WO2024089771A1 - 設備保全管理システム - Google Patents

設備保全管理システム Download PDF

Info

Publication number
WO2024089771A1
WO2024089771A1 PCT/JP2022/039758 JP2022039758W WO2024089771A1 WO 2024089771 A1 WO2024089771 A1 WO 2024089771A1 JP 2022039758 W JP2022039758 W JP 2022039758W WO 2024089771 A1 WO2024089771 A1 WO 2024089771A1
Authority
WO
WIPO (PCT)
Prior art keywords
maintenance
equipment
time
management system
facility
Prior art date
Application number
PCT/JP2022/039758
Other languages
English (en)
French (fr)
Inventor
靖 狄
剛史 山本
知哉 前口
裕喜 神保
正裕 竹治
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023519677A priority Critical patent/JP7364121B1/ja
Priority to PCT/JP2022/039758 priority patent/WO2024089771A1/ja
Priority to JP2023171997A priority patent/JP2024062947A/ja
Publication of WO2024089771A1 publication Critical patent/WO2024089771A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance

Definitions

  • This disclosure relates to a facility maintenance management system.
  • the equipment maintenance management system includes a sensor that is placed on the equipment to be maintained and wirelessly transmits equipment operation information that indicates the equipment's operating status, and a computing device that sets the planned maintenance timing for the equipment.
  • the computing device acquires the equipment operation information from the sensor and sets the planned maintenance timing based on the equipment operation information.
  • FIG. 1 is a diagram showing an overview of a maintenance management system.
  • FIG. 2 is a diagram (part 1) for explaining a method for setting a planned maintenance date.
  • FIG. 3 is a diagram showing a maintenance list screen.
  • FIG. 4 is a diagram (part 1) showing a detailed screen of the maintenance list.
  • FIG. 5 is a diagram (part 2) showing a detailed screen of the maintenance list.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure of the arithmetic device.
  • FIG. 7 is a diagram (part 2) for explaining a method for setting a planned maintenance date.
  • FIG. 8 is a diagram (part 3) for explaining a method for setting a planned maintenance date.
  • FIG. 9 is a diagram showing a maintenance delay list.
  • FIG. 10 is a diagram showing an example of the results of counting and analyzing delay patterns.
  • period-based maintenance has often been used to manage the timing of equipment maintenance based on the amount of time that has elapsed since the equipment began to be used.
  • period-based maintenance there is concern that equipment with low availability rates will be over-maintained, and equipment with high availability rates will be under-maintained.
  • the purpose of this disclosure is to set appropriate maintenance schedules based on the equipment's operating hours.
  • the equipment maintenance management system includes a sensor that is placed in the equipment to be maintained and transmits equipment operation information that is information indicating the operation status of the equipment, and a computing device that sets the planned maintenance timing for the equipment.
  • the computing device acquires the equipment operation information from the sensor and sets the planned maintenance timing based on the equipment operation information.
  • the equipment operation information includes first information indicating whether the equipment is operating.
  • the calculation device calculates the accumulated operation time of the equipment based on the history of the first information, and sets the planned maintenance time based on the accumulated operation time.
  • the computing device predicts the time when the cumulative operating time is expected to reach a predetermined reference time based on the relationship between the time elapsed since the equipment began to be used and the cumulative operating time, and sets the predicted time as the planned maintenance time.
  • the equipment operation information includes second information indicating the state of the equipment while it is in operation.
  • the calculation device sets the planned maintenance time based on the second information in addition to the accumulated operation time.
  • the equipment maintenance management system described in any one of 1 to 4 further includes a display device that displays information related to equipment maintenance work.
  • the calculation device displays the planned maintenance time on the display device in association with at least one of the department in charge of maintenance, the equipment to be maintained, the maintenance work, and the name of the maintenance work.
  • equipment maintenance work is pre-classified into a first work performed by an equipment operator and a second work performed by an equipment maintainer.
  • the computing device displays information about the first work and information about the second work on the same screen of the display device.
  • the equipment maintenance management system further includes an inventory management system that manages the number of parts in stock required for equipment maintenance.
  • the computing device displays the parts required for equipment maintenance on the display device in association with the number of parts in stock obtained from the inventory management system.
  • the equipment operation information includes first information indicating whether the equipment is operating.
  • the calculation device calculates the cumulative number of times the equipment has operated based on the history of the first information, and sets a scheduled maintenance time based on the cumulative number of times.
  • the calculation device predicts the time when the cumulative number of operations is expected to reach a predetermined reference number based on the relationship between the time elapsed since the equipment began to be used and the cumulative number of operations, and sets the predicted time as the planned maintenance time.
  • the equipment maintenance management system described in paragraph 2 further includes a display device that displays information regarding maintenance work for the equipment.
  • the calculation device further calculates the cumulative number of operations of a part installed in the equipment based on the history of the first information, predicts the time when the cumulative number of operations is expected to reach a predetermined reference number based on the relationship between the elapsed time since the equipment was started to be used and the cumulative number of operations, sets the predicted time as the planned replacement time for the part, determines whether the time difference between the planned maintenance time and the planned replacement time is within a predetermined reference period, and displays the determination result on the display device.
  • the maintenance management system 1 is a diagram showing an overview of a maintenance management system 1 according to the present embodiment.
  • the maintenance management system 1 manages information relating to maintenance work for a plurality of facilities 2.
  • the maintenance management system 1 includes a number of pieces of equipment 2 to be maintained, a number of sensors 3, a wireless repeater 4, a cloud server 5, a number of terminals 6, and an inventory management system 200.
  • Each of the multiple pieces of equipment 2 is placed, for example, at a work site in a factory and is used for the manufacture of products, etc.
  • the equipment 2 is operated by a worker (operator).
  • the worker and a maintainer work together to perform maintenance work on the equipment 2.
  • the multiple sensors 3 are respectively placed on the multiple pieces of equipment 2.
  • Each sensor 3 acquires equipment operation information, which is information indicating the operating status of the equipment 2 in which the sensor 3 is placed, and wirelessly transmits the acquired equipment operation information to the wireless repeater 4.
  • equipment operation information is information indicating the operating status of the equipment 2 in which the sensor 3 is placed
  • wireless repeater 4 wirelessly transmits the acquired equipment operation information to the wireless repeater 4.
  • each sensor 3 may transmit the equipment operation information via a wired connection, for example, using a PLC (Programmable Logic Controller) or the like.
  • the wireless repeater 4 transmits the equipment operation information acquired from each sensor 3 to the cloud server 5 via wireless communication or wired LAN. Data transmission from each sensor 3 to the cloud server 5 is performed without human intervention.
  • Each sensor 3 is a so-called wireless M2M (Machine to Machine) sensor. Wireless M2M sensors have the advantage of being low cost and easy to install.
  • Each sensor 3 is attached to a control panel or the like of the equipment 2 and includes a contact sensor that acquires a signal indicating whether the equipment 2 is operating or stopped.
  • the equipment operation information acquired by each sensor 3 includes information indicating whether the equipment 2 is operating or not.
  • the sensor 3 may include a current sensor that detects the operating current of that component. Also, if the equipment 2 includes a component that vibrates while in operation (e.g., a rotating shaft, etc.), the sensor 3 may include a vibration sensor that detects the vibration of that component.
  • the equipment operation information acquired by the sensor 3 may include information indicating the operating state of the equipment 2 (operating current, vibration, etc.) instead of or in addition to information indicating whether the equipment is operating or not.
  • the inventory management system 200 stores inventory information indicating the stock status of parts required for the maintenance of multiple pieces of equipment 2.
  • the cloud server 5 receives equipment operation information from each sensor 3 via a wireless repeater 4.
  • the cloud server 5 includes a computing device 100 and a work status management system 300.
  • the computing device 100 includes computing circuits such as a CPU (Central Processing Unit), memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and ports for inputting and outputting various signals (none of which are shown).
  • a CPU Central Processing Unit
  • memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory)
  • ports for inputting and outputting various signals (none of which are shown).
  • the memory of the computing device 100 stores the equipment operation information received from each sensor 3.
  • the computing device 100 transmits the stored equipment operation information to the terminal 6, for example, in response to a request from the terminal 6.
  • the work status management system 300 stores work status information that indicates the status of maintenance work on multiple pieces of equipment 2 (for example, whether work is not being done, work is in progress, or work is complete).
  • the computing device 100 is connected to the inventory management system 200 via wired or wireless communication.
  • the computing device 100 centrally manages information related to the maintenance work of multiple pieces of equipment 2 based on equipment operation information from each sensor 3, inventory information from the inventory management system 200, and work status information from the work status management system 300.
  • the multiple terminals 6 are connected to the computing device 100 via wired or wireless communication.
  • Each terminal 6 is an information communication terminal with a display, such as a personal computer.
  • a display such as a personal computer.
  • each terminal 6 displays the maintenance work information stored in the computing device 100 on the display. The user can understand the maintenance status of the equipment 2 by looking at the screen displayed on the display of the terminal 6.
  • the computing device 100 sets the next scheduled maintenance date for the equipment 2 based on the equipment operation information acquired from the sensor 3. In this embodiment, the computing device 100 sets the next scheduled maintenance date for the equipment 2 based on the accumulated operation time of the equipment 2 grasped based on the equipment operation information.
  • FIG. 2 is a diagram for explaining a method for setting a planned maintenance date.
  • the horizontal axis indicates the date (the time elapsed since the equipment 2 began to be used), and the vertical axis indicates the accumulated operation time of the equipment 2.
  • the "start of use" of the equipment 2 means the "last maintenance date and time”, which is the date and time when the previous maintenance was performed, if there is a maintenance history of the equipment 2, and means the "first operation date and time", which is the date and time when the equipment 2 was first operated, if there is no maintenance history of the equipment 2.
  • the computing device 100 obtains the equipment operation time (operation/stop) in real time (e.g., at one-minute intervals) from the sensor 3 placed on the equipment 2 to be maintained.
  • the computing device 100 calculates the cumulative operating time of the equipment 2 from the history of information indicating whether the equipment 2 is operating or not, which is included in the equipment operation information acquired from the sensor 3. Note that the initial value of the cumulative operating time (the cumulative operating time at the start of use) is 0.
  • the calculation device 100 starts counting the elapsed time and accumulated operating time, with the time when the equipment 2 begins to be used as the origin P0.
  • the calculation device 100 then calculates the slope of the line connecting the current operating point P (the intersection of the elapsed time and the accumulated operating time) and the origin P0, i.e., the accumulated operating time per unit elapsed time at the current time, in real time (for example, at one-minute intervals).
  • the computing device 100 predicts the date on which the current cumulative operating time will reach a predetermined maintenance reference time based on the current cumulative operating time per unit elapsed time, and sets the predicted date as the next scheduled maintenance date.
  • the “maintenance reference time” is set to a time input in advance by a user, such as a worker.
  • the "time when equipment 2 began to be used” (the date and time when the previous maintenance was performed or the date and time when it was first operated) is also set to a date and time input in advance by a user, such as a worker.
  • the operating point P1 on date t1 and the operating point P2 on date t2 are both on the same straight line L1 that passes through the origin P0. Therefore, the next scheduled maintenance date M1 on date t1 and the next scheduled maintenance date M2 on date t2 are both set to date t4, where the straight line L1 intersects with the maintenance reference time.
  • the computing device 100 can set the next scheduled maintenance date in real time according to the equipment operation information acquired from the sensor 3, which is an M2M sensor. Therefore, compared to when the next scheduled maintenance date is simply determined based on the elapsed time alone, it is possible to set an appropriate next scheduled maintenance date that takes into account the actual operation time of the equipment 2.
  • the computing device 100 generates a maintenance list for centrally managing information regarding maintenance work for the equipment 2, including the next scheduled maintenance date set as described above.
  • FIG. 3 shows the maintenance list screen displayed on the display of terminal 6.
  • Display items on the list screen include the department in charge of maintenance, the equipment to be maintained, the name of the maintenance work, the next scheduled maintenance date, the status of the maintenance work, etc.
  • the department, equipment, and work name columns show information that has been entered in advance by a maintenance manager, etc.
  • a user can grasp information about the maintenance work of equipment 2 by operating terminal 6 to display the maintenance list on the display of terminal 6. This makes it possible to visualize maintenance work even when online.
  • the next scheduled maintenance date field automatically displays the next scheduled maintenance date that is set in real time by the computing device 100 as described above.
  • the computing device 100 sends an email to the person in charge of preparing spare parts, etc., urging them to prepare spare parts for the equipment 2 that is the target of maintenance. This makes it possible to prevent delays in maintenance due to a shortage of spare parts.
  • the work status column information that the computing device 100 obtains in real time from the work status management system 300 is automatically displayed. Therefore, by looking at the maintenance list screen, the user can check not only the next scheduled maintenance date but also the actual maintenance work status, making it easy to understand whether or not there is a delay in the maintenance work.
  • Figure 4 shows the details screen of the maintenance list.
  • the upper section of the details screen has display columns for "On-site work,” “Maintenance work,” “Checking spare parts,” and “Checking after implementation.”
  • the lower section of the details screen displays one of the detailed items selected from “On-site work,” “Maintenance work,” “Checking spare parts,” and “Checking after implementation.”
  • the maintenance work of equipment 2 is preliminarily classified into work for the worker (operator) and work for the maintenance staff who specialize in the maintenance of equipment 2.
  • the detailed screen's "On-site work,” “Maintenance work,” “Spare part check,” and “Post-operation check” include both work for the worker and work for the maintenance staff.
  • Fig. 4 an example is shown when “on-site work” is selected.
  • the detailed items include action items, confirmation, time, and remarks.
  • the action items column lists the work to be done on-site, and when each action item is completed, the check box in the confirmation column can be checked.
  • the message "Complete” is automatically displayed in the on-site work display column. Therefore, by looking at the on-site work display column, the user can easily understand whether the action items for the on-site work have been completed.
  • the on-site worker can enter a message for the maintenance worker.
  • FIG. 4 an example is shown in which the on-site worker has entered the message "on-site work completed" in the bottom line of the remarks column for the maintenance worker. The user can also understand the status of the on-site work by looking at the message entered in the remarks column.
  • Figure 5 shows the state when "Check spare parts" is selected on the maintenance list details screen.
  • the detailed items include the name, model, stock check, shelf number, required quantity, and stock quantity of the spare parts required for maintenance.
  • the item name, model, shelf number, and required quantity columns display information that has been previously entered.
  • a check can be entered in the check box in the stock check column.
  • the message "Complete” is automatically displayed in the spare part check display column. Therefore, the user can tell whether or not the spare part check has been completed by looking at the spare part check display column.
  • the stock quantity column automatically displays the stock quantity that the computing device 100 obtains in real time from the inventory management system 200. Therefore, the user can grasp the stock status of spare parts by looking at the details screen of "Confirm Spare Parts.”
  • (flowchart) 6 is a flowchart showing an example of a processing procedure performed when the computing device 100 manages information related to maintenance work. This flowchart is repeatedly executed every time a predetermined condition is satisfied (for example, at every predetermined period).
  • the computing device 100 acquires equipment operation information from sensor 3, which is an M2M sensor (step S10).
  • the computing device 100 calculates the cumulative operating time of equipment 2 from the history of equipment operation information (step S12).
  • the computing device 100 predicts the next scheduled maintenance date based on the cumulative operating time calculated in step S12 (step S14).
  • the method for predicting the next scheduled maintenance date is as described above.
  • the computing device 100 determines whether the predicted next scheduled maintenance date is near (step S20). For example, the computing device 100 determines that the next scheduled maintenance date is near if the period from the current date to the next scheduled maintenance date is less than a predetermined period (e.g., several weeks). Note that the "predetermined period" is set to a period input in advance by a user such as an operator.
  • the computing device 100 sends an email to the person in charge of preparing spare parts, urging them to prepare spare parts (step S22).
  • the user can freely set the destination of the email notification.
  • the computing device 100 determines whether or not a request to display the maintenance list has been received from any of the terminals 6 (step S30).
  • the computing device 100 obtains information on the work status from the work status management system 300 and obtains information on the number of spare parts in stock from the inventory management system 200 (step S32).
  • the computing device 100 displays a maintenance list reflecting the next scheduled maintenance date predicted in step S14, and the work status and inventory amount obtained in step S32, on the display of the terminal 6 that sent the display request (step S34).
  • the maintenance management system 1 can set an appropriate next scheduled maintenance date based on the actual operating hours of the equipment 2.
  • a maintenance list including the next scheduled maintenance date is displayed on the display of the terminal 6. This makes it possible to visualize maintenance work online.
  • next scheduled maintenance date is set using the accumulated operating time of equipment 2 as a parameter, but the next scheduled maintenance date may also be set using the operating state of equipment 2 as a parameter in addition to the accumulated operating time of equipment 2.
  • the date on which the cumulative operating time reaches the maintenance reference time is basically set as the next scheduled maintenance date as in the above-described embodiment, but the maintenance reference time is increased or decreased depending on the operating state of equipment 2.
  • FIGS. 7 and 8 are diagrams for explaining the method for setting the next scheduled maintenance date according to this modification example 1.
  • FIGS. 7 and 8 show an example in which a cooling fan is the maintenance target.
  • the computing device 100 determines whether the current waveform of the cooling fan as understood from the equipment operation information acquired from the sensor 3 when the scheduled maintenance date approaches (for example, immediately before sending an email to prepare spare parts required for the next maintenance) exceeds a predetermined threshold value.
  • FIG. 7 shows an example of increasing the maintenance reference time.
  • the cooling fan current is less than the threshold value when the scheduled maintenance date approaches, so the computing device 100 determines that the cooling fan is in good condition and increases the maintenance reference time by a specified time. This extends the next scheduled maintenance date by a specified period.
  • FIG. 8 shows an example of reducing the maintenance reference time.
  • the computing device 100 determines that the cooling fan condition has deteriorated and reduces the maintenance reference time by a predetermined time. This shortens the next scheduled maintenance date by a predetermined period of time.
  • next scheduled maintenance date may be set using the accumulated operating time of equipment 2 as well as the operating status as a parameter.
  • the next scheduled maintenance date may be set to a predetermined period of time (e.g., one week) from that point on.
  • next scheduled maintenance date may be set using the average or moving average value of the cooling fan current as a parameter.
  • the next scheduled maintenance date may be set using only the cooling fan current as a parameter. For example, if the number of times the cooling fan current exceeds the threshold or the accumulated time exceeds a first threshold, the next scheduled maintenance date may be set to one month from that point in time, and if the number of times the cooling fan current exceeds the threshold or the accumulated time exceeds a second threshold that is greater than the first threshold, the next scheduled maintenance date may be set to one week from that point in time.
  • the next scheduled maintenance date is set using the cumulative operating time of equipment 2 as a parameter.
  • the next scheduled maintenance date may be set using the cumulative number of times equipment 2 is operated as a parameter.
  • the computing device 100 may calculate the cumulative number of operations of the equipment 2 from the history of information indicating whether the equipment 2 is operating, which is included in the equipment operation information acquired from the sensor 3, and predict the date on which the cumulative number of operations will reach a predetermined maintenance standard number based on the cumulative number of operations per unit elapsed time at the current point in time, and set the predicted date as the next scheduled maintenance date.
  • a scheduled replacement date for parts associated with the equipment 2 may also be set.
  • the computing device 100 may calculate the cumulative number of times a part associated with equipment 2 is operated from the history of information indicating whether equipment 2 is operating or not, which is included in the equipment operation information acquired from the sensor 3, and predict the date on which the cumulative number of times the part is currently operated will reach a predetermined reference number based on the cumulative number of times the part is currently operated per unit elapsed time, and set the predicted date as the next scheduled replacement date.
  • the computing device 100 may determine whether the time difference between the planned maintenance date for the equipment 2 and the planned replacement date for a part associated with the equipment 2 is within a predetermined reference period (e.g., three months) and display the determination result on the display of the terminal 6. This allows the user to easily understand whether the planned maintenance date for the equipment 2 is close to the planned replacement date for a part associated with the equipment 2, making it easier to plan preparations for carrying out replacement work for the associated parts of the equipment 2 in conjunction with the maintenance work for the equipment 2.
  • a predetermined reference period e.g., three months
  • FIG. 9 shows a maintenance delay list displayed on the display of terminal 6.
  • the maintenance delay list displays the department, equipment, task name, and reason for the delay where the maintenance delay occurred.
  • the computing device 100 checks the stock status of spare parts in conjunction with the inventory management system 200, and if a spare part is out of stock, automatically enters the reason for the delay, "No spare parts in stock,” in the delay reason field.
  • the maintenance manager for example, can also enter a reason for the delay, such as "schedule adjustment,” in the delay reason field.
  • Figure 10 shows an example of the results of tabulating and analyzing delay patterns.
  • 1 Maintenance management system 2 Equipment, 3 Sensor, 4 Wireless repeater, 5 Cloud server, 6 Terminal, 100 Computing device, 200 Inventory management system, 300 Work status management system.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

保全管理システムは、保全対象となる設備に配置され、設備の稼働状況を示す情報である設備稼働情報を無線送信するセンサと、設備の保全予定時期を設定する演算装置とを備える。演算装置は、センサから設備稼働情報を取得し、設備稼働情報に基づいて設備の保全予定時期を設定する。

Description

設備保全管理システム
  本開示は、設備保全管理システムに関する。
 工場やプラント等で用いられる設備の保全を行なう際には、設備の異常を早期に発見し、設備の故障によって設備が停止する前に設備の保全を行なうことが望ましい。近年では、設備の作業者が所持する携帯端末から管理サーバ装置へのアクセス環境を用意した上で、その携帯端末での保全情報の入出力や更新等を行えるようにすることも提案されている(例えば、特許文献1参照)。
特開2014-146217号公報
 本開示による設備保全管理システムは、保全対象となる設備に配置され、設備の稼働状況を示す情報である設備稼働情報を無線送信するセンサと、設備の保全予定時期を設定する演算装置とを備える。演算装置は、センサから設備稼働情報を取得し、設備稼働情報に基づいて保全予定時期を設定する。
図1は、保全管理システムの概要を示す図である。 図2は、保全予定日の設定手法を説明するための図(その1)である。 図3は、メンテナンスリストの一覧画面を示す図である。 図4は、メンテナンスリストの詳細画面を示す図(その1)である。 図5は、メンテナンスリストの詳細画面を示す図(その2)である。 図6は、演算装置の処理手順の一例を示すフローチャートである。 図7は、保全予定日の設定手法を説明するための図(その2)である。 図8は、保全予定日の設定手法を説明するための図(その3)である。 図9は、保全遅延リストを示す図である。 図10は、遅延パターンの集計および分析の結果の一例を示す図である。
 [本開示が解決しようとする課題]
 製品の製造等に用いられる設備が突発的に故障した場合、時間稼働率の低下、製品の納期遅れなどの不具合を招く。そのため、設備の適切な保全(メンテナンス)と部品交換が重要である。
 従来においては、設備の保全時期を、設備の使用が開始されてからの経過時間で管理する期間基準保全が行なわれる場合が多かった。しかしながら、期間基準保全では、時間稼働率の低い設備は保全過剰、時間稼働率の高い設備は保全不足となることが懸念される。
 本開示の目的は、設備の稼働時間を踏まえた適切な保全予定時期を設定することである。
 [本開示の効果]
 本開示によれば、設備の稼働時間を踏まえた適切な保全予定時期を設定することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (第1項) 本開示による設備保全管理システムは、保全対象となる設備に配置され、設備の稼働状況を示す情報である設備稼働情報を送信するセンサと、設備の保全予定時期を設定する演算装置とを備える。演算装置は、センサから設備稼働情報を取得し、設備稼働情報に基づいて保全予定時期を設定する。
 (第2項) 第1項に記載の設備保全管理システムにおいて、設備稼働情報には、設備が稼働しているか否かを示す第1情報が含まれる。演算装置は、第1情報の履歴に基づいて設備の累積稼働時間を算出し、累積稼働時間に基づいて保全予定時期を設定する。
 (第3項) 第2項に記載の設備保全管理システムにおいて、演算装置は、設備の使用が開始されてからの経過時間と累積稼働時間との関係から累積稼働時間が所定の基準時間に達すると予測される時期を予測し、予測された時期を保全予定時期に設定する。
 (第4項) 第2項に記載の設備保全管理システムにおいて、設備稼働情報には、設備の稼働中における状態を示す第2情報が含まれる。演算装置は、累積稼働時間に加えて、第2情報に基づいて、保全予定時期を設定する。
 (第5項) 第1~4項のいずれかに記載の設備保全管理システムにおいて、設備の保全作業に関する情報を表示する表示装置をさらに備える。
 (第6項) 第5項に記載の設備保全管理システムにおいて、演算装置は、保全予定時期を、保全担当部署、保全対象設備、保全作業、および保全作業名の少なくともいずれかと対応付けて表示装置に表示させる。
 (第7項) 第5または6項に記載の設備保全管理システムにおいて、設備の保全作業は、設備のオペレータが担当する第1作業と、設備の保全者が担当する第2作業とに予め層別されている。演算装置は、第1作業に関する情報と、第2作業に関する情報とを表示装置の同一画面に表示させる。
 (第8項) 第5~7項のいずれかに記載の設備保全管理システムにおいて、設備の保全に要する部品の在庫数を管理する在庫管理システムをさらに備える。演算装置は、設備の保全に要する部品を、在庫管理システムから取得された部品の在庫数に対応付けて表示装置に表示させる。
 (第9項) 第5~8項のいずれかに記載の設備保全管理システムにおいて、演算装置は、設備の保全に遅延が生じた場合、その遅延理由を表示装置に表示させる。
 (第10項) 第1項に記載の設備保全管理システムにおいて、設備稼働情報には、設備が稼働しているか否かを示す第1情報が含まれる。演算装置は、第1情報の履歴に基づいて設備の累積稼働回数を算出し、累積稼働回数に基づいて保全予定時期を設定する。
 (第11項) 第10項に記載の設備保全管理システムにおいて、演算装置は、設備の使用が開始されてからの経過時間と累積稼働回数との関係から累積稼働回数が所定の基準回数に達すると予測される時期を予測し、予測された時期を保全予定時期に設定する。
 (第12項) 第2項に記載の設備保全管理システムにおいて、設備の保全作業に関する情報を表示する表示装置をさらに備える。演算装置は、保全予定時期を設定することに加えて、さらに、第1情報の履歴に基づいて設備に設置された部品の累積稼働回数を算出し、設備の使用が開始されてからの経過時間と累積稼働回数との関係から累積稼働回数が所定の基準回数に達すると予測される時期を予測し、予測された時期を部品の交換予定時期に設定し、保全予定時期と交換予定時期との時間差が所定の基準期間内であるか否かを判定し、判定結果を表示装置に表示させる。
 [本開示の実施形態の詳細]
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 (保全管理システムの概要)
 図1は、本実施の形態に従う保全管理システム1の概要を示す図である。保全管理システム1は、複数の設備2の保全業務に関する情報を管理する。
 保全管理システム1は、保全対象となる複数の設備2と、複数のセンサ3と、無線中継機4と、クラウドサーバ5と、複数の端末6と、在庫管理システム200とを含む。
 複数の設備2の各々は、たとえば、工場内の作業現場に配置され、製品の製造等に用いられる。通常の作業時においては、設備2は作業者(オペレータ)によって操作される。設備2の保全時には、作業者と保全者とが協力して設備2の保全作業を行なう。
 複数のセンサ3は、複数の設備2にそれぞれ配置される。各センサ3は、当該センサ3が配置されている設備2の稼働状況を示す情報である設備稼働情報を取得し、取得した設備稼働情報を無線中継機4に無線送信する。なお、各センサ3は、設備稼働情報をたとえばPLC(Programmable Logic Controller)等によって有線送信するものであってもよい。
 無線中継機4は、各センサ3から取得した設備稼働情報を、無線通信または有線LANを介してクラウドサーバ5に送信する。各センサ3からクラウドサーバ5へのデータ送信は、人を介在することなく行なわれる。各センサ3は、いわゆる無線M2M(Machine to Machine)センサである。なお、無線M2Mセンサには、コストが安く、簡単に設置できるというメリットがある。
 各センサ3は、設備2の制御盤等に取り付けられ、設備2が稼働しているのか停止しているのかを示す信号を取得する接点センサを含む。すなわち、各センサ3が取得する設備稼働情報には、設備2が稼働しているか否かを示す情報が含まれる。
 設備2のなかに電流で稼働する部品(たとえば冷却ファン)が含まれる場合には、その部品の稼働電流を検出する電流センサがセンサ3に含まれていてもよい。また、設備2の稼働中に振動する部品(たとえば回転軸等)がある場合には、その部品の振動を検出する振動センサがセンサ3に含まれていてもよい。すなわち、センサ3が取得する設備稼働情報には、設備が稼働しているか否かを示す情報に代えてあるいは加えて、設備2の稼働中の状態(稼働電流、振動等)を示す情報が含まれていてもよい。
 在庫管理システム200には、複数の設備2の保全に要する部品の在庫状況を示す在庫情報が記憶されている。
 クラウドサーバ5には、各センサ3からの設備稼働情報が、無線中継機4を介して受信される。クラウドサーバ5は、演算装置100と作業状態管理システム300とを含む。
 演算装置100は、CPU(Central Processing Unit)などの演算回路と、ROM(Read Only Memory)およびRAM(Random Access Memory)などのメモリと、各種信号を入出力するためのポートとを含む(いずれも図示せず)。
 演算装置100のメモリには、各センサ3から受信した設備稼働情報が記憶される。演算装置100は、たとえば端末6からの要求に応じて、記憶されている設備稼働情報を端末6に送信する。
 作業状態管理システム300には、複数の設備2の保全作業の状態(たとえば未作業、作業中、作業完了のいずれの状態であるのか)を示す作業状態情報が記憶されている。
 演算装置100は、在庫管理システム200と有線あるいは無線で通信接続されている。
 演算装置100は、各センサ3からの設備稼働情報、在庫管理システム200からの在庫情報、作業状態管理システム300からの作業状態情報に基づいて、複数の設備2の保全作業に関する情報を一元管理する。
 複数の端末6は、演算装置100と有線あるいは無線で通信接続されている。各端末6は、パーソナルコンピュータ等のディスプレイ付きの情報通信端末である。各端末6は、ユーザによって操作されることにより、演算装置100に記憶されている保全業務情報をディスプレイに表示させる。ユーザは、端末6のディスプレイに表示される画面を見ることによって、設備2の保全状況を把握することができる。
 (次回の保全予定日の予測)
 演算装置100は、センサ3から取得する設備稼働情報に基づいて、設備2の次回の保全予定時期を設定する。本実施の形態においては、演算装置100は、設備稼働情報に基づいて把握される設備2の累積稼働時間を基準として、設備2の次回の保全予定日を設定する。
 図2は、保全予定日の設定手法を説明するための図である。図2において、横軸は日付(設備2の使用開始時からの経過時間)を示し、縦軸は設備2の累積稼働時間を示す。なお、設備2の「使用開始時」とは、当該設備2が保全された履歴がある場合は前回の保全が実施された日時である「前回保全日時」を意味し、当該設備2が保全された履歴がない場合は当該設備2が初めて稼働された日時である「初稼働日時」を意味する。
 演算装置100は、保全対象の設備2に配置されたセンサ3から、設備稼働時間(稼働/停止)をリアルタイム(たとえば1分周期)で取得する。
 演算装置100は、センサ3から取得する設備稼働情報に含まれる、設備2が稼働しているか否かを示す情報の履歴から、設備2の累積稼働時間を算出する。なお、累積稼働時間の初期値(使用開始時の累積稼働時間)は0である。
 演算装置100は、設備2の使用開始時を原点P0として、経過時間および累積稼働時間のカウントを開始する。そして、演算装置100は、現時点の稼働点P(経過時間と累積稼働時間との交点)と原点P0とを結ぶ直線の傾き、すなわち、現時点における単位経過時間あたりの累積稼働時間をリアルタイム(たとえば1分周期)で算出する。
 そして、演算装置100は、現時点における単位経過時間あたりの累積稼働時間に基づいて、現時点において累積稼働時間が予め定められた保全基準時間に達する日付を予測し、予測された日付を次回保全予定日に設定する。
 なお、「保全基準時間」は、たとえば作業者等のユーザによって予め入力された時間に設定される。また、「設備2の使用開始時」(前回保全実施日時あるいは初稼働日時)も、同様に、たとえば作業者等のユーザによって予め入力された日時に設定される。
 図2に示される例では、日付t1における稼働点P1および日付t2における稼働点P2は、どちらも、原点P0を通る同じ直線L1上に存在している。そのため、日付t1における次回保全予定日M1、および、日付t2における次回保全予定日M2は、どちらも、直線L1と保全基準時間とが交差する日付t4に設定される。
 一方、日付t2から日付t3までの期間は何らかの要因で設備2の稼働が停止されているため、累積稼働時間は増加せずに一定である。この影響で、日付t3における稼働点P3は、直線L1よりも傾きの小さい直線L2上に存在することになり、日付t3における次回保全予定日M3は、直線L2と保全基準時間とが交差する日付t5に設定されることになる。すなわち、演算装置100は、稼働停止時間に応じて、次回保全予定日を日付t4から日付t5に遅らせる。
 このように、本実施の形態による演算装置100は、M2Mセンサであるセンサ3から取得される設備稼働情報に応じて、次回保全予定日をリアルタイムに設定することができる。そのため、単純に経過時間だけで次回保全予定日を決める場合に比べて、設備2の実際の稼働時間を踏まえた適切な次回保全予定日を設定することができる。
 (保全作業の一元管理)
 演算装置100は、上述のように設定した次回保全予定日を含めて、設備2の保全作業に関する情報を一元管理するためのメンテナンスリストを生成する。
 図3は、端末6のディスプレイに表示されるメンテナンスリストの一覧画面を示す図である。一覧画面の表示項目には、保全を担当する部署、保全対象となる設備、保全の作業名、次回保全予定日、保全の作業状態等が含まれる。部署、設備および作業名の欄には、保全管理者等によって予め入力されている情報が表示される。ユーザは、端末6を操作して端末6のディスプレイにメンテナンスリストを表示することによって、設備2の保全作業に関する情報を把握することができる。これにより、オンラインでも保全業務の見える化が図られる。
 次回保全予定日の欄には、上述のように演算装置100がリアルタイムに設定した次回保全予定日が自動的に表示される。次回保全予定日が近づくと、演算装置100は、保全対象となる設備2の予備品の準備を促すメールを予備品準備の担当者等に通知する。これにより、予備品の欠品によって保全が遅延することを未然に防止することができる。
 作業状態の欄には、演算装置100が作業状態管理システム300からのリアルタイムに取得した情報が自動的に表示される。そのため、ユーザは、メンテナンスリストの一覧画面を見ることで、次回保全予定日だけではなく、実際の保全作業状態をも確認することができるため、保全作業の遅延が生じているのか否かを容易に把握することができる。
 ユーザが一覧画面上でいずれかの作業名を選択してクリックすると、選択された作業名についての詳細画面が端末6のディスプレイに表示される。
 図4は、メンテナンスリストの詳細画面を示す図である。詳細画面の上段には「現場作業」、「保全作業」、「予備品確認」、および「実施後の確認」の表示欄が設けられている。詳細画面の下段には、「現場作業」、「保全作業」、「予備品確認」、および「実施後の確認」のうちから選択されたいずれか1つの詳細項目が表示される。
 設備2の保全作業は、作業者(オペレータ)が担当する作業と、設備2の保全を専門とする保全者が担当する作業とに予め層別されている。詳細画面の「現場作業」、「保全作業」、「予備品確認」、および「実施後の確認」には、作業者が担当する作業と、保全者が担当する作業の両方が含まれている。このように作業者が担当する作業と保全者が担当する作業とを同一画面に表示することによって、一連の保全作業を作業者と保全者とで共有することができる。また、一般的には作業者は保全作業に対する関心が低く保全作業を保全者に任せっきりになることが多いが、上記のように作業者および保全者の双方の担当作業を同一画面に表示することによって、作業者の保全作業に対する関心を高めて作業者が保全作業に積極的に関与するように促すことができる。
 図4には、「現場作業」が選択された状態が例示されている。「現場作業」選択時の詳細項目には、対応事項、確認、時間、備考等が含まれている。対応事項の欄には現場の作業内容が列挙され、各対応事項が完了した場合に確認欄のチェックボックスにチェックを入力できるようになっている。すべての対応事項の確認欄にチェックが入力されると、現場作業の表示欄に[完了]とのメッセージが自動的に表示される。そのため、ユーザは、現場作業の表示欄を見ることで、現場作業の対応事項が完了しているか否かを容易に把握することができる。なお、備考欄には、現場の作業者が保全者に向けたメッセージを入力することができる。図4には、現場の作業者が、保全者に向けて、備考欄の最下行に「現場作業完了」とのメッセージを入力した例が表示されている。ユーザは、備考欄に入力されているメッセージを見ることによっても、現場作業の状態を把握することができる。
 図5は、メンテナンスリストの詳細画面で「予備品確認」が選択された状態を示す図である。
 「予備品確認」選択時の詳細項目には、保全に要する予備品の品名、型式、在庫チェック、棚番号、必要個数、在庫数などの項目が含まれている。品名、型式、棚番号、必要個数の欄には、予め入力された情報が表示される。各予備品の確認が完了した場合に在庫チェック欄のチェックボックスにチェックを入力できるようになっている。すべての予備品の在庫チェック欄にチェックが入力されると、予備品確認の表示欄に[完了]とのメッセージが自動的に表示される。そのため、ユーザは、予備品確認の表示欄を見ることで、予備品の確認が完了しているか否かを把握することができる。
 在庫数の欄には、演算装置100が在庫管理システム200からリアルタイムに取得した在庫数が自動的に表示される。そのため、ユーザは、「予備品確認」の詳細画面を見ることで、予備品の在庫状況を把握することができる。
 (フローチャート)
 図6は、演算装置100が保全業務に関する情報を管理する際に行なう処理手順の一例を示すフローチャートである。このフローチャートは、予め定められた条件が成立する毎(たとえば所定周期毎)に繰り返し実行される。
 演算装置100は、M2Mセンサであるセンサ3からの設備稼働情報を取得する(ステップS10)。
 次いで、演算装置100は、設備稼働情報の履歴から、設備2の累積稼働時間を算出する(ステップS12)。
 次いで、演算装置100は、ステップS12で算出された累積稼働時間に基づいて、次回保全予定日を予測する(ステップS14)。なお、次回保全予定日の予測手法は上述したとおりである。
 次いで、演算装置100は、予測された次回保全予定日が近いか否かを判定する(ステップS20)。たとえば、演算装置100は、現在の日付から次回保全予定日までの期間が所定期間(たとえば数週間)未満である場合に、次回保全予定日が近いと判定する。なお、「所定期間」は、たとえば作業者等のユーザによって予め入力された期間に設定される。
 次回保全予定日が近い場合(ステップS20においてYES)、演算装置100は、予備品の準備を促すメールを予備品準備の担当者に通知する(ステップS22)。なお、メールを通知する宛先は、ユーザが自由に設定することができる。
 次いで、演算装置100は、いずれかの端末6からメンテナンスリストの表示要求を受信したか否かを判定する(ステップS30)。
 メンテナンスリストの表示要求を受信した場合(ステップS30においてYES)、演算装置100は、作業状態管理システム300から作業状態の情報を取得するとともに、在庫管理システム200から予備品の在庫数の情報を取得する(ステップS32)。
 次いで、演算装置100は、ステップS14で予測した次回保全予定日、ステップS32で取得した作業状態および在庫数を反映したメンテナンスリストを、表示要求を送信してきた端末6のディスプレイに表示する(ステップS34)。
 以上のように、本実施の形態による保全管理システム1は、設備2の実際の稼働時間を踏まえた適切な次回保全予定日を設定し、することができる。次回保全予定日を含むメンテナンスリストを端末6のディスプレイに表示する。これにより、オンラインで保全業務の見える化を図ることができる。
 [変形例1]
 上述の実施の形態においては設備2の累積稼働時間をパラメータとして次回保全予定日を設定したが、設備2の累積稼働時間に加えて設備2の稼働中の状態をパラメータとして次回保全予定日を設定するようにしてもよい。
 本変形例1においては、上述の実施の形態のように累積稼働時間が保全基準時間に達する日付を次回保全予定日に設定することを基本としつつ、設備2の稼働中の状態に応じて保全基準時間を増減させる。
 図7および図8は、本変形例1による次回保全予定日の設定手法を説明するための図である。図7および図8には、冷却ファンを保全対象とする例が示されている。
 具体的には、本変形例1による演算装置100は、保全予定日に近づいた時点(たとえば次回の保全に要する予備品を準備するためのメールを発信する直前)でセンサ3から取得された設備稼働情報から把握される冷却ファンの電流波形が、予め定められた閾値を超えているか否かを判定する。
 図7には、保全基準時間を増量する例が示される。図7に示す例では、保全予定日に近づいた時点の冷却ファンの電流が閾値未満であるため、演算装置100は、冷却ファンの状態が良好であると判定し、保全基準時間を所定時間だけ増量する。これにより、次回の保全予定日が所定期間だけ延長される。
 図8には、保全基準時間を減量する例が示される。図8に示す例では、冷却ファンの電流が閾値を超えた時間があるため、演算装置100は、冷却ファンの状態が劣化していると判定し、保全基準時間を所定時間だけ減量する。これにより、次回保全予定日が所定期間だけ短縮される。
 このように、設備2の累積稼働時間に加えて稼働中の状態をパラメータとして次回保全予定日を設定するようにしてもよい。
 なお、本変形例1において、冷却ファンの電流が閾値を超えた場合には、その時点から所定期間後(たとえば1週間後)を次回保全予定日に設定するようにしてもよい。
 また、本変形例1において、冷却ファンの電流の平均値あるいは移動平均値をパラメータとして次回保全予定日を設定するようにしてもよい。
 また、本変形例1において、冷却ファンの電流のみをパラメータとして次回保全予定日を設定するようにしてもよい。また、たとえば、冷却ファンの電流が閾値を超えた回数あるいは累積時間が第1閾値を超えた場合にはその時点から1ヶ月後を次回保全予定日に設定し、冷却ファンの電流が閾値を超えた回数あるいは累積時間が第1閾値よりも大きい第2閾値を超えた場合にはその時点から1週間後を次回保全予定日に設定するようにしてもよい。
 [変形例2]
 上述の実施の形態においては設備2の累積稼働時間をパラメータとして次回保全予定日を設定したが、設備2の累積稼働時間に代えて、設備2の累積稼働回数をパラメータとして次回保全予定日を設定するようにしてもよい。
 たとえば、演算装置100は、センサ3から取得する設備稼働情報に含まれる、設備2が稼働しているか否かを示す情報の履歴から、設備2の累積稼働回数を算出し、現時点における単位経過時間あたりの累積稼働回数に基づいて、現時点において累積稼働回数が予め定められた保全基準回数に達する日付を予測し、予測された日付を次回保全予定日に設定するようにしてもよい。
 [変形例3]
 設備2の保全予定日を設定することに加えて、設備2に付随する部品(たとえばシリンダバルブ、マグネットスイッチ等)の交換予定日を設定するようにしてもよい。
 たとえば、演算装置100は、センサ3から取得する設備稼働情報に含まれる、設備2が稼働しているか否かを示す情報の履歴から、設備2に付随する部品の累積稼働回数を算出し、現時点における単位経過時間あたりの当該部品の累積稼働回数に基づいて、現時点において当該部品の累積稼働回数が予め定められた基準回数に達する日付を予測し、予測された日付を次回の交換予定日に設定するようにしてもよい。
 さらに、演算装置100が、設備2の保全予定日と、設備2に付随する部品の交換予定日との時間差が所定の基準期間(たとえば3ヶ月)以内であるか否かを判定し、その判定結果を端末6のディスプレイに表示させるようにしてもよい。これにより、ユーザは、設備2の保全予定日が設備2に付随する部品の交換予定日と近いか否かを容易に把握でき、設備2の保全作業時に合せて設備2の付随部品の交換作業を実施するための準備を計画し易くすることができる。
 [変形例4]
 次回保全予定日が過ぎても保全作業が完了していない保全遅延が生じた設備2がある場合には、遅延理由を端末6のディスプレイに表示させるようにしてもよい。
 図9は、端末6のディスプレイに表示される保全遅延リストを示す図である。保全遅延リストには、保全遅延が生じた部署、設備、作業名、遅延理由が表示される。
 保全遅延があった場合、演算装置100は、在庫管理システム200と連動して予備品の在庫状況を確認し、予備品が欠品している場合には遅延理由の欄に「予備品在庫なし」との理由を自動的に入力する。なお、遅延理由の欄には、たとえば保全管理者等が「日程調整」などの遅延理由を入力することもできる。
 このように保全の遅延理由を管理することによって、遅延パターンの集計および分析が可能になり、今後の保全遅延対策に活用することができる。
 図10は、遅延パターンの集計および分析の結果の一例を示す図である。このように、遅延理由とその発生回数とをグラフ化して表示することにより、遅延パターンの分析が容易となり、今後の保全遅延対策に活用することができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 保全管理システム、2 設備、3 センサ、4 無線中継機、5 クラウドサーバ、6 端末、100 演算装置、200 在庫管理システム、300 作業状態管理システム。

Claims (12)

  1.  保全対象となる設備に配置され、前記設備の稼働状況を示す情報である設備稼働情報を送信するセンサと、
     前記設備の保全予定時期を設定する演算装置とを備え、
     前記演算装置は、
      前記センサから前記設備稼働情報を取得し、
      前記設備稼働情報に基づいて前記保全予定時期を設定する、設備保全管理システム。
  2.  前記設備稼働情報には、前記設備が稼働しているか否かを示す第1情報が含まれ、
     前記演算装置は、
      前記第1情報の履歴に基づいて前記設備の累積稼働時間を算出し、
      前記累積稼働時間に基づいて前記保全予定時期を設定する、請求項1に記載の設備保全管理システム。
  3.  前記演算装置は、前記設備の使用が開始されてからの経過時間と前記累積稼働時間との関係から前記累積稼働時間が所定の基準時間に達すると予測される時期を予測し、予測された時期を前記保全予定時期に設定する、請求項2に記載の設備保全管理システム。
  4.  前記設備稼働情報には、前記設備の稼働中における状態を示す第2情報が含まれ、
     前記演算装置は、前記累積稼働時間に加えて、前記第2情報に基づいて、前記保全予定時期を設定する、請求項2に記載の設備保全管理システム。
  5.  前記設備の保全作業に関する情報を表示する表示装置をさらに備える、請求項1から請求項4のいずれか1項に記載の設備保全管理システム。
  6.  前記演算装置は、前記保全予定時期を、保全担当部署、保全対象設備、保全作業、および保全作業名の少なくともいずれかと対応付けて前記表示装置に表示させる、請求項5に記載の設備保全管理システム。
  7.  前記設備の保全作業は、前記設備のオペレータが担当する第1作業と、前記設備の保全者が担当する第2作業とに予め層別されており、
     前記演算装置は、前記第1作業に関する情報と、前記第2作業に関する情報とを前記表示装置の同一画面に表示させる、請求項5に記載の設備保全管理システム。
  8.  前記設備の保全に要する部品の在庫数を管理する在庫管理システムをさらに備え、
     前記演算装置は、前記設備の保全に要する部品を、前記在庫管理システムから取得された前記部品の在庫数に対応付けて前記表示装置に表示させる、請求項5に記載の設備保全管理システム。
  9.  前記演算装置は、前記設備の保全に遅延が生じた場合、その遅延理由を前記表示装置に表示させる、請求項5に記載の設備保全管理システム。
  10.  前記設備稼働情報には、前記設備が稼働しているか否かを示す第1情報が含まれ、
     前記演算装置は、
      前記第1情報の履歴に基づいて前記設備の累積稼働回数を算出し、
      前記累積稼働回数に基づいて前記保全予定時期を設定する、請求項1に記載の設備保全管理システム。
  11.  前記演算装置は、前記設備の使用が開始されてからの経過時間と前記累積稼働回数との関係から前記累積稼働回数が所定の基準回数に達すると予測される時期を予測し、予測された時期を前記保全予定時期に設定する、請求項10に記載の設備保全管理システム。
  12.  前記設備の保全作業に関する情報を表示する表示装置をさらに備え、
     前記演算装置は、前記保全予定時期を設定することに加えて、さらに、
      前記第1情報の履歴に基づいて前記設備に設置された部品の累積稼働回数を算出し、
      前記設備の使用が開始されてからの経過時間と前記累積稼働回数との関係から前記累積稼働回数が所定の基準回数に達すると予測される時期を予測し、予測された時期を前記部品の交換予定時期に設定し、
      前記保全予定時期と前記交換予定時期との時間差が所定の基準期間内であるか否かを判定し、判定結果を前記表示装置に表示させる、請求項2に記載の設備保全管理システム。
PCT/JP2022/039758 2022-10-25 2022-10-25 設備保全管理システム WO2024089771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023519677A JP7364121B1 (ja) 2022-10-25 2022-10-25 設備保全管理システム
PCT/JP2022/039758 WO2024089771A1 (ja) 2022-10-25 2022-10-25 設備保全管理システム
JP2023171997A JP2024062947A (ja) 2022-10-25 2023-10-03 設備保全管理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039758 WO2024089771A1 (ja) 2022-10-25 2022-10-25 設備保全管理システム

Publications (1)

Publication Number Publication Date
WO2024089771A1 true WO2024089771A1 (ja) 2024-05-02

Family

ID=88328379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039758 WO2024089771A1 (ja) 2022-10-25 2022-10-25 設備保全管理システム

Country Status (2)

Country Link
JP (2) JP7364121B1 (ja)
WO (1) WO2024089771A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287785A (ja) * 2003-03-20 2004-10-14 Sharp Corp 設備保全管理システム、設備保全管理方法、および設備保全管理プログラム、並びに設備保全管理プログラムを記録した記録媒体
JP2013125509A (ja) * 2011-12-16 2013-06-24 Nec Corp 設備保全支援システム
JP2021022184A (ja) * 2019-07-29 2021-02-18 株式会社日立ビルシステム 保全計画作成支援装置
JP2021081959A (ja) * 2019-11-19 2021-05-27 富士フイルムビジネスイノベーション株式会社 情報処理装置、情報処理システム、及び情報処理プログラム
US20220042284A1 (en) * 2020-08-04 2022-02-10 Deer & Company Dynamic acquisition and utilization of shared jobsite density information

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6906209B2 (ja) 2018-09-26 2021-07-21 飛島建設株式会社 建設機械稼働状況管理システム及び管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287785A (ja) * 2003-03-20 2004-10-14 Sharp Corp 設備保全管理システム、設備保全管理方法、および設備保全管理プログラム、並びに設備保全管理プログラムを記録した記録媒体
JP2013125509A (ja) * 2011-12-16 2013-06-24 Nec Corp 設備保全支援システム
JP2021022184A (ja) * 2019-07-29 2021-02-18 株式会社日立ビルシステム 保全計画作成支援装置
JP2021081959A (ja) * 2019-11-19 2021-05-27 富士フイルムビジネスイノベーション株式会社 情報処理装置、情報処理システム、及び情報処理プログラム
US20220042284A1 (en) * 2020-08-04 2022-02-10 Deer & Company Dynamic acquisition and utilization of shared jobsite density information

Also Published As

Publication number Publication date
JP2024062947A (ja) 2024-05-10
JP7364121B1 (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
US11721195B2 (en) Augmented industrial management
US20210278829A1 (en) Systems and methods for maintaining equipment in an industrial automation environment
EP3358430A1 (en) Management system and management method
JP4736733B2 (ja) 生産管理装置、生産管理システム、生産管理方法、制御プログラム、および記録媒体
CN109895137B (zh) 机器人应用设备监控和预测分析
US20050027374A1 (en) System and method for continuous online safety and reliability monitoring
WO2003075107A1 (fr) Dispositif de support d'evaluation de risque, produit-programme et procede pour commander un dispositif de support d'evaluation de risque a reseau de securite
WO2018087864A1 (ja) 情報表示装置及び情報表示システム並びに表示画面制御方法
WO2013160774A2 (en) Service port explorer
JPWO2011010586A1 (ja) 設備管理システム、設備管理方法及びプログラム
US7212876B2 (en) Maintenance opportunity planning system and method
JP2016130928A (ja) コミュニティ管理システムおよび方法
JP6462954B1 (ja) 保守計画システムおよび保守計画方法
JP3138690B2 (ja) 予防保全支援システム
WO2024089771A1 (ja) 設備保全管理システム
CN112766530A (zh) 生产准备及生产启动作业辅助装置、系统及方法
CN112978529B (zh) 拥挤度预测显示系统和显示方法、计算机可读介质
JP6880343B1 (ja) スケジューラシステム、スケジューラ管理装置および機械学習装置
US11635870B2 (en) Information processing method, information processing system, and program
JPH1071543A (ja) 生産ラインの管理方法
KR102409863B1 (ko) 로봇 예방 및 예측 조치 서비스 제공 방법, 서버 및 프로그램
KR20200072069A (ko) 모터 정보 기반 로봇 상태 정보 제공 시스템
JP2018010566A (ja) モバイル製造管理及び最適化のプラットフォーム
JP6695298B2 (ja) 発注制御装置
JP2957561B1 (ja) 生産ライン管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963423

Country of ref document: EP

Kind code of ref document: A1