WO2024087437A1 - 废旧锂电池正极片回收处理设备及其方法 - Google Patents

废旧锂电池正极片回收处理设备及其方法 Download PDF

Info

Publication number
WO2024087437A1
WO2024087437A1 PCT/CN2023/079177 CN2023079177W WO2024087437A1 WO 2024087437 A1 WO2024087437 A1 WO 2024087437A1 CN 2023079177 W CN2023079177 W CN 2023079177W WO 2024087437 A1 WO2024087437 A1 WO 2024087437A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
waste lithium
lithium battery
ferric sulfate
battery positive
Prior art date
Application number
PCT/CN2023/079177
Other languages
English (en)
French (fr)
Inventor
齐扬帆
刘卫
刘勇奇
巩勤学
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024087437A1 publication Critical patent/WO2024087437A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the embodiments of the present application relate to the field of battery recycling, for example, a device and method for recycling positive electrode sheets of waste lithium batteries.
  • Lithium-ion batteries are currently the world's best industrialized chemical batteries with the best charging performance. They have the characteristics of high energy density, light weight, small size, long cycle life, no memory and low pollution. They are widely used in portable electronic devices such as mobile phones, laptops, cameras, power tools, as well as automobiles, aerospace and medical equipment. In the future, their application in electric bicycles, electric vehicles and other fields will usher in rapid development. It is estimated that in 2030, more than 1.1TWh (terawatt hours) of power batteries will be sold with passenger electric vehicles and commercial electric vehicles in China. Based on a service life of 5 to 8 years and a 20% loss of power as the retirement condition, the total amount of power batteries retired from domestic passenger electric vehicles and commercial electric vehicles will reach 7.05 million tons from 2021 to 2030.
  • 1.1TWh terawatt hours
  • the content of metals such as nickel, cobalt, manganese and lithium in lithium-ion batteries is much higher than that of primary ore in nature, and the cost of recycling is much lower than the cost of processing the original ore, and the recycling of waste lithium-ion batteries will also reduce pollution to the environment. Therefore, the industrialization of the recycling of waste lithium-ion batteries is imminent, and its successful recycling will also reap considerable economic and social benefits.
  • the traditional processing steps of the positive electrode sheets in waste lithium batteries are: first, the aluminum foil and active materials of the positive electrode sheets of the waste lithium batteries are stripped, and then the valuable metals are recovered from the active materials by leaching.
  • the stripping methods of the aluminum foil and positive electrode material powder mainly include: roasting method, organic solvent treatment method, physical crushing and grinding method, calcination-alkali dissolution method, etc.
  • the physical crushing and grinding method involves the production of aluminum powder
  • the organic solvent treatment method involves dangerous chemicals such as organic solvents
  • the calcination-alkali dissolution method produces a large amount of hydrogen
  • the roasting method easily causes violent chemical reactions in the positive electrode sheets of waste lithium batteries, all of which have high safety risks.
  • the embodiment of the present application provides a method that does not generate aluminum powder, does not require hazardous chemicals such as organic solvents, and A waste lithium battery positive electrode sheet recycling and processing device and method that does not generate a large amount of hydrogen can overcome the disadvantage of high safety risks in traditional waste lithium battery positive electrode sheet processing.
  • a waste lithium battery positive electrode sheet recycling and processing device comprising:
  • a crushing mechanism wherein the crushing mechanism is used to crush the positive electrode sheets of waste lithium batteries
  • An ultrasonic cleaning mechanism comprising an ultrasonic cleaning machine and a first vibrating screen, the feed end of the ultrasonic cleaning machine being connected to the discharge end of the crushing mechanism, and the feed end of the first vibrating screen being connected to the discharge end of the ultrasonic cleaning machine;
  • a dehydration and drying mechanism comprising a dehydration component and a drying component, the dehydration component being connected to the drying component and the discharge end of the first vibrating screen respectively;
  • An aluminum precipitation mechanism comprising a transfer slurry tank, a first filter press, an aluminum precipitation reaction tank and a second filter press which are connected in sequence, the transfer slurry tank being connected to the liquid outlet end of the first vibrating screen and the liquid outlet end of the dehydration component respectively;
  • a first control pump is provided on a pipeline connecting the transfer slurry tank and the first filter press;
  • a second control pump is provided on a pipeline connecting the aluminum precipitation reaction tank and the second filter press;
  • the ferric sulfate washing liquid circulation mechanism comprises a ferric sulfate washing liquid storage component and a ferric sulfate washing liquid configuration component.
  • the ferric sulfate washing liquid storage component is respectively connected to the ferric sulfate washing liquid configuration component and the second filter press, and the ferric sulfate washing liquid configuration component is connected to the ultrasonic cleaning machine.
  • the crushing mechanism includes a crane, a crusher, a first baffle conveyor, a second vibrating screen, a second baffle conveyor, a powder bin and a screw conveyor.
  • the crane is used to convey the positive electrode sheets of waste lithium batteries to the crusher.
  • the first baffle conveyor is connected to the crusher.
  • the second vibrating screen is connected to the first baffle conveyor and the second baffle conveyor respectively.
  • the second baffle conveyor is connected to the ultrasonic cleaning machine.
  • the powder bin is connected to the second vibrating screen and the screw conveyor respectively.
  • the dehydration component is provided with a centrifuge, and the centrifuge is connected to the transfer slurry tank.
  • the drying component includes a loader, a vibrating fluidized bed, a heat exchanger, a blower and a third baffle conveyor.
  • the loader is respectively connected to the centrifuge and the vibrating fluidized bed
  • the air outlet of the heat exchanger is connected to the air inlet of the vibrating fluidized bed
  • the heat source interface of the heat exchanger is used to transport high-temperature steam
  • the cold source interface of the heat exchanger is connected to the air outlet of the blower
  • the air inlet of the blower is used to collect air
  • the third baffle conveyor is connected to the vibrating fluidized bed.
  • the ferric sulfate filtrate storage component includes a ferric sulfate filtrate storage tank and a third control pump, the ferric sulfate filtrate storage tank is connected to the second filter press, and the third control pump is arranged on a pipeline connecting the ferric sulfate filtrate storage tank and the ferric sulfate washing solution configuration component.
  • the ferric sulfate washing solution configuration component includes a ferric sulfate washing solution configuration tank, a fourth control pump, a ferric sulfate washing solution storage tank and a fifth control pump, the ferric sulfate washing solution configuration tank is connected to the ferric sulfate washing solution storage tank respectively, the third control pump is arranged on the pipeline connecting the ferric sulfate washing solution storage tank and the ferric sulfate washing solution configuration tank, the fourth control pump is arranged on the pipeline connecting the ferric sulfate washing solution configuration tank and the ferric sulfate washing solution storage tank, and the fifth control pump is arranged on the pipeline connecting the ferric sulfate washing solution storage tank and the ultrasonic cleaning machine;
  • the ferric sulfate washing solution configuration component also includes a sulfuric acid storage tank and a sixth control pump.
  • the sulfuric acid storage tank is connected to the transfer slurry tank and the ferric sulfate washing solution configuration tank respectively.
  • the sixth control pump is arranged on a pipeline connecting the sulfuric acid storage tank, the transfer slurry tank and the ferric sulfate washing solution configuration tank.
  • an exhaust gas purification mechanism which includes a cyclone dust collector, a bag dust collector, a spray tower, an induced draft fan and a chimney connected in sequence, the cyclone dust collector is connected to the crusher and the second vibrating screen respectively, and the spray tower is connected to the ultrasonic cleaning machine.
  • a method for recycling positive plates of waste lithium batteries which is carried out using the waste lithium battery positive plate recycling equipment described in any of the above embodiments, and the waste lithium battery positive plate recycling method includes some or all of the following steps:
  • waste lithium battery positive electrode sheets are crushed to obtain a crushed waste lithium battery positive electrode sheet mixture
  • the crushed waste lithium battery mixture is separated and screened to obtain a waste lithium battery positive electrode sheet mixture to be recycled;
  • Ultrasonic salt washing is performed on the waste lithium battery positive electrode sheet mixture to be recycled, and oscillation separation is performed on the waste lithium battery positive electrode sheet mixture to be recycled after salt washing, so as to obtain aluminum foil to be recycled and iron sulfate washing solution;
  • the ferric sulfate washing liquid and the centrifugal liquid are transported to the transfer slurry tank and mixed to obtain a mixed slurry;
  • the mixed slurry is subjected to an aluminum precipitation reaction to obtain an aluminide precipitate.
  • the method for recycling and treating waste lithium battery positive electrode sheets further includes the following steps:
  • the pH of the mixed slurry is adjusted.
  • the pH value of the mixed slurry is less than 2.
  • the embodiments of the present application have at least the following advantages:
  • the waste lithium battery positive electrode sheet recycling and processing equipment of the embodiment of the present application uses a crushing mechanism to crush the waste lithium battery positive electrode sheet and then transport it to an ultrasonic cleaning machine. Since the iron sulfate salt washing solution configuration component is connected to the ultrasonic cleaning machine, the waste lithium battery is ultrasonically cleaned by iron sulfate salt washing to separate the aluminum foil and the positive electrode material powder. Specifically, since iron is stronger than hydrogen in the metal activity sequence table, the iron ions in the iron sulfate salt washing solution preferentially react with part of the aluminum foil to generate aluminum ions and ferrous ions, and inhibit the hydrogen ions from reacting with the aluminum foil to produce hydrogen.
  • the ferrous ions and the lithium nickel cobalt manganese oxide in the positive electrode material powder undergo an oxidation-reduction reaction, so that the hydrogen ions are consumed and the ferrous ions are oxidized to iron ions, so that the iron ions reach a dynamic equilibrium in the entire ultrasonic salt washing process, thereby always inhibiting the hydrogen ions from reacting with the aluminum foil to produce hydrogen. Therefore, the use of iron sulfate ultrasonic salt washing can not only reduce the amount of hydrogen generated, but also avoid the use of organic solvents and the generation of aluminum powder, thereby effectively improving the safety of the waste lithium battery positive electrode sheet recycling and processing equipment. All nature.
  • the aluminum foil is separated and screened by the first vibrating screen and then transported to the dehydration component for dehydration, and then transported to the drying component for drying and recycling of the aluminum foil.
  • the iron sulfate washing solution after ultrasonic salt washing and the liquid on the surface of the aluminum foil are doped with some aluminum ions
  • the iron sulfate washing solution in the ultrasonic cleaning machine and the liquid separated from the dehydration component are transferred to the transfer slurry tank for mixing, and the first control pump is controlled to open to transport the mixed slurry to the first filter press for filtration, and the second control pump is controlled to open to transport the filtrate to the aluminum precipitation reaction tank for aluminum precipitation reaction.
  • the slurry after the reaction is filtered by the second filter press to obtain a reaction filtrate and an aluminide precipitate, and the reaction filtrate is transferred to the iron sulfate washing filtrate storage component for recycling and reuse, so as to achieve the recycling of the iron sulfate washing solution, thereby effectively saving the recycling cost, and at the same time, the valuable metals of the positive electrode material can be effectively recovered by generating an aluminide precipitate.
  • FIG1 is a schematic structural diagram of a waste lithium battery positive electrode sheet recycling and processing device in one embodiment
  • FIG2 is a schematic diagram of a partial structure of the waste lithium battery positive electrode sheet recycling and processing equipment in FIG1;
  • FIG3 is a schematic diagram of a partial structure of the waste lithium battery positive electrode sheet recycling and processing equipment in FIG1;
  • FIG4 is a schematic diagram of a partial structure of the waste lithium battery positive electrode sheet recycling and processing equipment in FIG1;
  • FIG5 is a schematic diagram of a partial structure of the waste lithium battery positive electrode sheet recycling and processing equipment in FIG1;
  • FIG6 is a schematic diagram of a partial structure of the waste lithium battery positive electrode sheet recycling and processing equipment in FIG1;
  • FIG7 is a flow chart of a method for recycling waste lithium battery positive electrode sheets in one embodiment
  • waste lithium battery positive electrode sheet recycling and processing equipment 10 Please refer to FIG. 1 , FIG. 3 and FIG. 5 .
  • the waste lithium battery positive electrode sheet recycling and processing equipment 10 is further explained below:
  • the waste lithium battery positive electrode sheet recycling and processing equipment 10 of one embodiment includes a crushing mechanism 100, an ultrasonic The ultrasonic cleaning mechanism 200, the dehydration and drying mechanism 300, the aluminum precipitation mechanism 400, the first control pump 500, the second control pump 600 and the ferric sulfate washing liquid circulation mechanism 700.
  • the crushing mechanism 100 is used to crush the positive electrode sheet of the waste lithium battery;
  • the ultrasonic cleaning mechanism 200 includes an ultrasonic cleaning machine 210 and a first vibrating screen 220, the ultrasonic cleaning machine 210 is connected to the crushing mechanism 100, and the feeding end of the first vibrating screen 220 is connected to the unloading end of the ultrasonic cleaning machine 210;
  • the dehydration and drying mechanism 300 includes a dehydration component 310 and a drying component 320, the dehydration component 310 is respectively connected to the drying component 320 and the discharge end of the first vibrating screen 220;
  • the aluminum precipitation mechanism 400 includes a transfer slurry tank 410, a first filter press 420, an aluminum precipitation reaction tank 430 and a second filter press 440 connected in sequence, the transfer slurry tank 410 are respectively connected to the liquid outlet end of the first vibrating screen 220 and the liquid outlet end of the dehydration component 310;
  • the first control pump 500 is arranged on the pipeline connecting the transfer slurry tank
  • the waste lithium battery positive electrode sheet is crushed by using a crushing mechanism 100 and then transported to an ultrasonic cleaning machine 210. Since the iron sulfate salt washing solution configuration component 720 is connected to the ultrasonic cleaning machine 210, the waste lithium battery is ultrasonically cleaned by iron sulfate salt washing to separate the aluminum foil and the positive electrode material powder. Specifically, since iron is stronger than hydrogen in the metal activity sequence table, the iron ions in the iron sulfate salt washing solution preferentially react with part of the aluminum foil to generate aluminum ions and ferrous ions, and inhibit the hydrogen ions from reacting with the aluminum foil to produce hydrogen.
  • the ferrous ions and the nickel cobalt manganese oxide in the positive electrode material powder undergo an oxidation-reduction reaction, so that the hydrogen ions are consumed and the ferrous ions are oxidized to iron ions, so that the iron ions reach a dynamic balance in the entire ultrasonic salt washing process, and then the hydrogen ions are always inhibited from reacting with the aluminum foil to produce hydrogen. Therefore, the use of iron sulfate salt ultrasonic salt washing can not only reduce the amount of hydrogen generated, but also avoid the use of organic solvents and the generation of aluminum powder, thereby effectively improving the safety of the waste lithium battery positive electrode sheet recycling and processing equipment 10.
  • the aluminum foil after ultrasonic salt washing is separated and screened by the first vibrating screen 220 and then transported to the dehydration component for dehydration, and then transported to the drying component 320 for drying and recycling.
  • the ferric sulfate washing solution and the liquid on the surface of the aluminum foil are both doped with some aluminum ions. Therefore, the ferric sulfate washing solution in the ultrasonic cleaning machine 210 and the liquid separated from the dehydration component 310 are transferred to the transfer slurry tank 410 for mixing, and the first control pump 500 is controlled to open to transport the mixed slurry to the first filter press 420 for filtration, and the second control pump 600 is controlled to open to transport the filtrate to the aluminum precipitation reaction tank 430 for aluminum precipitation reaction.
  • the slurry after the reaction is filtered through the second filter press 440 to obtain a reaction filtrate and an aluminide precipitate, and the reaction filtrate is transferred to the ferric sulfate washing solution storage component 710 for recycling and reuse, so as to achieve the recycling of the ferric sulfate washing solution, thereby effectively saving the recycling cost.
  • the valuable metals of the positive electrode material can be effectively recovered by generating an aluminide precipitate.
  • the function of the dehydration component 300 is to dehydrate the aluminum foil separated and screened by the first vibrating screen 220
  • the function of the drying component 320 is to dry and recycle the dehydrated aluminum foil
  • the ferric sulfate washing filtrate refers to the reaction filtrate after the aluminum precipitation reaction.
  • the positive electrode material powder contains lithium nickel cobalt manganese oxide, and the lithium nickel cobalt manganese oxide undergoes an oxidation-reduction reaction with ferrous ions, so that hydrogen ions are consumed and ferrous ions are oxidized into ferric ions, thereby maintaining a dynamic balance of ferric ions throughout the ultrasonic salt washing process.
  • the crushing mechanism 100 includes a traveling crane 110, a crusher 120, a first baffle conveyor 130, a second vibrating screen 140, a second baffle conveyor 150, a powder bin 160 and a screw conveyor 170.
  • the traveling crane 110 is used to convey the positive electrode sheets of waste lithium batteries to the crusher 120
  • the first baffle conveyor 130 is connected to the crusher 120
  • the second vibrating screen 140 is connected to the first baffle conveyor 130 and the second baffle conveyor 150 respectively
  • the second baffle conveyor 150 is connected to the ultrasonic cleaning machine 210
  • the powder bin 160 is connected to the second vibrating screen 140 and the screw conveyor 170 respectively.
  • waste lithium battery positive electrode sheets are collected and transported to the crusher 120 through the overhead crane 110 for crushing.
  • the crushed waste lithium battery positive electrode materials are transported to the second vibrating screen 140 through the first baffle conveyor 130 for separation and screening.
  • the waste lithium battery positive electrode materials after separation and screening are transported to the ultrasonic cleaning machine 210 for salt washing, that is, the waste lithium battery positive electrode materials are stripped by using the ultrasonic cleaning machine 210.
  • the waste lithium battery positive electrode materials include positive electrode material powder and aluminum foil.
  • the positive electrode material powder and part of the aluminum foil are dissolved in the ferric sulfate washing solution, thereby completing the stripping of the positive electrode material powder and the aluminum foil.
  • the rest of the screened waste lithium The positive electrode material of the battery is transported to the powder bin 160 and then unloaded and packaged by the screw conveyor 170.
  • the crusher mechanism is also provided with a carbon dioxide automatic fire extinguishing device, which is arranged on the crusher.
  • a carbon dioxide automatic fire extinguishing device By providing the carbon dioxide fire extinguishing device, it is possible to promptly carry out fire extinguishing treatment when an accidental fire occurs during the crushing process, thereby effectively improving the safety performance of the waste lithium battery positive electrode sheet recycling and processing equipment.
  • the crusher is provided with a temperature sensing alarm device, which is interlocked with the carbon dioxide fire extinguishing device.
  • the carbon dioxide fire extinguishing device By setting the carbon dioxide fire extinguishing device and the temperature sensing alarm device for interlocking control, when the temperature sensing alarm device senses that the temperature in the crusher exceeds a preset value, the carbon dioxide fire extinguishing device is controlled to carry out fire extinguishing treatment, which can promptly and effectively control the occurrence of accidents, further improving the safety performance of the waste lithium battery positive electrode sheet recycling and processing equipment 10.
  • the dehydration assembly 310 is provided with a centrifuge 3110, and the centrifuge 3110 is connected to the transfer slurry tank 410. It should be noted that the aluminum foil after salt washing is centrifuged by the centrifuge 3110 to obtain a centrifuge liquid and a dehydrated aluminum foil, and the dehydrated aluminum foil is transported to the drying assembly 320 for drying, and the centrifuge liquid is transported to the transfer slurry tank 410 to mix with the iron sulfate washing liquid for aluminum precipitation reaction.
  • the drying component 320 includes a loader 3210, a vibrating fluidized bed 3220, a heat exchanger 3230, a blower 3240 and a third baffle conveyor 3250, the loader 3210 is connected to the centrifuge 3110 and the vibrating fluidized bed 3220 respectively, the air outlet of the heat exchanger 3230 is connected to the air inlet of the vibrating fluidized bed 3220, the heat source interface of the heat exchanger 3230 is used to transport high-temperature steam, the cold source interface of the heat exchanger 3230 is connected to the air outlet of the blower 3240, the air inlet of the blower 3240 is used to collect air, and the third baffle conveyor 3250 is connected to the vibrating fluidized bed 3220.
  • the dehydrated aluminum foil is conveyed to the vibrating fluidized bed 3220 for drying by the loader 3210, wherein the heat exchanger 3230 heats the air by high-temperature steam, and outputs the hot air to the vibrating fluidized bed 3220 to dry the dehydrated aluminum foil, and the dried aluminum foil is unloaded and packaged by the third baffle conveyor 3250, thereby completing the recycling of the aluminum foil, and the drying component 320 can save the use cost to a large extent by utilizing high-temperature steam for heat exchange, and at the same time, the waste lithium battery positive electrode sheet recycling and processing equipment 10 can achieve energy-saving effect.
  • the ferric sulfate washing solution is configured as follows:
  • the component 720 includes a ferric sulfate washing solution configuration tank 7210, a fourth control pump 7220, a ferric sulfate washing solution storage tank 7230 and a fifth control pump 7240.
  • the ferric sulfate washing solution configuration tank 7210 is connected to the ferric sulfate washing solution storage tank 7230 respectively.
  • the third control pump 7120 is on a pipeline connected to the ferric sulfate washing solution configuration tank 7210.
  • the fourth control pump 7220 is arranged on the ferric sulfate washing solution configuration tank 7210 and the ferric sulfate washing solution storage tank 7230.
  • the fifth control pump 7240 is arranged on the pipeline connecting the ferric sulfate washing liquid storage tank 7230 and the ultrasonic cleaning machine;
  • the ferric sulfate washing liquid configuration component 720 also includes a sulfuric acid storage tank 7250 and a sixth control pump 7260, the sulfuric acid storage tank 7250 is respectively connected to the transfer slurry tank 410 and the ferric sulfate washing liquid configuration tank 7210, and the sixth control pump 7260 is arranged on the pipeline connecting the sulfuric acid storage tank 7250, the transfer slurry tank 410 and the ferric sulfate washing liquid configuration tank 7210.
  • the ferric sulfate washing liquid circulation preparation process is: taking a liquid sample to measure the metal content, if the metal content reaches a certain level, the ferric sulfate washing liquid is sent to the leaching and impurity removal recovery through the third control pump 7120, and at the same time, the ferric sulfate washing liquid configuration tank 7210 is re-added with water, and the sixth control pump 7260 is controlled to open and sulfuric acid and iron sulfate are added to configure the ferric sulfate washing liquid. If the metal content does not reach a certain level, the ferric sulfate washing liquid is sent to the ferric sulfate washing liquid preparation tank 7210 through the third control pump 7120.
  • ferric sulfate washing liquid According to the configuration requirements of the ferric sulfate washing liquid, appropriate amounts of sulfuric acid and ferric sulfate are added to the ferric sulfate washing liquid preparation tank 7210. After the ferric sulfate washing liquid is prepared, the fourth control pump 7220 is controlled to be turned on and sent to the ferric sulfate washing liquid storage tank 7230, and then the fifth control pump 7240 is controlled to be turned on to send the ferric sulfate washing liquid to the ultrasonic cleaning machine 210. Through the ferric sulfate washing liquid circulation preparation, the ferric sulfate washing liquid of ultrasonic salt washing is recycled and reused, thereby reducing the loss of materials and further reducing the use cost of materials.
  • the sixth control pump is connected to the ultrasonic cleaning machine. Since the pH value is constantly changing during the ultrasonic salt cleaning process, the sixth control pump can be controlled to open and the sulfuric acid storage tank can output sulfuric acid to adjust the pH value of the ultrasonic cleaning machine in time.
  • the aluminum precipitation mechanism is also provided with a first pH monitor, which is arranged on the transfer slurry tank. Since there are still free hydroxide ions and trivalent iron ions in the mixed slurry, and the trivalent iron ions will not generate iron hydroxide colloid with hydroxide ions under acidic conditions, the pH value in the transfer slurry tank can be monitored in real time by providing the first pH monitor, and the sixth control pump is controlled to start the delivery of sulfuric acid to the transfer slurry tank so that the pH value in the transfer slurry tank is always kept in acidic conditions, thereby effectively improving the sulfur content. Recovery rate of acid iron salt washing solution.
  • the waste lithium battery positive electrode sheet recycling and processing equipment 10 further includes an exhaust gas purification mechanism 800, and the exhaust gas purification mechanism 800 includes a cyclone dust collector 810, a bag dust collector 820, a spray tower 830, an induced draft fan 840 and a chimney 850 connected in sequence, the cyclone dust collector 810 is connected to the crusher 120 and the second vibrating screen 140 respectively, and the spray tower 830 is connected to the ultrasonic cleaning machine 210.
  • the exhaust gas purification mechanism 800 includes a cyclone dust collector 810, a bag dust collector 820, a spray tower 830, an induced draft fan 840 and a chimney 850 connected in sequence, the cyclone dust collector 810 is connected to the crusher 120 and the second vibrating screen 140 respectively, and the spray tower 830 is connected to the ultrasonic cleaning machine 210.
  • the crusher 120 and the second vibrating screen 140 will both generate dust airflow when working, and the dust airflow is sucked in by the cyclone dust collector 810 for primary dust removal, and then the bag dust collector 820 is used for secondary dust removal, and the airflow is continuously transported to the spray tower 830 for absorption, and the steam generated by the ultrasonic cleaning machine is also transported to the spray tower 830 for absorption, and then the induced draft fan 840 is used to induce air to the chimney 850 for exhaust gas discharge.
  • the ultrasonic cleaning machine includes a body, an ultrasonic generator and a first mixer, the body is formed with a receiving cavity, the ultrasonic generator is arranged on the body, the first mixer is fixed on the body, and the power output end of the mixer is penetrated through the body and arranged in the receiving cavity.
  • the ultrasonic generator By arranging the ultrasonic generator, the positive electrode material powder on the aluminum foil can be made to fall off, and then the stirring of the mixer accelerates the falling off of the positive electrode material powder on the aluminum foil.
  • the ultrasonic cleaning machine is also provided with a spoiler, a first pH monitor, a hydrogen detector, a first liquid level monitor and a temperature monitor, the spoiler is arranged in the receiving cavity and arranged below the power output end of the mixer, and the first pH monitor, the hydrogen monitor, the first liquid level monitor and the temperature monitor are all arranged on the body.
  • the spoiler can reduce the degree of eddy current during stirring, thereby accelerating the shedding of the positive electrode material powder on the aluminum foil.
  • the second pH monitor can monitor the pH value changes during the salt washing process in real time.
  • the hydrogen monitor can monitor the amount of hydrogen produced in real time.
  • the liquid level monitor can monitor the liquid level changes in the machine body to control the amount of liquid inlet.
  • the temperature monitor monitors the temperature changes in the machine body in real time.
  • the aluminum precipitation mechanism also includes a second mixer and a third mixer.
  • the second mixer is arranged on the transfer slurry tank, and the power output end of the second mixer is arranged in the transfer slurry tank.
  • the third mixer is arranged on the aluminum precipitation reaction tank, and the power output end of the third mixer is arranged in the aluminum precipitation reaction tank.
  • the aluminum precipitation mechanism is also provided with a second pH monitor, a third pH monitor, a second liquid level monitor and a third liquid level monitor.
  • the second pH monitor and the second liquid level monitor are both arranged on the transfer slurry tank, and the third pH monitor and the third liquid level monitor are both arranged on the aluminum precipitation reaction tank.
  • the ferric sulfate filtrate storage component is also provided with a fourth liquid level monitor, which is arranged on the ferric sulfate filtrate storage tank.
  • the fourth liquid level monitor can detect the liquid level change of the ferric sulfate filtrate storage tank in real time, so as to control the liquid inflow of the ferric sulfate filtrate storage tank.
  • the ferric sulfate washing solution configuration component is also provided with a fourth stirrer, a fourth pH monitor and a fifth liquid level monitor, the fourth stirrer is arranged on the ferric sulfate washing solution configuration tank, and the power output end of the fourth stirrer is arranged in the ferric sulfate washing solution configuration tank, and the fourth pH monitor and the fifth liquid level monitor are both arranged on the ferric sulfate washing solution configuration tank.
  • the configuration speed of the ferric sulfate washing solution can be accelerated, and the pH value and liquid level changes in the ferric sulfate washing solution configuration tank can be monitored in real time by the fourth pH monitor and the fifth liquid level monitor, so as to control the liquid inlet amount, and at the same time, the sixth control pump can be controlled to open to input sulfuric acid into the ferric sulfate washing solution configuration tank to adjust the pH value.
  • the ultrasonic generator, the first mixer, the second mixer, the third mixer, the fourth mixer, the first control pump, the second control pump, the third control pump, the fourth control pump, the fifth control pump, the sixth control pump, the first pH monitor, the second pH monitor, the third pH monitor, the fourth pH monitor, the hydrogen detector, the first liquid level monitor, the second liquid level monitor, the third liquid level monitor, the fourth liquid level monitor, the fifth liquid level monitor and the temperature monitor are all electrically connected to the DCS monitoring and control system, so that the ultrasonic generator, the first mixer, the second mixer, the third mixer, the fourth mixer, the first control pump, the second pH monitor, the third pH monitor, the fourth pH ...
  • the control pump, the second control pump, the third control pump, the fourth control pump, the fifth control pump, the sixth control pump, the first pH monitor, the second pH monitor, the third pH monitor, the fourth pH monitor, the hydrogen detector, the first liquid level monitor, the second liquid level monitor, the third liquid level monitor, the fourth liquid level monitor, the fifth liquid level monitor and the temperature monitor are all connected to the DCS monitoring and control system by electrical signals.
  • the DCS monitoring and control system can monitor the pH value changes, hydrogen production, liquid level changes and temperature changes in real time, and control the start or shutdown of the salt washing process to prevent unexpected factors from causing the salt washing process to react violently and produce hydrogen and heat up, causing explosions or tank overflow accidents, thereby effectively improving the safety performance of the waste lithium battery positive electrode sheet recycling and processing equipment.
  • the DCS monitoring and control system controls the aluminum precipitation reaction, controls the ferric sulfate salt washing solution circulation preparation and the start or shutdown of the aluminum precipitation reaction, thereby effectively improving the operating convenience of the waste lithium battery positive electrode sheet recycling and processing equipment
  • the present application also provides a method for recycling and processing waste lithium battery positive electrode sheets, which is carried out using the waste lithium battery positive electrode sheet recycling and processing equipment described in any of the above embodiments, and includes the following steps: crushing the waste lithium battery positive electrode sheets to obtain a crushed waste lithium battery positive electrode sheet mixture; separating and screening the crushed waste lithium battery mixture to obtain a waste lithium battery positive electrode sheet mixture to be recycled; ultrasonically salt washing the waste lithium battery positive electrode sheet mixture to be recycled, and oscillating and separating the salt-washed waste lithium battery positive electrode sheet mixture to be recycled to obtain aluminum foil to be recycled and iron sulfate washing solution; centrifuging the aluminum foil to be recycled to obtain a centrifugal solution and aluminum foil to be dried; drying the aluminum foil to be dried to obtain a recycled aluminum foil; conveying the iron sulfate washing solution and the centrifugal solution to the transfer slurry tank for mixing to obtain a mixed slurry; and performing aluminum precipitation reaction on the mixed slurry to obtain an aluminum precipitate.
  • the above-mentioned method for recycling and treating waste lithium battery positive electrode sheets is to obtain a waste lithium battery positive electrode sheet mixture to be recycled by crushing and separating and screening the waste lithium battery positive electrode sheets, and then the waste lithium battery positive electrode sheet mixture to be recycled is ultrasonically cleaned with iron sulfate. Since iron is stronger than hydrogen in the metal activity sequence, the iron ions in the iron sulfate washing solution preferentially react with part of the aluminum foil in the waste lithium battery positive electrode sheet mixture to be recycled to generate aluminum ions, and inhibit the hydrogen ions from reacting with the aluminum foil to produce hydrogen.
  • the ferrous ions and the lithium nickel cobalt manganese oxide in the positive electrode material powder undergo an oxidation-reduction reaction, so that the hydrogen ions are consumed and the ferrous ions are oxidized into iron ions, so that the iron ions reach dynamic state during the entire ultrasonic salt washing process.
  • the state equilibrium is achieved, thereby always suppressing the reaction of hydrogen ions with aluminum foil to produce hydrogen. Therefore, the use of ferric sulfate ultrasonic salt washing can not only reduce the amount of hydrogen produced, but also avoid the use of organic solvents and aluminum powder, thereby effectively improving the safety of recycling and processing of waste lithium battery positive electrode sheets.
  • the aluminum foil to be recycled is centrifuged and dried to obtain a centrifuge and recycled aluminum foil, thereby achieving the recovery of aluminum metal. Furthermore, since the ferric sulfate washing liquid and the centrifuge are both doped with some aluminum ions, after the ferric sulfate washing liquid and the centrifuge are mixed, an aluminum precipitation reaction is performed to obtain an aluminum precipitate, which can recover the valuable metals of the positive electrode material to a large extent.
  • the waste lithium battery positive electrode sheet recycling method of the present application includes some or all of the following steps:
  • a large number of waste lithium battery positive electrode sheets are collected on a crane and transported to a crusher for crushing to obtain a crushed waste lithium battery positive electrode sheet mixture.
  • the waste lithium battery positive electrode sheet mixture to be recycled is obtained by separation and screening, and the waste lithium battery positive electrode sheet mixture to be recycled refers to the aluminum foil and the positive electrode material on the surface of the aluminum foil.
  • the waste lithium battery positive electrode sheet mixture to be recycled is subjected to ultrasonic cleaning with iron sulfate, and the waste lithium battery positive electrode sheet mixture to be recycled after salt washing is oscillated and separated to obtain aluminum foil to be recycled and iron sulfate washing solution.
  • the iron ions in the iron sulfate washing solution preferentially react with part of the aluminum foil in the waste lithium battery positive electrode sheet mixture to be recycled to generate aluminum ions, and inhibit the hydrogen ions from reacting with the aluminum foil to produce hydrogen.
  • the generated ferrous ions undergo an oxidation-reduction reaction with the lithium nickel cobalt manganese oxide in the positive electrode material powder, so that the hydrogen ions are consumed, the ferrous ions are oxidized to iron ions, and the iron ions are removed during the entire ultrasonic salt washing.
  • a dynamic balance is achieved during the process. That is, the reaction between aluminum foil and hydrogen ions is inhibited by iron ions, thereby effectively reducing the amount of hydrogen produced.
  • the liquid on the aluminum foil to be recycled is doped with some aluminum ions, and the aluminum foil to be recycled is centrifuged by a centrifuge to obtain the aluminum foil to be dried.
  • the aluminum foil to be dried is dried by an oscillating fluidized bed, thereby completing the recovery of the aluminum foil in the positive electrode sheet of the waste lithium battery.
  • the iron sulfate washing liquid and the centrifugal liquid after ultrasonic salt washing are both doped with aluminum ions, the iron sulfate washing liquid and the centrifugal liquid are transported to the transfer slurry tank for mixing to obtain a mixed slurry for subsequent processes.
  • the mixed slurry is subjected to an aluminum precipitation reaction to obtain an aluminide precipitate, so as to recover the valuable metals in the positive electrode material of the waste lithium battery.
  • the specific steps of the aluminum precipitation reaction are: first, control the first control pump to open, and transport the mixed slurry to the first filter press for filtration, wherein the first filtrate is transported to the aluminum precipitation reaction tank, and the first aluminum slag is recovered. Secondly, a liquid sample is taken from the aluminum precipitation reaction tank to detect the ferric iron content, and an appropriate amount of iron powder or sodium sulfite is added as a reducing agent to reduce the ferric iron ions to divalent iron ions, and then an appropriate amount of sodium carbonate is added to adjust the pH to precipitate aluminum ions to obtain aluminum hydroxide.
  • the material is pumped to the second filter press by the second control pump for filtration, and the second filter residue is packaged and collected to make aluminum hydroxide products.
  • the second filtrate enters the iron sulfate salt washing filtrate storage tank for ferric sulfate salt washing liquid circulation preparation.
  • the mixed slurry is filtered out by the first filter press to filter out the iron hydroxide colloid in the mixed slurry to avoid affecting the subsequent aluminum hydroxide recovery purity.
  • iron powder or sodium sulfite is added to reduce the ferric iron ions to divalent iron ions, thereby effectively improving the recovery purity of aluminum hydroxide.
  • the second filter residue is recovered by the second filter press and packaged into aluminum hydroxide products, thereby effectively recovering the valuable metals in the positive electrode of the waste lithium battery.
  • the iron salt washing filtrate is recycled and reused in the tank, thus effectively saving the cost of material use.
  • the method for recycling and treating waste lithium battery positive electrode sheets further includes the following steps: adjusting the pH of the mixed slurry.
  • the pH value of the mixed slurry is less than 2. It is understood that under acidic conditions with a pH value of less than 2, the combination of trivalent iron ions and hydroxide ions can be effectively prevented, thereby reducing the generation of iron hydroxide colloids, thereby effectively improving the recovery rate of the iron sulfate wash solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本文公布一种废旧锂电池正极片回收处理设备及其方法,由于金属活动性顺序表中铁是强于氢,硫酸铁盐洗液中的铁离子优先与部分铝箔反应生成铝离子和亚铁离子,并抑制氢离子与铝箔反应产生氢气。同时的,亚铁离子和正极材料粉中的镍钴锰酸锂发生氧化还原反应,使得氢离子被消耗以及亚铁离子被氧化成铁离子,从而使得铁离子在整个超声盐洗过程中达到动态平衡,进而始终抑制氢离子与铝箔反应产生氢气。因此采用硫酸铁盐超声盐洗不仅能够减少氢气的产生量,而且也避免了使用有机溶剂和铝粉的产生,从而有效地提升了废旧锂电池正极片回收处理设备的安全性。

Description

废旧锂电池正极片回收处理设备及其方法 技术领域
本申请实施例涉及电池回收领域,例如一种废旧锂电池正极片回收处理设备及其方法。
背景技术
锂离子电池是目前世界上已工业化的充电性能最好的化学电池,具有能量密度高、重量轻、体积小、循环寿命长、无记忆和污染小等特点,在手机、笔记本电脑、照相机、电动工具等便携式电子设备以及汽车、航天和医疗设备等方面均有广泛应用、未来在电动自行车、电动汽车等领域的应用将迎来迅猛发展。据推算,2030年国内将有超过1.1TWh(太瓦时)的动力电池随乘用电动汽车和商用电动汽车售出。以5~8年的服役期,折损20%电量为退役条件来计算,2021年至2030年期间国内乘用电动汽车和商用电动汽车动力电池退役总量将会达到705万吨。锂离子电池中镍、钴、锰、锂等金属含量远高于自然界原生矿含量,而回收利用成本远远低于原矿处理成本,且回收废旧锂离子电池还会减少对环境的污染。因此,对废旧锂离子电池回收的产业化迫在眉睫,其成功回收也将收获相当大的经济效益和社会效益。
传统的废旧锂电池中的正极片处理步骤为:先将废旧锂电池正极片的铝箔与活性物料进行剥离,然后采用浸出的方法从活性物质中回收有价金属,其铝箔和正极材料粉的剥离方法主要有:焙烧法、有机溶剂处理法、物理破碎研磨法、煅烧-碱溶法等。其中,物理破碎研磨法涉及到有铝粉的产生、有机溶剂处理法涉及有机溶剂等危险化学品,煅烧-碱溶法会产生大量氢气,焙烧法容易让废旧锂电池中的正极片发生剧烈的化学反应,均存在较高的安全风险。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种不会产生铝粉,不需要有机溶剂等危险化学品,且 不会大量产生氢气的废旧锂电池正极片回收处理设备及其方法,以克服传统废旧锂电池正极片处理的安全风险较高的不足之处。
本申请实施例是通过以下技术方案来实现的:
一种废旧锂电池正极片回收处理设备,包括:
破碎机构,所述破碎机构用于破碎废旧锂电池的正极片;
超声波清洗机构,所述超声波清洗机构包括超声波清洗机和第一振动筛,所述超声波清洗机的入料端与所述破碎机构的出料端连通,所述第一振动筛的入料端与所述超声波清洗机的下料端连通;
脱水干燥机构,所述脱水干燥机构包括脱水组件及干燥组件,所述脱水组件分别与所述干燥组件及所述第一振动筛的出料端连通;
沉铝机构,所述沉铝机构包括顺序连通的中转浆料槽、第一压滤机、沉铝反应槽及第二压滤机,所述中转浆料槽分别与所述第一振动筛的出液端和所述脱水组件的出液端连通;
第一控制泵,设于所述中转浆料槽与所述第一压滤机连通的管道上;
第二控制泵,设于所述沉铝反应槽与所述第二压滤机连通的管道上;
硫酸铁盐洗液循环机构,所述硫酸铁盐洗液循环机构包括硫酸铁盐洗滤液储存组件和硫酸铁盐洗液配置组件,所述硫酸铁盐洗滤液储存组件分别与所述硫酸铁盐洗液配置组件及所述第二压滤机连通,所述硫酸铁盐洗液配置组件与所述超声波清洗机连通。
在其中一个实施例中,所述破碎机构包括行吊机、破碎机、第一挡板输送机、第二振动筛、第二挡板输送机、粉料仓及螺旋输送机,所述行吊机用于将废旧锂电池正极片输送至所述破碎机,所述第一挡板输送机与所述破碎机连通,所述第二振动筛分别与所述第一挡板输送机和所述第二挡板输送机连通,所述第二挡板输送机与所述超声波清洗机连通,所述粉料仓分别与所述第二振动筛和所述螺旋输送机连通。
在其中一个实施例中,所述脱水组件设有离心机,所述离心机与所述中转浆料槽连通。
在其中一个实施例中,所述干燥组件包括上料机、振动流化床、换热器、鼓风机及第三挡板输送机,所述上料机分别与所述离心机及所述振动流化床连通,所述换热器的出风口与所述振动流化床的进风口连通,所述换热器的热源接口用于输送高温蒸汽,所述换热器的冷源接口与所述鼓风机的出风口连通,所述鼓风机的进风口用于收集空气,所述第三挡板输送机与所述振动流化床连通。
在其中一个实施例中,所述硫酸铁盐洗滤液储存组件包括硫酸铁盐洗滤液储槽及第三控制泵,所述硫酸铁盐洗滤液储槽与所述第二压滤机连通,所述第三控制泵设于所述硫酸铁盐洗滤液储槽与所述硫酸铁盐洗液配置组件连通的管道上。
在其中一个实施例中,所述硫酸铁盐洗液配置组件包括硫酸铁盐洗液配置槽、第四控制泵、硫酸铁盐洗液储槽及第五控制泵,所述硫酸铁盐洗液配置槽分别与所述硫酸铁盐洗液储槽连通,所述第三控制泵设于所述硫酸铁盐洗滤液储槽与所述硫酸铁盐洗液配置槽连通的管道上,所述第四控制泵设于所述硫酸铁盐洗液配置槽与硫酸铁盐洗液储槽连通的管道上,所述第五控制泵设于所述硫酸铁盐洗液储槽与所述超声波清洗机连通的管道上;
所述硫酸铁盐洗液配置组件还包括硫酸储槽和第六控制泵,所述硫酸储槽分别与所述中转浆料槽和所述硫酸铁盐洗液配置槽连通,所述第六控制泵设于所述硫酸储槽与所述中转浆料槽及所述硫酸铁盐洗液配置槽连通的管道上。
在其中一个实施例中,还包括尾气净化机构,所述尾气净化机构包括顺序连通的旋风除尘器、布袋除尘器、喷淋塔、引风机及烟囱,所述旋风除尘器分别与所述破碎机及第二振动筛连通,所述喷淋塔与所述超声波清洗机连通。
一种废旧锂电池正极片回收处理方法,采用上述任一实施例所述的废旧锂电池正极片回收处理设备进行,所述废旧锂电池正极片回收处理方法包括以下部分或全部步骤:
将废旧锂电池正极片进行破碎操作,以得到破碎后的废旧锂电池正极片混合料;
将所述破碎后的废旧锂电池混合料进行分离筛选操作,以得到待回收的废旧锂电池正极片混合料;
对所述待回收的废旧锂电池正极片混合料进行超声波盐洗,并对盐洗后的所述待回收的废旧锂电池正极片混合料进行振荡分离,以得到待回收铝箔和硫酸铁盐洗液;
对所述待回收铝箔进行离心操作,以得到离心液和待干燥铝箔;
对所述待干燥铝箔进行干燥操作,以得到回收铝箔;
将所述硫酸铁盐洗液和所述离心液输送至所述中转浆料槽内混合后得到混合浆料;
对所述混合浆料进行沉铝反应,以得到铝化物沉淀。
在其中一个实施例中,在所述将所述硫酸铁盐洗液和所述离心液输送至所述中转浆料槽内混合后得到混合浆料之后,以及在对所述混合浆料进行沉铝反应,以得到铝化物沉淀之前,所述废旧锂电池正极片回收处理方法还包括以下步骤:
对所述混合浆料进行调pH操作。
在其中一个实施例中,所述混合浆料的pH值小于2。
与相关技术相比,本申请实施例至少具有以下优点:
1、本申请实施例的废旧锂电池正极片回收处理设备,通过使用破碎机构将废旧锂电池正极片破碎后输送至超声波清洗机,又因硫酸铁盐洗液配置组件与超声波清洗机连通,采用硫酸铁盐洗对废旧锂电池进行超声波清洗以使铝箔和正极材料粉分离。具体的,由于金属活动性顺序表中铁是强于氢,硫酸铁盐洗液中的铁离子优先与部分铝箔反应生成铝离子和亚铁离子,并抑制氢离子与铝箔反应产生氢气。同时的,亚铁离子和正极材料粉中的镍钴锰酸锂发生氧化还原反应,使得氢离子被消耗以及亚铁离子被氧化成铁离子,从而使得铁离子在整个超声盐洗过程中达到动态平衡,进而始终抑制氢离子与铝箔反应产生氢气。因此采用硫酸铁盐超声盐洗不仅能够减少氢气的产生量,而且也避免了使用有机溶剂和铝粉的产生,从而有效地提升了废旧锂电池正极片回收处理设备的安 全性。
2、超声盐洗后的铝箔经过第一振动筛分离筛选出来后输送至脱水组件进行脱水,再输送至干燥组件进行干燥处理并回收铝箔。但由于超声盐洗后的硫酸铁盐洗液及铝箔表面的液体内均掺杂部分铝离子,因此本申请废旧锂电池正极片回收处理设备,通过超声波清洗机内的硫酸铁盐洗液及脱水组件脱离的液体均转移至中转浆料槽混合,控制第一控制泵打开将混合浆料输送至第一压滤机进行过滤,并控制第二控制泵打开将过滤液输送至沉铝反应槽进行沉铝反应,反应后的浆料通过第二压滤机过滤后得到反应滤液及铝化物沉淀,而反应滤液则是转移硫酸铁盐洗滤液储存组件进行在回收再利用,以此达到硫酸铁盐洗液循环利用,从而有效地节省了回收成本,同时通过生成铝化物沉淀能够有效地回收了正极材料的有价金属。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为一实施例中废旧锂电池正极片回收处理设备的结构示意图;
图2为图1废旧锂电池正极片回收处理设备的局部结构示意图;
图3为图1废旧锂电池正极片回收处理设备的局部结构示意图;
图4为图1废旧锂电池正极片回收处理设备的局部结构示意图;
图5为图1废旧锂电池正极片回收处理设备的局部结构示意图;
图6为图1废旧锂电池正极片回收处理设备的局部结构示意图;
图7为一实施例中废旧锂电池正极片回收处理方法的流程图;
附图标记:废旧锂电池正极片回收处理设备10;破碎机构100;行吊机110;破碎机120;第一挡板输送机130;第二振动筛140;第二挡板输送机150;粉料仓160;螺旋输送机170;超声波清洗机构200;超声波清洗机210;第一振 动筛220;脱水干燥机构300;脱水组件310;离心机3110;干燥组件320;上料机3210;振动流化床3220;换热器3230;鼓风机3240;第三挡板输送机3250;沉铝机构400;中转浆料槽410;第一压滤机420;沉铝反应槽430;第二压滤机440;第一控制泵500;第二控制泵600;硫酸铁盐洗液循环机构700;硫酸铁盐洗滤液储存组件710;硫酸铁盐洗滤液储槽7110;第三控制泵7120;硫酸铁盐洗液配置组件720;硫酸铁盐洗液配置槽7210;第四控制泵7220;硫酸铁盐洗液储槽7230;第五控制泵7240;硫酸储槽7250;第六控制泵7260;尾气净化机构800;旋风除尘器810;布袋除尘器820;喷淋塔830;引风机840;烟囱850。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1、图3和图5,为了更好地理解本申请的废旧锂电池正极片回收处理设备10,以下对废旧锂电池正极片回收处理设备10作进一步的解释说明:
一实施方式的废旧锂电池正极片回收处理设备10包括破碎机构100、超声 波清洗机构200、脱水干燥机构300、沉铝机构400、第一控制泵500、第二控制泵600及硫酸铁盐洗液循环机构700。所述破碎机构100用于破碎废旧锂电池的正极片;所述超声波清洗机构200包括超声波清洗机210和第一振动筛220,所述超声波清洗机210与所述破碎机构100连通,所述第一振动筛220的入料端与所述超声波清洗机210的下料端连通;所述脱水干燥机构300包括脱水组件310及干燥组件320,所述脱水组件310分别与所述干燥组件320及所述第一振动筛220的出料端连通;所述沉铝机构400包括顺序连通的中转浆料槽410、第一压滤机420、沉铝反应槽430及第二压滤机440,所述中转浆料槽410分别与所述第一振动筛220的出液端和所述脱水组件310的出液端连通;所述第一控制泵500设于所述中转浆料槽410与所述第一压滤机420连通的管道上;所述第二控制泵600设于所述沉铝反应槽430与所述第二压滤机440连通的管道上;所述硫酸铁盐洗液循环机构700包括硫酸铁盐洗滤液储存组件710和硫酸铁盐洗液配置组件720,所述硫酸铁盐洗滤液储存组件710分别与所述硫酸铁盐洗液配置组件720及所述第二压滤机440连通,所述硫酸铁盐洗液配置组件720与所述超声波清洗机210连通。
在本实施例中,通过使用破碎机构100将废旧锂电池正极片破碎后输送至超声波清洗机210,又因硫酸铁盐洗液配置组件720与超声波清洗机210连通,采用硫酸铁盐洗对废旧锂电池进行超声波清洗以使铝箔和正极材料粉分离。具体的,由于金属活动性顺序表中铁是强于氢,硫酸铁盐洗液中的铁离子优先与部分铝箔反应生成铝离子和亚铁离子,并抑制氢离子与铝箔反应产生氢气。同时的,亚铁离子和正极材料粉中的镍钴锰酸锂发生氧化还原反应,使得氢离子被消耗以及亚铁离子被氧化成铁离子,从而使得铁离子在整个超声盐洗过程中达到动态平衡,进而始终抑制氢离子与铝箔反应产生氢气。因此采用硫酸铁盐超声盐洗不仅能够减少氢气的产生量,而且也避免了使用有机溶剂和铝粉的产生,从而有效地提升了废旧锂电池正极片回收处理设备10的安全性。进一步地,超声盐洗后的铝箔经过第一振动筛220分离筛选出来后输送至脱水组件进行脱水,再输送至干燥组件320进行干燥处理并回收铝箔。但由于超声盐洗后的硫 酸铁盐洗液及铝箔表面的液体内均掺杂部分铝离子,因此通过超声波清洗机210内的硫酸铁盐洗液及脱水组件310脱离的液体均转移至中转浆料槽410混合,控制第一控制泵500打开将混合浆料输送至第一压滤机420进行过滤,并控制第二控制泵600打开将过滤液输送至沉铝反应槽430进行沉铝反应,反应后的浆料通过第二压滤机440过滤后得到反应滤液及铝化物沉淀,而反应滤液则是转移硫酸铁盐洗滤液储存组件710进行在回收再利用,以此达到硫酸铁盐洗液循环利用,从而有效地节省了回收成本,同时通过生成铝化物沉淀能够有效地回收了正极材料的有价金属。
还需要说明的是,脱水组件300的作用是将第一振动筛220分离筛选出来的铝箔进行脱水处理,干燥组件320的作用是将脱水后的铝箔进行干燥处理并回收,而硫酸铁盐洗滤液指的是沉铝反应后的反应滤液,正极材料粉内含有镍钴锰酸锂,通过镍钴锰酸锂与亚铁离子发生氧化还原发应,使得氢离子被消耗,亚铁离子被氧化成铁离子,从而使得铁离子在整个超声盐洗过程中保持动态平衡。
如图1至图3所示,在其中一个实施例中,所述破碎机构100包括行吊机110、破碎机120、第一挡板输送机130、第二振动筛140、第二挡板输送机150、粉料仓160及螺旋输送机170,所述行吊机110用于将废旧锂电池正极片输送至所述破碎机120,所述第一挡板输送机130与所述破碎机120连通,所述第二振动筛140分别与所述第一挡板输送机130和所述第二挡板输送机150连通,所述第二挡板输送机150与所述超声波清洗机210连通,所述粉料仓160分别与所述第二振动筛140和所述螺旋输送机170连通。需要说明的是,首先大量的废旧锂电池正极片汇总后通过行吊机110输送至破碎机120内进行破碎操作,破碎后的废旧锂电池正极材料通过第一挡板输送机130输送至第二振动筛140进行分离筛选,分离筛选后的废旧锂电池正极材料输送至超声波清洗机210进行盐洗,即通过采用超声波清洗机210对废旧锂电池正极材料进行剥离,而此时废旧锂电池正极材料包括正极材料粉和铝箔,正极材料粉和部分铝箔溶在硫酸铁盐洗液上,以此完成正极材料粉与铝箔的剥离。其次,其余过筛的废旧锂 电池正极材料则是输送至粉料仓160,再通过螺旋输送机170进行下料打包处理。
进一步地,所述破碎机机构还设有二氧化碳自动灭火装置,二氧化碳灭火装置设置在破碎机上。通过设置有二氧化碳灭火装置,能够在破碎过程中发生意外火灾时及时进行灭火处理,从而有效地提升了废旧锂电池正极片回收处理设备的安全性能。进一步地,所述破碎机设有温度感应报警装置,所述温度感应报警装置与所述二氧化碳灭火装置联锁控制。通过设置二氧化碳灭火装置和温度感应报警装置联锁控制,在温度感应报警装置感应到破碎机内温度超过预设值时控制二氧化碳灭火装置进行灭火处理,能够及时有效地控制意外发生,进一步地提升了废旧锂电池正极片回收处理设备10的安全性能。
如图1、图4和图5所示,在其中一个实施例中,所述脱水组件310设有离心机3110,所述离心机3110与所述中转浆料槽410连通。需要说明的是,通过离心机3110对盐洗后的铝箔进行离心操作,从而得到离心液和脱水后铝箔,脱水后的铝箔输送至干燥组件320进行干燥,而离心液则输送至中转浆料槽410内与硫酸铁盐洗液混合进行沉铝反应。
如图1和图4所示,在其中一个实施例中,所述干燥组件320包括上料机3210、振动流化床3220、换热器3230、鼓风机3240及第三挡板输送机3250,所述上料机3210分别与所述离心机3110及所述振动流化床3220连通,所述换热器3230的出风口与所述振动流化床3220的进风口连通,所述换热器3230的热源接口用于输送高温蒸汽,所述换热器3230的冷源接口与所述鼓风机3240的出风口连通,所述鼓风机3240的进风口用于收集空气,所述第三挡板输送机3250与所述振动流化床3220连通。需要说明的是,脱水后的铝箔通过上料机3210输送至振动流化床3220进行干燥,其中换热器3230通过高温蒸汽将空气加热,并输出热空气至振动流化床3220内对脱水后的铝箔进行干燥,干燥后的铝箔通过第三挡板输送机3250下料打包,以此完成铝箔的回收,且干燥组件320通过利用高温蒸汽进行换热,能够较大程度地节省了使用成本,同时还使废旧锂电池正极片回收处理设备10达到节能的效果。
如图1、图5和图6所示,在其中一个实施例中,所述硫酸铁盐洗液配置组 件720包括硫酸铁盐洗液配置槽7210、第四控制泵7220、硫酸铁盐洗液储槽7230及第五控制泵7240,所述硫酸铁盐洗液配置槽7210分别与所述硫酸铁盐洗液储槽7230连通,所述第三控制泵7120与所述硫酸铁盐洗液配置槽7210连通的管道上,所述第四控制泵7220设于所述硫酸铁盐洗液配置槽7210设于所述硫酸铁盐洗液配置槽7210与硫酸铁盐洗液储槽7230连通的管道上,所述第五控制泵7240设于所述硫酸铁盐洗液储槽7230与所述超声波清洗机连通的管道上;所述硫酸铁盐洗液配置组件720还包括硫酸储槽7250和第六控制泵7260,所述硫酸储槽7250分别与所述中转浆料槽410和所述硫酸铁盐洗液配置槽7210连通,所述第六控制泵7260设于所述硫酸储槽7250与所述中转浆料槽410及所述硫酸铁盐洗液配置槽7210连通的管道上。可以理解的是,硫酸铁盐洗液循环制备过程为:取液样测金属含量,若金属含量达到一定程度,则硫酸铁盐洗液经第三控制泵7120送至浸出除杂回收,同时硫酸铁盐洗液配置槽7210重新加水、控制第六控制泵7260打开并加入硫酸、硫酸铁配置硫酸铁盐洗液。若金属含量未达到一定程度则硫酸铁盐洗液经第三控制泵7120送至硫酸铁盐洗液配置槽7210,硫酸铁盐洗液配置槽7210中根据硫酸铁盐洗液配置要求加入适量硫酸和硫酸铁,配置好硫酸铁盐洗液后,控制第四控制泵7220打开输送至硫酸铁盐洗液储槽7230,再通过控制第五控制泵7240打开将硫酸铁盐洗液输送至超声波清洗机210。通过硫酸铁盐洗液循环制备,将超声盐洗的硫酸铁盐洗液进行回收再利用,从而减少物料的损耗,进而减少物料的使用成本。
进一步地,在其中一个实施例中,第六控制泵与超声波清洗机连通。由于超声盐洗过程中pH值是不断变化的,因此可以通过控制第六控制泵打开并使硫酸储槽输出硫酸以对超声波清洗机及时进行pH调节。
进一步地,沉铝机构还设有第一pH监测仪,第一pH监测仪设置在中转浆料槽上。由于混合浆料内还存在有游离的氢氧根离子和三价铁离子,而三价铁离子在酸性条件下不会与氢氧根离子生成氢氧化铁胶体,通过设置有第一pH监测仪能够实时监测中转浆料槽内的pH值,并通过控制第六控制泵打开对中转浆料槽输送硫酸以使中转浆料槽内的pH值始终保持酸性条件,从而有效地提高硫 酸铁盐洗液的回收率。
如图1所示,在其中一个实施例中,废旧锂电池正极片回收处理设备10还包括尾气净化机构800,所述尾气净化机构800包括顺序连通的旋风除尘器810、布袋除尘器820、喷淋塔830、引风机840及烟囱850,所述旋风除尘器810分别与所述破碎机120及第二振动筛140连通,所述喷淋塔830与所述超声波清洗机210连通。可以理解的是,破碎机120与第二振动筛140在工作时均会产生粉尘气流,通过旋风除尘器810将粉尘气流吸入进行一次除尘,再通过布袋除尘器820进行二次除尘,气流继续输送至喷淋塔830吸收,同时超声波清洁机产生的蒸汽也输送至喷淋塔830吸收,再通过引风机840引风至烟囱850进行尾气排放。
进一步地,超声波清洗机包括机体、超声波发生器及第一搅拌机,机体形成有容纳腔,超声波发生器设置在机体上,第一搅拌机固定在机体上,所述搅拌机的动力输出端穿设于机体,并设置在容纳腔内。通过设置超声波发生器能够使铝箔上正极材料粉的脱落,再通过搅拌机搅拌加速铝箔上正极材料粉的脱落。进一步地,超声波清洗机还设有扰流板、第一pH监测仪、氢气检测仪、第一液位监测仪及温度监测仪,扰流板设置容纳腔内,且设置在搅拌机的动力输出端的下方,第一pH监测仪、氢气监测仪、第一液位监测仪及温度监测仪均设置在机体上。扰流板能够降低搅拌时的涡流程度,从而加快铝箔上正极材料粉的脱落,第二pH监测仪能够实时监测盐洗过程中pH值变化,氢气监测仪能够实时监测氢气产生量,液位监测仪能够监测机体内的液位变化以便于控制进液量,温度监测仪则是实时监测机体内的温度变化,通过实时监测pH值、氢气产生量及温度变化,能够及时避免意外发生,进而有效地提升了废旧锂电池正极片回收处理设备的安全性能。
进一步地,沉铝机构还包括第二搅拌机和第三搅拌机,第二搅拌机设置在中转浆料槽上,且第二搅拌机的动力输出端设于中转浆料槽内,第三搅拌机设置在沉铝反应槽上,且第三搅拌机的动力输出端设于沉铝反应槽内。通过设置第二搅拌机和第三搅拌机,能够加快中转浆料槽内浆料混合和加快沉铝反应的 进行,以加快废旧锂电池正极片的回收处理效率。
进一步地,沉铝机构还设有第二pH监测仪、第三pH监测仪、第二液位监测仪及第三液位监测仪,第二pH监测仪和第二液位监测仪均设置在中转浆料槽上,第三pH监测仪和第三液位监测仪均设置在沉铝反应槽上。由于混合浆料内还存在有游离的氢氧根离子和三价铁离子,而三价铁离子在酸性条件下不会与氢氧根离子生成氢氧化铁胶体,通过设置第二pH监测仪和第二液位监测仪有能够实时监测中转浆料槽内的pH值和液位变化情况,并通过控制第六控制泵打开对中转浆料槽输送硫酸以使中转浆料槽内的pH值始终保持酸性条件,从而有效地提高硫酸铁盐洗液的回收率。同理的,通过设置第三pH监测仪和第三液位监测仪有能够实时监测沉铝反应槽内的pH值和液位变化情况,并根据液位情况控制第一控制泵及第二控制泵的打开或关闭。
进一步地,硫酸铁盐洗滤液储存组件还设有第四液位监测仪,第四液位监测仪设置在硫酸铁盐洗滤液储槽上。通过第四液位监测仪能够实时检测硫酸铁盐洗滤液储槽的液位变化情况,以便于控制硫酸铁盐洗滤液储槽进液量。
进一步地,硫酸铁盐洗液配置组件还设有第四搅拌机、第四pH监测仪及第五液位监测仪,第四搅拌机设置在硫酸铁盐洗液配置槽上,且第四搅拌机的动力输出端设于硫酸铁盐洗液配置槽内,第四pH监测仪和第五液位监测仪均设置在硫酸铁盐洗液配置槽上。通过设置有第四搅拌机,能够加快硫酸铁盐洗液的配置速度,再通过第四pH监测仪和第五液位监测仪实时监控硫酸铁盐洗液配置槽内的pH值和液位的变化,以便于控制进液量,同时还能控制第六控制泵打开对硫酸铁盐洗液配置槽输入硫酸以调节pH值。
进一步地,超声波发生器、第一搅拌机、第二搅拌机、第三搅拌机、第四搅拌机、第一控制泵、第二控制泵、第三控制泵、第四控制泵、第五控制泵、第六控制泵、第一pH监测仪、第二pH监测仪、第三pH监测仪、第四pH监测仪、氢气检测仪、第一液位监测仪、第二液位监测仪、第三液位监测仪、第四液位监测仪、第五液位监测仪及温度监测仪均与DCS监测操控系统电连接,使超声波发生器、第一搅拌机、第二搅拌机、第三搅拌机、第四搅拌机、第一控 制泵、第二控制泵、第三控制泵、第四控制泵、第五控制泵、第六控制泵、第一pH监测仪、第二pH监测仪、第三pH监测仪、第四pH监测仪、氢气检测仪、第一液位监测仪、第二液位监测仪、第三液位监测仪、第四液位监测仪、第五液位监测仪及温度监测仪均与DCS监测操控系统电信号连通。通过DCS监测操控系统即可实时监测pH值变化、氢气产生量、液位变化及温度变化,并控制盐洗过程的开始或关闭,以防止意外因素导致盐洗过程反应剧烈产氢升温造成爆炸或冒槽事故的情况发生,进而有效地提升了废旧锂电池正极片回收处理设备的安全性能。同理的,通过DCS监测操控系统控制沉铝反应,控制硫酸铁盐洗液循环制备及沉铝反应的开始或关闭,从而有效地提升了废旧锂电池正极片回收处理设备的操作便利性。
本申请还提一种废旧锂电池正极片回收处理方法,采用上述任一实施例所述的废旧锂电池正极片回收处理设备进行,包括以下步骤:将废旧锂电池正极片进行破碎操作,以得到破碎后的废旧锂电池正极片混合料;将所述破碎后的废旧锂电池混合料进行分离筛选操作,以得到待回收的废旧锂电池正极片混合料;对所述待回收的废旧锂电池正极片混合料进行超声波盐洗,并对盐洗后的所述待回收的废旧锂电池正极片混合料进行振荡分离,以得到待回收铝箔和硫酸铁盐洗液;对所述待回收铝箔进行离心操作,以得到离心液和待干燥铝箔;对所述待干燥铝箔进行干燥操作,以得到回收铝箔;将所述硫酸铁盐洗液和所述离心液输送至所述中转浆料槽内混合后得到混合浆料;对所述混合浆料进行沉铝反应,以得到铝化物沉淀。
上述的废旧锂电池正极片回收处理方法,通过对废旧锂电池正极片进行破碎和分离筛选操作得到待回收的废旧锂电池正极片混合料,再对待回收的废旧锂电池正极片混合料进行硫酸铁盐超声波清洗,其中由于金属活动性顺序表中铁是强于氢,硫酸铁盐洗液中的铁离子优先与待回收的废旧锂电池正极片混合料中部分的铝箔反应生成铝离子,并抑制氢离子与铝箔反应产生氢气。同时的,亚铁离子和正极材料粉中的镍钴锰酸锂发生氧化还原反应,使得氢离子被消耗以及亚铁离子被氧化成铁离子,从而使得铁离子在整个超声盐洗过程中达到动 态平衡,进而始终抑制氢离子与铝箔反应产生氢气。因此采用硫酸铁盐超声盐洗不仅能够减少氢气的产生量,而且也避免了使用有机溶剂和铝粉的产生,从而有效地提升废旧锂电池正极片回收处理的安全性。同时地,对待回收铝箔进行离心和干燥操作得到离心液和回收铝箔,以此达到铝金属的回收。进一步地,由于硫酸铁盐洗液及离心液均掺杂部分铝离子,因此在将硫酸铁盐洗液和离心液混合后进行沉铝反应得到铝化物沉淀,能够较大程度地回收了正极材料的有价金属。
为更好地理解本申请的废旧锂电池正极片回收处理方法,以下对本申请的废旧锂电池正极片回收处理方法做进一步地解释说明,如图7所示,一实施方式的废旧锂电池正极片回收处理方法,包括以下步骤的部分或全部:
S102,将废旧锂电池正极片进行破碎操作,以得到破碎后的废旧锂电池正极片混合料。
在本实施例中,大量废旧锂电池正极片汇总到行吊机,并输送至破碎机进行破碎操作,以得到破碎后的废旧锂电池正极片混合料。
S104,将所述破碎后的废旧锂电池混合料进行分离筛选操作,以得到待回收的废旧锂电池正极片混合料。
在本实施例中,通过分离筛选得到待回收的废旧锂电池正极片混合料,而待回收的废旧锂电池正极片混合料指的是铝箔及铝箔表面的正极材料。
S106,对所述待回收的废旧锂电池正极片混合料进行超声波盐洗,并对盐洗后的所述待回收的废旧锂电池正极片混合料进行振荡分离,以得到待回收铝箔和硫酸铁盐洗液。
在本实施例中,待回收的废旧锂电池正极片混合料进行硫酸铁盐超声波清洗,并对盐洗后的待回收的废旧锂电池正极片混合料进行振荡分离以得到待回收铝箔和硫酸铁盐洗液。其中硫酸铁盐洗液中的铁离子优先与待回收的废旧锂电池正极片混合料中部分的铝箔反应生成铝离子,并抑制氢离子与铝箔反应产生氢气。同时的,产生的亚铁离子和正极材料粉中的镍钴锰酸锂发生氧化还原反应,使得氢离子被消耗,亚铁离子被氧化成铁离子,铁离子在整个超声盐洗 过程中达到动态平衡。即通过铁离子来抑制铝箔与氢离子反应,从而有效地减少氢气的产生量。
S108,对所述待回收铝箔进行离心操作,以得到离心液和待干燥铝箔。
在本实施例中,待回收铝箔上的液体掺杂有部分铝离子,通过离心机对待回收铝箔进行离心操作,以得到待干燥铝箔。
S112,对所述待干燥铝箔进行干燥操作,以得到回收铝箔。
在本实施例中,通过振荡流化床对待干燥铝箔进行干燥处理,从而完成对废旧锂电池正极片中铝箔的回收。
S114,将所述硫酸铁盐洗液和所述离心液输送至所述中转浆料槽内混合后得到混合浆料。
在本实施例中,由于超声盐洗后的硫酸铁盐洗液和离心液内均掺杂有铝离子,因此将硫酸铁盐洗液和离心液输送至中转浆料槽内混合得到混合浆料,以便后续工序的进行。
S116,对所述混合浆料进行沉铝反应,以得到铝化物沉淀。
在本实施例中,通过将混合浆料进行沉铝反应得到铝化物沉淀,以对废旧锂电池正极材料的有价金属的回收。
沉铝反应的具体步骤为:首先控制第一控制泵打开,将混合浆料输送至第一压滤机进行压滤,其中第一滤液输送至沉铝反应槽,第一铝渣回收。其次在沉铝反应槽取液样检测三价铁含量,加适量铁粉或亚硫酸钠作还原剂使三价铁离子还原成二价铁离子,再加适量碳酸钠调节pH沉淀铝离子以得到氢氧化铝,待沉淀完全后物料经第二控制泵送至第二压滤机压滤,第二滤渣打包收集做氢氧化铝产品,第二滤液进入硫酸铁盐洗滤液储槽内进行硫酸铁盐洗液循环制备。需要说明的是,混合浆料经过第一压滤机压滤将混合浆料内的氢氧化铁胶体过滤出来,避免影响后面氢氧化铝回收纯度。再通过检测三价铁含量以加入铁粉或亚硫酸钠使三价铁离子还原成二价铁离子,进而有效地提升了氢氧化铝的回收纯度。进一步地,经过第二压滤机压滤回收第二滤渣并打包做成氢氧化铝产品,从而有效地回收废旧锂电池正极片内的有价金属。而第二滤液输送至硫酸 铁盐洗滤液槽内进行回收再利用,从而有效地节省物料的使用成本。
在其中一个实施例中,在所述将所述硫酸铁盐洗液和所述离心液输送至所述中转浆料槽内混合后得到混合浆料之后,以及在对所述混合浆料进行沉铝反应,以得到铝化物沉淀之前,所述废旧锂电池正极片回收处理方法还包括以下步骤:对所述混合浆料进行调pH操作。
在本实施例中,由于混合浆料内还存在有游离的氢氧根离子和三价铁离子,而三价铁离子在酸性条件下不会与氢氧根离子生成氢氧化铁胶体,因此需要对混合浆料进行调pH操作,能够减少三价铁离子的流失,进而提高硫酸铁盐洗液的回收率。
在其中一个实施例中,所述混合浆料的pH值小于2。可以理解的是,在pH值小于2的酸性条件下,能够有效地防止三价铁离子与氢氧根离子的结合,从而减少氢氧化铁胶体的生成,进而有效地提升了硫酸铁盐洗液的回收率。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种废旧锂电池正极片回收处理设备,其包括:
    破碎机构,所述破碎机构用于破碎废旧锂电池的正极片;
    超声波清洗机构,所述超声波清洗机构包括超声波清洗机和第一振动筛,所述超声波清洗机的入料端与所述破碎机构的出料端连通,所述第一振动筛的入料端与所述超声波清洗机的下料端连通;
    脱水干燥机构,所述脱水干燥机构包括脱水组件及干燥组件,所述脱水组件分别与所述干燥组件及所述第一振动筛的出料端连通;
    沉铝机构,所述沉铝机构包括顺序连通的中转浆料槽、第一压滤机、沉铝反应槽及第二压滤机,所述中转浆料槽分别与所述第一振动筛的出液端和所述脱水组件的出液端连通;
    第一控制泵,所述第一控制泵设于所述中转浆料槽与所述第一压滤机连通的管道上;
    第二控制泵,所述第二控制泵设于所述沉铝反应槽与所述第二压滤机连通的管道上;
    硫酸铁盐洗液循环机构,所述硫酸铁盐洗液循环机构包括硫酸铁盐洗滤液储存组件和硫酸铁盐洗液配置组件,所述硫酸铁盐洗滤液储存组件分别与所述硫酸铁盐洗液配置组件及所述第二压滤机连通,所述硫酸铁盐洗液配置组件与所述超声波清洗机连通。
  2. 根据权利要求1所述的废旧锂电池正极片回收处理设备,其中,所述破碎机构包括行吊机、破碎机、第一挡板输送机、第二振动筛、第二挡板输送机、粉料仓及螺旋输送机,所述行吊机用于将废旧锂电池正极片输送至所述破碎机,所述第一挡板输送机与所述破碎机连通,所述第二振动筛分别与所述第一挡板输送机和所述第二挡板输送机连通,所述第二挡板输送机与所述超声波清洗机连通,所述粉料仓分别与所述第二振动筛和所述螺旋输送机连通。
  3. 根据权利要求1所述的废旧锂电池正极片回收处理设备,其中,所述脱水组件设有离心机,所述离心机与所述中转浆料槽连通。
  4. 根据权利要求3所述的废旧锂电池正极片回收处理设备,其中,所述干燥组件包括上料机、振动流化床、换热器、鼓风机及第三挡板输送机,所述上料机分别与所述离心机及所述振动流化床连通,所述换热器的出风口与所述振动流化床的进风口连通,所述换热器的热源接口用于输送高温蒸汽,所述换热器的冷源接口与所述鼓风机的出风口连通,所述鼓风机的进风口用于收集空气,所述第三挡板输送机与所述振动流化床连通。
  5. 根据权利要求1所述的废旧锂电池正极片回收处理设备,其中,所述硫酸铁盐洗滤液储存组件包括硫酸铁盐洗滤液储槽及第三控制泵,所述硫酸铁盐洗滤液储槽与所述第二压滤机连通,所述第三控制泵设于所述硫酸铁盐洗滤液储槽与所述硫酸铁盐洗液配置组件连通的管道上。
  6. 根据权利要求5所述的废旧锂电池正极片回收处理设备,其中,所述硫酸铁盐洗液配置组件包括硫酸铁盐洗液配置槽、第四控制泵、硫酸铁盐洗液储槽及第五控制泵,所述硫酸铁盐洗液配置槽分别与所述硫酸铁盐洗液储槽连通,所述第三控制泵设于所述硫酸铁盐洗滤液储槽与所述硫酸铁盐洗液配置槽连通的管道上,所述第四控制泵设于所述硫酸铁盐洗液配置槽与硫酸铁盐洗液储槽连通的管道上,所述第五控制泵设于所述硫酸铁盐洗液储槽与所述超声波清洗机连通的管道上;
    所述硫酸铁盐洗液配置组件还包括硫酸储槽和第六控制泵,所述硫酸储槽分别与所述中转浆料槽和所述硫酸铁盐洗液配置槽连通,所述第六控制泵设于所述硫酸储槽与所述中转浆料槽及所述硫酸铁盐洗液配置槽连通的管道上。
  7. 根据权利要求2所述的废旧锂电池正极片回收处理设备,其中,还包括尾气净化机构,所述尾气净化机构包括顺序连通的旋风除尘器、布袋除尘器、喷淋塔、引风机及烟囱,所述旋风除尘器分别与所述破碎机及第二振动筛连通,所述喷淋塔与所述超声波清洗机连通。
  8. 一种废旧锂电池正极片回收处理方法,其中,采用权利要求1-7任一项所述的废旧锂电池正极片回收处理设备进行,所述废旧锂电池正极片回收处理方法包括以下部分或全部步骤:
    将废旧锂电池正极片进行破碎操作,以得到破碎后的废旧锂电池正极片混合料;
    将所述破碎后的废旧锂电池混合料进行分离筛选操作,以得到待回收的废旧锂电池正极片混合料;
    对所述待回收的废旧锂电池正极片混合料进行超声波盐洗,并对盐洗后的所述待回收的废旧锂电池正极片混合料进行振荡分离,以得到待回收铝箔和硫酸铁盐洗液;
    对所述待回收铝箔进行离心操作,以得到离心液和待干燥铝箔;
    对所述待干燥铝箔进行干燥操作,以得到回收铝箔;
    将所述硫酸铁盐洗液和所述离心液输送至所述中转浆料槽内混合后得到混合浆料;
    对所述混合浆料进行沉铝反应,以得到铝化物沉淀。
  9. 根据权利要求8所述的废旧锂电池正极片回收处理方法,其中,在所述将所述硫酸铁盐洗液和所述离心液输送至所述中转浆料槽内混合后得到混合浆料之后,以及在对所述混合浆料进行沉铝反应,以得到铝化物沉淀之前,所述废旧锂电池正极片回收处理方法还包括以下步骤:
    对所述混合浆料进行调pH操作。
  10. 根据权利要求9所述的废旧锂电池正极片回收处理方法,其中,所述混合浆料的pH值小于2。
PCT/CN2023/079177 2022-10-28 2023-03-02 废旧锂电池正极片回收处理设备及其方法 WO2024087437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211335610.8 2022-10-28
CN202211335610.8A CN115896455B (zh) 2022-10-28 2022-10-28 废旧锂电池正极片回收处理设备及其方法

Publications (1)

Publication Number Publication Date
WO2024087437A1 true WO2024087437A1 (zh) 2024-05-02

Family

ID=86490252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079177 WO2024087437A1 (zh) 2022-10-28 2023-03-02 废旧锂电池正极片回收处理设备及其方法

Country Status (3)

Country Link
CN (1) CN115896455B (zh)
FR (1) FR3141472A1 (zh)
WO (1) WO2024087437A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558739A (zh) * 2016-11-28 2017-04-05 安徽得盈再生资源回收有限公司 基于废旧手机中锂离子电池环保高效回收分离工艺
CN113131030A (zh) * 2021-03-19 2021-07-16 广东邦普循环科技有限公司 一种锂离子电池废极片安全回收的方法及其应用
US20220017989A1 (en) * 2018-12-21 2022-01-20 A.C.N. 630 589 0507 Pty Ltd Battery recycling process
CN114833167A (zh) * 2022-03-22 2022-08-02 池州西恩新材料科技有限公司 一种三元锂电池干湿混合式回收中的清洗方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275849B1 (ko) * 2011-05-13 2013-06-17 엘에스니꼬동제련 주식회사 리튬이온전지의 재생공정을 위한 전처리방법
CN102412430B (zh) * 2011-11-14 2014-02-26 佛山市邦普循环科技有限公司 一种废旧锂离子电池正极片中铝箔的化学分离方法
CN105789726A (zh) * 2016-04-21 2016-07-20 苏州聚智同创环保科技有限公司 一种以废旧锂离子电池为原料制备镍钴锰三元材料前驱体的方法
CN107317064A (zh) * 2017-06-22 2017-11-03 中南大学 一种废旧锂电池的回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558739A (zh) * 2016-11-28 2017-04-05 安徽得盈再生资源回收有限公司 基于废旧手机中锂离子电池环保高效回收分离工艺
US20220017989A1 (en) * 2018-12-21 2022-01-20 A.C.N. 630 589 0507 Pty Ltd Battery recycling process
CN113131030A (zh) * 2021-03-19 2021-07-16 广东邦普循环科技有限公司 一种锂离子电池废极片安全回收的方法及其应用
CN114833167A (zh) * 2022-03-22 2022-08-02 池州西恩新材料科技有限公司 一种三元锂电池干湿混合式回收中的清洗方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈国光编著 (CHEN, GUOGUANG): "电解电容器 (Non-official translation: Electrolytic Capacitor)", 西安: 西安交通大学出版社 (XI'AN JIAOTONG UNIVERSITY PRESS), 31 October 1986 (1986-10-31), pages 86 - 87 *

Also Published As

Publication number Publication date
CN115896455A (zh) 2023-04-04
CN115896455B (zh) 2024-03-08
FR3141472A1 (fr) 2024-05-03

Similar Documents

Publication Publication Date Title
CA3043947A1 (en) A process, apparatus, and system for recovering materials from batteries
CN105826629A (zh) 一种废旧锂电池全组分物料分离收集装置及方法
CN205609702U (zh) 一种废旧锂电池全组分物料分离收集装置
CN111530884B (zh) 一种动力锂电池单体回收方法
CN106410313A (zh) 废旧电池中镍钴锰三元正极材料修复再生的方法
CN111135939A (zh) 一种废旧磷酸铁锂电池的回收工艺
WO2022052497A1 (zh) 一种处理废旧锂电池隔膜纸的方法
CN110092398A (zh) 一种废旧锂离子电池焙烧尾气资源化利用的方法
CN108134153A (zh) 一种废旧锂离子电池的处理方法
CN109244588A (zh) 一种废三元锂电池生产三元前驱体和高纯碳酸锂的方法
CN105950871A (zh) 一种废铅膏水热还原转化及低温还原熔炼的方法
WO2024087437A1 (zh) 废旧锂电池正极片回收处理设备及其方法
CN112322899B (zh) 一种浸出处理废锂离子电池正极的方法及装置
CN212551007U (zh) 废旧动力电池单体全组分回收系统
CN105742747B (zh) 利用废钴酸锂净化制酸尾气并回收钴锂的方法
CN116759686A (zh) 一种磷酸铁锂电池正极材料回收有价金属的方法
CN219180593U (zh) 废旧铝壳锂离子电池的精细化分离回收系统
CN114420921B (zh) 一种微波再生锂离子电池正极材料的方法
CN103789533B (zh) 一种利用干法回转窑余热处理铁矾渣的工艺
EP4119245A1 (en) Method for recovering lithium and method for processing lithium ion secondary battery
RU2676806C1 (ru) Способ утилизации отработанных литиевых источников тока
CN112820970A (zh) 一种废锂电池电解液无害化的处理方法
KR102540803B1 (ko) 리튬이온 배터리 양극물질 회수 시스템 및 이를 이용한 리튬이온 배터리 양극물질 회수 방법
CN220934183U (zh) 一种回收废旧锂电池中碳酸锂的系统
CN113430389B (zh) 一种提升铅渣中铅收率的方法