RU2676806C1 - Способ утилизации отработанных литиевых источников тока - Google Patents
Способ утилизации отработанных литиевых источников тока Download PDFInfo
- Publication number
- RU2676806C1 RU2676806C1 RU2017139099A RU2017139099A RU2676806C1 RU 2676806 C1 RU2676806 C1 RU 2676806C1 RU 2017139099 A RU2017139099 A RU 2017139099A RU 2017139099 A RU2017139099 A RU 2017139099A RU 2676806 C1 RU2676806 C1 RU 2676806C1
- Authority
- RU
- Russia
- Prior art keywords
- fraction
- batteries
- lithium
- solid
- liquid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 42
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 239000002699 waste material Substances 0.000 title abstract description 16
- 238000004064 recycling Methods 0.000 title abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 239000007787 solid Substances 0.000 claims abstract description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910021513 gallium hydroxide Inorganic materials 0.000 claims abstract description 13
- DNUARHPNFXVKEI-UHFFFAOYSA-K gallium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ga+3] DNUARHPNFXVKEI-UHFFFAOYSA-K 0.000 claims abstract description 13
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 238000000926 separation method Methods 0.000 claims abstract description 12
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 11
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 11
- 239000011651 chromium Substances 0.000 claims abstract description 9
- 239000002131 composite material Substances 0.000 claims abstract description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 6
- 239000000945 filler Substances 0.000 claims abstract description 5
- 238000007885 magnetic separation Methods 0.000 claims abstract description 5
- 238000000227 grinding Methods 0.000 claims description 13
- 239000002244 precipitate Substances 0.000 claims description 13
- 239000000047 product Substances 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 238000005903 acid hydrolysis reaction Methods 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical class [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 4
- 239000004035 construction material Substances 0.000 claims description 2
- 239000003923 scrap metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 19
- 239000002184 metal Substances 0.000 abstract description 19
- 239000000126 substance Substances 0.000 abstract description 14
- 238000004880 explosion Methods 0.000 abstract description 8
- 150000004679 hydroxides Chemical class 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 6
- 238000007599 discharging Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 2
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 abstract 1
- 239000004566 building material Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 239000000243 solution Substances 0.000 description 21
- 239000000706 filtrate Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 15
- 230000003472 neutralizing effect Effects 0.000 description 12
- -1 aliphatic alcohols Chemical class 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 239000002253 acid Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000003245 coal Substances 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000011152 fibreglass Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910000000 metal hydroxide Inorganic materials 0.000 description 6
- 150000004692 metal hydroxides Chemical class 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 239000013065 commercial product Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- SOZVEOGRIFZGRO-UHFFFAOYSA-N [Li].ClS(Cl)=O Chemical compound [Li].ClS(Cl)=O SOZVEOGRIFZGRO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003913 materials processing Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000002594 sorbent Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- QYFOCTRMZCNMMD-UHFFFAOYSA-N [Li].ClS(Cl)(=O)=O Chemical compound [Li].ClS(Cl)(=O)=O QYFOCTRMZCNMMD-UHFFFAOYSA-N 0.000 description 1
- GJCNZQUZWSHFHP-UHFFFAOYSA-N [Li].O=S=O Chemical compound [Li].O=S=O GJCNZQUZWSHFHP-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000006136 alcoholysis reaction Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical class [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
- Secondary Cells (AREA)
Abstract
Изобретение относится к способу утилизации литийсодержащих отходов в виде батарей. Способ включает разрядку отработанных литиевых батарей с использованием разрядной установки. Далее их измельчают и нейтрализуют при рН ̴ 10-11. Продукты нейтрализации выгружают и очищают жидкую фракцию, из которой получают карбонат лития. Твердую фракцию сушат и подвергают магнитной сепарации с отделением металлического лома. Твердую неметаллическую фракцию гидролизуют до рН ̴ 4-5. Отделяют жидкую фракцию от твердой, последнюю промывают, жидкую фракцию подвергают обработке аммиаком до рН ̴ 12 и осаждают из раствора гидроксиды железа и хрома. Очищенный от железа и хрома аммиачный раствор нагревают до осаждения гидроксида галлия, последний промывают, фильтруют и сушат. Неметаллическую фракцию используют как наполнитель в композитных или строительных материалах. Техническим результатом является создание более совершенного и безопасного относительно пожаро-взрывоопасности способа утилизации литийсодержащих батарей. 2 з.п. ф-лы, 1 ил.
Description
Изобретение относится к электрохимии, а именно к утилизации литийсодержащих отходов, в частности отработанных литиевых химических источников тока в виде батарей, а именно к уничтожению твердых отходов или переработке их в нечто полезное или безвредное.
Известен способ утилизации литийсодержащих отходов, в котором отходы обрабатывают жидкими, не смешивающимися с водой высшими алифатическими спиртами, например, н-бутиловым, втор-бутиловым или амиловым спиртами. Затем литий экстрагируют водой и выделяют его из водной фазы (Пат. № 2108644 RU. Опубл. 10.04.1998).
Однако в известном изобретении не решен вопрос с пожаро- и взрывоопасностью процессов вскрытия элементов питания, в которых пожарная опасность повышается из-за использования горючих спиртов. Не решен вопрос нейтрализации отходящих кислых газов, так как отсутствует предварительная разрядка для нейтрализации кислых газообразной и жидкой фракций, требуется значительно большее количество реагентов, воды, электричества и др. ресурсов.
Известен способ утилизации литиевых источников тока с истекшими сроками эксплуатации, включающий применение фракции C4-C6 жирных спиртов, не смешивающихся с водой в качестве рабочей среды для химически активного лития и литийсодержащих соединений на стадиях вскрытия, разгерметизации, измельчения и использования их в качестве исходного материала для получения алкоголятов лития. Сонолитическое воздействие на реакционную массу и поддержание температурного режима (до 80°C) обеспечивается использованием ультразвуковой ванны типа УЗВ-3/100-ТН. Введение в реакционную смесь катализатора межфазного переноса (тетрабутиламмония хлорида) способствует интенсификации процесса алкоголиза литийсодержащих отходов в условиях гетерофазной системы. Сочетание применения сонолиза и катализатора межфазного переноса позволяет проводить утилизацию литийсодержащих отходов со степенью измельчения литийсодержащих отходов до 20 мм. Практическое применение данного способа позволит повысить эффективность мероприятий по утилизации ЛИТ и обеспечить безопасность проведения работ (Патент № 2531911RU. Опубл. 27.10.2014).
Однако в известном решении не решен вопрос с пожаро и взрывоопасностью процессов вскрытия элементов питания, нейтрализации отходящих кислых газов, так как отсутствует предварительная разрядка для нейтрализации кислой газообразной и жидкой фракций. Кроме того требуется значительно большее количество реагентов, воды, электричества и др. ресурсов.
Известен способ утилизации литиевых батарей, который включает в себя этапы разрядки батарей, понижения температуры компонентов батареи до -180°, рассечение батареи на куски в холодном состоянии перед дальнейшей обработкой Способ может также включать дополнительные стадии сжигания, сбора твердых, жидких и газообразных выделений из мусоросжигательной установки, промывку твердых, жидких выделений водой и газообразных выделений щелочным раствором, смешивание полученных промывочных потоков, выделение осадков, образующихся из смешанного потока, и нейтрализация оставшегося раствора (Патент № US5523516.Опубл. 04.06.1996).
Однако в известном способе осуществляют разрядку высокими нагрузками с одновременным охлаждением до -20° для ускорения процесса разрядки. Для снижения взрывоопасности используется дополнительное охлаждение до -180°С. Измельченные части батарей сжигаются в печи при 650°С, с предварительным обжигом в присутствии воздуха с температурой 300°С, эти этапы работы требует значительного потребления природных, энергетических и иных ресурсов. Процесс нейтрализации кислых газов более трудоемок, так как они имеют высокую температуру.
Известен способ выделения литиевых элементов, включающий в себя этапы, на которых вырезают или растачивают литиевый элемент, состоящий, по меньшей мере, из активного материала отрицательного электрода, сепаратор, активный материал положительного электрода, раствор электролита (электролитический раствор), коллектор и кожух ячейки. Кроме того, промывают литиевый элемент органическим растворителем для извлечения электролитического раствора; осуществляют взаимодействие лития с реагирующим агентом для извлечения лития в форме гидроксида лития или соли лития; используют материал положительного электрода, содержащий активный материал положительного электрода; проводят дистилляцию для выделения органического растворителя (Патент № US5882811. Опубл. 16.03.1999).
Однако в известном способе осуществляют вскрытие элементов питания с помощью струи воды под большим давлением в среде инертного газа, что не позволяет нейтрализовать в процессе измельчения и гидролиза кислые газы. Кроме того, известный способ вскрытия элементов питания является пожаро- и взрывоопасным. Не решена проблема нейтрализации отходящих кислых газов и образующегося водорода, из-за отсутствия разрядки батарей, следовательно, для нейтрализации кислых газообразной и жидкой фракции потребуется значительно большее количество реагентов, воды, электричества и др. ресурсов. При этом известное решение не позволяет извлекать полезные вещества из материалов переработки батарей, а именно гидроксид галлия.
Известен способ демонтажа батареи или ячейки, содержащей щелочные металлы, включающий воздействие на всю батарею или ячейку механической деформации в присутствии защитной атмосферы, содержащей диоксид углерода, способный реагировать с указанными щелочными металлсодержащими веществами, при этом процесс механической деформации дает непредсказуемую смесь веществ, и в котором поверхности указанных соединений, содержащих щелочные металлы, и катодного материала, присутствующего в указанной батарее или ячейке, контактируют друг с другом во время указанного процесса механической деформации (Патент № US7833646. Опубл. № US20030180604, 25.09.2003).
Известен способ утилизации отработанных или частично использованных, сухих, обсаженных металлом батарей, особенно тех, которые содержат литий, в котором предусмотрено разделение и извлечение материалов, которые могут быть возвращены в цикл. Батареи охлаждаются прямым контактом с жидким азотом при температуре -196° с. Газифицированный азот используют в камере предварительного охлаждения для создания инертной атмосферы в секции дезинтеграции, включающей камеры разделения материалов. Грубую сепарацию осуществляют во флотационном процессе с последующим разделением отдельных материалов, некоторые из которых будут использоваться для рециркуляции (Опубл. № DE000004424825, дата публикации: 18.01.1996).
Однако в известном способе заморозка батарей криогенной жидкостью только подавляет реакции, которые могут привести к взрыву батарей, но она не заменяет разрядку батарей, так как количество исходных веществ, представляющих опасность (металлический литий и тионилхлорид (окислитель)) остается на прежнем высоком уровне.
Известен способ утилизации отработанных химических источников тока, включающий измельчение ХИТ, выщелачивание, магнитную сепарацию и электролиз. Измельчение ХИТ и выщелачивание водой проводят в атмосфере углекислого газа без доступа кислорода. После этого флотацией удаляют из скрапа легкие фракции. Затем проводят фильтрацию. Фильтрат обрабатывают сорбентами. После фильтрации скрап промывают водой, сушат и удаляют из него электромагнитной сепарацией фрагменты черных и цветных металлов, а затем выщелачивают раствором серной кислоты. Сернокислотную пульпу фильтруют через фильтр с инертным материалом, фильтр с угольной загрузкой и фильтр с катионообменной загрузкой. Сорбированные катионообменной смолой ионы ряда d- и р-металлов селективно десорбируют растворами серной кислоты. Растворы, содержащие ионы ряда d-металлов, подвергают электролизу, а растворы, содержащие ионы ряда р-металлов, нейтрализуют до рН 3-4 и обрабатывают глинистыми минеральными сорбентами. Осадок после сернокислотного выщелачивания выщелачивают раствором азотной кислоты, удаляют нерастворимый осадок двуокиси марганца, а фильтрат нейтрализуют и подкисляют до рН 3. Выпавший осадок отфильтровывают. Фильтрат, содержащий ионы ртути, подвергают катодному восстановлению, а осадок, содержащий хлориды свинца и серебра, растворяют в азотной кислоте и подвергают катодному восстановлению в электролизере с раздельным осаждением металлов на электродах (Патент № 2486262RU. Опубл. 27.06.2013).
Однако в известном способе вскрытие элементов питания производят в среде углекислого газа, что создает опасность при измельчении отработанных элементов питания. Использование углекислого газа при разгерметизации литиевых батарей не предохраняет элемент питания от взрыва, создает дополнительную нагрузку на газоочистную систему. Отсутствие предварительной разрядки приводит к тому, что для нейтрализации кислых газообразной и жидкой фракции необходимо значительно большее количество реагентов, воды, электричества и др. ресурсов. Кроме того, в технологии имеются лишние этапы переработки, в которых нет необходимость при утилизации литий-тионилхлоридных, сульфурилхлоридных и диоксидсерных батарей.
Известен способ извлечения лития из отходов, содержащих Li, включающий следующие стадии: охлаждение содержащих Li отходов до, по существу, криогенных температур; измельчение охлажденных Li-содержащих отходов; взаимодействие охлажденных и измельченных Li-содержащих отходов с водой с образованием солей Li в воде; поддержание рН указанной воды достаточно высокое для предотвращения образования H2S с добавлением LiOH; и отделение солей Li, образующихся при взаимодействии Li-содержащих отходов с водой (Патент № US5888463.Опубл. 30.03.1999).
Однако в известном способе заморозка батарей криогенной жидкостью только подавляет реакции, разрядка же батарей не является обязательной процедурой, в связи с тем, что количество исходных веществ, представляющих опасность (металлический литий и тионилхлорид (окислитель)) остается на прежнем высоком уровне. Кроме того известный способ требует значительного потребления ресурсов, а именно: осуществление газоочистки мокрым способом, и, как следствие, высокое количество сточных вод. При этом известное решение не позволяет извлекать полезные вещества из материалов переработки батарей, а именно гидроксид галлия.
Известен способ обработки литиевых батарей с высокой плотностью энергии каждая из которых содержит корпус с реактивным материалом, заключающийся в введении указанных батареек в бильную мельницу для открывания корпусов батарей и обеспечения доступа к ее внутренним сторонам; одновременного разведения указанной бильной мельницы щелочной нейтрализующей жидкостью для введения указанной жидкости во внутренние части указанных открытых оболочек для нейтрализации реакционноспособного материала в указанных оболочках, в которой лезвия бильной мельницы увеличивают скорость протекающей через него жидкости; сбор указанных жидких и открытых оболочек, выходящих из указанной бильной мельницы, в контейнере, удерживающем статическое количество указанной жидкости; удаление газа, выделяющегося при открывании указанных оболочек, и нейтрализации упомянутого реакционноспособного материала и очистки газа путем очистки для удаления любых загрязняющих частиц в виде частиц; охлаждение жидкости в контейнере; и фильтрование жидкости в контейнере для удаления частиц, больших, чем заданный размер (патент № US4637928. Опубл. 20.01.1987).
Однако известный способ обладает повышенной пожаро-взрывоопасностью процесса разгерметизации корпуса элементов питания. Для ее снижения не используется разрядка или криогенное охлаждение батарей. Кроме того, известный способ требует большое количество реагентов, воды электричества и других ресурсов для его осуществления на всех стадиях. Не позволяет выделить из образовавшегося скрапа (жидкая и твердая фракции) продукты и полупродукты товарного качества, значительно снизить потребление природных, энергетических и иных ресурсов (чистая вода, воздух, электроэнергия, химреагенты), максимально снизить количество сточных вод.
Задачей настоящего изобретения является создание более совершенного и безопасного относительно пожаро-взрывоопасности способа утилизации литий содержащих батарей, который позволит безопасно измельчить элементы питания, нейтрализовать имеющиеся в элементе питания и образующиеся в процессе измельчения и гидролиза кислые газы, выделить из образовавшегося скрапа (жидкая и твердая фракции) продукты и полупродукты товарного качества, значительно снизить потребление природных, энергетических и иных ресурсов (чистая вода, воздух, электроэнергия, химреагенты), максимально снизить количество сточных вод и выбросов в атмосферу.
Поставленная задача решается тем, что в способе утилизации отработанных литиевых источников тока, включающем измельчение, нейтрализацию, выделение твердых жидких и газообразных фракций, осуществляют предварительную разрядку отработанных литиевых батарей дифференцированным методом с использованием разрядной установки, далее измельчают и нейтрализуют при рН ̴ 10-11 литиевые батареи, продукты нейтрализации выгружают и очищают жидкую фракцию, из которой получают карбонат лития, кроме того твердую фракцию сушат и подвергают магнитной сепарации с отделением металлического лома, твердую неметаллическую фракцию подвергают процессу кислотного гидролиза до рН ̴ 4-5, затем отделяют жидкую фракцию от твердой, последнюю промывают, жидкую фракцию подвергают обработке аммиаком до рН ̴ 12 и осаждают из раствора гидроксиды железа и хрома, после чего очищенный от железа и хрома аммиачный раствор нагревают до количественного выпадения в осадок гидроксида галлия, последний промывают, фильтруют и сушат, неметаллическую фракцию используют как наполнитель в композитных, или строительных, или иных материалах.
Целесообразно, для удаления взвешенных микрочастиц, очистить жидкую фракцию посредством фильтрации на тканевых микропористых фильтрах под низким давлением.
В варианте выполнения изобретения, целесообразно для качественного отделения металлической составляющей, твердую фракцию просушить в аппарате термической дегидратации.
Настоящее изобретение поясняют подробным описанием и схемой, на которой показаны этапы утилизации отработанных литиевых источников тока и выход товарного (готового) продукта, получаемый в конце каждого этапа.
При описании лучшего варианта осуществления изобретения используется следующая терминология:
Элемент питания – литиевая батарея;
ПДК - предельно допустимая концентрация
Для утилизации используют литиевые батареи систем Li/SOCl2 (литий-тионилхлорид), Li/SO2Cl2 (литий-сульфурилхлорид), Li/SO2 (литий-диоксид серы), этапы упомянутой утилизации представлены на технологической схеме и включают в себя следующее.
На первом этапе осуществляют разрядку отработанных элементов питания. Для этого используют разрядную установку 1, позволяющую осуществить дифференцированный метод. Дифференцированный метод разряда элементов питания максимально снимает емкость по току с батареи, при этом в элементе питания остается минимальное количество химически агрессивных веществ и минимально необходимое количество заряда, обеспечивающее безопасность дальнейших действий с элементом питания. Разрядная установка включает в себя разъемные механизмы для подключения батарей, блок управления и программное обеспечение, осуществляющие:
- автоматический подбор оптимальной нагрузки и конечного напряжения в зависимости от количества одновременно разряжаемых элементов питания;
- автоматическую смену нагрузки в зависимости от изначальной степени разреженности батареи;
- автоматическую смену нагрузки в процессе разрядки батареи;
- дистанционный контроль и управление за процессом разрядки.
На втором этапе, после разрядки, осуществляют измельчение элементов питания используя измельчитель 2. Для этого применяют одну из известных конструкций шредера 2. Конструкцию шредера 2 оборудуют входным шлюзовым отверстием, через которое подают разряженные элементы питания, и выходным шлюзовым отверстием для сброса измельченных элементов питания в реактор-приемник 3. Шредер 2 также оснащают системой реверса (обратного хода режущих ножей).
На третьем этапе осуществляют нейтрализацию измельченных батарей. Для этого измельченные элементы питания подают через герметичный шлюз в реактор-приемник 3, где происходит жидкофазная нейтрализация химически агрессивных веществ, содержащихся в элементе питания.
Реактор-приемник 3 оборудуют системой перемешивания, системой контроля рН, отверстием под подключаемый скруббер 4 и отверстием для подачи в реактор-приемник 3 нейтрализующего раствора. Кроме того, реактор–приемник 3 оборудуют герметично закрываемым отверстием, которое используют для последующей выгрузки нейтрализованного скрапа.
Скруббер 4 представляет собой стандартное газоочистное оборудование, состоящее из нескольких колонн со стационарными и подвижными насадками, в которых происходит процесс хемосорбции.
Газообразный водород, образующийся в процессе реакции остатков металлического лития с нейтрализующим раствором, продувают воздухом в необходимых и достаточных количествах до снижения концентрации водорода в газовоздушной смеси меньше нижнего предела воспламенения водорода, а именно 4%. Продувку воздуха осуществляют за счет работы вентилятора, который прогоняет воздух, забираемый из входного шлюзового отверстия в шредере 2, через реактор-приемник 3, тем самым снижая концентрацию образующегося водорода ниже 4%.
В результате жидкофазной обработки содержимого элементов питания образуется смесь кислых газов (хлороводород и диоксид серы). Смесь кислых газов отсасывают через шлюзовое отверстие в скруббер 4, где происходит ее нейтрализация до значений ПДК.
Нейтрализующий раствор, имеющий рН~10-11 подают в реактор-приемник 3 через специальное отверстие, по мере заполнения реактора-приемника 3 измельченными частями элементов питания.
На четвертом этапе осуществляют выгрузку продукта нейтрализации.
По окончании реакции в реакторе-приемнике 3, полученный скрап выгружают через предусмотренное для этого отверстие в систему ступенчатых решеток для грубой очистки. Затем в полимерный нутч-фильтр 5, в котором происходит отделение жидкой части скрапа от твердой, с последующей промывкой твердой фракции водой.
На пятом этапе выполняют очистку жидкой фракции.
Жидкую фракцию очищают от присутствующих в ней взвешенных частиц (микрочастицы стекловолокна, угля, нерастворимых гидроксидов металлов - осадок) с помощью фильтрации на тканевых микропористых фильтрах под сниженным давлением.
На шестом этапе получают карбонат лития.
Для этого фильтрат, содержащий ионы металлов первой и второй группы, собирают в синтез-реакторе 7, который оборудуют нагревательными элементами для концентрирования Li+, перемешивающим устройством, отверстием для ввода реагента и отверстием для выведения фильтрата. В реактор с концентрированным по литию раствором подается раствор карбоната натрия, наилучшее осаждение карбоната лития происходит при температуре 85-90°С.
Затем осажденный карбонат лития для снижения потерь, промывают горячей водой, отделяют от фильтрата в нутч-фильтре 8 или пресс-фильтре и сушат. Полученный карбонат лития является товарным продуктом.
На седьмом этапе производят отделение металлической составляющей.
Промывают в нутч-фильтре 5 твердую фракцию, которую затем сушат в аппарате термической дегидратации 9. После сушки твердую фракцию подвергают процессу магнитной сепарации в металло-сепараторе 10. В упомянутом металло-сепараторе 10 происходит отделение металлической составляющей, в виде цветного и черного лома, которая является товаром, востребованным соответствующим металлургическим производством.
На восьмом этапе происходит перевод галлия в растворимую форму.
Твердую неметаллическую фракцию, имеющую в своем составе уголь, полимерные и композитные материалы, стекловолокно, нерастворимые гидроксиды металлов, в том числе гидроксид галлия, объединяют с осадком, который получают на пятом этапе. Загружают смесь в специальную емкость (экстрактор) 11 из полимерного материала. Экстрактор 11 оборудован перемешивающим устройством, отверстием для ввода реагента и отверстием для выведения фильтрата. В экстракторе 11 твердую фракцию подвергают процессу кислотного гидролиза до рН~4-5, который переводит гидроксиды металлов, в том числе галлия в растворимую соль.
На девятом этапе, используя нутч-фильтр 12 отделяют жидкую фракцию от твердой и последнюю промывают.
На десятом этапе производят очистку жидкой фракции (фильтрат) от гидроксидов железа и хрома.
Для этого фильтрат переносят в синтез-реактор 13. Последний оборудован перемешивающим устройством, отверстием для ввода реагента и отверстием для выведения фильтрата, нагревательным элементом и сорбционной колонной. В синтез-реакторе 13 фильтрат подвергают обработке аммиаком до рН~12. При этом осаждаются из раствора гидроксиды железа и хрома (далее гидроксиды). Затем гидроксиды промывают, отфильтровывают в нутч-фильтре 14 и сушат до получения товарного продукта Fe(OH)3 и Cr(OH)3.
Выделение гидроксида галлия производят на одиннадцатом этапе, на котором, при нагревании, в синтез-реакторе 13 очищенного от железа и хрома аммиачного раствора, аммиак адсорбируется в сорбционной колонне, а галлий в виде гидроксида осаждается. После чего гидроксид галлия промывают, отфильтровывают на нутч-фильтре 15 и сушат до получения товарного продукта Ga(OH)3.
На двенадцатом этапе получают продукт неметаллической фракции. Для этого отмывают от солей d- и р-металлов твердую неметаллическую фракцию, которую получают на этапе 9. Неметаллическую фракцию, имеющую в своем составе уголь, стекловолокно, полимерные и композитные материалы, сушат. После просушки, упомянутую неметаллическую фракцию, используют в качестве наполнителя (добавки) в различных композитных, строительных и др. материалах.
Пример выполнения способа.
Технология утилизации включала в себя 12 этапов, которые выполняли в изложенной ниже последовательности.
На первом этапе разрядили элементы питания.
Разрядку отработанных литиевых батарей производили дифференцированным методом на разрядной установке (стенде) 1. На данном этапе максимально снимали емкость по току с батареи. При этом в элементе питания оставалось минимальное количество химически агрессивных веществ и минимально необходимое количество заряда, который обеспечивал безопасность дальнейших действий с элементом питания.
На втором этапе измельчали элементы питания.
После разрядки элементов питания, последние подвергали измельчению в шредере (измельчителе) 2.
На третьем этапе нейтрализовали измельченные батареи.
Измельченные элементы питания подавали через герметичный шлюз в реактор-приемник 3, где происходила жидкофазная нейтрализация химически агрессивных веществ, содержащихся в элементе питания.
Для этого реактор-приемник 3 оборудовали системой контроля рН, системой перемешивания. Кроме того, упомянутый реактор-приемник 3 подключали к скрубберу 4. В специально отведенное отверстие в реакторе-приемнике 3 подавали нейтрализующий раствор. Выгрузку нейтрализованного скрапа осуществляли через герметично закрываемое отверстие реактора–приемника 3. Для приемки измельченных батарей со шредера 2, подключения скруббера 4, подачи нейтрализующего раствора и выгрузки скрапа после нейтрализации измельченных батарей, предусмотрены отдельные отверстия.
В процессе нейтрализации, концентрацию выделившегося газообразного водорода снижали в газовоздушной смеси до нижнего предела воспламенения водорода (4%) с помощью продувки внутреннего объема реактора-3 необходимым и достаточным для этого объемом воздуха. Продувку воздуха осуществляли за счет работы вентилятора, который прогонял воздух, забираемый из входного шлюзового отверстия в шредере через реактор–приемник 3.
В результате жидкофазной обработки содержимого элементов питания образовывалась смесь кислых газов (хлороводород и диоксид серы), которую отсасывали через шлюзовое отверстие в скруббер 4, где происходила нейтрализация смеси кислых газов до значений ПДК, соответствующих экологическим нормам выбросов в окружающую среду.
Нейтрализующий раствор, имеющий рН~10-11, подавали в реактор-приемник 3 через специальное отверстие, по мере заполнения реактора-приемника 3 измельченными частями элементов питания.
После чего на четвертом этапе, по окончании реакции в реакторе-приемнике 3, выгружали продукт нейтрализации (полученный скрап), через предусмотренное для этого отверстие в систему ступенчатых решеток для грубой очистки и затем в полимерный нутч-фильтр 5. В нутч-фильтре 5 отделялась жидкая часть скрапа от твердой. Последняя промывалась водой.
На пятом этапе очищали жидкую фракцию от присутствующих в ней взвешенных частиц (микрочастицы стекловолокна, угля, нерастворимых гидроксидов металлов - осадок) с помощью фильтрации на тканевом микропористом фильтре 6 под сниженным давлением.
На шестом этапе получали карбонат лития. Для этого фильтрат, содержащий ионы металлов первой и второй группы, собирали в синтез-реакторе 7, оборудованном нагревательными элементами для концентрирования Li+, перемешивающим устройством, отверстием для ввода реагента и отверстием для выведения фильтрата. В реактор с концентрированным по литию раствором подавали раствор карбоната натрия, наилучшее осаждение карбоната лития происходило при температуре 85-90°С.
Затем осажденный карбонат лития для снижения потерь, промывали горячей водой, отделяли от фильтрата в нутч-фильтре 8 или пресс-фильтре и сушили. Полученный карбонат лития являлся товарным продуктом.
На седьмом этапе происходило отделение металлической составляющей. Промытую в нутч-фильтре 5 твердую фракцию сушили в аппарате термической дегидратации 9. После сушки твердую фракцию подвергали процессу магнитной сепарации в металл-сепараторе 10, в котором отделялась металлическая составляющая (цветной и черный лом). Полученная металлическая составляющая затем передавалась на соответствующее металлургическое производство.
На восьмом этапе происходил перевод гидроксида галлия в растворимую форму. Твердую неметаллическую фракцию, имеющую в своем составе уголь, полимерные и композитные материалы, стекловолокно, нерастворимые гидроксиды металлов, в том числе гидроксид галлия, объединяли с осадком, который получили на пятом этапе, и загружали в экстрактор 11 из полимерного материала, оборудованный перемешивающим устройством, отверстием для ввода реагента и отверстием для выведения фильтрата. В экстракторе 11 твердую неметаллическую фракцию подвергали процессу кислотного гидролиза до рН~4-5. При этом нерастворимые в воде гидроксиды металлов, в том числе гидроксид галлия, переходили в растворимые соли.
На девятом этапе, используя нутч-фильтр 12, осуществляли отделение жидкой фракции от твердой, последнюю промывали.
На десятом этапе проводили очистку от гидроксидов железа и хрома. При этом фильтрат (жидкая часть) переносили в синтез-реактор 13, оборудованный перемешивающим устройством, отверстием для ввода реагента и отверстием для выведения фильтрата, нагревательным элементом и сорбционной колонной. Фильтрат подвергали обработке аммиаком до рН~12, что позволило получить методом осаждения из фильтрата, гидроксиды железа (Fе(OН)3) и хрома (Cr(OН)3). Затем гидроксиды промывали и отфильтровывали в нутч-фильтре 14 и сушили до получения товарного продукта.
На одиннадцатом этапе для выделения гидроксида галлия использовали нагревание в синтез-реакторе 13, очищенного от железа и хрома, аммиачного раствора. Осажденный гидроксид галлия отфильтровывали на нутч-фильтре 15, промывали и сушили.
На двенадцатом этапе получали продукты неметаллической фракции.
Отмытую от солей d- и р-металлов твердую неметаллическую фракцию, полученную на девятом этапе, имеющую в своем составе уголь, стекловолокно, полимерные и композитные материалы, сушили. Полученный товарный продукт использовали как наполнитель (добавка) в асфальт, цементный раствор и др.
Предложенное изобретение позволяет более совершенно и безопасно, относительно пожаро-взрывоопасности утилизировать литийсодержащие батареи.
Кроме того, предложенный способ позволяет безопасно измельчить элементы питания, нейтрализовать имеющиеся в элементе питания и образующиеся в процессе измельчения и гидролиза кислые газы.
Предложенное изобретение позволяет выделить, из образовавшегося скрапа (жидкая и твердая фракции), продукты и полупродукты товарного качества.
Предложенный способ утилизации позволяет значительно снизить потребление природных, энергетических и иных ресурсов (чистая вода, воздух, электроэнергия, химреагенты), максимально снизить количество сточных вод, выбросов в атмосферу.
Claims (3)
1. Способ утилизации отработанных литиевых источников тока, включающий измельчение, нейтрализацию, выделение твердых, жидких и газообразных фракций, отличающийся тем, что перед измельчением осуществляют разрядку отработанных литиевых источников тока в виде батарей дифференцированным методом с использованием разрядной установки, после измельчения литиевые батареи нейтрализуют при рН ̴ 10-11, продукты нейтрализации выгружают, очищают жидкую фракцию и получают из нее карбонат лития, твердую фракцию сушат и подвергают магнитной сепарации с отделением металлического лома, твердую неметаллическую фракцию подвергают процессу кислотного гидролиза до рН ̴ 4-5, отделяют жидкую фракцию от твердой, последнюю промывают, а жидкую фракцию подвергают обработке аммиаком до рН ̴ 12 и осаждают из раствора гидроксиды железа и хрома, очищенный от железа и хрома аммиачный раствор нагревают до количественного выпадения в осадок гидроксида галлия, последний промывают, фильтруют и сушат, а неметаллическую фракцию используют как наполнитель в композитных или строительных материалах.
2.Способ по п. 1, отличающийся тем, что жидкую фракцию после нейтрализации очищают посредством фильтрации на тканевых микропористых фильтрах под низким давлением.
3.Способ по п. 1, отличающийся тем, что твердую фракцию сушат в аппарате термической дегидратации.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017000748 | 2017-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2676806C1 true RU2676806C1 (ru) | 2019-01-11 |
Family
ID=65025149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017139099A RU2676806C1 (ru) | 2017-10-10 | 2017-10-10 | Способ утилизации отработанных литиевых источников тока |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2676806C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2768719C1 (ru) * | 2021-09-22 | 2022-03-24 | Общество с ограниченной ответственностью "Русский Кобальт" (ООО "РК") | Способ переработки отработанных литий-ионных аккумуляторов |
RU2789852C1 (ru) * | 2022-04-25 | 2023-02-14 | Общество с ограниченной ответственностью "Экологические технологии" (ООО "ЭКОТЕХ") | Способ переработки литий-ионных аккумуляторов с получением компонентов положительного электрода щелочных аккумуляторов |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637928A (en) * | 1982-08-06 | 1987-01-20 | Greatbatch Enterprises, Inc. | Method and apparatus for neutralizing reactive material such as batteries |
RU2016140C1 (ru) * | 1991-12-23 | 1994-07-15 | Уральский государственный технический университет | Способ извлечения лития из отходов алюминиево-литиевых сплавов |
RU93034373A (ru) * | 1993-07-01 | 1996-01-27 | Институт химии твердого тела и переработки минерального сырья СО РАН | Способ извлечения лития из литийалюминийсодержащих отходов |
WO2005101564A1 (fr) * | 2004-04-06 | 2005-10-27 | Recupyl | Procede de recyclage en melange des piles et batteries a anode a base de lithium |
US7078122B1 (en) * | 1999-07-26 | 2006-07-18 | Ariel Rosenberg | High efficiency process for treating mixed metal waste |
CN102208706A (zh) * | 2011-05-04 | 2011-10-05 | 合肥国轩高科动力能源有限公司 | 一种废旧磷酸铁锂电池正极材料的回收再生处理方法 |
WO2012072619A1 (en) * | 2010-11-29 | 2012-06-07 | Umicore | Process for the recovery of lithium and iron from lfp batteries |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2067126C1 (ru) * | 1993-07-01 | 1996-09-27 | Институт химии твердого тела и переработки минерального сырья СО РАН | Способ извлечения лития из литий-, алюминийсодержащих отходов |
-
2017
- 2017-10-10 RU RU2017139099A patent/RU2676806C1/ru not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637928A (en) * | 1982-08-06 | 1987-01-20 | Greatbatch Enterprises, Inc. | Method and apparatus for neutralizing reactive material such as batteries |
RU2016140C1 (ru) * | 1991-12-23 | 1994-07-15 | Уральский государственный технический университет | Способ извлечения лития из отходов алюминиево-литиевых сплавов |
RU93034373A (ru) * | 1993-07-01 | 1996-01-27 | Институт химии твердого тела и переработки минерального сырья СО РАН | Способ извлечения лития из литийалюминийсодержащих отходов |
US7078122B1 (en) * | 1999-07-26 | 2006-07-18 | Ariel Rosenberg | High efficiency process for treating mixed metal waste |
WO2005101564A1 (fr) * | 2004-04-06 | 2005-10-27 | Recupyl | Procede de recyclage en melange des piles et batteries a anode a base de lithium |
EP1733451A1 (fr) * | 2004-04-06 | 2006-12-20 | Recupyl S.A. | Procede de recyclage en melange des piles et batteries a anode a base de lithium |
WO2012072619A1 (en) * | 2010-11-29 | 2012-06-07 | Umicore | Process for the recovery of lithium and iron from lfp batteries |
CN102208706A (zh) * | 2011-05-04 | 2011-10-05 | 合肥国轩高科动力能源有限公司 | 一种废旧磷酸铁锂电池正极材料的回收再生处理方法 |
Non-Patent Citations (1)
Title |
---|
EP 1733451 A1, 2012.2006. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2768719C1 (ru) * | 2021-09-22 | 2022-03-24 | Общество с ограниченной ответственностью "Русский Кобальт" (ООО "РК") | Способ переработки отработанных литий-ионных аккумуляторов |
RU2789852C1 (ru) * | 2022-04-25 | 2023-02-14 | Общество с ограниченной ответственностью "Экологические технологии" (ООО "ЭКОТЕХ") | Способ переработки литий-ионных аккумуляторов с получением компонентов положительного электрода щелочных аккумуляторов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhong et al. | Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects | |
Kim et al. | A comprehensive review on the pretreatment process in lithium-ion battery recycling | |
KR102334865B1 (ko) | 폐리튬이차전지 일괄처리시스템 | |
CN100527522C (zh) | 锂-基阳极电池组和电池的混合回收方法 | |
CN110783658A (zh) | 一种退役动力三元锂电池回收示范工艺方法 | |
US20220021042A1 (en) | Plant for the disposal of lithium batteries and recovery of lithium | |
CN210079631U (zh) | 一种废旧动力锂电池液下带电破碎装置 | |
KR102447931B1 (ko) | 폐전지 친환경 재활용 방법 | |
WO2002023651A1 (en) | A method for recycling spent lithium metal polymer rechargeable batteries and related materials | |
US20240194961A1 (en) | A method for recycling of used scrap lithium battery | |
JPH02103871A (ja) | 廃鉛蓄電池から鉛を回収する方法 | |
CN114606386A (zh) | 一种废弃锂电池磨浸回收钴和锂的工艺 | |
CN112958588B (zh) | 一种废旧电池安全回收拆解系统及其拆解方法 | |
CN115149138B (zh) | 一种废旧锂电池拆解回收装置及方法 | |
US7078122B1 (en) | High efficiency process for treating mixed metal waste | |
US11316214B2 (en) | Waste lithium battery recovery system | |
RU2676806C1 (ru) | Способ утилизации отработанных литиевых источников тока | |
CN111146523A (zh) | 一种废旧电池的拆解分类回收工艺方法 | |
CN113937339A (zh) | 一种废旧磷酸铁锂电池的回收方法 | |
Sun | Lithium-Ion Battery Recycling: Challenges and Opportunities | |
CN112201872B (zh) | 一种退役电池的安全放电方法及湿法物理分选方法 | |
RU2486262C2 (ru) | Способ утилизации отработанных химических источников тока | |
CN108879009A (zh) | 一种报废锂离子电池隔水隔氧的破解方法 | |
Vaysgant et al. | A low-temperature technique for recycling lead/acid battery scrap without wastes and with improved environmental control | |
CN216698489U (zh) | 废旧三元动力电池处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201011 |