記顕微ラマン装置は、
      互いに異なる波長の光を発生するように構成された複数の光源装置を含む光源部と、
      前記光源部からの光を集光して分析対象のサンプルに照射する対物レンズ部と、
      前記サンプルから発生されるラマン散乱光を検出する検出装置と、
      前記サンプルと前記対物レンズ部との間の相対距離を変化させるための駆動装置とを備え、
     前記制御方法は、
     前記複数の光源装置の情報を取得するステップと、
     使用される光源装置から照射される光の波長に応じて前記相対距離の補正値を演算するステップと、
     前記補正値に基づいて前記駆動装置を駆動して前記相対距離を変化させるステップとを含む、顕微ラマン装置の制御方法。
PCT/JP2023/036490 2022-10-28 2023-10-06 顕微ラマン装置および顕微ラマン装置の制御方法 WO2024090177A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173233 2022-10-28
JP2022-173233 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090177A1 true WO2024090177A1 (ja) 2024-05-02

Family

ID=90830531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036490 WO2024090177A1 (ja) 2022-10-28 2023-10-06 顕微ラマン装置および顕微ラマン装置の制御方法

Country Status (1)

Country Link
WO (1) WO2024090177A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121479A (ja) * 2003-10-16 2005-05-12 Tokyo Instruments Inc 共焦点顕微分光装置
JP2007286310A (ja) * 2006-04-17 2007-11-01 Tohoku Univ 光学装置及び結像方法
JP2007292895A (ja) * 2006-04-21 2007-11-08 Olympus Corp 合焦検出装置、顕微鏡装置、及び合焦検出方法
JP2010127726A (ja) * 2008-11-27 2010-06-10 Nano Photon Kk 光学顕微鏡、及びスペクトル測定方法
WO2015133176A1 (ja) * 2014-03-05 2015-09-11 株式会社 日立ハイテクノロジーズ 顕微分光装置
US20160363538A1 (en) * 2014-02-27 2016-12-15 Horiba Jobin Yvon Sas Optical microscopy system and method for raman scattering with adaptive optics
JP2020132466A (ja) * 2019-02-18 2020-08-31 国立大学法人豊橋技術科学大学 水素含有カーボン膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121479A (ja) * 2003-10-16 2005-05-12 Tokyo Instruments Inc 共焦点顕微分光装置
JP2007286310A (ja) * 2006-04-17 2007-11-01 Tohoku Univ 光学装置及び結像方法
JP2007292895A (ja) * 2006-04-21 2007-11-08 Olympus Corp 合焦検出装置、顕微鏡装置、及び合焦検出方法
JP2010127726A (ja) * 2008-11-27 2010-06-10 Nano Photon Kk 光学顕微鏡、及びスペクトル測定方法
US20160363538A1 (en) * 2014-02-27 2016-12-15 Horiba Jobin Yvon Sas Optical microscopy system and method for raman scattering with adaptive optics
WO2015133176A1 (ja) * 2014-03-05 2015-09-11 株式会社 日立ハイテクノロジーズ 顕微分光装置
JP2020132466A (ja) * 2019-02-18 2020-08-31 国立大学法人豊橋技術科学大学 水素含有カーボン膜

Similar Documents

Publication Publication Date Title
US7436590B2 (en) Scanning laser microscope apparatus and light-amount detection unit
US20160091366A1 (en) Auto-focus raman spectrometer system
JP4021183B2 (ja) 合焦状態信号出力装置
JP6310460B2 (ja) 透明な又は低コントラストの試料の分析のための自動顕微鏡焦点システム及び方法
US7869039B2 (en) Microscopic-measurement apparatus
JP2018159704A (ja) 高速で周期的に合焦位置が変調される可変焦点距離レンズを含む撮像システムと共に用いられる変調監視システム
WO2024090177A1 (ja) 顕微ラマン装置および顕微ラマン装置の制御方法
JP6485498B2 (ja) 全反射顕微鏡及び全反射顕微鏡の調整方法
JP5959247B2 (ja) 顕微鏡
JP4807659B2 (ja) セル内膜厚測定装置
JP2006047270A (ja) 波長可変単色光源
JP4388298B2 (ja) 顕微鏡システム
JP7082482B2 (ja) ディスク走査型顕微鏡システム、プログラム
JPH09189849A (ja) 顕微鏡用焦点検出装置
JP4391806B2 (ja) 光学顕微鏡
EP2333501B1 (en) Apparatus and method for automatic optical realignment
JP4712334B2 (ja) 顕微鏡装置、顕微鏡ユニット、プログラム
JP2011112880A (ja) 顕微鏡
JP5189472B2 (ja) レーザ加工装置及びレーザ加工装置における光路調整方法
JP2008261829A (ja) 表面測定装置
JP2005181891A (ja) レーザ顕微鏡
JP2009092795A (ja) 撮像型顕微鏡装置における画像の明度の調整方法
US20230251130A1 (en) Infrared raman microscope
WO2023136069A1 (ja) ラマン顕微鏡及びその調整方法
WO2022054921A1 (en) System including auto-alignment