WO2024087895A1 - 双级螺杆压缩机及空调机组 - Google Patents

双级螺杆压缩机及空调机组 Download PDF

Info

Publication number
WO2024087895A1
WO2024087895A1 PCT/CN2023/117209 CN2023117209W WO2024087895A1 WO 2024087895 A1 WO2024087895 A1 WO 2024087895A1 CN 2023117209 W CN2023117209 W CN 2023117209W WO 2024087895 A1 WO2024087895 A1 WO 2024087895A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
pressure stage
air supply
pressure
housing
Prior art date
Application number
PCT/CN2023/117209
Other languages
English (en)
French (fr)
Inventor
张治平
武晓昆
毕雨时
张益钦
刘志华
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024087895A1 publication Critical patent/WO2024087895A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure is based on an application with CN application number 202211312245.9 and filing date October 25, 2022, and claims priority.
  • the disclosure of the CN application is hereby introduced as a whole into the present disclosure.
  • the present invention relates to the technical field of air treatment equipment, and in particular to a two-stage screw compressor and an air conditioning unit.
  • the coaxial direct-drive rotor is a new structure of screw compressor proposed in recent years. It realizes two-stage compression through only one pair of rotors. Compared with a single two-stage compressor, its structure is more streamlined, reducing the number of couplings and bearings, thereby reducing the transmission loss of the compressor, and has a far-reaching application prospect.
  • a coupling is provided between the primary compression structure and the secondary compression structure, and the air supply port can be set at the position of the coupling, so as to achieve the purpose of air supply to the secondary compression structure.
  • the distance between the low-pressure stage and the high-pressure stage of the coaxial direct-drive screw compressor is very close, and no coupling connection is required.
  • the present invention provides a two-stage screw compressor and an air conditioning unit in which an air supply part is arranged on a second pressure stage housing for air supply.
  • Some embodiments of the present disclosure provide a two-stage screw compressor, comprising:
  • a partition plate divides the shell into a first pressure stage shell and a second pressure stage shell that are interconnected;
  • a first pressure stage rotor pair the first pressure stage rotor pair being arranged in a first pressure stage housing;
  • a second pressure stage rotor pair, the second pressure stage rotor pair is arranged in a second pressure stage housing;
  • the male rotor of the first pressure stage rotor pair is coaxially arranged with the male rotor of the second pressure stage rotor pair, and the female rotor of the first pressure stage rotor pair is coaxially arranged with the female rotor of the second pressure stage rotor pair;
  • the second pressure stage housing is provided with an air supply portion, and an air supply outlet of the air supply portion faces the partition plate.
  • a communication port is arranged on the partition plate, and the air supply outlet faces the communication port.
  • the second pressure stage housing is provided with an air replenishing cavity, which constitutes an air replenishing part.
  • the thickness of the side wall of the air supplement cavity facing the interior of the second pressure stage housing is equal.
  • the second pressure stage housing is provided with an air supply inlet, and the air supply cavity is communicated with an external air source through the air supply inlet.
  • the air replenishment outlet is arranged on the side wall of the air replenishment cavity facing the partition plate, and the air replenishment inlet is arranged on the side wall of the air replenishment cavity away from the interior of the shell.
  • the relationship between the volume A of the air supplement cavity, the air supplement volume flow rate Q1 of the air supplement inlet, and the exhaust volume flow rate Q2 of the first pressure stage housing is Q1*t+Q2*t ⁇ A ⁇ 1.5(Q1*t+Q2*t);
  • t is the time it takes for the male rotor of the second stage rotor to rotate through one tooth slot.
  • the flow rate of the air supply outlet ranges from 8m/s to 10m/s.
  • the compressor further includes a drive mechanism connected to the first pressure stage rotor pair.
  • the present disclosure also provides an air-conditioning unit, comprising the above-mentioned two-stage screw compressor.
  • the two-stage screw compressor and air-conditioning unit provided by the present invention are provided with an air supply part on the second-stage shell, so that although the two-stage screw compressor does not have a coupling, the air supply part can be arranged, and the air supply outlet of the air supply part is directed toward the partition plate, so that the exhaust gas of the first-stage shell and the air supply of the air supply part are relatively impacted, so that the exhaust gas and the air supply are mixed as soon as possible, so that the suction pressure of the second-stage rotor pair is stabilized, and the possibility of surge and the like occurring in the second-stage rotor pair is reduced, so that the operation of the compressor is reliable under the premise of reliable air supply, thereby reducing the inter-stage pressure pulsation loss and improving the efficiency of the compressor.
  • FIG. 1 is a cross-sectional view of a compressor provided by some embodiments of the present disclosure.
  • FIG. 2 is another cross-sectional view of a compressor provided by some embodiments of the present disclosure.
  • FIG. 3 is another cross-sectional view of a compressor provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic cross-sectional structural diagram of a second male rotor of a compressor provided in some embodiments of the present disclosure.
  • the two-stage screw compressor includes: a shell 1, a partition plate 11, a first-stage rotor pair 41, and a second-stage rotor pair 42.
  • the partition plate 11 separates the shell 1 into a first-stage shell 12 and a second-stage shell 13 that are interconnected, and the first-stage rotor pair 41 is disposed in the first-stage shell 12.
  • the second-stage rotor pair 42 is disposed in the second-stage shell 13.
  • the first male rotor 411 of the first-stage rotor pair 41 is coaxially disposed with the second male rotor 421 of the second-stage rotor pair 42, and the first female rotor 411 of the first-stage rotor pair 41 is coaxially disposed with the second female rotor 422 of the second-stage rotor pair 42.
  • the second-stage shell 13 is provided with an air supply portion 5', and the air supply outlet 52 of the air supply portion 5' faces the partition plate 11.
  • the second pressure stage shell 13 is provided with an air supply section 5', so as to solve the problem that the two-stage screw compressor does not have a coupling and the air supply section cannot be arranged, and the air supply outlet 52 of the air supply section 5' is directed toward the partition plate 11, so that the exhaust gas of the first pressure stage shell 12 and the air supply of the air supply section 5' are relatively impacted, so that the exhaust gas and the air supply are mixed as soon as possible, so that the suction pressure of the second pressure stage rotor pair 42 is stabilized, and the probability of the second pressure stage rotor pair 42 surging and the like is reduced, so that the compressor can operate reliably under the premise of reliable air supply, thereby reducing the inter-stage pressure pulsation loss and improving the compressor efficiency.
  • the first pressure stage rotor pair 41 is also called the low-pressure stage rotor pair.
  • the second pressure stage rotor pair 42 is also called the high-pressure stage rotor pair.
  • a connecting port 111 is provided on the partition plate 11, and the air supply outlet 52 faces the connecting port 111.
  • the second pressure stage housing 13 and the first pressure stage housing 12 are connected through the connecting port 111, that is, the connecting port 111 constitutes the exhaust port of the first pressure stage housing 12.
  • the airflow of the air supply outlet collides head-on with the exhaust of the first pressure stage housing 12, achieving a counter-impact effect, so that the gas merges quickly, and finally the pressure of the gas sucked by the second pressure stage rotor pair 42 is stable, so that the compression effect of the second pressure stage rotor pair 42 is good, thereby reducing the inter-stage pressure pulsation loss and improving the efficiency of the compressor.
  • a gas replenishing cavity 5 is provided on the second pressure stage housing 13, and the gas replenishing cavity 5 constitutes a gas replenishing part.
  • the gas used for gas replenishment can be first transported into the gas replenishing cavity 5, and then discharged from the gas replenishing cavity 5 after the gas pressure in the gas replenishing cavity 5 is stabilized, thereby further stabilizing the suction pressure of the second pressure stage rotor pair 42, so that the compression effect of the second pressure stage rotor pair 42 is good.
  • the relationship between the volume A of the air supply cavity 5, the air supply volume flow Q1 of the air supply inlet 51, and the exhaust volume flow Q2 of the first pressure stage housing 12 is Q1*t+Q2*t ⁇ A ⁇ 1.5(Q1*t+Q2*t); wherein t is the second pressure stage housing 12.
  • the volume of the supplementary gas chamber 5 can better meet the requirement of sufficient mixing of the supplementary gas and the exhaust gas of the first pressure stage shell 12, and can also reduce the possibility of a drop in the suction pressure of the second pressure stage shell 13 of the compressor.
  • the areas of the air supply inlet 51 and the air supply outlet 52 need to be adapted to the air supply flow rate, so that the flow rate range of the air supply outlet is 8m/s to 10m/s. That is, the ratio of the air supply flow rate to the sum of the areas of the air supply inlet 51 and the air supply outlet 52 needs to be in the range of 8m/s to 10m/s. If the flow rate is too small, the air supply effect on the second pressure stage shell 13 is not good; if the flow rate is too large, it will affect the exhaust of the first pressure stage shell 12, which in turn will affect the working efficiency of the compressor.
  • the thickness of the side wall of the air replenishment chamber 5 facing the inside of the second pressure stage housing 13 is equal. That is, the side wall of the air replenishment chamber 5 facing the inside of the second pressure stage housing 13 is designed to be contoured with the inner side wall of the corresponding part of the second pressure stage housing 13, so that the structural strength of the second pressure stage housing 13 is reliable and the volume of the air replenishment chamber 5 is increased as much as possible, so that the air replenishment amount is larger and more sufficient, thereby improving the air replenishment effect of the compressor.
  • the second pressure stage housing 13 is provided with a gas supplement inlet 51, and the gas supplement chamber 5 is connected with an external gas source through the gas supplement inlet 51.
  • the gas supplement inlet 51 is provided on a side wall of the gas supplement chamber away from the inside of the second pressure stage housing 13.
  • the external gas source can be directly connected to the gas supplement inlet 51 outside the second pressure stage housing 13 and provide gas supplement gas to the gas supplement chamber 5.
  • the air replenishment outlet 52 is disposed on the side wall of the air replenishment cavity 5 facing the partition plate 11 , and the air replenishment inlet 51 is disposed on the side wall of the air replenishment cavity 5 away from the inside of the housing 1 , so as to achieve a better air replenishment effect.
  • the compressor further includes a driving mechanism 6, which is connected to the first stage rotor pair 41, specifically, is drivingly connected to the first male rotor 411 of the first stage rotor pair 41.
  • the driving mechanism 6 is specifically, for example, a motor, which drives the first stage rotor pair 41 to rotate.
  • Some embodiments of the present disclosure also provide an air-conditioning unit, comprising a two-stage screw compressor provided by any technical solution of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种双级螺杆压缩机及空调机组,双级螺杆压缩机包括:壳体(1);间隔板(11),间隔板(11)将壳体(1)分隔成相互连通的第一压级壳体(12)和第二压级壳体(13);第一压级转子对(41),设置于第一压级壳体(12)内;以及第二压级转子对(42),设置于第二压级壳体(13)内;第一压级转子对(41)的第一阳转子(411)与第二压级转子对(42)的第二阳转子(421)共轴设置,且第一压级转子对(41)的第一阴转子(412)与第二压级转子对(42)的第二阴转子(422)共轴设置;第二压级壳体(13)设置有补气部(5'),补气部(5')的补气出口(52)朝向间隔板(11)。

Description

双级螺杆压缩机及空调机组
相关申请的交叉引用
本公开是以CN申请号为202211312245.9,申请日为2022年10月25日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空气处理设备技术领域,特别是一种双级螺杆压缩机及空调机组。
背景技术
同轴直驱转子是近几年提出的螺杆压缩机新结构。它只通过一对转子实现两级压缩,相比于单机双级压缩机,其结构更加精简,减少了联轴器和轴承的数量,从而降低了压缩机的传动损耗,具有很深远的应用前景。
目前常规单机双级压缩机中,一级压缩结构和二级压缩结构之间设置有联轴器,其补气口可以设置在联轴器的位置处,从而实现对二级压缩结构进行补气的目的,但同轴直驱螺杆压缩机低压级阶段和高压级阶段之间的距离很近,不需要联轴器连接,没有布置常规补气腔的空间,双级螺杆压缩机并不能直接运用其补气技术,造成无法对双级螺杆压缩机进行补气的问题。
发明内容
本公开提供了一种在第二压级壳体上设置补气部进行补气的双级螺杆压缩机及空调机组。
本公开一些实施例提供一种双级螺杆压缩机,包括:
壳体;
间隔板,间隔板将壳体分隔成相互连通的第一压级壳体和第二压级壳体;
第一压级转子对,第一压级转子对设置于第一压级壳体内;
第二压级转子对,第二压级转子对设置于第二压级壳体内;
第一压级转子对的阳转子与第二压级转子对的阳转子共轴设置,且第一压级转子对的阴转子与第二压级转子对的阴转子共轴设置;
第二压级壳体上设置有补气部,补气部的补气出口朝向间隔板。
间隔板上设置有连通口,补气出口朝向连通口。
第二压级壳体上设置有补气腔,补气腔构成补气部。
补气腔朝向第二压级壳体内部的侧壁的厚度相等。
第二压级壳体上设置有补气入口,补气腔通过补气入口与外部气源连通。
补气出口设置于补气腔朝向间隔板的侧壁上,补气入口设置于补气腔远离壳体内部的侧壁上。
补气腔的体积A与补气入口的补气体积流量Q1和第一压级壳体的排气体积流量Q2的关系为Q1*t+Q2*t≤A≤1.5(Q1*t+Q2*t);
其中,t为第二压级转子对中阳转子转过一个齿槽的时间。
补气出口的流速范围为8m/s至10m/s。
在一些实施例中,压缩机还包括驱动机构,驱动机构与第一压级转子对连接。
本公开还提供一种空调机组,包括上述的双级螺杆压缩机。
本公开提供的双级螺杆压缩机及空调机组,在第二压级壳体上设置补气部,使得双级螺杆压缩机虽然不具有联轴器但是也可以布置补气部,而且使补气部的补气出口朝向间隔板,使得第一压级壳体的排气和补气部的补气相对冲,从而尽快的将排气和补气进行混合,使得第二压级转子对的吸气压力稳定,降低第二压级转子对发生喘振等现象的可能,从而在补气可靠的前提下,使得压缩机的运行可靠,从而降低级间压力脉动损失,提升压缩机效率。
附图说明
图1为本公开一些实施例提供的压缩机的剖视图。
图2为本公开一些实施例提供的压缩机的另一剖视图。
图3为本公开一些实施例提供的压缩机的又一剖视图。
图4为本公开一些实施例提供的压缩机的第二阳转子的剖视结构示意图。
图中:
1、壳体;11、间隔板;12、第一压级壳体;13、第二压级壳体;41、第一压级
转子对;42、第二压级转子对;5’、补气部;6、驱动机构;
111、连通口;
5、补气腔;51、补气入口;52、补气出口;5’、补气部;
411、第一阳转子;412、第一阴转子;421、第二阳转子;422、第二阴转子;423、
齿槽。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本公开进行进一步详细说明。应当理解,此处所描述的一些具体实施例仅用于解释本公开,并不用于限定本公开。
如图1和图2所示,在一些实施例中,双级螺杆压缩机包括:壳体1、间隔板11、第一压级转子对41以及第二压级转子对42。间隔板11将壳体1分隔成相互连通的第一压级壳体12和第二压级壳体13,第一压级转子对41设置于第一压级壳体12内。第二压级转子对42设置于第二压级壳体13内。第一压级转子对41的第一阳转子411与第二压级转子对42的第二阳转子421共轴设置,且第一压级转子对41的第一阴转子411与第二压级转子对42的第二阴转子422共轴设置。第二压级壳体13设置有补气部5’,补气部5’的补气出口52朝向间隔板11。在第二压级壳体13设置有补气部5’,从而解决双级螺杆压缩机不具有联轴器而无法布置补气部的问题,而且使补气部5’的补气出口52朝向间隔板11,使得第一压级壳体12的排气和补气部5’的补气相对冲,从而尽快地将排气和补气进行混合,使得第二压级转子对42的吸气压力稳定,降低第二压级转子对42发生喘振等现象的几率,从而在补气可靠的前提下,使得压缩机运行可靠,从而降低级间压力脉动损失,提升压缩机效率。其中,第一压级转子对41也被称为低压级转子对。第二压级转子对42也被称为高压级转子对。
间隔板11上设置有连通口111,补气出口52朝向连通口111。第二压级壳体13和第一压级壳体12通过连通口111进行连通,也即连通口111构成了第一压级壳体12的排气口,此时补气出口的气流与第一压级壳体12的排气进行正面冲撞,实现对冲效果,使得气体迅速融合,最终被第二压级转子对42吸入的气体的压力稳定,使得第二压级转子对42的压缩效果好,从而降低级间压力脉动损失,提升压缩机效率。
在一些实施例中,第二压级壳体13上设置有补气腔5,补气腔5构成补气部。用于补气的气体可以先输送至补气腔5内,并在补气腔5内稳定气压后由补气腔5排出,从而进一步使得第二压级转子对42的吸气压力稳定,使得第二压级转子对42的压缩效果好。
其中,补气腔5的体积A与补气入口51的补气体积流量Q1和第一压级壳体12的排气体积流量Q2的关系为Q1*t+Q2*t≤A≤1.5(Q1*t+Q2*t);其中,t为第二压 级转子对42中第二阳转子421转过一个齿槽423的时间。由于压缩机结构的限制,使得A并不能过大。但是当A过小时,补气气体和第一压级壳体12的排气无法充分混合,会导致处于第二压级壳体13的吸气压力脉动严重,严重影响压缩机的压缩效率。当A处于Q1*t+Q2*t≤A≤1.5(Q1*t+Q2*t)的范围时,更能使得补气腔5的体积满足补气气体和第一压级壳体12的排气的充分混合的要求,还能减少压缩机第二压级壳体13吸气压力下降的可能性。
为了提高补气腔5对第二压级壳体13的补气效果,补气入口51和补气出口52的面积需要与补气流量进行适配,使得补气出口的流速范围为8m/s至10m/s。也即补气流量与补气入口51和补气出口52的面积和的比值需要处于8m/s至10m/s的范围内。如果流速过小,则对第二压级壳体13的补气效果不佳;如果流速过大,会影响第一压级壳体12的排气,反而会影响压缩机的工作效率。
为了使得第二压级壳体13的结构强度足够,同时也尽可能地增加补气腔5的体积,补气腔5朝向第二压级壳体13内部的侧壁的厚度相等。也即补气腔5朝向第二压级壳体13内部的侧壁与第二压级壳体13相对应部分的内部侧壁进行仿形设计,即使得第二压级壳体13的结构强度可靠,又尽可能地增加补气腔5的体积,使得补气量更大、更充分,提高了压缩机的补气效果。
第二压级壳体13上设置有补气入口51,补气腔5通过补气入口51与外部气源连通。其中,补气入口51设置于补气腔远离第二压级壳体13内部的侧壁上。外部气源可以直接在第二压级壳体13的外部与补气入口51连接并向补气腔5内提供补气气体。
在一些实施例中,补气出口52设置于补气腔5朝向间隔板11的侧壁上,补气入口51设置于补气腔5远离壳体1内部的侧壁上,以使得补气效果更好。
压缩机还包括驱动机构6,驱动机构6与第一压级转子对41连接,具体是与第一压级转子对41的第一阳转子411驱动连接。驱动机构6具体比如为电机,通过电机驱动第一压级转子对41的转动。
本公开一些实施例还提供一种空调机组,包括本公开任一技术方案所提供的双级螺杆压缩机。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的 方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (10)

  1. 一种双级螺杆压缩机,包括:
    壳体(1);
    间隔板(11),所述间隔板(11)将所述壳体(1)分隔成相互连通的第一压级壳体(12)和第二压级壳体(13);
    第一压级转子对(41),设置于所述第一压级壳体(12)内;以及
    第二压级转子对(42),设置于所述第二压级壳体(13)内;
    所述第一压级转子对(41)的第一阳转子(411)与所述第二压级转子对(42)的第二阳转子(421)共轴设置,且所述第一压级转子对(41)的第一阴转子(412)与所述第二压级转子对(42)的第二阴转子(422)共轴设置;
    所述第二压级壳体(13)设置有补气部(5’),所述补气部(5’)的补气出口(52)朝向所述间隔板(11)。
  2. 根据权利要求1所述的双级螺杆压缩机,其中,所述间隔板(11)设置有连通口(111),所述补气出口(52)朝向所述连通口(111)。
  3. 根据权利要求1或者2所述的压缩机,其中,所述第二压级壳体(13)设置有补气腔(5);所述补气腔(5)作为所述补气部(5’)。
  4. 根据权利要求3所述的双级螺杆压缩机,其中,所述补气腔(5)朝向所述第二压级壳体(13)内部的侧壁的厚度相等。
  5. 根据权利要求3或者4所述的双级螺杆压缩机,其中,所述第二压级壳体(13)设置有补气入口(51),所述补气腔(5)通过所述补气入口(51)与外部气源连通。
  6. 根据权利要求5所述的双级螺杆压缩机,其中,补气出口(52)设置于所述补气腔(5)朝向所述间隔板(11)的侧壁上,所述补气入口(51)设置于所述补气腔(5)远离所述壳体(1)内部的侧壁上。
  7. 根据权利要求5或者6所述的双级螺杆压缩机,其中,所述补气腔(5)的体积A、所述补气入口(51)的补气体积流量Q1和所述第一压级壳体(12)的排气体积流量Q2的关系为:Q1*t+Q2*t≤A≤1.5(Q1*t+Q2*t);
    其中,t为第二压级转子对(42)的第二阳转子(421)转过一个齿槽(423)的时间。
  8. 根据权利要求1~7任一所述的双级螺杆压缩机,其中,所述补气出口的流速范围为8m/s至10m/s。
  9. 根据权利要求1~8任一所述的双级螺杆压缩机,还包括:
    驱动机构(6),与所述第一压级转子对(41)的第一阳转子(411)连接。
  10. 一种空调机组,包括权利要求1至9中任一项所述的双级螺杆压缩机。
PCT/CN2023/117209 2022-10-25 2023-09-06 双级螺杆压缩机及空调机组 WO2024087895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211312245.9A CN115479027A (zh) 2022-10-25 2022-10-25 双级螺杆压缩机及空调机组
CN202211312245.9 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087895A1 true WO2024087895A1 (zh) 2024-05-02

Family

ID=84395316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117209 WO2024087895A1 (zh) 2022-10-25 2023-09-06 双级螺杆压缩机及空调机组

Country Status (2)

Country Link
CN (1) CN115479027A (zh)
WO (1) WO2024087895A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115479027A (zh) * 2022-10-25 2022-12-16 珠海格力电器股份有限公司 双级螺杆压缩机及空调机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297996A (ja) * 2007-05-31 2008-12-11 Mayekawa Mfg Co Ltd 単機スクリュー式多段圧縮機およびそれを用いた冷凍・冷却システム
CN104632626A (zh) * 2014-06-27 2015-05-20 珠海格力节能环保制冷技术研究中心有限公司 双级增焓转子式压缩机及空调器
CN105864041A (zh) * 2016-05-24 2016-08-17 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN106704179A (zh) * 2017-03-09 2017-05-24 上海格什特螺杆科技有限公司 一种新型直连双螺杆压缩机
CN113464435A (zh) * 2021-08-13 2021-10-01 珠海凌达压缩机有限公司 压缩机增焓组件、压缩机和空调系统
CN114215749A (zh) * 2021-12-14 2022-03-22 珠海格力电器股份有限公司 一种螺杆转子、压缩机和空调
CN115479027A (zh) * 2022-10-25 2022-12-16 珠海格力电器股份有限公司 双级螺杆压缩机及空调机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297996A (ja) * 2007-05-31 2008-12-11 Mayekawa Mfg Co Ltd 単機スクリュー式多段圧縮機およびそれを用いた冷凍・冷却システム
CN104632626A (zh) * 2014-06-27 2015-05-20 珠海格力节能环保制冷技术研究中心有限公司 双级增焓转子式压缩机及空调器
CN105864041A (zh) * 2016-05-24 2016-08-17 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN106704179A (zh) * 2017-03-09 2017-05-24 上海格什特螺杆科技有限公司 一种新型直连双螺杆压缩机
CN113464435A (zh) * 2021-08-13 2021-10-01 珠海凌达压缩机有限公司 压缩机增焓组件、压缩机和空调系统
CN114215749A (zh) * 2021-12-14 2022-03-22 珠海格力电器股份有限公司 一种螺杆转子、压缩机和空调
CN115479027A (zh) * 2022-10-25 2022-12-16 珠海格力电器股份有限公司 双级螺杆压缩机及空调机组

Also Published As

Publication number Publication date
CN115479027A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024087895A1 (zh) 双级螺杆压缩机及空调机组
WO2017219669A1 (zh) 泵体组件及具有其的压缩机
WO2019200945A1 (zh) 压缩机及制冷循环系统及空调器
WO2019169922A1 (zh) 螺杆压缩机及空调机组
CN107939683B (zh) 压缩机及制冷系统
CN203488368U (zh) 双级三叶气冷罗茨真空泵
WO2020253185A1 (zh) 压缩机和空调器
CN103807175A (zh) 双转子两级增焓压缩机、空调器和热泵热水器
CN114151347B (zh) 一种气缸、泵体结构、压缩机及空调器
CN218598363U (zh) 双级螺杆压缩机及空调机组
CN110173445A (zh) 压缩机及空调系统
CN210423017U (zh) 压缩机、空调器
CN210033882U (zh) 压缩机及空调系统
CN205207179U (zh) 压缩机和空调器
CN210949113U (zh) 双级螺杆压缩机及空调机组
EP3617516B1 (en) Screw compressor, air conditioning device and refrigerating device
US20220316477A1 (en) Compressor and Air Conditioning System
CN209510632U (zh) 双级压缩单涡旋压缩水冷泵体
CN208236617U (zh) 一种空气压缩机
CN209510638U (zh) 可靠性高、性能好的三缸双级变容压缩机及空调器
CN109555685A (zh) 双级压缩单涡旋压缩水冷泵体
CN219432050U (zh) 一种带高低压切换模块的两级高压螺杆主机
CN109026708B (zh) 一种泵体组件及压缩机
CN214464971U (zh) 一种气环式真空泵
CN109488595A (zh) 压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881476

Country of ref document: EP

Kind code of ref document: A1