WO2024087391A1 - 电池单体、电池及用电装置 - Google Patents

电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024087391A1
WO2024087391A1 PCT/CN2023/070372 CN2023070372W WO2024087391A1 WO 2024087391 A1 WO2024087391 A1 WO 2024087391A1 CN 2023070372 W CN2023070372 W CN 2023070372W WO 2024087391 A1 WO2024087391 A1 WO 2024087391A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
filling structure
battery
electrolyte
shell
Prior art date
Application number
PCT/CN2023/070372
Other languages
English (en)
French (fr)
Inventor
殷黎
许虎
郭继鹏
牛少军
谢绵钰
黄江林
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024087391A1 publication Critical patent/WO2024087391A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • the embodiments of the present application provide a battery cell, a battery and an electrical device, aiming to solve the technical problem in the related art that too much electrolyte needs to be injected into the battery cell.
  • an embodiment of the present application provides a battery cell, including:
  • a battery cell assembly comprising a plurality of winding bodies disposed in a housing;
  • An electrolyte is filled in the housing and soaks the wound body
  • the filling structure is arranged in the shell and abuts against the inner wall of the shell and/or the outer walls of the plurality of winding bodies.
  • the battery cell provided in the embodiment of the present application has the filling structure and the battery cell assembly both arranged in the shell, so that the filling structure can occupy the remaining space in the shell except for the battery cell assembly.
  • the filling structure can reduce the amount of electrolyte injected into the shell to increase the liquid level of the electrolyte, thereby reducing the amount of electrolyte added, thus solving the technical problem of injecting too much electrolyte when assembling the battery cell.
  • the filling structure is disposed in a space enclosed by an inner wall of the housing and an adjacent winding body;
  • the filling structure is arranged in a space enclosed by a plurality of winding bodies.
  • the filling structure is arranged in at least one of the spaces formed by the inner wall of the outer shell and the adjacent winding bodies and the space formed by the outer walls of multiple winding bodies, so that the filling structure can be better filled in the remaining space of the outer shell, which helps to achieve the effect of reducing the amount of electrolyte by the filling structure.
  • the filling structure satisfies the following relationship:
  • the filling structure has a more appropriate volume ratio compared to the battery cell assembly. In this way, on the basis of making the battery cell have a higher energy density, the filling structure can better achieve the effect of reducing the amount of electrolyte, thereby reducing the amount of electrolyte injected.
  • 10% ⁇ S ⁇ 15% In some embodiments, 10% ⁇ S ⁇ 15%.
  • the amount of electrolyte injected can be reduced while the battery cell has a higher energy density.
  • the filling structure is used to press against one side of the winding body to form a plurality of grooves, and the winding body is confined in the grooves.
  • the limiting effect of multiple winding bodies in the shell can be achieved, which helps to improve the vibration stability and safety of the battery cell.
  • the filling structure can be better filled in the remaining space at the multiple winding bodies, thereby better achieving the effect of reducing the amount of electrolyte.
  • the filling structure includes a plurality of filling members.
  • the filling structure when arranging the filling structure, it is possible to fill the space of the remaining space of the shell with filling pieces of corresponding sizes according to different positions and different sizes of spaces, so that the filling pieces can be better filled in the remaining space of the shell.
  • the number of filling pieces can be flexibly adjusted. This arrangement makes the arrangement of the filling structure very flexible and the adjustable performance is very high.
  • the filling structure is disposed on one side or both sides of the battery cell assembly along a first direction, and the first direction intersects with the central axis of the winding body.
  • the filling structure can be arranged according to the use status of the battery cell, so that the amount of the filling structure can be reduced as much as possible, so that the battery cell has a higher energy density.
  • a dimension of the filling structure along a second direction is smaller than a dimension of the jellyroll along the second direction, and the second direction is parallel to a central axis of the jellyroll.
  • the electrolyte can be stored in the space enclosed by one end of the filling structure along the second direction and the inner wall of the outer shell and the outer wall of the winding body.
  • the winding body can absorb the electrolyte stored in the above-mentioned space, which helps to maintain the performance of the battery cell.
  • a cavity is defined within the filling structure.
  • the weight of the filling structure can be reduced, which helps to improve the energy density of the battery cell.
  • the density of the filling structure is less than the density of the electrolyte.
  • the density of the filling structure is made smaller than the density of the electrolyte.
  • using the filling structure to fill the remaining space in the shell can help reduce the weight of the battery cell, thereby helping to increase the energy density of the battery cell.
  • the distance between the inner wall of the cavity and the outer wall of the filling structure ranges from 0.1 mm to 5 mm.
  • the wall thickness range of the filling structure is limited.
  • the wall thickness of the filling structure is not too large, so that the cavity has a larger volume, which helps to reduce the weight of the filling structure and reduce the density of the filling structure; and it also helps to fill the cavity with more flame retardant groups involved below to improve the safety performance of the battery cell.
  • the wall thickness of the filling structure is not too small, which helps to maintain the structural strength of the filling structure and the supporting effect of the filling structure on the winding body.
  • a flame retardant is provided in the cavity, and a weak structure is provided in the filling structure, wherein the weak structure is configured to be broken by the flame retardant when the temperature and/or pressure of the winding body reaches a threshold value, so that the flame retardant flows out of the cavity.
  • the flame retardant can rush out of the cavity and into the electrolyte and the winding body before the battery monomer undergoes thermal runaway, thereby suppressing the thermal runaway of the battery monomer, which helps to improve the safety performance of the battery monomer.
  • the weak structure is exposed in the space between two adjacent windings
  • the weak structure is exposed in the space between the inner side wall of the housing and the adjacent windings;
  • the weak structure is provided at a position where the filling structure abuts against the winding body
  • the weakened structure is arranged on one side of the filling structure along the second direction, and the second direction is parallel to the central axis of the winding body.
  • weak structures can be selectively set at multiple positions of the filling structure, so that the weak structures can be quickly and accurately ruptured when the temperature and/or pressure of the battery cell reaches a threshold value, allowing the flame retardant to rush out of the cavity and merge into the electrolyte and the winding body, so as to effectively suppress thermal runaway of the battery cell.
  • the wound body is cylindrical and the outer shell is a square shell.
  • the battery cell provided by this embodiment has the advantage of high-speed manufacturing and a larger capacity.
  • a second aspect of the present application provides a battery, including:
  • the battery cell is accommodated in the box.
  • a filling structure is provided inside the battery cell of the battery so that the filling structure fills the remaining space in the outer shell except for the battery cell assembly. This helps to increase the liquid level of the electrolyte, thereby reducing the amount of electrolyte added, thus solving the technical problem of injecting too much electrolyte when assembling the battery cell.
  • a third aspect of an embodiment of the present application provides an electrical device, including a device body and a battery, wherein the battery is electrically connected to the device body and is used to supply power to the device body.
  • a filling structure is provided inside the battery of the electrical device so that the filling structure fills the remaining space in the outer shell except for the battery cell assembly. This helps to increase the liquid level of the electrolyte, thereby reducing the amount of electrolyte added, thus solving the technical problem of injecting too much electrolyte when assembling the battery cell.
  • FIG1 is an exploded view of a battery cell provided in some embodiments of the present application.
  • FIG2 is a cross-sectional view of a battery cell provided in some embodiments of the present application.
  • FIG3 is a partial schematic diagram of the battery cell shown in FIG1 ;
  • FIG4 is a cross-sectional view of a battery cell provided in some other embodiments of the present application.
  • FIG5 is a partial schematic diagram of a battery cell provided in some other embodiments of the present application.
  • FIG6 is an exploded view of a battery provided in some embodiments of the present application.
  • FIG. 7 is a schematic diagram of a vehicle provided in some embodiments of the present application.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • plural means more than two, and unless otherwise clearly and specifically defined, “more than two” includes two. Accordingly, “multiple groups” means more than two groups, including two groups.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • a battery cell refers to the smallest unit for storing and outputting electric energy.
  • a battery cell has an electrode assembly, which is mainly formed by winding or stacking a positive electrode sheet and a negative electrode sheet, and a separator is provided between the positive electrode sheet and the negative electrode sheet.
  • the electrode assembly formed by winding a positive electrode sheet and a negative electrode sheet is collectively referred to as a winding body.
  • the outer electrode sheet (which can be a positive electrode sheet and/or a negative electrode sheet) has poor wrapping performance on the inner electrode sheet (which can be a positive electrode sheet and/or a negative electrode sheet), so the wound body is easy to fall apart, and it is difficult for the electrolyte to penetrate from the outer electrode sheet to the inner electrode sheet.
  • the length dimension of the wound body along the extension direction of its central axis is too large, it is difficult for the electrolyte of the battery cell to penetrate from the two ends of the wound body to the middle of the wound body. Based on this, the length and thickness dimensions of the current wound body cannot be very large, which limits the capacity of the battery cell.
  • some battery cells with multiple winding bodies arranged in the shell have appeared on the market, that is, multiple winding bodies are arranged in the same shell, and the arrangement of multiple winding bodies increases the capacity of the battery cell without increasing the length and thickness of the winding body.
  • a certain space is enclosed between the winding body and the inner side wall of the shell, and/or a certain space is enclosed between two adjacent winding bodies and the inner side wall of the shell.
  • the inventor in order to solve the problem of excessive electrolyte needing to be injected into the above-mentioned battery cell, the inventor has designed a battery cell after in-depth research, namely the battery cell mentioned in the embodiment of the present application, by arranging a filling structure in the outer shell so that the filling structure occupies the remaining space in the outer shell except for the winding body. In this way, the liquid level of the electrolyte can be increased, and there is no need to inject too much electrolyte when assembling the battery cell, thereby solving the technical problem of high battery cell production cost caused by excessive electrolyte.
  • a battery cell 10 refers to the smallest unit for storing and outputting electrical energy.
  • the battery cell 10 can be a secondary battery or a primary battery; it can also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 10 can be cylindrical, flat, rectangular or other shapes.
  • the battery cell 10 includes a shell 11, a battery cell assembly 12, an electrolyte and a filling structure 13.
  • the battery cell assembly 12 includes a plurality of winding bodies 121, and the plurality of winding bodies 121 are arranged in the shell 11.
  • the electrolyte is filled in the shell 11 and infiltrates the winding bodies 121.
  • the filling structure 13 is arranged in the shell 11.
  • the filling structure 13 is against the inner side wall of the shell 11, or the filling structure 13 is against the outer side wall of the winding body 121, or the filling structure 13 is against the inner side wall of the shell 11 and the outer side wall of the winding body 121.
  • the shell 11 is a component for forming the internal environment of the battery cell 10.
  • the internal environment of the shell 11 is used to accommodate the battery cell assembly 12, the electrolyte and the filling structure 13.
  • the shell 11 can adopt a variety of structures.
  • the shell 11 includes a first shell 111 and an end cover 112.
  • the first shell 111 and the end cover 112 can be independent components.
  • the first shell 111 has an opening, and the end cover 112 is covered at the opening of the first shell 111 to define the internal environment of the battery cell 10 with the first shell 111, and isolate the internal environment of the battery cell 10 from the external environment.
  • the first shell 111 and the end cover 112 can also be an integrated structure.
  • a common connection surface can be formed between the end cover 112 and the first shell 111 before the battery cell assembly 12, the filling structure 13, etc. are put into the shell.
  • the end cover 112 covers the first shell 111.
  • the first shell 111 may be in a cylindrical shell, a square shell, or the like, and may be determined according to the specific shape and size of the battery cell assembly 12.
  • the first shell 111 and the end cap 112 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the present embodiment of the application does not impose any special restrictions on this.
  • the number of end caps 112 can be one. Of course, the number of end caps 112 can also be two, as shown in FIG1 , the two end caps 112 are respectively arranged at the two ends of the first shell 111. When the number of end caps 112 is two, both end caps 112 can be provided with electrode terminals electrically connected to the battery cell assembly 12, or only one end cap 112 is provided with an electrode terminal electrically connected to the battery cell assembly 12, wherein the electrode terminal is the current transmission end of the battery cell 10, and is used to input or output the electrical energy of the battery cell 10.
  • the winding body 121 is a component in the battery cell 10 where electrochemical reactions occur.
  • the winding body 121 is mainly formed by winding a positive electrode sheet and a negative electrode sheet, and a separator is provided between the positive electrode sheet and the negative electrode sheet.
  • the parts of the positive electrode sheet and the negative electrode sheet with active materials constitute the main body of the winding body 121, and the parts of the positive electrode sheet and the negative electrode sheet without active materials each constitute a pole ear.
  • the pole ear of the positive electrode sheet is the positive pole ear
  • the pole ear of the negative electrode sheet is the negative pole ear.
  • the positive pole ear and the negative pole ear can be located together at one end of the main body or respectively at both ends of the main body.
  • the pole ear is the current transmission end of the winding body 121, which is used to transmit current.
  • the plurality of winding bodies 121 may be arranged in a row in the housing 11, as shown in FIG1 ; or, the plurality of winding bodies 121 may be arranged in multiple rows in the housing 11, and the arrangement direction of the multiple rows of winding bodies 121 is perpendicular to the distribution direction of the multiple winding bodies 121 in each row of winding bodies 121.
  • the plurality of winding bodies 121 may be distributed at intervals or may abut against each other.
  • the electrolyte infiltrates each winding body 121, which means that the electrolyte infiltrates the positive electrode sheet and the negative electrode sheet of each winding body 121.
  • lithium ions can move to the positive electrode sheet through the electrolyte and be embedded in the positive electrode active material of the positive electrode sheet, and lithium ions can also move to the negative electrode sheet through the electrolyte and be embedded in the negative electrode active material of the negative electrode sheet.
  • the filling structure 13 and the battery cell assembly 12 are both arranged in the housing 11. It can be understood that the filling structure 13 is arranged in the remaining space in the housing 11 except for the battery cell assembly 12.
  • the remaining space refers to the space in the housing 11 except for the battery cell assembly 12, that is, the residual space of the battery cell 10.
  • the filling structure 13 abuts against the outer wall of the winding body 121, which means that the filling structure 13 abuts against the outer wall of a part of the winding body 121, or the filling structure 13 can also abut against the outer wall of all the winding bodies 121.
  • the part of the winding body 121 can be one winding body 121 or multiple winding bodies 121.
  • the filling structure 13 When the filling structure 13 abuts against the outer wall of multiple winding bodies 121, the filling structure 13 is located at a position adjacent to the multiple winding bodies 121, that is, the filling structure 13 is filled in multiple positions in the shell 11, which can increase the volume of the filling structure 13, so that the filling structure 13 can effectively achieve the effect of reducing the amount of electrolyte.
  • the “outer side wall of the winding body 121” refers to the surface of the pole piece of the outermost layer of the winding body 121, that is, the large surface of the pole piece of the outermost layer of the winding body 121, and not the end surface of the winding body 121 along the direction of the central axis. It can be understood that the “outer side wall of the winding body 121” refers to the outer surface of the winding body 121, except for the end surface of the winding body 121 along the direction of the central axis. Among them, the pole piece of the winding body 121 is wound around the above-mentioned central axis.
  • the “inner side wall of the outer shell 11” refers to the inner wall opposite to the outer side wall of the winding body 121.
  • the filling structure 13 is a material having a melting point higher than the normal use temperature of the battery cell 10, so that when the battery cell 10 is in normal use, the filling structure 13 maintains its own structural integrity.
  • the filling structure 13 is a material that is insoluble in the electrolyte, so that the filling structure 13 is filled in the shell 11, which can block the electrolyte and reduce the distribution of the electrolyte in the remaining space of the shell 11 except for the winding body 121, so that the electrolyte can be distributed in the winding body 121 as much as possible, so as to increase the liquid level of the electrolyte.
  • the material of the filling structure 13 can be a variety of materials, such as high molecular polymer resin, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene ether, polyphenylene sulfide, polytetrafluoroethylene and polyethylene naphthalene.
  • high molecular polymer resin polyolefin
  • polyethylene terephthalate polybutylene terephthalate
  • polyacetal polyamide
  • polycarbonate polyimide
  • polyetheretherketone polyethersulfone
  • polyphenylene ether polyphenylene sulfide
  • polytetrafluoroethylene polyethylene naphthalene
  • the battery cell 10 provided in the embodiment of the present application is configured such that the filling structure 13 and the battery cell assembly 12 are both arranged in the outer shell 11, so that the filling structure 13 can occupy the remaining space in the outer shell 11 except for the battery cell assembly 12.
  • Such a configuration enables the filling structure 13 to occupy a larger space in the remaining space of the outer shell 11, and enables the amount of electrolyte injected into the outer shell 11 to be reduced, so as to increase the liquid level of the electrolyte, thereby reducing the amount of electrolyte added, thus solving the technical problem of injecting too much electrolyte when assembling the battery cell 10.
  • the filling structure 13 is supported against the inner wall of the outer shell 11 and/or the outer wall of the winding body 121, so that the winding body 121 can achieve the limiting and supporting effects through the filling structure 13, so that the winding body 121 has higher stability and vibration reliability in the outer shell 11, and prevents the winding body 121 from shaking in the outer shell 11.
  • the filling structure 13 may be disposed in the space enclosed by the inner side wall of the outer shell 11 and the adjacent winding bodies 121.
  • the filling structure 13 may also be disposed in the space enclosed by multiple winding bodies 121.
  • the filling structure 13 is filled in both the space enclosed by the inner side wall of the outer shell 11 and the adjacent winding bodies 121 and the space enclosed by multiple winding bodies 121. It can be understood that the filling structure 13 may be disposed in at least one of the above two spaces.
  • the filling structure 13 may be disposed in a space enclosed by the inner side wall of the outer shell 11 and the adjacent winding bodies 121. It can be understood that the filling structure 13 may be disposed in a space enclosed by the inner side wall of the outer shell 11 and two adjacent winding bodies 121, specifically as indicated by the arrow in FIG4. The filling structure 13 may also be disposed in a space enclosed by the inner side wall of the outer shell 11 and one winding body 121, specifically as indicated by the arrow in FIG4. Space B.
  • winding bodies 121 When there are multiple winding bodies 121, at least two winding bodies 121 face the inner side wall of the same side of the shell 11, as shown in Figures 2 to 5, and the side of the inner side wall of the shell 11 facing the two adjacent winding bodies 121 together with the inner side wall of the shell 11 enclose a space, which is a part of the above-mentioned remaining space.
  • the filling structure 13 located in the space can abut against the outer side walls of the two adjacent winding bodies 121, or against the inner side wall of the shell 11, or against both the outer side walls of the two adjacent winding bodies 121 and the inner side wall of the shell 11.
  • the winding bodies 121 can be one row or multiple rows.
  • the space enclosed by the inner side wall of the shell 11 and a winding body 121 refers to the space enclosed by the inner side wall at the corner of the shell 11 and a winding body 121 located there, as shown in Figures 2 to 4, and the space is a part of the above-mentioned remaining space.
  • the filling structure 13 located in the space can abut against the inner side wall of the shell 11, or against the outer side wall of the winding body 121, or against the outer side wall of the winding body 121 and the inner side wall of the shell 11 at the same time. At this time, the number of winding bodies 121 can be one row or multiple rows.
  • winding bodies 121 When there are multiple winding bodies 121 and the winding bodies 121 are arranged in multiple rows, three or more winding bodies 121 in two adjacent rows can enclose a space, which is a part of the above-mentioned remaining space. In this case, the winding bodies 121 abut against the outer side walls of the three or more winding bodies 121, but not against the inner side wall of the shell 11.
  • the filling structure 13 is arranged in at least one of the two spaces: the space formed by the inner wall of the outer shell 11 and the adjacent winding bodies 121, and the space formed by the outer walls of multiple winding bodies 121.
  • the filling structure 13 is better filled in the remaining space of the outer shell 11, which helps to achieve the effect of reducing the electrolyte by the filling structure 13.
  • the filling structure 13 satisfies the following relationship: 5% ⁇ S ⁇ 35%;
  • S the volume of the filling structure 13 ⁇ the volume of the battery cell assembly 12 .
  • the volume of the battery cell assembly 12 refers to the sum of the volumes of all the winding bodies 121 of the battery cell assembly 12 .
  • the minimum value of the above volume ratio S is 5%, which is based on the consideration that: when the volume proportion of the filling structure 13 is too small compared to the volume of the battery cell assembly 12, the volume of the filling structure 13 is also too small, and the filling structure 13 occupies a smaller space in the remaining space of the outer shell 11.
  • the filling structure 13 has a limited effect on reducing the amount of electrolyte, so that more electrolyte still needs to be injected to infiltrate each winding body 121.
  • it will also limit the volume of the cavity 1302 opened in the filling structure 13 below, thereby limiting the amount of flame retardant filled in the cavity 1302, so that the safety performance of the battery cell 10 is also limited.
  • the maximum value of the above volume ratio S is 35%, which takes into account that: when the volume proportion of the filling structure 13 is too large compared to the battery cell assembly 12, the filling structure 13 has a larger volume proportion than the outer shell 11, and accordingly, the battery cell assembly 12 has a smaller volume proportion than the outer shell 11, which will reduce the energy density of the battery cell 10.
  • the filling structure 13 has a more appropriate volume ratio compared to the battery cell assembly 12. In this way, on the basis of making the battery cell 10 have a higher energy density, the filling structure 13 can better achieve the effect of reducing the amount of electrolyte, thereby reducing the amount of electrolyte injected.
  • 10% ⁇ S ⁇ 15% In some embodiments, 10% ⁇ S ⁇ 15%.
  • the battery cell 10 can have a higher energy density and the injection amount of the electrolyte can be reduced.
  • the filling structure 13 is used to press against one side of the winding body 121 to form a plurality of grooves 1301 , and the winding body 121 is confined in the grooves 1301 .
  • the groove wall of the groove 1301 is matched with the outer side wall of the winding body 121 , so that the outer side wall of the winding body 121 abuts against the groove wall of the groove 1301 to achieve an abutting effect between the filling structure 13 and the outer side wall of the winding body 121 .
  • the winding body 121 is limited in the groove 1301. It can be understood that one winding body 121 can be limited in one groove 1301.
  • a filling structure 13 is provided on one side of the battery cell assembly 12, and the filling structure 13 opens a plurality of grooves 1301.
  • the battery cell assembly 12 includes a row of winding bodies 121, and the number of grooves 1301 of the filling structure 13 is the same as the number of winding bodies 121 in a row, and one winding body 121 is limited in one groove 1301.
  • one winding body 121 can also be limited in multiple grooves 1301 at the same time.
  • multiple winding bodies 121 can also be limited in the same groove 1301.
  • the filling structure 13 can be an integral structure or divided into multiple sections, each of which is provided with the above-mentioned groove 1301.
  • the filling structure 13 can be distributed on one side of the battery cell assembly 12, or on multiple sides of the battery cell assembly 12.
  • the battery cell assembly 12 can include a row of winding bodies 121, or multiple rows of winding bodies 121. All winding bodies 121 are confined in the corresponding grooves 1301, or only part of the winding bodies 121 are confined in the corresponding grooves 1301.
  • the winding body 121 is limited in the groove 1301, so that the winding body 121 can achieve a limiting effect in the housing 11, and the shaking and squeezing between the multiple winding bodies 121 can be avoided as much as possible, which is helpful to improve the vibration stability and safety of the battery cell 10.
  • the filling structure 13 is provided with a groove 1301 to avoid the winding body 121 and abut against the outer wall of the winding body 121, so that the filling structure 13 can be better filled in the remaining space at the winding body 121, thereby better achieving the effect of reducing the amount of electrolyte.
  • the filling structure 13 includes a plurality of filling pieces 131.
  • the filling pieces 131 abut against the outer wall of the winding body 121; or, the filling pieces 131 abut against the inner wall of the shell 11; or, the filling pieces 131 abut against both the outer wall of the winding body 121 and the inner wall of the shell 11.
  • each filling piece 131 is pressed against the inner side wall of the shell 11 and the outer side wall of the winding body 121, and each filling piece 131 can achieve the limiting effect of the corresponding winding body 121.
  • FIG. 13 shows that all the filling pieces 131 are pressed against the inner side wall of the shell 11, and all the filling pieces 131 are also pressed against the outer side wall of the winding body 121. That is, each filling piece 131 is pressed against the inner side wall of the shell 11 and the outer side wall of the winding body 121, and each filling piece 131 can achieve the limiting effect of the corresponding winding body 121.
  • all the filling pieces 131 are pressed against the outer side wall of the winding body 121, and some of the filling pieces 131 are pressed against the inner side wall of the shell 11, so that the side of the filling piece 131 that does not press against the inner side wall of the shell 11 facing away from the winding body 121 can press against another filling piece 131, that is, the multiple filling pieces 131 press against each other in sequence, so that the whole formed by the multiple filling pieces 131 presses against the outer side wall of the winding body 121 and the inner side wall of the shell 11, thereby achieving the limiting effect on the winding body 121.
  • part of the filling piece 131 abuts against the outer wall of the winding body 121
  • part of the filling piece 131 abuts against the inner wall of the outer shell 11 .
  • the filler 131 may be a cylindrical rod structure, and the outer wall of the rod structure is an arc surface, which can reduce the damage of the filler 131 to the winding body 121.
  • the filler 131 may also be a rectangular parallelepiped or other shaped structures, which are not limited here.
  • the plurality of filling pieces 131 may be configured as structures of the same size; of course, the plurality of filling pieces 131 may also be configured as structures of different sizes, as shown in FIG. 4 .
  • the filling pieces 131 of corresponding sizes can be arranged at corresponding positions according to the different positions and spaces of different sizes in the remaining space of the shell 11, so that the filling pieces 131 can be better filled in the remaining space of the shell 11.
  • the number of the filling pieces 131 can be flexibly adjusted. Such a configuration makes the arrangement of the filling structure 13 very flexible and the adjustable performance is very high.
  • the filling structure 13 is disposed on one side of the battery cell assembly 12 along the first direction X; or, the filling structure 13 is disposed on both sides of the battery cell assembly 12 along the first direction X.
  • the first direction X intersects the central axis of the winding body 121 .
  • the first direction X intersects the central axis of the winding body 121, which means that the first direction X and the central axis of the winding body 121 are not parallel, but form an angle greater than 0° and less than 180°. In some embodiments, as shown in Figures 1 and 3, the first direction X is perpendicular to the central axis of the winding body 121. The first direction X is the direction X shown in Figures 1 to 4.
  • the central axis of the winding body 121 is roughly parallel to the ground, platform and other planes.
  • the first direction X can be roughly parallel to the vertical direction, so that the filling structure 13 is located at the bottom of the battery cell assembly 12. In this way, the filling structure 13 can increase the liquid level of the electrolyte, so that the electrolyte is lifted upward as much as possible and infiltrates each winding body 121.
  • the central axis of the winding body 121 is substantially parallel to the vertical direction.
  • the first direction X can be substantially parallel to the horizontal direction, and specifically, the filling structure 13 is provided on both opposite sides of the battery cell assembly 12 in the horizontal direction, so that the liquid level of the electrolyte can be increased to reduce the amount of electrolyte used.
  • the filling structure 13 can be arranged according to the use status of the battery cell 10, so that the amount of the filling structure 13 can be reduced as much as possible, so that the battery cell 10 has a higher energy density.
  • the size of the filling structure 13 along the second direction Y is smaller than the size of the winding body 121 along the second direction Y, and the second direction Y is parallel to the central axis of the winding body 121 .
  • the size of the filling structure 13 is smaller than that of the winding body 121, so that the winding body 121 extends out of the filling structure 13 along the second direction Y, as shown in Figure 5.
  • the second direction Y is the direction Y shown in Figures 1 and 3.
  • the second direction Y is the length direction of the battery cell 10
  • the first direction X is the thickness direction of the battery cell 10, wherein the width direction of the battery cell 10 is shown in FIG. 1 and FIG. 3 and the schematic direction Z.
  • the second direction Y may also be the width direction or thickness direction of the battery cell 10
  • the first direction X may also be the length direction or width direction of the battery cell 10, etc., which may be specifically designed according to actual design requirements.
  • one end of the filling structure 13 along the second direction Y and the inner side wall of the housing 11 and the outer side wall of the winding body 121 enclose a space, and when the electrolyte is injected, the electrolyte can be stored in the space. In this way, when the electrolyte in the winding body 121 is consumed, the winding body 121 can absorb the electrolyte stored in the above space, which helps to maintain the performance of the battery cell 10.
  • a cavity 1302 is defined in the filling structure 13 .
  • the cavity 1302 is provided so that the filling structure 13 is a hollow structure.
  • the cavity 1302 may be cylindrical or rectangular, etc., which are not listed here one by one.
  • the weight of the filling structure 13 can be reduced, which helps to improve the energy density of the battery cell 10 .
  • the density of the filling structure 13 is less than the density of the electrolyte.
  • the weight of the filling structure 13 can be reduced by opening a cavity 1302 in the filling structure 13, so that the density of the filling structure 13 can be reduced, so that the density of the filling structure 13 is less than the density of the electrolyte.
  • a lighter material can be selected to make the filling structure 13, so that the density of the filling structure 13 is less than the density of the electrolyte.
  • the density of the filling structure 13 is made smaller than the density of the electrolyte.
  • using the filling structure 13 to fill the remaining space in the outer shell 11 can help reduce the weight of the battery cell 10, thereby helping to improve the energy density of the battery cell 10.
  • the distance between the inner wall of the cavity 1302 and the outer wall of the filling structure 13 is in the range of 0.1 mm to 5 mm.
  • dimension L The distance between the inner wall of the cavity 1302 and the outer wall of the filling structure 13 is shown as dimension L in Figures 2 and 4.
  • Dimension L can be 0.2 mm, 0.3 mm, 0.5 mm, 1 mm, 2 mm, 3 mm, 4 mm, etc., as long as it is within the range of 0.1 mm to 5 mm.
  • the distance between the inner wall of the cavity 1302 and the outer wall of the filling structure 13 refers to the shortest distance between the inner wall of the cavity 1302 and the corresponding outer wall of the filling structure 13 , and can also be considered as the wall thickness of the filling structure 13 .
  • the wall thickness range of the filling structure 13 is limited.
  • the wall thickness of the filling structure 13 is not too large, so that the cavity 1302 has a larger volume, which helps to reduce the weight of the filling structure 13 and reduce the density of the filling structure 13.
  • the wall thickness of the filling structure 13 is not too small, which helps to maintain the structural strength of the filling structure 13 and the supporting effect of the filling structure 13 on the winding body 121.
  • the distance between the inner wall of the cavity 1302 and the outer wall of the filling structure 13 is in the range of 0.5 mm to 2 mm.
  • a flame retardant is provided in the cavity 1302, and a weak structure is provided in the filling structure 13.
  • the weak structure is used to be broken by the flame retardant when the temperature of the battery cell 10 reaches a threshold value, so that the flame retardant flows out of the cavity 1302; or, the weak structure is used to be broken by the flame retardant when the pressure of the battery cell 10 reaches a threshold value; or, the weak structure is used to be broken by the flame retardant when both the temperature and pressure of the battery cell 10 reach a threshold value.
  • the structural strength of the weak structure is lower than that of other positions of the filling structure 13, or the melting point of the weak structure is lower than that of other positions of the filling structure 13, or both the structural strength and the melting point of the weak structure are lower than that of other positions of the filling structure 13.
  • the flame retardant in the cavity 1302 breaks through the weak structure and flows out of the cavity 1302 from the rupture at the weak structure of the filling structure 13 to enter the electrolyte and the winding body 121 of the battery cell 10.
  • the temperature and pressure of the battery cell 10 When at least one of the temperature and pressure of the battery cell 10 reaches a threshold, it can be considered that the battery cell 10 is about to experience thermal runaway, that is, the temperature and pressure can be set to be slightly lower than the thermal runaway temperature and pressure of the battery cell 10 .
  • the flame retardant may include a flame retardant.
  • the flame retardant rushes out of the cavity 1302 from the weak structure and enters the electrolyte and the winding body 121 to suppress the thermal runaway of the battery cell 10.
  • the flame retardant is a halogen flame retardant, and specifically at least one of trifluoroethyl carbonate, decabromodiphenyl ether, tetrachlorophthalic anhydride and tetrabromobisphenol A can be used.
  • the flame retardant may also be a phosphorus flame retardant, and specifically at least one of trisphenol phosphate, trichloropropyl phosphate, and trimethylphenyl phosphate can be used.
  • the flame retardant is a mixture of a halogen flame retardant and a phosphorus flame retardant. When a halogen flame retardant and a phosphorus flame retardant are used in combination, the flame retardant has a better flame retardant effect and can effectively suppress the thermal runaway of the battery cell 10.
  • the flame retardant may not include a flame retardant, but may be another type of flame retardant, such as a flame retardant gas.
  • the flame retardant may be a flame retardant and a flame retardant gas, wherein the flame retardant gas may be an inert gas, that is, the cavity 1302 is mixed with the above-mentioned flame retardant and inert gas.
  • the inert gas can increase the gas pressure in the cavity 1302.
  • the flame retardant can more efficiently rush out of the cavity 1302 under the gas pressure formed by the inert gas, so as to quickly rush into the electrolyte and the winding body 121, thereby quickly suppressing the thermal runaway of the battery cell 10.
  • the inert gas has higher safety performance, which helps to improve the safety performance of the battery cell 10.
  • the flame retardant can rush out of the cavity 1302 and into the electrolyte and the winding body 121 before the battery cell 10 undergoes thermal runaway, thereby suppressing the thermal runaway of the battery cell 10 and helping to improve the safety performance of the battery cell 10.
  • the weak structure may be exposed in the space between two adjacent winding bodies 121, specifically as shown in the position C indicated by the arrow in FIG. 4.
  • the weak structure may also be exposed in the space between the inner side wall of the housing 11 and the adjacent winding body 121, specifically as shown in the position D indicated by the arrow in FIG. 4.
  • the weak structure may also be provided at the position where the filling structure 13 abuts against the winding body 121, specifically as shown in the position E indicated by the arrow in FIGS. 2 to 4.
  • the weak structure may also be provided on one side of the filling structure 13 along the second direction Y, and the second direction Y is parallel to the central axis of the winding body 121. It can be understood that the weak structure may be provided at at least one of the above four positions of the filling structure 13.
  • the second direction Y is the direction Y shown in FIG. 1 , FIG. 3 and FIG. 5 .
  • the “space between two adjacent winding bodies 121 ” may be a space enclosed by the outer walls of two adjacent winding bodies 121 and the inner wall of the outer shell 11 , specifically the space A indicated by the arrow in FIG. 4 , or it may be a space enclosed by more than three winding bodies 121 .
  • the space between the inner wall of the outer shell 11 and the adjacent winding body 121 refers to the space enclosed by the inner wall at the corner of the outer shell 11 and the outer wall of the adjacent winding body 121 , specifically the space B indicated by the arrow in FIG. 4 .
  • the weak structure at position C is exposed in space A, and the weak structure at position D is exposed in space B.
  • the flame retardant can be well diffused in the corresponding space to better blend into the electrolyte and the winding body 121, so that the flame retardant effect can be better achieved to suppress the thermal runaway of the battery cell 10.
  • the weak structure is exposed in the corresponding space so that the distance between the weak structure and the winding body 121 is small, that is, the weak structure is located beside the outer wall of the winding body 121. In this way, the weak structure can quickly and efficiently obtain the temperature and pressure of the winding body 121 and the electrolyte to accurately rupture and release the flame retardant, which helps to improve the thermal runaway prevention effect of the battery cell 10.
  • the position where the filling structure 13 abuts against the winding body 121 refers to the position where the filling structure 13 abuts against the outer wall of the winding body 121. That is, the weak structure abuts against the outer wall of the winding body 121. Specifically, position E abuts against the outer wall of the winding body 121. With this arrangement, the weak structure can very accurately obtain the temperature and pressure of the winding and the electrolyte, so that it can very accurately rupture when the battery cell 10 is about to experience thermal runaway, so that the flame retardant can rush out of the cavity 1302 and merge into the electrolyte and the winding body 121.
  • the scheme in which the above-mentioned weak structure is exposed to space A and space B allows the flame retardant to diffuse better through the corresponding space when it rushes out of the cavity 1302, and the flame retardant effect is better.
  • the weak structure is disposed on one side of the filling structure 13 along the second direction Y” can be understood as, in the direction shown in FIG. 1 , the weak structure is disposed on the top or bottom of the filling structure 13, and at this time, the weak structure is also exposed to the corresponding space, which is conducive to the diffusion of the flame retardant in the cavity 1302.
  • the weak structures located at positions C, D, and E are smaller in distance from the winding body 121 than in the present embodiment, and the temperature and pressure of the winding body 121 and the electrolyte obtained by the weak structure are more accurate and efficient.
  • weak structures can be selectively set at multiple positions of the filling structure 13, so that the weak structures can be quickly and accurately ruptured when at least one of the temperature and pressure of the battery cell 10 reaches a threshold value, so that the flame retardant can rush out of the cavity 1302 and merge into the electrolyte and the winding body 121, so as to effectively suppress the thermal runaway of the battery cell 10.
  • the winding body 121 is cylindrical, and the outer shell 11 is a square shell.
  • the winding body 121 is cylindrical. After the pole sheet is wound into the winding body 121, since the positive electrode tab and the negative electrode tab are respectively arranged at the two ends of the square where the central axis of the winding body 121 is located, there is no need to die-cut the positive electrode tab and the negative electrode tab. This makes the battery cell 10 provided in the present embodiment have the advantage of high-speed manufacturing and a larger capacity.
  • the second aspect of the embodiment of the present application provides a battery 100, the battery 100 includes a box 20 and a battery cell 10, and the battery cell 10 is accommodated in the box 20.
  • the battery 100 provided in this embodiment is the same as the battery 100 provided in the first aspect, and the details can be referred to the battery 100 provided in the first aspect, which will not be repeated here.
  • the battery 100 can be used for various energy storage systems that use the battery 100 as a power source or use the battery 100 as an energy storage element.
  • the energy storage system can be an energy storage container or an energy storage cabinet.
  • For the power device please refer to the description of the power device provided in the third aspect of the embodiment of the present application, which will not be repeated here.
  • the box 20 is a structure having a space inside for accommodating the battery cell 10, and the box 20 can adopt a variety of structures.
  • the box 20 includes a second shell 21 and a third shell 22, which cover each other and jointly define a space for accommodating the battery cell 10.
  • the second shell 21 can be a hollow structure with an opening at one end
  • the third shell 22 is a plate-like structure.
  • the third shell 22 covers the open side of the second shell 21, so that the second shell 21 and the third shell 22 jointly define a space for accommodating the battery cell 10; or, the second shell 21 and the third shell 22 can both be hollow structures with an opening at one end, as shown in FIG7 , the open side of the second shell 21 covers the open side of the third shell 22, so that the second shell 21 and the third shell 22 jointly define a space for accommodating the battery cell 10.
  • the box 20 composed of the second shell 21 and the third shell 22 can be in a variety of shapes, such as a cylinder, a cuboid, etc.
  • the number of battery cells 10 can be multiple, and the multiple battery cells 10 can be connected in series, in parallel, or in a mixed connection.
  • the mixed connection means that the multiple battery cells 10 are both connected in series and in parallel.
  • the multiple battery cells 10 can be directly connected in series, in parallel, or in a mixed connection to form a whole, and then the whole formed by the multiple battery cells 10 is accommodated in the box 20; of course, in other embodiments, the multiple battery cells 10 can also be connected in series, in parallel, or in a mixed connection to form multiple modules, and the outer peripheral side of each module is then provided with end plates, side plates and other structures to form a battery module, that is, multiple battery cells 10 form multiple battery modules, and the multiple battery modules are then connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 20.
  • the battery 100 may also include other structures, such as a busbar component for realizing electrical connection between multiple battery cells 10 and multiple battery modules.
  • a filling structure 13 is provided inside the battery cell 10 of the battery 100, so that the filling structure 13 fills the remaining space in the outer shell 11 except for the battery cell assembly 12. This helps to increase the liquid level of the electrolyte, thereby reducing the amount of electrolyte added, thus solving the technical problem of injecting too much electrolyte when assembling the battery cell 10.
  • the third aspect of the embodiment of the present application provides an electric device, which includes a device body and a battery 100.
  • the battery 100 is electrically connected to the device body and is used to supply power to the device body.
  • the electric device includes a battery cell 10, which can be the battery cell 10 involved in the above embodiments.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a vehicle 1000, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, such as a game console, an electric car toy, an electric ship toy, and an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, and a spacecraft, etc.
  • the vehicle 1000 may be a fuel car, a gas car, or a new energy car
  • the new energy car may be a pure electric car, a hybrid car, or an extended-range car, etc.
  • a battery 100 is disposed inside the vehicle 1000, and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 200 and a motor 300, and the controller 200 is used to control the battery 100 to power the motor 300, for example, for starting, navigating, and operating power requirements of the vehicle 1000 during driving.
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • the device body of the electric device includes the controller 200 and the motor 300 mentioned above.
  • a filling structure 13 is provided inside the battery 100 of the electrical device so that the filling structure 13 fills the remaining space in the outer shell 11 except for the battery cell assembly 12. This helps to increase the liquid level of the electrolyte, thereby reducing the amount of electrolyte added, thus solving the technical problem of injecting too much electrolyte when assembling the battery cell 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开一种电池单体(10)、电池(100)及用电装置,用电装置包括电池(100),电池(100)包括电池单体(10),电池单体(10)包括外壳(11)、电芯组件(12)、电解液和填充结构(13),电芯组件(12)包括多个设于外壳(11)中的卷绕体(121);电解液填充于外壳(11)中,且浸润卷绕体(121);填充结构(13)设于外壳(11)中,且抵持于外壳(11)的内侧壁和/或卷绕体(121)的外侧壁。通过采用上述技术方案,以使填充结构(13)能够使得注入外壳(11)中的电解液的量得以减少,以提高电解液的液面高度,从而起到减少电解液的添加量的作用,如此解决了装配电池单体(10)时需注入过多电解液的技术问题。

Description

电池单体、电池及用电装置
交叉引用
本申请要求于2022年10月28日在中华人民共和国国家知识产权局提交的、申请号为202222861001.8、申请名称为“电池单体、电池及用电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,具体涉及一种电池单体、电池及用电装置。
背景技术
当前,为增大电池单体的容量,市面上出现了一些外壳内布置有多个卷绕体的电池单体。然而,这些电池单体中,卷绕体和外壳的内侧壁之间、相邻两个卷绕体和外壳的内侧壁之间、甚至多个卷绕体之间都会围合形成一定的空间,从而使得外壳中具有除放置卷绕体外的较大的剩余空间。这样,在装配电池单体时,需要向外壳中注入较多的电解液才能够使得电解液浸润各卷绕体,如此使得电池单体的制作成本较高。
技术问题
鉴于上述问题,本申请实施例提供一种电池单体、电池及用电装置,旨在解决相关技术中电池单体中需注入过多电解液的技术问题。
技术解决方案
第一方面,本申请实施例提供了一种电池单体,包括:
外壳;
电芯组件,包括多个设于外壳中的卷绕体;
电解液,填充于外壳中,且浸润卷绕体;
填充结构,设于外壳中,且抵持于外壳的内侧壁和/或多个卷绕体的外侧壁。
本申请实施例提供的电池单体,通过将填充结构和电芯组件均设于外壳中,这样,填充结构可占用外壳中除电芯组件外的剩余空间中。如此设置,填充结构能够使得注入外壳中的电解液的量得以减少,以提高电解液的液面高度,从而起到减少电解液的添加量的作用,如此解决了装配电池单体时需注入过多电解液的技术问题。
在一些实施例中,填充结构设于外壳的内侧壁和相邻的卷绕体围合形成的空间中;
和/或,填充结构设于多个卷绕体围合形成的空间中。
通过采用上述技术方案,以使填充结构设于外壳的内侧壁和相邻的卷绕体围合形成的空间、多个卷绕体的外侧壁围合形成的空间这些空间中的至少一个空间中,使得填充结构较好地填充于外壳的剩余空间中,这样有助于实现填充结构对电解液的减量作用。
在一些实施例中,填充结构满足以下关系:
5%<S<35%;
其中,S=填充结构的体积÷电芯组件的体积。
通过采用上述技术方案,以使填充结构相较于电芯组件具有较为合适的体积占比,这样在使得电池单体具有较高的能量密度的基础上,能够使得填充结构较好地实现电解液的减量作用,从而减少电解液的注入量。
在一些实施例中,10%<S<15%。
通过采用上述技术方案,以使电池单体具有较高的能量密度的基础上,能够减少电解液的注入量。
在一些实施例中,填充结构用于抵持卷绕体的一侧凹陷形成多个凹槽,卷绕体限位于凹槽中。
通过采用上述技术方案,一方面,可实现多个卷绕体在外壳中的限位效果,有助于提高电池单体的振动稳定性、安全性。另一方面,可使得填充结构能够较好地填充于多个卷绕体处的剩余空间中,从而较好地实现电解液的减量作用。
在一些实施例中,填充结构包括多个填充件。
通过采用上述技术方案,在布置填充结构时,能够根据外壳的剩余空间中的不同位置、不同大小的空间,以填充对应大小的填充件,以使填充件能够更好地填充于外壳的剩余空间中。并且,根据电池单体的能量密度需求,还可灵活地调整填充件的数量。如此设置,使得填充结构的布置十分灵活,可调整性能非常高。
在一些实施例中,填充结构设于电芯组件沿第一方向的一侧或两侧,第一方向与卷绕体的中心轴线交叉。
通过采用上述技术方案,可根据电池单体的使用状态来对应布置填充结构,这样能够尽可能地减小填充结构的用量,以使得电池单体具有较高的能量密度。
在一些实施例中,填充结构沿第二方向的尺寸小于卷绕体沿第二方向的尺寸,第二方向平行于卷绕体的中心轴线。
通过采用上述技术方案,以使电解液能够存储于填充结构沿第二方向上的一端和外壳的内侧壁、卷绕体的外侧壁之间围合形成空间中,当卷绕体中的电解液消耗时,卷绕体能够吸附存储于上述空间中的电解液,如此有助于维持电池单体的使用性能。
在一些实施例中,填充结构内开设有空腔。
通过采用上述技术方案,在填充结构内部开设空腔,能够减小填充结构的重量,这样有助于提高电池单体的能量密度。
在一些实施例中,填充结构的密度小于电解液的密度。
通过采用上述技术方案,使得填充结构的密度小于电解液的密度,这样,相比于填充电解液,采用填充结构来填充外壳中的剩余空间,能够有助于减小电池单体的重量,从而有助于提高电池单体的能量密度。
在一些实施例中,空腔的内侧壁和填充结构的外侧壁之间的距离范围是0.1mm~5mm。
通过采用上述技术方案,限定了填充结构的壁厚范围,一方面,使得填充结构的壁厚不至于过大,这样可使得空腔具有较大的体积,有助于减轻填充结构的重量,以减小填充结构的密度;并且,还有助于空腔填充更多的下文中涉及的阻燃组,以提高电池单体的安全性能。另一方面,使得填充结构的壁厚不至于过小,这样有助于维持填充结构的结构强度,有助于维持填充结构对卷绕体的支撑效果。
在一些实施例中,空腔内设有阻燃物,填充结构设有薄弱结构,薄弱结构用于在卷绕体的温度和/或压力达到阈值时被阻燃物冲破,使阻燃物流出空腔。
通过采用上述技术方案,以使阻燃物能够电池单体发生热失控前冲出空腔外,并冲入电解液和卷绕体中,从而抑制电池单体的热失控,如此有助于提高电池单体的安全性能。
在一些实施例中,薄弱结构暴露于相邻的两个卷绕体之间的空间中;
和/或,薄弱结构暴露于外壳的内侧壁和相邻的卷绕体之间的空间中;
和/或,薄弱结构设于填充结构与卷绕体抵持的位置;
和/或,薄弱结构设于填充结构沿第二方向上的一侧,第二方向平行于卷绕体的中心轴线。
通过采用上述技术方案,以使填充结构的多个位置上可选择性地设置薄弱结构,以使薄弱结构能够快速、准确地在电池单体的温度和/或压力达到阈值时破裂,以供阻燃物冲出空腔外,并融合于电解液和卷绕体中,以高效地抑制电池单体的热失控。
在一些实施例中,卷绕体呈圆柱形,外壳为方形壳。
通过采用上述技术方案,制作电池单体时,无需对正极极耳和负极极耳进行模切,如此使得本实施例提供的电池单体具有高速制造的优势,且具有较大的容量。
本申请实施例第二方面提供了一种电池,包括:
箱体;
电池单体,电池单体容置于箱体中。
通过采用上述技术方案,在电池的电池单体内部设置填充结构,以使填充结构填充于外壳中除放置电芯组件外的剩余空间中,这样有助于提高电解液的液面高度,从而起到减少电解液的添加量的作用,如此解决了装配电池单体时需注入过多电解液的技术问题。
本申请实施例第三方面提供了一种用电装置,包括装置本体和电池,电池电性连接于装置本体,并用于给装置本体供电。
通过采用上述技术方案,在用电装置的电池内部设置填充结构,以使填充结构填充于外壳中除放置电芯组件外的剩余空间中,这样有助于提高电解液的液面高度,从而起到减少电解液的添加量的作用,如此解决了装配电池单体时需注入过多电解液的技术问题。
附图说明
图1为本申请一些实施例提供的电池单体的分解图;
图2为本申请一些实施例提供的电池单体的截面图;
图3为图1所示的电池单体的部分示意图;
图4为本申请另一些实施例提供的电池单体的截面图;
图5为本申请另一些实施例提供的电池单体的部分示意图;
图6为本申请一些实施例提供的电池的分解图;
图7为本申请一些实施例提供的车辆的示意图。
其中,图中各附图标记:
1000-车辆;100-电池;200-控制器;300-马达;10-电池单体;11-外壳;111-第一壳体;112-端盖;12-电芯组件;121-卷绕体;13-填充结构;1301-凹槽;1302-空腔;131-填充件;20-箱体;21-第二壳体;22-第三壳体;X-第一方向;Y-第二方向。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定,“两个以上”包含两个。相应地,“多组”的含义是两组以上,包含两组。
在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中,字符“/”,一般表示前后关联对象是一种“或”的关系。
相关技术中,电池单体是指存储和输出电能的最小单元。电池单体内具有电极组件,电极组件主要由正极极片和负极极片卷绕或层叠放置形成,且正极极片和负极极片之间设有隔膜。下文中,将由正极极片和负极极片卷绕形成的电极组件统称为卷绕体。
当卷绕体的厚度尺寸过大时,外层的极片(可以是正极极片和/或负极极片)对内层的极片(可以是正极极片和/或负极极片)的包裹性能较差,这样卷绕体容易散开,且电解液难以从外层的极片浸润至内层的极片。当卷绕体沿其中心轴线的延伸方向上的长度尺寸过大时,电池单体的电解液难以从卷绕体的两端浸润至卷绕体的中部。基于此,当前的卷绕体的长度尺寸和厚度尺寸均无法做到非常大,使得电池单体的容量有限。
为解决上述技术问题,以增大电池单体的容量,市面上出现了一些外壳内布置有多个卷绕体的电池单体,也即是,多个卷绕体布置在同一个外壳中,多个卷绕体的设置,增大了所在的电池单体的容量,而无需增大卷绕体的长度尺寸和厚度尺寸。然而,这些电池单体中,卷绕体和外壳的内侧壁之间围合形成一定的空间,和/或,相邻的两个卷绕体和外壳的内侧壁之间围合形成一定的空间,甚至,当外壳中的卷绕体设置为多排时,三个以上卷绕体会围合形成一定的空间,也即是多个卷绕体之间也会围合形成一定的空间,这样,外壳中具有除放置卷绕体外的较大的剩余空间。这样,在装配电池单体的过程中,注入电解液时,电解液需注入至外壳的剩余空间中,才能够使得电解液较好地浸润各卷绕体,也即是,需要向外壳中注入较多的电解液,才能够使得电解液浸润各卷绕体,如此使得电池单体具有较高的制作成本。
基于以上考虑,为了解决上述电池单体中需注入过多电解液的问题,发明人经过深入研究,设计了一种电池单体,即本申请实施例中所提及的电池单体,通过在外壳中设置填充结构,以使填充结构占用外壳中除放置卷绕体外的剩余空间中,这样可提高电解液的液面高度,在装配电池单体时无需注入过多的电解液,从而解决了电解液过多带来的电池单体制作成本高的技术问题。
以下结合具体附图及实施例进行详细说明:
请一并参阅图1和图2,本申请实施例第一方面提供了一种电池单体10,电池单体10是指存储和输出电能的最小单元。其中,电池单体10可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体10可呈圆柱体、扁平体、长方体或其它形状等。
请继续参阅图1和图2,电池单体10包括外壳11、电芯组件12、电解液和填充结构13。电芯组件12包括多个卷绕体121,多个卷绕体121设于外壳11中。电解液填充于外壳11中,且浸润卷绕体121。填充结构13设于外壳11中。填充结构13抵持于外壳11的内侧壁,或者,填充结构13抵持于卷绕体121的外侧壁,或者,填充结构13同时抵持于外壳11的内侧壁和卷绕体121的外侧壁。
外壳11是用于形成电池单体10的内部环境的部件,外壳11的内部环境用于容纳电芯组件12、电解液和填充结构13。外壳11可以采用多种结构,例如,在一些实施例中,如图1所示,外壳11包括第一壳体111和端盖112。第一壳体111和端盖112可以是独立的部件,具体地,第一壳体111具有开口,端盖112盖设于第一壳体111的开口处,以与第一壳体111限定出电池单体10的内部环境,且使电池单体10的内部环境隔绝于外部环境。第一壳体111和端盖112也可以是一体化的结构,具体地,端盖112和第一壳体111之间可以在电芯组件12、填充结构13等入壳前形成一个共同的连接面,当需要封装外壳11的内部时,再使端盖112盖合第一壳体111。其中,第一壳体111可以是圆柱形壳体、方形壳体等形状,具体可以根据电芯组件12的具体形状和尺寸大小来确定。其中,第一壳体111和端盖112的材质也可以是多种,比如铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
在此需要补充的是,端盖112的数量可以是一个。当然,端盖112的数量也可以是两个,如图1所示,两个端盖112分别设于第一壳体111的两端。当端盖112的数量为两个时,两个端盖112均可设置有和电芯组件12电性连接的电极端子,或者,仅一个端盖112设置有和电芯组件12电性连接的电极端子,其中,所述电极端子为电池单体10的电流传输端,并用于输入或输出电池单体10的电能。
卷绕体121是电池单体10中发生电化学反应的部件。其中,卷绕体121主要由正极极片和负极极片卷绕形成,且正极极片和负极极片之间设有隔膜。正极极片和负极极片具有活性物质的部分构成卷绕体121的主体部,正极极片和负极极片不具有活性物质的部分各自构成极耳,正极极片的极耳为正极极耳,负极极片的极耳为负极极耳,正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。其中,极耳为卷绕体121的电流传输端,以用于传输电流。
多个卷绕体121可在外壳11中排成一排,如图1所示;或者,多个卷绕体121也可在外壳11中排成多排,多排卷绕体121的排列方向与每排卷绕体121的多个卷绕体121的分布方向垂直。其中,多个卷绕体121可间隔分布,也可相互抵持。
电解液浸润各卷绕体121,指的是电解液浸润各卷绕体121的正极极片和负极极片。这样,锂离子能够经过电解液运动至正极极片,并嵌入正极极片的正极活性物质,锂离子也能够经过电解液运动至负极极片,并嵌入负极极片的负极活性物质。
填充结构13和电芯组件12均设于外壳11中。可以理解地,填充结构13设于外壳11中除放置电芯组件12外的剩余空间中。其中,剩余空间是指外壳11中除电芯组件12外的空间,也即是电池单体10的残空间。
填充结构13抵持于卷绕体121的外侧壁,是指填充结构13抵持于部分卷绕体121的外侧壁,或者,填充结构13还可抵持于所有卷绕体121的外侧壁。其中,部分卷绕体121可以是一个卷绕体121,也可以是多个卷绕体121。当填充结构13抵持于多个卷绕体121的外侧壁时,填充结构13位于与多个卷绕体121相邻的位置,也即是填充结构13填充于外壳11中的多个位置中,这样可增大填充结构13的体积,以使填充结构13能够有效地实现电解液的减量作用。
“卷绕体121的外侧壁”是指卷绕体121最外层的极片的表面,也即是卷绕体121最外层的极片的大面,而并非是卷绕体121沿中心轴线所在的方向上的端面。可以理解地,“卷绕体121的外侧壁”是指卷绕体121的外表面中,除卷绕体121沿中心轴线所在的方向上的端面以外的表面。其中,卷绕体121的极片绕上述中心轴线卷绕设置。“外壳11的内侧壁”是指和卷绕体121的外侧壁相对的内壁。
填充结构13为熔点高于电池单体10的正常使用温度的物质,这样,当电池单体10在正常使用时,填充结构13保持自身的结构完整性。并且,填充结构13为不溶解于电解液的物质,这样,填充结构13填充于外壳11中,能够阻挡电解液,减小电解液在外壳11中的除放置卷绕体121外的剩余空间中的分布,以使电解液能够尽可能地分布于卷绕体121中,如此能够提高电解液的液面高度。其中,填充结构13的材质可以是多种,比如高分子聚合物树脂、聚烯烃、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚缩醛、聚酰胺、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚醚砜、聚苯醚、聚苯硫醚,聚四氟乙烯和聚乙烯萘中的其中一种或多种。
本申请实施例提供的电池单体10,通过将填充结构13和电芯组件12均设于外壳11中,这样,填充结构13可占用外壳11中除电芯组件12外的剩余空间中。如此设置,使得填充结构13能够占用外壳11的剩余空间中的较大空间,能够使得注入外壳11中的电解液的量得以减少,以提高电解液的液面高度,从而起到减少电解液的添加量的作用,如此解决了装配电池单体10时需注入过多电解液的技术问题。此外,填充结构13抵持于外壳11的内侧壁和/或卷绕体121的外侧壁,这样,卷绕体121可通过填充结构13实现限位、支撑效果,从而使得卷绕体121在外壳11中具有较高的稳定性和振动可靠性,防止卷绕体121在外壳11中晃动。
在一些实施例中,请一并参阅图2至图4,填充结构13可设于外壳11的内侧壁和相邻的卷绕体121围合形成的空间中。或者,填充结构13也可设于多个卷绕体121围合形成的空间中。或者,填充结构13均填充于外壳11的内侧壁和相邻的卷绕体121围合形成的空间以及多个卷绕体121围合形成的空间中。可以理解地,填充结构13可设于上述两种空间中的至少一个空间中。
填充结构13可设于外壳11的内侧壁和相邻的卷绕体121围合形成的空间中。可以理解地,填充结构13可设于外壳11的内侧壁和相邻的两个卷绕体121围合形成的空间中,具体如图4中箭头所指的空间A。填充结构13还可设于外壳11的内侧壁和一个卷绕体121围合形成的空间中,具体如图4中箭头所指的空间B。
当卷绕体121为多个时,至少两个卷绕体121朝向外壳11同一侧的内侧壁,如图2至图5所示,相邻的两个卷绕体121朝向外壳11的内侧壁的一侧与外壳11的内侧壁共同围合形成空间,该空间为上述剩余空间的一部分。其中,位于该空间内的填充结构13可抵持于相邻的两个卷绕体121的外侧壁,也可抵持于外壳11的内侧壁,还可均抵持于相邻的两个卷绕体121的外侧壁和外壳11的内侧壁。其中,此时卷绕体121可以是一排或多排。
外壳11的内侧壁和一个卷绕体121围合形成的空间,是指外壳11的拐角处的内侧壁和位于该处的一个卷绕体121围合形成的空间,如图2至图4所示,该空间为上述剩余空间的一部分。其中,位于该空间内的填充结构13可抵持于外壳11的内侧壁,也可抵持于该卷绕体121的外侧壁,还可同时抵持于该卷绕体121的外侧壁和外壳11的内侧壁。其中,此时卷绕体121的数量可以是一排或多排。
当卷绕体121的数量为多个,且卷绕体121排成多排时,相邻两排的三个以上卷绕体121可围合形成空间,该空间为上述剩余空间的一部分。其中,此时卷绕体121抵持于该三个以上卷绕体121的外侧壁,而并没有抵持外壳11的内侧壁。
通过采用上述技术方案,以使填充结构13设于外壳11的内侧壁和相邻的卷绕体121围合形成的空间、多个卷绕体121的外侧壁围合形成的空间这两种空间中的至少一个空间中,使得填充结构13较好地填充于外壳11的剩余空间中,这样有助于实现填充结构13对电解液的减量作用。
在一些实施例中,请参阅图2,填充结构13满足以下关系:5%<S<35%;
其中,S=填充结构13的体积÷电芯组件12的体积。
其中,电芯组件12的体积是指电芯组件12的所有卷绕体121的体积之和。
上述体积比S的最小值为5%,是考虑到:当填充结构13相较于电芯组件12的体积占比过小时,填充结构13的体积也过小,填充结构13占用外壳11的剩余空间中较小的空间。这样,一方面,填充结构13对电解液的减量作用有限,这样,仍需注入较多的电解液才能够浸润各卷绕体121。另一方面,还会限制下文中填充结构13中开设的空腔1302的体积,进而限制了填充于空腔1302中的阻燃物的量,这样电池单体10的安全性能也随之受限。
上述体积比S的最大值为35%,是考虑到:当填充结构13相较于电芯组件12的体积占比过大时,填充结构13相较于外壳11具有较大的体积占比,相应地,电芯组件12相较于外壳11具有较小的体积占比,这样会使得电池单体10的能量密度降低。
通过采用上述技术方案,以使填充结构13相较于电芯组件12具有较为合适的体积占比,这样在使得电池单体10具有较高的能量密度的基础上,能够使得填充结构13较好地实现电解液的减量作用,从而减少电解液的注入量。
在一些实施例中,10%<S<15%。
通过采用上述技术方案,以使电池单体10具有较高的能量密度的基础上,能够减少电解液的注入量。
在一些实施例中,请一并参阅图2和图3,填充结构13用于抵持卷绕体121的一侧凹陷形成多个凹槽1301,卷绕体121限位于凹槽1301中。
凹槽1301的槽壁和卷绕体121的外侧壁相适配,这样,卷绕体121的外侧壁抵持于凹槽1301的槽壁,以实现填充结构13和卷绕体121的外侧壁之间的抵持效果。
卷绕体121限位于凹槽1301中。可以理解地,一个卷绕体121可限位于一个凹槽1301中。例如,如图2和图3所示,电芯组件12的一侧设有一个填充结构13,填充结构13开设多个凹槽1301,电芯组件12包括一排卷绕体121,填充结构13的凹槽1301的数量与一排卷绕体121的数量相同,一个卷绕体121限位于一个凹槽1301中。或者,一个卷绕体121也可同时限位于多个凹槽1301中。或者,多个卷绕体121也可限位于同一个凹槽1301中。
填充结构13可以是一个整体的结构,也可以分成多段结构,每段结构都开设有上述的凹槽1301。填充结构13可分布于电芯组件12的一侧,也可以分别分布于电芯组件12的多侧。电芯组件12可以包括一排卷绕体121,也可以包括多排卷绕体121。全部卷绕体121都限位于对应的凹槽1301中,或者,仅部分卷绕体121限位于对应的凹槽1301中。
通过采用上述技术方案,一方面,以使卷绕体121限位于凹槽1301中,这样可实现卷绕体121在外壳11中的限位效果,尽可能地避免多个卷绕体121之间相互晃动、挤压,有助于提高电池单体10的振动稳定性、安全性。另一方面,填充结构13开设凹槽1301避开卷绕体121,且抵持卷绕体121的外侧壁,这样可使得填充结构13能够较好地填充于卷绕体121处的剩余空间中,从而较好地实现电解液的减量作用。
在一些实施例中,请参阅图4,填充结构13包括多个填充件131。填充件131抵持于卷绕体121的外侧壁;或者,填充件131抵持于外壳11的内侧壁;或者,填充件131同时抵持于卷绕体121的外侧壁和外壳11的内侧壁。
填充结构13的多个填充件131中,所有填充件131均抵持于外壳11的内侧壁,且所有填充件131还均抵持于卷绕体121的外侧壁。也即是,每个填充件131均与外壳11的内侧壁、卷绕体121的外侧壁抵持,则每个填充件131都可实现对应的卷绕体121的限位效果。或者,如图4所示,所有填充件131均抵持于卷绕体121的外侧壁,部分填充件131抵持于外壳11的内侧壁,这样,未抵持外壳11的内侧壁的填充件131背向卷绕体121的一侧可抵持于另一个填充件131,也即是,多个填充件131依次抵持,以使多个填充件131构成的整体抵持于卷绕体121的外侧壁和外壳11的内侧壁,从而实现对卷绕体121的限位效果。或者,在其他的实施例中,部分填充件131抵持于卷绕体121的外侧壁,且部分填充件131抵持于外壳11的内侧壁。
其中,如图4所示,填充件131可以设置圆柱形的棒材结构,棒材结构的外侧壁为圆弧面,可减小填充件131对卷绕体121的损伤。此外,填充件131也可以设置为长方体或其他形状的结构,此处不一一限定。
其中,多个填充件131可设置为大小相同的结构;当然,多个填充件131也可设置为大小不同的结构,如图4所示。
通过采用上述技术方案,在布置填充结构13时,能够根据外壳11的剩余空间中的不同位置、不同大小的空间,以在对应的位置配置对应大小的填充件131,以使填充件131能够更好地填充于外壳11的剩余空间中。并且,根据电池单体10的能量密度需求,还可灵活地调整填充件131的数量。如此设置,使得填充结构13的布置十分灵活,可调整性能非常高。
在一些实施例中,请一并参阅图2至图4,填充结构13设于电芯组件12沿第一方向X的一侧;或者,填充结构13设于电芯组件12沿第一方向X的两侧。其中,第一方向X与卷绕体121的中心轴线交叉。
第一方向X和卷绕体121的中心轴线交叉,是指第一方向X和卷绕体121的中心轴线不平行,而是形成大于0°且小于180°的夹角。在一些实施例中,如图1和图3所示,第一方向X和卷绕体121的中心轴线垂直。其中,第一方向X如图1至图4示意的方向X。
当电池单体10在平躺状态下使用时,具体如图2示意的状态,可以理解地,卷绕体121的中心轴线与地面、平台等平面大致平行。此时,可使第一方向X与竖直方向大致平行,具体使得填充结构13位于电芯组件12的底部。这样,填充结构13可提高电解液的液面高度,从而使得电解液尽可能地向上提升,并浸润各卷绕体121。基于此,仅需在电芯组件12的一侧设置填充结构13,而无需在电芯组件12的另一侧设置填充结构13,这样减小了填充结构13的用量,能够尽可能地提高电池单体10的能量密度,且电解液也不会填充于电芯组件12的另一侧的空间中,同时也减小了电解液的用量。
当电池单体10在竖立状态使用时,具体如图1示意的状态,可以理解地,卷绕体121的中心轴线与竖直方向大致平行。此时,可将第一方向X与水平方向大致平行,具体使得电芯组件12沿水平方向的相对两侧都设置填充结构13,这样能够提高电解液的液面高度,以减少电解液的用量。
通过采用上述技术方案,可根据电池单体10的使用状态来对应布置填充结构13,这样能够尽可能地减小填充结构13的用量,以使得电池单体10具有较高的能量密度。
在一些实施例中,请一并参阅图5,填充结构13沿第二方向Y的尺寸小于卷绕体121沿第二方向Y的尺寸,第二方向Y平行于卷绕体121的中心轴线。
在第二方向Y上,填充结构13的尺寸小于卷绕体121的尺寸,以使卷绕体121沿第二方向Y伸出于填充结构13外,如图5所示。其中,第二方向Y如图1和图3示意的方向Y。
其中,如图1和图3所示,第二方向Y为电池单体10的长度方向,第一方向X为电池单体10的厚度方向,其中,电池单体10的宽度方向如图1和图3和示意的方向Z。当然,第二方向Y也可以是电池单体10的宽度方向或厚度方向,相应地,第一方向X也可以是电池单体10的长度方向或宽度方向等,具体可根据实际的设计需求设计。
如此设置,对于位于外壳11的内侧壁和卷绕体121的外侧壁之间的填充结构13,填充结构13沿第二方向Y上的一端和外壳11的内侧壁、卷绕体121的外侧壁之间围合形成空间,注入电解液时,电解液能够存储于该空间中。这样,当卷绕体121中的电解液消耗时,卷绕体121能够吸附存储于上述空间中的电解液,如此有助于维持电池单体10的使用性能。
在一些实施例中,请一并参阅图2和图4,填充结构13内开设有空腔1302。
空腔1302的设置,以使填充结构13为空心结构。
其中,空腔1302可以是圆柱状,也可以是长方体状等,在此不一一列举。
通过采用上述技术方案,在填充结构13内部开设空腔1302,能够减小填充结构13的重量,这样有助于提高电池单体10的能量密度。
在一些实施例中,填充结构13的密度小于电解液的密度。
其中,可通过在填充结构13内开设空腔1302,以减小填充结构13的重量,这样能够减小填充结构13的密度,以使填充结构13的密度小于电解液的密度。或者,还可以选择重量较轻的材料来制作填充结构13,以使填充结构13的密度小于电解液的密度。
通过采用上述技术方案,使得填充结构13的密度小于电解液的密度,这样,相比于填充电解液,采用填充结构13来填充外壳11中的剩余空间,能够有助于减小电池单体10的重量,从而有助于提高电池单体10的能量密度。
在一些实施例中,请一并参阅图2和图4,空腔1302的内侧壁和填充结构13的外侧壁之间的距离范围是0.1mm~5mm。
空腔1302的内侧壁和填充结构13的外侧壁之间的距离如图2和图4中示意的尺寸L,尺寸L可以是0.2 mm、0.3 mm、0.5 mm、1 mm、2 mm、3 mm、4 mm等,只要在0.1mm~5mm的范围内即可。
空腔1302的内侧壁和填充结构13的外侧壁之间的距离是指空腔1302的内侧壁和填充结构13对应的外侧壁之间的最短距离,也可以认为是填充结构13的壁厚。
通过采用上述技术方案,限定了填充结构13的壁厚范围,一方面,使得填充结构13的壁厚不至于过大,这样可使得空腔1302具有较大的体积,有助于减轻填充结构13的重量,以减小填充结构13的密度。并且,还有助于空腔1302填充更多的下文中涉及的阻燃组,以提高电池单体10的安全性能。另一方面,使得填充结构13的壁厚不至于过小,这样有助于维持填充结构13的结构强度,有助于维持填充结构13对卷绕体121的支撑效果。
在一些实施例中,空腔1302的内侧壁和填充结构13的外侧壁之间的距离范围是0.5mm~2mm。
在一些实施例中,空腔1302内设有阻燃物,填充结构13设有薄弱结构。薄弱结构用于在电池单体10的温度达到阈值时被阻燃物冲破,使阻燃物流出空腔1302外;或者,薄弱结构用于在电池单体10的压力达到阈值时被阻燃物冲破;或者,薄弱结构用于在电池单体10的温度和压力均达到阈值时被阻燃物冲破。
薄弱结构的结构强度相较于填充结构13其他位置更低,或者,薄弱结构的熔点相较于填充结构13其他位置更低,或者,薄弱结构的结构强度和熔点均相较于填充结构13其他位置更低。当电池单体10的温度和压力的至少之一达到阈值时,空腔1302中的阻燃物冲破薄弱结构,并从填充结构13的薄弱结构处的破裂口流出空腔1302,以进入电池单体10的电解液和卷绕体121。
其中,当电池单体10的温度和压力的至少之一达到阈值时,可以认为是该电池单体10即将发生热失控,也即是可将该温度和压力设置为稍微小于电池单体10的热失控温度和压力。
阻燃物可以包括阻燃剂。当电池单体10的温度和压力的至少之一达到阈值时,阻燃剂从薄弱结构冲出空腔1302,并进入电解液和卷绕体121中,以抑制电池单体10的热失控。其中,该阻燃剂是卤系阻燃剂,具体可选用三氟乙基碳酸酯、十溴联苯醚、四氯邻苯二甲酸酐和四溴双酚A中的至少一种。该阻燃剂也可以是磷系阻燃剂,具体可选用磷酸三苯酚、磷酸三氯丙酯,磷酸三甲基苯酯中的至少一种。或者,该阻燃剂是卤系阻燃剂和磷系阻燃剂的混合物。当卤系阻燃剂和磷系阻燃剂混合使用时,阻燃剂的阻燃效果更佳,能够有效抑制电池单体10的热失控。
或者,阻燃物可以不包括阻燃剂,而是其他类型的阻燃物,比如阻燃气体。
或者,阻燃物可以同时阻燃剂和阻燃气体,其中该阻燃气体可以是惰性气体,也即是空腔1302中混合有上述的阻燃剂和惰性气体。如此设置,惰性气体能够增大空腔1302中的气压,当电池单体10的温度和压力的至少之一达到阈值时,也即是电池单体10即将发生热失控时,阻燃剂能够在惰性气体形成的气压下更加高效地冲出空腔1302外,以快速冲入电解液和卷绕体121中,从而快速地抑制电池单体10的热失控。并且,惰性气体相较于其他气体而言,安全性能更高,有助于提高电池单体10的安全性能。
通过采用上述技术方案,以使阻燃物能够电池单体10发生热失控前冲出空腔1302外,并冲入电解液和卷绕体121中,从而抑制电池单体10的热失控,如此有助于提高电池单体10的安全性能。
在一些实施例中,请一并参阅图2至图4,薄弱结构可暴露于相邻的两个卷绕体121之间的空间中,具体如图4中箭头所指的位置C。薄弱结构还可暴露于外壳11的内侧壁和相邻的卷绕体121之间的空间中,具体如图4中箭头所指的位置D。薄弱结构还可设于填充结构13与卷绕体121抵持的位置,具体如图2至图4中箭头所指的位置E。薄弱结构还可设于填充结构13沿第二方向Y上的一侧,第二方向Y平行于卷绕体121的中心轴线。可以理解地,填充结构13的上述四个位置中的至少一个位置可设置薄弱结构。
其中,第二方向Y如图1、图3和图5示意的方向Y。
“相邻的两个卷绕体121之间的空间”可以是相邻的两个卷绕体121的外侧壁和外壳11的内侧壁围合形成的空间,具体如图4中箭头所指的空间A,也可以是三个以上卷绕体121共同围合形成的空间。
“外壳11的内侧壁和相邻的卷绕体121之间的空间”是指外壳11的拐角处的内侧壁和相邻的卷绕体121的外侧壁围合形成的空间,具体如图4中箭头所指的空间B。
其中,位置C处的薄弱结构暴露于空间A中,位置D处的薄弱结构暴露于空间B中。这样,当电池单体10即将发生热失控时,阻燃物冲破薄弱结构,以冲出空腔1302外时,阻燃物能够在对应的空间中较好地扩散,以更好地融合于电解液和卷绕体121中,从而能够较好地实现阻燃效果,以抑制电池单体10的热失控。并且,薄弱结构暴露于对应的空间中,以使薄弱结构和卷绕体121之间的距离较小,也即是薄弱结构位于卷绕体121的外侧壁旁侧。这样,薄弱结构能够快速、高效地获取卷绕体121和电解液的温度、压力,以准确地进行破裂,从而释放阻燃物,这样有助于提高电池单体10的热失控预防效果。
“填充结构13与卷绕体121抵持的位置”是指填充结构13的抵持于卷绕体121的外侧壁的位置。也即是,该薄弱结构抵持于卷绕体121的外侧壁。具体地,位置E抵持于卷绕体121的外侧壁。如此设置,薄弱结构能够非常准确地获取卷绕和电解液的温度、压力,从而非常准确地在电池单体10即将发生热失控时发生破裂,以供阻燃物冲出空腔1302外,并融合于电解液和卷绕体121。其中,上述薄弱结构暴露于空间A和空间B的方案相较于本方案来说,阻燃物冲出空腔1302外时,能够更好地通过对应的空间进行扩散,阻燃效果更好。
“薄弱结构设于填充结构13沿第二方向Y上的一侧”可以理解为,在图1示意的方向上,薄弱结构设于填充结构13的顶部或底部,此时,薄弱结构也暴露于对应的空间中,这样利于空腔1302中的阻燃物的扩散。其中,上述位于位置C、位置D、位置E处的薄弱结构相较于本实施例来说,薄弱结构和卷绕体121之间的距离更小,薄弱结构获取的卷绕体121和电解液的温度和压力的更加准确、高效。
通过采用上述技术方案,以使填充结构13的多个位置上可选择性地设置薄弱结构,以使薄弱结构能够快速、准确地在电池单体10的温度和压力的至少之一达到阈值时破裂,以供阻燃物冲出空腔1302外,并融合于电解液和卷绕体121中,以高效地抑制电池单体10的热失控。
在一些实施例中,请一并参阅图1至图5,卷绕体121呈圆柱形,外壳11为方形壳。
相关技术中,对于呈方形的卷绕体121来说,当极片完成卷绕工作后,由于正极极耳和负极极耳设于卷绕体121的中心轴线所在方形的同一端,则需要对正极极耳和负极极耳进行模切工作,以使所有极片的正极极耳重合,且使所有极片的负极极耳重合。
本实施例中,卷绕体121呈圆柱形,极片卷绕成卷绕体121后,由于正极极耳和负极极耳分别设于卷绕体121的中心轴线所在方形的两端,如此无需对正极极耳和负极极耳进行模切,如此使得本实施例提供的电池单体10具有高速制造的优势,且具有较大的容量。
请参阅图6,本申请实施例第二方面提供了一种电池100,该电池100包括箱体20和电池单体10,电池单体10容置于箱体20中。其中,本实施例提供的电池100与第一方面提供的电池100相同,具体可参考第一方面提供的电池100,在此不再赘述。
电池100可以用于使用电池100作为电源的用电或者使用电池100作为储能元件的各种储能系统。储能系统可以是储能集装箱或储能电柜。关于用电装置可以参考本申请实施例第三方面提供的用电装置中的描述,在此先不赘述。
如图6所示,箱体20为内部具有用于容纳电池单体10的空间的结构,箱体20可以采用多种结构。在一些实施例中,箱体20包括第二壳体21和第三壳体22,第二壳体21和第三壳体22相互盖合,并共同限定出容纳电池单体10的空间。其中,第二壳体21可以是一端具有开口的空心结构,第三壳体22为板状结构,第三壳体22盖合于第二壳体21的开口侧,以使第二壳体21和第三壳体22共同限定出用于容纳电池单体10的空间;或者,第二壳体21和第三壳体22均可以是一端具有开口的空心结构,如图7所示,第二壳体21的开口侧盖合于第三壳体22的开口侧,以使第二壳体21和第三壳体22共同限定出用于容纳电池单体10的空间。此外,第二壳体21和第三壳体22组成的箱体20可以是多种形状,比如圆柱体、长方体等。
在电池100中,电池单体10的数量可以是多个,多个电池单体10之间可串联、并联或混联,混联是指多个电池单体10之间既有串联又有并联。在一些实施例中,如图6所示,多个电池单体10之间可直接串联、并联或混联形成一个整体,然后再将多个电池单体10构成的整体容纳于箱体20中;当然,在另一些实施例中,多个电池单体10还可先串联、并联或混联形成多个模块,每个模块的外周侧再设置端板、侧板等结构,以形成电池模组,也即是多个电池单体10组成多个电池模组,多个电池模组再串联、并联或混联形成一个整体,并容纳于箱体20中。此外,电池100还可以包括其他结构,例如用于实现多个电池单体10之间、多个电池模组之间的电性连接的汇流部件。
通过采用上述技术方案,在电池100的电池单体10内部设置填充结构13,以使填充结构13填充于外壳11中除放置电芯组件12外的剩余空间中,这样有助于提高电解液的液面高度,从而起到减少电解液的添加量的作用,如此解决了装配电池单体10时需注入过多电解液的技术问题。
请参阅图7,本申请实施例第三方面提供了一种用电装置,该用电装置包括装置本体和电池100,电池100电性连接于装置本体,并用于给装置本体供电。或者,用电装置包括电池单体10,该电池单体10可以是上述各实施例中涉及的电池单体10。
用电装置可以是但不限于手机、平板、笔记本电脑、电动玩具、电动工具、车辆1000、轮船、航天器等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等。其中,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。
如图7所示,车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
其中,当用电装置为车辆1000时,用电装置的装置本体包括上述的控制器200和马达300。
通过采用上述技术方案,在用电装置的电池100内部设置填充结构13,以使填充结构13填充于外壳11中除放置电芯组件12外的剩余空间中,这样有助于提高电解液的液面高度,从而起到减少电解液的添加量的作用,如此解决了装配电池单体10时需注入过多电解液的技术问题。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种电池单体(10),其中,包括:
    外壳(11);
    电芯组件(12),包括多个设于所述外壳(11)中的卷绕体(121);
    电解液,填充于所述外壳(11)中,且浸润所述卷绕体(121);
    填充结构(13),设于所述外壳(11)中,且抵持于所述外壳(11)的内侧壁和/或所述卷绕体(121)的外侧壁。
  2. 如权利要求1所述的电池单体(10),其中,所述填充结构(13)设于所述外壳(11)的内侧壁和相邻的所述卷绕体(121)围合形成的空间中。
  3. 如权利要求1或2所述的电池单体(10),其中,所述填充结构(13)设于多个所述卷绕体(121)围合形成的空间中。
  4. 如权利要求1-3任一项所述的电池单体(10),其中,所述填充结构(13)满足以下关系:
    5%<S<35%;
    其中,S=所述填充结构(13)的体积÷所述电芯组件(12)的体积。
  5. 如权利要求4所述的电池单体(10),其中,10%<S<15%。
  6. 如权利要求1-5任一项所述的电池单体(10),其中,所述填充结构(13)用于抵持所述卷绕体(121)的一侧凹陷形成多个凹槽(1301),所述卷绕体(121)限位于所述凹槽(1301)中。
  7. 如权利要求1-6任一项所述的电池单体(10),其中,所述填充结构(13)包括多个填充件(131)。
  8. 如权利要求1-7任一项所述的电池单体(10),其中,所述填充结构(13)设于所述电芯组件(12)沿第一方向(X)的一侧或两侧,所述第一方向(X)与所述卷绕体(121)的中心轴线交叉。
  9. 如权利要求1-8任一项所述的电池单体(10),其中,所述填充结构(13)沿第二方向(Y)的尺寸小于所述卷绕体(121)沿所述第二方向(Y)的尺寸,所述第二方向(Y)平行于所述卷绕体(121)的中心轴线。
  10. 如权利要求1-9任一项所述的电池单体(10),其中,所述填充结构(13)内开设有空腔(1302)。
  11. 如权利要求10所述的电池单体(10),其中,所述填充结构(13)的密度小于所述电解液的密度。
  12. 如权利要求10或11所述的电池单体(10),其中,所述空腔(1302)的内侧壁和所述填充结构(13)的外侧壁之间的距离范围是0.1mm~5mm。
  13. 如权利要求10-12任一项所述的电池单体(10),其中,所述空腔(1302)内设有阻燃物,所述填充结构(13)设有薄弱结构,所述薄弱结构用于在所述卷绕体(121)的温度和/或压力达到阈值时被所述阻燃物冲破,使所述阻燃物流出所述空腔(1302)。
  14. 如权利要求13所述的电池单体(10),其中,所述薄弱结构暴露于相邻的两个所述卷绕体(121)之间的空间中。
  15. 如权利要求13或14所述的电池单体(10),其中,所述薄弱结构暴露于所述外壳(11)的内侧壁和相邻的所述卷绕体(121)之间的空间中。
  16. 如权利要求13-15任一项所述的电池单体(10),其中,所述薄弱结构设于所述填充结构(13)与所述卷绕体(121)抵持的位置。
  17. 如权利要求13-16任一项所述的电池单体(10),其中,所述薄弱结构设于所述填充结构(13)沿第二方向(Y)上的一侧,所述第二方向(Y)平行于所述卷绕体(121)的中心轴线。
  18. 如权利要求1-17任一项所述的电池单体(10),其中,所述卷绕体(121)呈圆柱形,所述外壳(11)为方形壳。
  19. 一种电池(100),其中,包括:
    箱体(20);
    如权利要求1-18任一项所述的电池单体(10),所述电池单体(10)容置于所述箱体(20)中。
  20. 一种用电装置,其中,包括装置本体和如权利要求19所述的电池(100),所述电池(100)电性连接于所述装置本体,并用于给所述装置本体供电;或者,包括如权利要求1-18任一项所述的电池单体(10)。
PCT/CN2023/070372 2022-10-28 2023-01-04 电池单体、电池及用电装置 WO2024087391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222861001.8 2022-10-28
CN202222861001.8U CN218414938U (zh) 2022-10-28 2022-10-28 电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024087391A1 true WO2024087391A1 (zh) 2024-05-02

Family

ID=85004669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070372 WO2024087391A1 (zh) 2022-10-28 2023-01-04 电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN218414938U (zh)
WO (1) WO2024087391A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209401692U (zh) * 2019-01-25 2019-09-17 宁德时代新能源科技股份有限公司 二次电池
CN112242583A (zh) * 2019-07-16 2021-01-19 福建福夏科技有限责任公司 一种锂电池的软包壳体及应用其的软包锂电池
CN214254549U (zh) * 2020-11-11 2021-09-21 宁德新能源科技有限公司 电化学装置及电子装置
CN216120503U (zh) * 2021-08-30 2022-03-22 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209401692U (zh) * 2019-01-25 2019-09-17 宁德时代新能源科技股份有限公司 二次电池
CN112242583A (zh) * 2019-07-16 2021-01-19 福建福夏科技有限责任公司 一种锂电池的软包壳体及应用其的软包锂电池
CN214254549U (zh) * 2020-11-11 2021-09-21 宁德新能源科技有限公司 电化学装置及电子装置
CN216120503U (zh) * 2021-08-30 2022-03-22 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN218414938U (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
KR101253671B1 (ko) 리튬 이차전지 및 그 제조방법
JP2022543185A (ja) 電池、その関連装置、製造方法及び製造機器
KR101770334B1 (ko) 보호회로 부재가 내장되어 있는 전지셀 및 그 제조 방법
JP7483300B2 (ja) 連鎖発火を防止する電池モジュールの製造方法
WO2023142894A1 (zh) 电池单体、电池及用电装置
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
WO2023078109A1 (zh) 一种电池冷却结构、电池、用电装置
KR102308423B1 (ko) 형상 기억 합금체가 형성되어 있는 탑 캡을 구비하는 전지셀
WO2023155730A1 (zh) 用于电池单体的底托、电池单体、电池和用电设备
US20220376371A1 (en) Electrode assembly, battery cell, battery, device, manufacturing method, and manufacturing device
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
WO2024087391A1 (zh) 电池单体、电池及用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
EP4235922A1 (en) Battery box, battery, electrical device, method and device for preparing battery
WO2022170492A1 (zh) 电池、用电装置、制备电池的方法和设备
KR20230121108A (ko) 배터리, 전기기기, 배터리를 제조하기 위한 방법 및장비
CN219610664U (zh) 电池单体、电池及用电装置
CN217134621U (zh) 端盖组件、电池单体、电池及用电设备
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
WO2024092965A1 (zh) 隔离板组件、电池模组、电池包、用电装置
WO2024040837A1 (zh) 端盖组件、电池单体、电池及用电装置
CN219419410U (zh) 电池和具有其的用电装置
CN220984602U (zh) 一种电池单体、电池及用电装置
WO2024077480A1 (zh) 转接片、电池单体、电池及用电装置
CN218939866U (zh) 电池和用电装置