WO2024087162A1 - 一种两级拓扑驱动供电电路 - Google Patents

一种两级拓扑驱动供电电路 Download PDF

Info

Publication number
WO2024087162A1
WO2024087162A1 PCT/CN2022/128221 CN2022128221W WO2024087162A1 WO 2024087162 A1 WO2024087162 A1 WO 2024087162A1 CN 2022128221 W CN2022128221 W CN 2022128221W WO 2024087162 A1 WO2024087162 A1 WO 2024087162A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
bridge arm
output
rectifier
voltage
Prior art date
Application number
PCT/CN2022/128221
Other languages
English (en)
French (fr)
Inventor
漆宇
刘斌
窦泽春
谢岳城
孙康康
陈燕平
忻兰苑
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to PCT/CN2022/128221 priority Critical patent/WO2024087162A1/zh
Publication of WO2024087162A1 publication Critical patent/WO2024087162A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to the technical field of power supply driven by semiconductor power devices in medium and high voltage converters, and in particular to a two-stage topology driving power supply circuit.
  • the drive devices of semiconductor power devices such as insulated gate bipolar transistors (IGBT) require positive and negative power supplies.
  • the drive devices of semiconductor power devices belong to the high voltage side.
  • the primary and secondary insulation withstand voltages of the power supply circuit for the drive devices of semiconductor power devices need to meet high voltage insulation.
  • the insulation withstand voltage of existing optocouplers does not meet this requirement. Therefore, the control power supply solution that samples the output voltage from the secondary side and feeds it back to the primary side is no longer applicable.
  • the power supply circuits of semiconductor power device drivers in medium and high voltage converters all use isolated topology and direct open-loop control to convert the input voltage into the positive and negative voltages required to drive the IGBT.
  • open-loop control is simple, it will sacrifice system stability and affect the dynamic performance and anti-interference performance of the drive circuit.
  • each bridge arm requires a control power supply, and three bridge arms + 1 chopper bridge arm require four drive control power supplies, which is costly.
  • the secondary output voltage regulation accuracy varies within a range of ⁇ 5%, which has a greater impact on the secondary output voltage regulation accuracy.
  • the present invention proposes a two-stage topology drive power supply circuit, which can be used to power semiconductor power device drive devices in medium and high voltage converters.
  • a two-stage topology drive power supply circuit which can be used to power semiconductor power device drive devices in medium and high voltage converters.
  • the power supply circuit includes: a first-level topology circuit and a second-level topology circuit.
  • the first-stage topology circuit is a non-isolated DC-DC circuit, an input end of which is the input end of the power supply circuit, and an output end is connected to the input end of the second-stage topology circuit.
  • the second-stage topology circuit includes: a first switch tube, a second switch tube, at least one transformer and multiple rectification output circuits; the transformer includes a primary coil and multiple secondary coils; the primary coil includes a first primary coil and a second primary coil connected in series, the first end of the first switch tube and the first end of the second switch tube are connected to a control signal, the second end of the first switch tube is connected to the first end of the first primary coil, the second end of the first primary coil is connected to the first end of the second primary coil and the first-stage topology circuit, the second end of the second switch tube is connected to the second end of the second primary coil, and the third end of the first switch tube and the third end of the second switch tube are grounded; any of the secondary coils is output after passing through the rectification output circuit, and is used to drive one of the A-phase bridge arm, the B-phase bridge arm, the C-phase bridge arm and the chopper bridge arm.
  • the second-stage topology circuit includes 4 transformers, each of the transformers includes 4 secondary coils, and the rectifier output circuit is a first rectifier output circuit, wherein any two of the secondary coils are connected to one of the first rectifier output circuits to output the upper bridge arm drive voltage or the lower bridge arm drive voltage of one of the A-phase bridge arm, the B-phase bridge arm, the C-phase bridge arm or the chopper bridge arm.
  • the second-stage topology circuit includes a transformer, the transformer includes 16 secondary coils, the rectifier output circuit is a first rectifier output circuit, any two of the secondary coils are connected to one of the first rectifier output circuits, and outputs an upper bridge arm drive voltage or a lower bridge arm drive voltage of one of the A-phase bridge arm, B-phase bridge arm, C-phase bridge arm or chopper bridge arm.
  • any two of the secondary coils are a first secondary coil and a second secondary coil
  • the first rectification output circuit includes: a first rectification circuit, a second rectification circuit, a first output circuit and a second output circuit; the first secondary coil is connected to the first rectification circuit, and outputs a positive output voltage through the first output circuit; the second secondary coil is connected to the second rectification circuit, and outputs a negative output voltage through the second output circuit, and the difference between the positive output voltage and the negative output voltage is the upper bridge arm drive voltage or the lower bridge arm drive voltage.
  • first rectifier circuit and the second rectifier circuit are full-bridge rectifier circuits, one output end of the full-bridge rectifier circuit outputs the positive output voltage or is grounded, and the other output end is grounded or outputs the negative output voltage.
  • the first output circuit includes a first capacitor and a first diode, one end of the first capacitor is connected to the cathode of the first diode and outputs the positive output voltage, and the other end of the first capacitor and the anode of the first diode are grounded;
  • the second output circuit includes a second capacitor and a second diode, one end of the second capacitor is grounded to the cathode of the second diode, the other end of the second capacitor is connected to the anode of the second diode, and outputs the negative output voltage.
  • the second-stage topology circuit includes a transformer, the transformer includes 8 secondary coils, the rectifier output circuit is a second rectifier output circuit, any one of the secondary coils is connected to one of the second rectifier output circuits, and outputs an upper bridge arm drive voltage or a lower bridge arm drive voltage of one of the A-phase bridge arm, B-phase bridge arm, C-phase bridge arm or chopper bridge arm.
  • the second rectifier output circuit includes: a third rectifier circuit and a third output circuit connected to the third rectifier circuit, the third rectifier circuit is a full-bridge rectifier circuit, and the third output circuit includes: a third capacitor, a third diode, a fourth capacitor, a fifth capacitor, a fourth diode and a first voltage regulator; the cathode of the third diode is connected to the positive output end of the third rectifier circuit and the cathode of the first voltage regulator, the anode of the third diode is connected to the negative output end of the third rectifier circuit and the anode of the fourth diode, the anode of the first voltage regulator and the cathode of the fourth diode are grounded, the third capacitor is connected in parallel to both ends of the third diode, the fourth capacitor is connected in parallel to both ends of the first voltage regulator, and the fifth capacitor is connected in parallel to both ends of the fourth diode.
  • the second-stage topology circuit includes a transformer, the transformer includes 5 secondary coils, the rectifier output circuit is a third rectifier output circuit, any one of the secondary coils is connected to one of the third rectifier output circuits, and outputs the upper bridge arm driving voltage of the A-phase bridge arm, the upper bridge arm driving voltage of the B-phase bridge arm, the upper bridge arm driving voltage of the C-phase bridge arm, the upper bridge arm driving voltage of the chopper bridge arm, or the lower bridge arm driving voltage of all bridge arms.
  • the first-stage topology circuit is any one of a Sepic circuit, a Buck circuit, a Boost circuit and a Zeta circuit.
  • the power supply circuit provided by the present invention adopts a two-stage topology, and the circuit combination form is flexible and changeable, and the configurability is strong. It can be applied to scenes with different input voltages, and can realize the normalization of the primary input voltage of the transformer, and realize the unified design of the transformer; at the same time, by adjusting the primary connection mode of the transformer, the primary side of the transformer adopts parallel connection, which can greatly reduce the number of primary circuit power supplies, reduce costs, and improve power density, stability and reliability. In addition, by adjusting the connection mode of the secondary side of the transformer and the rectifier output circuit, the difficulty of transformer manufacturing can be further reduced, and the number of transformers can be reduced.
  • FIG. 1 is a circuit topology diagram of the first embodiment.
  • FIG. 2 is a circuit topology diagram of the second embodiment.
  • FIG. 3 is a circuit topology diagram of the third embodiment.
  • FIG. 4 is a circuit topology diagram of the fourth embodiment.
  • the power supply circuit topology diagram of the first embodiment is shown in FIG1 .
  • the circuit is used to supply power to a power semiconductor drive device, such as supplying power to an IGBT drive device of an A, B, C three-phase bridge arm and a chopper bridge arm in a three-phase two-level converter.
  • the power supply circuit includes: a first-level topology circuit and a second-level topology circuit.
  • the first-level topology circuit is a non-isolated DC-DC circuit, whose input end is the input end of the power supply circuit, and whose output end is connected to the input end of the second-level topology circuit.
  • the second-level topology circuit includes: a first switch tube Q3, a second switch tube Q4, at least one transformer, and a plurality of rectifier output circuits.
  • the first-level topology circuit is any one of a single-ended primary inductor converter (single endedprimary inductor converter, sepic) circuit, a Buck circuit, a Boost circuit, and a Zeta circuit.
  • the following description is taken as an example of a first-level topology circuit being a sepic circuit.
  • the first-level topology circuit includes: a diode D100, an inductor L1, a capacitor C1, a switch tube Q1, an inductor L2, a diode D101, and a capacitor C2.
  • the anode of diode D100 is connected to the positive end of the power supply, and the anode is connected to the drain of switch tube Q1 through inductor L1.
  • the drain of switch tube Q1 is also connected to the anode of diode D101 through capacitor C1.
  • the cathode of diode D101 is connected to one end of capacitor C2 and the input end of the second-stage topological circuit, and the anode of diode D101 is also connected to one end of inductor L2.
  • the gate of switch tube Q1 is connected to the control signal, and the source of switch tube Q1, the other end of inductor L2 and the other end of capacitor C2 are grounded.
  • Any transformer includes a primary coil and four secondary coils, wherein the primary coil includes a first primary coil NP1 and a second primary coil NP2 connected in series, the first end of the first switch tube Q3 and the first end of the second switch tube Q4 are connected to a control signal, the second end of the first switch tube Q3 is connected to the first end of the first primary coil NP1, the second end of the first primary coil NP1 is connected to the first end of the second primary coil NP2 and the first-level topology circuit, the second end of the second switch tube Q4 is connected to the second end of the second primary coil NP2, and the third end of the first switch tube Q3 and the third end of the second switch tube Q4 are grounded.
  • the primary coil includes a first primary coil NP1 and a second primary coil NP2 connected in series, the first end of the first switch tube Q3 and the first end of the second switch tube Q4 are connected to a control signal, the second end of the first switch tube Q3 is connected to the first end of the first primary coil
  • any of the secondary coils is output after passing through the rectifier output circuit, and is used to drive one of the A-phase bridge arm, the B-phase bridge arm, the C-phase bridge arm and the chopper bridge arm.
  • the first switch tube Q3 and the second switch tube Q4 are NMOS tubes, wherein the first end is a gate, the second end is a drain, and the third end is a source.
  • the switch tube Q1, the first switch tube Q3, and the second switch tube Q4 are controlled by a digital chip (not shown) and receive control signals transmitted by the digital chip respectively.
  • the second-stage topology circuit includes 4 transformers and 8 rectifier output circuits.
  • Each transformer includes 4 secondary coils.
  • the rectifier output circuit is a first rectifier output circuit, wherein any two secondary coils are connected to one of the first rectifier output circuits to output an upper bridge arm drive voltage or a lower bridge arm drive voltage of one of the A-phase bridge arm, the B-phase bridge arm, the C-phase bridge arm or the chopper bridge arm.
  • the first rectifier output circuit includes: a first rectifier circuit, a second rectifier circuit, a first output circuit and a second output circuit; the first side coil is connected to the first rectifier circuit and outputs a positive output voltage through the first output circuit; the second side coil is connected to the second rectifier circuit and outputs a negative output voltage through the second output circuit, and the difference between the positive output voltage and the negative output voltage is the upper bridge arm driving voltage or the lower bridge arm driving voltage.
  • the first rectifier circuit and the second rectifier circuit are full-bridge rectifier circuits, one output end of the full-bridge rectifier circuit outputs the positive output voltage or is grounded, and the other output end is grounded or outputs the negative output voltage.
  • the first output circuit includes a first capacitor and a first diode, one end of the first capacitor is connected to the cathode of the first diode, and outputs the positive output voltage, and the other end of the first capacitor and the anode of the first diode are grounded;
  • the second output circuit includes a second capacitor and a second diode, one end of the second capacitor is grounded to the cathode of the second diode, and the other end of the second capacitor is connected to the anode of the second diode, and outputs the negative output voltage.
  • the transformer T1 includes a first side coil NS1, a second side coil NS2, a third side coil NS3 and a fourth side coil NS4.
  • the first side coil NS1 and the second side coil NS2 are connected to the first first rectifier output circuit to provide a driving voltage to the upper bridge arm of the A-phase bridge arm
  • the third side coil NS3 and the fourth side coil NS4 are connected to the second first rectifier output circuit to provide a driving voltage to the lower bridge arm of the A-phase bridge arm.
  • the first rectifier circuit includes diodes D1-D4, the second rectifier circuit includes diodes D5-D8, the first output circuit includes a first capacitor C3, a first diode D9, the second output circuit includes a second capacitor C4, and a second diode D10.
  • the first side coil NS1 is connected to the first rectifier circuit and outputs a positive output voltage 1 through the first output circuit;
  • the second side coil NS2 is connected to the second rectifier circuit and outputs a negative output voltage 1 through the second output circuit, and the difference between the positive output voltage 1 and the negative output voltage 1 is the upper bridge arm driving voltage of the A phase bridge arm.
  • Diodes D1-D4 form a full-bridge rectifier circuit
  • D1 and D3 are the upper bridge arms of the first rectifier circuit
  • D2 and D4 are the lower bridge arms of the first rectifier circuit
  • the cathodes of D1 and D3 output the positive output voltage 1
  • the anode of D1 and the cathode of D2 are connected to the first end of the first side coil NS1
  • the anode of D3 and the cathode of D4 are connected to the second end of the first side coil NS1
  • the anode of D2 and the anode of D4 are grounded GND1.
  • Diodes D5-D8 form a full-bridge rectifier circuit
  • D5 and D6 are the upper bridge arms of the second rectifier circuit
  • D7 and D8 are the lower bridge arms of the second rectifier circuit
  • the cathodes of D5 and D6 are grounded GND1
  • the anode of D5 and the anode of D7 are connected to the first end of the second side coil NS2
  • the anode of D6 and the cathode of D8 are connected to the second end of the second side coil NS2
  • the anode of D7 and the anode of D8 output a negative output voltage 1.
  • the first output circuit includes a first capacitor C3, a first diode D9, one end of C3 is connected to the cathode of D9, and outputs the positive output voltage 1, and the other end of C3 and the anode of D9 are grounded GND1.
  • the second output circuit includes a second capacitor C4, a second diode D10, one end of the second capacitor C4 is grounded GND1 to the cathode of the second diode, and the other end of C4 is connected to the anode of D10, and outputs the negative output voltage 1.
  • the four transformers include 16 secondary coils NS1-NS16.
  • the output of the secondary coils NS1, NS2 in the transformer T1 and the first rectifier output circuit connected to the secondary coils NS1, NS2 is the driving voltage of the upper bridge arm of the phase A
  • the output of the secondary coils NS3, NS4 and the first rectifier output circuit connected to the secondary coils NS3, NS4 is the driving voltage of the lower bridge arm of the phase A.
  • the structures of the other three transformers are the same as that of the transformer T1, and are used to output the driving voltage of the upper and lower bridge arms of the phase B, the driving voltage of the upper and lower bridge arms of the phase C, and the driving voltage of the upper and lower bridge arms of the chopper bridge arm.
  • the output of the secondary coils NS5, NS6 and the first rectifier output circuit connected to the side coils NS5, NS6 is the driving voltage of the upper bridge arm of phase B
  • NS8 is the driving voltage of the lower bridge arm of phase B
  • NS10 is the driving voltage of the upper bridge arm of phase C
  • NS12 is the driving voltage of the lower bridge arm of phase C
  • NS14 is the driving voltage of the chopper upper bridge arm
  • Embodiment 1 can improve the output voltage regulation accuracy of the power supply circuit by adding a SEPIC circuit, and reduce the number of transformer primary power supply chips, MOS tubes and other devices by sharing a transformer primary power supply, thereby reducing costs and improving the power density and reliability of the driver board.
  • the power supply circuit topology diagram of the second embodiment is shown in FIG2.
  • the circuit is used to supply power to a power semiconductor drive device, such as supplying power to an IGBT drive device of an A, B, and C three-phase bridge arm and a chopper bridge arm in a three-phase two-level converter.
  • the power supply circuit includes: a first-level topology circuit and a second-level topology circuit.
  • the first-level topology circuit is a non-isolated DC-DC circuit, whose input end is the input end of the power supply circuit, and the output end is connected to the input end of the second-level topology circuit.
  • the second-level topology circuit includes: a first switch tube Q3, a second switch tube Q4, a transformer, and a plurality of rectifier output circuits.
  • the transformer includes a primary coil and 16 secondary coils NS1-NS16; the primary coil includes a first primary coil NP1 and a second primary coil NP2 connected in series, the first end of the first switch tube Q3 and the first end of the second switch tube Q4 are connected to a control signal, the second end of the first switch tube Q3 is connected to the first end of the first primary coil NP1, the second end of the first primary coil NP1 is connected to the first end of the second primary coil NP2 and the first-stage topology circuit, the second end of the second switch tube Q4 is connected to the second end of the second primary coil NP2, and the third end of the first switch tube Q3 and the third end of the second switch tube Q4 are grounded.
  • Any of the secondary coils is output after passing through the rectifier output circuit, and is used to drive one of the A-phase bridge arm, the B-phase bridge arm, the C-phase bridge arm and the chopper bridge arm.
  • the rectifier output circuit is a first rectifier output circuit, any of the secondary coils is connected to one of the first rectifier output circuits, and outputs the A-phase bridge arm, the B-phase bridge arm, the C-phase bridge arm, and the chopper bridge arm drive voltage.
  • the first rectifier output circuit is the same as the first rectifier output circuit in the first embodiment, and will not be described in detail here.
  • the output of the secondary coils NS1, NS2 and the first rectifier output circuit connected to the secondary coils NS1, NS2 is the driving voltage of the upper bridge arm of phase A
  • the output of the secondary coils NS3, NS4 and the first rectifier output circuit connected to the secondary coils NS3, NS4 is the driving voltage of the lower bridge arm of phase A.
  • the output of the secondary coils NS5, NS6 and the first rectifier output circuit connected to the secondary coils NS5, NS6 is the driving voltage of the upper bridge arm of phase B
  • NS8 is the driving voltage of the lower bridge arm of phase B
  • NS10 is the driving voltage of the upper bridge arm of phase C
  • NS12 is the driving voltage of the lower bridge arm of phase C
  • NS14 is the driving voltage of the chopper upper bridge arm
  • Embodiment 2 is based on Embodiment 1, and reduces the number of transformers to one, that is, an integral transformer is used. This solution can save costs by improving the integration of the transformer, but the secondary side of the transformer will have multiple windings, which increases the difficulty of winding the transformer.
  • the power supply circuit topology diagram of the third embodiment is shown in FIG3 .
  • the circuit is used to supply power to a power semiconductor drive device, such as supplying power to an IGBT drive device of an A, B, C three-phase bridge arm and a chopper bridge arm in a three-phase two-level converter.
  • the power supply circuit includes: a first-level topology circuit and a second-level topology circuit.
  • the first-level topology circuit is a non-isolated DC-DC circuit, whose input end is the input end of the power supply circuit, and whose output end is connected to the input end of the second-level topology circuit.
  • the second-level topology circuit includes: a first switch tube Q3, a second switch tube Q4, a transformer, and a plurality of rectifier output circuits.
  • the transformer includes a primary coil and eight secondary coils NS1-NS8; the primary coil includes a first primary coil NP1 and a second primary coil NP2 connected in series, the first end of the first switch tube Q3 and the first end of the second switch tube Q4 are connected to a control signal, the second end of the first switch tube Q3 is connected to the first end of the first primary coil NP1, the second end of the first primary coil NP1 is connected to the first end of the second primary coil NP2 and the first-stage topology circuit, the second end of the second switch tube Q4 is connected to the second end of the second primary coil NP2, and the third end of the first switch tube Q3 and the third end of the second switch tube Q4 are grounded.
  • the primary coil includes a first primary coil NP1 and a second primary coil NP2 connected in series, the first end of the first switch tube Q3 and the first end of the second switch tube Q4 are connected to a control signal, the second end of the first switch tube Q3 is connected to the first end of the
  • the rectifier output circuit is a second rectifier output circuit, any of the secondary coils is connected to a second rectifier output circuit, and outputs an upper bridge arm drive voltage or a lower bridge arm drive voltage of one of the A-phase bridge arm, the B-phase bridge arm, the C-phase bridge arm or the chopper bridge arm.
  • the second rectification output circuit includes: a third rectification circuit and a third output circuit connected to the third rectification circuit, the third rectification circuit is a full-bridge rectification circuit, and the third output circuit includes: a third capacitor, a third diode, a fourth capacitor, a fifth capacitor, a fourth diode and a first voltage regulator; the cathode of the third diode is connected to the positive output end of the third rectification circuit and the cathode of the first voltage regulator, the anode of the third diode is connected to the negative output end of the third rectification circuit and the anode of the fourth diode, the anode of the first voltage regulator and the cathode of the fourth diode are grounded, the third capacitor is connected in parallel to both ends of the third diode, the fourth capacitor is connected in parallel to both ends of the first voltage regulator, and the fifth capacitor is connected in parallel to both ends of the fourth diode.
  • the third rectifier circuit includes diodes D1-D4, and the diodes D1-D4 constitute a full-bridge rectifier circuit
  • D1 and D3 are the upper bridge arms of the third rectifier circuit
  • D2 and D4 are the lower bridge arms of the first rectifier circuit
  • the cathodes of D1 and D3 output positive output voltage 1
  • the anodes of D2 and D4 output negative output voltage 1
  • the anodes of D1 and D2 are connected to the two ends of the secondary coil NS1.
  • the anode of D3 and the cathode of D4 are connected to the second end of the secondary coil NS1.
  • the third output circuit includes: a third capacitor C3, a third diode D5, a fourth capacitor C4, a fifth capacitor C5, a fourth diode D6, and a first voltage regulator ZD1.
  • the cathode of the third diode D5 is connected to the positive output end of the third rectifier circuit and the cathode of the first voltage regulator, and outputs the positive output voltage 1 of the upper bridge arm of the A phase.
  • the anode of the third diode D5 is connected to the negative output terminal of the third rectifier circuit and the anode of the fourth diode D6, and outputs the A-phase upper bridge arm negative output voltage 1.
  • the anode of the first voltage regulator tube and the cathode of the fourth diode D6 are grounded, the third capacitor C3 is connected in parallel to both ends of the third diode D5, the fourth capacitor C4 is connected in parallel to both ends of the first voltage regulator tube ZD1, and the fifth capacitor C5 is connected in parallel to both ends of the fourth diode D6.
  • the secondary coil NS1 and the second rectifier output circuit connected to the secondary coil NS1 are used to output the driving voltage of the upper bridge arm of phase A
  • the secondary coil NS2 and the second rectifier output circuit connected to the secondary coil NS2 are used to output the driving power of the lower bridge arm of phase A
  • the secondary coil NS3 and the second rectifier output circuit connected to the secondary coil NS3 are used to output the driving power of the upper bridge arm of phase B
  • the secondary coil NS4 and the second rectifier output circuit connected to the secondary coil NS4 are used to output the driving power of the lower bridge arm of phase B
  • the secondary coil NS5 and the second rectifier output circuit connected to the secondary coil NS5 are used to output the driving power of the upper bridge arm of phase C
  • the secondary coil NS6 and the second rectifier output circuit connected to the secondary coil NS6 are used to output the driving power of the lower bridge arm of phase C
  • the secondary coil NS7 and the second rectifier output circuit connected to the secondary coil NS7 are used to output the
  • Embodiment 3 Based on Embodiment 2, by changing the connection mode of the secondary side of the transformer and the rectifier output circuit, the number of secondary side windings of the transformer is reduced from 16 to 8, which greatly saves the cost.
  • the power supply circuit topology diagram of the fourth embodiment is shown in FIG4 .
  • the circuit is used to supply power to a power semiconductor drive device, such as supplying power to an IGBT drive device of an A, B, and C three-phase bridge arm and a chopper bridge arm in a three-phase two-level converter.
  • the power supply circuit includes: a first-level topology circuit and a second-level topology circuit.
  • the first-level topology circuit is a non-isolated DC-DC circuit, whose input end is the input end of the power supply circuit, and the output end is connected to the input end of the second-level topology circuit.
  • the second-level topology circuit includes: a first switch tube Q3, a second switch tube Q4, a transformer, and a plurality of rectifier output circuits.
  • the transformer includes a primary coil and five secondary coils, the primary coil includes a first primary coil NP1 and a second primary coil NP2 connected in series, the first end of the first switch tube Q3 and the first end of the second switch tube Q4 are connected to a control signal, the second end of the first switch tube Q3 is connected to the first end of the first primary coil NP1, the second end of the first primary coil NP1 is connected to the first end of the second primary coil NP2 and the first-stage topology circuit, the second end of the second switch tube Q4 is connected to the second end of the second primary coil NP2, and the third end of the first switch tube Q3 and the third end of the second switch tube Q4 are grounded.
  • the rectifier output circuit is a third rectifier output circuit, any one of the secondary coils is connected to a third rectifier output circuit, outputting an upper bridge arm driving voltage of an A-phase bridge arm, an upper bridge arm driving voltage of a B-phase bridge arm, an upper bridge arm driving voltage of a C-phase bridge arm, an upper bridge arm driving voltage of a chopper bridge arm, or a lower bridge arm driving voltage of all bridge arms.
  • the third rectifier output circuit is the same as the second rectifier output circuit in Embodiment 3, and will not be described in detail herein.
  • the output of the secondary coil NS1 and the third rectifier output circuit connected to the secondary coil NS1 is the driving voltage of the upper bridge arm of phase A
  • the output of the secondary coil NS2 and the third rectifier output circuit connected to the secondary coil NS2 is the driving voltage of the upper bridge arm of phase B
  • the output of the secondary coil NS3 and the third rectifier output circuit connected to the secondary coil NS3 is the driving voltage of the upper bridge arm of phase C
  • the output of the secondary coil NS4 and the third rectifier output circuit connected to the secondary coil NS4 is the driving voltage of the chopper upper bridge arm
  • the output of the secondary coil NS5 and the third rectifier output circuit connected to the secondary coil NS5 is the lower bridge arm driving voltage of all bridge arms.
  • Embodiment 4 is based on Embodiment 3 and utilizes the characteristic that all lower tubes of bridge arms in a two-level converter are connected to a common ground, thereby reducing the number of secondary windings of the transformer from 8 to 5, thereby further saving costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种两级拓扑驱动供电电路,包括串联连接的第一级拓扑电路和第二级拓扑电路,第一级拓扑电路为非隔离型DC-DC电路,所述第二级拓扑电路包括:第一开关管、第二开关管、至少一个变压器以及多个整流输出电路;所述变压器包括原边线圈和多个次边线圈;任一所述次边线圈经整流输出电路后输出,用于驱动A相桥臂、B相桥臂、C相桥臂以及斩波桥臂中的其中一个桥臂。该供电电路通过在原边加入第一级拓扑电路,提升了输出电压稳压精度,并且通过共用一个变压器原边电源,减少了变压器原边电源芯片,MOS管等器件的数量,降低成本的同时,提升了驱动板功率密度和可靠性。

Description

一种两级拓扑驱动供电电路 技术领域
本发明涉及中高压变流器中半导体功率器件驱动的供电电源技术领域,具体涉及一种两级拓扑驱动供电电路。
背景技术
在中高压变流器内部,绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等半导体功率器件的驱动装置均需要正、负电源供电。半导体功率器件的驱动装置属于高压侧,给半导体功率器件的驱动装置供电电路的原、副边绝缘耐压需要满足高电压绝缘,已有光耦的绝缘耐压不满足,因此从次边采样输出电压反馈给原边的控制型电源方案不再适用。
目前,中高压变流器中半导体功率器件驱动装置的供电电路都是选用隔离型拓扑,采用直接开环控制,将输入电压转换成驱动IGBT所需要的正、负电压,开环控制虽然简单,但是会牺牲系统稳定性,影响驱动电路的动态性能和抗干扰性能。
以三相两电平变流器为例,目前的技术方案主电路中,每一个桥臂需要一个控制电源,三个桥臂+1个斩波桥臂需要四个驱动控制电源,成本较高,同时,因原边输入电压变化或者输入端的防反接二极管的影响,次边输出电压稳压精度变化范围为±5%,对次边输出电压稳压精度影响较大。
发明内容
为了克服上述问题,本发明提出的一种两级拓扑驱动供电电路,可用于中高压变流器中半导体功率器件驱动装置供电,通过调整变压器原边连接方式和变压器次边及整流输出电路的连接方式,解决了IGBT等半导体功率器件驱动装置的供电稳定性和可靠性问题,同时进一步降低了驱动电路成本。
所述供电电路包括:第一级拓扑电路,第二级拓扑电路。
所述第一级拓扑电路为非隔离型DC-DC电路,其输入端为所述供电电路的输入端,输出端与所述第二级拓扑电路的输入端连接。
所述第二级拓扑电路包括:第一开关管、第二开关管、至少一个变压器以及多个整流输出电路;所述变压器包括原边线圈和多个次边线圈;所述原边线圈包括相互串联的第一原边线圈和第二原边线圈,所述第一开关管的第一端和所述第二开关管的第一端接控制信号,所述第一开关管的第二端与所述第一原边线圈的第一端连接,所述第一原边线圈的第二端与所述第二原边线圈的第一端以及所述第一级拓扑电路连接,所述第二开关管的第二端与所述第二原边线圈的第二端连接,所述第一开关管的第三端和所述第二开关管的第三端接地;任一 所述次边线圈经所述整流输出电路后输出,用于驱动A相桥臂、B相桥臂、C相桥臂以及斩波桥臂中的其中一个桥臂。
优选的,所述第二级拓扑电路包括4个变压器,每个所述变压器包括4个所述次边线圈,所述整流输出电路为第一整流输出电路,其中,任两个所述次边线圈与一个所述第一整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
优选的,所述第二级拓扑电路包括一个变压器,所述变压器包括16个所述次边线圈,所述整流输出电路为第一整流输出电路,任两个所述次边线圈与一个所述第一整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
进一步的,任两个所述次边线圈为第一次边线圈和第二次边线圈,所述第一整流输出电路包括:第一整流电路、第二整流电路、第一输出电路以及第二输出电路;所述第一次边线圈与所述第一整流电路连接,并通过所述第一输出电路输出正输出电压;所述第二次边线圈与所述第二整流电路连接,并通过所述第二输出电路输出负输出电压,所述正输出电压和所述负输出电压之差为所述上桥臂驱动电压或所述下桥臂驱动电压。
进一步的,所述第一整流电路和所述第二整流电路为全桥整流电路,所述全桥整流电路的一个输出端输出所述正输出电压或接地,另一个输出端接地或输出所述负输出电压。
进一步的,所述第一输出电路包括第一电容和第一二极管,所述第一电容的一端与所述第一二极管的阴极连接,并输出所述正输出电压,所述第一电容的另一端和所述第一二极管的阳极接地;所述第二输出电路包括第二电容和第二二极管,所述第二电容的一端与所述第二二极管的阴极接地,所述第二电容的另一端和所述第二二极管的阳极连接,并输出所述负输出电压。
优选的,所述第二级拓扑电路包括一个变压器,所述变压器包括8个所述次边线圈,所述整流输出电路为第二整流输出电路,任一个所述次边线圈与一个所述第二整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
进一步的,所述第二整流输出电路包括:第三整流电路和与所述第三整流电路连接的第三输出电路,所述第三整流电路为全桥整流电路,所述第三输出电路包括:第三电容、第三二极管、第四电容、第五电容、第四二极管以及第一稳压管;所述第三二极管的阴极与所述第三整流电路的正输出端以及所述第一稳压管的阴极连接,所述第三二极管的阳极与所述第三整流电路的负输出端以及所述第四二极管的阳极连接,所述第一稳压管的阳极和所述第四二极管的阴极接地,所述第三电容并联在所述第三二极管的两端,所述第四电容并联在所述 第一稳压管的两端,所述第五电容并联在所述第四二极管的两端。
优选的,所述第二级拓扑电路包括一个变压器,所述变压器包括5个所述次边线圈,所述整流输出电路为第三整流输出电路,任一个所述次边线圈与一个所述第三整流输出电路连接,输出A相桥臂的上桥臂驱动电压、B相桥臂的上桥臂驱动电压、C相桥臂的上桥臂驱动电压、斩波桥臂的上桥臂驱动电压或所有桥臂的下桥臂驱动电压。
优选的,所述第一级拓扑电路为sepic电路、Buck电路、Boost电路及Zeta电路中的任一种。
本发明提供的供电电路采用两级拓扑,电路组合形式灵活多变,可配置性强,可适用于不同输入电压的场景,并可实现变压器原边输入电压的归一化,实现变压器的统型设计;同时,通过调整变压器原边连接方式,变压器原边采用并联连接,可以极大地降低原边电路电源的数量,降低成本的同时,也可以提升功率密度、稳定性和可靠性。另外,通过调整变压器次边及整流输出电路的连接方式,可进一步降低变压器制作难度,减少变压器数量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为实施例一电路拓扑图。
图2为实施例二电路拓扑图。
图3为实施例三电路拓扑图。
图4为实施例四电路拓扑图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用于解释本申请,并不用于限定本申请。
实施例一的供电电路拓扑图如图1所示,该电路用于给功率半导体驱动装置供电,如为三相两电平变流器中A、B、C三相桥臂和斩波桥臂的IGBT驱动装置供电。所述供电电路包括:第一级拓扑电路,第二级拓扑电路。所述第一级拓扑电路为非隔离型DC-DC电路,其输入端为所述供电电路的输入端,输出端与所述第二级拓扑电路的输入端连接。所述第二级拓扑电路包括:第一开关管Q3、第二开关管Q4、至少一个变压器以及多个整流输出电路。其中,第一级拓扑电路为单端初级电感式转换器(single endedprimary inductor converter,sepic) 电路、Buck电路、Boost电路及Zeta电路中的任一种。以下皆以第一级拓扑电路为sepic电路为例进行说明,参见图1,第一级拓扑电路包括:二极管D100、电感L1、电容C1、开关管Q1、电感L2二极管D101以及电容C2。二极管D100的阳极接电源正端,阳极通过电感L1与开关管Q1的漏极连接,开关管Q1的漏极还通过电容C1与二极管D101的阳极连接,二极管D101的阴极与电容C2的一端以及第二级拓扑电路的输入端连接,二极管D101的阳极还与电感L2的一端连接。开关管Q1的栅极接控制信号,开关管Q1的源极、电感L2的另一端以及电容C2的另一端接地。
任一变压器包括原边线圈和4个次边线圈,所述原边线圈包括相互串联的第一原边线圈NP1和第二原边线圈NP2,所述第一开关管Q3的第一端和所述第二开关管Q4的第一端接控制信号,所述第一开关管Q3的第二端与所述第一原边线圈NP1的第一端连接,所述第一原边线圈NP1的第二端与所述第二原边线圈NP2的第一端以及所述第一级拓扑电路连接,所述第二开关管Q4的第二端与所述第二原边线圈NP2的第二端连接,所述第一开关管Q3的第三端和所述第二开关管Q4的第三端接地。任一所述次边线圈经所述整流输出电路后输出,用于驱动A相桥臂、B相桥臂、C相桥臂以及斩波桥臂中的其中一个桥臂。第一开关管Q3和第二开关管Q4为NMOS管,其中,第一端为栅极,第二端为漏极、第三端为源极。开关管Q1、第一开关管Q3、第二开关管Q4由数字芯片(图未示)控制,分别接收数字芯片传输的控制信号。
继续参见图1,第二级拓扑电路包括4个变压器以及8个整流输出电路。每个所述变压器包括4个所述次边线圈。所述整流输出电路为第一整流输出电路,其中,任两个所述次边线圈与一个所述第一整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
所述第一整流输出电路包括:第一整流电路、第二整流电路、第一输出电路以及第二输出电路;所述第一次边线圈与所述第一整流电路连接,并通过所述第一输出电路输出正输出电压;所述第二次边线圈与所述第二整流电路连接,并通过所述第二输出电路输出负输出电压,所述正输出电压和所述负输出电压之差为所述上桥臂驱动电压或所述下桥臂驱动电压。所述第一整流电路和所述第二整流电路为全桥整流电路,所述全桥整流电路的一个输出端输出所述正输出电压或接地,另一个输出端接地或输出所述负输出电压。所述第一输出电路包括第一电容和第一二极管,所述第一电容的一端与所述第一二极管的阴极连接,并输出所述正输出电压,所述第一电容的另一端和所述第一二极管的阳极接地;所述第二输出电路包括第二电容和第二二极管,所述第二电容的一端与所述第二二极管的阴极接地,所述第二电容的另一端和所述第二二极管的阳极连接,并输出所述负输出电压。
以图1中的变压器T1以及与变压器T1连接的第一整流输出电路为例,变压器T1包括 第一次边线圈NS1、第二次边线圈NS2、第三次边线圈NS3以及第四次边线圈NS4。第一次边线圈NS1、第二次边线圈NS2与第一个第一整流输出电路连接给A相桥臂的上桥臂提供驱动电压,第三次边线圈NS3以及第四次边线圈NS4与第二个第一整流输出电路连接给A相桥臂的下桥臂提供驱动电压。
在第一个整流输出电路中,第一整流电路包括二极管D1-D4,第二整流电路包括二极管D5-D8,第一输出电路包括第一电容为C3,第一二极管为D9,第二输出电路包括第二电容为C4,第二二极管为D10。第一次边线圈NS1与所述第一整流电路连接,并通过所述第一输出电路输出正输出电压1;所述第二次边线圈NS2与所述第二整流电路连接,并通过所述第二输出电路输出负输出电压1,正输出电压1和负输出电压1之差为A相桥臂上桥臂驱动电压。二极管D1-D4构成全桥整流电路,D1、D3为第一整流电路的上桥臂,D2、D4为第一整流电路的下桥臂,D1、D3的阴极输出正输出电压1,D1的阳极和D2的阴极与第一次边线圈NS1的第一端连接,D3的阳极和D4的阴极与第一次边线圈NS1的第二端连接,D2的阳极和D4的阳极接地GND1。二极管D5-D8构成全桥整流电路,D5、D6为第二整流电路的上桥臂,,D7、D8为第二整流电路的下桥臂,D5、D6的阴极接地GND1,D5的阳极和D7的阳极与第二次边线圈NS2的第一端连接,D6的阳极和D8的阴极与第二次边线圈NS2的第二端连接,D7的阳极和D8的阳极输出负输出电压1。第一输出电路包括第一电容为C3,第一二极管为D9,C3的一端与D9的阴极连接,并输出所述正输出电压1,C3的另一端和所D9的阳极接地GND1。第二输出电路包括第二电容为C4,第二二极管为D10,所述第二电容C4的一端与所述第二二极管的阴极接地GND1,C4的另一端和D10的阳极连接,并输出所述负输出电压1。
在图1中,4个变压器共包括16个次边线圈NS1-NS16。变压器T1中的次边线圈NS1、NS2以及与次边线圈NS1、NS2连接的第一整流输出电路的输出为A相上桥臂的驱动电压,次边线圈NS3、NS4以及与边线圈NS3、NS4连接的第一整流输出电路的输出为A相下桥臂的驱动电压。其他3个变压器的结构与变压器T1的结构相同,分别用于输出B相上、下桥臂的驱动电压,C相上、下桥臂的驱动电压,以及斩波桥臂的上、下桥臂的驱动电压。其中,次边线圈NS5、NS6以及与边线圈NS5、NS6连接的第一整流输出电路的输出为B相上桥臂的驱动电压,次边线圈NS7、NS8以及与边线圈NS7、NS8连接的第一整流输出电路的输出为B相下桥臂的驱动电压,次边线圈NS9、NS10以及与边线圈NS9、NS10连接的第一整流输出电路的输出为C相上桥臂的驱动电压,次边线圈NS11、NS12以及与边线圈NS11、NS12连接的第一整流输出电路的输出为C相下桥臂的驱动电压,次边线圈NS13、NS14以及与边线圈NS13、NS14连接的第一整流输出电路的输出为斩波上桥臂的驱动电压,次边线圈NS15、NS16以及与边线圈NS15、NS16连接的第一整流输出电路的输出为斩波下桥臂的驱动电压。
实施例一通过加入sepic电路,可以提升所述供电电路输出电压稳压精度,并且通过共用一个变压器原边电源,减少了变压器原边电源芯片,MOS管等器件的数量,降低成本的同时,提升了驱动板功率密度和可靠性。
实施例二的供电电路拓扑图如图2所示,该电路用于给功率半导体驱动装置供电,如为三相两电平变流器中A、B、C三相桥臂和斩波桥臂的IGBT驱动装置供电。所述供电电路包括:第一级拓扑电路,第二级拓扑电路。所述第一级拓扑电路为非隔离型DC-DC电路,其输入端为所述供电电路的输入端,输出端与所述第二级拓扑电路的输入端连接。所述第二级拓扑电路包括:第一开关管Q3、第二开关管Q4、一个变压器以及多个整流输出电路。
变压器包括原边线圈和16个次边线圈NS1-NS16;所述原边线圈包括相互串联的第一原边线圈NP1和第二原边线圈NP2,所述第一开关管Q3的第一端和所述第二开关管Q4的第一端接控制信号,所述第一开关管Q3的第二端与所述第一原边线圈NP1的第一端连接,所述第一原边线圈NP1的第二端与所述第二原边线圈NP2的第一端以及所述第一级拓扑电路连接,所述第二开关管Q4的第二端与所述第二原边线圈NP2的第二端连接,所述第一开关管Q3的第三端和所述第二开关管Q4的第三端接地。任一所述次边线圈经所述整流输出电路后输出,用于驱动A相桥臂、B相桥臂、C相桥臂以及斩波桥臂中的其中一个桥臂。
所述整流输出电路为第一整流输出电路,任一个所述次边线圈与一个所述第一整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂、斩波桥臂驱动电压。第一整流输出电路与实施例一中的第一整流输出电路相同,在此不再赘述。
在图2中,次边线圈NS1、NS2以及与次边线圈NS1、NS2连接的第一整流输出电路的输出为A相上桥臂的驱动电压,次边线圈NS3、NS4以及与次边线圈NS3、NS4连接的第一整流输出电路的输出为A相下桥臂的驱动电压。次边线圈NS5、NS6以及与边线圈NS5、NS6连接的第一整流输出电路的输出为B相上桥臂的驱动电压,次边线圈NS7、NS8以及与次边线圈NS7、NS8连接的第一整流输出电路的输出为B相下桥臂的驱动电压,次边线圈NS9、NS10以及与次边线圈NS9、NS10连接的第一整流输出电路的输出为C相上桥臂的驱动电压,次边线圈NS11、NS12以及与次边线圈NS11、NS12连接的第一整流输出电路的输出为C相下桥臂的驱动电压,次边线圈NS13、NS14以及与次边线圈NS13、NS14连接的第一整流输出电路的输出为斩波上桥臂的驱动电压,次边线圈NS15、NS16以及与次边线圈NS15、NS16连接的第一整流输出电路的输出为斩波下桥臂的驱动电压。
实施例二其在实施例一的基础上,将变压器数量减少至1个,即采用一个整体变压器,该方案通过提升变压器的集成度,可以节约成本,但是变压器的次边会有多个绕组,增加了变压器的绕制难度。
实施例三的供电电路拓扑图如图3所示,该电路用于给功率半导体驱动装置供电,如为 三相两电平变流器中A、B、C三相桥臂和斩波桥臂的IGBT驱动装置供电。所述供电电路包括:第一级拓扑电路,第二级拓扑电路。所述第一级拓扑电路为非隔离型DC-DC电路,其输入端为所述供电电路的输入端,输出端与所述第二级拓扑电路的输入端连接。所述第二级拓扑电路包括:第一开关管Q3、第二开关管Q4、一个变压器以及多个整流输出电路。
所述变压器包括原边线圈和8个次边线圈NS1-NS8;所述原边线圈包括相互串联的第一原边线圈NP1和第二原边线圈NP2,所述第一开关管Q3的第一端和所述第二开关管Q4的第一端接控制信号,所述第一开关管Q3的第二端与所述第一原边线圈NP1的第一端连接,所述第一原边线圈NP1的第二端与所述第二原边线圈NP2的第一端以及所述第一级拓扑电路连接,所述第二开关管Q4的第二端与所述第二原边线圈NP2的第二端连接,所述第一开关管Q3的第三端和所述第二开关管Q4的第三端接地。所述整流输出电路为第二整流输出电路,任一个所述次边线圈与一个所述第二整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
所述第二整流输出电路包括:第三整流电路和与所述第三整流电路连接的第三输出电路,所述第三整流电路为全桥整流电路,所述第三输出电路包括:第三电容、第三二极管、第四电容、第五电容、第四二极管以及第一稳压管;所述第三二极管的阴极与所述第三整流电路的正输出端以及所述第一稳压管的阴极连接,所述第三二极管的阳极与所述第三整流电路的负输出端以及所述第四二极管的阳极连接,所述第一稳压管的阳极和所述第四二极管的阴极接地,所述第三电容并联在所述第三二极管的两端,所述第四电容并联在所述第一稳压管的两端,所述第五电容并联在所述第四二极管的两端。
以图3中的变压器T1包括的第一次边线圈NS1以及与第一次边线圈NS1连接的第二整流输出电路为例,其中,第三整流电路包括二极管D1-D4,二极管D1-D4构成全桥整流电路,D1、D3为第三整流电路的上桥臂,D2、D4为第一整流电路的下桥臂,D1、D3的阴极输出正输出电压1,D2、D4的阳极输出负输出电压1,D1的阳极和D2的阳极接次边线圈NS1的两端。D3的阳极和D4的阴极接次边线圈NS1的第二端。第三输出电路包括:第三电容为C3、第三二极管为D5、第四电容为C4、第五电容为C5、第四二极管为D6以及第一稳压管为ZD1。第三二极管D5的阴极与第三整流电路的正输出端以及所述第一稳压管的阴极连接,并输出A相上桥臂正输出电压1。第三二极管D5的阳极与所述第三整流电路的负输出端以及所述第四二极管D6的阳极连接,并输出A相上桥臂负输出电压1。第一稳压管的阳极和第四二极管D6的阴极接地,第三电容C3并联在第三二极管D5的两端,第四电容C4并联在第一稳压管ZD1的两端,第五电容C5并联在所述第四二极管D6的两端。
图3中,次边线圈NS1以及与次边线圈NS1连接的第二整流输出电路的用于输出A相上桥臂的驱动电压,次边线圈NS2以及与次边线圈NS2连接的第二整流输出电路用于输出A 相下桥臂的驱动电源,次边线圈NS3以及与次边线圈NS3连接的第二整流输出电路用于输出B相上桥臂的驱动电源,次边线圈NS4以及与次边线圈NS4连接的第二整流输出电路用于输出B相下桥臂的驱动电源,次边线圈NS5以及与次边线圈NS5连接的第二整流输出电路用于输出C相上桥臂的驱动电源,次边线圈NS6以及与次边线圈NS6连接的第二整流输出电路用于输出C相下桥臂的驱动电源,次边线圈NS7以及与次边线圈NS7连接的第二整流输出电路用于输出斩波上桥臂的驱动电源,次边线圈NS8以及与次边线圈NS8连接的第二整流输出电路用于输出斩波下桥臂的驱动电源。
实施例三在实施例二的基础上,通过改变变压器次边及整流输出电路的连接方式,将变压器次边绕组数量从16个减至8个,大大节约了成本。
实施例四的供电电路拓扑图如图4所示,该电路用于给功率半导体驱动装置供电,如为三相两电平变流器中A、B、C三相桥臂和斩波桥臂的IGBT驱动装置供电。所述供电电路包括:第一级拓扑电路,第二级拓扑电路。所述第一级拓扑电路为非隔离型DC-DC电路,其输入端为所述供电电路的输入端,输出端与所述第二级拓扑电路的输入端连接。所述第二级拓扑电路包括:第一开关管Q3、第二开关管Q4、一个变压器以及多个整流输出电路。
所述变压器包括原边线圈和5个次边线圈,原边线圈包括相互串联的第一原边线圈NP1和第二原边线圈NP2,所述第一开关管Q3的第一端和所述第二开关管Q4的第一端接控制信号,所述第一开关管Q3的第二端与所述第一原边线圈NP1的第一端连接,所述第一原边线圈NP1的第二端与所述第二原边线圈NP2的第一端以及所述第一级拓扑电路连接,所述第二开关管Q4的第二端与所述第二原边线圈NP2的第二端连接,所述第一开关管Q3的第三端和所述第二开关管Q4的第三端接地。
所述整流输出电路为第三整流输出电路,任一个所述次边线圈与一个所述第三整流输出电路连接,输出A相桥臂的上桥臂驱动电压、B相桥臂的上桥臂驱动电压、C相桥臂的上桥臂驱动电压、斩波桥臂的上桥臂驱动电压或所有桥臂的下桥臂驱动电压。第三整流输出电路与实施例三中的第二整流输出电路相同,在此不再赘述。
在图4中,次边线圈NS1以及与次边线圈NS1连接的第三整流输出电路的输出为A相上桥臂的驱动电压,次边线圈NS2以及与次边线圈NS2连接的第三整流输出电路的输出为B相上桥臂的驱动电压,次边线圈NS3以及与次边线圈NS3连接的第三整流输出电路的输出为C相上桥臂的驱动电压,次边线圈NS4以及与次边线圈NS4连接的第三整流输出电路的输出为斩波上桥臂的驱动电压,次边线圈NS5以及与次边线圈NS5连接的第三整流输出电路的输出为所有桥臂的下桥臂驱动电压。
实施例四在实施例三的基础上,利用两电平变流器中所有桥臂下管是共地连接的特点,将变压器次边绕组数量从8个减至5个,进一步节约了成本。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

  1. 一种两级拓扑驱动供电电路,其特征在于,包括:第一级拓扑电路,第二级拓扑电路,
    所述第一级拓扑电路为非隔离型DC-DC电路,其输入端为所述供电电路的输入端,输出端与所述第二级拓扑电路的输入端连接;
    所述第二级拓扑电路包括:第一开关管、第二开关管、至少一个变压器以及多个整流输出电路;所述变压器包括原边线圈和多个次边线圈;所述原边线圈包括相互串联的第一原边线圈和第二原边线圈,所述第一开关管的第一端和所述第二开关管的第一端接控制信号,所述第一开关管的第二端与所述第一原边线圈的第一端连接,所述第一原边线圈的第二端与所述第二原边线圈的第一端以及所述第一级拓扑电路连接,所述第二开关管的第二端与所述第二原边线圈的第二端连接,所述第一开关管的第三端和所述第二开关管的第三端接地;任一所述次边线圈经所述整流输出电路后输出,用于驱动A相桥臂、B相桥臂、C相桥臂以及斩波桥臂中的其中一个桥臂。
  2. 根据权利要求1所述的供电电路,其特征在于,所述第二级拓扑电路包括4个变压器,每个所述变压器包括4个所述次边线圈,所述整流输出电路为第一整流输出电路,其中,任两个所述次边线圈与一个所述第一整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
  3. 根据权利要求1所述的供电电路,其特征在于,所述第二级拓扑电路包括一个变压器,所述变压器包括16个所述次边线圈,所述整流输出电路为第一整流输出电路,任两个所述次边线圈与一个所述第一整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
  4. 根据权利要求2或3所述的供电电路,其特征在于,任两个所述次边线圈为第一次边线圈和第二次边线圈,所述第一整流输出电路包括:第一整流电路、第二整流电路、第一输出电路以及第二输出电路;所述第一次边线圈与所述第一整流电路连接,并通过所述第一输出电路输出正输出电压;所述第二次边线圈与所述第二整流电路连接,并通过所述第二输出电路输出负输出电压,所述正输出电压和所述负输出电压之差为所述上桥臂驱动电压或所述下桥臂驱动电压。
  5. 根据权利要求4所述的供电电路,其特征在于,所述第一整流电路和所述第二整流电路为全桥整流电路,所述全桥整流电路的一个输出端输出所述正输出电压或接地,另一个输出端接地或输出所述负输出电压。
  6. 根据权利要求4所述的供电电路,其特征在于,所述第一输出电路包括第一电容和第一二极管,所述第一电容的一端与所述第一二极管的阴极连接,并输出所述正输出电压,所述第一电容的另一端和所述第一二极管的阳极接地;所述第二输出电路包括第二电容和第二二极管,所述第二电容的一端与所述第二二极管的阴极接地,所述第二电容的另一端和所述 第二二极管的阳极连接,并输出所述负输出电压。
  7. 根据权利要求1所述的供电电路,其特征在于,所述第二级拓扑电路包括一个变压器,所述变压器包括8个所述次边线圈,所述整流输出电路为第二整流输出电路,任一个所述次边线圈与一个所述第二整流输出电路连接,输出A相桥臂、B相桥臂、C相桥臂或斩波桥臂中的其中一个桥臂的上桥臂驱动电压或下桥臂驱动电压。
  8. 根据权利要求7所述的供电电路,其特征在于,所述第二整流输出电路包括:第三整流电路和与所述第三整流电路连接的第三输出电路,所述第三整流电路为全桥整流电路,所述第三输出电路包括:第三电容、第三二极管、第四电容、第五电容、第四二极管以及第一稳压管;所述第三二极管的阴极与所述第三整流电路的正输出端以及所述第一稳压管的阴极连接,所述第三二极管的阳极与所述第三整流电路的负输出端以及所述第四二极管的阳极连接,所述第一稳压管的阳极和所述第四二极管的阴极接地,所述第三电容并联在所述第三二极管的两端,所述第四电容并联在所述第一稳压管的两端,所述第五电容并联在所述第四二极管的两端。
  9. 根据权利要求1所述的供电电路,其特征在于,所述第二级拓扑电路包括一个变压器,所述变压器包括5个所述次边线圈,所述整流输出电路为第三整流输出电路,任一个所述次边线圈与一个所述第三整流输出电路连接,输出A相桥臂的上桥臂驱动电压、B相桥臂的上桥臂驱动电压、C相桥臂的上桥臂驱动电压、斩波桥臂的上桥臂驱动电压或所有桥臂的下桥臂驱动电压。
  10. 根据权利要求1所述的供电电路,其特征在于,所述第一级拓扑电路为sepic电路、Buck电路、Boost电路及Zeta电路中的任一种。
PCT/CN2022/128221 2022-10-28 2022-10-28 一种两级拓扑驱动供电电路 WO2024087162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128221 WO2024087162A1 (zh) 2022-10-28 2022-10-28 一种两级拓扑驱动供电电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128221 WO2024087162A1 (zh) 2022-10-28 2022-10-28 一种两级拓扑驱动供电电路

Publications (1)

Publication Number Publication Date
WO2024087162A1 true WO2024087162A1 (zh) 2024-05-02

Family

ID=90829713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128221 WO2024087162A1 (zh) 2022-10-28 2022-10-28 一种两级拓扑驱动供电电路

Country Status (1)

Country Link
WO (1) WO2024087162A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292904A (zh) * 2009-05-26 2011-12-21 爱信艾达株式会社 逆变器驱动用电源电路
JP2013005461A (ja) * 2011-06-10 2013-01-07 Honda Motor Co Ltd 電源回路
CN208508784U (zh) * 2018-07-09 2019-02-15 珠海格力电器股份有限公司 半桥驱动电路、芯片和空调
CN214412606U (zh) * 2021-03-12 2021-10-15 蜂巢传动系统(江苏)有限公司保定研发分公司 半桥驱动电源、igbt驱动装置及汽车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292904A (zh) * 2009-05-26 2011-12-21 爱信艾达株式会社 逆变器驱动用电源电路
JP2013005461A (ja) * 2011-06-10 2013-01-07 Honda Motor Co Ltd 電源回路
CN208508784U (zh) * 2018-07-09 2019-02-15 珠海格力电器股份有限公司 半桥驱动电路、芯片和空调
CN214412606U (zh) * 2021-03-12 2021-10-15 蜂巢传动系统(江苏)有限公司保定研发分公司 半桥驱动电源、igbt驱动装置及汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONG WEI-GONG: "Research and Design of Inverter Power Supply Based on IGBT", CONTROL ENGINEERING OF CHINA, 邢台职业技术学院 电气工程系,河北 邢台,054035, CN, vol. 25, no. 5, 20 May 2018 (2018-05-20), CN, pages 765 - 769, XP093162264, ISSN: 1671-7848, DOI: 10.14107/j.cnki.kzgc.14D2.0031 *

Similar Documents

Publication Publication Date Title
US10193459B2 (en) High static gain bi-directional DC-DC resonant converter
WO2019128071A1 (zh) 一种dc-dc变换器
JPWO2008020629A1 (ja) 絶縁昇圧型プッシュプル式ソフトスイッチングdc/dcコンバータ
US20110260700A1 (en) Power factor correction converter and control method thereof
CN110719035B (zh) 单级dab-llc混合型双向dc-dc变换器的拓扑结构
WO2021031792A1 (zh) 一种tlc谐振电路及其应用的电源变换器
WO2024045798A1 (zh) 非隔离llc谐振变换器
WO2024027360A1 (zh) 非隔离全桥级联变换器电路及其控制方法
CN109327144A (zh) 一种宽输入电压范围的llc谐振变换器
WO2001050581A1 (fr) Circuit d'attaque automatique associe a un convertisseur cc/cc
WO2024087162A1 (zh) 一种两级拓扑驱动供电电路
WO2024045797A1 (zh) 非隔离谐振变换器
CN111987923A (zh) 一种采用矩阵变压器的大功率高升压比直流变换器
TWI414147B (zh) For high input voltage, high output current zero voltage switching converter
US11652420B2 (en) Isolated converter with high boost ratio
US11824450B2 (en) Power converter with switching power stage circuits connected in parallel
CN115580153A (zh) 一种两级拓扑驱动供电电路
CN111865078B (zh) 一种单输入对称双极性双输出dc-dc变换器
CN219643800U (zh) Dc-dc变换器
CN115037165B (zh) 一种推挽型双向变换器拓扑结构及其调制方法
CN219802159U (zh) Dc-dc变换器及dc-dc变换装置
CN114844349B (zh) 一种基于开关电容的混合型高降压比直流电源
TWI742997B (zh) 柔切式電源轉換器
TWI733358B (zh) 理想二極體
TWI835405B (zh) 電源供應電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963144

Country of ref document: EP

Kind code of ref document: A1