WO2024089880A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2024089880A1
WO2024089880A1 PCT/JP2022/040391 JP2022040391W WO2024089880A1 WO 2024089880 A1 WO2024089880 A1 WO 2024089880A1 JP 2022040391 W JP2022040391 W JP 2022040391W WO 2024089880 A1 WO2024089880 A1 WO 2024089880A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
height
heat dissipation
heat
semiconductor device
Prior art date
Application number
PCT/JP2022/040391
Other languages
English (en)
French (fr)
Inventor
正章 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/040391 priority Critical patent/WO2024089880A1/ja
Publication of WO2024089880A1 publication Critical patent/WO2024089880A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon

Definitions

  • This application relates to a method for manufacturing a semiconductor device.
  • the height of the heat dissipation block is adjusted so that it is exposed on the surface of the module when it is sealed with molding resin.
  • One side of the heat dissipation block is in contact with the device that generates heat during operation via a highly heat-dissipating adhesive, and the other side is exposed on the surface of the module, making it easy to dissipate heat from the device to the outside of the module.
  • Patent Document 1 discloses a method for manufacturing a semiconductor device in which one side of a heat dissipation block contacts the back surface of a die stage portion on which a semiconductor element is mounted, and the outer side is surrounded by resin so that the other side is exposed on the surface of the module.
  • JP-A-04-299848 (paragraph 0011, FIG. 1)
  • the present application has been made to solve the above problems, and aims to provide a method for manufacturing a semiconductor device that precisely aligns the height of the heat dissipation block surface and exposes the heat dissipation block on the module surface without damaging the device.
  • the method of manufacturing a semiconductor device disclosed in this application is characterized by including the steps of applying a first adhesive having heat dissipation and thermosetting properties to the surfaces of a plurality of devices bonded to the surface of a substrate, mounting a heat dissipation block, and bonding the devices by heat treatment; applying a second adhesive having heat dissipation and thermosetting properties to the surface of the heat dissipation block so that the surface is higher than the height of a resin that will seal the devices in a later process; and hardening the second adhesive by heat treatment while adjusting the height with the thickness of the second adhesive so that the height to the surface of the second adhesive is the height of the resin.
  • the method for manufacturing a semiconductor device disclosed in the present application is characterized by including the steps of: applying an adhesive having heat dissipation and thermosetting properties to the surfaces of a number of devices bonded to the surface of a substrate so that when a heat dissipation block is mounted, the adhesive will be higher than the height of a resin that will seal the devices in a later process; mounting the heat dissipation block; and hardening the adhesive by heat treatment while adjusting the height with the thickness of the adhesive so that the height to the surface of the heat dissipation block becomes the height of the resin.
  • the heat dissipation block can be exposed on the module surface without damaging the device, making it easy to obtain a high-performance semiconductor device.
  • FIG. 1 is a flowchart showing manufacturing steps in a manufacturing method of a semiconductor device according to a first embodiment
  • 3A to 3C are cross-sectional views showing manufacturing steps in a method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 11 is a flowchart showing manufacturing steps in a manufacturing method of a semiconductor device according to a second embodiment.
  • 11A to 11C are cross-sectional views showing manufacturing steps in a method for manufacturing a semiconductor device according to a second embodiment.
  • FIG. 11 is a flowchart showing manufacturing steps in a manufacturing method of a semiconductor device according to a third embodiment.
  • 11A to 11C are cross-sectional views showing manufacturing steps in a manufacturing method for a semiconductor device according to a third embodiment.
  • FIG. 13 is a flowchart showing manufacturing steps in a manufacturing method of a semiconductor device according to a fourth embodiment.
  • 13A to 13C are cross-sectional views showing manufacturing steps in a method for manufacturing a semiconductor device according to a fourth embodiment.
  • Fig. 1 is a flow chart showing the manufacturing steps in the manufacturing method of the semiconductor device according to the first embodiment of the present application.
  • Fig. 2 is a cross-sectional view showing the manufacturing steps in the manufacturing method of the semiconductor device according to the first embodiment of the present application.
  • Fig. 2(a) is a cross-sectional view of the semiconductor device after a heat dissipation block is mounted on a device on an organic substrate and heat-treated
  • Fig. 2(b) is a cross-sectional view of the semiconductor device after an adhesive is applied on the heat dissipation block
  • Fig. 2(c) is a cross-sectional view of the semiconductor device after the adhesive applied on the heat dissipation block is heat-treated
  • Fig. 2(d) is a cross-sectional view of the semiconductor device after sealing with a mold resin.
  • a first adhesive, adhesive 60 with high heat dissipation and thermosetting properties is applied onto a number of devices 20 bonded to an organic substrate 10 with solder 40, and then a heat dissipation block is mounted and heat treatment is performed to harden and bond the adhesive 60 (step S101).
  • the height of the heat dissipation block 50 after bonding is set to be lower than the height A of the package. At this time, the height of the top of the heat dissipation block 50 varies depending on the dimensional tolerances of the thicknesses of the organic substrate 10, solder 40, devices 20, adhesive 60, and heat dissipation block 50, and the bonding state on the organic substrate.
  • a second adhesive adhesive 100 with high heat dissipation and thermosetting properties, is applied onto the heat dissipation block 50 so that the adhesive is higher than the height A of the package (step S102).
  • step S103 all devices 20 are clamped in a jig so that the height of the adhesive 100 applied to the heat dissipation blocks 50 is equal to the package height A, and heat treatment is performed while adjusting the height with the thickness of the adhesive 100 to harden the adhesive 100 (step S103).
  • the device 20 is resin-sealed using molded resin 70 to a package height A (step S104), so that the surface of the adhesive 100 is exposed on the top surface of the package (molded resin 70).
  • the surface of the adhesive 100 is brought into contact with the molding die via a protective tape or the like to prevent the molded resin 70 from flowing onto the adhesive 100.
  • device 20 is bonded using a flip chip, and electrical connections are made from the underside of device 20, so there is no need for electrical continuity on the top side of device 20, and adhesive 60 and adhesive 100 can be either conductive or insulating.
  • the method for manufacturing a semiconductor device includes the steps of applying a heat-dissipating and thermosetting adhesive 60 to the surfaces of a plurality of devices 20 bonded to the surface of an organic substrate 10, mounting a heat dissipating block 50, and bonding the devices 20 by heat treatment; applying a heat-dissipating and thermosetting adhesive 100 to the surface of the heat dissipating block 50 so that the adhesive 100 is higher than the height A of a molded resin 70 that will seal the devices 20 in a later process; and hardening the adhesive 100 by heat treatment while adjusting the height with the thickness of the adhesive 100 so that the height from the surface of the organic substrate 10 to the surface of the adhesive 100 is the height A of the molded resin 70.
  • the adhesive 100 By leveling the adhesive 100 with the thickness so that the height from the organic substrate 10 to the adhesive 100 is the same as the package height A, the dimensional tolerances of the thicknesses of the organic substrate, solder, device, first adhesive, and heat dissipating block and the variation due to the bonding state on the organic substrate can be absorbed. By precisely aligning the height of the heat dissipating portion, the heat dissipating portion can be exposed on the surface of the module without damaging the device, and a high-performance semiconductor device can be easily obtained.
  • the height of the second adhesive becomes higher than the height A of the package, and the second adhesive comes into contact with the mold die during molding resin sealing, preventing the device from being destroyed by the clamping pressure of the mold die.
  • the height of the second adhesive is lower than the height A of the package, so the molding resin does not flow into the upper part of the heat dissipation block. Furthermore, compared to conventional methods, the cutting process can be reduced, and problems that tend to cause quality defects such as burrs on the heat dissipation block or chipped molding resin can be eliminated.
  • Embodiment 2 In the first embodiment, the step of heat-treating and curing the adhesive 100 is carried out separately, but in the second embodiment, a case will be described in which this step is carried out simultaneously with the step of sealing the device 20 with resin.
  • FIG. 3 is a flow chart showing the manufacturing steps in the manufacturing method of a semiconductor device according to the second embodiment of the present application.
  • FIG. 3 is a cross-sectional view showing the manufacturing steps in the manufacturing method of a semiconductor device according to the second embodiment of the present application.
  • FIG. 3(a) is a cross-sectional view of the semiconductor device after a heat dissipation block is mounted on a device on an organic substrate and heat treatment is performed
  • FIG. 3(b) is a cross-sectional view of the semiconductor device after adhesive is applied onto the heat dissipation block
  • FIG. 3(c) is a cross-sectional view of the semiconductor device after sealing with molding resin and hardening the adhesive.
  • the method of manufacturing a semiconductor device in the steps S301 (FIG. 4(a)) to S302 (FIG. 4(b)) in FIG. 3 is similar to the method of manufacturing a semiconductor device in the steps S101 (FIG. 2(a)) to S102 (FIG. 2(b)) in FIG. 1 in the first embodiment, and corresponding parts are given the same reference numerals and their description is omitted.
  • step S302 in the second embodiment, the step of heat-treating the adhesive 100 is not performed separately. Instead, the adhesive 100 is sandwiched between the mold dies while still uncured, and heat treatment is performed while adjusting the height with the thickness of the adhesive 100 so that the height of the adhesive 100 applied to the heat dissipation blocks 50 on all devices 20 is the package height A, as shown in FIG. 4(c).
  • the adhesive 100 is cured, and the devices 20 are resin-sealed with mold resin 70 (step S303), so that the adhesive 100 is exposed on the top surface of the package (mold resin 70).
  • a protective tape or the like is sandwiched between the mold die and the adhesive 100 to prevent the mold die and the adhesive 100 from adhering to each other.
  • device 20 is bonded using a flip chip, and electrical connections are made from the underside of device 20, so there is no need for electrical continuity on the top side of device 20, and adhesive 60 and adhesive 100 can be either conductive or insulating.
  • the method for manufacturing a semiconductor device includes the steps of applying a heat-dissipating and thermosetting adhesive 60 to the surfaces of a plurality of devices 20 bonded to the surface of an organic substrate 10, mounting a heat dissipating block 50, and heat-treating the adhesive to bond the devices 20; applying a heat-dissipating and thermosetting adhesive 100 to the surface of the heat dissipating block 50 so that the adhesive 100 is higher than the height A of a molded resin 70 that will seal the devices 20 in a later step; and hardening the adhesive 100 by heat-treating the adhesive 100 while adjusting the height with the thickness of the adhesive 100 so that the height from the surface of the organic substrate 10 to the surface of the adhesive 100 is the height A of the molded resin 70.
  • the step of hardening the adhesive 100 includes sandwiching the devices 20 in a mold die and heat-treating the adhesive 100 while adjusting the height, hardening the adhesive 100, and sealing the devices 20 with the molded resin 70. This not only provides the effects of the first embodiment, but also eliminates the need to perform the step of heat-treating the second adhesive separately, making it possible to reduce the number of steps.
  • Embodiment 3 In the first and second embodiments, the thickness of the adhesive 100 is adjusted to match the height of the package, but in the third embodiment, a case will be described in which the thickness of the adhesive 60 is adjusted to match the height of the package.
  • FIG. 5 is a flow chart showing the manufacturing steps in the manufacturing method of a semiconductor device according to the third embodiment of the present application.
  • FIG. 6 is a cross-sectional view showing the manufacturing steps in the manufacturing method of a semiconductor device according to the third embodiment of the present application.
  • FIG. 6(a) is a cross-sectional view of the semiconductor device after a heat dissipation block is mounted on a device on an organic substrate
  • FIG. 6(b) is a cross-sectional view of the semiconductor device after the adhesive on which the heat dissipation block is mounted is heat-treated
  • FIG. 6(c) is a cross-sectional view of the semiconductor device after sealing with molding resin.
  • a thick layer of adhesive 60 with high heat dissipation and thermosetting properties is applied onto a plurality of devices 20 bonded to an organic substrate 10 with solder 40, and then a heat dissipation block is mounted (step S501).
  • the height of the heat dissipation block 50 after mounting is set to be higher than the height A of the package by the amount of the thickly applied adhesive 60.
  • the height of the top of the heat dissipation block 50 will vary depending on the dimensional tolerances of the thicknesses of the organic substrate 10, solder 40, devices 20, adhesive 60, and heat dissipation block 50, as well as the bonding state on the organic substrate.
  • step S502 the height to the heat dissipation block 50 on each device 20 is the package height A, and the height is adjusted by the thickness of the adhesive 60 while a heat treatment is performed to harden the adhesive 100.
  • the device 20 is resin-sealed using molded resin 70 so that the package height is A (step S503), and the surface of the heat dissipation block 50 is exposed on the upper surface of the package (molded resin 70). At this time, the surface of the heat dissipation block 50 is brought into contact with the mold die via protective tape or the like to prevent the molded resin 70 from flowing onto the heat dissipation block 50.
  • the device 20 is bonded using a flip chip, and electrical connections are made from the underside of the device 20, so there is no need for electrical continuity on the top side of the device 20, and the adhesive 60 can be either a conductive adhesive or an insulating adhesive.
  • the method for manufacturing a semiconductor device includes the steps of applying a heat dissipating and thermosetting adhesive 60 to the surface of a plurality of devices 20 bonded to the surface of an organic substrate 10 so that the surface is higher than the height of the molded resin 70 that seals the devices 20 in a later process when the heat dissipation block 50 is mounted, and then mounting the heat dissipation block 50, and the steps of hardening the adhesive 60 by performing heat treatment while adjusting the height with the thickness of the adhesive 60 so that the height from the surface of the organic substrate 10 to the surface of the heat dissipation block 50 is the height A of the molded resin 70.
  • the thickness of the adhesive 60 By leveling with the thickness of the adhesive 60 so that the height from the organic substrate 10 to the surface of the heat dissipation block 50 is the same as the height A of the molded resin 70, it is possible to absorb the dimensional tolerances of the thicknesses of the organic substrate, solder, device, adhesive, and heat dissipation block, and the variations due to the bonding state on the organic substrate, and by precisely aligning the height of the heat dissipation block surface, the device is not damaged and the heat dissipation block can be exposed to the module surface, making it easy to obtain a high-performance semiconductor device.
  • the height of the heat dissipation block is greater than the height A of the package, and the heat dissipation block does not come into contact with the mold die during molding resin sealing, preventing the device from being destroyed by the clamping pressure of the mold die.
  • the height of the adhesive is lower than the height A of the package, so the molded resin does not flow into the top of the heat dissipation block. Furthermore, compared to conventional methods, the cutting process can be reduced, and problems that can easily lead to quality defects such as burrs on the heat dissipation block or chipped molded resin can be eliminated.
  • Embodiment 4 In the third embodiment, the step of heat-treating and curing the adhesive 60 is carried out separately, but in the fourth embodiment, a case will be described in which this step is carried out simultaneously with the step of sealing the device 20 with resin.
  • FIG. 7 is a flow chart showing the manufacturing steps in the manufacturing method of a semiconductor device according to the fourth embodiment of the present application.
  • FIG. 8 is a cross-sectional view showing the manufacturing steps in the manufacturing method of a semiconductor device according to the fourth embodiment of the present application.
  • FIG. 8(a) is a cross-sectional view of the semiconductor device after a heat dissipation block is mounted on a device on an organic substrate
  • FIG. 8(b) is a cross-sectional view of the semiconductor device after sealing with molding resin and hardening of the adhesive.
  • the method of manufacturing a semiconductor device in step S701 in FIG. 7 (FIG. 8(a)) is the same as the method of manufacturing a semiconductor device in step S501 in FIG. 5 (FIG. 6(a)) in the third embodiment, and corresponding parts are given the same reference numerals and their description is omitted.
  • step S701 in the fourth embodiment, the step of heat-treating the adhesive 60 is not performed separately. Instead, the adhesive 60 is sandwiched between the mold dies while still uncured, and heat treatment is performed while adjusting the thickness of the adhesive 60 so that the height up to the top of all the heat dissipation blocks 50 on the device 20 is the package height A, as shown in FIG. 8(b).
  • the adhesive 60 is cured, and the device 20 is resin-sealed with molded resin 70 (step S802), so that the surface of the heat dissipation block 50 is exposed on the top surface of the package (molded resin 70).
  • the surface of the heat dissipation block 50 is brought into contact with the mold dies via a protective tape or the like to prevent the molded resin 70 from flowing onto the heat dissipation block 50.
  • the device 20 is bonded using a flip chip, and electrical connections are made from the underside of the device 20, so there is no need for electrical continuity on the top side of the device 20, and the adhesive 60 can be either a conductive adhesive or an insulating adhesive.
  • the method for manufacturing a semiconductor device includes the steps of applying a heat dissipating and thermosetting adhesive 60 to the surface of a plurality of devices 20 bonded to the surface of an organic substrate 10 so that the heat dissipating block 50 is higher than the height of the molded resin 70 that seals the devices 20 in a later process when the heat dissipating block 50 is mounted, and then mounting the heat dissipating block 50, and the steps of hardening the adhesive 60 by performing a heat treatment while adjusting the height with the thickness of the adhesive 60 so that the height from the surface of the organic substrate 10 to the surface of the heat dissipating block 50 is the height A of the molded resin 70.
  • the step of hardening the adhesive 60 includes sandwiching the devices 20 in a mold die and performing a heat treatment while adjusting the height to harden the adhesive 60 and seal the devices 20 with the molded resin 70. This not only provides the effect of the third embodiment, but also eliminates the need to perform the step of heat treating the adhesive separately, making it possible to reduce the number of steps.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

半導体装置の製造方法は、有機基板(10)の表面に接合された複数のデバイス(20)の表面に放熱性および熱硬化性を有する接着剤(60)を塗布した後に、放熱ブロック(50)を搭載し、熱処理して接着する工程と、放熱ブロック(50)の表面に、後工程でデバイス(20)を封止するモールド樹脂(70)の高さAよりも高くなるように放熱性および熱硬化性を有する接着剤(100)を塗布する工程と、有機基板(10)の表面から接着剤(100)の表面までの高さがモールド樹脂(70)の高さAになるように、接着剤(100)の厚さで高さを合わせながら熱処理して、接着剤(100)を硬化させる工程と、を含む。

Description

半導体装置の製造方法
 本願は、半導体装置の製造方法に関するものである。
 従来の半導体装置の一例である高周波製品対応ハイブリッドのモジュールは、モールド樹脂で封止する際、放熱ブロックがモジュール表面に露出するように放熱ブロックの高さを調整している。放熱ブロックは、一方を高放熱の接着剤を介して動作時に発熱するデバイスに接触させ、もう一方をモジュール表面に露出させることで、デバイスからの発熱を容易にモジュール外部へ放熱することができる。
 例えば、特許文献1では、半導体素子が搭載されたダイステージ部の裏面に、放熱ブロックの一方が接触し、他方がモジュール表面に露出するように外周側面を樹脂で囲われた半導体装置の製造方法が開示されている。
特開平04-299848号公報(段落0011、図1)
 しかしながら、従来の半導体装置の製造方法では、放熱ブロックの厚みの寸法公差及び有機基板上への接合状態により、複数の放熱ブロックの表面の高さを精度よく揃えることは難しい。放熱ブロック表面の高さが想定よりも高かった場合、モールド樹脂封止のためモールド金型で型締めした際にモールド金型と放熱ブロックが接触し、モールド金型の型締め圧力により、デバイスが破壊するという問題があった。また、放熱ブロック表面の高さが想定よりも低かった場合は、放熱ブロックの上にモールド樹脂が覆われ、デバイスの放熱性が悪化するという問題があった。
 本願は、上記のような課題を解決するためになされたものであり、放熱ブロック表面の高さを精度よく揃え、デバイスを損傷することなくモジュール表面に放熱ブロックを露出する半導体装置の製造方法を提供することを目的とする。
 本願に開示される半導体装置の製造方法は、基板の表面に接合された複数のデバイスの表面に放熱性および熱硬化性を有する第一接着剤を塗布した後に、放熱ブロックを搭載し、熱処理して接着する工程と、前記放熱ブロックの表面に、後工程で前記デバイスを封止する樹脂の高さよりも高くなるように放熱性および熱硬化性を有する第二接着剤を塗布する工程と、前記第二接着剤の表面までの高さが前記樹脂の高さになるように、前記第二接着剤の厚さで高さを合わせながら熱処理して、前記第二接着剤を硬化させる工程と、を含むことを特徴とする。
 また、本願に開示される半導体装置の製造方法は、基板の表面に接合された複数のデバイスの表面に、放熱ブロックを搭載した場合に後工程で前記デバイスを封止する樹脂の高さよりも高くなるように放熱性および熱硬化性を有する接着剤を塗布した後に、前記放熱ブロックを搭載する工程と、前記放熱ブロックの表面までの高さが前記樹脂の高さになるように、前記接着剤の厚さで高さを合わせながら熱処理して、前記接着剤を硬化させる工程と、を含むことを特徴とする。
 本願によれば、放熱ブロック表面の高さを精度よく揃えることにより、デバイスを損傷することなくモジュール表面に放熱ブロックを露出することができ、高性能な半導体装置を容易に得ることができる。
実施の形態1に係る半導体装置の製造方法での製造工程を示すフローチャート図である。 実施の形態1に係る半導体装置の製造方法での製造工程を示す断面図である。 実施の形態2に係る半導体装置の製造方法での製造工程を示すフローチャート図である。 実施の形態2に係る半導体装置の製造方法での製造工程を示す断面図である。 実施の形態3に係る半導体装置の製造方法での製造工程を示すフローチャート図である。 実施の形態3に係る半導体装置の製造方法での製造工程を示す断面図である。 実施の形態4に係る半導体装置の製造方法での製造工程を示すフローチャート図である。 実施の形態4に係る半導体装置の製造方法での製造工程を示す断面図である。
 実施の形態1.
 図1は、本願の実施の形態1に係る半導体装置の製造方法での製造工程を示すフローチャート図である。図2は、本願の実施の形態1に係る半導体装置の製造方法での製造工程を示す断面図である。図2(a)は有機基板上のデバイスに放熱ブロックを搭載し、熱処理した後の半導体装置の断面図、図2(b)は放熱ブロック上に接着剤を塗布した後の半導体装置の断面図、図2(c)は放熱ブロック上に塗布した接着剤を熱処理した後の半導体装置の断面図、図2(d)はモールド樹脂で封止した後の半導体装置の断面図である。
 最初に、図2(a)に示すように、有機基板10にはんだ40により接合された複数のデバイス20上に第一接着剤である高い放熱性および熱硬化性を有する接着剤60を塗布した後に、放熱ブロックを搭載し、熱処理を実施し、接着剤60を硬化させて接着する(ステップS101)。放熱ブロック50の接着後の高さは、パッケージの高さAよりも低くなるようにしておく。このとき、有機基板10、はんだ40、デバイス20、接着剤60、放熱ブロック50の厚みの寸法公差および有機基板上での接合状態により、放熱ブロック50の上部の高さにばらつきが発生する。
 続いて、図2(b)に示すように、放熱ブロック50の上にパッケージの高さAよりも高くなるように第二接着剤である高い放熱性および熱硬化性を有する接着剤100を塗布する(ステップS102)。
 次いで、図2(c)に示すように、すべてのデバイス20上の放熱ブロック50の上に塗布された接着剤100までの高さがパッケージの高さAになるように治具で挟み込んで、接着剤100の厚さで高さを合わせながら、熱処理を実施し、接着剤100を硬化させる(ステップS103)。
 最後に、図2(d)に示すように、モールド樹脂70を用いて、パッケージの高さAになるようにデバイス20の樹脂封止を行い(ステップS104)、接着剤100の表面がパッケージ(モールド樹脂70)上面に露出するようにする。このとき、接着剤100の表面は、保護テープ等を介してモールド金型と接触させ、接着剤100上にモールド樹脂70が流入しないようにする。
 ここで、デバイス20は、フリップチップで接合し、デイバス20の下面から電気的接続をするため、デバイス20の上面は導通をとる必要がなく、接着剤60と接着剤100は導電性の接着剤でも、絶縁性の接着剤でも構わない。
 以上のように、本実施の形態1に係る半導体装置の製造方法によれば、有機基板10の表面に接合された複数のデバイス20の表面に放熱性および熱硬化性を有する接着剤60を塗布した後に、放熱ブロック50を搭載し、熱処理して接着する工程と、放熱ブロック50の表面に、後工程でデバイス20を封止するモールド樹脂70の高さAよりも高くなるように放熱性および熱硬化性を有する接着剤100を塗布する工程と、有機基板10の表面から接着剤100の表面までの高さがモールド樹脂70の高さAになるように、接着剤100の厚さで高さを合わせながら熱処理して、接着剤100を硬化させる工程と、を含むようにしたので、有機基板10から接着剤100までの高さがパッケージ高さAと同じになるように接着剤100の厚さでレベリングすることによって、有機基板、はんだ、デバイス、第一接着剤、放熱ブロックの厚みの寸法公差および有機基板上での接合状態によるばらつきを吸収することができ、放熱部分の高さを精度よく揃えることにより、デバイスのダメージがなく、モジュール表面に放熱部分を露出することができ、高性能な半導体装置を容易に得ることができる。
 これにより、第二接着剤の高さがパッケージの高さAよりも高くなり、モールド樹脂封止時に第二接着剤がモールド金型に接触し、デバイスがモールド金型の型締め圧力により破壊することがない。
 また、第二接着剤の高さがパッケージの高さAよりも低くなり、放熱ブロック上部にモールド樹脂が流入することもない。さらに、従来の方法と比較して、切削の工程を削減することができ、放熱ブロックにバリが発生したり、モールド樹脂が欠けたりする品質上の不具合が起き易くなる問題もなくすことができる。
 実施の形態2.
 実施の形態1では、接着剤100を熱処理して硬化させる工程を単独で実施したが、実施の形態2では、デバイス20を樹脂封止する工程で同時に実施する場合について説明する。
 図3は、本願の実施の形態2に係る半導体装置の製造方法での製造工程を示すフローチャート図である。図3は、本願の実施の形態2に係る半導体装置の製造方法での製造工程を示す断面図である。図3(a)は有機基板上のデバイスに放熱ブロックを搭載し、熱処理した後の半導体装置の断面図、図3(b)は放熱ブロック上に接着剤を塗布した後の半導体装置の断面図、図3(c)はモールド樹脂で封止とともに接着剤を硬化させた後の半導体装置の断面図である。
 本実施の形態2において、図3のステップS301(図4(a))からステップS302(図4(b))の工程での半導体装置の製造方法は、実施の形態1での図1のステップS101(図2(a))からステップS102(図2(b))の工程での半導体装置の製造方法と同様であり、対応する部分には同符号を付してその説明を省略する。
 ステップS302の後、実施の形態2では接着剤100を熱処理する工程を単独では実施せず、接着剤100は未硬化のままモールド金型で挟み込んで、図4(c)に示すように、すべてのデバイス20上の放熱ブロック50の上に塗布された接着剤100までの高さがパッケージの高さAになるように接着剤100の厚さで高さを合わせながら、熱処理を実施し、接着剤100を硬化させるとともに、モールド樹脂70でデバイス20の樹脂封止を行い(ステップS303)、接着剤100がパッケージ(モールド樹脂70)上面に露出するようにする。このとき、保護テープ等をモールド金型と接着剤100の間に挟みこみ、モールド金型と接着剤100)が接着しないようにする。
 ここで、デバイス20は、フリップチップで接合し、デイバス20の下面から電気的接続をするため、デバイス20の上面は導通をとる必要がなく、接着剤60と接着剤100は導電性の接着剤でも、絶縁性の接着剤でも構わない。
 以上のように、本実施の形態2に係る半導体装置の製造方法によれば、有機基板10の表面に接合された複数のデバイス20の表面に放熱性および熱硬化性を有する接着剤60を塗布した後に、放熱ブロック50を搭載し、熱処理して接着する工程と、放熱ブロック50の表面に、後工程でデバイス20を封止するモールド樹脂70の高さAよりも高くなるように放熱性および熱硬化性を有する接着剤100を塗布する工程と、有機基板10の表面から接着剤100の表面までの高さがモールド樹脂70の高さAになるように、接着剤100の厚さで高さを合わせながら熱処理して、接着剤100を硬化させる工程と、を含み、接着剤100を硬化させる工程は、モールド金型で挟み込んで、前記高さを合わせながら熱処理をして、接着剤100を硬化させるとともに、モールド樹脂70でデバイス20を封止するようにしたので、実施の形態1での効果が得られるだけでなく、第二接着剤を熱処理する工程を単独で実施する必要がなく、工程の削減が可能となる。
 実施の形態3.
 実施の形態1および実施の形態2では、接着剤100の厚さでパッケージの高さに合わせたが、実施の形態3では、接着剤60の厚さでパッケージの高さに合わせる場合について説明する。
 図5は、本願の実施の形態3に係る半導体装置の製造方法での製造工程を示すフローチャート図である。図6は、本願の実施の形態3に係る半導体装置の製造方法での製造工程を示す断面図である。図6(a)は有機基板上のデバイスに放熱ブロックを搭載後の半導体装置の断面図、図6(b)は放熱ブロックを搭載した接着剤を熱処理した後の半導体装置の断面図、図6(c)はモールド樹脂で封止した後の半導体装置の断面図である。
 最初に、図6(a)に示すように、有機基板10にはんだ40により接合された複数のデバイス20上に高い放熱性および熱硬化性を有する接着剤60を厚く塗布した後に、放熱ブロックを搭載する(ステップS501)。放熱ブロック50の搭載後の高さは、接着剤60を厚く塗布した分だけ、パッケージの高さAよりも高くなるようにしておく。このとき、有機基板10、はんだ40、デバイス20、接着剤60、放熱ブロック50の厚みの寸法公差および有機基板上での接合状態により、放熱ブロック50の上部の高さにばらつきが発生する。
 次いで、図6(b)に示すように、すべてのデバイス20上の放熱ブロック50までの高さがパッケージの高さAになるように治具で挟み込んで、接着剤60の厚さで高さを合わせながら、熱処理を実施し、接着剤100を硬化させる(ステップS502)。
 最後に、図6(c)に示すように、モールド樹脂70を用いて、パッケージの高さAになるようにデバイス20の樹脂封止を行い(ステップS503)、放熱ブロック50の表面がパッケージ(モールド樹脂70)上面に露出するようにする。このとき、放熱ブロック50の表面は、保護テープ等を介してモールド金型と接触させ、放熱ブロック50上にモールド樹脂70が流入しないようにする。
 ここで、デバイス20は、フリップチップで接合し、デイバス20の下面から電気的接続をするため、デバイス20の上面は導通をとる必要がなく、接着剤60は導電性の接着剤でも、絶縁性の接着剤でも構わない。
 以上のように、本実施の形態3に係る半導体装置の製造方法によれば、有機基板10の表面に接合された複数のデバイス20の表面に、放熱ブロック50を搭載した場合に後工程でデバイス20を封止するモールド樹脂70の高さよりも高くなるように放熱性および熱硬化性を有する接着剤60を塗布した後に、放熱ブロック50を搭載する工程と、有機基板10の表面から放熱ブロック50の表面までの高さがモールド樹脂70の高さAになるように、接着剤60の厚さで高さを合わせながら熱処理して、接着剤60を硬化させる工程と、を含むようにしたので、有機基板10から放熱ブロック50までの高さがモールド樹脂70の高さAと同じになるように接着剤60の厚さでレベリングすることによって、有機基板、はんだ、デバイス、接着剤、放熱ブロックの厚みの寸法公差および有機基板上での接合状態によるばらつきを吸収することができ、放熱ブロック表面の高さを精度よく揃えることにより、デバイスのダメージがなく、モジュール表面に放熱ブロックを露出することができ、高性能な半導体装置を容易に得ることができる。
 これにより、放熱ブロックの高さがパッケージの高さAよりも高くなり、モールド樹脂封止時に放熱ブロックがモールド金型に接触し、デバイスがモールド金型の型締め圧力により破壊することがない。
 また、接着剤の高さがパッケージの高さAよりも低くなり、放熱ブロック上部にモールド樹脂が流入することもない。さらに、従来の方法と比較して、切削の工程を削減することができ、放熱ブロックにバリが発生したり、モールド樹脂が欠けたりする品質上の不具合が起き易くなる問題もなくすことができる。
 実施の形態4.
 実施の形態3では、接着剤60を熱処理して硬化させる工程を単独で実施したが、実施の形態4では、デバイス20を樹脂封止する工程で同時に実施する場合について説明する。
 図7は、本願の実施の形態4に係る半導体装置の製造方法での製造工程を示すフローチャート図である。図8は、本願の実施の形態4に係る半導体装置の製造方法での製造工程を示す断面図である。図8(a)は有機基板上のデバイスに放熱ブロックを搭載後の半導体装置の断面図、図8(b)はモールド樹脂で封止とともに接着剤を硬化させた後の半導体装置の断面図である。
 本実施の形態4において、図7のステップS701(図8(a))の工程での半導体装置の製造方法は、実施の形態3での図5のステップS501(図6(a))の工程での半導体装置の製造方法と同様であり、対応する部分には同符号を付してその説明を省略する。
 ステップS701の後、実施の形態4では接着剤60を熱処理する工程を単独では実施せず、接着剤60は未硬化のままモールド金型で挟み込んで、図8(b)に示すように、デバイス20上のすべての放熱ブロック50の上までの高さがパッケージの高さAになるように接着剤60の厚さで高さを合わせながら、熱処理を実施し、接着剤60を硬化させるとともに、モールド樹脂70でデバイス20の樹脂封止を行い(ステップS802)、放熱ブロック50の表面がパッケージ(モールド樹脂70)上面に露出するようにする。このとき、放熱ブロック50の表面は、保護テープ等を介してモールド金型と接触させ、放熱ブロック50上にモールド樹脂70が流入しないようにする。
 ここで、デバイス20は、フリップチップで接合し、デイバス20の下面から電気的接続をするため、デバイス20の上面は導通をとる必要がなく、接着剤60は導電性の接着剤でも、絶縁性の接着剤でも構わない。
 以上のように、本実施の形態4に係る半導体装置の製造方法によれば、有機基板10の表面に接合された複数のデバイス20の表面に、放熱ブロック50を搭載した場合に後工程でデバイス20を封止するモールド樹脂70の高さよりも高くなるように放熱性および熱硬化性を有する接着剤60を塗布した後に、放熱ブロック50を搭載する工程と、有機基板10の表面から放熱ブロック50の表面までの高さがモールド樹脂70の高さAになるように、接着剤60の厚さで高さを合わせながら熱処理をして、接着剤60を硬化させる工程と、を含み、接着剤60を硬化させる工程は、モールド金型で挟み込んで、前記高さを合わせながら熱処理して、接着剤60を硬化させるとともに、モールド樹脂70でデバイス20を封止するようにしたので、実施の形態3での効果が得られるだけでなく、接着剤を熱処理する工程を単独で実施する必要がなく、工程の削減が可能となる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 10 有機基板、20 デバイス、40 はんだ、50 放熱ブロック、60 接着剤、70 モールド樹脂、100 接着剤。

Claims (4)

  1.  基板の表面に接合された複数のデバイスの表面に放熱性および熱硬化性を有する第一接着剤を塗布した後に、放熱ブロックを搭載し、熱処理して接着する工程と、
     前記放熱ブロックの表面に、後工程で前記デバイスを封止する樹脂の高さよりも高くなるように放熱性および熱硬化性を有する第二接着剤を塗布する工程と、
     前記第二接着剤の表面までの高さが前記樹脂の高さになるように、前記第二接着剤の厚さで高さを合わせながら熱処理して、前記第二接着剤を硬化させる工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2.  前記第二接着剤を硬化させる工程においては、金型で挟み込んで、前記高さを合わせながら熱処理をして、前記第二接着剤を硬化させるとともに、前記樹脂で前記デバイスを封止することを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  基板の表面に接合された複数のデバイスの表面に、放熱ブロックを搭載した場合に後工程で前記デバイスを封止する樹脂の高さよりも高くなるように放熱性および熱硬化性を有する接着剤を塗布した後に、前記放熱ブロックを搭載する工程と、
     前記放熱ブロックの表面までの高さが前記樹脂の高さになるように、前記接着剤の厚さで高さを合わせながら熱処理をして、前記接着剤を硬化させる工程と、
    を含むことを特徴とする半導体装置の製造方法。
  4.  前記接着剤を硬化させる工程においては、金型で挟み込んで、前記高さを合わせながら熱処理をして、前記接着剤を硬化させるとともに、前記樹脂で前記デバイスを封止することを特徴とする請求項3に記載の半導体装置の製造方法。
PCT/JP2022/040391 2022-10-28 2022-10-28 半導体装置の製造方法 WO2024089880A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040391 WO2024089880A1 (ja) 2022-10-28 2022-10-28 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040391 WO2024089880A1 (ja) 2022-10-28 2022-10-28 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2024089880A1 true WO2024089880A1 (ja) 2024-05-02

Family

ID=90830297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040391 WO2024089880A1 (ja) 2022-10-28 2022-10-28 半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024089880A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179612A (ja) * 2013-03-14 2014-09-25 General Electric Co <Ge> パワーオーバーレイ構造およびその製造方法
JP2015012161A (ja) * 2013-06-28 2015-01-19 株式会社デンソー 電子装置
WO2018168391A1 (ja) * 2017-03-13 2018-09-20 三菱電機株式会社 マイクロ波デバイス及び空中線

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179612A (ja) * 2013-03-14 2014-09-25 General Electric Co <Ge> パワーオーバーレイ構造およびその製造方法
JP2015012161A (ja) * 2013-06-28 2015-01-19 株式会社デンソー 電子装置
WO2018168391A1 (ja) * 2017-03-13 2018-09-20 三菱電機株式会社 マイクロ波デバイス及び空中線

Similar Documents

Publication Publication Date Title
US7291913B2 (en) System and method for high performance heat sink for multiple chip devices
US7037756B1 (en) Stacked microelectronic devices and methods of fabricating same
US20080284007A1 (en) Semiconductor module and method for manufacturing semiconductor module
WO2016108261A1 (ja) パワーモジュール
TW200830490A (en) High thermal performance packaging for circuit dies
US20130334677A1 (en) Semiconductor Modules and Methods of Formation Thereof
DE102019132837A1 (de) Doppelseitiges kühlleistungsmodul und verfahren zu dessen herstellung
JP2003264205A (ja) 半導体装置の製造方法
JP3423912B2 (ja) 電子部品、電子部品の樹脂封止方法、及び樹脂封止装置
US20090026589A1 (en) Semiconductor device and method of manufacturing the same
JP2013135061A (ja) 半導体装置の製造方法
WO2024089880A1 (ja) 半導体装置の製造方法
JP2003170465A (ja) 半導体パッケージの製造方法およびそのための封止金型
US20050287708A1 (en) Semiconductor chip package manufacturing method including screen printing process
JP2617402B2 (ja) 半導体装置、電子回路装置、およびそれらの製造方法
JP4842177B2 (ja) 回路基板及びパワーモジュール
KR970067732A (ko) 접착 조성물의 수축으로 인한 파손이 적은 반도체 칩과 기판 사이의 전기적 접속을 갖는 반도체 소자 및 그 실장 방법
JP4010860B2 (ja) 混成集積回路装置およびその製造方法
JP4024458B2 (ja) 半導体装置の実装方法および半導体装置実装体の製造方法
JP7482833B2 (ja) 半導体装置および半導体装置の製造方法
TW202324546A (zh) 雙面冷卻組件的封裝製程
JP2003347484A (ja) 混成集積回路装置
JP3985558B2 (ja) 熱伝導性基板の製造方法
CN1893005A (zh) 防止封装元件溢胶的方法
CN1653604A (zh) 半导体器件封装系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963527

Country of ref document: EP

Kind code of ref document: A1