WO2023136069A1 - ラマン顕微鏡及びその調整方法 - Google Patents

ラマン顕微鏡及びその調整方法 Download PDF

Info

Publication number
WO2023136069A1
WO2023136069A1 PCT/JP2022/047133 JP2022047133W WO2023136069A1 WO 2023136069 A1 WO2023136069 A1 WO 2023136069A1 JP 2022047133 W JP2022047133 W JP 2022047133W WO 2023136069 A1 WO2023136069 A1 WO 2023136069A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
criterion
amount
processing unit
Prior art date
Application number
PCT/JP2022/047133
Other languages
English (en)
French (fr)
Inventor
友香 森谷
直也 藤原
郁也 勝谷
知世 田尾
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202280084468.6A priority Critical patent/CN118435045A/zh
Priority to JP2023573940A priority patent/JPWO2023136069A1/ja
Publication of WO2023136069A1 publication Critical patent/WO2023136069A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the present invention relates to a Raman microscope in which a laser beam is reflected by a mirror, a sample on a stage is irradiated with the laser beam, the Raman scattered light from the sample is spectroscopically received by a detector, and an adjustment method thereof.
  • a sample on a stage is irradiated with a focused laser beam, and Raman scattered light from the sample is received by a detector (see, for example, Patent Document 1 below). ).
  • the laser light from the light source can be guided to the sample on the stage by reflecting it with a mirror.
  • the angle of the optical axis of the laser beam incident on the sample changes according to the angle of this mirror.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a Raman microscope and an adjustment method thereof that can easily adjust the amount of light incident on a slit or pinhole.
  • a first aspect of the present invention is a Raman microscope in which a laser beam is reflected by a mirror, a sample on a stage is irradiated with the laser beam, and Raman scattered light from the sample is dispersed and received by a detector, It includes an imaging unit, a reference position setting processing unit, a determination processing unit, and an angle adjustment processing unit.
  • the photographing unit photographs a surface image of the sample.
  • the reference position setting processing unit changes a focal position of the laser beam with respect to the sample on the stage, and sets the focal position, in which the spot area of the laser beam in the surface image satisfies a predetermined first criterion, as a reference position. do.
  • the determination processing unit changes the focal position in the depth direction with respect to the reference position, and based on a change in the spot position of the laser light in the surface image, a slit provided in front of the detector. Alternatively, it is determined whether or not the amount of light incident on the pinhole satisfies a predetermined second criterion.
  • the angle adjustment processing unit adjusts the angle of the mirror when it is determined that the amount of light incident on the slit or pinhole does not satisfy the predetermined second criterion.
  • a second aspect of the present invention is a method for adjusting a Raman microscope in which a laser beam is reflected by a mirror, a sample on a stage is irradiated with the laser beam, and Raman scattered light from the sample is dispersed and received by a detector. It includes a photographing step, a reference position setting step, a determination step, and an angle adjustment step. In the photographing step, a surface image of the sample is photographed. In the reference position setting step, the focal position of the laser beam with respect to the sample on the stage is changed, and the focal position where the spot area of the laser beam in the surface image satisfies a predetermined first criterion is set as the reference position. .
  • the focal position is changed in the depth direction with respect to the reference position, and based on a change in the spot position of the laser light in the surface image, a slit provided in front of the detector or It is determined whether or not the amount of light incident on the pinhole satisfies a predetermined second criterion.
  • the angle adjustment step the angle of the mirror is adjusted when it is determined that the amount of light incident on the slit or pinhole does not satisfy the predetermined second criterion.
  • the amount of light incident on the slit or pinhole can be easily adjusted.
  • FIG. 1 is a schematic diagram showing a configuration example of a Raman microscope
  • FIG. 1 is a block diagram showing an example of an electrical configuration of a Raman microscope
  • FIG. It is a figure showing an example of the surface image of the sample, and showing the change of the spot area when the focal position of the laser beam on the sample on the stage is changed. It is a figure showing an example of the surface image of the sample, and showing the change of the spot area when the focal position of the laser beam on the sample on the stage is changed. It is a figure showing an example of the surface image of the sample, and showing the change of the spot area when the focal position of the laser beam on the sample on the stage is changed.
  • FIG. 4 is a diagram showing an example of a surface image of a sample, showing changes in spot position when the angle of the mirror is changed.
  • FIG. 4 is a diagram showing an example of a surface image of a sample, showing changes in spot position when the angle of the mirror is changed.
  • 4 is a flowchart for explaining adjustment processing of a Raman microscope;
  • FIG. 1 is a schematic diagram showing a configuration example of a Raman microscope 1 . Although a specific configuration of the Raman microscope 1 will be described below, it is not limited to this configuration, and at least some members may be omitted or other members may be provided.
  • the Raman microscope 1 includes, for example, a first laser light source 10, a second laser light source 12, a stage 25a, a spectral optical system 40, a detector 50, a controller 100, a plurality of mirrors 15, 16, 19, 21, 22, 26, a plurality of , a dichroic mirror 20, an objective lens 24, a plurality of condenser lenses 27, 28, a plurality of slits 29, 30, and the like.
  • a controller 100 a plurality of mirrors 15, 16, 19, 21, 22, 26, a plurality of , a dichroic mirror 20, an objective lens 24, a plurality of condenser lenses 27, 28, a plurality of slits 29, 30, and the like.
  • some of the mirrors eg, mirrors 16, 19, 21, 22, etc.
  • Each of the above members provided in the Raman microscope 1 irradiates the sample 25 with laser light, and spectroscopically detects the Raman scattered light emitted from the sample 25 excited by the laser light, thereby performing Raman spectroscopic analysis. It is a member for performing Among these members, at least some of the optical members such as the plurality of mirrors 15, 16, 19, 21, 22, 26, the plurality of low-pass filters 17, 18, the dichroic mirror 20, and the plurality of condenser lenses 27, 28 may be configured such that their positions or angles can be adjusted.
  • the Raman microscope 1 includes a half mirror 23, an imaging lens 62, a camera 63, and the like, separately from the above members. These members are members for taking a visible image of the surface of the sample on which Raman scattered light is generated.
  • a first laser light source 10 emits a first laser beam 11 .
  • the second laser light source 12 emits a second laser beam 13 having a shorter wavelength than the first laser beam 11 .
  • the sample 25 can be excited using the two laser light sources 10 and 12 that emit the laser beams 11 and 13 having different wavelengths.
  • the number of laser light sources provided in the Raman microscope 1 is not limited to two, and may be one or three or more.
  • the laser light source can be composed of a laser oscillator such as a diode laser-excited solid-state laser, a helium neon laser, a titanium sapphire laser, or an Nd:YAG laser. Further, in the case of a configuration in which the laser beam from the laser oscillator is guided by a light guide such as an optical fiber, an output tube or the like provided at the tip of the optical fiber may constitute the laser light source.
  • a laser oscillator such as a diode laser-excited solid-state laser, a helium neon laser, a titanium sapphire laser, or an Nd:YAG laser.
  • the sample 25 is supported on the stage 25a.
  • the sample 25 can be irradiated with either the first laser beam 11 or the second laser beam 13 depending on the sample 25 .
  • a first Raman scattered light 31 is emitted from the sample 25 excited by being irradiated with the first laser light 11 .
  • the second Raman scattered light 33 is emitted from the sample 25 excited by being irradiated with the second laser light 13 .
  • the sample 25 Since the shorter the excitation wavelength, the higher the efficiency of Raman scattering, it is preferable to irradiate the sample 25 with the second laser beam 13 instead of the first laser beam 11 when increasing the intensity of the Raman scattered light. On the other hand, if the sample 25 is irradiated with the second laser beam 13 and the fluorescence emitted from the sample 25 is too strong, it is preferable to irradiate the sample 25 with the first laser beam 11 instead of the second laser beam 13 .
  • a first laser beam 11 emitted from a first laser light source 10 is reflected by mirrors 15 and 16 and enters a low-pass filter 17 .
  • the low-pass filter 17 reflects the first laser beam 11 and transmits the first Raman scattered light 31 . Therefore, the first laser beam 11 incident on the low-pass filter 17 is reflected by the low-pass filter 17 and enters the dichroic mirror 20 .
  • the dichroic mirror 20 transmits the first laser light 11 and the first Raman scattered light 31 and reflects the second laser light 13 and the second Raman scattered light 33 . Therefore, the first laser beam 11 incident on the dichroic mirror 20 is transmitted through the dichroic mirror 20 , sequentially reflected by the mirrors 21 and 22 , passed through the half mirror 23 and the objective lens 24 and irradiated onto the sample 25 . At this time, the first laser beam 11 is condensed by passing through the objective lens 24 and irradiated as a spot on the surface of the sample 25 .
  • the focal position of the first laser beam 11 condensed by the objective lens 24 is not limited to the surface of the sample 25 and may be positioned inside or outside the sample 25 .
  • the second laser beam 13 emitted from the second laser light source 12 is reflected by mirrors 15 and 16 and enters the low-pass filter 18 .
  • the low-pass filter 18 reflects the second laser beam 13 and transmits the second Raman scattered light 33 . Therefore, the second laser beam 13 incident on the low-pass filter 18 is reflected by the low-pass filter 18, sequentially reflected by the mirror 19, the dichroic mirror 20 and the mirrors 21 and 22, and then passes through the half mirror 23 and the objective lens 24.
  • the sample 25 is irradiated. At this time, the second laser beam 13 is condensed by passing through the objective lens 24 and irradiated as a spot on the surface of the sample 25 .
  • the focal position of the second laser beam 13 condensed by the objective lens 24 is not limited to the surface of the sample 25 and may be positioned inside or outside the sample 25 .
  • the first Raman scattered light 31 emitted from the sample 25 irradiated with the first laser light 11 has a longer wavelength than the first laser light 11 .
  • the first Raman scattered light 31 passes through the objective lens 24 , is sequentially reflected by the mirrors 22 and 21 , passes through the dichroic mirror 20 and the low-pass filter 17 , and is reflected by the mirror 26 .
  • the first Raman scattered light 31 reflected by the mirror 26 is condensed by the condensing lens 27 , passes through the slit 29 , and enters the spectroscopic optical system 40 .
  • a pinhole may be provided instead of the slit 29, and the first Raman scattered light 31 may enter the spectroscopic optical system 40 through the pinhole.
  • the second Raman scattered light 33 emitted from the sample 25 irradiated with the second laser light 13 has a longer wavelength than the second laser light 13 . Also, the second Raman scattered light 33 has a shorter wavelength than the first Raman scattered light 31 .
  • the second Raman scattered light 33 passes through the objective lens 24 , is sequentially reflected by the mirrors 22 and 21 , the dichroic mirror 20 and the mirror 19 , passes through the low-pass filter 18 , and is reflected by the mirror 26 .
  • the second Raman scattered light 33 reflected by the mirror 26 is condensed by the condensing lens 28 , passes through the slit 30 , and enters the spectroscopic optical system 40 .
  • a pinhole may be provided instead of the slit 30, and the second Raman scattered light 33 may enter the spectroscopic optical system 40 through the pinhole.
  • the spectroscopic optical system 40 includes, for example, a collimator lens, a spectroscope, and a condensing optical element (all not shown).
  • a spectrometer comprises a spectroscopic optical element such as a grating or a prism.
  • the first Raman scattered light 31 and the second Raman scattered light 33 incident on the spectroscopic optical system 40 are spectroscopically separated by different spectroscopic optical elements, and separated by wavelength into the first Raman scattered light 31 and the second Raman scattered light 33. is collected by the collecting optical element and received by the detector 50 .
  • the detector 50 is, for example, a CCD (Charge Coupled Device) detector.
  • the detector 50 has a plurality of photodetecting elements and outputs a signal corresponding to the intensity of the first Raman scattered light 31 or the second Raman scattered light 33 received by each photodetecting element.
  • An electrical signal output from the detector 50 is processed by a controller 100 electrically connected to the detector 50 .
  • the camera 63 is a photographing unit that photographs the surface image of the sample 25 .
  • Light from the surface of the sample that generates Raman scattered light passes through the objective lens 24 , is reflected by the half mirror 23 , and is imaged on the light receiving surface 64 of the camera 63 by the imaging lens 62 .
  • the camera 63 includes, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and is configured to be capable of capturing still images or moving images of the sample 25 .
  • the camera 63 can photograph all or at least one of a bright-field image, a dark-field image, a phase-contrast image, a fluorescence image, a polarizing microscope image, and the like of the sample 25 .
  • the angle of the mirror 15 is adjusted so that the amount of Raman scattered light from the sample 25 incident on the slits 29 and 30 provided in front of the detector 50 is maximized.
  • the Raman microscope 1 is adjusted (optical axis adjustment).
  • an adjustment sample 25 having a flat surface is supported on the stage 25a instead of the actual sample to be analyzed.
  • the adjustment sample 25 is irradiated with laser light (first laser light 11 or second laser light 13 ), and the camera 63 captures an image of the spot of the laser light on the surface of the sample. Adjustment of the Raman microscope 1 is performed based on the area (spot area) and position (spot position) of the spot of the laser light in the surface image of the sample 25 photographed by the camera 63 .
  • FIG. 2 is a block diagram showing an example of the electrical configuration of the Raman microscope 1 .
  • the Raman microscope 1 includes a storage unit 200, a display unit 300, and the like, in addition to the units described above.
  • the control unit 100 is configured to include, for example, a CPU (Central Processing Unit).
  • the control unit 100 functions as a reference position setting processing unit 101, a determination processing unit 102, an angle adjustment processing unit 103, a light amount adjustment processing unit 104, a Raman analysis processing unit 105, and the like by the CPU executing programs.
  • the reference position setting processing unit 101, the determination processing unit 102, the angle adjustment processing unit 103, and the light amount adjustment processing unit 104 execute processing for adjusting the Raman microscope 1 before Raman spectroscopic analysis.
  • the reference position setting processing unit 101 performs processing for setting the reference position of the focal position of the laser light based on the spot area of the laser light in the surface image of the sample 25 (sample for adjustment) captured by the camera 63 . Specifically, by moving the stage 25a in the vertical direction within a predetermined range, along the depth direction, which is the irradiation direction (optical axis direction) of the laser beam to the sample 25, the laser beam on the stage 25a The focal position with respect to the sample 25 changes. At this time, the spot area of the laser light in the surface image of the sample 25 changes as the focal position of the laser light changes.
  • the reference position setting processing unit 101 calculates the change in the spot area by calculation, and sets the focal position where the spot area becomes the minimum value as the reference position.
  • the "minimum value” is an example of the "predetermined first criterion”
  • a focal position where the spot area satisfies another criterion may be set as the reference position.
  • the position information of the reference position set by the reference position setting processing section 101 is stored in the storage section 200 .
  • Storage unit 200 includes, for example, a non-volatile memory such as a hard disk.
  • 3A to 3C are diagrams showing examples of surface images of the sample 25, showing changes in the spot area when the focal position of the laser beam on the sample 25 on the stage 25a is changed.
  • the surface image of the sample 25 when setting the reference position of the focal position of the laser light is a microscopic image captured with both the exposure time and the gain of the camera 63 set to the minimum values. Also, the spot area of the laser beam in the surface image of the sample 25 can be calculated by judging a bright portion when the surface image of the sample 25 is binarized as a spot and obtaining the area of the bright portion.
  • the spot area becomes a minimum value as shown in FIG. 3A.
  • the focal position of the laser light is shifted in the depth direction from the reference position, the spot area becomes larger than in the case of FIG. 3A, as shown in FIG. 3B.
  • the focal position of the laser beam shifts in the depth direction from the state shown in FIG. 3B with respect to the reference position, as shown in FIG. does not fit within the surface image of the sample 25, the value calculated as the spot area becomes smaller.
  • the determination processing unit 102 detects the slit provided in front of the detector 50 based on the spot position of the laser light in the surface image of the sample 25 (adjustment sample) photographed by the camera 63.
  • a process of determining whether or not the amount of light incident on 29 and 30 is maximum is performed. Specifically, by moving the stage 25a in a predetermined range in the vertical direction, the focal position of the laser light changes in the depth direction with respect to the reference position. However, instead of determining whether the amount of light incident on the slits 29 and 30 is the maximum, it may be determined whether the amount of light satisfies another criterion (predetermined second criterion).
  • the determination processing unit 102 calculates a change in the spot position (change in the position of the center of gravity of the spot) by calculation, and compares the amount of change with a threshold to determine whether the amount of light incident on the slits 29 and 30 is maximum. to judge whether
  • 4A and 4B are diagrams showing an example of the surface image of the sample 25, showing changes in the spot position when the angle of the mirror is changed.
  • the angle adjustment processing unit 103 adjusts the angle of the mirror 15 when the determination processing unit 102 determines that the amount of light incident on the slits 29 and 30 is not the maximum.
  • the angle of the mirror 15 can be adjusted, for example, by controlling the voltage applied to the piezo element (not shown). However, it is possible to adjust the angle of the mirror 15 by using not only the mechanism using the piezo element but also any other mechanism.
  • the laser light before the sample 25 is irradiated is incident on the mirror 15, but the light from the sample 25 is not incident. Therefore, by adjusting the angle of the mirror 15, the angle of the optical axis of the laser beam incident on the sample 25 changes, and as a result, the angle of light incident on the detector 50 from the sample 25 also changes.
  • the amount of light from the sample 25 entering the slits 29 and 30 can be adjusted to the maximum.
  • the amount of adjustment (amount of change) of the angle of the mirror 15 at this time can be calculated based on the amount of change in the spot position of the laser light during the determination process.
  • the light amount adjustment processing unit 104 performs processing for adjusting the amount of light received by the detector 50 after the processing by the angle adjustment processing unit 103 is performed. Specifically, the optical axis of the light incident on the detector 50 is adjusted by adjusting the angle of the mirror 26 so that the amount of light received by the detector 50 is maximized.
  • the angle of the mirror 26 can be adjusted, for example, by controlling the voltage applied to the piezo element (not shown). However, it is possible to adjust the angle of the mirror 26 by using any other mechanism than the mechanism using the piezo element.
  • the angle of the mirror 26 is not adjusted so that the amount of light received by the detector 50 is maximized, but the angle of the mirror 26 is adjusted so that the amount of light satisfies another criterion (predetermined third criterion). may be adjusted.
  • the light from the sample 25 is incident on the mirror 26, and the light reflected by the mirror 26 passes through the slits 29 and 30 and is detected by the detector 50. Therefore, by adjusting the angle of the mirror 26, the amount of light passing through the slits 29 and 30 changes, and as a result, the amount of light received by the detector 50 also changes.
  • the Raman analysis processing unit 105 executes processing for performing Raman spectroscopic analysis on the sample 25 on the stage 25a. Specifically, a Raman spectrum is acquired based on the detection signal from the detector 50 . A Raman spectrum obtained by Raman spectroscopic analysis may be displayed on the display section 300 by the Raman analysis processing section 105 .
  • the display unit 300 includes, for example, a liquid crystal display, but is not limited to this.
  • FIG. 5 is a flowchart for explaining adjustment processing of the Raman microscope 1 .
  • the adjustment processing of the Raman microscope 1 shown in FIG. 5 is executed by the control unit 100 before the Raman spectroscopic analysis in order to perform the Raman spectroscopic analysis satisfactorily.
  • the adjustment process may be automatically started under the control of the control unit 100, or may be started based on the operation of an operation unit (not shown) by a user or a worker such as a field engineer.
  • the camera 63 starts photographing the surface image of the sample 25 while the sample 25 is irradiated with laser light (step S1: photographing step). After that, by moving the stage 25a, the focal position of the laser beam with respect to the sample 25 on the stage 25a is changed along the depth direction. The position is set to the reference position (steps S2-S3: reference position setting step).
  • step S4 and S5 determination step. If the spot position of the laser beam has changed (YES in step S5), it is determined that the amount of light incident on the slits 29 and 30 is not the maximum, and the angle of the mirror 15 is adjusted (step S6: angle adjustment step).
  • Step S5 After the angle of the mirror 15 is adjusted, until it is determined that the spot position has not changed (NO in step S5), that is, it is determined that the amount of light incident on the slits 29 and 30 is the maximum. Steps S5 to S6 are repeated until
  • step S5 If it is determined that the spot position has not changed (NO in step S5), that is, if it is determined that the amount of light incident on the slits 29 and 30 is the maximum, and more precise adjustment is required ( If YES in step S7), the stage 25a is moved to change the focal position of the laser beam with respect to the sample 25 on the stage 25a along the depth direction, as in steps S4 to S6. It is determined again whether or not the spot position of the laser light in the surface image of 25 has changed. Then, when the spot position of the laser beam has changed, it is determined again that the amount of light incident on the slits 29 and 30 is not the maximum, and the angle of the mirror 15 is readjusted. Thereby, the fine adjustment of the mirror 15 is performed. However, fine adjustment of the mirror 15 may be omitted.
  • step S7 After the mirror 15 is finely adjusted (NO in step S7), the stage 25a is moved to change the focal position of the laser beam along the depth direction in the same manner as in steps S2 and S3. , the focal position where the spot area of the laser beam in the surface image of the sample 25 becomes the minimum value is reset to the reference position (steps S8 and S9). This allows fine adjustment of the reference position. However, the fine adjustment of the reference position may be omitted.
  • step S9 light amount adjustment step
  • a Raman microscope includes: A Raman microscope that reflects laser light with a mirror, irradiates the sample on the stage with the laser light, spectroscopically emits Raman scattered light from the sample, and receives the light with a detector, an imaging unit that captures an image of the surface of the sample; a reference position setting processing unit that changes the focal position of the laser beam with respect to the sample on the stage and sets the focal position, where the spot area of the laser beam in the surface image satisfies a predetermined first criterion, as a reference position; The focal position is changed in the depth direction with respect to the reference position, and the laser light enters a slit or pinhole provided in front of the detector based on a change in the spot position of the laser light in the surface image.
  • a determination processing unit that determines whether or not the amount of light satisfies a predetermined second criterion; and an angle adjustment processing unit that adjusts the angle of the mirror when it is determined that the amount of light incident on the slit or the pinhole does not satisfy the second predetermined criterion.
  • the focal position is changed in the depth direction with respect to the reference position, and the spot of the laser light on the surface image of the sample Based on the change in position, it can be determined whether the amount of light incident on the slit or pinhole satisfies a predetermined second criterion. By adjusting the angle of the mirror based on this determination result, the amount of light incident on the slit or pinhole can be easily adjusted.
  • the angle of the mirror is repeatedly adjusted. can be adjusted so that the amount of light incident on the slit or pinhole reliably satisfies the predetermined second criterion.
  • the reference position of the focal position of the laser beam is finely adjusted. be able to.
  • a light amount adjustment processing unit that adjusts an optical axis of light incident on the detector so that the amount of light received by the detector satisfies a predetermined third criterion after the processing by the angle adjustment processing unit is performed; may be provided.
  • the intensity of the light incident on the detector is adjusted. can be done.
  • a Raman microscope adjustment method includes: A method for adjusting a Raman microscope in which a laser beam is reflected by a mirror, the sample on the stage is irradiated with the laser beam, and the Raman scattered light from the sample is dispersed and received by a detector, a photographing step of photographing a surface image of the sample; a reference position setting step of changing the focal position of the laser beam with respect to the sample on the stage and setting the focal position to a reference position where the spot area of the laser beam in the surface image satisfies a predetermined first criterion; The focal position is changed in the depth direction with respect to the reference position, and the laser light enters a slit or pinhole provided in front of the detector based on a change in the spot position of the laser light in the surface image.
  • the focal position is changed in the depth direction with respect to the reference position, and the laser beam in the surface image of the sample is Whether or not the amount of light incident on the slit or pinhole satisfies a predetermined second criterion can be determined based on the change in the spot position of the light.
  • the angle of the mirror based on this determination result, the amount of light incident on the slit or pinhole can be easily adjusted.
  • the angle adjustment step may be repeated until the determination step determines that the amount of light incident on the slit or pinhole satisfies the predetermined second criterion.
  • the angle adjustment of the mirror is repeated. By doing so, it is possible to adjust the amount of light incident on the slit or pinhole to ensure that it satisfies the predetermined second criterion. After it is determined by the determination step that the amount of light incident on the slit or pinhole satisfies the predetermined second criterion, re-determination by the determination step and re-processing by the angle adjustment step may be performed. .
  • the reference position of the focal position of the laser beam is finely adjusted. be able to.
  • the method may further include a light amount adjusting step of adjusting the optical axis of the light incident on the detector so that the amount of light received by the detector satisfies a predetermined third criterion. good.
  • the intensity of the light incident on the detector is adjusted. can be adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

カメラ63が、試料の表面画像を撮影する。基準位置設定処理部101が、レーザ光のステージ上の試料に対する焦点位置を変化させ、前記表面画像における当該レーザ光のスポット面積が所定の第1基準を満たす前記焦点位置を基準位置に設定する。判定処理部102が、前記基準位置に対して前記焦点位置を前記深さ方向に変化させ、前記表面画像における前記レーザ光のスポット位置の変化に基づいて、検出器50の手前に設けられたスリット29,30に入射する光量が所定の第2基準を満たすか否かを判定する。角度調整処理部103が、スリット29,30に入射する光量が所定の第2基準を満たさないと判定された場合に、ミラー15の角度を調整する。

Description

ラマン顕微鏡及びその調整方法
 本発明は、ミラーでレーザ光を反射させてステージ上の試料に当該レーザ光を照射し、試料からのラマン散乱光を分光して検出器で受光するラマン顕微鏡及びその調整方法に関するものである。
 ラマン分光装置の一例であるラマン顕微鏡においては、ステージ上の試料に対してレーザ光を集光させて照射し、試料からのラマン散乱光が検出器で受光される(例えば、下記特許文献1参照)。
特開平10-90064号公報
 上記のようなラマン顕微鏡では、光源からのレーザ光をミラーで反射させることにより、ステージ上の試料まで導くことができる。このミラーの角度に応じて、試料に入射するレーザ光の光軸の角度が変化する。
 検出器には、スリット又はピンホールを通過した試料からの光が入射する。そのため、ユーザ又はフィールドエンジニアなどの作業者は、焦点位置や、ミラーの角度等を調整することにより、スリット又はピンホールに入射する光量が最大となるように調整することとなる。しかしながら、スリット又はピンホールに入射する光量が最大であるか否かの判定は容易ではなく、その判定結果に基づいてステージ位置やミラーの角度を調整する作業も煩雑である。
 本発明は、上記実情に鑑みてなされたものであり、スリット又はピンホールに入射する光量を容易に調整することができるラマン顕微鏡及びその調整方法を提供することを目的とする。
 本発明の第1の態様は、ミラーでレーザ光を反射させてステージ上の試料に当該レーザ光を照射し、試料からのラマン散乱光を分光して検出器で受光するラマン顕微鏡であって、撮影部と、基準位置設定処理部と、判定処理部と、角度調整処理部とを備える。前記撮影部は、試料の表面画像を撮影する。前記基準位置設定処理部は、前記レーザ光の前記ステージ上の試料に対する焦点位置を変化させ、前記表面画像における当該レーザ光のスポット面積が所定の第1基準を満たす前記焦点位置を基準位置に設定する。前記判定処理部は、前記基準位置に対して前記焦点位置を前記深さ方向に変化させ、前記表面画像における前記レーザ光のスポット位置の変化に基づいて、前記検出器の手前に設けられたスリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定する。前記角度調整処理部は、前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たさないと判定された場合に、前記ミラーの角度を調整する。
 本発明の第2の態様は、ミラーでレーザ光を反射させてステージ上の試料に当該レーザ光を照射し、試料からのラマン散乱光を分光して検出器で受光するラマン顕微鏡の調整方法であって、撮影ステップと、基準位置設定ステップと、判定ステップと、角度調整ステップとを含む。前記撮影ステップでは、試料の表面画像を撮影する。前記基準位置設定ステップでは、前記レーザ光の前記ステージ上の試料に対する焦点位置を変化させ、前記表面画像における当該レーザ光のスポット面積が所定の第1基準を満たす前記焦点位置を基準位置に設定する。前記判定ステップでは、前記基準位置に対して前記焦点位置を前記深さ方向に変化させ、前記表面画像における前記レーザ光のスポット位置の変化に基づいて、前記検出器の手前に設けられたスリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定する。前記角度調整ステップでは、前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たさないと判定された場合に、前記ミラーの角度を調整する。
 本発明によれば、スリット又はピンホールに入射する光量を容易に調整することができる。
ラマン顕微鏡の構成例を示した概略図である。 ラマン顕微鏡の電気的構成の一例を示したブロック図である。 試料の表面画像の一例を示した図であり、レーザ光のステージ上の試料に対する焦点位置を変化させたときのスポット面積の変化を示している。 試料の表面画像の一例を示した図であり、レーザ光のステージ上の試料に対する焦点位置を変化させたときのスポット面積の変化を示している。 試料の表面画像の一例を示した図であり、レーザ光のステージ上の試料に対する焦点位置を変化させたときのスポット面積の変化を示している。 試料の表面画像の一例を示した図であり、ミラーの角度を変化させたときのスポット位置の変化を示している。 試料の表面画像の一例を示した図であり、ミラーの角度を変化させたときのスポット位置の変化を示している。 ラマン顕微鏡の調整処理について説明するためのフローチャートである。
1.ラマン顕微鏡の構成
 図1は、ラマン顕微鏡1の構成例を示した概略図である。以下では、ラマン顕微鏡1の具体的構成について説明するが、この構成に限定されるものではなく、少なくとも一部の部材が省略されていてもよいし、他の部材が備えられていてもよい。
 ラマン顕微鏡1は、例えば第1レーザ光源10、第2レーザ光源12、ステージ25a、分光光学系40、検出器50、制御部100、複数のミラー15,16,19,21,22,26、複数のローパスフィルタ17,18、ダイクロイックミラー20、対物レンズ24、複数の集光レンズ27,28、複数のスリット29,30などを備えている。ただし、ミラーの一部(例えばミラー16,19,21,22など)が省略されてもよい。
 ラマン顕微鏡1に備えられた上記の各部材は、試料25にレーザ光を照射し、当該レーザ光により励起された試料25から放射されるラマン散乱光を分光して検出することにより、ラマン分光分析を行うための部材である。これらの各部材のうち、複数のミラー15,16,19,21,22,26、複数のローパスフィルタ17,18、ダイクロイックミラー20、複数の集光レンズ27,28などの光学部材の少なくとも一部は、それらの位置又は角度を調整できるような構成であってもよい。
 上記の各部材とは別に、ラマン顕微鏡1は、ハーフミラー23、結像レンズ62及びカメラ63などを備えている。これらの部材は、ラマン散乱光が発生する試料表面の可視画像を撮影するための部材である。
 第1レーザ光源10は、第1レーザ光11を出射する。第2レーザ光源12は、第1レーザ光11よりも短い波長を有する第2レーザ光13を出射する。このように、本実施形態では、それぞれ波長が異なるレーザ光11,13を出射する2つのレーザ光源10,12を用いて試料25を励起することができる。ただし、ラマン顕微鏡1に備えられるレーザ光源は、2つに限らず、1つであってもよいし、3つ以上であってもよい。
 レーザ光源は、例えばダイオードレーザ励起の固体レーザ、ヘリウムネオンレーザ、チタンサファイアレーザ又はNd:YAGレーザなどのレーザ発振器により構成することができる。また、レーザ発振器からのレーザ光を光ファイバなどの導光体で導くような構成の場合には、光ファイバの先端に設けられる出射管などがレーザ光源を構成していてもよい。
 試料25は、ステージ25a上に支持されている。本実施形態では、試料25に応じて、第1レーザ光11又は第2レーザ光13のいずれか一方を試料25に照射することができる。第1レーザ光11が照射されることにより励起された試料25からは、第1ラマン散乱光31が放射される。一方、第2レーザ光13が照射されることにより励起された試料25からは、第2ラマン散乱光33が放射される。
 励起波長が短いほど、ラマン散乱の効率が高くなるため、ラマン散乱光の強度を高くする場合には、第1レーザ光11ではなく第2レーザ光13を試料25に照射することが好ましい。一方、第2レーザ光13を試料25に照射すると試料25から放射される蛍光が強すぎる場合には、第2レーザ光13ではなく第1レーザ光11を試料25に照射することが好ましい。
 第1レーザ光源10から出射される第1レーザ光11は、ミラー15,16で反射されて、ローパスフィルタ17に入射する。ローパスフィルタ17は、第1レーザ光11を反射するとともに、第1ラマン散乱光31を透過する。したがって、ローパスフィルタ17に入射した第1レーザ光11は、ローパスフィルタ17で反射され、ダイクロイックミラー20に入射する。
 ダイクロイックミラー20は、第1レーザ光11及び第1ラマン散乱光31を透過するとともに、第2レーザ光13及び第2ラマン散乱光33を反射する。したがって、ダイクロイックミラー20に入射した第1レーザ光11は、ダイクロイックミラー20を透過し、ミラー21,22で順次反射された後、ハーフミラー23及び対物レンズ24を通って試料25に照射される。このとき、第1レーザ光11は、対物レンズ24を通ることにより集光され、試料25の表面にスポットとして照射される。対物レンズ24により集光される第1レーザ光11の焦点位置は、試料25の表面に限らず、試料25の内側又は外側に位置していてもよい。
 第2レーザ光源12から出射される第2レーザ光13は、ミラー15,16で反射されて、ローパスフィルタ18に入射する。ローパスフィルタ18は、第2レーザ光13を反射するとともに、第2ラマン散乱光33を透過する。したがって、ローパスフィルタ18に入射した第2レーザ光13は、ローパスフィルタ18で反射され、ミラー19、ダイクロイックミラー20及びミラー21,22で順次反射された後、ハーフミラー23及び対物レンズ24を通って試料25に照射される。このとき、第2レーザ光13は、対物レンズ24を通ることにより集光され、試料25の表面にスポットとして照射される。対物レンズ24により集光される第2レーザ光13の焦点位置は、試料25の表面に限らず、試料25の内側又は外側に位置していてもよい。
 第1レーザ光11が照射された試料25から放射される第1ラマン散乱光31は、第1レーザ光11よりも長い波長を有している。第1ラマン散乱光31は、対物レンズ24を通って、ミラー22,21で順次反射された後、ダイクロイックミラー20及びローパスフィルタ17を透過して、ミラー26で反射される。ミラー26で反射された第1ラマン散乱光31は、集光レンズ27で集光された後、スリット29を通って、分光光学系40に入射する。ただし、スリット29の代わりにピンホールが設けられ、当該ピンホールを通って分光光学系40に第1ラマン散乱光31が入射するような構成であってもよい。
 第2レーザ光13が照射された試料25から放射される第2ラマン散乱光33は、第2レーザ光13よりも長い波長を有している。また、第2ラマン散乱光33は、第1ラマン散乱光31より短い波長を有している。第2ラマン散乱光33は、対物レンズ24を通って、ミラー22,21、ダイクロイックミラー20及びミラー19で順次反射された後、ローパスフィルタ18を透過して、ミラー26で反射される。ミラー26で反射された第2ラマン散乱光33は、集光レンズ28で集光された後、スリット30を通って、分光光学系40に入射する。ただし、スリット30の代わりにピンホールが設けられ、当該ピンホールを通って分光光学系40に第2ラマン散乱光33が入射するような構成であってもよい。
 分光光学系40は、例えばコリメータレンズ、分光器及び集光光学素子など(いずれも図示せず)を備えている。分光器は、例えばグレーティング又はプリズムなどの分光光学素子を備えている。分光光学系40に入射する第1ラマン散乱光31及び第2ラマン散乱光33は、それぞれ異なる分光光学素子により分光され、波長ごとに分離された第1ラマン散乱光31及び第2ラマン散乱光33が、集光光学素子で集光されて検出器50で受光される。
 検出器50としては、例えばCCD(Charge Coupled Device)検出器が挙げられる。検出器50は、複数の光検出素子を備えており、各光検出素子における第1ラマン散乱光31又は第2ラマン散乱光33の受光強度に応じた信号を出力する。検出器50から出力される電気信号は、検出器50に対して電気的に接続された制御部100により処理される。
 カメラ63は、試料25の表面画像を撮影する撮影部である。ラマン散乱光が発生する試料表面からの光は、対物レンズ24を通って、ハーフミラー23で反射され、結像レンズ62によりカメラ63の受光面64に結像される。カメラ63は、例えばCCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどを含み、試料25の静止画又は動画を撮影可能に構成されている。カメラ63では、試料25の明視野像、暗視野像、位相差像、蛍光像及び偏光顕微鏡像などの全部又は少なくとも1つを撮影することができる。
 本実施形態では、ラマン分光分析を行う前に、検出器50の手前に設けられたスリット29,30に入射する試料25からのラマン散乱光の光量が最大となるように、ミラー15の角度を調整することにより、ラマン顕微鏡1の調整(光軸調整)が行われる。このとき、ステージ25a上には、分析対象となる実際の試料ではなく、表面が平坦に形成された調整用試料25が支持される。調整用試料25には、レーザ光(第1レーザ光11又は第2レーザ光13)が照射され、試料表面上におけるレーザ光のスポットの画像がカメラ63で撮影される。ラマン顕微鏡1の調整は、カメラ63で撮影される試料25の表面画像におけるレーザ光のスポットの面積(スポット面積)及び位置(スポット位置)に基づいて行われる。
2.ラマン顕微鏡の電気的構成
 図2は、ラマン顕微鏡1の電気的構成の一例を示したブロック図である。ラマン顕微鏡1は、上述した各部の他に、記憶部200及び表示部300などを備えている。
 制御部100は、例えばCPU(Central Processing Unit)を含む構成である。制御部100は、CPUがプログラムを実行することにより、基準位置設定処理部101、判定処理部102、角度調整処理部103、光量調整処理部104及びラマン分析処理部105などとして機能する。基準位置設定処理部101、判定処理部102、角度調整処理部103及び光量調整処理部104は、ラマン分光分析の前に行われるラマン顕微鏡1の調整のための処理を実行する。
 基準位置設定処理部101は、カメラ63で撮影される試料25(調整用試料)の表面画像におけるレーザ光のスポット面積に基づいて、レーザ光の焦点位置の基準位置を設定する処理を行う。具体的には、ステージ25aが鉛直方向に所定の範囲で移動されることにより、試料25に対するレーザ光の照射方向(光軸方向)である深さ方向に沿って、レーザ光のステージ25a上の試料25に対する焦点位置が変化する。このとき、レーザ光の焦点位置の変化に伴い、試料25の表面画像におけるレーザ光のスポット面積が変化する。
 基準位置設定処理部101は、当該スポット面積の変化を演算により算出し、当該スポット面積が極小値となる焦点位置を基準位置に設定する。ただし、「極小値」は、「所定の第1基準」の一例であり、スポット面積が他の基準を満たす焦点位置を基準位置に設定してもよい。基準位置設定処理部101により設定された基準位置の位置情報は、記憶部200に記憶される。記憶部200は、例えばハードディスクなどの不揮発性メモリを含む。
 図3A~図3Cは、試料25の表面画像の一例を示した図であり、レーザ光のステージ25a上の試料25に対する焦点位置を変化させたときのスポット面積の変化を示している。
 レーザ光の焦点位置の基準位置を設定する際の試料25の表面画像は、露光時間及びカメラ63のゲインをいずれも最小値に設定して撮影された顕微画像である。また、試料25の表面画像におけるレーザ光のスポット面積は、試料25の表面画像を二値化したときの明部をスポットと判断し、その明部の面積を求めることにより算出することができる。
 レーザ光の焦点位置が基準位置(最適な位置)にあるときには、図3Aに示すように、スポット面積が極小値となる。これに対して、レーザ光の焦点位置が基準位置に対して深さ方向にずれている場合には、図3Bに示すように、スポット面積が図3Aの場合よりも大きくなる。また、レーザ光の焦点位置が、図3Bの状態からさらに基準位置に対して深さ方向にずれると、図3Cに示すように、レーザ光の強度が弱くなるのに加えて、レーザ光のスポットが試料25の表面画像内に収まらないため、スポット面積として算出される値が小さくなっていく。
 再び図2を参照して、判定処理部102は、カメラ63で撮影される試料25(調整用試料)の表面画像におけるレーザ光のスポット位置に基づいて、検出器50の手前に設けられたスリット29,30に入射する光量が最大であるか否かを判定する処理を行う。具体的には、ステージ25aが鉛直方向に所定の範囲で移動されることにより、レーザ光の焦点位置が、基準位置に対して深さ方向に変化する。ただし、スリット29,30に入射する光量が最大であるか否かではなく、当該光量が他の基準(所定の第2基準)を満たすか否かが判定されてもよい。
 スリット29,30に入射する光量が最大でなければ、レーザ光のステージ25a上の試料25に対する焦点位置を深さ方向に沿って変化させたときに、試料25の表面画像におけるレーザ光のスポット位置が変化する。判定処理部102は、当該スポット位置の変化(スポットの重心位置の変化)を演算により算出し、その変化量を閾値と比較することにより、スリット29,30に入射する光量が最大であるか否かを判断する。
 図4A及び図4Bは、試料25の表面画像の一例を示した図であり、ミラーの角度を変化させたときのスポット位置の変化を示している。
 スリット29,30に入射する光量が最大でない場合には、図4Aに示すように、レーザ光のステージ25a上の試料25に対する焦点位置を深さ方向に沿って変化させると、スポット位置が基準位置からずれる。これに対して、スリット29,30に入射する光量が最大である場合には、図4Bに示すように、レーザ光の焦点位置を深さ方向に沿って変化させても、スポット位置は基準位置からずれない。
 再び図2を参照して、角度調整処理部103は、判定処理部102においてスリット29,30に入射する光量が最大でないと判断された場合に、ミラー15の角度を調整する処理を行う。ミラー15の角度は、例えばピエゾ素子(図示せず)に対する印加電圧を制御することにより調整することができる。ただし、ピエゾ素子を用いた機構に限らず、他の任意の機構を用いてミラー15の角度を調整することが可能である。
 図1に示すように、ミラー15には、試料25に照射される前のレーザ光は入射するが、試料25からの光は入射しない。したがって、ミラー15の角度を調整すれば、試料25に入射するレーザ光の光軸の角度が変化し、その結果、試料25から検出器50に入射する光の角度も変化する。本実施形態では、ミラー15の角度を調整することにより、スリット29,30に入射する試料25からの光の光量が最大となるように調整することができる。このときのミラー15の角度の調整量(変化量)は、判定処理時におけるレーザ光のスポット位置の変化量に基づいて算出することができる。
 光量調整処理部104は、角度調整処理部103による処理が行われた後、検出器50で受光される光量を調整する処理を行う。具体的には、検出器50で受光される光量が最大となるように、ミラー26の角度が調整されることにより、検出器50に入射する光の光軸が調整される。ミラー26の角度は、例えばピエゾ素子(図示せず)に対する印加電圧を制御することにより調整することができる。ただし、ピエゾ素子を用いた機構に限らず、他の任意の機構を用いてミラー26の角度を調整することが可能である。また、検出器50で受光される光量が最大となるようにミラー26の角度が調整されるのはなく、当該光量が他の基準(所定の第3基準)を満たすようにミラー26の角度が調整されてもよい。
 図1に示すように、ミラー26には、試料25からの光が入射し、当該ミラー26で反射した光が、スリット29,30を通って検出器50で検出される。したがって、ミラー26の角度を調整すれば、スリット29,30を通過する光量が変化し、その結果、検出器50で受光される光量も変化する。
 ラマン分析処理部105は、ステージ25a上の試料25に対してラマン分光分析を行うための処理を実行する。具体的には、検出器50からの検出信号に基づいてラマンスペクトルを取得する。ラマン分光分析により取得されたラマンスペクトルは、ラマン分析処理部105により表示部300に表示されてもよい。表示部300は、例えば液晶表示器を含む構成であるが、これに限られるものではない。
3.ラマン顕微鏡の調整処理
 図5は、ラマン顕微鏡1の調整処理について説明するためのフローチャートである。図5に示すラマン顕微鏡1の調整処理は、ラマン分光分析を良好に行うために、ラマン分光分析の前に制御部100により実行される。当該調整処理は、制御部100の制御により自動で開始されてもよいし、ユーザ又はフィールドエンジニアなどの作業者による操作部(図示せず)の操作に基づいて開始されてもよい。
 ラマン顕微鏡1の調整処理が開始されると、試料25にレーザ光が照射された状態で、カメラ63による試料25の表面画像の撮影が開始される(ステップS1:撮影ステップ)。その後、ステージ25aが移動されることにより、深さ方向に沿ってレーザ光のステージ25a上の試料25に対する焦点位置を変化させ、試料25の表面画像におけるレーザ光のスポット面積が極小値となる焦点位置が基準位置に設定される(ステップS2~S3:基準位置設定ステップ)。
 基準位置が設定されると、ステージ25aが再度移動されることにより、基準位置に対して焦点位置を深さ方向に変化させ、試料25の表面画像におけるレーザ光のスポット位置が変化したか否かが判定される(ステップS4~S5:判定ステップ)。そして、レーザ光のスポット位置が変化している場合には(ステップS5でYES)、スリット29,30に入射する光量が最大でないと判定され、ミラー15の角度が調整される(ステップS6:角度調整ステップ)。
 この場合、ミラー15の角度が調整された後、スポット位置が変化していないと判定されるまで(ステップS5でNOとなるまで)、すなわち、スリット29,30に入射する光量が最大と判定されるまで、ステップS5~S6が繰り返される。
 スポット位置が変化していないと判定された場合(ステップS5でNO)、すなわち、スリット29,30に入射する光量が最大と判定された場合であって、より高精度な調整が必要な場合(ステップS7でYES)には、ステップS4~S6のときと同様に、ステージ25aが移動されることにより、深さ方向に沿ってレーザ光のステージ25a上の試料25に対する焦点位置を変化させ、試料25の表面画像におけるレーザ光のスポット位置が変化したか否かが再判定される。そして、レーザ光のスポット位置が変化している場合には、スリット29,30に入射する光量が最大でないと再判定され、ミラー15の角度が再調整される。これにより、ミラー15の微調整が行われる。ただし、ミラー15の微調整は省略されてもよい。
 ミラー15の微調整が行われた後(ステップS7でNO)、ステップS2~S3のときと同様に、ステージ25aが移動されることにより、深さ方向に沿ってレーザ光の焦点位置を変化させ、試料25の表面画像におけるレーザ光のスポット面積が極小値となる焦点位置が基準位置に再設定される(ステップS8~S9)。これにより、基準位置の微調整が行われる。ただし、基準位置の微調整は省略されてもよい。
 その後、ミラー26の角度が調整されることにより、検出器50で受光される光量が最大となるように、検出器に入射する光の光軸が調整される(ステップS9:光量調整ステップ)。
4.態様
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)一態様に係るラマン顕微鏡は、
 ミラーでレーザ光を反射させてステージ上の試料に当該レーザ光を照射し、試料からのラマン散乱光を分光して検出器で受光するラマン顕微鏡であって、
 試料の表面画像を撮影する撮影部と、
 前記レーザ光の前記ステージ上の試料に対する焦点位置を変化させ、前記表面画像における当該レーザ光のスポット面積が所定の第1基準を満たす前記焦点位置を基準位置に設定する基準位置設定処理部と、
 前記基準位置に対して前記焦点位置を前記深さ方向に変化させ、前記表面画像における前記レーザ光のスポット位置の変化に基づいて、前記検出器の手前に設けられたスリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定する判定処理部と、
 前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たさないと判定された場合に、前記ミラーの角度を調整する角度調整処理部とを備えていてもよい。
 第1項に記載のラマン顕微鏡によれば、レーザ光の焦点位置の基準位置を設定した後、当該基準位置に対して焦点位置を深さ方向に変化させ、試料の表面画像におけるレーザ光のスポット位置の変化に基づいて、スリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定できる。この判定結果に基づいてミラーの角度を調整することにより、スリット又はピンホールに入射する光量を容易に調整することができる。
(第2項)第1項に記載のラマン顕微鏡において、
 前記判定処理部により前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たすと判定されるまで、前記角度調整処理部による処理が繰り返し行われてもよい。
 第2項に記載のラマン顕微鏡によれば、1回のミラーの角度調整だけではスリット又はピンホールに入射する光量が所定の第2基準を満たさない場合でも、ミラーの角度調整が繰り返し行われることにより、スリット又はピンホールに入射する光量が所定の第2基準を確実に満たすように調整にすることができる。前記判定処理部により前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たすと判定されてから、前記判定処理部による再判定、及び、前記角度調整処理部による再処理が行われてもよい。
(第3項)第1項又は第2項に記載のラマン顕微鏡において、
 前記角度調整処理部による処理が行われた後、前記基準位置設定処理部により前記基準位置が再度設定されてもよい。
 第3項に記載のラマン顕微鏡によれば、スリット又はピンホールに入射する光量が所定の第2基準を満たすようにミラーの角度を調整した後、レーザ光の焦点位置の基準位置を微調整することができる。
(第4項)第1項~第3項のいずれか一項に記載のラマン顕微鏡において、
 前記角度調整処理部による処理が行われた後、前記検出器で受光される光量が所定の第3基準を満たすように、検出器に入射する光の光軸を調整する光量調整処理部をさらに備えていてもよい。
 第4項に記載のラマン顕微鏡によれば、スリット又はピンホールに入射する光量が所定の第2基準を満たすようにミラーの角度を調整した後、検出器に入射する光の強度を調整することができる。
(第5項)一態様に係るラマン顕微鏡の調整方法は、
 ミラーでレーザ光を反射させてステージ上の試料に当該レーザ光を照射し、試料からのラマン散乱光を分光して検出器で受光するラマン顕微鏡の調整方法であって、
 試料の表面画像を撮影する撮影ステップと、
 前記レーザ光の前記ステージ上の試料に対する焦点位置を変化させ、前記表面画像における当該レーザ光のスポット面積が所定の第1基準を満たす前記焦点位置を基準位置に設定する基準位置設定ステップと、
 前記基準位置に対して前記焦点位置を前記深さ方向に変化させ、前記表面画像における前記レーザ光のスポット位置の変化に基づいて、前記検出器の手前に設けられたスリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定する判定ステップと、
 前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たさないと判定された場合に、前記ミラーの角度を調整する角度調整ステップとを含んでいてもよい。
 第5項に記載のラマン顕微鏡の調整方法によれば、レーザ光の焦点位置の基準位置を設定した後、当該基準位置に対して焦点位置を深さ方向に変化させ、試料の表面画像におけるレーザ光のスポット位置の変化に基づいて、スリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定できる。この判定結果に基づいてミラーの角度を調整することにより、スリット又はピンホールに入射する光量を容易に調整することができる。
(第6項)第5項に記載のラマン顕微鏡の調整方法において、
 前記判定ステップにより前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たすと判定されるまで、前記角度調整ステップが繰り返し行われてもよい。
 第6項に記載のラマン顕微鏡の調整方法によれば、1回のミラーの角度調整だけではスリット又はピンホールに入射する光量が所定の第2基準を満たさない場合でも、ミラーの角度調整が繰り返し行われることにより、スリット又はピンホールに入射する光量が所定の第2基準を確実に満たすように調整することができる。前記判定ステップにより前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たすと判定されてから、前記判定ステップによる再判定、及び、前記角度調整ステップによる再処理が行われてもよい。
(第7項)第5項又は第6項に記載のラマン顕微鏡の調整方法において、
 前記角度調整ステップが行われた後、前記基準位置設定ステップにより前記基準位置が再度設定されてもよい。
 第7項に記載のラマン顕微鏡によれば、スリット又はピンホールに入射する光量が所定の第2基準を満たすようにミラーの角度を調整した後、レーザ光の焦点位置の基準位置を微調整することができる。
(第8項)第5項~第7項のいずれか一項に記載のラマン顕微鏡の調整方法において、
 前記角度調整ステップが行われた後、前記検出器で受光される光量が所定の第3基準を満たすように、検出器に入射する光の光軸を調整する光量調整ステップをさらに含んでいてもよい。
 第8項に記載のラマン顕微鏡の調整方法によれば、スリット又はピンホールに入射する光量が所定の第3基準を満たすようにミラーの角度を調整した後、検出器に入射する光の強度を調整することができる。
1   ラマン顕微鏡
10  第1レーザ光源
11  第1レーザ光
12  第2レーザ光源
13  第2レーザ光
15,16,26 ミラー
25  試料
25a ステージ
31  第1ラマン散乱光
33  第2ラマン散乱光
50  検出器
63  カメラ
100 制御部
101 基準位置設定処理部
102 判定処理部
103 角度調整処理部
104 光量調整処理部

Claims (8)

  1.  ミラーでレーザ光を反射させてステージ上の試料に当該レーザ光を照射し、試料からのラマン散乱光を分光して検出器で受光するラマン顕微鏡であって、
     試料の表面画像を撮影する撮影部と、
     前記レーザ光の前記ステージ上の試料に対する焦点位置を変化させ、前記表面画像における当該レーザ光のスポット面積が所定の第1基準を満たす前記焦点位置を基準位置に設定する基準位置設定処理部と、
     前記基準位置に対して前記焦点位置を前記深さ方向に変化させ、前記表面画像における前記レーザ光のスポット位置の変化に基づいて、前記検出器の手前に設けられたスリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定する判定処理部と、
     前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たさないと判定された場合に、前記ミラーの角度を調整する角度調整処理部とを備える、ラマン顕微鏡。
  2.  前記判定処理部により前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たすと判定されるまで、前記角度調整処理部による処理が繰り返し行われる、請求項1に記載のラマン顕微鏡。
  3.  前記角度調整処理部による処理が行われた後、前記基準位置設定処理部により前記基準位置が再度設定される、請求項1に記載のラマン顕微鏡。
  4.  前記角度調整処理部による処理が行われた後、前記検出器で受光される光量が所定の第3基準を満たすように、検出器に入射する光の光軸を調整する光量調整処理部をさらに備える、請求項1に記載のラマン顕微鏡。
  5.  ミラーでレーザ光を反射させてステージ上の試料に当該レーザ光を照射し、試料からのラマン散乱光を分光して検出器で受光するラマン顕微鏡の調整方法であって、
     試料の表面画像を撮影する撮影ステップと、
     前記レーザ光の前記ステージ上の試料に対する焦点位置を変化させ、前記表面画像における当該レーザ光のスポット面積が所定の第1基準を満たす前記焦点位置を基準位置に設定する基準位置設定ステップと、
     前記基準位置に対して前記焦点位置を前記深さ方向に変化させ、前記表面画像における前記レーザ光のスポット位置の変化に基づいて、前記検出器の手前に設けられたスリット又はピンホールに入射する光量が所定の第2基準を満たすか否かを判定する判定ステップと、
     前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たさないと判定された場合に、前記ミラーの角度を調整する角度調整ステップとを含む、ラマン顕微鏡の調整方法。
  6.  前記判定ステップにより前記スリット又はピンホールに入射する光量が前記所定の第2基準を満たすと判定されるまで、前記角度調整ステップが繰り返し行われる、請求項5に記載のラマン顕微鏡の調整方法。
  7.  前記角度調整ステップが行われた後、前記基準位置設定ステップにより前記基準位置が再度設定される、請求項5に記載のラマン顕微鏡の調整方法。
  8.  前記角度調整ステップが行われた後、前記検出器で受光される光量が所定の第3基準を満たすように、検出器に入射する光の光軸を調整する光量調整ステップをさらに含む、請求項5に記載のラマン顕微鏡の調整方法。
PCT/JP2022/047133 2022-01-12 2022-12-21 ラマン顕微鏡及びその調整方法 WO2023136069A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280084468.6A CN118435045A (zh) 2022-01-12 2022-12-21 拉曼显微镜及其调整方法
JP2023573940A JPWO2023136069A1 (ja) 2022-01-12 2022-12-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-002871 2022-01-12
JP2022002871 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136069A1 true WO2023136069A1 (ja) 2023-07-20

Family

ID=87279012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047133 WO2023136069A1 (ja) 2022-01-12 2022-12-21 ラマン顕微鏡及びその調整方法

Country Status (3)

Country Link
JP (1) JPWO2023136069A1 (ja)
CN (1) CN118435045A (ja)
WO (1) WO2023136069A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090064A (ja) * 1996-09-12 1998-04-10 Fujitsu Ltd 顕微ラマン装置
EP2333501A1 (en) * 2009-11-30 2011-06-15 Horiba Jobin Yvon SAS Apparatus and method for automatic optical realignment
WO2021261035A1 (ja) * 2020-06-24 2021-12-30 株式会社島津製作所 顕微ラマン分光測定装置、及び顕微ラマン分光測定装置の調整方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090064A (ja) * 1996-09-12 1998-04-10 Fujitsu Ltd 顕微ラマン装置
EP2333501A1 (en) * 2009-11-30 2011-06-15 Horiba Jobin Yvon SAS Apparatus and method for automatic optical realignment
WO2021261035A1 (ja) * 2020-06-24 2021-12-30 株式会社島津製作所 顕微ラマン分光測定装置、及び顕微ラマン分光測定装置の調整方法

Also Published As

Publication number Publication date
CN118435045A (zh) 2024-08-02
JPWO2023136069A1 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
US7304790B2 (en) Examination apparatus and focusing method of examination apparatus
JP3404134B2 (ja) 検査装置
JP6446432B2 (ja) 顕微分光装置
JP2006512575A (ja) 分析装置および分析方法
US10067058B1 (en) Auto-focus system
JP5053691B2 (ja) 標本スキャナ装置、該装置による標本位置検出方法
WO2016132451A1 (ja) 顕微鏡
JP4720146B2 (ja) 分光装置および分光システム
WO2023136069A1 (ja) ラマン顕微鏡及びその調整方法
EP3660572A1 (en) Sample observation device and sample observation method
US9891422B2 (en) Digital confocal optical profile microscopy
US11016023B1 (en) Far-infrared spectroscopic device and far-infrared spectroscopic method
WO2022269961A1 (ja) 顕微鏡システム、情報処理装置及び制御方法
US20210341720A1 (en) Automated system for wide-field multiphoton microscope
JPH05332934A (ja) 分光装置
JP2006300808A (ja) ラマン分光測定装置
JP2004354346A (ja) 測定装置
JP2004354347A (ja) 蛍光測定装置
JP4136891B2 (ja) 蛍光画像/スペクトルを測定する蛍光測定装置
JPH04113305A (ja) 焦点合わせ装置
JP2004177732A (ja) 光学測定装置
JP2004325431A (ja) 蛍光検出装置
KR102442981B1 (ko) 순간 라만 이미징 장치
WO2024090177A1 (ja) 顕微ラマン装置および顕微ラマン装置の制御方法
CN213517760U (zh) 视觉检查设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023573940

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE