WO2024089808A1 - 軸流ファン、送風機、及び、空気調和機 - Google Patents

軸流ファン、送風機、及び、空気調和機 Download PDF

Info

Publication number
WO2024089808A1
WO2024089808A1 PCT/JP2022/039958 JP2022039958W WO2024089808A1 WO 2024089808 A1 WO2024089808 A1 WO 2024089808A1 JP 2022039958 W JP2022039958 W JP 2022039958W WO 2024089808 A1 WO2024089808 A1 WO 2024089808A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
thickness
axial
connection portion
axial fan
Prior art date
Application number
PCT/JP2022/039958
Other languages
English (en)
French (fr)
Inventor
勝幸 山本
拓矢 寺本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/039958 priority Critical patent/WO2024089808A1/ja
Publication of WO2024089808A1 publication Critical patent/WO2024089808A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps

Definitions

  • This disclosure relates to an axial fan with multiple blades, a blower equipped with the axial fan, and an air conditioner equipped with the blower.
  • axial fans have been proposed that have multiple blades and rings connected to each tip of the multiple blades (see, for example, Patent Document 1).
  • a ring is connected to each blade tip, making it difficult for air to flow around the blade tips from the positive pressure side to the negative pressure side of the blade, suppressing the generation of vortexes at the blade tips.
  • the present disclosure is intended to solve the problems described above, and aims to provide an axial fan, a blower, and an air conditioner that improve the strength of the axial fan.
  • the axial flow fan comprises a hub that is driven to rotate and forms a rotating shaft, a number of blades that are formed around the hub and extend radially outward from the hub, and a ring portion that is formed in a ring shape when viewed in the axial direction of the rotating shaft and is formed integrally with each of the radially outer blade tips of the blades, and each of the blades has a connection portion that is a portion that is connected to the ring portion and where the thickness of the blade increases from the radial inner portion to the radial outer portion centered on the rotating shaft in a radial cross section that is parallel to the axial direction of the blade.
  • the blower according to the present disclosure includes an axial fan having the above-described configuration and a drive source that provides a driving force to the axial fan.
  • the air conditioner disclosed herein includes a blower having the above-described configuration, a condenser that condenses the refrigerant, and an evaporator that evaporates the refrigerant, and the blower blows air to at least one of the condenser and the evaporator.
  • the blade of the axial fan includes a connection portion.
  • the connection portion is the portion where the blade is connected to the ring portion, and is the portion where the thickness of the blade increases from the radial inner portion to the radial outer portion in the radial cross section of the blade.
  • FIG. 1 is a front view showing a schematic configuration of an axial fan according to a first embodiment
  • 2 is a conceptual diagram of a cross section of the blade taken along line AA of FIG. 1, viewed in the direction of the arrows, in the axial fan according to the first embodiment
  • 2 is a conceptual diagram of a cross section of the blade taken along line AA of FIG. 1, viewed in the direction of the arrows, in an axial flow fan according to a comparative example
  • 2 is a conceptual diagram of a cross section of the blade taken along line AA of FIG. 1 as viewed in the direction of the arrows in an axial flow fan according to a second comparative example.
  • FIG. 11 is a front view showing a schematic configuration of an axial fan according to a third embodiment.
  • 7 is a conceptual diagram of a cross section of the blade taken along line BB of FIG. 6, viewed in the direction of the arrows, in an axial fan according to a third embodiment.
  • 7 is a conceptual diagram of a cross section of the blade taken along line CC of FIG. 6, viewed in the direction of the arrows, in an axial fan according to a third embodiment.
  • 1 in an axial fan according to a fourth embodiment of the present invention a conceptual diagram showing a cross section of the blade taken along line AA in FIG.
  • FIG. 23 is a first conceptual diagram of a cross section of the blade at line AA in FIG. 1 as viewed in the direction of the arrows in an axial fan according to embodiment 7.
  • FIG. 22 is a second conceptual diagram of a cross section of the blade at line AA in FIG. 1 as viewed in the direction of the arrows in an axial fan according to embodiment 7.
  • FIG. 23 is a third conceptual diagram of a cross section of the blade at line AA in FIG.
  • FIG. 23 is a fourth conceptual diagram of a cross section of the blade at line AA in FIG. 1 as viewed in the direction of the arrows in an axial fan according to embodiment 7.
  • FIG. 21 is a fifth conceptual diagram of an axial fan according to embodiment 7, showing a cross section of the blade at line AA in FIG. 1 as viewed in the direction of the arrows.
  • FIG. 13 is a sixth conceptual diagram of an axial fan according to embodiment 7, showing a cross section of the blade at line AA in FIG. 1 as viewed in the direction of the arrows.
  • FIG. 13 is a schematic diagram of an air conditioner according to an eighth embodiment.
  • FIG. 13 is a perspective view of an outdoor unit of an air conditioner according to an eighth embodiment, as viewed from the air outlet side.
  • FIG. FIG. 2 is a diagram illustrating the configuration of the outdoor unit from the top side.
  • FIG. 2 is a diagram showing the outdoor unit with the fan grill removed.
  • FIG. 1 is a front view showing a schematic configuration of an axial fan 100 according to a first embodiment.
  • a rotational direction DR indicated by an arrow in the figure indicates the direction in which the axial fan 100 rotates.
  • a counter-rotational direction OR indicated by an arrow in the figure indicates the direction opposite to the direction in which the axial fan 100 rotates.
  • a circumferential direction CD indicated by a double-headed arrow in the figure indicates the circumferential direction of the axial fan 100.
  • the circumferential direction CD includes the rotational direction DR and the counter-rotational direction OR.
  • the Y-axis shown in FIG. 1 is a direction perpendicular to the rotation axis RA of the axial fan 100, and represents the radial direction of the axial fan 100.
  • the Y2 side portion is located on the outer periphery side of the Y1 side portion
  • the Y1 side portion is located on the inner periphery side of the Y2 side portion.
  • the Y1 side of the axial fan 100 is the inner periphery side of the axial fan 100
  • the Y2 side of the axial fan 100 is the outer periphery side of the axial fan 100.
  • the axial fan 100 is an axial impeller, and is a device that creates a flow of fluid.
  • the axial fan 100 is used in a blower 55 (see FIG. 20) described below, and is used, for example, as a fan in an air conditioner or a ventilator.
  • the axial fan 100 creates a flow of fluid by rotating in a rotation direction DR about a rotation axis RA.
  • the fluid is, for example, a gas such as air, and the axial fan 100 creates an air flow by rotating.
  • FIG. 1 is a view of the axial fan 100 viewed from the upstream side in the direction of fluid flow.
  • the upstream side of the axial fan 100 is the air intake side of the axial fan 100
  • the downstream side of the axial fan 100 is the air blowing side of the axial fan 100.
  • the axial fan 100 includes a hub 10 connected to a rotating shaft rotated by a driving source such as a motor (not shown), and a number of blades 20 extending from the hub 10 toward the outer periphery.
  • the axial fan 100 is formed in an annular shape when viewed in the axial direction of the rotating shaft RA, and includes a ring portion 30 formed integrally with each of the radially outer blade tips of the blades 20.
  • Each blade tip of the blades 20 is the end of the blade 20 opposite the hub 10.
  • the axial fan 100 includes a so-called bossless type fan in which the leading edge side and trailing edge side parts of adjacent blades 20 among the blades 20 are connected to form a continuous surface without a boss.
  • the axial fan 100 is molded, for example, from resin, but may also be formed from metal.
  • the hub 10 is connected to a rotating shaft of a driving source such as a motor (not shown).
  • the hub 10 may be configured, for example, in a cylindrical shape, or in a plate shape such as a disk shape.
  • the shape of the hub 10 is not limited as long as it can be connected to the rotating shaft of the driving source as described above.
  • the hub 10 is driven to rotate by a motor (not shown) or the like to form a rotation axis RA.
  • the hub 10 rotates around the rotation axis RA.
  • the rotation direction DR of the axial fan 100 is counterclockwise as shown by the arrow in FIG. 1.
  • the rotation direction DR of the axial fan 100 is not limited to counterclockwise.
  • the hub 10 may rotate clockwise by changing the mounting angle of the blades 20 or the orientation of the blades 20.
  • the blades 20 are provided around the hub 10 and are formed to extend radially outward from the hub 10.
  • the blades 20 are arranged radially outward from the hub 10.
  • the blades 20 are spaced apart from each other in the circumferential direction CD.
  • the axial fan 100 having three blades 20 is exemplified in the first embodiment, the number of blades 20 is not limited to three.
  • the blades 20 are connected by a ring portion 30, which will be described later.
  • the multiple blades 20 are formed in the same shape around the hub 10.
  • the multiple blades 20 are also arranged at equal intervals in the circumferential direction CD.
  • the blades 20 are not limited to this configuration.
  • the multiple blades 20 may be formed in different shapes and may be arranged at different intervals in the circumferential direction CD.
  • the blade 20 is formed in the shape of a forward-swept blade with the outer circumferential portion protruding further forward in the direction of rotation DR than the inner circumferential portion.
  • the blade 20 is not limited to a forward-swept blade, and may be formed in other shapes.
  • the blade 20 is formed in a roughly triangular shape with the width in the circumferential direction CD of the outer circumferential portion being greater than the width in the circumferential direction CD of the inner circumferential portion.
  • the blade 20 is not limited to being formed in a roughly triangular shape when viewed in the axial direction of the rotation axis RA.
  • the blade 20 has a leading edge 21, a trailing edge 22, an inner edge 24 that connects to the hub 10, and an outer edge 23 that forms the outer edge between the leading edge 21 and the trailing edge 22.
  • the leading edge 21 is formed on the forward side of the blade 20 in the direction of rotation DR. In other words, the leading edge 21 is located forward of the trailing edge 22 in the direction of rotation DR. The leading edge 21 is located upstream of the trailing edge 22 in the flow direction of the fluid to be generated.
  • the trailing edge 22 is formed on the blade 20 at the rearward side of the rotation direction DR. That is, the trailing edge 22 is located rearward of the leading edge 21 in the rotation direction DR. The trailing edge 22 is located downstream of the leading edge 21 in the flow direction of the generated fluid.
  • the axial fan 100 has the leading edge 21 as the blade tip that faces the rotation direction DR of the axial fan 100, and the trailing edge 22 as the blade tip on the opposite side of the leading edge 21 in the rotation direction DR.
  • the outer edge portion 23 extends forward and backward in the direction of rotation DR so as to form the portion between the outermost periphery of the leading edge portion 21 and the outermost periphery of the trailing edge portion 22.
  • the outer edge portion 23 forms the blade tip portion on the outer periphery side in the radial direction (Y-axis direction) of the axial flow fan 100.
  • the outer edge portion 23 forms the outer periphery of the blade 20.
  • the outer edge portion 23 is formed in an arc shape when viewed in the axial direction of the rotation axis RA.
  • the outer edge portion 23 is not limited to a configuration in which it is formed in an arc shape when viewed in the axial direction of the rotation axis RA.
  • the outer edge portion 23 includes a portion that is formed in an arc shape when viewed in the axial direction of the rotation axis RA.
  • the blade 20 When viewed in the axial direction of the rotation axis RA, the blade 20 is formed such that the length of the outer edge 23 in the circumferential direction CD is longer than the length of the inner edge 24 in the circumferential direction CD.
  • the relationship between the length of the outer edge 23 and the length of the inner edge 24 in the circumferential direction CD of the blade 20 is not limited to this configuration.
  • the length of the outer edge 23 and the length of the inner edge 24 in the circumferential direction CD of the blade 20 may be equal, or the length of the inner edge 24 may be longer than the length of the outer edge 23.
  • the inner edge portion 24 extends forward and backward in the direction of rotation DR so as to form the portion between the innermost periphery of the leading edge portion 21 and the innermost periphery of the trailing edge portion 22.
  • the inner edge portion 24 forms the inner end portion in the radial direction (Y-axis direction) of the axial flow fan 100.
  • the inner edge portion 24 forms the inner peripheral edge of the blade 20 and forms the root portion of the blade 20.
  • the inner edge 24 is formed in an arc shape when viewed in the axial direction of the rotation axis RA.
  • the inner edge 24 is not limited to being formed in an arc shape when viewed in the axial direction of the rotation axis RA.
  • the inner edge 24 of the blade 20 is connected to the hub 10, for example, by being formed integrally with the hub 10.
  • the inner edge 24 of the blade 20 is formed integrally with the outer peripheral wall of the hub 10, which is formed in a cylindrical shape.
  • the blades 20 are formed at an angle to a plane perpendicular to the rotation axis RA.
  • the blades 20 transport the fluid by pushing the fluid present between the blades 20 with the blade surfaces 28 as the axial fan 100 rotates.
  • the surface of the blade surfaces 28 of the blades 20 that pushes the fluid and causes the pressure to increase when the axial fan 100 rotates is called the positive pressure surface 25, and the surface that constitutes the back surface of the positive pressure surface 25 and causes the pressure to decrease is called the negative pressure surface 26.
  • Each of the multiple blades 20 includes the positive pressure surface 25 that constitutes the surface of the blade surfaces 28 of the blades 20 that pushes the fluid and causes the pressure to increase when the blades 20 rotate, and the negative pressure surface 26 that constitutes the back surface of the positive pressure surface 25 and causes the pressure to decrease.
  • the blade surface 28 is such that the surface facing the upstream side of the blade 20 is the negative pressure surface 26, and the surface facing the downstream side is the positive pressure surface 25.
  • the positive pressure surface 25 is the surface facing the direction of rotation DR
  • the negative pressure surface 26 is the surface facing the opposite side to the direction of rotation DR.
  • the surface of the blade 20 on the rear side is the positive pressure surface 25
  • the surface of the blade 20 on the front side is the negative pressure surface 26.
  • Figure 2 is a conceptual diagram of the axial fan 100 according to the first embodiment, showing a cross section of the blade 20 at line A-A in Figure 1, viewed in the direction of the arrows. That is, Figure 2 shows a radial cross section of the axial fan 100 and the blade 20.
  • the position of line A-A of the blade 20 in Figure 1 is just one example.
  • the position of line A-A of the blade 20 may be any one position in the circumferential direction CD of the blade 20, and may be, for example, a position close to the leading edge 21 or a position close to the trailing edge 22 in the circumferential direction CD.
  • the blade 20 includes a connection portion 27.
  • connection portion 27 is a portion that is connected to the ring portion 30, and is a portion where the thickness of the blade 20 increases from the inner portion toward the outer portion in the radial direction (Y-axis direction) centered on the rotation axis RA in the radial direction of the blade 20.
  • the radial cross section is a cross section parallel to the axial direction of the rotation axis RA in the radial direction of the blade 20.
  • the connection portion 27 is formed integrally with the ring portion 30. That is, the connection portion 27 is a portion where the distance between the positive pressure surface 25 and the negative pressure surface 26 of the blade 20 increases from the inner portion toward the outer portion in the radial direction (Y-axis direction) in the radial cross section of the blade 20.
  • the maximum width of the connection portion 27 in the axial direction of the rotation axis RA is the connection portion width CW
  • the thickness of the ring portion 30 in the radial direction (Y-axis direction) is the ring width RW.
  • the axial fan 100 is formed so that the connection portion width CW of the connection portion 27 is larger than the ring width RW of the ring portion 30.
  • the connection portion 27 is thicker than the ring portion 30.
  • the connection portion 27 is formed so that the thickness in the axial direction of the rotation axis RA is thicker than the thickness of the ring portion 30 in the radial direction of the rotation axis RA.
  • the ring portion 30 and the blade 20 are widely connected at the outer circumferential end of the blade 20 by the connection portion 27.
  • the axial fan 100 according to the first embodiment is intended for the thickness of the blade 20 when viewed in one cross section of the blade 20.
  • connection portion 27 is provided at least on the outer periphery of the blade 20 in the radial direction (Y-axis direction) centered on the rotation axis RA. That is, the connection portion 27 is provided at least on the outer edge portion 23 of the blade 20.
  • the connection portion 27 only needs to be provided in a portion on the outer periphery side of the central portion 20a, which is the midpoint between the rotation axis RA and the ring portion 30, in the radial direction (Y-axis direction).
  • connection portion 27 is provided in part or all of the outer circumferential region 20b. Note that if the connection portion 27 is provided in part of the outer circumferential region 20b, the connection portion 27 is formed integrally with the ring portion 30, and therefore the connection portion 27 is provided in the outer circumferential portion of the outer circumferential region 20b including the connection portion with the ring portion 30.
  • the connection portion 27 is formed to extend from the ring portion 30 toward the rotation axis RA in the radial direction (Y-axis direction) centered on the rotation axis RA.
  • connection portion 27 may be formed on the entire blade 20 in the circumferential direction CD, or may be formed only on a portion of the blade 20. That is, the connection portion 27 may be formed on a portion of the outer edge portion 23 between the leading edge portion 21 and the trailing edge portion 22, or may be formed on the entire outer edge portion 23.
  • the ring portion 30 is formed in an annular shape when viewed in the axial direction of the rotation axis RA, and is formed integrally with each of the radially outer blade ends of the plurality of blades 20.
  • the ring portion 30 is formed in a cylindrical shape so as to extend in the axial direction of the rotation axis RA.
  • the ring portion 30 is formed in an annular shape when viewed in the axial direction of the rotation axis RA.
  • the ring portion 30 When viewed in the axial direction of the rotation axis RA, the ring portion 30 is formed to surround the blades 20. The three blades 20 are connected by the ring portion 30.
  • a space S through which air escapes in the axial direction of the rotation axis RA is formed by two adjacent blades 20 in the circumferential direction CD and the inner peripheral portion of the ring portion 30.
  • the ring portion 30 has both ends in the axial direction of the rotation axis RA formed parallel to the axial direction of the rotation axis RA.
  • the ends of the ring portion 30 are not limited to this configuration, and for example, one or both of the ends of the ring portion 30 in the axial direction of the rotation axis RA may be bent so as to bend outward toward the outer periphery.
  • the pressure on the negative pressure surface 26 side becomes smaller than the pressure on the positive pressure surface 25 side, and a pressure difference occurs between the positive pressure surface 25 side and the negative pressure surface 26 side around each blade 20. Because the axial fan 100 is provided with the ring portion 30, it becomes difficult for the air pushed out by the positive pressure surface 25 of the axial fan 100 to go around the blade tip from the positive pressure surface 25 side to the negative pressure surface 26 side of each blade 20.
  • Figure 3 is a conceptual diagram of an axial flow fan 100L according to a comparative example, showing a cross section of the blade 20 at line A-A in Figure 1, viewed in the direction of the arrows.
  • the blade 20L of the axial flow fan 100L according to the comparative example does not include a connecting portion 27. Because the axial flow fan 100 according to the comparative example does not have a connecting portion 27, stress is concentrated at the connecting portion SC between the blade 20L and the ring portion 30 when the blade 20 rotates, and stress is not sufficiently distributed, so that it may not be possible to ensure sufficient strength at the connecting portion SC.
  • the blade 20 of the axial fan 100 includes a connection portion 27 as shown in FIG. 2.
  • the connection portion 27 is the portion where the blade 20 is connected to the ring portion 30, and is the portion where the thickness of the blade 20 increases from the inner peripheral portion in the radial direction (Y-axis direction) toward the outer peripheral portion in the radial cross section, which is a cross section parallel to the axial direction in the radial direction of the blade 20.
  • the axial fan 100 has a connection portion 27 that connects the outer peripheral side of the cross section of the blade 20 to the ring portion 30 by increasing the thickness toward the outer peripheral side in the radial direction, thereby reinforcing the connection portion between the blade 20 and the ring portion 30 and sufficiently dispersing the concentration of stress. Therefore, the strength of the axial fan 100 can be improved compared to when the axial fan 100 does not have the connection portion 27.
  • Figure 4 is a conceptual diagram of the cross section of the blade 20 in Figure 1 at line A-A in the axial fan 100R of the second comparative example, viewed in the direction of the arrows.
  • the blade 20R of the axial fan 100R of the second comparative example does not include a connection portion 27.
  • the width of the connection portion SC between the blade 20 and the ring portion 30 in the axial direction of the rotation axis RA is the connection portion width CWR
  • the thickness of the ring portion 30 in the radial direction (Y-axis direction) is the ring width RW.
  • the axial fan 100R is formed so that the ring width RW of the ring portion 30 is greater than the connection width CWR of the connection portion SC in the radial cross section. That is, the ring portion 30 is thicker than the connection portion SC in the radial cross section.
  • the thickness of the ring portion 30 is increased overall, as in the axial fan 100R shown in FIG. 4.
  • the shear force applied in the axial direction of the rotation axis RA is not a force applied in the radial direction due to the increased thickness.
  • the axial fan 100 does not achieve sufficient stress dispersion at the connection portion SC, and the overall weight of the axial fan 100R increases.
  • the blades 20 of the axial fan 100 include a connection portion 27 as shown in FIG. 2.
  • the connection portion 27 is formed so that the thickness in the axial direction of the rotation axis RA in the radial cross section of the blade 20 is thicker than the thickness of the ring portion 30 in the radial direction of the rotation axis RA.
  • the axial fan 100 is formed so that the connection width CW of the connection portion 27 is larger than the ring width RW of the ring portion 30, and the connection portion 27 is formed thicker than the ring portion 30.
  • connection portion 27 thicker than the ring portion 30
  • the axial fan 100 can suppress an increase in weight compared to when the ring portion 30 is made thicker than the connection portion 27, and can reinforce the connection portion between the blades 20 and the ring portion 30 and sufficiently disperse stress concentration. Therefore, the strength of the axial fan 100 can be improved compared to when the axial fan 100 does not have the connection portion 27.
  • Embodiment 2 Figure 5 is a conceptual diagram of an axial fan 100 according to a second embodiment, taken along line A-A of blade 20 in Figure 1, as viewed in the direction of the arrows. Components having the same configuration as those in axial fan 100 in Figures 1 to 4 are given the same reference numerals and their description will be omitted.
  • the axial fan 100 according to the second embodiment further specifies the shape of connection part 27 in radial cross section.
  • the blade 20 forms a negative pressure surface 26 that curves from the downstream side toward the upstream side in the direction of the fluid flowing when the blade 20 rotates, from the inner edge 24 side toward the outer edge 23.
  • the corner portion 27b of the negative pressure surface 26 is formed in a concave shape in the radial cross section of the blade 20.
  • the negative pressure surface 26 of the connection portion 27 is formed in a convex curve from the upstream side toward the downstream side of the airflow in the direction of the airflow formed by the axial fan 100 in the radial cross section of the blade 20.
  • Normal line H1 shown in FIG. 5 is the normal line of the negative pressure surface 26 at the inner circumferential portion of the connection portion 27 in the radial cross section of the blade 20.
  • Normal line H2 is the normal line of the negative pressure surface 26 at the outer circumferential portion of the connection portion 27 in the radial cross section of the blade 20.
  • the connection portion 27 is formed such that the normal line of the negative pressure surface 26 inclines from a direction parallel to the rotation axis RA to a direction perpendicular to the rotation axis RA as it moves from the inner circumferential portion of the blade 20 to the outer circumferential portion.
  • the negative pressure surface 26 of the connection portion 27 is formed so as to curve from downstream to upstream in the direction of the fluid flow formed by the axial fan 100 as it moves from the inner circumferential portion toward the outer edge portion 23.
  • the negative pressure surface 26 of the connection portion 27 is formed so as to curve from downstream to upstream in the direction of the fluid flow formed by the axial fan 100 as it moves from the inner circumferential portion toward the outer edge portion 23.
  • the blade 20 has a negative pressure surface 26 that curves from downstream to upstream as it moves toward the radial outer periphery at the connection portion 27.
  • the blade 20 forms a positive pressure surface 25 that curves from the upstream side toward the downstream side in the direction of the fluid flowing when the blade 20 rotates, from the inner edge 24 side toward the outer edge 23.
  • the corner portion 27a of the positive pressure surface 25 is formed in a concave shape in the radial cross section of the blade 20.
  • the positive pressure surface 25 of the connection portion 27 is formed in a convex curve from the downstream side toward the upstream side of the airflow in the direction of the airflow formed by the axial fan 100 in the radial cross section of the blade 20.
  • Normal line H3 shown in FIG. 5 is the normal line of the positive pressure surface 25 at the inner circumferential portion of the connection portion 27 in the radial cross section of the blade 20.
  • Normal line H4 is the normal line of the positive pressure surface 25 at the outer circumferential portion of the connection portion 27 in the radial cross section of the blade 20.
  • the connection portion 27 is formed such that the normal line of the positive pressure surface 25 inclines from a direction parallel to the rotation axis RA to a direction perpendicular to the rotation axis RA as it moves from the inner circumferential portion of the blade 20 to the outer circumferential portion.
  • the positive pressure surface 25 of the connection portion 27 is formed so as to curve from the upstream side to the downstream side in the direction of the flow of the fluid formed by the axial fan 100 as it moves from the inner circumferential portion toward the outer edge portion 23.
  • the positive pressure surface 25 of the connection portion 27 is formed so as to curve up from the upstream side to the downstream side in the direction of the flow of the fluid formed by the axial fan 100 as it moves from the inner circumferential portion toward the outer edge portion 23.
  • the blade 20 has a positive pressure surface 25 that curves up from the upstream side to the downstream side as it moves toward the radial outer periphery at the connection portion 27.
  • connection portion 27 is formed in a concave curved shape in the radial cross section of the connection portion 27 where the thickness of the blade 20 increases.
  • the connection portion 27 is connected to the ring portion 30 smoothly from the inner peripheral portion of the blade 20 toward the outer peripheral portion.
  • At least one of the negative pressure surface 26 and the positive pressure surface 25 of the connection portion 27 includes, for example, a portion formed in an arc shape.
  • connection portion 27 i.e., the connection portion between the blade 20 and the ring portion 30, is formed to have an obtuse angle
  • stress may be concentrated in that portion when the blade 20 rotates.
  • the inner peripheral end of the connection portion 27 is also formed to have an obtuse angle between the inner peripheral portion and the outer peripheral portion of the blade 20, stress may be concentrated in that portion when the blade 20 rotates.
  • the blades 20 of the axial fan 100 In the blades 20 of the axial fan 100 according to the second embodiment, at least one of the negative pressure surface 26 and the positive pressure surface 25 of the connection portion 27 is formed in a concave curved shape in the radial cross section of the connection portion 27 where the thickness of the blade 20 increases.
  • the blades 20 and the ring portion 30 are smoothly connected by the curved shape of the connection portion 27, so that there is no obtuse angle at the connection portion between the blades 20 and the ring portion 30. Therefore, the axial fan 100 can distribute stress better than when the connection portion between the blades 20 and the ring portion 30 has an obtuse angle.
  • the axial flow fan 100 has an inner circumferential portion and an outer circumferential portion of the blade 20 that are gently curved at the connection portion 27, eliminating obtuse angles between the inner circumferential portion and the outer circumferential portion of the blade 20. As a result, the axial flow fan 100 can distribute stress better than when there is an obtuse angle between the inner circumferential portion and the outer circumferential portion of the blade 20.
  • FIG 6 is a front view showing a schematic configuration of an axial fan 100 according to a third embodiment.
  • FIG 7 is a conceptual diagram of the axial fan 100 according to the third embodiment, taken along line B-B of the blade 20 in FIG 6, as viewed in the direction of the arrows.
  • FIG 8 is a conceptual diagram of the axial fan 100 according to the third embodiment, taken along line CC of the blade 20 in FIG 6, as viewed in the direction of the arrows. Note that parts having the same configuration as those in the axial fan 100 of FIGS. 1 to 5 are given the same reference numerals, and their description will be omitted.
  • the axial fan 100 according to the third embodiment further specifies the shape of the connection portion 27 in the circumferential direction CD.
  • connection portion 27 is the portion that is connected to the ring portion 30 as described above, and is the portion where the thickness of the blade 20 increases from the inner peripheral portion to the outer peripheral portion in the radial direction (Y-axis direction) in the radial cross section of the blade 20.
  • connection portion width CW1 the maximum width of the connection portion 27 in the axial direction of the rotation axis RA is defined as connection portion width CW1.
  • connection portion width CW2 the maximum width of the connection portion 27 in the axial direction of the rotation axis RA is defined as connection portion width CW2.
  • the connection portion 27 is formed so that the connection portion width CW2 at line C-C is greater than the connection portion width CW1 at line B-B.
  • the B-B line position is the front side of the blade 20, and the C-C line position is the rear side of the blade 20.
  • the B-B line position is closer to the leading edge 21 than the C-C line position, and the C-C line position is closer to the trailing edge 22 than the B-B line position.
  • the blade 20 has a region 27c where the thickness of the connection portion 27 in a radial cross section of the blade 20 is greater at the rear than at the front of the cross section in the direction of rotation DR.
  • the thickness of the blade 20 is defined as the blade thickness.
  • the blade thickness is the distance between the positive pressure surface 25 and the negative pressure surface 26 in the axial direction of the rotation axis RA.
  • the connection portion 27 has a region 27c where the blade thickness is greater at the rear than at the front of the blade in the direction of rotation DR.
  • each of the multiple blades 20 has a region 27c where the thickness of the connection portion 27 in a radial cross section of the blade 20 is greater at the rear than at the front of the blade in the direction of rotation DR.
  • connection portion 27 may be formed so that the blade thickness gradually increases from the leading edge 21 side toward the trailing edge 22 side in the circumferential direction CD.
  • the region 27c of the connection portion 27 may be formed in the entire region of the blade 20 in the circumferential direction CD, or may be formed in only a portion of the region.
  • connection portion 27 In the forward portion of the blade 20 in the direction of rotation DR, a smaller shear force acts on the connection portion 27 than on the rearward portion, so the thickness of the connection portion 27 may be smaller than on the rearward portion. In the rearward portion of the blade 20 in the direction of rotation DR, a larger shear force acts on the connection portion 27 than on the forward portion, so it is preferable that the thickness of the connection portion 27 is larger than on the forward portion.
  • the blades 20 of the axial fan 100 according to the third embodiment have a region 27c. That is, each of the blades 20 has a region 27c where the thickness of the connection portion 27 in the radial cross section of the blade 20 is greater at the rear than at the front in the rotation direction DR of the blade 20.
  • the blades 20 of the axial fan 100 according to the second embodiment have an increased thickness at the connection portion 27 in accordance with the increase in shear force, so that the blade 20 does not increase in thickness more than necessary, and sufficient stress dispersion can be obtained while suppressing the increase in the weight of the blade 20.
  • the axial fan 100 suppresses the increase in the thickness of the blade 20 in parts other than those necessary to improve the strength of the blade 20, so that the increase in the weight of the axial fan 100 can be suppressed.
  • Fourth embodiment Figure 9 is a conceptual diagram of an axial fan 100 according to embodiment 4, showing a cross section of blade 20 taken along line A-A in Figure 1, as viewed in the direction of the arrows. Components having the same configuration as those in axial fan 100 shown in Figures 1 to 8 are given the same reference numerals and their description will be omitted. The shape of the blades 20 in the axial fan 100 according to embodiment 4 is further specified.
  • the thickness of the blade 20 in the axial direction of the rotation axis RA is the blade thickness T.
  • the blade thickness T is the distance between the positive pressure surface 25 and the negative pressure surface 26 in the axial direction of the rotation axis RA.
  • the portion constituting the maximum blade thickness T is the first blade thickness portion WT1.
  • the portion constituting the maximum blade thickness T is the second blade thickness portion WT2.
  • the blade 20 is formed such that the blade thickness T1 of the first blade thickness portion WT1 is greater than the blade thickness T2 of the second blade thickness portion WT2.
  • the blade thickness T1 is the blade thickness T of the first blade thickness portion WT1
  • the blade thickness T2 is the blade thickness T of the second blade thickness portion WT2.
  • Each of the blades 20 is formed such that the blade thickness T1 of the first blade thickness portion WT1 constituting the maximum blade thickness portion at the connection portion 27 is greater than the blade thickness T2 of the second blade thickness portion WT2 constituting the maximum blade thickness portion at the connection portion 29 between the hub 10 and the blade 20.
  • the axial fan 100 according to the fourth embodiment is formed such that the maximum thickness of the connection portion 27, which is the connection portion between the ring portion 30 and the blade 20, in the blade 20 is greater than the maximum thickness of the connection portion 29 between the hub 10 and the blade 20.
  • the axial fan 100 is formed to satisfy the relational expression "maximum thickness of the connection portion 29 between the hub 10 and the blade 20 ⁇ maximum thickness of the connection portion 27, which is the connection portion between the ring portion 30 and the blade 20".
  • Each of the blades 20 is formed such that the blade thickness T1 of the first blade thickness portion WT1 is greater than the blade thickness T2 of the second blade thickness portion WT2.
  • a stronger force in the axial direction of the rotation axis RA is applied to the blade 20 than in the inner peripheral portion of the blade 20.
  • the blade thickness T1 of the first blade thickness portion WT1 is greater than the blade thickness T2 of the second blade thickness portion WT2, and the blade 20 is thickened in a concentrated manner only at the connection portion between the ring portion 30 and the blade 20, thereby improving the strength while preventing an increase in weight.
  • the thickness of the blade 20 is not increased in portions other than those necessary for improving the strength of the blade 20, so that an increase in the weight of the axial fan 100 can be suppressed.
  • Fifth embodiment Figure 10 is a conceptual diagram of an axial fan 100 according to embodiment 5, showing a cross section of blade 20 taken along line A-A in Figure 1, as viewed in the direction of the arrows. Components having the same configuration as those in axial fan 100 shown in Figures 1 to 9 are given the same reference numerals and their description will be omitted. The shape of the blades 20 in the axial fan 100 according to embodiment 5 is further specified.
  • Each of the blades 20 is formed so that the blade thickness T1 of the first blade thickness portion WT1, which constitutes the thickest blade portion at the connection portion 27, is greater than the blade thickness T of all other portions of the blade 20.
  • the axial fan 100 is formed so that the maximum thickness of the connection portion 27, which is the connection portion between the ring portion 30 and the blade 20, is greater than the thickness of all other portions of the blade 20.
  • the axial fan 100 is formed to satisfy the relational expression "thickness of all other portions of the blade 20 other than the connection portion 27 ⁇ maximum thickness of the connection portion 27, which is the connection portion between the ring portion 30 and the blade 20".
  • the maximum thickness of the connection portion 27 is thicker than all other portions of the blade 20 other than the connection portion 27.
  • Some axial fans 100 have a rib in the center.
  • the rib is a part that is provided on the blade surface around the rotating shaft and protrudes in the direction of the rotating shaft.
  • the rib part is excluded. In other words, if the axial fan 100 has a rib in the center, the rib part is not included in the thickness of the blade 20.
  • Each of the blades 20 is formed such that the blade thickness T1 of the first blade thickness portion WT1 is greater than the blade thickness T of all other portions of the blade 20.
  • a stronger force in the axial direction of the rotation axis RA is applied to the blade 20 than in the inner peripheral portion of the blade 20.
  • the blade thickness T1 of the first blade thickness portion WT1 is greater than the blade thickness T of all other portions of the blade 20, and the blade 20 can be improved in strength while preventing an increase in weight by concentrating the thickness only at the connection portion between the ring portion 30 and the blade 20.
  • the thickness of the blade 20 is increased only in the portion that may break if excessive pressure is applied to the blade 20 during rotation of the blade 20 in the absence of the connection portion 27.
  • the thickness of the blade 20 is not increased in the portion other than the portion necessary for improving the strength of the blade 20, so that the increase in the weight of the axial fan 100 can be suppressed.
  • FIG 11 is a conceptual diagram of an axial fan 100 according to embodiment 6, showing a cross section of blade 20 taken along line A-A in Figure 1, as viewed in the direction of the arrows.
  • Components having the same configuration as those in axial fan 100 shown in Figures 1 to 10 are given the same reference numerals and their description will be omitted.
  • the shape of the blade 20 in the axial fan 100 according to embodiment 6 is further specified.
  • a first imaginary line L1 extends in the radial direction of the rotation axis RA and passes through the cross-sectional center of the connection portion 27 of the blade 20
  • a second imaginary line L2 extends in the axial direction of the rotation axis RA and passes through the cross-sectional center of the ring portion 30.
  • Each of the multiple blades 20 has an orthogonal portion 20g where the first imaginary line L1 and the second imaginary line L2 intersect at right angles, in at least a part of the blade 20 in the circumferential direction CD of the rotation axis RA.
  • a first imaginary line L1 passing through the center of the cross section of the connection portion 27 of the blade 20 is perpendicular to a second imaginary line L2 passing through the center of the cross section of the ring portion 30.
  • the direction in which the cross section of the portion where the thickness of the blade 20 increases extends is perpendicular to the direction in which the cross section of the ring portion 30 extends.
  • Each of the blades 20 has an orthogonal portion 20g where the first virtual line L1 and the second virtual line L2 are orthogonal to each other in at least a part of the blade 20 in the circumferential direction CD of the rotation axis RA. If the connection portion 27 is not orthogonal to the ring portion 30, the shape of the connection portion 27 of the blade 20 becomes asymmetric in the axial direction of the rotation axis RA, and there is a possibility that stress will be concentrated at a specific location of the connection portion 27 due to the rotation of the blade 20.
  • connection portion 27 and the ring portion 30 are connected orthogonally to each other, so that the shape of the connection portion 27 of the blade 20 becomes symmetric in the axial direction of the rotation axis RA. Therefore, the axial fan can prevent stress concentration on the connection portion 27 during the rotation of the blade 20 and disperse stress more than when the connection portion 27 is not orthogonal to the ring portion 30.
  • Fig. 12 is a first conceptual diagram of the axial fan 100 according to the seventh embodiment, taken along line A-A of the blade 20 in Fig. 1, seen in the direction of the arrows.
  • Fig. 13 is a second conceptual diagram of the axial fan 100 according to the seventh embodiment, taken along line A-A of the blade 20 in Fig. 1, seen in the direction of the arrows.
  • Fig. 14 is a third conceptual diagram of the axial fan 100 according to the seventh embodiment, taken along line A-A of the blade 20 in Fig. 1, seen in the direction of the arrows. Note that parts having the same configuration as those in the axial fan 100 of Figs. 1 to 11 are denoted by the same reference numerals, and their description will be omitted.
  • the axial fan 100 according to the sixth embodiment further specifies the shape of the blade 20.
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the first end 27e, which is the end of the connection part 27 on the negative pressure surface 26 side, and the center 27d is defined as the first distance CWA.
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the second end 27f, which is the end of the connection part 27 on the positive pressure surface 25 side, and the center 27d is defined as the second distance CWB.
  • the relationship of the first distance CWA to the second distance CWB is referred to as the first relationship.
  • the axial fan 100 is formed such that the first distance CWA is smaller than the second distance CWB (first distance CWA ⁇ second distance CWB).
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the first ring end 30a, which is the end of the ring part 30 on the negative pressure surface 26 side, and the center 27d of the connection part 27 is defined as the third distance FW.
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the second ring end 30b, which is the end of the ring part 30 on the positive pressure surface 25 side, and the center 27d of the connection part 27 is defined as the fourth distance BW.
  • the relationship of the third distance FW to the fourth distance BW is the second relationship.
  • the axial fan 100 is formed such that the third distance FW is smaller than the fourth distance BW (third distance FW ⁇ fourth distance BW).
  • the blades 20 and the ring portion 30 include a cross-sectional shape portion 40 that forms a cross-sectional shape such that the first magnitude relationship and the second magnitude relationship match.
  • the first distance CWA is smaller than the second distance CWB.
  • the first distance CWA corresponds to the third distance FW
  • the second distance CWB corresponds to the fourth distance.
  • the cross-sectional shape portion 40 is included in at least a portion of the blades 20 and the ring portion 30 in the circumferential direction CD of the rotation axis RA.
  • the axial flow fan 100 has at least a portion of a region in the circumferential direction CD centered on the rotation axis RA that has a cross-sectional shape in which the first magnitude relationship and the second magnitude relationship match.
  • the axial fan 100 having the second magnitude relationship achieves sufficient stress dispersion by providing a difference in blade thickness between the negative pressure surface 26 side and the positive pressure surface 25 side at the connection 27 as shown in FIG. 12, and setting the thickness of the connection 27 to be larger on the positive pressure surface 25 side.
  • the blades 20 and the ring portion 30 include a cross-sectional shape portion 40 that constitutes a cross-sectional shape in which the first magnitude relationship and the second magnitude relationship coincide with each other.
  • the cross-sectional shape portion 40 is a portion that is represented by a radial cross section of the blades 20 and the ring portion 30.
  • the cross-sectional shape portion 40 is included in at least a part of the blades 20 and the ring portion 30 in the circumferential direction CD of the rotation axis RA.
  • the axial fan 100 has this configuration and has a blade thickness connection portion 27 that corresponds to the change in diameter due to high-speed rotation, thereby achieving sufficient stress dispersion.
  • FIG. 15 is a fourth conceptual diagram of the axial fan 100 according to embodiment 7, taken along the line A-A of the blade 20 in FIG. 1, seen in the direction of the arrows.
  • FIG. 16 is a fifth conceptual diagram of the axial fan 100 according to embodiment 7, taken along the line A-A of the blade 20 in FIG. 1, seen in the direction of the arrows.
  • FIG. 17 is a sixth conceptual diagram of the axial fan 100 according to embodiment 7, taken along the line A-A of the blade 20 in FIG. 1, seen in the direction of the arrows. Note that parts having the same configuration as the axial fan 100 in FIGS. 1 to 14 are given the same reference numerals, and their description will be omitted.
  • the axial fan 100 according to embodiment 6 further specifies the shape of the blade 20.
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the first end 27e, which is the end of the connection part 27 on the negative pressure surface 26 side, and the center 27d is defined as the first distance CWA.
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the second end 27f, which is the end of the connection part 27 on the positive pressure surface 25 side, and the center 27d is defined as the second distance CWB.
  • the relationship of the first distance CWA to the second distance CWB is referred to as the first relationship.
  • the axial fan 100 is formed so that the first distance CWA is greater than the second distance CWB (first distance CWA > second distance CWB).
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the first ring end 30a, which is the end of the ring part 30 on the negative pressure surface 26 side, and the center 27d of the connection part 27 is defined as the third distance FW.
  • the center 27d of the connection part 27 in the axial direction of the rotation axis RA is used as a reference, and the distance in the axial direction of the rotation axis RA between the second ring end 30b, which is the end of the ring part 30 on the positive pressure surface 25 side, and the center 27d of the connection part 27 is defined as the fourth distance BW.
  • the relationship of the third distance FW to the fourth distance BW is the second relationship.
  • the axial fan 100 is formed so that the third distance FW is greater than the fourth distance BW (third distance FW>fourth distance BW).
  • the blades 20 and the ring portion 30 include a cross-sectional shape portion 40 that forms a cross-sectional shape such that the first and second magnitude relationships match.
  • the first distance CWA is greater than the second distance CWB.
  • the first distance CWA is greater than the second distance CWB.
  • the cross-sectional shape portion 40 is included in at least a portion of the blades 20 and the ring portion 30 in the circumferential direction CD of the rotation axis RA.
  • the axial fan 100 has at least a portion of an area in the circumferential direction CD centered on the rotation axis RA that has a cross-sectional shape such that the first and second magnitude relationships match.
  • the axial fan 100 having the second magnitude relationship achieves sufficient stress dispersion by providing a difference in blade thickness between the negative pressure surface 26 side and the positive pressure surface 25 side at the connection 27, as shown in FIG. 15, and setting the thickness of the connection 27 to be larger on the negative pressure surface 26 side.
  • the blades 20 and the ring portion 30 include a cross-sectional shape portion 40 that forms a cross-sectional shape in which the first magnitude relationship and the second magnitude relationship coincide with each other.
  • the cross-sectional shape portion 40 is included in at least a part of the blades 20 and the ring portion 30 in the circumferential direction CD of the rotation axis RA.
  • the axial fan 100 has this configuration and has a blade thickness connection portion 27 that corresponds to the change in diameter due to high-speed rotation, thereby achieving sufficient stress dispersion.
  • Embodiment 8 Air conditioner 70
  • the axial fan 100 or the like according to the first to third embodiments is applied as a blower 55 to the outdoor unit 50 of an air conditioner 70.
  • FIG. 18 is a schematic diagram of an air conditioner 70 according to embodiment 8.
  • the air conditioner 70 is described as a device that uses an axial fan 100, but the axial fan 100 is not limited to being used in an air conditioner 70.
  • the axial fan 100 is used for refrigeration or air conditioning purposes, such as refrigerators or freezers, vending machines, refrigeration devices, and water heaters.
  • the air conditioner 70 includes a compressor 64 that compresses and discharges the refrigerant, a condenser 72 that condenses the refrigerant, an expansion valve 74, and an evaporator 73 that evaporates the refrigerant.
  • the air conditioner 70 also includes a condenser fan 72a and an evaporator fan 73a that are configured using a blower 55 (see FIG. 20).
  • the air conditioner 70 forms a refrigerant circuit 71 in which the compressor 64, condenser 72, expansion valve 74, and evaporator 73 are connected in that order by refrigerant piping.
  • the condenser 72 is provided with a condenser fan 72a that blows air for heat exchange to the condenser 72.
  • the evaporator 73 is provided with an evaporator fan 73a that blows air for heat exchange to the evaporator 73.
  • At least one of the condenser fan 72a and the evaporator fan 73a includes an axial fan 100 or the like according to any of the above embodiments 1 to 4.
  • the air conditioner 70 may be configured to switch between heating operation and cooling operation by providing a flow switching device such as a four-way valve that switches the flow of refrigerant in the refrigerant circuit 71.
  • Figure 19 is a perspective view of the outdoor unit 50 of an air conditioner 70 according to embodiment 8, as viewed from the air outlet side.
  • Figure 20 is a diagram for explaining the configuration of the outdoor unit 50 from the top side.
  • Figure 21 is a diagram showing the outdoor unit 50 with the fan grill 54 removed. Note that the ring portion 30 is omitted from Figures 19 and 21.
  • the outdoor unit body 51 which is the casing, is configured as a housing having a pair of left and right side surfaces 51a and 51c, a front surface 51b, a rear surface 51d, a top surface 51e, and a bottom surface 51f. Openings (not shown) for drawing in air from the outside are formed in the side surface 51a and the rear surface 51d.
  • the front panel 52 On the front surface 51b, the front panel 52 is formed with an air outlet 53 as an opening for blowing air to the outside. Furthermore, the air outlet 53 is covered with a fan grill 54, which prevents contact between the axial flow fan 100 and objects outside the outdoor unit body 51, ensuring safety.
  • the arrow AR in Figure 20 indicates the air flow.
  • the outdoor unit body 51 houses a blower 55. As shown in FIG. 20, the blower 55 has an axial fan 100 and a drive source 61.
  • the drive source 61 is a fan motor, and provides a driving force to the axial fan 100.
  • the axial fan 100 is connected to a rotating shaft 62 of a drive source 61 on the rear surface 51d side, and is driven to rotate by this drive source 61.
  • the drive source 61 is attached to a motor support 69.
  • the motor support 69 is disposed between the drive source 61 and the heat exchanger 68, and supports the drive source 61.
  • the interior of the outdoor unit body 51 is divided by a partition plate 51g, which is a wall body, into an airflow chamber 56 in which an axial flow fan 100 is installed, and a machine chamber 57 in which a compressor 64 and the like are installed.
  • a heat exchanger 68 that extends in a roughly L-shape in plan view is provided on the side 51a side and the back 51d side of the airflow chamber 56.
  • the shape of the heat exchanger 68 is not limited to this shape, and may be formed, for example, in a straight line in plan view.
  • the heat exchanger 68 functions as an evaporator 73 during heating operation, and as a condenser 72 during cooling operation.
  • a bellmouth 63 is arranged radially outward of the axial fan 100 arranged in the blower chamber 56.
  • the bellmouth 63 surrounds the outer periphery of the axial fan 100 and regulates the flow of gas formed by the axial fan 100 and the like.
  • the bellmouth 63 is located outward of the outer periphery of the blades 20 and is arranged in an annular shape along the direction of rotation of the axial fan 100.
  • a partition plate 51g is located on one side of the bellmouth 63, and part of the heat exchanger 68 is located on the other side.
  • the front end of the bellmouth 63 is connected to the front panel 52 of the outdoor unit 50 so as to surround the outer periphery of the air outlet 53.
  • the bellmouth 63 may be configured integrally with the front panel 52, or may be prepared as a separate unit that can be connected to the front panel 52.
  • the bellmouth 63 configures the flow path between the suction side and the blowing side of the bellmouth 63 as an air passage near the air outlet 53. In other words, the air passage near the air outlet 53 is separated from other spaces in the blower chamber 56 by the bellmouth 63.
  • the heat exchanger 68 which is provided on the suction side of the axial fan 100, is equipped with multiple fins arranged side by side with their plate-like surfaces parallel to each other, and heat transfer tubes that penetrate each fin in the direction of the arrangement. Refrigerant circulating in the refrigerant circuit flows through the heat transfer tubes.
  • the heat exchanger 68 is configured such that the heat transfer tubes extend in an L shape from the side surface 51a to the back surface 51d of the outdoor unit body 51, and the multiple stages of heat transfer tubes snake while penetrating the fins.
  • the heat exchanger 68 is connected to the compressor 64 via refrigerant piping, etc., and is further connected to an indoor heat exchanger and an expansion valve 74, etc. (not shown), forming a refrigerant circuit 71 of the air conditioner 70.
  • a circuit board box (not shown) is also arranged in the machine room 57, and the devices installed in the outdoor unit are controlled by a control board (not shown) provided in this circuit board box.
  • the air conditioner 70 includes a blower 55, a motor support 69 that supports a drive source 61, a condenser 72 that condenses the refrigerant, and an evaporator 73 that evaporates the refrigerant.
  • the blower 55 shown in FIG. 20 blows air to at least one of the condenser 72 and the evaporator 73.
  • Blower 55 includes an axial fan 100 according to any one of embodiments 1 to 4.
  • Air conditioner 70 includes blower 55 having an axial fan 100 according to any one of embodiments 1 to 4. Therefore, blower 55 and air conditioner 70 according to embodiment 8 can achieve the same effects as those of the axial fans 100 according to embodiments 1 to 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

軸流ファンは、回転駆動され回転軸を形成するハブと、ハブの周囲に形成され、ハブから径方向の外側に延びる複数の翼と、回転軸の軸方向に見た場合に環状に形成されており、複数の翼の、径方向の外側の各翼端と一体に形成されたリング部と、を備え、複数の翼のそれぞれは、リング部と接続している部分であり、翼の径方向における軸方向と平行な断面である径方向断面において、回転軸を中心とした径方向の内周側の部分から外周側の部分に向かって翼の厚みが増大している部分である接続部を有するものである。

Description

軸流ファン、送風機、及び、空気調和機
 本開示は、複数の翼を備えた軸流ファン、当該軸流ファンを備えた送風機、及び、当該送風機を備えた空気調和機に関するものである。
 従来より、複数の翼と、複数の翼の各翼端に接続されたリングとを有する軸流ファンが提案されている(例えば、特許文献1参照)。特許文献1の軸流ファンは、各翼端にリングが接続されているので、空気が翼の正圧面側から負圧面側に向かって翼端を回り込み難くなり、翼端渦の発生を抑制できるというものである。
特許第6930644号公報
 特許文献1の軸流ファンは、翼とリングとの接続部分について、例えば、断面形状等について十分に議論されておらず、軸流ファンの断面形状によっては軸流ファンの強度を十分に得られない場合がある。
 本開示は、上述のような課題を解決するためのものであり、軸流ファンの強度を向上させた軸流ファン、送風機、及び、空気調和機を提供することを目的とする。
 本開示に係る軸流ファンは、回転駆動され回転軸を形成するハブと、ハブの周囲に形成され、ハブから径方向の外側に延びる複数の翼と、回転軸の軸方向に見た場合に環状に形成されており、複数の翼の、径方向の外側の各翼端と一体に形成されたリング部と、を備え、複数の翼のそれぞれは、リング部と接続している部分であり、翼の径方向における軸方向と平行な断面である径方向断面において、回転軸を中心とした径方向の内周側の部分から外周側の部分に向かって翼の厚みが増大している部分である接続部を有するものである。
 本開示に係る送風機は、上記構成の軸流ファンと、軸流ファンに駆動力を付与する駆動源とを備えたものである。
 本開示に係る空気調和機は、上記構成の送風機と、冷媒を凝縮させる凝縮器と、冷媒を蒸発させる蒸発器とを備え、送風機は、凝縮器及び蒸発器の少なくとも一方に空気を送風するものである。
 本開示によれば、軸流ファンの翼は、接続部を含んでいる。接続部は、翼がリング部と接続している部分であり、翼の径方向断面において、径方向の内周側の部分から外周側の部分に向かって翼の厚みが増大している部分である。軸流ファンは、翼の外周側の断面形状を、径方向外周側に向かって厚みを増大させてリング部と接続する接続部を有することで、翼とリング部との接続部分を補強して十分に応力の集中を分散できる。そのため、軸流ファンは、接続部を有していない場合と比較して軸流ファンの強度を向上させることができる。
実施の形態1に係る軸流ファンの概略構成を示す正面図である。 実施の形態1に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た概念図である。 比較例に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た概念図である。 第2の比較例に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た概念図である。 実施の形態2に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た概念図である。 実施の形態3に係る軸流ファンの概略構成を示す正面図である。 実施の形態3に係る軸流ファンにおいて、図6の翼のB-B線位置の断面を矢視方向に見た概念図である。 実施の形態3に係る軸流ファンにおいて、図6の翼のC-C線位置の断面を矢視方向に見た概念図である。 実施の形態4に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た概念図である。 実施の形態5に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た概念図である。 実施の形態6に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た概念図である。 実施の形態7に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た第1の概念図である。 実施の形態7に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た第2の概念図である。 実施の形態7に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た第3の概念図である。 実施の形態7に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た第4の概念図である。 実施の形態7に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た第5の概念図である。 実施の形態7に係る軸流ファンにおいて、図1の翼のA-A線位置の断面を矢視方向に見た第6の概念図である。 実施の形態8に係る空気調和機の概要図である。 実施の形態8に係る空気調和機の室外機を、吹出口側から見たときの斜視図である。 上面側から室外機の構成を説明するための図である。 室外機からファングリルを外した状態を示す図である。
 以下、実施の形態に係る軸流ファン、送風機、及び、空気調和機について図面を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」及び「後」等)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。
実施の形態1
[軸流ファン100]
 図1は、実施の形態1に係る軸流ファン100の概略構成を示す正面図である。なお、図中の矢印で示す回転方向DRは、軸流ファン100が回転する方向を示している。また、図中の矢印で示す反回転方向ORは、軸流ファン100が回転する方向と逆方向を示している。更に、図中の両向き矢印で示す周方向CDは、軸流ファン100の周方向を示している。周方向CDは、回転方向DR及び反回転方向ORを含んでいる。
 また、図1に示すY軸は、軸流ファン100の回転軸RAに対して垂直な方向であって、軸流ファン100の径方向を表している。径方向においてY2側の部分はY1側の部分に対して外周側の部分に位置しており、Y1側の部分はY2側の部分に対して内周側の部分に位置している。すなわち、軸流ファン100のY1側は、軸流ファン100の内周側であり、軸流ファン100のY2側は、軸流ファン100の外周側である。
 図1を用いて実施の形態1に係る軸流ファン100について説明する。軸流ファン100は、軸流式の羽根車であり、流体の流れを形成する装置である。軸流ファン100は、後述する送風機55(図20参照)に用いられ、例えば、空気調和機又は換気装置等のファンとして用いられる。軸流ファン100は、回転軸RAを中心として回転方向DRに回転することで流体の流れを形成する。流体は、例えば、空気等の気体であり、軸流ファン100は、回転することで気流を形成する。
 図1の紙面に対して手前側は、流体の流れる方向において軸流ファン100に対して上流側となり、図1の紙面に対して奥側は、流体の流れる方向において軸流ファン100に対して下流側となる。したがって、図1は、流体の流れる方向の上流側から軸流ファン100を見た図である。軸流ファン100に対して上流側は、軸流ファン100に対して空気の吸込側であり、軸流ファン100に対して下流側は、軸流ファン100に対して空気の吹出側である。
 図1に示すように、軸流ファン100は、モーター(図示は省略)等の駆動源によって回転する回転軸に接続されるハブ10と、ハブ10から外周側に向かって延びる複数の翼20と、を備える。また、軸流ファン100は、回転軸RAの軸方向に見た場合に環状に形成されており、複数の翼20の、径方向の外側の各翼端と一体に形成されたリング部30を備える。複数の翼20の各翼端は、翼20においてハブ10と反対側の端部である。軸流ファン100は、複数枚の翼20のうち隣り合う翼20の前縁側の部分と後縁側の部分とがボスを介さず連続面となるように接続されたいわゆるボスレス型のファンを含むものである。軸流ファン100は、例えば樹脂により成型されているが、金属により形成されてもよい。
(ハブ10)
 ハブ10は、モータ(図示は省略)等の駆動源の回転軸と接続される。ハブ10は、例えば、円筒状に構成されてもよく、あるいは、円盤状等の板状に構成されてもよい。ハブ10は、上述したように駆動源の回転軸と接続されるものであればよく、その形状は限定されるものではない。
 ハブ10は、モータ(図示は省略)等によって回転駆動され回転軸RAを形成する。ハブ10は、回転軸RAを中心に回転する。軸流ファン100の回転方向DRは、図1中の矢印で示すように反時計回りの方向である。ただし、軸流ファン100の回転方向DRは、反時計回りに限定されるものではない。ハブ10は、翼20の取り付け角度、あるいは、翼20の向き等を変更した構成にすることによって、時計回りに回転してもよい。
(翼20)
 翼20は、ハブ10の周囲に設けられており、ハブ10から径方向外側に向かって延びるように形成されている。複数の翼20は、ハブ10から径方向外側に向かって放射状に配置されている。複数の翼20は、周方向CDにおいて、それぞれ相互に離隔して設けられている。なお、実施の形態1においては、3枚の翼20を有する軸流ファン100が例示されているが、翼20の枚数は3枚に限定されるものではない。複数の翼20は、後述するリング部30によって連結されている。
 複数の翼20は、ハブ10の周囲において、それぞれ同一の形状で形成されている。また、複数の翼20は、周方向CDにおいて、等しい間隔で設けられている。なお、翼20は、当該構成に限定されるものではない。複数の翼20は、それぞれ異なる形状に形成されてもよく、周方向CDにおいて異なる間隔で形成されてもよい。
 翼20は、外周側の部分が内周側の部分よりも回転方向DRの前方に突き出した前進翼の形状に形成されている。なお、翼20は、前進翼に限定されるものではなく、他の形状に形成されてもよい。翼20は、回転軸RAの軸方向に見た場合に、外周側の部分の周方向CDの幅が内周側の部分の周方向CDの幅よりも大きい略三角形状に形成されている。なお、翼20は、回転軸RAの軸方向に見た場合に、略三角形状に形成されているものに限定されるものではない。
 翼20は、前縁部21と、後縁部22と、ハブ10と繋がる部分である内縁部24と、前縁部21と後縁部22との間の外縁を形成する外縁部23とを有する。前縁部21は、翼20において回転方向DRの前進側の部分に形成されている。すなわち、前縁部21は、回転方向DRにおいて、後縁部22に対して前方に位置している。前縁部21は、発生させる流体の流れる方向において、後縁部22に対して上流側の部分に位置している。
 後縁部22は、翼20において回転方向DRの後進側の部分に形成されている。すなわち、後縁部22は、回転方向DRにおいて、前縁部21に対して後方に位置している。後縁部22は、発生させる流体の流れる方向において、前縁部21に対して下流側の部分に位置している。軸流ファン100は、軸流ファン100の回転方向DRを向く翼端部として前縁部21を有し、回転方向DRにおいて前縁部21に対して反対側の翼端部として後縁部22を有している。
 外縁部23は、前縁部21の最外周部と後縁部22の最外周部との間の部分を構成するように回転方向DRにおいて前後に延びる部分である。外縁部23は、軸流ファン100において、径方向(Y軸方向)の外周側の翼端部を構成している。外縁部23は、翼20の外周縁を形成する。
 外縁部23は、回転軸RAの軸方向に見た場合に、弧状に形成されている。しかし、外縁部23は、回転軸RAの軸方向に見た場合に、弧状に形成されている構成に限定されるものではない。なお、外縁部23は、回転軸RAの軸方向に見た場合に、円弧状に形成された部分を含んでいる。
 翼20は、回転軸RAの軸方向に見た場合に、周方向CDにおける外縁部23の長さが、周方向CDにおける内縁部24の長さよりも長く形成されている。ただし、翼20は、周方向CDにおける外縁部23の長さと内縁部24の長さとの関係が当該構成に限定されるものではない。例えば、翼20は、周方向CDにおける外縁部23の長さと内縁部24の長さとが等しくてもよく、内縁部24の長さが外縁部23の長さよりも長くてもよい。
 内縁部24は、前縁部21の最内周部と後縁部22の最内周部との間の部分を構成するように回転方向DRにおいて前後に延びる部分である。内縁部24は、軸流ファン100において、径方向(Y軸方向)の内周側の端部を構成している。内縁部24は、翼20の内周縁を形成し、翼20の付根部分を構成する。
 内縁部24は、回転軸RAの軸方向に見た場合に、弧状に形成されている。しかし、内縁部24は、回転軸RAの軸方向に見た場合に、弧状に形成されている構成に限定されるものではない。翼20の内縁部24は、ハブ10と一体に形成されている等、ハブ10と接続されている。一例として、翼20の内縁部24は、円筒形状に形成されたハブ10の外周壁と一体に形成されている。
 翼20は、回転軸RAに垂直な平面に対して傾いて形成されている。翼20は、軸流ファン100の回転に伴って翼20の間に存在している流体を翼面28で押すことで流体を搬送する。この際、翼20の翼面28の内、軸流ファン100の回転時に流体を押して圧力が上昇する側の面を正圧面25とし、正圧面25の裏側の面を構成し、圧力が下降する側の面を負圧面26とする。複数の翼20のそれぞれは、翼20の翼面28の内、翼20の回転時に流体を押して圧力が上昇する側の面を構成する正圧面25を含み、正圧面25の裏側の面を構成し、圧力が下降する側の面を構成する負圧面26を含む。
 翼面28は、流体の流れる方向において、翼20の上流側に向いた面が負圧面26となり、下流側に向いた面が正圧面25となる。また、正圧面25は、回転方向DRに向いた面であり、負圧面26は、回転方向DRとは反対側に向いた面である。翼20は、図1において、翼20の奥側の面が正圧面25となり、翼20の手前側の面が負圧面26となる。
(翼20の詳細)
 図2は、実施の形態1に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た概念図である。すなわち、図2は、軸流ファン100及び翼20の径方向断面を示している。なお、図1の翼20のA-A線の位置は一例である。翼20のA-A線位置は、翼20の周方向CDのいずれか1か所であればよく、例えば、周方向CDにおいて、前縁部21に近い位置でもよく、後縁部22に近い位置でもよい。翼20は、図2に示すように、接続部27を含んでいる。
 接続部27は、リング部30と接続している部分であり、翼20の径方向断面において、回転軸RAを中心とした径方向(Y軸方向)の内周側の部分から外周側の部分に向かって翼20の厚みが増大している部分である。なお、径方向断面は、翼20の径方向における回転軸RAの軸方向と平行な断面である。接続部27は、リング部30と一体に形成されている。すなわち、接続部27は、翼20の径方向断面において、径方向(Y軸方向)の内周側の部分から外周側の部分に向かって翼20の正圧面25と負圧面26との距離が拡大するように形成されている部分である。
 図2に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の最大幅を接続部幅CWとし、径方向(Y軸方向)におけるリング部30の厚さをリング幅RWとする。軸流ファン100は、一例として、接続部27の接続部幅CWがリング部30のリング幅RWよりも大きくなるように形成されている。接続部27は、リング部30よりも厚い。接続部27は、翼20の径方向断面において、回転軸RAの軸方向の厚みが、回転軸RAの径方向におけるリング部30の厚みよりも厚く形成されている。実施の形態1に係る軸流ファン100は、接続部27によって、リング部30と翼20とが翼20の外周端で広く接続されている。実施の形態1に係る軸流ファン100は、翼20の一断面で見た時の翼20の厚みを対象としている。
 接続部27は、回転軸RAを中心とした径方向(Y軸方向)において、少なくとも翼20の外周側の翼端部に設けられている。すなわち、接続部27は、少なくとも翼20の外縁部23に設けられている。接続部27は、径方向(Y軸方向)において、回転軸RAとリング部30と間の中間地点である中央部20aよりも外周側の部分に設けられていればよい。
 径方向(Y軸方向)において、リング部30と中央部20aとの間の領域を外周側領域20bとした場合に、接続部27は、外周側領域20bの一部又は全部に設けられている。なお、接続部27が外周側領域20bの一部に設けられている場合は、接続部27はリング部30と一体に形成されているため、接続部27は、リング部30との接続部分を含む外周側領域20bの外周側の部分に設けられている。接続部27は、回転軸RAを中心とした径方向(Y軸方向)において、リング部30から回転軸RAに向かって延びるように形成されている。
 接続部27は、周方向CDにおいて、翼20の全部の部分に形成さていてもよく、一部にのみ形成されていてもよい。すなわち、接続部27は、前縁部21と後縁部22との間の外縁部23において、外縁部23の一部に形成されていてもよく、外縁部23の全部に形成されていてもよい。
(リング部30)
 リング部30は、回転軸RAの軸方向に見た場合に環状に形成されており、複数の翼20の、径方向の外側の各翼端と一体に形成されている。リング部30は、回転軸RAの軸方向に延びるように筒状に形成されている。リング部30は、回転軸RAの軸方向に見た場合に円環状に形成されている。
 リング部30は、回転軸RAの軸方向に見た場合に、複数の翼20を囲むように形成されている。3つの翼20は、リング部30によって連結されている。軸流ファン100は、周方向CDにおいて隣接した2つの翼20と、リング部30の内周側の部分とによって回転軸RAの軸方向に空気が抜ける空間Sが形成されている。
 リング部30は、図2に示すように、翼20の径方向断面において、回転軸RAの軸方向における両端部が、回転軸RAの軸方向と平行に形成されている。ただし、リング部30の端部は当該構成に限定されるものではなく、例えば、リング部30は、回転軸RAの軸方向における両端部の一方又は両方が、外周側に反るように曲がって形成されてもよい。
 軸流ファン100が回転すると、負圧面26側の圧力が正圧面25側の圧力よりも小さくなり、各翼20の周囲では、正圧面25側と負圧面26側とで圧力差が生じる。軸流ファン100は、リング部30が設けられていることで、軸流ファン100の正圧面25によって押し出される空気が各翼20において正圧面25側から負圧面26側に向かって翼端を回り込み難くなる。
[軸流ファン100の動作]
 図1に示す回転方向DRに軸流ファン100が回転すると、各翼20は、正圧面25によって周囲の空気を押し出す。これにより、流体は、図1の紙面と直交する方向に流れる。より詳しくは、図1に示す回転方向DRに軸流ファン100が回転すると、図1の紙面手前側から紙面奥側に向かう流体の流れが発生する。
[軸流ファン100の効果]
 図3は、比較例に係る軸流ファン100Lにおいて、図1の翼20のA-A線位置の断面を矢視方向に見た概念図である。比較例に係る軸流ファン100Lの翼20Lは、接続部27を含んでいない。比較例に係る軸流ファン100は、接続部27を有していないため、翼20の回転時に翼20Lとリング部30との接続部分SCに応力が集中し、応力分散が十分ではないため、接続部分SCの強度を十分に確保できない場合がある。
 軸流ファン100の翼20は、図2に示すように、接続部27を含んでいる。接続部27は、翼20がリング部30と接続している部分であり、翼20の径方向における軸方向と平行な断面である径方向断面において、径方向(Y軸方向)の内周側の部分から外周側の部分に向かって翼20の厚みが増大している部分である。軸流ファン100は、翼20の外周側の断面形状を、径方向外周側に向かって厚みを増大させてリング部30と接続する接続部27を有することで、翼20とリング部30との接続部分を補強して十分に応力の集中を分散できる。そのため、軸流ファン100は、接続部27を有していない場合と比較して軸流ファン100の強度を向上させることができる。
 図4は、第2の比較例に係る軸流ファン100Rにおいて、図1の翼20のA-A線位置の断面を矢視方向に見た概念図である。第2比較例に係る軸流ファン100Rの翼20Rは、接続部27を含んでいない。図4に示すように、翼20Rの径方向断面において、回転軸RAの軸方向における翼20とリング部30との接続部分SCの幅を接続部幅CWRとし、径方向(Y軸方向)におけるリング部30の厚さをリング幅RWとする。
 軸流ファン100Rは、径方向断面において、リング部30のリング幅RWが接続部分SCの接続部幅CWRよりも大きくなるように形成されている。すなわち、リング部30は、径方向断面において、接続部分SCよりも厚い。図4に示す軸流ファン100Rのように、リング部30の厚みを全体的に増大させた場合について検討する。軸流ファン100の接続部分SCにおいて、回転軸RAの軸方向に加わる剪断力は、厚みを増大させた径方向に加わる力ではない。そのため、軸流ファン100は、接続部分SCにおいて十分な応力分散が得られず、かつ軸流ファン100Rの全体重量が増大する。
 軸流ファン100の翼20は、図2に示すように、接続部27を含んでいる。接続部27は、翼20の径方向断面において、回転軸RAの軸方向の厚みが、回転軸RAの径方向におけるリング部30の厚みよりも厚く形成されている。軸流ファン100は、接続部27の接続部幅CWがリング部30のリング幅RWよりも大きくなるように形成されており、接続部27がリング部30よりも厚く形成されている。軸流ファン100は、接続部27をリング部30よりも厚くすることで、リング部30を接続部27よりも厚くする場合と比較して、重量の増大を抑制しつつ、翼20とリング部30との接続部分を補強して十分に応力の集中を分散できる。そのため、軸流ファン100は、接続部27を有していない場合と比較して軸流ファン100の強度を向上させることができる。
実施の形態2
 図5は、実施の形態2に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た概念図である。なお、図1~図4の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態2に係る軸流ファン100は、径方向断面における接続部27の形状を更に特定するものである。
 翼20は、接続部27において、内縁部24側の部分から外縁部23に向かうにつれて、翼20の回転時に流れる流体の流れる方向の下流側から上流側に向かって湾曲する負圧面26を形成する。接続部27は、翼20の径方向断面において、負圧面26の角部分27bが凹面状に形成されている。接続部27の負圧面26は、翼20の径方向断面において、軸流ファン100によって形成される気流の方向における気流の上流側から下流側に向かって凸の曲線状に形成されている。
 図5に示す法線H1は、翼20の径方向断面において、接続部27の内周側の部分における負圧面26の法線である。法線H2は、翼20の径方向断面において、接続部27の外周側の部分における負圧面26の法線である。接続部27は、法線H1及び法線H2に示すように、翼20の内周側の部分から外周側の部分に向かうにつれて負圧面26の法線が回転軸RAに平行な方向から回転軸RAに垂直な方向に傾くように形成されている。
 接続部27の負圧面26は、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって湾曲するように形成されている。接続部27の負圧面26は、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、下流側から上流側に向かって反り上がるように形成されている。翼20は、接続部27において径方向外周側に向かうにつれて下流側から上流側に反り上がる負圧面26を有している。
 翼20は、接続部27において、内縁部24側の部分から外縁部23に向かうにつれて、翼20の回転時に流れる流体の流れる方向の上流側から下流側に向かって湾曲する正圧面25を形成する。接続部27は、翼20の径方向断面において、正圧面25の角部分27aが凹面状に形成されている。接続部27の正圧面25は、翼20の径方向断面において、軸流ファン100によって形成される気流の方向における気流の下流側から上流側に向かって凸の曲線状に形成されている。
 図5に示す法線H3は、翼20の径方向断面において、接続部27の内周側の部分における正圧面25の法線である。法線H4は、翼20の径方向断面において、接続部27の外周側の部分における正圧面25の法線である。接続部27は、法線H3及び法線H4に示すように、翼20の内周側の部分から外周側の部分に向かうにつれて正圧面25の法線が回転軸RAに平行な方向から回転軸RAに垂直な方向に傾くように形成されている。
 接続部27の正圧面25は、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、上流側から下流側に向かって湾曲するように形成されている。接続部27の正圧面25は、内周側の部分から外縁部23に向かうにつれて、軸流ファン100の形成する流体の流れる方向において、上流側から下流側に向かって反り上がるように形成されている。翼20は、接続部27において径方向外周側に向かうにつれて上流側から下流側に反り上がる正圧面25を有している。
 実施の形態2に係る軸流ファン100の翼20は、翼20の厚みが増大する接続部27の径方向断面において、接続部27の負圧面26及び正圧面25の少なくとも一方は、凹曲線形状に形成されている。接続部27は、翼20の内周側の部分から外周側の部分に向かってなだらかにリング部30に接続されている。接続部27の負圧面26及び正圧面25の少なくとも一方は、例えば、円弧状に形成されている部分を含む。
[軸流ファン100の効果]
 翼20の径方向断面において、接続部27の外周側の端部、すなわち、翼20とリング部30との接続部分が鈍角の角を持つように形成されていると、翼20の回転時にその部分に応力が集中する可能性がある。また、翼20の径方向断面において、接続部27の内周側の端部においても翼20の内周側の部分と外周側の部分とが鈍角の角を持つように形成されていると、翼20の回転時にその部分に応力が集中する可能性がある。
 実施の形態2に係る軸流ファン100の翼20は、翼20の厚みが増大する接続部27の径方向断面において、接続部27の負圧面26及び正圧面25の少なくとも一方は、凹曲線形状に形成されている。軸流ファン100は、翼20とリング部30とを接続部27の曲線形状でなだらかに接続することによって、翼20とリング部30との接続部分に鈍角を持つ角をなくしている。そのため、軸流ファン100は、翼20とリング部30との接続部分が鈍角の角を持つ場合と比較して応力をより分散することができる。
 また、軸流ファン100は、翼20の内周側の部分と外周側の部分とが接続部27の曲線形状でなだらかに形成されていることによって、翼20の内周側の部分と外周側の部分との間に鈍角を持つ角をなくしている。そのため、軸流ファン100は、翼20の内周側の部分と外周側の部分との間に鈍角の角を持つ場合と比較して応力をより分散することができる。
実施の形態3
 図6は、実施の形態3に係る軸流ファン100の概略構成を示す正面図である。図7は、実施の形態3に係る軸流ファン100において、図6の翼20のB-B線位置の断面を矢視方向に見た概念図である。図8は、実施の形態3に係る軸流ファン100において、図6の翼20のC-C線位置の断面を矢視方向に見た概念図である。なお、図1~図5の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態3に係る軸流ファン100は、周方向CDにおける接続部27の形状を更に特定するものである。
 接続部27は、上述したようにリング部30と接続している部分であり、翼20の径方向断面において、径方向(Y軸方向)の内周側の部分から外周側の部分に向かって翼20の厚みが増大している部分である。
 図7に示すように、翼20のB-B線位置における翼20の径方向断面において、回転軸RAの軸方向における接続部27の最大幅を接続部幅CW1とする。図8に示すように、翼20のC-C線位置における翼20の径方向断面において、回転軸RAの軸方向における接続部27の最大幅を接続部幅CW2とする。接続部27は、C-C線位置における接続部幅CW2が、B-B線位置における接続部幅CW1よりも大きくなるように形成されている。
 軸流ファン100の回転方向DRにおいて、B-B線位置は、翼20の前方側であり、C-C線位置は、翼20の後方側である。すなわち、翼20において、B-B線位置は、C-C線位置に対して前縁部21に近い位置であり、C-C線位置は、B-B線位置に対して後縁部22に近い位置である。
 翼20は、翼20の径方向断面における接続部27の厚みが、断面位置が回転方向DRの前方の厚みよりも、後方の厚みのほうが大きくなる領域27cを有している。ここで翼20の厚みを翼厚と定義する。翼厚は、回転軸RAの軸方向における、正圧面25と負圧面26との間の距離である。接続部27は、回転方向DRの前方の翼厚よりも後方の翼厚が大きくなる領域27cを有している。すなわち、複数の翼20のそれぞれは、翼20の径方向断面における接続部27の厚みが、翼20の回転方向DRの前方の厚みよりも、後方の厚みのほうが大きくなる領域27cを有している。
 接続部27は、周方向CDにおいて、前縁部21側の部分から後縁部22側の部分に向かうにつれて徐々に翼厚が大きくなるように形成されてもよい。接続部27の領域27cは、周方向CDにおいて翼20の全ての領域に形成されていてもよく、一部の領域にのみ形成されていてもよい。
[軸流ファン100の効果]
 翼20の回転方向DRの後方側の部分では、前方側の部分に比較して、正圧面25に働く圧力が大きくなる。そのため、翼20の回転方向DRの前方側の部分では、後方側の部分に比較して、接続部27に小さい剪断力が働いており、翼20の回転方向DRの後方側の部分では、前方側の部分に比較して、接続部27に大きい剪断力が働いている。
 翼20の回転方向DRの前方側の部分では、後方側の部分に比較して、接続部27に小さい剪断力が働いているため、後方側の部分に比較して接続部27の厚みは小さくてもよい。翼20の回転方向DRの後方側の部分では、前方側の部分に比較して、接続部27に大きい剪断力が働いているため、前方側の部分に比較して接続部27の厚みは大きい方が望ましい。
 実施の形態3に係る軸流ファン100の翼20は、領域27cを有している。すなわち、複数の翼20のそれぞれは、翼20の径方向断面における接続部27の厚みが、翼20の回転方向DRの前方の厚みよりも、後方の厚みのほうが大きくなる領域27cを有している。実施の形態2に係る軸流ファン100の翼20は、接続部27において、剪断力の増大に合わせて翼20の厚みを増大させており、必要以上の翼20の厚みの増大を控えることができ、翼20の重量の増大を抑えつつ十分な応力分散を得ることができる。軸流ファン100は、翼20の強度の向上に必要な部分以外の部分において、翼20の厚みの増大を控えているため、軸流ファン100の重量の増大を抑えることができる。
実施の形態4
 図9は、実施の形態4に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た概念図である。なお、図1~図8の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態4に係る軸流ファン100は、翼20の形状を更に特定するものである。
 ここで、回転軸RAの軸方向における翼20の厚みを翼厚Tとする。翼厚Tは、上述したように、回転軸RAの軸方向における、正圧面25と負圧面26との間の距離である。接続部27において、最大の翼厚Tを構成する部分を第1翼厚部WT1とする。ハブ10と翼20との接続部分29において、最大の翼厚Tを構成する部分を第2翼厚部WT2とする。翼20は、第1翼厚部WT1の翼厚T1が、第2翼厚部WT2の翼厚T2よりも大きくなるように形成されている。翼厚T1は、第1翼厚部WT1の翼厚Tであり、翼厚T2は、第2翼厚部WT2の翼厚Tである。
 複数の翼20のそれぞれは、接続部27において最大の翼厚部分を構成する第1翼厚部WT1の翼厚T1が、ハブ10と翼20との接続部分29において最大の翼厚部分を構成する第2翼厚部WT2の翼厚T2よりも大きい翼厚であるように形成されている。実施の形態4に係る軸流ファン100は、翼20において、リング部30と翼20との接続部分である接続部27の最大厚みが、ハブ10と翼20との接続部分29の最大厚みより大きくなるように形成されている。軸流ファン100は、「ハブ10と翼20との接続部分29の最大厚み<リング部30と翼20との接続部分である接続部27の最大厚み」の関係式を満たすように形成されている。
[軸流ファン100の効果]
 複数の翼20のそれぞれは、第1翼厚部WT1の翼厚T1が、第2翼厚部WT2の翼厚T2よりも大きい翼厚であるように形成されている。翼20の外周側の部分では、翼20の内周側の部分と比較して、回転軸RAの軸方向の強い力が翼20に加わる。軸流ファン100は、第1翼厚部WT1の翼厚T1が、第2翼厚部WT2の翼厚T2よりも大きい翼厚であり、翼20においてリング部30と翼20との接続部分だけを集中的に厚くすることによって、重量の増大を防ぎつつ強度を向上させることができる。軸流ファン100は、翼20の強度の向上に必要な部分以外の部分において、翼20の厚みの増大を控えているため、軸流ファン100の重量の増大を抑えることができる。
実施の形態5
 図10は、実施の形態5に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た概念図である。なお、図1~図9の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態5に係る軸流ファン100は、翼20の形状を更に特定するものである。
 複数の翼20のそれぞれは、接続部27において最大の翼厚部分を構成する第1翼厚部WT1の翼厚T1が、翼20の他の全ての部分の翼厚Tよりも大きい翼厚であるように形成されている。軸流ファン100は、リング部30と翼20との接続部分である接続部27の最大厚みが、翼20の他の全ての部分の厚みより大きくなるように形成されている。軸流ファン100は、「接続部27以外の翼20の他の全ての部分の厚み<リング部30と翼20との接続部分である接続部27の最大厚み」の関係式を満たすように形成されている。接続部27の最大厚みは、接続部27以外の翼20の他のすべての部分よりも厚い。
 なお、軸流ファン100には中心にリブを有するものがある。リブは、回転軸部の周囲の翼面に設けられ回転軸方向に突出する部分である。リング部30と翼20との接続部分である接続部27の厚みを、翼20の他の部分の厚みと比較するとき、リブの部分は除外する。すなわち、軸流ファン100には中心にリブを有する場合、リブの部分は、翼20の厚みの対象とはならない。
[軸流ファン100の効果]
 複数の翼20のそれぞれは、第1翼厚部WT1の翼厚T1が、翼20の他の全ての部分の翼厚Tよりも大きい翼厚であるように形成されている。翼20の外周側の部分では、翼20の内周側の部分と比較して、回転軸RAの軸方向の強い力が翼20に加わる。軸流ファン100は、第1翼厚部WT1の翼厚T1が、翼20の他の全ての部分の翼厚Tよりも大きい翼厚であり、翼20においてリング部30と翼20との接続部分だけを集中的に厚くすることによって、重量の増大を防ぎつつ強度を向上させることができる。軸流ファン100は、接続部27を有していない場合に翼20の回転時に過度な圧力が翼20に加わった場合に破断の可能性がある部分にだけ翼20の厚みを増大させている。軸流ファン100は、翼20の強度の向上に必要な部分以外の部分において、翼20の厚みの増大を控えているため、軸流ファン100の重量の増大を抑えることができる。
実施の形態6
 図11は、実施の形態6に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た概念図である。なお、図1~図10の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態6に係る軸流ファン100は、翼20の形状を更に特定するものである。
 図11に示すように、翼20の周方向断面において、回転軸RAの径方向に延びて翼20の接続部27の断面中心を通る第1仮想線L1とし、回転軸RAの軸方向に延びてリング部30の断面中心を通る第2仮想線L2とする。複数の翼20のそれぞれは、第1仮想線L1と第2仮想線L2とが直交する直交部分20gを、回転軸RAの周方向CDにおいて、少なくとも翼20の一部に有している。
 軸流ファン100は、少なくとも翼20の一部において、翼20の接続部27の断面中心を通る第1仮想線L1が、リング部30の断面中心を通る第2仮想線L2と直交する。すなわち、少なくとも翼20の一部における翼20の径方向断面において、翼20の厚みが拡大する部分の断面が延びる方向と、リング部30の断面が延びる方向とが直交する。
[軸流ファン100の効果]
 複数の翼20のそれぞれは、第1仮想線L1と第2仮想線L2とが直交する直交部分20gを、回転軸RAの周方向CDにおいて、少なくとも翼20の一部に有している。接続部27がリング部30と直交しない場合、回転軸RAの軸方向において翼20の接続部27の形状が非対称となり、翼20の回転によって、接続部27の特定箇所に応力が集中する可能性がある。軸流ファン100は、接続部27とリング部30とが直交して接続されているため、回転軸RAの軸方向において翼20の接続部27の形状が対称となる。そのため、軸流ファンは、当該部分が直交していない場合と比較して翼20の回転時に接続部27への応力集中を防ぎ、応力をより分散できる。
実施の形態7
 図12は、実施の形態7に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た第1の概念図である。図13は、実施の形態7に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た第2の概念図である。図14は、実施の形態7に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た第3の概念図である。なお、図1~図11の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態6に係る軸流ファン100は、翼20の形状を更に特定するものである。
 図12に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、負圧面26側の接続部27の端部である第1端部27eと中心部27dとの間の回転軸RAの軸方向における距離を第1距離CWAとする。
 図12に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、正圧面25側の接続部27の端部である第2端部27fと中心部27dとの間の回転軸RAの軸方向における距離を第2距離CWBとする。
 軸流ファン100の翼20において、第2距離CWBに対する第1距離CWAの大小関係を第1大小関係とする。なお、図12に示す態様では、軸流ファン100は、第1距離CWAが第2距離CWBよりも小さくなるように形成されている(第1距離CWA<第2距離CWB)。
 図13に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、負圧面26側のリング部30の端部である第1リング端部30aと接続部27の中心部27dとの間の回転軸RAの軸方向における距離を第3距離FWとする。
 図13に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、正圧面25側のリング部30の端部である第2リング端部30bと接続部27の中心部27dとの間の回転軸RAの軸方向における距離を第4距離BWとする。
 軸流ファン100のリング部30において、第4距離BWに対する第3距離FWの大小関係を第2大小関係とする。なお、図13に示す態様では、軸流ファン100は、第3距離FWが第4距離BWよりも小さくなるように形成されている(第3距離FW<第4距離BW)。
 翼20及びリング部30は、図12及び図13に示すように、第1大小関係と第2大小関係とが一致するような断面形状を構成する断面形状部40を含む。軸流ファン100は、「第3距離FW<第4距離BW」であれば、「第1距離CWA<第2距離CWB」である。すなわち、軸流ファン100は、第3距離FWが第4距離BWよりも小さければ、第1距離CWAが第2距離CWBよりも小さい。回転軸RAの軸方向における距離の大小関係において、第1距離CWAは第3距離FWに対応し、第2距離CWBは第4距離に対応する。
 断面形状部40は、回転軸RAの周方向CDにおいて翼20及びリング部30の少なくとも一部に含まれる。軸流ファン100は、第1大小関係と第2大小関係とが一致するような断面形状を持つ領域を、回転軸RAを中心とした周方向CDにおいて少なくとも一部に有している。
[軸流ファン100の効果]
 軸流ファン100が高速で回転する場合には、リング部30及び翼20の変形を考慮して接続部27の大きさを設定する必要がある。例えば、図13に示す軸流ファン100のように、第4距離BWが第3距離FWよりも大きくなるように形成されている場合において、軸流ファン100が高速で回転する場合の軸流ファン100の変形について検討する。
 図13に示すような構成の軸流ファン100が高速回転した場合、軸流ファン100は、遠心力によって図14に示すように変形する。軸流ファン100が高速回転した場合、図14に示すように、遠心力によって、軸流ファン100は、リング部30の負圧面26側の第1リング端部30aの第1径R1が小さくなり、リング部30の正圧面25側の第2リング端部30bの第2径R2が大きくなるように変形する。この場合、接続部27は、変形によって、正圧面25側の部分で応力が増大する。
 図13に示すように第2大小関係を有する軸流ファン100は、図12に示すように、接続部27において負圧面26側の翼厚と正圧面25側の翼厚とに差を付け、接続部27の厚みを正圧面25側の部分で大きく設定することで、充分な応力分散が得られる。
 翼20及びリング部30は、図12及び図13に示すように、第1大小関係と第2大小関係とが一致するような断面形状を構成する断面形状部40を含む。断面形状部40は、翼20及びリング部30の径方向断面で表される部分である。断面形状部40は、回転軸RAの周方向CDにおいて翼20及びリング部30の少なくとも一部に含まれる。軸流ファン100は、当該構成を有し、高速回転に基づく径の変化に対応する翼厚の接続部27を有することによって、充分な応力分散を得ることができる。
 図15は、実施の形態7に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た第4の概念図である。図16は、実施の形態7に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た第5の概念図である。図17は、実施の形態7に係る軸流ファン100において、図1の翼20のA-A線位置の断面を矢視方向に見た第6の概念図である。なお、図1~図14の軸流ファン100と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態6に係る軸流ファン100は、翼20の形状を更に特定するものである。
 図15に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、負圧面26側の接続部27の端部である第1端部27eと中心部27dとの間の回転軸RAの軸方向における距離を第1距離CWAとする。
 図15に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、正圧面25側の接続部27の端部である第2端部27fと中心部27dとの間の回転軸RAの軸方向における距離を第2距離CWBとする。
 軸流ファン100の翼20において、第2距離CWBに対する第1距離CWAの大小関係を第1大小関係とする。なお、図15に示す態様では、軸流ファン100は、第1距離CWAが第2距離CWBよりも大きくなるように形成されている(第1距離CWA>第2距離CWB)。
 図16に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、負圧面26側のリング部30の端部である第1リング端部30aと接続部27の中心部27dとの間の回転軸RAの軸方向における距離を第3距離FWとする。
 図16に示すように、翼20の径方向断面において、回転軸RAの軸方向における接続部27の中心部27dを基準として、正圧面25側のリング部30の端部である第2リング端部30bと接続部27の中心部27dとの間の回転軸RAの軸方向における距離を第4距離BWとする。
 軸流ファン100のリング部30において、第4距離BWに対する第3距離FWの大小関係を第2大小関係とする。なお、図16に示す態様では、軸流ファン100は、第3距離FWが第4距離BWよりも大きくなるように形成されている(第3距離FW>第4距離BW)。
 翼20及びリング部30は、図15及び図16に示すように、第1大小関係と第2大小関係とが一致するような断面形状を構成する断面形状部40を含む。軸流ファン100は、「第3距離FW>第4距離BW」であれば、「第1距離CWA>第2距離CWB」である。すなわち、軸流ファン100は、第3距離FWが第4距離BWよりも大きければ、第1距離CWAが第2距離CWBよりも大きい。断面形状部40は、回転軸RAの周方向CDにおいて翼20及びリング部30の少なくとも一部に含まれる。軸流ファン100は、第1大小関係と第2大小関係とが一致するような断面形状を持つ領域を、回転軸RAを中心とした周方向CDにおいて少なくとも一部に有している。
[軸流ファン100の効果]
 図16に示すような構成の軸流ファン100が高速回転した場合、軸流ファン100は、遠心力によって図17に示すように変形する。軸流ファン100が高速回転した場合、図17に示すように、遠心力によって、軸流ファン100は、リング部30の負圧面26側の第1リング端部30aの第1径R1が大きくなり、リング部30の正圧面25側の第2リング端部30bの第2径R2が小さくなるように変形する。この場合、接続部27は、変形によって、負圧面26側の部分で応力が増大する。
 図16に示すように第2大小関係を有する軸流ファン100は、図15に示すように、接続部27において負圧面26側の翼厚と正圧面25側の翼厚とに差を付け、接続部27の厚みを負圧面26側の部分で大きく設定することで、充分な応力分散が得られる。
 翼20及びリング部30は、図15及び図16に示すように、第1大小関係と第2大小関係とが一致するような断面形状を構成する断面形状部40を含む。断面形状部40は、回転軸RAの周方向CDにおいて翼20及びリング部30の少なくとも一部に含まれる。軸流ファン100は、当該構成を有し、高速回転に基づく径の変化に対応する翼厚の接続部27を有することによって、充分な応力分散を得ることができる。
実施の形態8
[空気調和機70]
 実施の形態8は、上記実施の形態1~3の軸流ファン100等を、送風機55として空気調和機70の室外機50に適用した場合について説明する。
 図18は、実施の形態8に係る空気調和機70の概要図である。以下の説明では、軸流ファン100を用いる装置として空気調和機70について、説明するが、軸流ファン100は、空気調和機70に使用されるものに限定されるものではない。軸流ファン100は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、冷凍装置、及び、給湯器等の、冷凍用途又は空調用途に使用される。
 図18に示すように、空気調和機70は、冷媒を圧縮して吐出する圧縮機64と、冷媒を凝縮させる凝縮器72と、膨張弁74と、冷媒を蒸発させる蒸発器73と、を備えている。また、空気調和機70は、送風機55(図20参照)により構成される凝縮器用ファン72a及び蒸発器用ファン73aを備えている。空気調和機70は、圧縮機64と凝縮器72と膨張弁74と蒸発器73とを順番に冷媒配管で接続した冷媒回路71を形成している。
 凝縮器72には、熱交換用の空気を凝縮器72に送風する凝縮器用ファン72aが配置されている。また、蒸発器73には、熱交換用の空気を蒸発器73に送風する蒸発器用ファン73aが配置されている。凝縮器用ファン72a及び蒸発器用ファン73aの少なくとも一方は、上記実施の形態1~4の何れかの軸流ファン100等を含む。なお、空気調和機70は、冷媒回路71に冷媒の流れを切り替える四方弁等の流路切替装置を設け、暖房運転と冷房運転とを切り替える構成としてもよい。
 図19は、実施の形態8に係る空気調和機70の室外機50を、吹出口側から見たときの斜視図である。図20は、上面側から室外機50の構成を説明するための図である。図21は、室外機50からファングリル54を外した状態を示す図である。なお、図19及び図21では、リング部30の図示を省略している。
 図19~図21に示すように、ケーシングである室外機本体51は、左右一対の側面51a及び側面51c、前面51b、背面51d、上面51e並びに底面51fを有する筐体として構成されている。側面51a及び背面51dには、外部から空気を吸込むための開口部(図示は省略)が形成されている。
 前面51bにおいては、前面パネル52に、外部に空気を吹出すための開口部としての吹出口53が形成されている。さらに、吹出口53は、ファングリル54で覆われており、それにより、室外機本体51の外部の物体等と軸流ファン100との接触を防止し、安全が図られている。なお、図20の矢印ARは、空気の流れを示している。
 室外機本体51内には、送風機55が収容されている。送風機55は、図20に示すように、軸流ファン100と、駆動源61とを有する。駆動源61は、ファンモータであり、軸流ファン100に駆動力を付与する。
 軸流ファン100は、背面51d側にある駆動源61の回転軸62に接続されており、この駆動源61によって回転駆動される。駆動源61は、モータサポート69に取り付けられている。モータサポート69は、駆動源61と熱交換器68との間に配置されており、駆動源61を支持する。
 室外機本体51の内部は、壁体である仕切板51gによって、軸流ファン100が設置されている送風室56と、圧縮機64等が設置されている機械室57とに分けられている。送風室56内における側面51a側と背面51d側とには、平面視において、略L字状に延びるような熱交換器68が設けられている。なお、熱交換器68の形状は、当該形状に限定されるものではなく、例えば平面視で直線上に形成されてもよい。熱交換器68は、暖房運転時において蒸発器73として機能し、冷房運転時において凝縮器72として機能する。
 送風室56に配置された軸流ファン100の径方向外側には、ベルマウス63が配置されている。ベルマウス63は、軸流ファン100の外周側を囲い、軸流ファン100等により形成される気体の流れを整える。ベルマウス63は、翼20の外周端よりも外側に位置し、軸流ファン100の回転方向に沿って環状に設けられている。また、ベルマウス63の一方側の側方には、仕切板51gが位置し、他方側の側方には、熱交換器68の一部が位置することとなる。
 ベルマウス63の前端は、吹出口53の外周を囲むように室外機50の前面パネル52と接続されている。なお、ベルマウス63は、前面パネル52と一体的に構成されていてもよく、あるいは、別体として、前面パネル52につなげられる構成として用意されてもよい。このベルマウス63によって、ベルマウス63の吸込側と吹出側との間の流路が、吹出口53近傍の風路として構成される。すなわち、吹出口53近傍の風路は、ベルマウス63によって、送風室56内の他の空間と区切られる。
 軸流ファン100の吸込側に設けられている熱交換器68は、板状の面が平行になるように並設された複数のフィンと、その並設方向に各フィンを貫通する伝熱管とを備えている。伝熱管内には、冷媒回路を循環する冷媒が流通する。本実施の形態の熱交換器68は、伝熱管が室外機本体51の側面51aと背面51dとにかけてL字状に延び、複数段の伝熱管がフィンを貫通しながら蛇行するように構成される。
 熱交換器68は、冷媒配管等を介して圧縮機64と接続し、さらに、図示を省略する室内側熱交換器及び膨張弁74等と接続されて、空気調和機70の冷媒回路71を構成する。また、機械室57には、基板箱(図示は省略)が配置されており、この基板箱に設けられた制御基板(図示は省略)によって室外機内に搭載された機器が制御されている。
 空気調和機70は、送風機55と、駆動源61を支持するモータサポート69と、冷媒を凝縮させる凝縮器72と、冷媒を蒸発させる蒸発器73と、を備える。図20に示す送風機55は、凝縮器72及び蒸発器73の少なくとも一方に空気を送風する。
[送風機55及び空気調和機70の作用効果]
 送風機55は、実施の形態1~4に係る軸流ファン100を備える。また、空気調和機70は、実施の形態1~4に係る軸流ファン100を有する送風機55を備える。そのため、実施の形態8に係る送風機55及び空気調和機70においても、上記実施の形態1~6に係る軸流ファン100と同様の効果が得られる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10 ハブ、20 翼、20L 翼、20R 翼、20a 中央部、20b 外周側領域、20g 直交部分、21 前縁部、22 後縁部、23 外縁部、24 内縁部、25 正圧面、26 負圧面、27 接続部、27a 角部分、27b 角部分、27c 領域、27d 中心部、27e 第1端部、27f 第2端部、28 翼面、29 接続部分、30 リング部、30a 第1リング端部、30b 第2リング端部、40 断面形状部、50 室外機、51 室外機本体、51a 側面、51b 前面、51c 側面、51d 背面、51e 上面、51f 底面、51g 仕切板、52 前面パネル、53 吹出口、54 ファングリル、55 送風機、56 送風室、57 機械室、61 駆動源、62 回転軸、63 ベルマウス、64 圧縮機、68 熱交換器、69 モータサポート、70 空気調和機、71 冷媒回路、72 凝縮器、72a 凝縮器用ファン、73 蒸発器、73a 蒸発器用ファン、74 膨張弁、100 軸流ファン、100L 軸流ファン、100R 軸流ファン、AR 矢印、BW 第4距離、CD 周方向、CW 接続部幅、CW1 接続部幅、CW2 接続部幅、CWA 第1距離、CWB 第2距離、CWR 接続部幅、DR 回転方向、FW 第3距離、H1 法線、H2 法線、H3 法線、H4 法線、L1 第1仮想線、L2 第2仮想線、OR 反回転方向、R1 第1径、R2 第2径、RA 回転軸、RW リング幅、S 空間、SC 接続部分、T 翼厚、T1 翼厚、T2 翼厚、WT1 第1翼厚部、WT2 第2翼厚部。

Claims (10)

  1.  回転駆動され回転軸を形成するハブと、
     前記ハブの周囲に形成され、前記ハブから径方向の外側に延びる複数の翼と、
     前記回転軸の軸方向に見た場合に環状に形成されており、前記複数の翼の、径方向の外側の各翼端と一体に形成されたリング部と、
    を備え、
     前記複数の翼のそれぞれは、
     前記リング部と接続している部分であり、前記翼の径方向における前記軸方向と平行な断面である径方向断面において、前記回転軸を中心とした径方向の内周側の部分から外周側の部分に向かって前記翼の厚みが増大している部分である接続部を有する軸流ファン。
  2.  前記接続部は、
     前記翼の前記径方向断面において、前記回転軸の軸方向の厚みが、前記回転軸の径方向における前記リング部の厚みよりも厚く形成されている請求項1に記載の軸流ファン。
  3.  前記複数の翼のそれぞれは、
     前記翼の翼面の内、前記翼の回転時に流体を押して圧力が上昇する側の面を構成する正圧面、及び、前記正圧面の裏側の面を構成し、圧力が下降する側の面を構成する負圧面を含み、
     前記複数の翼のそれぞれは、
     前記接続部の前記径方向断面において、前記接続部の前記負圧面及び前記正圧面の少なくとも一方は、凹曲線形状に形成されている請求項1又は2に記載の軸流ファン。
  4.  前記複数の翼のそれぞれは、
     前記翼の前記径方向断面における前記接続部の厚みが、翼の回転方向の前方の厚みよりも、後方の厚みのほうが大きくなる領域を有している請求項1~3のいずれか1項に記載の軸流ファン。
  5.  前記複数の翼のそれぞれは、
     前記回転軸の軸方向における前記翼の厚みを翼厚とした場合、
     前記接続部において最大の翼厚部分を構成する第1翼厚部の翼厚が、前記ハブと前記翼との接続部分において最大の翼厚部分を構成する第2翼厚部の翼厚よりも大きい翼厚である請求項1~4のいずれか1項に記載の軸流ファン。
  6.  前記複数の翼のそれぞれは、
     前記回転軸の軸方向における前記翼の厚みを翼厚とした場合、
     前記接続部において最大の翼厚部分を構成する第1翼厚部の翼厚が、前記翼の他の全ての部分の翼厚よりも大きい翼厚であるように形成されている請求項1~4のいずれか1項に記載の軸流ファン。
  7.  前記複数の翼のそれぞれは、
     前記回転軸の径方向に延びて前記翼の前記接続部の断面中心を通る第1仮想線と、前記回転軸の軸方向に延びて前記リング部の断面中心を通る第2仮想線とが直交する直交部分を、前記回転軸の周方向において少なくとも前記翼の一部に有する請求項1~6のいずれか1項に記載の軸流ファン。
  8.  前記複数の翼のそれぞれは、
     前記翼の翼面の内、前記翼の回転時に流体を押して圧力が上昇する側の面を構成する正圧面、及び、前記正圧面の裏側の面を構成し、圧力が下降する側の面を構成する負圧面を含み、
     前記翼の前記径方向断面において、前記回転軸の軸方向における前記接続部の中心部を基準として、前記負圧面側の前記接続部の端部である第1端部と前記中心部との間の前記回転軸の軸方向における距離を第1距離とし、前記正圧面側の前記接続部の端部である第2端部と前記中心部との間の前記回転軸の軸方向における距離を第2距離とした場合に、前記第2距離に対する前記第1距離の大小関係を第1大小関係とし、
     前記翼の前記径方向断面において、前記回転軸の軸方向における前記負圧面側の前記リング部の端部である第1リング端部と前記接続部の前記中心部との間の前記回転軸の軸方向における距離を第3距離とし、前記正圧面側の前記リング部の端部である第2リング端部と前記接続部の前記中心部との間の前記回転軸の軸方向における距離を第4距離とした場合に、前記第4距離に対する前記第3距離の大小関係を第2大小関係とした場合に、
     前記翼及び前記リング部は、
     前記第1大小関係と前記第2大小関係とが一致するような断面形状を構成する断面形状部を、前記回転軸の周方向において少なくとも一部に含む請求項1~7のいずれか1項に記載の軸流ファン。
  9.  請求項1~8のいずれか1項に記載の軸流ファンと、
     前記軸流ファンに駆動力を付与する駆動源と、
     を備えた送風機。
  10.  請求項9に記載の送風機と、
     冷媒を凝縮させる凝縮器と、
     前記冷媒を蒸発させる蒸発器と、
    を備え、
     前記送風機は、
     前記凝縮器及び前記蒸発器の少なくとも一方に空気を送風する空気調和機。
PCT/JP2022/039958 2022-10-26 2022-10-26 軸流ファン、送風機、及び、空気調和機 WO2024089808A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039958 WO2024089808A1 (ja) 2022-10-26 2022-10-26 軸流ファン、送風機、及び、空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039958 WO2024089808A1 (ja) 2022-10-26 2022-10-26 軸流ファン、送風機、及び、空気調和機

Publications (1)

Publication Number Publication Date
WO2024089808A1 true WO2024089808A1 (ja) 2024-05-02

Family

ID=90830382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039958 WO2024089808A1 (ja) 2022-10-26 2022-10-26 軸流ファン、送風機、及び、空気調和機

Country Status (1)

Country Link
WO (1) WO2024089808A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195494A (ja) * 1986-02-21 1987-08-28 Aisin Seiki Co Ltd 内燃機関用冷却装置
JPH06159290A (ja) * 1992-07-22 1994-06-07 Valeo Thermique Moteur ファン
JP2000501808A (ja) * 1995-06-23 2000-02-15 ジーメンス カナダ リミテッド 高効率、低騒音の軸流ファン組立体
JP2003531341A (ja) * 2000-04-14 2003-10-21 ボーグワーナー・インコーポレーテッド 冷却ファン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195494A (ja) * 1986-02-21 1987-08-28 Aisin Seiki Co Ltd 内燃機関用冷却装置
JPH06159290A (ja) * 1992-07-22 1994-06-07 Valeo Thermique Moteur ファン
JP2000501808A (ja) * 1995-06-23 2000-02-15 ジーメンス カナダ リミテッド 高効率、低騒音の軸流ファン組立体
JP2003531341A (ja) * 2000-04-14 2003-10-21 ボーグワーナー・インコーポレーテッド 冷却ファン

Similar Documents

Publication Publication Date Title
CN106481574B (zh) 离心式风机和包括其的空调机
JP7130136B2 (ja) 軸流ファン、送風装置、及び、冷凍サイクル装置
WO2024089808A1 (ja) 軸流ファン、送風機、及び、空気調和機
JP7378611B2 (ja) 軸流ファン、送風装置、及び、冷凍サイクル装置
CN110914550B (zh) 空调机的室内机
CN110892201B (zh) 空气调节机
WO2024209504A1 (ja) 送風機、空気調和機及び冷凍サイクル装置
WO2024009490A1 (ja) 軸流ファン、送風機、及び、空気調和機
WO2015063850A1 (ja) 貫流ファン及び空気調和機
WO2022091225A1 (ja) 軸流ファン、送風装置および冷凍サイクル装置
JP7258136B2 (ja) 軸流ファン、送風装置、及び、冷凍サイクル装置
JP6625213B2 (ja) 多翼ファン及び空気調和機
JP7258225B2 (ja) 軸流ファン、送風装置、及び、冷凍サイクル装置
JP7275312B2 (ja) 軸流ファン、送風装置、及び、冷凍サイクル装置
WO2024214327A1 (ja) 遠心送風機、空気調和機及び冷凍サイクル装置
WO2024189889A1 (ja) 空気調和機の室内機、および、それを備えた空気調和機
WO2023112077A1 (ja) 軸流ファン、送風機、および、冷凍サイクル装置
WO2024214237A1 (ja) 遠心送風機、空気調和機及び冷凍サイクル装置
WO2023084652A1 (ja) クロスフローファン、送風装置及び冷凍サイクル装置
WO2021255882A1 (ja) 空気調和機の室外機
JP6692456B2 (ja) プロペラファン及び空気調和装置の室外機
CN114641619A (zh) 轴流风扇、送风装置及制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963457

Country of ref document: EP

Kind code of ref document: A1