WO2024087859A1 - 一种天线组件和电子设备 - Google Patents

一种天线组件和电子设备 Download PDF

Info

Publication number
WO2024087859A1
WO2024087859A1 PCT/CN2023/115218 CN2023115218W WO2024087859A1 WO 2024087859 A1 WO2024087859 A1 WO 2024087859A1 CN 2023115218 W CN2023115218 W CN 2023115218W WO 2024087859 A1 WO2024087859 A1 WO 2024087859A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
resonance mode
frequency band
antenna assembly
electrically connected
Prior art date
Application number
PCT/CN2023/115218
Other languages
English (en)
French (fr)
Inventor
王泽东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024087859A1 publication Critical patent/WO2024087859A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the embodiments of the present application relate to the field of radio frequency communications, and in particular to an antenna assembly and an electronic device.
  • an embodiment of the present application provides an antenna assembly and an electronic device.
  • an antenna assembly including:
  • a first radiator the first radiator having a first coupling end and a first grounding end and a first feeding point arranged between the first coupling end and the first grounding end, the first grounding end being electrically connected to a reference ground;
  • the second radiator having a second coupling end and a second grounding end and a first connection point arranged between the second coupling end and the second grounding end, wherein the second coupling end and the first coupling end form a coupling gap, and the second grounding end and the first connection point are both electrically connected to a reference ground;
  • a first feed source is electrically connected to the first radiator through a first feeding point, and is used to provide a first excitation signal; wherein the first excitation signal excites the first radiator and the second radiator to generate a first resonance mode supporting the first frequency band, a second resonance mode supporting the second frequency band, and a third resonance mode and a fourth resonance mode supporting the third frequency band.
  • the present application also provides an electronic device, provided with an antenna assembly, the antenna assembly comprising a first radiator, a second radiator and a first feed source, the first radiator having a first coupling end and a first grounding end and a first feeding point arranged between the first coupling end and the first grounding end, the first grounding end being electrically connected to a reference ground; the second radiator having a second coupling end and a second grounding end and a first connection point arranged between the second coupling end and the second grounding end, wherein the second coupling end forms a coupling gap with the first coupling end, and the second grounding end and the first connection point are both electrically connected to the reference ground; the first feed source is electrically connected to the first radiator through the first feeding point, for providing a first excitation signal; wherein the first excitation signal excites the first radiator and the second radiator to generate a first resonant mode supporting a first frequency band, a second resonant mode supporting a second frequency band, and a third re
  • FIG1 is a schematic diagram of a first structure of an electronic device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure disassembly of the electronic device in FIG1 ;
  • FIG3 is a schematic diagram of the structure of an antenna assembly provided in an embodiment of the present application.
  • FIG4( a) is a schematic diagram of current distribution in a first resonance mode provided in an embodiment of the present application
  • FIG4( b ) is a schematic diagram of current distribution in a second resonance mode provided in an embodiment of the present application.
  • FIG4( c ) is a schematic diagram of current distribution in the third resonance mode provided in an embodiment of the present application.
  • FIG4( d ) is a schematic diagram of current distribution in the fourth resonance mode provided in an embodiment of the present application.
  • FIG5 is another schematic diagram of the structure of an antenna assembly provided in an embodiment of the present application.
  • FIG6 is another schematic diagram of the structure of the antenna assembly provided in an embodiment of the present application.
  • FIG. 7 is another schematic diagram of the structure of the antenna assembly provided in an embodiment of the present application.
  • FIG8 is another schematic diagram of the structure of the antenna assembly shown in FIG4;
  • FIG9 is another schematic diagram of the structure of the antenna assembly shown in FIG8;
  • FIG10 is another schematic diagram of the structure of the antenna assembly shown in FIG8;
  • FIG11 is another schematic diagram of the structure of the antenna assembly shown in FIG4;
  • FIG12( a) is a schematic diagram of current distribution in the sixth resonance mode provided in an embodiment of the present application.
  • FIG12( b ) is a schematic diagram of current distribution in the seventh resonance mode provided in an embodiment of the present application.
  • FIG13 is another schematic diagram of the structure of the antenna assembly shown in FIG12;
  • FIG14 is a schematic diagram of a reflection coefficient curve of the antenna assembly provided by an embodiment of the present application in the N41 frequency band in the NSA state;
  • FIG15 is a schematic diagram of a radiation performance curve of the first antenna provided in an embodiment of the present application in an NSA state;
  • FIG16 is a schematic diagram of a radiation performance curve of the third antenna provided in an embodiment of the present application in the N41 frequency band in the NSA state;
  • FIG17 is a schematic diagram of a reflection coefficient curve of the antenna assembly provided by an embodiment of the present application in the N78 frequency band in the NSA state;
  • FIG18 is a schematic diagram of a radiation performance curve of the third antenna provided in an embodiment of the present application in the N78 frequency band in the NSA state;
  • FIG. 19 is a second structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the structure of an electronic device 1000 provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the structure of the electronic device 1000 in FIG. 1.
  • the electronic device 1000 includes an antenna assembly 100, and The housing 200 and the display screen 300 are connected to each other.
  • the housing 200 includes a frame 210 and a back cover 220.
  • a middle plate 230 is formed by injection molding in the frame 210, and a plurality of mounting grooves for mounting various electronic devices are formed on the middle plate 230.
  • the reference ground GND can be located on the middle plate 230.
  • the middle plate 230 and the frame 210 together form the middle frame 240 of the electronic device 1000.
  • a receiving space is formed between the display screen 300 and the housing 200.
  • the antenna assembly 100 is arranged inside or outside the receiving space. After the display screen 300, the middle frame 240 and the back cover 220 are covered, a receiving space is formed on both sides of the middle frame 240.
  • the electronic device 1000 also includes a circuit board 400, a battery 500, a camera, a microphone, a receiver, a speaker, a face recognition module, a fingerprint recognition module, etc., which are arranged in the receiving space and can realize the basic functions of the mobile phone, which will not be repeated in this embodiment.
  • the antenna assembly 100 is used to realize the wireless communication function of the electronic device 1000.
  • the antenna assembly 100 can transmit Wireless Fidelity (Wi-Fi) signals, Global Positioning System (GPS) signals, third-generation mobile communication technology (3G), fourth-generation mobile communication technology (4G), fifth-generation mobile communication technology (5G), near field communication (NFC) signals, etc.
  • Wi-Fi Wireless Fidelity
  • GPS Global Positioning System
  • 3G Third-generation mobile communication technology
  • 4G fourth-generation mobile communication technology
  • 5G fifth-generation mobile communication technology
  • NFC near field communication
  • Fig. 3 is a schematic diagram of the structure of an antenna assembly 100 provided in an embodiment of the present application.
  • the antenna assembly 100 includes a first radiator 110, a second radiator 120 and a first feed source F1.
  • the first radiator 110 and the second radiator 120 are arranged at intervals, and a coupling gap 101 is formed between one end of the second radiator 120 and the first radiator 110.
  • the other end of the second radiator 120 is provided with a grounding end for grounding.
  • the first coupling end 112 of the first radiator 110 is close to the coupling gap 101, and the second coupling end 122 of the second radiator 120 is also close to the coupling gap 101, so that the first coupling end 112 of the first radiator 110 and the second coupling end 122 of the second radiator 120 are arranged opposite to each other at the coupling gap 101.
  • the first radiator 110 can be grounded at the end away from the coupling gap 101, and the second radiator 120 can also be grounded at the end away from the coupling gap 101, so that the first radiator 110 and the second radiator 120 can form a common-aperture antenna pair.
  • the first radiator 110 may include a first grounding end 111 and a first coupling end 112 that are spaced apart.
  • the first grounding end 111 may be an end of the first radiator 110 that is away from the coupling slot 101, and the first coupling end 112 is closer to the coupling slot 101 than the first grounding end 111.
  • the first radiator 110 may be electrically connected to the reference ground GND of the antenna assembly 100 or the electronic device 1000 through the first grounding end 111 to achieve grounding of the first radiator 110.
  • the second radiator 120 may include a second ground terminal 121 and a second coupling terminal 122 that are spaced apart.
  • the second ground terminal 121 may be an end of the second radiator 120 that is away from the coupling slot 101, and the second coupling terminal 122 is closer to the coupling slot 101 than the second ground terminal 121.
  • the second radiator 120 may be electrically connected to the reference ground GND of the antenna assembly 100 or the electronic device 1000 through the second ground terminal 121 to achieve grounding of the second radiator 120.
  • a first connection point D1 is provided between the second coupling terminal 122 and the second ground terminal 121 , wherein the first connection point D1 is electrically connected to a reference ground GND.
  • the first feed source F1 may be electrically connected to the first radiator 110.
  • the first feed source F1 may be electrically connected to the first radiator 110.
  • the first feeding point A is electrically connected to the first radiator 110, wherein the first feeding point A is located between the first ground terminal 111 and the first coupling terminal 112.
  • the first feed source F1 can provide a first excitation signal and feed the first excitation signal into the first radiator 110 to generate a resonant mode; and/or, at least a portion of the first excitation signal is transmitted in the first radiator 110 and can be coupled to the second radiator 120 through the coupling slot 101 to excite at least a portion of the second radiator 120 to generate a resonant mode.
  • the first excitation signal can generate more current distributions on the second radiator 120, generate more resonant modes, and thus cover more frequency bands.
  • the first excitation signal excites the first radiator 110 and the second radiator 120 to generate a first resonance mode a supporting the first frequency band, a second resonance mode b supporting the second frequency band, and a third resonance mode c and a fourth resonance mode d supporting the third frequency band.
  • the first radiator 110 , the second radiator 120 and the first feed source F1 may constitute a first antenna ANT1 .
  • the first excitation signal can excite the first radiator 110 and the second radiator 120 to generate four resonance modes, and the above four resonance modes can support three different frequency bands to realize 3-carrier aggregation (Component Carrier, CC) function.
  • Component Carrier, CC Component Carrier
  • FIG4(a) is a schematic diagram of the current distribution of the first resonance mode a provided in an embodiment of the present application.
  • the first excitation signal excites the first radiator 120 to generate the first resonance mode a, wherein the first resonance mode a is a 1/4 wavelength mode of the first frequency band, and the current distribution of the first resonance mode a flows from the first ground terminal 111 to the first coupling terminal 112.
  • FIG4(b) is a schematic diagram of the current distribution of the second resonance mode b provided in the embodiment of the present application.
  • the first excitation signal is fed into the first radiator 110, it is coupled to the second radiator 120 through the coupling slot 101, and excites the second resonance mode b generated by the second radiator 120, wherein the second resonance mode b is a 1/4 wavelength mode of the second frequency band, and the current distribution of the second resonance mode b is flowing from the first connection point D1 to the second coupling end 122.
  • FIG4(c) is a schematic diagram of the current distribution of the third resonance mode c provided in an embodiment of the present application.
  • the first excitation signal excites the first radiator 120 to generate the third resonance mode c, wherein the third resonance mode c is a 1/4 wavelength mode of the third frequency band, and the current distribution of the third resonance mode c flows from the first coupling end 112 to the first feeding point A.
  • FIG4(d) is a schematic diagram of the current distribution of the fourth resonance mode d provided in the embodiment of the present application.
  • the first excitation signal is fed into the first radiator 110, it is coupled to the second radiator 120 through the coupling slot 101, and excites the fourth resonance mode d generated by the second radiator 120, wherein the fourth resonance mode d is a 1-wavelength mode of the third frequency band, and the current distribution of the second resonance mode b is flowing from the second coupling end and the second ground end to the middle of the second radiator respectively.
  • the antenna assembly 100 can use the third resonance mode and the fourth resonance mode to achieve full coverage of the frequency range to which the three frequency bands belong.
  • FIG5 is another schematic diagram of the structure of the antenna assembly 100 provided in an embodiment of the present application.
  • the antenna assembly 100 also includes:
  • the first switch circuit K1 has one end electrically connected to a second connection point D2 between the first feeding point A and the first feed source F1 , and the other end electrically connected to a reference ground GND.
  • the first switching circuit K1 is used to switch the multiple first frequency bands supported by the first resonance mode a by adjusting the center frequency point of the first resonance mode a, so that the antenna assembly 100 uses the first resonance mode a to generate the required first frequency band.
  • the first switching circuit K1 can be provided with a first switching device and at least two first switching branches, wherein each first switching branch corresponds to a first frequency band, and is used to control the change of the center frequency point generated by the first resonance mode a, so that the frequency range of the first frequency band also changes, thereby achieving the purpose of switching multiple first frequency bands supported by the first resonance mode a using the first switching circuit K1.
  • different resonance modes can be generated due to different current distributions of the first excitation signal in the first radiator 110.
  • the antenna assembly 100 operates in the third resonance mode c
  • part of the current distribution of the first excitation signal flows from the first feeding point A to the first feed source F1.
  • the first switch circuit K1 can ground the first excitation signal, so that the first excitation signal is short-circuited to prevent the first excitation signal from flowing into the first feed source F1, thereby ensuring the working performance of the first feed source F1.
  • the embodiment of the present application is described by taking the first switch circuit K1 short-circuiting the first excitation signal as an example. In practical applications, the method is not limited to this.
  • FIG. 6 is another schematic diagram of the structure of the antenna assembly 100 provided in an embodiment of the present application.
  • the antenna assembly 100 further includes:
  • the first matching circuit M1 has one end electrically connected to the first feeding point A, and the other end electrically connected to the first feed source F1.
  • the first matching circuit M1 can be used to complete the impedance matching of the required resonance mode, and can also block the first excitation signal flowing from the first feeding point A to the first feed source F1.
  • the first matching circuit M1 can present a high impedance state to the first excitation signal flowing from the first feeding point A to the first feed source F1.
  • FIG. 7 is another schematic diagram of the structure of the antenna assembly 100 provided in an embodiment of the present application.
  • the assembly 100 further comprises:
  • the second switch circuit K2 has one end electrically connected to the first connection point D1 and the other end electrically connected to the reference ground GND.
  • the second switch circuit is used to switch the multiple second frequency bands supported by the second resonance mode b.
  • the second switching circuit K2 is used to switch the multiple second frequency bands supported by the second resonance mode b by adjusting the center frequency of the second resonance mode b, so that the antenna assembly 100 uses the second resonance mode b to generate the required second frequency band.
  • the second switching circuit K2 can be provided with a second switching device and at least two second switching branches, wherein each second switching branch corresponds to a second frequency band, and is used to control the change of the center frequency generated by the second resonance mode b, so that the frequency range of the second frequency band also changes, thereby achieving the purpose of switching multiple second frequency bands supported by the second resonance mode b using the second switching circuit K2.
  • different resonance modes can be generated due to different current distributions of the first excitation signal in the first radiator 120.
  • the antenna assembly 100 operates in the second resonance mode b
  • part of the current distribution of the first excitation signal flows from the first connection point D to the second coupling end 122.
  • the first switch circuit K1 can ground the first excitation signal, so that the first excitation signal is short-circuited, ensuring that the current direction of the first excitation signal flowing from the first connection point D to the second coupling end 122 can be generated normally, so as to smoothly generate the second resonance mode b.
  • the second resonance mode b is generated by stimulating the radiator length from the second coupling end 112 to the first connection point D1 and the equivalent electrical length generated by the second switch circuit.
  • Fig. 8 is another schematic diagram of the structure of the antenna assembly 100 shown in Fig. 4.
  • the antenna assembly 100 further includes a second feed source F2.
  • the second feed source F2 may be electrically connected to the second radiator 120.
  • the second feed source F2 may be electrically connected to the second radiator 120 through a second feeding point B of the second radiator 120.
  • the second radiator 120 further has a second feeding point B located between the second coupling end 122 and the second ground end 121.
  • the first connection point D1 and the second feeding point B may be the same point.
  • the second feed source F2 may provide a second excitation signal and may feed the second excitation signal into the second radiator 120 to generate a fifth resonance mode e supporting a fourth frequency band.
  • the second radiator 120 and the second feed source F2 may constitute a second antenna ANT2.
  • the antenna assembly 100 further includes:
  • the second matching circuit M2 has one end electrically connected to the second feeding point B, and the other end electrically connected to the second feed source F2, for completing the impedance matching of the required resonance mode.
  • Fig. 9 is another schematic diagram of the structure of the antenna assembly 100 shown in Fig. 8.
  • the antenna assembly 100 further includes a second switch circuit K2, one end of the second switch circuit K2 is electrically connected between the second feeding point and the second feed source F2, and the other end of the second switch circuit K2 is electrically connected to the reference ground GND.
  • the second switching circuit K2 is used to switch the multiple fourth frequency bands supported by the fifth resonant mode e by adjusting the center frequency point of the fifth resonant mode e, so that the antenna assembly 100 uses the fifth resonant mode e to generate the required fourth frequency band.
  • the second switching circuit K2 can be provided with a second switching device and at least two second switching branches, wherein each second switching branch corresponds to a fourth frequency band, and is used to control the change of the center frequency generated by the fifth resonance mode e, so that the frequency range of the fourth frequency band also changes, thereby achieving the purpose of switching multiple fourth frequency bands supported by the fifth resonance mode e using the second switching circuit K2.
  • Fig. 10 is another schematic diagram of the structure of the antenna assembly 100 shown in Fig. 8.
  • the antenna assembly 100 further includes a filter circuit LC.
  • One end of the filter circuit LC is electrically connected between the second feeding point B and the second feed source F2, and the other end of the filter circuit LC is electrically connected to the reference ground GND, for filtering other signals except the fourth frequency band to reduce interference signals.
  • the filter circuit LC may be composed of a band-stop circuit or a band-pass circuit to filter out a frequency band greater than 1.5 GHz.
  • the fourth frequency band is a low frequency band, and the frequency range may be 0.7 to 0.96 GHz.
  • Fig. 11 is another schematic diagram of the structure of the antenna assembly 100 shown in Fig. 4.
  • the antenna assembly 100 further includes a third radiator 130 and a third feed source F3.
  • One end of the third radiator 130 may be connected to the first radiator 110 at the first grounding end 111, and the other end of the third radiator 130 may extend in a direction away from the first radiator 110.
  • the third radiator 130 and the first radiator 110 may form a whole (for example, the third radiator 130 and the first radiator 110 in FIG. 3 may form an inverted "L" shape), and the first grounding end 111 may be located between the third radiator 130 and the first radiator 110, and both the third radiator 130 and the first radiator 110 may be grounded through the first grounding end 111.
  • the first grounding end 111 may increase the isolation between the third radiator 130 and the first radiator 110.
  • the third radiator 130 can be located on the side of the first radiator 110 away from the second radiator 120, that is, the first radiator 110 can be located between the second radiator 120 and the third radiator 130, so that the second radiator 120, the coupling slot 101, the first radiator 110 and the third radiator 130 may be arranged sequentially.
  • the third feed source F3 can be electrically connected to the third radiator 130, for example, the third feed source 160 can be electrically connected to the third radiator 130 through the third feeding point C of the third radiator F3, wherein the third feed source F3 can provide a third excitation signal and can feed the third excitation signal into the third radiator 130 to excite the third radiator 130 to generate a sixth resonance mode supporting the second frequency band and a seventh resonance mode supporting the third frequency band.
  • the third radiator 130 and the third feed source F3 may constitute a third antenna ANT3.
  • the antenna assembly 100 further includes:
  • the third matching circuit M3 has one end electrically connected to the third feeding point C and the other end electrically connected to the third feed source F3, for completing the impedance matching of the required resonance mode.
  • the antenna assembly 100 transmits two wireless signals in the same frequency band, which can achieve multiple-in multiple-out (MIMO) transmission.
  • MIMO multiple-in multiple-out
  • FIG 12(a) is a schematic diagram of the current distribution of the sixth resonance mode f provided in an embodiment of the present application.
  • the sixth resonance mode f is generated by the third excitation signal exciting the third radiator 130, the sixth resonance mode f is a 1/4 wavelength mode of the second frequency band, and the current distribution of the sixth resonance mode f flows from one end of the third radiator 130 to the other end of the third radiator 130.
  • the frequency bands generated by the two resonance modes are both the second frequency band, wherein the second resonance mode b is generated by the first excitation signal exciting the second radiator 120, and the sixth resonance mode f is generated by the third excitation signal exciting the third radiator 130.
  • the radiators used in the second resonance mode b and the sixth resonance mode f are separated by the first radiator 110, when the second resonance mode b and the sixth resonance mode f output the same frequency band at the same time, the second resonance mode b and the sixth resonance mode f can maintain good isolation and better radiation performance, so that even if the antenna assembly 100 transmits wireless signals in the same frequency band, the isolation can meet the communication requirements, thereby achieving multiple-input multiple-output MIMO transmission.
  • FIG 12(b) is a schematic diagram of the current distribution of the seventh resonance mode g provided in an embodiment of the present application.
  • the seventh resonance mode g is generated by the third excitation signal exciting the third radiator 130, the seventh resonance mode g is a 1/4 wavelength mode of the third frequency band, and the current distribution of the seventh resonance mode g flows from one end of the third radiator 130 to the other end of the third radiator 130.
  • the frequency bands generated by the three resonance modes are all the third frequency band, wherein the third resonance mode c is generated by the first excitation signal exciting the second radiator 120, the fourth resonance mode d is generated by the first excitation signal exciting the second radiator 120 from the first coupling end 112 to the first feeding point A, and the seventh resonance mode g is generated by the third excitation signal exciting the third radiator 130. Since the third frequency band is generated by the first antenna ANT1 and the third antenna ANT3 used, The radiator spacing portion used to generate the third frequency band is the first radiator 110, that is, the radiator between the first feeding point A and the first ground terminal 111.
  • the third resonance mode c, the fourth resonance mode d and the seventh resonance mode g output the same frequency band at the same time
  • the third resonance mode c, the fourth resonance mode d and the seventh resonance mode g can maintain good isolation and better radiation performance, so that even if the antenna assembly 100 transmits wireless signals in the same frequency band, the isolation can meet the communication requirements, thereby achieving multiple-input multiple-output MIMO transmission.
  • FIG. 13 is another schematic diagram of the structure of the antenna assembly 100 shown in FIG. 11 .
  • the antenna assembly 100 further includes:
  • the third switch circuit K3 has one end electrically connected to a third connection point D3 between the third feeding point C and the third feed source F3, and the other end electrically connected to a reference ground GND.
  • the third switch circuit K3 is used to switch the multiple second frequency bands supported by the sixth resonance mode f by adjusting the center frequency point of the sixth resonance mode f, so that the antenna assembly 100 generates the required second frequency band using the sixth resonance mode a.
  • the third switching circuit K3 can be provided with a third switching device and at least two third switching branches, wherein each third switching branch corresponds to a second frequency band, and is used to control the change of the center frequency point generated by the sixth resonance mode f, so that the frequency range of the second frequency band also changes, thereby achieving the purpose of switching multiple second frequency bands supported by the sixth resonance mode f using the third switching circuit K3.
  • the third excitation signal Since a third switching circuit K3 is added between the third connection point D3 and the reference ground GND, and the third excitation signal needs to pass through the elements of the third switching circuit K3 to successfully generate the sixth resonance mode f, the third excitation signal generates the sixth resonance mode f by stimulating the radiator length of the third radiator 130 and the equivalent electrical length generated by the third switching circuit K3.
  • the third switching circuit K3 is used to switch the multiple third frequency bands supported by the seventh resonance mode g by adjusting the center frequency point of the seventh resonance mode g, so that the antenna assembly 100 uses the sixth resonance mode a to generate the required third frequency band.
  • the third switching circuit K3 can be provided with a third switching device and at least two third switching branches, wherein each third switching branch corresponds to a third frequency band, and is used to control the change of the center frequency generated by the seventh resonance mode g, so that the resonance point of the seventh resonance mode g changes, and the third frequency band also changes, thereby achieving the purpose of switching multiple third frequency bands supported by the seventh resonance mode g using the third switching circuit K3.
  • the third excitation signal excites the radiator length of the third radiator 130 and the equivalent electrical length generated by the third switch circuit K3.
  • the seventh resonance mode g is generated.
  • the types of components included in the above-mentioned first to third switch circuits are not limited to antenna switches, resistors, capacitors, inductors, etc., wherein an antenna switch and at least one of the inductors, capacitors, and resistors can form a tuning branch, and the switch circuit includes a plurality of different tuning branches.
  • the switch circuit can effectively switch the impedance of the switch circuit by turning on different tuning branches, or selecting different tuning branches to turn on, and then adjust the impedance of the radiation branch electrically connected to the switch circuit to adjust the offset of the resonant frequency of the resonant mode generated by the radiation branch.
  • the switch circuit when the switch circuit is capacitive in the frequency band it acts on, the resonant frequency of the resonant mode it affects moves toward the low frequency direction.
  • the switch circuit When the switch circuit is inductive in the frequency band it acts on, the resonant frequency of the resonant mode it affects moves toward the high frequency direction.
  • the third switch circuit K3 enables the third radiator 130 to switch from covering one frequency band to another frequency band, so as to better cover the actual application frequency band.
  • the first frequency band is the B3 frequency band (1.71-2.69 GHz)
  • the second frequency band is the N40 or N41 (2.3-2.4 GHz, 2.5-2.69 GHz)
  • the third frequency band is the N78 frequency band (3.3-3.8 GHz).
  • the antenna assembly 100 of the embodiment of the present application can generate the first to seventh resonance modes, so that the antenna assembly 100 can be applied to the 5G communication state, for example, it can be applied to the non-independent networking state of 5G, and it can also be applied to the independent networking state of 5G.
  • the antenna assembly 100 In the SA networking state, the antenna assembly 100 only needs to work in the 5G standard (New Radio Access Technology in 3GPP, NR) state of the new air interface design.
  • NR New Radio Access Technology in 3GPP
  • NSA non-standalone
  • the antenna assembly 100 In the non-standalone (NSA) mode networking state, the antenna assembly 100 must work in the Long Term Evolution (LTE) state and the NR state at the same time.
  • LTE Long Term Evolution
  • the antenna assembly 100 can work in the combination state of the N78 frequency band (3.3 ⁇ 3.8GHz) and the N41 frequency band (2.5GHz to 2.69GHz) at the same time.
  • the first feed source F1 can provide a first excitation signal, and transmit it to the second radiator 120 through the coupling gap, forming a second resonance mode b on the second radiator 120, and the second resonance mode b can be a 1/4 wavelength mode of the N41 frequency band.
  • the third feed source F3 feeds a third excitation signal to the third radiator 130
  • the third radiator 130 can form a sixth resonance mode f under the action of the third excitation signal
  • the sixth resonance mode can also be a 1/4 wavelength mode of the N41 frequency band.
  • the antenna assembly 100 can form two resonance modes of the N41 frequency band (the second resonance mode b and the sixth resonance mode f).
  • the second radiator 120 may generate the second resonance mode b; the third radiator 130 may generate the sixth resonance mode f.
  • the second resonance mode b and the sixth resonance mode f may be in the same frequency band, the N41 frequency band. Since the second resonance mode b and the sixth resonance mode f are separated by at least the length of the first radiator 110, the distance is relatively far, so that the isolation between the two resonances is relatively large.
  • the first feed source F1 can provide a first excitation signal, and transmit it to the second radiator 120 through the coupling gap, forming a second resonance mode b on the second radiator 120, and the second resonance mode b can be a 1/4 wavelength mode of the N41 frequency band.
  • the third feed source F3 feeds the third radiator 130 with a third excitation signal
  • the third radiator 130 can form a sixth resonance mode f under the action of the third excitation signal
  • the sixth resonance mode can also be a 1/4 wavelength mode of the N41 frequency band.
  • the antenna assembly 100 can form two resonance modes of the N41 frequency band (the second resonance mode b and the sixth resonance mode f).
  • the first radiator 110 can generate the second resonance mode b; the third radiator 130 can generate the sixth resonance mode f.
  • the second resonance mode b and the sixth resonance mode f b can be in the same frequency band N41. Since the second resonance mode b and the sixth resonance mode f can be separated by at least the length of the first radiator 110, the distance is far, so that the isolation between the two resonances is large.
  • Figure 14 is a schematic diagram of the reflection coefficient curve of the antenna assembly 100 provided in the embodiment of the present application in the N41 frequency band in the NSA state.
  • Curve S1 is the reflection coefficient curve of the first antenna ANT1 in the N41 frequency band
  • curve S2 is the reflection coefficient curve of the third antenna ANT3 in the N41 frequency band
  • curve S3 is the isolation curve of the first antenna ANT1 and the third antenna ANT3 in the N41 frequency band. It can be seen from Figure 14 that the isolation between the first antenna ANT1 and the third antenna ANT3 in the N41 frequency band is better than -12.6dB, which has good isolation.
  • Figure 15 is a schematic diagram of the radiation performance curve of the first antenna ANT1 provided in the embodiment of the present application in the NSA state.
  • Curve S4 is the radiation efficiency curve of the first antenna ANT1
  • curve S5 is the system efficiency curve of the first antenna ANT1. It can be seen from Figure 15 that the system efficiency in the B3 frequency band is about -4.9dB to -3.3dB, the system efficiency in the N41 frequency band is about -5.8dB to -3.9dB, and the system efficiency in the N78 frequency band is about -5.3dB to -4.6dB.
  • Figure 16 is a schematic diagram of the radiation performance curve of the third antenna ANT3 provided in the embodiment of the present application in the NSA state in the N41 frequency band.
  • curve S6 is the radiation efficiency curve of the third antenna ANT3
  • curve S7 is the system efficiency curve of the third antenna ANT3. It can be seen from Figure 10 that the system efficiency in the N41 frequency band is about -4.8dB to -4.1dB.
  • Figure 17 is a schematic diagram of the reflection coefficient curve of the antenna assembly provided in the embodiment of the present application in the N78 frequency band in the NSA state.
  • Curve S8 is the reflection coefficient curve of the first antenna ANT1 in the N78 frequency band
  • curve S9 is the reflection coefficient curve of the third antenna ANT3 in the N78 frequency band
  • curve S10 is the isolation curve of the first antenna ANT1 and the third antenna ANT3 in the N78 frequency band.
  • the isolation between the first antenna ANT1 and the third antenna ANT3 in the N78 frequency band is better than -14.8dB, which has good isolation.
  • Figure 18 is a schematic diagram of the radiation performance curve of the third antenna ANT3 provided in the embodiment of the present application in the N78 frequency band in the NSA state.
  • Curve S11 is the radiation efficiency curve of the third antenna ANT3 in the N78 frequency band
  • curve S12 is the system efficiency curve of the third antenna ANT3 in the N78 frequency band. It can be seen from Figure 13 that the system efficiency in the N78 frequency band is about -3.5dB to -2.6dB.
  • the first to seventh resonance modes of the present application can work in many frequency bands at the same time.
  • low frequency bands B28/B20/B5/B8
  • medium and high frequency bands B3/B1/B40/B41
  • 2.4G/5G Wi-Fi bands 5G bands
  • 5G bands N41/N78/N79
  • the embodiment of the present application further provides an electronic device 1000.
  • the electronic device 1000 may be a device such as a smart phone, a tablet computer, or a gaming device, an augmented reality (AR) device, an automotive device, a data storage device, an audio player, a video player, a laptop computer, a desktop computing device, etc.
  • AR augmented reality
  • the middle frame 240 of the electronic device 1000 may be a thin plate or sheet-like structure, or may be a hollow frame structure.
  • the middle frame 240 is used to provide support for the electronic devices or functional components in the electronic device 1000, so as to install the electronic devices and functional components of the electronic device 1000 together.
  • the middle frame 240 may be provided with structures such as grooves, protrusions, through holes, etc., so as to facilitate the installation of the electronic devices or functional components of the electronic device 1000.
  • the material of the middle frame 240 may include metal or plastic, etc.
  • the middle frame 240 when the middle frame 240 includes a metal material, the first radiator 110, the second radiator 120, and the third radiator 130 can be a plurality of metal branches on the middle frame 240.
  • a coupling slot 101 can be provided on the middle frame 240 to form the first radiator 110 to the third radiator 130.
  • the middle frame 240 can be reused as a radiator, which can save the space occupied by the radiator.
  • first feed 140 , the second feed 150 , the third feed 180 , the filter circuit LC, the first matching circuit M1 , the second matching circuit M2 , and the third matching circuit M3 of the antenna assembly 100 can be arranged on the circuit board 400 .
  • the housing 200 includes a frame 210 and a back cover 220.
  • a middle plate 230 is formed in the frame 210 by injection molding, and a plurality of mounting grooves for mounting various electronic devices are formed on the middle plate 230.
  • the middle plate 230 and the frame 210 together form a middle frame 240 of the electronic device 1000.
  • a receiving space is formed on both sides of the middle frame 240, and the receiving space can be used to place the circuit board 400, the battery 500 and the reference ground (not shown in the figure).
  • One side (e.g., the rear side) of the frame 210 is surrounded by the periphery of the back cover 220, and the other side (e.g., the front side) of the frame 210 is surrounded by the periphery of the display screen 300.
  • FIG. 19 is a second structural schematic diagram of an electronic device 1000 provided in an embodiment of the present application, wherein the frame 210 includes a plurality of side frames connected end to end.
  • the plurality of side frames of the frame 210 two adjacent side frames intersect, for example, two adjacent side frames are connected by a circular arc chamfer transition.
  • the plurality of side frames include a top frame 211 and a bottom frame 212 arranged opposite to each other, and a first side frame 213 and a second side frame 214 connected between the top frame and the bottom frame.
  • the top frame 211 is the edge away from the ground when the operator holds the electronic device 1000 toward the front of the electronic device 1000
  • the bottom frame 212 is the edge facing the ground.
  • the connection between the two adjacent side frames is a corner portion.
  • the top frame 211 and the bottom frame 212 are parallel and equal.
  • the first side frame 213 and the second side frame 214 are parallel and equal.
  • the length of the first side frame 213 is greater than the length of the top frame 211.
  • At least one of the first radiator 110 , the second radiator 120 and the third radiator 130 is integrated into the middle frame 240 , or is disposed on the surface of the middle frame 240 , or is disposed in a space surrounded by the middle frame 240 .
  • At least one of the first radiator 110, the second radiator 120 and the third radiator 130 is formed by a metal frame, a flexible printed circuit (FPC) or laser direct structuring (LDS).
  • FPC flexible printed circuit
  • LDS laser direct structuring
  • first radiator 110, the second radiator 120 and the third radiator 130 may also be disposed on the circuit board 400, for example, formed on one side of the circuit board 400 by etching, spraying, etc.
  • the above radiators may also be disposed on a bracket of the electronic device 1000, so that the above radiators are located inside the electronic device 1000.
  • Such software may be distributed on a computer-readable medium, which may include a computer storage medium (or non-transitory medium) and a communication medium (or temporary medium).
  • a computer storage medium includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and can be accessed by a computer.
  • communication media typically contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media.

Landscapes

  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线组件和电子设备,第二辐射体的第二耦合端与第一辐射体的第一耦合端形成耦合缝隙,第一辐射体的第一接地端、第二辐射体的第二接地端和第一连接点接地;第一激励信号激励第一辐射体和第二辐射体产生支持第一频段的第一谐振模式、支持第二频段的第二谐振模式及支持第三频段的第三谐振模式和第四谐振模式。

Description

一种天线组件和电子设备
本申请要求于2022年10月25日提交中国专利局、申请号为202211313864.X、发明名称为“一种天线组件和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及射频通信领域,尤指一种天线组件和电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备能够实现的功能越来越多,电子设备的通信模式也更加多样化。可以理解的,电子设备的每一种通信模式都需要相应的天线来支持。
发明内容
为了解决上述任一技术问题,本申请实施例提供了一种天线组件和电子设备。
为了达到本申请实施例目的,第一方面,本申请实施例提供了一种天线组件,包括:
第一辐射体,所述第一辐射体具有第一耦合端和第一接地端以及设置在第一耦合端和第一接地端之间的第一馈电点,所述第一接地端电连接至参考地;
第二辐射体,所述第二辐射体具有第二耦合端和第二接地端以及设置在第二耦合端和第二接地端之间的第一连接点,其中所述第二耦合端与第一耦合端形成耦合缝隙,所述第二接地端和所述第一连接点均电连接至参考地;
第一馈源,通过第一馈电点电连接至所述第一辐射体,用于提供第一激励信号;其中所述第一激励信号激励第一辐射体和第二辐射体产生支持第一频段的第一谐振模式、支持第二频段的第二谐振模式以及支持第三频段的第三谐振模式和第四谐振模式。
第二方面,本申请还提供一种电子设备,设置有天线组件,所述天线组件包括第一辐射体、第二辐射体和第一馈源,所述第一辐射体具有第一耦合端和第一接地端以及设置在第一耦合端和第一接地端之间的第一馈电点,所述第一接地端电连接至参考地;所述第二辐射体具有第二耦合端和第二接地端以及设置在第二耦合端和第二接地端之间的第一连接点,其中所述第二耦合端与第一耦合端形成耦合缝隙,所述第二接地端和所述第一连接点均电连接至参考地;所述第一馈源通过第一馈电点电连接至所述第一辐射体,用于提供第一激励信号;其中所述第一激励信号激励第一辐射体和第二辐射体产生支持第一频段的第一谐振模式、支持第二频段的第二谐振模式以及支持第三频段的第三谐振模式和第四谐振模式。
本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请实施例的实施例一起用于解释本申请实施例的技术方案,并不构成对本申请实施例技术方案的限制。
图1为本申请实施例提供的一种电子设备的第一种结构示意图;
图2是图1中的电子设备的结构拆分示意图;
图3为本申请实施例提供的天线组件的结构示意图;
图4(a)为本申请实施例提供的第一谐振模式的电流分布示意图;
图4(b)为本申请实施例提供的第二谐振模式的电流分布示意图;
图4(c)为本申请实施例提供的第三谐振模式的电流分布示意图;
图4(d)为本申请实施例提供的第四谐振模式的电流分布示意图;
图5为本申请实施例提供的天线组件的另一结构示意图;
图6为本申请实施例提供的天线组件的又一结构示意图;
图7为本申请实施例提供的天线组件的再一结构示意图;
图8为图4所示天线组件的另一结构示意图;
图9为图8所示天线组件的另一结构示意图;
图10为图8所示天线组件的又一结构示意图;
图11为图4所示天线组件的又一结构示意图;
图12(a)为本申请实施例提供的第六谐振模式的电流分布示意图;
图12(b)为本申请实施例提供的第七谐振模式的电流分布示意图;
图13为图12所示天线组件的另一结构示意图;
图14为NSA状态下本申请实施例提供的天线组件在N41频段的反射系数曲线示意图;
图15为NSA状态下本申请实施例提供的第一天线的辐射性能曲线示意图;
图16为NSA状态下本申请实施例提供的第三天线在N41频段的辐射性能曲线示意图;
图17为NSA状态下本申请实施例提供的天线组件在N78频段的反射系数曲线示意图;
图18为NSA状态下本申请实施例提供的第三天线在N78频段的辐射性能曲线示意图;
图19为本申请实施例提供的一种电子设备的第二种结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请实施例的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请实施例中的实施例及实施例中的特征可以相互任意组合。
请参阅图1及图2,图1为本申请实施例提供的一种电子设备1000的结构示意图。图2是图1中的电子设备1000的结构拆分示意图。电子设备1000包括天线组件100,以及相 互盖合连接的壳体200及显示屏300。壳体200包括边框210及后盖220。边框210内通过注塑形成中板230,中板230上形成多个用于安装各种电子器件的安装槽。参考地GND可位于中板230上。中板230与边框210一起成为电子设备1000的中框240。显示屏300与壳体200之间形成收容空间。天线组件100设于收容空间内或外。显示屏300、中框240及后盖220盖合后在中框240的两侧皆形成收容空间。电子设备1000还包括设于收容空间内的电路板400、电池500、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
天线组件100用于实现电子设备1000的无线通信功能,例如天线组件100可以传输无线保真(Wireless Fidelity简称Wi-Fi)信号、全球定位系统(Global Positioning System简称GPS)信号、第三代移动通信技术(3th-Generation简称3G)、第四代移动通信技术(4th-Generation简称4G)、第五代移动通信技术(5th-Generation简称5G)、近场通信(Near field communication简称NFC)信号等。
请参考图3,图3为本申请实施例提供的天线组件100的结构示意图。天线组件100包括第一辐射体110、第二辐射体120和第一馈源F1。
第一辐射体110与第二辐射体120间隔设置,第二辐射体120的一端与第一辐射体110之间形成耦合缝隙101,第二辐射体120的另一端设有接地端接地,第一辐射体110的第一耦合端112靠近耦合缝隙101,第二辐射体120的第二耦合端122也靠近耦合缝隙101,使得第一辐射体110的第一耦合端112和第二辐射体120的第二耦合端122端在该耦合缝隙101处相对设置,第一辐射体110可以在远离耦合缝隙101的一端接地,第二辐射体120也可以在远离耦合缝隙101的一端接地,从而第一辐射体110和第二辐射体120可以形成一口对口的共口径天线对。
可以理解的是,第一辐射体110可以包括间隔设置的第一接地端111和第一耦合端112。第一接地端111可以是第一辐射体110远离耦合缝隙101的一端,第一耦合端112相较于第一接地端111更靠近耦合缝隙101。第一辐射体110可以通过该第一接地端111与天线组件100或电子设备1000的参考地GND电连接而实现第一辐射体110的接地。
可以理解的是,第二辐射体120可以包括间隔设置的第二接地端121和第二耦合端122。第二接地端121可以是第二辐射体120远离耦合缝隙101的一端,第二耦合端122相较于第二接地端121更靠近耦合缝隙101。第二辐射体120可以通过该第二接地端121与天线组件100或电子设备1000的参考地GND电连接而实现第二辐射体120的接地。
进一步的,在第二耦合端122和第二接地端121之间设置的第一连接点D1,其中该第一连接地点D1电连接参考地GND。
第一馈源F1可以与第一辐射体110电连接,例如第一馈源F1可以通过第一辐射体110 的第一馈电点A与第一辐射体110电连接,其中第一馈电点A位于第一接地端111和第一耦合端112之间。第一馈源F1可以提供第一激励信号并可将第一激励信号馈入第一辐射体110以产生谐振模式;和/或,至少部分第一激励信号在第一辐射体110中传输并可以通过耦合缝隙101耦合至第二辐射体120中,以激励至少部分第二辐射体120产生谐振模式。
进一步的,由于第二辐射体120上设置有两个接地点,分别为第二接地端121和第一连接点D1,由于新增了第一连接点D1,为第一激励信号能够在第二辐射体120上产生更多种的电流分布,产生更多的谐振模式,从而覆盖更多的频段。
具体的,第一激励信号激励第一辐射体110和第二辐射体120产生支持第一频段的第一谐振模式a、支持第二频段的第二谐振模式b以及支持第三频段的第三谐振模式c和第四谐振模式d。
在本申请实施例中,第一辐射体110、第二辐射体120和第一馈源F1可以组成第一天线ANT1。
由于第一辐射体110与第二辐射体120之间形成有耦合缝隙101,使得第一激励信号能够激励第一辐射体110与第二辐射体120产生四种谐振模式,且上述四种谐振模式能够支持三种不同频段,实现3载波聚合(Component Carrier,CC)功能。
基于图3所示天线组件100结构,对第一激励信号利用第一辐射体110和第二辐射体120产生的四种谐振模式进行分别说明:
请参阅图4(a),图4(a)为本申请实施例提供的第一谐振模式a的电流分布示意图。第一激励信号激励第一辐射体120产生的第一谐振模式a,其第一谐振模式a为第一频段的1/4波长模式,第一谐振模式a的电流分布为从第一接地端111流向第一耦合端112。
请参阅图4(b),图4(b)为本申请实施例提供的第二谐振模式b的电流分布示意图。第一激励信号在馈入第一辐射体110后,通过耦合缝隙101耦合至第二辐射体120,并激励第二辐射体120产生的第二谐振模式b,其中第二谐振模式b为第二频段的1/4波长模式,第二谐振模式b的电流分布为从第一连接点D1流向第二耦合端122。
请参阅图4(c),图4(c)为本申请实施例提供的第三谐振模式c的电流分布示意图。第一激励信号激励第一辐射体120产生的第三谐振模式c,其中第三谐振模式c为第三频段的1/4波长模式,第三谐振模式c的电流分布为从第一耦合端112流向第一馈电点A。
请参阅图4(d),图4(d)为本申请实施例提供的第四谐振模式d的电流分布示意图。第一激励信号在馈入第一辐射体110后,通过耦合缝隙101耦合至第二辐射体120,并激励第二辐射体120产生的第四谐振模式d,其中第四谐振模式d为第三频段的1波长模式,第二谐振模式b的电流分布为从第二耦合端和第二接地端分别流向第二辐射体中部。
由于第三频段所属频率范围较宽,因此,天线组件100可以利用第三谐振模式和第四谐振模式完成对三频段所属频率范围的全面覆盖。
请参考图5,图5为本申请实施例提供的天线组件100的另一结构示意图。天线组件100还包括:
第一开关电路K1,第一开关电路K1一端电连接于在第一馈电点A与第一馈源F1之间的第二连接点D2,第一开关电路K1的另一端电连接至参考地GND。
由于第一谐振模式a是基于第一辐射体110产生的,且可以将第一谐振模式a产生中心频点附近频率范围作为第一频段,该第一开关电路K1用于通过调整第一谐振模式a的中心频点,实现对第一谐振模式a支持的多个第一频段进行切换,以使得天线组件100利用第一谐振模式a产生所需的第一频段。
例如,该第一开关电路K1可以设置第一开关器件和至少两个第一切换支路,其中每个第一切换支路与一个第一频段对应,用于控制第一谐振模式a所产生的中心频点发生改变,使得第一频段的频率范围也发生改变,达到利用所述第一开关电路K1切换所述第一谐振模式a支持的多个第一频段的目的。
进一步的,由于第一激励信号在第一辐射体110的电流分布不同,能够产生不同的谐振模式。当天线组件100工作于第三谐振模式c时,第一激励信号的电流分布中部分流向为自第一馈电点A流向第一馈源F1,由于第一开关电路K1的另一端电连接至参考地GND,使得第一开关电路K1能够将第一激励信号接地,使得对第一激励信号短路,避免第一激励信号流入第一馈源F1,保证第一馈源F1的工作性能,同时,保证第一激励信号从第一耦合端112流向第一馈电点A的电流方向能够正常产生,以便顺利产生第三谐振模式c。
此处本申请实施例以第一开关电路K1对第一激励信号进行短路为例进行说明,在实际应用中,方式并不限于此。
请参考图6,图6为本申请实施例提供的天线组件100的又一结构示意图。所述天线组件100还包括:
第一匹配电路M1,第一匹配电路M1一端电连接于第一馈电点A,第一匹配电路的另一端电连接于第一馈源F1。
具体的,可以利用该第一匹配电路M1完成所需谐振模式的阻抗匹配,还可以阻断从第一馈电点A流向第一馈源F1的第一激励信号。
其中,该第一匹配电路M1可以对从第一馈电点A流向第一馈源F1的第一激励信号呈现高阻状态。
请参考图7,图7为本申请实施例提供的天线组件100的再一结构示意图。所述天线 组件100还包括:
第二开关电路K2,第二开关电路K2一端电连接于第一连接点D1,第二开关电路的另一端电连接至参考地GND,第二开关电路用于对第二谐振模式b支持的多个第二频段进行切换。
由于第二谐振模式b是基于第二辐射体120产生的,且可以将第二谐振模式b产生的中心频点附近频率范围作为第二频段,该第二开关电路K2用于通过调整第二谐振模式b的中心频点,对所述第二谐振模式b支持的多个第二频段进行切换,以使得天线组件100利用第二谐振模式b产生所需的第二频段。
例如,该第二开关电路K2可以设置第二开关器件和至少两个第二切换支路,其中每个第二切换支路与一个第二频段对应,用于控制第二谐振模式b所产生的中心频点发生改变,使得第二频段的频率范围也发生改变,达到利用所述第二开关电路K2切换所述第二谐振模式b支持的多个第二频段的目的。
进一步的,由于第一激励信号在第一辐射体120的电流分布不同,能够产生不同的谐振模式。当天线组件100工作于第二谐振模式b时,第一激励信号的电流分布中部分流向为自第一连接点D流向第二耦合端122,由于第二开关电路K2的另一端电连接至参考地GND,使得第一开关电路K1能够将第一激励信号接地,使得对第一激励信号短路,保证第一激励信号自第一连接点D流向第二耦合端122的电流方向能够正常产生,以便顺利产生第二谐振模式b。
由于第一连接点D1与参考地GND之间增设了第二开关电路K2,且该第一激励信号需经过第二开关电路K2的元件后才能顺利产生第二谐振模式b,因此,通过激励第二耦合端112至第一连接点D1的辐射体长度以及所述第二开关电路所产生的等效电长度,以产生所述第二谐振模式b。
请参考图8,图8为图4所示天线组件100的另一结构示意图。天线组件100还包括第二馈源F2。
第二馈源F2,可以与第二辐射体120电连接,例如第二馈源F2可以通过第二辐射体120的第二馈电点B与第二辐射体120电连接,第二辐射体120还具有位于第二耦合端122和第二接地端121之间的第二馈电点B。为方便电路设计和走线布局,可以将第一连接点D1与第二馈电点B作为同一点。
具体的,第二馈源F2可以提供第二激励信号并可将第二激励信号馈入第二辐射体120以产生支持第四频段的第五谐振模式e。
在本申请实施例中,第二辐射体120和第二馈源F2可以组成第二天线ANT2。
可选的,天线组件100还包括:
第二匹配电路M2,第二匹配电路M2一端电连接于第二馈电点B,第二匹配电路的另一端电连接于第二馈源F2,用于完成所需谐振模式的阻抗匹配。
请参考图9,图9为图8所示天线组件100的另一结构示意图。天线组件100还包括第二开关电路K2,第二开关电路K2一端电连接于第二馈电点与第二馈源F2之间,第二开关电路K2的另一端电连接至参考地GND。
具体的,由于第五谐振模式e是基于第二辐射体120产生的,且可以将第五谐振模式所产生的中心频点附近对应的频率范围作为第四频段,该第二开关电路K2用于通过调整第五谐振模式e的中心频点,对第五谐振模式e支持的多个第四频段进行切换,以使得天线组件100利用第五谐振模式e产生所需的第四频段。
例如,该第二开关电路K2可以设置第二开关器件和至少两个第二切换支路,其中每个第二切换支路与一个第四频段对应,用于控制第五谐振模式e所产生的中心频点发生改变,使得第四频段的频率范围也发生改变,达到利用所述第二开关电路K2切换所述第五谐振模式e支持的多个第四频段的目的。
请参考图10,图10为图8所示天线组件100的又一结构示意图。所述天线组件100还包括滤波电路LC。
滤波电路LC的一端电连接在第二馈电点B与第二馈源F2之间,滤波电路LC的另一端电连接至参考地GND,用于对除第四频段之外的其他信号进行滤波处理,以降低干扰信号。
其中,该滤波电路LC可以由带阻电路或带通电路构成,以滤除大于1.5GHz的频段。
进一步的,该第四频段为低频频段,频率范围可以为0.7~0.96GHz。
请参考图11,图11为图4所示天线组件100的又一结构示意图。天线组件100还包括第三辐射体130和第三馈源F3。其中:
第三辐射体130的一端可以在该第一接地端111处与第一辐射体110连接,第三辐射体130的另一端可以朝向远离第一辐射体110的方向延伸。第三辐射体130和第一辐射体110可以形成一整体(例如图3中第三辐射体130和第一辐射体110可形成一倒“L”形状),第一接地端111可以位置第三辐射体130和第一辐射体110之间,第三辐射体130和第一辐射体110均可以通过该第一接地端111实现接地。第一接地端111可以增加第三辐射体130与第一辐射体110的隔离度。
可以理解的是,第三辐射体130可以位于第一辐射体110背离第二辐射体120的一侧,也即,第一辐射体110可以位于第二辐射体120和第三辐射体130之间,从而第二辐射体 120、耦合缝隙101、第一辐射体110和第三辐射体130可以顺次排列。
第三馈源F3可以与第三辐射体130电连接,例如第三馈源160可以通过第三辐射体F3的第三馈电点C与第三辐射体130电连接,其中第三馈源F3可以提供第三激励信号并可将第三激励信号馈入第三辐射体130中,以激励第三辐射体130产生支持所述第二频段的第六谐振模式和支持所述第三频段的第七谐振模式。
在本申请实施例中,第三辐射体130和第三馈源F3可以组成第三天线ANT3。
可选的,天线组件100还包括:
第三匹配电路M3,第三匹配电路M3一端电连接于第三馈电点C,第三匹配电路的另一端电连接于第三馈源F3,用于完成所需谐振模式的阻抗匹配。
由于第一天线ANT1和第三天线ANT3所产生的谐振模式均能支持第二频段和第三频段,使得天线组件100传输两种相同频段的无线信号,可以成多输入多输出(multiple-in multiple-out,MIMO)传输。
请参阅图12(a),图12(a)为本申请实施例提供的第六谐振模式f的电流分布示意图。该第六谐振模式f为第三激励信号激励于第三辐射体130产生的,第六谐振模式f为第二频段的1/4波长模式,第六谐振模式f的电流分布为从第三辐射体130的一端流向所述第三辐射体130的另一端。
进一步的,上述天线组件100在工作于第二谐振模式b和第六谐振模式f时,两个谐振模式产生的频段均为第二频段,其中第二谐振模式b为第一激励信号在第二辐射体120激励产生的,第六谐振模式f为第三激励信号在第三辐射体130激励产生的,由于第二谐振模式b和第六谐振模式f所使用的辐射体间隔第一辐射体110,因此,在第二谐振模式b和第六谐振模式f同时输出相同频段时,第二谐振模式b和第六谐振模式f可以保持较好的隔离度和较佳的辐射性能,使得即使天线组件100传输相同频段的无线信号的隔离度也可以满足通信需求,从而可以成多输入多输出MIMO传输。
请参阅图12(b),图12(b)为本申请实施例提供的第七谐振模式g的电流分布示意图。该第七谐振模式g为第三激励信号激励于第三辐射体130产生的,第七谐振模式g为第三频段的1/4波长模式,第七谐振模式g的电流分布为从第三辐射体130的一端流向第三辐射体130的另一端。
进一步的,上述天线组件100在工作于第三谐振模式c、第四谐振模式d和第七谐振模式g时,三个谐振模式产生的频段均为第三频段,其中第三谐振模式c为第一激励信号在第二辐射体120激励产生的,第四谐振模式d为第一激励信号在第二辐射体120中从第一耦合端112至第一馈电点A之间激励产生的,第七谐振模式g为第三激励信号在第三辐射体130激励产生的,由于第一天线ANT1产生第三频段所使用的辐射体与第三天线ANT3 产生第三频段所使用的辐射体间隔部分第一辐射体110,即,间隔第一馈电点A至第一接地端111之间的辐射体,因此,在第三谐振模式c、第四谐振模式d和第七谐振模式g同时输出相同频段时,第三谐振模式c、第四谐振模式d和第七谐振模式g可以保持较好的隔离度和较佳的辐射性能,使得即使天线组件100传输相同频段的无线信号的隔离度也可以满足通信需求,从而可以成多输入多输出MIMO传输。
请参考图13,图13为图11所示天线组件100的另一结构示意图。天线组件100还包括:
第三开关电路K3,第三开关电路K3一端电连接于在第三馈电点C与第三馈源F3之间的第三连接点D3,第三开关电路K3的另一端电连接至参考地GND。
由于第六谐振模式f是基于第三辐射体130产生的,且可以将第六谐振模式f所产生的中心频点附近对应的频率范围对作为第二频段。该第三开关电路K3用于通过调整第六谐振模式f的中心频点,对所述第六谐振模式f支持的多个第二频段进行切换,以使得天线组件100利用第六谐振模式a产生所需的第二频段。
例如,该第三开关电路K3可以设置第三开关器件和至少两个第三切换支路,其中每个第三切换支路与一个第二频段对应,用于控制第六谐振模式f所产生的中心频点发生改变,使得第二频段的频率范围也发生改变,达到利用所述第三开关电路K3切换所述第六谐振模式f支持的多个第二频段的目的。
由于第三连接点D3与参考地GND之间增设了第三开关电路K3,且该第三激励信号需经过第三开关电路K3的元件后才能顺利产生第六谐振模式f,因此,第三激励信号通过激励第三辐射体130的辐射体长度以及第三开关电路K3所产生的等效电长度,产生第六谐振模式f。
由于第七谐振模式g是基于第三辐射体130产生的,且可以将第七谐振模式g所产生的中心频点附近对应的频率范围作为第三频段,该第三开关电路K3用于通过调整第七谐振模式g的中心频点,对所述第七谐振模式g支持的多个第三频段进行切换,以使得天线组件100利用第六谐振模式a产生所需的第三频段。
例如,该第三开关电路K3可以设置第三开关器件和至少两个第三切换支路,其中每个第三切换支路与一个第三频段对应,用于控制第七谐振模式g所产生的中心频点发生改变,使得第七谐振模式g的谐振点发生改变,使得第三频段也发生改变,达到利用所述第三开关电路K3切换所述第七谐振模式g支持的多个第三频段的目的。
由于第三连接点D3与参考地GND之间增设了第三开关电路K3,且该第三激励信号需经过第三开关电路K3的元件后才能顺利产生第七谐振模式g,因此,所述第三激励信号通过激励第三辐射体130的辐射体长度以及所述第三开关电路K3所产生的等效电长度, 产生所述第七谐振模式g。
上述第一至第三开关电路所包括的器件种类不限于天线开关、电阻、电容、电感等,其中,一个天线开关与电感、电容、电阻中的至少一者可以形成一条调谐分支,开关电路包括多个不同的调谐分支,如此,开关电路通过导通不同的调谐分支,或者说是选择不同的调谐分支导通可以有效地切换开关电路的阻抗,进而调节开关电路所电连接的辐射枝节的阻抗,以调节辐射枝节所产生的谐振模式的谐振频率的偏移,例如,当开关电路在所作用的频段呈容性时,其所影响的谐振模式的谐振频率朝向低频方向移动。当开关电路在所作用的频段呈感性时,其所影响的谐振模式的谐振频率朝向高频方向移动。
进一步举例而言,当第三辐射体130在任一频段具有较高的效率时,通过切换第三开关电路K3中的开关,以使第三辐射体130及第三开关电路23中的器件的等效感性值增加,进而使得第三辐射体130能够在另一频段产生谐振,且效率较高。故第三开关电路K3实现了第三辐射体130从覆盖一频段切换至另一频段,更好的覆盖实际应用频段。
在上述天线组件100中,第一频段为B3频段(1.71~2.69GHz),第二频段为N40或N41(2.3~2.4GHz,2.5~2.69GHz);第三频段为N78频段(3.3~3.8GHz)。
基于此,本申请实施例的天线组件100可以产生第一至第七谐振模式,从而天线组件100可以应用于5G通信状态中,例如可以应用于5G的非独立组网状态中,也可以应用于5G的独立组网状态中。SA组网状态下,天线组件100只需要工作于全新空口设计的5G标准(New Radio Access Technology in 3GPP,NR)状态即可。非独立组网(Non-standalone,NSA)模式组网状态下,天线组件100要同时工作于长期演进(Long Term Evolution,简称LTE)状态和NR状态,此时,使天线组件100可以同时工作在N78频段(3.3~3.8GHz)与N41频段(2.5GHz至2.69GHz)组合态。下面以天线组件100处于SA组网状态和NSA组网状态来分别阐述天线组件100的解耦原理:
当天线组件100处于SA组网状态时,天线组件100仅需要工作于NR状态。第一馈源F1可以提供第一激励信号,并通过耦合缝隙传输至第二辐射体120,在第二辐射体120形成第二谐振模式b,该第二谐振模式b可以是N41频段的1/4波长模式。当第三馈源F3向第三辐射体130馈入第三激励信号,第三辐射体130可以在第三激励信号的作用下形成第六谐振模式f,该第六谐振模式也可以是N41频段的1/4波长模式。此时,天线组件100可以形成两个N41频段的谐振模式(第二谐振模式b和第六谐振模式f)。
此时,在第二辐射体120可以产生第二谐振模式b;第三辐射体130可以产生第六谐振模式f。第二谐振模式b和第六谐振模式f可以是同频段的N41频段。由于第二谐振模式b和第六谐振模式f之间至少间隔第一辐射体110的长度,距离较远,使得两个谐振之间的隔离度较大。
当天线组件100处于NSA组网状态时,天线组件100需要同时工作于LTE和NR状态。以天线组件100处于N41频段与N78频段组合态为例进行说明。第一馈源F1可以提供第一激励信号,并通过耦合缝隙传输至第二辐射体120,在第二辐射体120形成第二谐振模式b,该第二谐振模式b可以是N41频段的1/4波长模式。当第三馈源F3向第三辐射体130馈入第三激励信号,第三辐射体130可以在第三激励信号的作用下形成第六谐振模式f,该第六谐振模式也可以是N41频段的1/4波长模式。此时,天线组件100可以形成两个N41频段的谐振模式(第二谐振模式b和第六谐振模式f)。
此时,第一辐射体110可以产生第二谐振模式b;第三辐射体130可以产生第六谐振模式f。第二谐振模式b和第六谐振模式f b可以是同频段的N41频段。由于第二谐振模式b和第六谐振模式f之间可以至少间隔第一辐射体110的长度,距离较远,使得两个谐振之间的隔离度较大。
请参考图14,图14为NSA状态下本申请实施例提供的天线组件100在N41频段的反射系数曲线示意图。曲线S1为第一天线ANT1在N41频段的反射系数曲线,曲线S2为第三天线ANT3在N41频段的反射系数曲线,曲线S3为第一天线ANT1和第三天线ANT3在N41频段的隔离度曲线图。由图14可以看出,第一天线ANT1和第三天线ANT3之间在N41频段的隔离度优于-12.6dB,具有较好的隔离度。
请参考图15,图15为NSA状态下本申请实施例提供的第一天线ANT1的辐射性能曲线示意图。曲线S4为第一天线ANT1的辐射效率曲线,曲线S5为第一天线ANT1的系统效率曲线。由图15可以看出,在B3频段的系统效率约为-4.9dB至-3.3dB,在N41频段的系统效率约为系统效率约为-5.8dB至-3.9dB,在N78频段的系统效率约为-5.3dB至-4.6dB。
请参考图16,图16为NSA状态下本申请实施例提供的第三天线ANT3在N41频段的辐射性能曲线示意图。如图16所示,曲线S6为第三天线ANT3的辐射效率曲线,曲线S7为第三天线ANT3的系统效率曲线。由图10可以看出,在N41频段的系统效率约为系统效率约为-4.8dB至-4.1dB。
请参考图17,图17为NSA状态下本申请实施例提供的天线组件在N78频段的反射系数曲线示意图。曲线S8为第一天线ANT1在N78频段的反射系数曲线,曲线S9为第三天线ANT3在N78频段的反射系数曲线,曲线S10为第一天线ANT1和第三天线ANT3在N78频段的隔离度曲线图。由图9可以看出,第一天线ANT1和第三天线ANT3之间在N78频段的隔离度优于-14.8dB,具有较好的隔离度。
请参考图18,图18为NSA状态下本申请实施例提供的第三天线ANT3在N78频段的辐射性能曲线示意图。曲线S11为第三天线ANT3在N78频段的辐射效率曲线,曲线S12为第三天线ANT3在N78频段的系统效率曲线。由图13可以看出,在N78频段的系统效率约为系统效率约为-3.5dB至-2.6dB。
可以理解的是,本申请的第一至第七谐振模式可以同时工作在很多的频段。例如但不限于低频频段(B28/B20/B5/B8)、中高频频段(B3/B1/B40/B41)、2.4G/5G的Wi-Fi频段、5G频段(N41/N78/N79),本申请实施例对此不进行限定。
基于上述天线组件100的结构,本申请实施例还提供一种电子设备1000。电子设备1000可以是智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。
该电子设备1000的中框240可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框240用于为电子设备1000中的电子器件或功能组件提供支撑作用,以将电子设备1000的电子器件、功能组件安装到一起。例如,中框240上可以设置凹槽、凸起、通孔等结构,以便于安装电子设备1000的电子器件或功能组件。可以理解的,中框240的材质可以包括金属或塑胶等。
可以理解的是,当中框240包括金属材料时,第一辐射体110、第二辐射体120和第三辐射体130可以是中框240上的多个金属枝节。例如,在中框240上可以设置耦合缝隙101以形成第一辐射体110至第三辐射体130。此时,中框240可以复用为辐射体,可以节省辐射体占据的空间。
可以理解的是,天线组件100的第一馈源140、第二馈源150、第三馈源180、滤波电路LC、第一匹配电路M1、第二匹配电路M2、第三匹配电路M3中的一个或多个可以设置于电路板400上。
壳体200包括边框210及后盖220。边框210内通过注塑形成中板230,中板230上形成多个用于安装各种电子器件的安装槽。中板230与边框210一起成为电子设备1000的中框240。显示屏300、中框240及后盖220盖合后在中框240的两侧皆形成收容空间,该收容空间可以放置电路板400、电池500以及参考地(图中未示出)。边框210的一侧(例如后侧)围接于后盖220的周沿,边框210的另一侧(例如前侧)围接于显示屏300的周沿。
如图2所示并请参考图19,图19为本申请实施例提供的一种电子设备1000的第二种结构示意图,边框210包括多个首尾相连的侧边框。边框210的多个侧边框中,相邻的两个侧边框相交,例如相邻的两个侧边框通过圆弧倒角过渡连接。多个侧边框包括相对设置的顶边框211和底边框212,及连接于顶边框与底边框之间的第一侧边框213和第二侧边框214。其中,顶边框211为操作者手持电子设备1000朝向电子设备1000的正面使用时远离地面的边,底边框212为朝向地面的边。相邻的两个侧边框之间的连接处为拐角部。其中,顶边框211和底边框212平行且相等。第一侧边框213和第二侧边框214平行且相等。第一侧边框213的长度大于顶边框211的长度。
第一辐射体110、第二辐射体120和第三辐射体130中至少一个集成于中框240、或设于中框240表面、或设于中框240所包围的空间内。
进一步的,所述第一辐射体110、所述第二辐射体120和所述第三辐射体130中至少一个通过金属边框、柔性电路板(Flexible Printed Circuit,FPC)或激光直接成型(Laser-Direct-structuring,LDS)。
可以理解的是,第一辐射体110、第二辐射体120和第三辐射体130中的一个或多个也可以设置于电路板400上,例如通过蚀刻、喷涂等形成在电路板400的一面上。当然,上述辐射体也可以设置于电子设备1000的支架上,以使上述辐射体位于电子设备1000内部。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (20)

  1. 一种天线组件,包括:
    第一辐射体,所述第一辐射体具有第一耦合端和第一接地端以及设置在第一耦合端和第一接地端之间的第一馈电点,所述第一接地端电连接至参考地;
    第二辐射体,所述第二辐射体具有第二耦合端和第二接地端以及设置在第二耦合端和第二接地端之间的第一连接点,其中所述第二耦合端与第一耦合端形成耦合缝隙,所述第二接地端和所述第一连接点均电连接至参考地;
    第一馈源,通过第一馈电点电连接至所述第一辐射体,用于提供第一激励信号;其中所述第一激励信号激励第一辐射体和第二辐射体产生支持第一频段的第一谐振模式、支持第二频段的第二谐振模式以及支持第三频段的第三谐振模式和第四谐振模式。
  2. 根据权利要求3所述的天线组件,其中:
    所述第一谐振模式为第一频段的1/4波长模式,所述第一谐振模式的电流分布为从所述第一接地端流向所述第一耦合端;
    所述第二谐振模式为第二频段的1/4波长模式,所述第二谐振模式的电流分布为从所述第一连接点流向所述第一耦合端;
    所述第三谐振模式为第三频段的1/4波长模式,所述第三谐振模式的电流分布为从所述第一耦合端流向所述第一馈电点;
    所述第四谐振模式为第二频段的3/4波长模式,所述第四谐振模式的电流分布为从所述第二耦合端和第二接地端分别流向所述第二辐射体中部。
  3. 根据权利要求2所述的天线组件,其中,所述天线组件还包括:
    第一开关电路,所述第一开关电路一端电连接于在所述第一馈电点与所述第一馈源之间的第二连接点,所述第一开关电路的另一端电连接至参考地,所述第一开关电路用于对所述第一谐振模式支持的多个第一频段进行切换。
  4. 根据权利要求3所述的天线组件,其中:
    所述第一开关电路还用于对所述第一激励信号短路,以产生第三谐振模式。
  5. 根据权利要求1至4任一所述的天线组件,其中,所述天线组件还包括:
    第二开关电路,所述第二开关电路一端电连接于所述第一连接点,第二开关电路的另一端电连接至参考地,所述第二开关电路用于对所述第二谐振模式支持的多个第二频段进行切换。
  6. 根据权利要求5所述的天线组件,其中:
    所述第二开关电路用于对所述第一激励信号短路,以形成第二谐振模式。
  7. 根据权利要求6所述的天线组件,其中:
    所述第一激励信号通过激励所述第二耦合端至所述第一连接点的辐射体长度以及所述第二开关电路所产生的等效电长度,产生所述第二谐振模式。
  8. 根据权利要求1所述的天线组件,其中:
    所述第二辐射体还具有位于所述第二耦合端和所述第二接地端之间的第二馈电点;
    所述天线组件还包括:
    第二馈源,通过第二馈电点电连接至所述第二辐射体,用于提供第二激励信号,所述第二激励信号激励所述第二辐射体产生支持第四频段的第五谐振模式。
  9. 根据权利要求8所述的天线组件,其中,所述天线组件还包括:
    第二开关电路,所述第二开关电路一端电连接于所述第二馈电点与第二馈源之间,第二开关电路的另一端电连接至参考地,所述第二开关电路用于对所述第五谐振模式支持的多个第四频段进行切换。
  10. 根据权利要求8所述的天线组件,其中,所述天线组件还包括:
    滤波电路,所述滤波电路的一端电连接在所述第二馈电点与所述第二馈源之间,所述滤波电路的另一端电连接至参考地,用于对除第四频段之外的其他信号进行滤波处理。
  11. 根据权利要求8所述的天线组件,其中,所述第四频段为低频频段。
  12. 根据权利要求1所述的天线组件,其中,所述天线组件还包括:
    第三辐射体,所述第三辐射体一端与所述第二接地端连接,所述第三辐射体的另一端朝向远离所述第一辐射体的方向延伸,所述第三辐射体的一端与另一端之间设置有第三馈电点;
    第三馈源,通过第三馈电点电连接至所述第三辐射体,用于提供第三激励信号,所述第三激励信号用于激励所述第三辐射体产生支持所述第二频段的第六谐振模式和支持所述第三频段的第七谐振模式。
  13. 根据权利要求12所述的天线组件,其中:
    所述第六谐振模式为所述第二频段的1/4波长模式,所述第六谐振模式的电流分布为从所述第三辐射体的一端流向所述第三辐射体的另一端;
    所述第七谐振模式为所述第三频段的1/4波长模式,所述第七谐振模式的电流分布为从所述第三辐射体的一端流向所述第三辐射体的另一端。
  14. 根据权利要求12所述的天线组件,其中:
    第三开关电路,所述第三开关电路的一端电连接于在所述第三馈电点与所述第三馈源之间的第三连接点,所述第三开关电路的另一端电连接至参考地,所述第三开关电路用于对所述第六谐振模式支持的多个第二频段进行切换;和/或,对第七谐振模式支持的多个第三频段进行切换。
  15. 根据权利要求14所述的天线组件,其中:
    所述第三激励信号通过激励第三辐射体的辐射体长度以及所述第三开关电路所产生的等效电长度,产生所述第六谐振模式;
    和/或,
    所述第三激励信号通过激励第三辐射体的辐射体长度以及所述第三开关电路所产生的等效电长度,产生所述第七谐振模式。
  16. 根据权利要求1所述的天线组件,其中,
    第一频段为B3频段;
    第二频段为N40或N41;
    第三频段为N78频段。
  17. 一种电子设备,设置有天线组件,所述天线组件包括第一辐射体、第二辐射体和第一馈源,所述第一辐射体具有第一耦合端和第一接地端以及设置在第一耦合端和第一接地端之间的第一馈电点,所述第一接地端电连接至参考地;所述第二辐射体具有第二耦合端和第二接地端以及设置在第二耦合端和第二接地端之间的第一连接点,其中所述第二耦合端与第一耦合端形成耦合缝隙,所述第二接地端和所述第一连接点均电连接至参考地;所述第一馈源通过第一馈电点电连接至所述第一辐射体,用于提供第一激励信号;其中所述第一激励信号激励第一辐射体和第二辐射体产生支持第一频段的第一谐振模式、支持第二频段的第二谐振模式以及支持第三频段的第三谐振模式和第四谐振模式。
  18. 根据权利要求17所述的电子设备,其中,所述电子设备还包括中框,所述第一辐射体、所述第二辐射体和所述第三辐射体集成于所述中框、或设于所述中框表面、或设于所述中框所包围的空间内。
  19. 如权利要求18所述的电子设备,其中,所述中框包括相对设置的顶边框及底边框,以及连接在所述顶边框和所述底边框之间的第一侧边框和第二侧边框,所述第一辐射体、所述第二辐射体和所述第三辐射体设于所述第一侧边框或所述第二侧边框。
  20. 如权利要求17所述的电子设备,其中,所述第一辐射体、第二辐射体和第三辐射体中的至少一个是通过金属边框、柔性电路板FPC或激光直接成型LDS形成。
PCT/CN2023/115218 2022-10-25 2023-08-28 一种天线组件和电子设备 WO2024087859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211313864.XA CN117977161A (zh) 2022-10-25 2022-10-25 一种天线组件和电子设备
CN202211313864.X 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087859A1 true WO2024087859A1 (zh) 2024-05-02

Family

ID=90829910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115218 WO2024087859A1 (zh) 2022-10-25 2023-08-28 一种天线组件和电子设备

Country Status (2)

Country Link
CN (1) CN117977161A (zh)
WO (1) WO2024087859A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372223A1 (en) * 2018-06-01 2019-12-05 Chiun Mai Communication Systems, Inc. Antenna structure
CN111628298A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 共体天线及电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN113437520A (zh) * 2021-06-29 2021-09-24 RealMe重庆移动通信有限公司 天线装置及电子设备
CN114284721A (zh) * 2021-12-14 2022-04-05 深圳市锐尔觅移动通信有限公司 一种天线装置及电子设备
CN114530691A (zh) * 2022-02-17 2022-05-24 Oppo广东移动通信有限公司 电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372223A1 (en) * 2018-06-01 2019-12-05 Chiun Mai Communication Systems, Inc. Antenna structure
CN111628298A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 共体天线及电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN113437520A (zh) * 2021-06-29 2021-09-24 RealMe重庆移动通信有限公司 天线装置及电子设备
CN114284721A (zh) * 2021-12-14 2022-04-05 深圳市锐尔觅移动通信有限公司 一种天线装置及电子设备
CN114530691A (zh) * 2022-02-17 2022-05-24 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN117977161A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
CN112736432B (zh) 天线装置及电子设备
US10044110B2 (en) Antennas with shared grounding structure
AU2019376754B2 (en) Coupled antenna device and electronic device
JP5504377B2 (ja) 多入力多出力アンテナシステム
JP4101804B2 (ja) 小型のマルチモードアンテナ及びそれを用いた高周波モジュール
WO2017205998A1 (zh) 通信终端
CN110741506A (zh) 一种移动终端的天线及移动终端
EP2979322B1 (en) Planar antenna apparatus and method
CN202759016U (zh) 可调谐耦合馈电天线系统
US20110267245A1 (en) Multiple-input multiple-output antenna system
WO2023155559A1 (zh) 电子设备
US20140300517A1 (en) Antenna device and electronic apparatus
WO2020134330A1 (zh) 天线系统及应用该天线系统的移动终端
CN114447583B (zh) 天线及电子设备
CN108879112B (zh) 天线阵列及终端
CN112736461B (zh) 天线装置及电子设备
WO2020134322A1 (zh) 天线模组、移动终端及天线模组的调谐方法
US20230318172A1 (en) Antenna Apparatus and Electronic Device
WO2022247652A1 (zh) 一种终端天线及终端电子设备
WO2023020023A1 (zh) 终端天线及移动终端设备
CN113745809B (zh) 电子设备
WO2024087859A1 (zh) 一种天线组件和电子设备
CN215342969U (zh) 天线装置及电子设备
WO2023284811A1 (zh) 天线结构及电子设备
WO2023273604A1 (zh) 天线模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881441

Country of ref document: EP

Kind code of ref document: A1