WO2024027360A1 - 非隔离全桥级联变换器电路及其控制方法 - Google Patents

非隔离全桥级联变换器电路及其控制方法 Download PDF

Info

Publication number
WO2024027360A1
WO2024027360A1 PCT/CN2023/102030 CN2023102030W WO2024027360A1 WO 2024027360 A1 WO2024027360 A1 WO 2024027360A1 CN 2023102030 W CN2023102030 W CN 2023102030W WO 2024027360 A1 WO2024027360 A1 WO 2024027360A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
switch
tube
winding
switching
Prior art date
Application number
PCT/CN2023/102030
Other languages
English (en)
French (fr)
Inventor
李斌
李培永
李奇峰
乔宗标
Original Assignee
上海英联电子系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海英联电子系统有限公司 filed Critical 上海英联电子系统有限公司
Publication of WO2024027360A1 publication Critical patent/WO2024027360A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Definitions

  • the invention relates to the field of switching power supply circuits, and in particular to a non-isolated full-bridge cascade converter circuit and a control method thereof.
  • the 48V bus is used to power server boards.
  • the power supply architecture gradually replaces the traditional architecture of the 12V bus; this 48V architecture usually converts the AC grid power into a 48V DC bus through the AC power supply, and then converts the 48V into 12V by the DCDC (direct current to direct current) power supply, and then converts the 12V into Various voltages as low as 0.6V are required by each chipset to power the chipset.
  • DCDC direct current to direct current
  • the present invention proposes a non-isolated full-bridge cascade converter circuit.
  • the purpose of reducing the number of turns of the transformer and simultaneously reducing the effective current value of the transformer winding and the rectifier switching device is achieved.
  • the number of PCB layers in the power supply solution is greatly reduced, effectively controlling costs and shortening the development cycle; at the same time, due to the significant reduction in the effective value of the current flowing through the transformer windings and rectifier switching devices, the converter The efficiency has been greatly improved.
  • the present invention proposes a non-isolated full-bridge cascade converter circuit.
  • the converter circuit includes: a power supply, a high-side switch bridge, a transformer, a rectifier bridge, an inductor, a capacitor and a load; wherein: the high-side switch bridge includes The first switch tube, the second switch tube, the third switch tube and a fourth switching tube; the transformer includes a first winding and a second winding; the rectifier bridge includes a third switching tube, a sixth switching tube, a seventh switching tube and an eighth switching tube.
  • the first end of the first switch tube and the second switch tube of the high-side switch bridge are positively connected to the power supply, and the second end of the first switch tube and the first end of the third switch tube are both connected to the opposite ends of the first winding. terminals are connected, the second terminal of the second switching tube and the first terminal of the fourth switching tube are connected to the same terminal of the first winding, the second terminal of the third switching tube is connected to the second terminal of the fourth switching tube and then The first end of the fifth switch tube, the first end of the sixth switch tube and the first end of the inductor are connected. The second end of the fifth switch tube and the first end of the seventh switch tube are both connected to the same end of the second winding.
  • the second end of the sixth switch tube and the first end of the eighth switch tube are connected to the opposite ends of the second winding, the second end of the inductor is connected to the positive electrode of the capacitor and the positive electrode of the load, and the seventh switch tube
  • the second terminal, the second terminal of the eighth switch tube, the negative electrode of the power supply, the negative electrode of the capacitor and the negative electrode of the load are all connected to the ground.
  • the circuit further includes a controller coupled to the high-side switch bridge and the rectifier bridge, so The controller is used to control the opening or closing of the first switching tube, the second switching tube, the third switching tube and the fourth switching tube, wherein the first switching tube and the fourth switching tube are turned on or off at the same time, and the second switch
  • the first switch tube and the third switch tube are turned on or off at the same time, and the turn-on or turn-off time of the first switch tube, the fourth switch tube, the second switch tube, and the third switch tube are equal, so that the first winding and the second winding are connected in series to withstand
  • the amplitude is the power supply voltage and the width is the pulse voltage of the conduction time of the first switch tube, the fourth switch tube or the second switch tube and the third switch tube.
  • the platform voltage generated at the first end of the inductor is n1/(n1+ n2)
  • Vin represents the power supply voltage
  • Vo represents the output voltage
  • D is the turn-on duty cycle of the first switching tube, the fourth switching tube, or the second switching tube and the third switching tube.
  • the first winding N1 has n2 fewer turns.
  • the first switch tube, the fourth switch tube, the second switch tube, and the third switch tube are turned on, the first winding and the second winding are connected in series and connected to both ends of the power supply.
  • the same terminals of the first winding and the second winding are connected to different terminals.
  • the first winding and the second winding are connected to the first and second windings with the same name and different names connected. Currents flow out at the same time.
  • the sum of the two currents is equal to the inductor current.
  • the current in the first winding is equal to the current in the second winding.
  • the current satisfies:
  • the current flowing through the second winding, the fifth switching tube, the sixth switching tube, the seventh switching tube, and the third switching tube are The effective current value of the eight-switch tube is reduced by I1, that is, the current flowing through the first winding N1 is reduced.
  • the second winding, fifth switching tube, sixth switching tube, seventh switching tube, and eighth switching tube are The reduction of the effective value of the current significantly improves the efficiency.
  • the present invention also provides a control method for a non-isolated full-bridge cascade converter circuit.
  • the method can be applied to any circuit in the first aspect.
  • the method includes Including: controlling the opening or closing of the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube, so that the voltage of the power supply is applied to the first winding and the second winding in series, and the fifth switch tube.
  • the connection point of the sixth switching tube and the first end of the inductor generates a pulse voltage.
  • the pulse voltage is filtered by the inductor and the capacitor to generate an output voltage.
  • the output voltage supplies power to the load.
  • the present invention proposes a brand-new circuit topology, which is a non-isolated full-bridge cascade converter.
  • the number of turns of the transformer can be reduced, and the number of turns of the transformer can be reduced.
  • the number of PCB layers in the power supply solution is greatly reduced, which effectively controls the cost and shortens the development cycle; at the same time, due to the current flowing through the transformer winding and switching device
  • the effective value of the current is greatly reduced, which greatly improves the efficiency of the converter circuit.
  • the working principle of the circuit is similar to that of the traditional full-bridge converter, but the structure of the circuit is simpler, the circuit is safe and reliable, and the control is simple and easy.
  • Figure 1 is a topology diagram of the converter circuit using MOS tubes as the rectifier bridge in Embodiment 1;
  • Figure 2 is the main operating waveform of the embodiment of the present invention.
  • Figure 3 is a topology diagram of the converter circuit using diodes as the rectifier bridge in Embodiment 1;
  • Figure 4 is a topological diagram of the converter circuit in which the capacitor is connected in series with the winding N1 of the converter circuit shown in Embodiment 1;
  • FIG. 5 is a topology diagram of the converter circuit in which the winding N1 of the converter circuit shown in Embodiment 1 is connected in series with an inductor or uses an inductor to implement soft switching.
  • the present invention proposes a non-isolated full-bridge cascade converter circuit.
  • the converter circuit includes a power source Vin, a high-side switch bridge, a transformer Tx, a rectifier bridge, an inductor Lf, a capacitor Co and a load Ro; where :
  • the high-side switch bridge includes a first switch S1, a second switch S2, a third switch S3 and a fourth switch S4;
  • the transformer Tx includes a first winding N1 and a second winding N2;
  • the rectifier bridge It includes a fifth switching tube S5, a sixth switching tube S6, a seventh switching tube S7 and an eighth switching tube S8.
  • the first end of the first switch S1 and the first end of the second switch S2 of the high-side switch bridge are both connected to the positive electrode of the power supply Vin.
  • the second end of the first switch S1 and the first end of the third switch S3 terminals are connected to the different terminals of the first winding N1, and the second terminal of the second switch tube S2 is connected to
  • the first end of the fourth switching transistor S4 is connected to the same end of the first winding N1
  • the second end of the third switching transistor S3 is connected to the second end of the fourth switching transistor S4 and then connected to the first end of the fifth switching transistor S5.
  • the first terminal of the sixth switching tube S6 and the first terminal of the inductor Lf are connected, the second terminal of the fifth switching tube S5 and the first terminal of the seventh switching tube S7 are both connected to the same terminal of the second winding N2, The second end of the sixth switching transistor S6 and the first end of the eighth switching transistor S8 are both connected to the opposite end of the second winding N2.
  • the second end of the inductor Lf is connected to the positive electrode of the capacitor Co and the positive electrode of the load Ro.
  • the second terminal of the seventh switch S7, the second terminal of the eighth switch S8, the negative electrode of the power source Vin, the negative electrode of the capacitor Co and the negative electrode of the load Ro are all connected to the ground.
  • the first switching transistor S1, the second switching transistor S2, the third switching transistor S3, and the fourth switching transistor S4 in the high-side switch bridge can use any one of a variety of controllable switching devices.
  • Kinds or combinations, such as MOSFET, IGBT, GAN, SiC MOS, etc., are switching devices that can achieve switching functions.
  • the working mode of the non-isolated full-bridge cascade converter in each switching cycle consists of 4 modes, which are explained below according to different working modes.
  • Mode 0 Before time t0, the controller controls the first switching tube S1, the fourth switching tube S4, the sixth switching tube S6, and the seventh switching tube S7 to turn on, and controls the second switching tube S2, the third switching tube S3, The fifth switching tube S5 and the eighth switching tube S8 are turned off.
  • the opposite terminal of the first winding N1 is connected to the positive terminal of the power source Vin, and the same terminal of the first winding N1 is connected to the opposite terminal of the second winding N2.
  • the same end of the second winding N2 is connected to ground, that is, the first winding N1,
  • the second winding N2 is connected in series and in parallel to both ends of the power source Vin.
  • the voltage at point C in Figure 1 that is, the voltage at the first end of the inductor Lf, is the voltage divided by the first winding N1 and the second winding N2 to the power source Vin.
  • the voltage VC at point C satisfies the following formula:
  • VC n2/(n1+n2) ⁇ Vin, where Vin represents the power supply voltage, VC is the voltage at point C, n1 is the first winding, and n2 is the number of turns of the second winding.
  • the inductor Lf current increases linearly.
  • I1 represents the current in the first winding
  • I2 represents the current in the second winding
  • I Lf is the current of the inductor.
  • I1 represents the current in the first winding
  • I2 represents the current in the second winding
  • I Lf is the current of the inductor.
  • Mode 1 At time t0, the first switching tube S1 and the fourth switching tube S4 are turned off, the sixth switching tube S6 and the seventh switching tube S7 are kept in the on state, and the current of the first winding N1 is lost. After passing through, it drops to zero. According to the coupling relationship of the transformer Tx, the current of the second winding N2 also drops to zero. Since the inductor current cannot suddenly change, the current in the inductor Lf will flow through the sixth switching tube S6, the seventh switching tube S7 and The fifth switching tube S5 and the eighth switching tube S8 clamp the voltage across the second winding N2 at zero, so the voltage across the first winding N1 is also zero.
  • the eighth switch S8 is turned on. At this time, the fifth switch S5 and the eighth switch S8 are turned on at zero voltage. At this time, the VC voltage is zero, and the current of the inductor Lf decreases linearly under the action of the output voltage Vo until time t1. Before time t1, the sixth switch S6 and the seventh switch S7 are turned off. Since the current direction of the inductor Lf remains unchanged, the current flows through the sixth switch S6 and the seventh switch S7, and the operating state of the converter circuit remains unchanged.
  • Mode 2 At time t1, the second switch S2 and the third switch S3 are turned on. At this time, the same terminal of the first winding N1 is connected to the power source Vin, and the different terminal of the first winding N1 is connected to the same terminal of the second winding N2. , the opposite end of the second winding N2 is grounded, that is, the first winding N1 and the second winding N2 are connected in series and then in parallel at both ends of the power supply Vin. Therefore, point C, that is, the front-end voltage of the inductor Lf is the voltage of the first winding N1 and the second winding N2.
  • the inductor Lf current increases linearly.
  • Mode 3 At time t2, the second switching tube S2 and the third switching tube S3 are turned off, and the fifth switching tube S5 and the eighth switching tube S8 are kept on.
  • the current of the first winding N1 drops to zero after losing its path.
  • the current of the second winding N2 also drops to zero. Since the inductor current cannot mutate, the current in the inductor Lf will flow through the fifth switching tube S5, the eighth switching tube S8, the sixth switching tube S6, and the seventh switching tube S6.
  • Switch S7 clamps the voltage across the second winding N2 to zero, so the voltage across the first winding N1 is also zero. Since the sixth switch S6 and the seventh switch S7 are turned on at this time, they are turned on at this time.
  • the sixth switch S6 and the seventh switch S7 are turned on at zero voltage. At this time, the VC voltage is zero, and the current of the inductor Lf decreases linearly under the action of the output voltage Vo until time t1. Turn off the fifth switch S5 and the eighth switch S8 before time t1. Since the current direction of the inductor Lf remains unchanged, the current flows through the fifth switch S5 and the eighth switch S8, and the working state of the converter circuit remains unchanged. .
  • the VC voltage is a pulse voltage of a certain width.
  • Vin represents the power supply voltage
  • Vo represents the output voltage
  • D is the first switching tube
  • the converter circuit in the above embodiment is changed as follows: the transformer Tx includes three windings, and the rectifier bridge uses two switching tubes, where:
  • the high-side switch bridge includes a first switch S1, a second switch S2, a third switch S3 and a fourth switch S4;
  • the transformer Tx includes a first winding N1, a second winding N2 and a third winding N3.
  • the rectifier bridge includes a seventh switching transistor S7 and an eighth switching transistor S8.
  • the first end of the first switch S1 and the first end of the second switch S2 of the high-side switch bridge are both connected to the positive electrode of the power supply Vin.
  • the second end of the first switch S1 and the first end of the third switch S3 Both terminals are connected to the same terminal of the first winding N1, the second terminal of the second switch S2 and the first terminal of the fourth switch S4 are connected to the same terminal of the first winding N1, and the third terminal of the third switch S3
  • the two terminals and the first terminal of the seventh switching tube S7 are both connected to the same terminal of the second winding N2.
  • the second terminal of the fourth switching tube S4 and the first terminal of the eighth switching tube S8 are both connected to the opposite terminal of the third winding N3.
  • the famous terminal is connected, the different terminal of the second winding N2 is connected to the same terminal of the third winding N3 and the first terminal of the inductor Lf.
  • the second terminal of the inductor Lf is connected to the positive terminal of the capacitor Co and the positive terminal of the load Ro.
  • the seventh switch The second terminal of the tube S7, the second terminal of the eighth switch tube S8, the negative electrode of the power source Vin, the negative electrode of the capacitor Co, and the negative electrode of the load Ro are connected to the ground.
  • this converter has the following characteristics:
  • the first switch S1 and the third switch S3 are in complementary conduction, and the second switch S2 and the fourth switch S4 are in chopping operation, or the second switch S2 and the fourth switch S4 are in complementary conduction, and the first switch S1 , the chopping operation of the third switch tube S3 can realize zero-voltage switching of the first switch tube S1, the second switch tube S2, the third switch tube S3, and the fourth switch tube S4.
  • the fifth switching transistor S5, the sixth switching transistor S6, the seventh switching transistor S7, and the eighth switching transistor S8 of the rectifier bridge in Embodiment 1 can use any of a variety of uncontrollable switching devices.
  • One type or a combination such as a diode and other switching devices that can achieve freewheeling function, or a combination of a diode and a switching device such as a MOSFET, IGBT, GAN, SiC MOS, etc.
  • the fifth switch transistor S5 , the sixth switch transistor S6 , the seventh switch transistor S7 , and the eighth switch transistor S8 may all use diodes.
  • this embodiment can further include a series impedance network in the first winding branch of the non-isolated full-bridge cascade converter circuit shown in Figure 1 or Figure 3 .
  • the non-isolated full-bridge cascade converter circuit shown in Figure 1 can The first winding branch is connected in series with the capacitor C1, or, as shown in Figure 5, the first winding branch can be connected in series with the inductor L1 in the non-isolated full-bridge cascade converter circuit shown in Figure 1.
  • the capacitor C1 or the inductor L1 may be connected in series to the first winding branch in the non-isolated full-bridge cascade converter circuit shown in FIG. 3, which will not be illustrated one by one.
  • the first switching transistor S1, the second switching transistor S2, the third switching transistor S3, and the fourth switching transistor S4 in the high-side switch bridge can use any one of a variety of controllable switching devices.
  • Kinds or combinations, such as MOSFET, IGBT, GAN, SiC MOS, etc., are switching devices that can achieve switching functions.
  • the fifth switching transistor S5, the sixth switching transistor S6, the seventh switching transistor S7, and the eighth switching transistor S8 of the rectifier bridge in Embodiment 1 can use any one or combination of a variety of controllable switching devices.
  • controllable switching devices such as MOSFET, IGBT, GAN, SiC MOS and other controllable switching devices that can achieve freewheeling function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提出一种非隔离全桥级联变换器电路,通过将全桥变换器与输出整流电路级联后,实现减少变压器匝数,同时减小变压器绕组与整流开关器件的电流有效值的目的,由于匝数得到减少,使得电源方案的PCB层数大幅下降,有效的控制了成本,缩短了开发周期;同时,由于流过变压器绕组和整流开关器件的电流有效值大幅减小,使变换器的效率得到大幅提升。

Description

非隔离全桥级联变换器电路及其控制方法
交叉引用
本申请要求2022年08月01日提交的申请号为2022109171448的中国申请的优先权。上述申请的内容以引用方式被包含于此。
技术领域
本发明涉及开关电源电路领域,尤其涉及一种非隔离全桥级联变换器电路及其控制方法。
技术背景
近年来随着计算量的提高,服务器单板卡的电能需求越来越大,尤其随着机架式服务器的广泛使用,直流供电总线的电流越来越大,采用48V总线为服务器板卡供电的电源架构逐渐取代了12V总线的传统架构;这种48V架构通常是通过交流电源将交流电网电源转化为48V直流总线,再由DCDC(直流到直流)电源将48V转换为12V,12V再转换为各芯片组所需的低至0.6V的各种电压为芯片组进行供电,也有一些方案是直接将48V直接转化为1V左右中央处理器(central processing unit,CPU)核(core)电压为CPU供电。由于服务器系统中除各芯片组需要低至0.6V的低压供电外,还有许多12V负载,如风扇和内存等,48V转12V后再由12V转为电压为芯片组供电的方式逐渐成为主流。
一方面,服务器市场的体量巨大,成本压力高;另一方面,全球范围的节能降耗要求越来越高,这就使得低成本、高效能的48V转12V成为电力电子领域的一个非常重要的研究方向,许多研究资源进 入到这个领域,并且很多研究成果陆续呈现。当前市场上最普遍的解决方案是在传统通讯领域中广泛应用的48V转12V模块电源基础上不断优化;各电源头部企业在这一应用中大多采用隔离的半桥或全桥硬开关方案;由于服务器领域不需要隔离,各企业纷纷推出非隔离版本的48V转12V模块电源,即将原副边的地直接相连,将隔离方案中的驱动、采样、原副边绝缘避让等隔离措施取消以降低成本和提升效率。为达到更高的效率和功率密度,此发展方向不断的增加印制电路板(Printed Circuit Board,PCB)板的层数和铜厚,不断优化隔离变压器设计,选择性能更优异的功率场效应管,这带来的后果是不断推高产品的成本,加长开发周期,提高设计难度和对技术人员的技术要求,使得该方向的发展到了一个瓶颈,很难在性能和价格之间继续平衡发展。
发明概要
本发明提出一种非隔离全桥级联变换器电路,通过将全桥变换器与输出整流电路级联后,实现减少变压器匝数,同时减小变压器绕组与整流开关器件的电流有效值的目的,由于匝数得到减少,使得电源方案的PCB层数大幅下降,有效的控制了成本,缩短了开发周期;同时,由于流过变压器绕组和整流开关器件的电流有效值大幅减小,使变换器的效率得到大幅提升。
第一方面,本发明提出一种非隔离全桥级联变换器电路,该变换器电路包括:电源、高边开关桥、变压器、整流桥和电感、电容和负载;其中:高边开关桥包括第一开关管、第二开关管、第三开关管和 第四开关管;变压器包括第一绕组和第二绕组;整流桥包括第三开关管、第六开关管、第七开关管和第八开关管。
所述高边开关桥的第一开关管、第二开关管的第一端与电源正相连,第一开关管的第二端、第三开关管的第一端均与第一绕组的异名端相连,第二开关管的第二端与第四开关管的第一端均与第一绕组的同名端相连,第三开关管的第二端与第四开关管的第二端相连后与第五开关管的第一端、第六开关管的第一端及电感的第一端相连,第五开关管的第二端与第七开关管的第一端均与第二绕组的同名端相连,第六开关管的第二端与第八开关管的第一端均与第二绕组的异名端相连,电感的第二端与电容的正极和负载的正极相连,第七开关管的第二端、第八开关管的第二端、电源的负极、电容的负极和负载的负极均与地相连。
一种可能的实施例中,假设第一绕组、第二绕组的匝数分别为n1、n2匝;所述电路还包括耦接于所述高边开关桥和所述整流桥的控制器,所述控制器用于控制第一开关管、第二开关管、第三开关管、第四开关管的开通或关断,其中,第一开关管、第四开关管同时开通或关断,第二开关管、第三开关管同时开通或关断,第一开关管、第四开关管与第二开关管、第三开关管的开通或关断时间相等,使第一绕组与第二绕组串联后承受幅值为电源电压、宽度为第一开关管、第四开关管或第二开关管、第三开关管导通时间的脉冲电压,因而在电感的第一端产生平台电压为n1/(n1+n2)倍电源Vin电压、宽度为第一开关管、第四开关管或第二开关管、第三开关管导通时间的脉冲电 压,经过电感和电容的滤波作用,生成输出电压;电源与输出电压的关系满足:
V0=2D×n2/(n1+n2)×Vin
其中,Vin表示电源电压,Vo表示输出电压,D为第一开关管、第四开关管或第二开关管、第三开关管的开通占空比。
上述实施方式中,与传统全桥变换器相比,在相同电压条件下,第一绕组N1减少了n2匝。第一开关管、第四开关管或第二开关管、第三开关管的开通时,第一绕组、第二绕组串联后连接在电源两端,第一绕组、第二绕组的同名端与异名端相连,第一绕组、第二绕组相连的同名端与异名端同时流出电流,两者电流和与电感电流相等,根据变压器的匝数关系,第一绕组中的电流与第二绕组中的电流满足:
I1×n1=I2×n2;ILf=I1+I2,其中,I1表示第一绕组中电流,I2表示第二绕组中的电流,ILf为电感的电流。
由于第一绕组、第二绕组两者电流和与电感的电流相等,故相较于传统全桥变换器,流过第二绕组、第五开关管、第六开关管、第七开关管、第八开关管的电流有效值减少了I1,即减少了流过第一绕组N1的电流。
由于第一绕组N1匝数的减少,变换器电路的PCB层数减少,降低了成本与开发周期;第二绕组、第五开关管、第六开关管、第七开关管、第八开关管的电流有效值的减小,显著提升了效率。
第二方面,本发明还提供一种非隔离全桥级联变换器电路的控制方法,该方法可以应用于上述第一方面中的任意一种电路,该方法包 括:控制第一开关管、第二开关管、第三开关管、第四开关管的开通或关断,使电源的电压施加在串联后的第一绕组与第二绕组,在第五开关管、第六开关管、电感的第一端的连接点产生脉冲电压,所述脉冲电压经过电感和电容的滤波作用,生成输出电压,所述输出电压为负载供电。
综上,本发明提出了一种全新的电路拓扑,即为一种非隔离全桥级联变换器,通过将传统全桥变换器与输出整流电路级联后,实现减少变压器匝数,同时减小变压器绕组与开关器件的电流有效值的目的,由于匝数得到减少,使得电源方案的PCB层数大幅下降,有效的控制了成本,缩短了开发周期;同时,由于流过变压器绕组和开关器件的电流有效值大幅减小,使变换器电路的效率得到大幅提升,电路的工作原理与传统全桥变换器相类似,但电路的结构更为简单,电路安全可靠,控制简单易行。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例一采用MOS管作为整流桥的变换器电路拓扑图;
图2是本发明实施例的主要工作波形;
图3是实施例一采用二极管作为整流桥的变换器电路拓扑图;
图4是在实施例一所示的变换器电路的绕组N1串联电容的变换器电路拓扑图;
图5是在实施例一所示的变换器电路的绕组N1串联电感或利用电感实现软开关的变换器电路拓扑图。
发明内容
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1所示,本发明提出一种非隔离全桥级联变换器电路,该变换器电路包括电源Vin,高边开关桥,变压器Tx,整流桥和电感Lf,电容Co和负载Ro;其中:
所述高边开关桥包括第一开关管S1、第二开关管S2、第三开关管S3和第四开关管S4;所述变压器Tx包括第一绕组N1和第二绕组N2;所述整流桥包括第五开关管S5、第六开关管S6、第七开关管S7和第八开关管S8。
高边开关桥的第一开关管S1的第一端、第二开关管S2的第一端均与电源Vin的正极相连,第一开关管S1的第二端、第三开关管S3的第一端均与第一绕组N1的异名端相连,第二开关管S2的第二端与 第四开关管S4的第一端均与第一绕组N1的同名端相连,第三开关管S3的第二端与第四开关管S4的第二端相连后与第五开关管S5的第一端、第六开关管S6的第一端及电感Lf的第一端相连,第五开关管S5的第二端与第七开关管S7的第一端均与第二绕组N2的同名端相连,第六开关管S6的第二端与第八开关管S8的第一端均与第二绕组N2的异名端相连,电感Lf的第二端与电容Co的正极和负载Ro的正极相连,第七开关管S7的第二端、第八开关管S8的第二端、电源Vin的负极、电容Co的负极和负载Ro的负极均与地相连。
一种可能的实施方式中,高边开关桥中的第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4,可以采用多种可控开关器件中的任意一种或组合,如MOSFET,IGBT,GAN,SiC MOS等可实现开关作用的的开关器件。
值得说明的是,本文中假设第一绕组N1、第二绕组N2的匝数分别为n1、n2匝。为方便分析,忽略变压器的漏感和激磁电感,电路中各器件均为理想器件。
如图2所示,非隔离全桥级联变换器在每个开关周期内的工作模态由4个模态组成,下面按不同的工作模态加以说明。
模态0:t0时刻之前,控制器控制第一开关管S1、第四开关管S4、第六开关管S6、第七开关管S7开通,以及控制第二开关管S2、第三开关管S3、第五开关管S5、第八开关管S8关断,此时,第一绕组N1的异名端与电源Vin的正极相连,第一绕组N1的同名端与第二绕组N2的异名端相连,第二绕组N2的同名端接地,即第一绕组N1、 第二绕组N2串联后并联于电源Vin的两端,因此,图1中C点的电压,即电感Lf第一端的电压,为第一绕组N1、第二绕组N2对电源Vin的电压的分压,根据变压器Tx的变比关系可知,此时C点电压VC满足如下公式:
VC=n2/(n1+n2)×Vin,其中,Vin表示电源电压,VC为C点电压,n1为第一绕组、n2为第二绕组的匝数。
可见,在VC电压与输出电压Vo的共同作用下,电感Lf电流线性增加。电感Lf内电流ILf等于第一绕组N1与第二绕组N2电流之和;假设本文定义第一绕组N1的电流I1,第二绕组N2的电流I2,根据变压器Tx的耦合关系,满足如下公式:
I1×n1=I2×n2
ILf=I1+I2
其中,I1表示第一绕组中的电流,I2表示第二绕组中的电流,ILf为电感的电流。
因此,第二绕组N2、电感Lf电流满足如下公式:
I2=I1×n1/n2
ILf=I1×(n1+n2)/n2
其中,I1表示第一绕组中的电流,I2表示第二绕组中的电流,ILf为电感的电流。
模态1:t0时刻,关断第一开关管S1、第四开关管S4,保持第六开关管S6、第七开关管S7处于开通状态,第一绕组N1电流失去 通路后降为零,根据变压器Tx的耦合关系,第二绕组N2的电流也下降到零,由于电感电流不能突变,电感Lf内的电流将流过第六开关管S6、第七开关管S7及第五开关管S5、第八开关管S8,将第二绕组N2的两端电压钳位在零,故第一绕组N1的两端电压也为零,由于此时的第五开关管S5、第八开关管S8导通,此时开通第五开关管S5、第八开关管S8为零电压开通,此时VC电压为零,电感Lf在输出电压Vo作用下电流线性下降,直至t1时刻。在t1时刻前关断第六开关管S6、第七开关管S7,由于电感Lf电流方向不变,故电流流过第六开关管S6、第七开关管S7,变换器电路工作状态不变。
模态2:t1时刻,开通第二开关管S2,第三开关管S3,此时,第一绕组N1同名端与电源Vin正相连,第一绕组N1异名端与第二绕组N2同名端相连,第二绕组N2的异名端接地,即第一绕组N1、第二绕组N2串联后并联于电源Vin两端,因此,C点即电感Lf的前端电压为第一绕组N1、第二绕组N2对电源Vin电压的分压,根据变压器Tx的变比关系可知,此时C点电压VC满足如下公式:
VC=n2/(n1+n2)×Vin
ILf=I1+I2
这样,在VC电压与输出电压Vo的共同作用下,电感Lf电流线性增加。电感Lf内的电流ILf等于第一绕组N1与第二绕组N2电流和;根据变压器Tx的耦合关系,满足:
I1×n1=I2×n2
因此,第二绕组N2、电感Lf电流满足:
I2=I1×n1/n2
ILf=I1×(n1+n2)/n2
可见,模态0与模态2的工作状态对偶。
模态3:t2时刻,关断第二开关管S2、第三开关管S3,保持第五开关管S5、第八开关管S8处于开通,第一绕组N1电流失去通路后降为零,根据变压器Tx的耦合关系,第二绕组N2的电流也下降到零,由于电感电流不能突变,电感Lf内的电流将流过第五开关管S5、第八开关管S8及第六开关管S6、第七开关管S7,将第二绕组N2两端电压钳位在零,故第一绕组N1两端电压也为零,由于此时的第六开关管S6、第七开关管S7导通,此时开通第六开关管S6、第七开关管S7为零电压开通,此时VC电压为零,电感Lf在输出电压Vo作用下电流线性下降,直至t1时刻。在t1时刻前关断第五开关管S5、第八开关管S8,由于电感Lf电流方向不变,故电流流过第五开关管S5、第八开关管S8,变换器电路的工作状态不变。
可见,模态1和模态3的工作状态对偶。
由以上分析可知,VC电压为一定宽度的脉冲电压,在电感Lf、电容Co的滤波作用下,将VC电压转化为稳定的输出电压Vo;Vo满足如下公式:
V0=2D×n2/(n1+n2)×Vin
其中,Vin表示电源电压,Vo表示输出电压,D为第一开关管、 第四开关管或第二开关管、第三开关管的开通占空比。
本实施例中,对照传统全桥变换器电路可知,在相同的电压条件下,第一绕组N1的绕组减少了n2匝;另外对照传统全桥变换器电路可知,在相同的电压条件下,第二绕组N2的绕组和整流桥内的电流值减小了I1,即减小了第一绕组N1的电流。
实施例二
如图3所示,该实施例中,将上述实施例中的变换器电路作如下变更:变压器Tx包括三个绕组,整流桥采用两个开关管,其中:
所述高边开关桥包括第一开关管S1、第二开关管S2、第三开关管S3和第四开关管S4;所述变压器Tx包括第一绕组N1、第二绕组N2和第三绕组N3;所述整流桥包括第七开关管S7和第八开关管S8。
高边开关桥的第一开关管S1的第一端、第二开关管S2的第一端均与电源Vin的正极相连,第一开关管S1的第二端、第三开关管S3的第一端均与第一绕组N1的异名端相连,第二开关管S2的第二端、第四开关管S4的第一端均与第一绕组N1的同名端相连,第三开关管S3的第二端、第七开关管S7的第一端均与第二绕组N2的同名端相连,第四开关管S4的第二端、第八开关管S8的第一端均与第三绕组N3的异名端相连,第二绕组N2的异名端与第三绕组N3的同名端、电感Lf的第一端相连,电感Lf的第二端与电容Co正端、负载Ro正端相连,第七开关管S7的第二端、第八开关管S8的第二端、电源Vin的负极、电容Co的负极、负载Ro的负极与地相连。
应理解,上述实施例二的控制器的工作原理与实施例一基本相同, 此处不做累述。
由以上分析可知,本变换器存在以下特征:
a、通过与第一绕组N1串联电容可有效抑制变压器Tx的偏磁;b、通过与第一绕组N1串联电感或利用变压器Tx漏感,并采用移相控制,即第一开关管S1、第三开关管S3互补导通,第二开关管S2、第四开关管S4互补导通,第一开关管S1、第三开关管S3与第二开关管S2、第四开关管S4移相控制,可实现第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4的零电压开关;c、通过与第一绕组N1串联电感或利用变压器Tx漏感,并采用第一开关管S1、第三开关管S3互补导通,第二开关管S2、第四开关管S4斩波工作,或第二开关管S2、第四开关管S4互补导通,第一开关管S1、第三开关管S3斩波工作,可实现第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4的零电压开关。
一种可能的实施方式中,实施例一中的整流桥的第五开关管S5、第六开关管S6、第七开关管S7、第八开关管S8可以采用多种不可控开关器件中的任意一种或组合,如二极管等可实现续流功能的开关器件,或二极管和MOSFET,IGBT,GAN,SiC MOS等开关器件的组合。示例性地,如图3所示,第五开关管S5、第六开关管S6、第七开关管S7、第八开关管S8可以均采用二极管。
一种可能的实施方式中,本实施例还可以进一步在图1或图3所示的非隔离全桥级联变换器电路中第一绕组支路串联阻抗网络。示例性地,如图4所示,可以在图1所示的非隔离全桥级联变换器电路中 第一绕组支路串联电容C1,或者,如图5所示,可以在图1所示的非隔离全桥级联变换器电路中第一绕组支路串联电感L1。应理解,本发明也可以在图3所示的非隔离全桥级联变换器电路中第一绕组支路串联电容C1或电感L1,对此不再一一举例示出。
一种可能的实施方式中,高边开关桥中的第一开关管S1、第二开关管S2、第三开关管S3、第四开关管S4,可以采用多种可控开关器件中的任意一种或组合,如MOSFET,IGBT,GAN,SiC MOS等可实现开关作用的的开关器件。
应理解,实施例一中的整流桥的第五开关管S5、第六开关管S6、第七开关管S7、第八开关管S8可以采用多种可控开关器件中的任意一种或组合,如MOSFET,IGBT,GAN,SiC MOS等可实现续流功能的可控开关器件。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何在本发明实施例揭露的技术范围内的变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种非隔离全桥级联变换器电路,其特征在于,包括:电源、高边开关桥、变压器、整流桥、电感、电容和负载;其中:
    所述高边开关桥包括第一开关管、第二开关管、第三开关管和第四开关管;
    所述变压器包括第一绕组和第二绕组;
    所述整流桥包括第五开关管、第六开关管、第七开关管和第八开关管;
    第一开关管的第一端、第二开关管的第一端均与电源的正极相连,第一开关管的第二端、第三开关管的第一端均与第一绕组的异名端相连,第二开关管的第二端与第四开关管的第一端均与第一绕组的同名端相连,第三开关管的第二端与第四开关管的第二端相连后与第五开关管的第一端、第六开关管的第一端及电感的第一端相连,第五开关管的第二端与第七开关管的第一端均与第二绕组的同名端相连,第六开关管的第二端与第八开关管的第一端均与第二绕组的异名端相连,电感的第二端与电容的正极和负载的正极相连,第七开关管的第二端、第八开关管的第二端、电源的负极、电容的负极和负载的负极均与地相连。
  2. 根据权利要求1所述的电路,其特征在于,所述电路还包括耦接于所述高边开关桥和所述整流桥的控制器,所述控制器用于控制第一开关管、第二开关管、第三开关管、第四开关管的开通或关断,使 电源的电压施加在串联后的第一绕组与第二绕组,在第五开关管、第六开关管、电感的第一端的连接点产生脉冲电压,所述脉冲电压经过电感和电容的滤波作用,生成输出电压,所述输出电压为负载供电。
  3. 根据权利要求2所述的电路,其特征在于,所述控制器还用于控制第一开关管、第四开关管同时开通或关断、第二开关管、第三开关管同时开通或关断,其中,第一开关管、第四开关管与第二开关管、第三开关管的开通或关断的时间相等。
  4. 根据权利要求2或3所述的电路,其特征在于,所述控制器还用于:
    控制第一开关管、第三开关管占空比为50%互补导通,第二开关管、第四开关管占空比为50%互补导通,第一开关管、第三开关管与第二开关管、第四开关管移相控制调整输出电压,同时利用第一绕组串联电感或变压器漏感可实现第一开关管、第二开关管、第三开关管、第四开关管的零电压开关。
  5. 根据权利要求2或3所述的电路,其特征在于,所述控制器还用于:控制第一开关管、第三开关管互补导通,第二开关管、第四开关管互补导通,通过调整第一开关管与第三开关管的占空比及第二开关管与第四开关管的占空比来调整输出电压的大小,以及利用第一绕组串联电感或变压器漏感可实现第一开关管、第二开关管、第三开关管、第四开关管的零电压开关。
  6. 根据权利要求1至3任一项所述的电路,其特征在于,还包括 在第一绕组支路串联的阻抗网络。
  7. 根据权利要求1至3任一项所述的电路,其特征在于,所述高边开关桥中的第一开关管、第二开关管、第三开关管、第四开关管采用可实现开关作用的多种可控开关器件中的任意一种或组合。
  8. 根据权利要求1至3任一项所述的电路,其特征在于,所述整流桥中的第五开关管、第六开关管、第七开关管、第八开关管采用多种可实现整流功能的不可控开关器件中的任意一种或者组合。
  9. 根据权利要求1至3任一项所述的电路,其特征在于,所述整流桥中的第五开关管、第六开关管、第七开关管、第八开关管采用多种可实现整流功能的可控或不可控开关器件中的任意一种或组合。
  10. 一种非隔离全桥级联变换器电路的控制方法,应用于如权利要求1至9任一项所述的非隔离全桥级联变换器电路,其特征在于,包括:
    t0时刻之前,控制第一开关管、第四开关管、第六开关管、第七开关管开通,以及控制第二开关管、第三开关管、第五开关管、第八开关管关断;
    t0时刻,关断第一开关管、第四开关管,保持第六开关管、第七开关管处于开通状态;
    t1时刻,开通第二开关管,第三开关管;
    t2时刻,关断第二开关管、第三开关管,保持第五开关管和第八开关管处于开通,使得电感内的电流流过第五开关管、第八开关管 及第六开关管、第七开关管,将第二绕组和第一绕组两端电压钳位在零。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    控制第一开关、第四开关管同时开通或关断、第二开关管、第三开关管同时开通或关断的时间相等。
PCT/CN2023/102030 2022-08-01 2023-06-25 非隔离全桥级联变换器电路及其控制方法 WO2024027360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210917144.8A CN115149809A (zh) 2022-08-01 2022-08-01 非隔离全桥级联变换器电路及其控制方法
CN202210917144.8 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024027360A1 true WO2024027360A1 (zh) 2024-02-08

Family

ID=83414039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102030 WO2024027360A1 (zh) 2022-08-01 2023-06-25 非隔离全桥级联变换器电路及其控制方法

Country Status (2)

Country Link
CN (1) CN115149809A (zh)
WO (1) WO2024027360A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149809A (zh) * 2022-08-01 2022-10-04 上海英联电子系统有限公司 非隔离全桥级联变换器电路及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114397A1 (en) * 2002-12-09 2004-06-17 Yan-Fei Liu Non-isolated DC-DC converters with direct primary to load current
CN1558539A (zh) * 2004-01-19 2004-12-29 南京航空航天大学 变压器箝位零电压开关三电平全桥变换器及其扩展电路
CN205911954U (zh) * 2016-06-19 2017-01-25 江苏爱克赛电气制造有限公司 一种高效移相全桥软开关电能转换串联输出装置
CN206517302U (zh) * 2017-03-07 2017-09-22 深圳麦格米特电气股份有限公司 一种加箝位二极管器件的软开关直流变换器的谐振腔箝位的电路
CN113131742A (zh) * 2021-03-09 2021-07-16 广州金升阳科技有限公司 宽电压输入四管Buck-Boost电路
CN115149809A (zh) * 2022-08-01 2022-10-04 上海英联电子系统有限公司 非隔离全桥级联变换器电路及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114397A1 (en) * 2002-12-09 2004-06-17 Yan-Fei Liu Non-isolated DC-DC converters with direct primary to load current
CN1558539A (zh) * 2004-01-19 2004-12-29 南京航空航天大学 变压器箝位零电压开关三电平全桥变换器及其扩展电路
CN205911954U (zh) * 2016-06-19 2017-01-25 江苏爱克赛电气制造有限公司 一种高效移相全桥软开关电能转换串联输出装置
CN206517302U (zh) * 2017-03-07 2017-09-22 深圳麦格米特电气股份有限公司 一种加箝位二极管器件的软开关直流变换器的谐振腔箝位的电路
CN113131742A (zh) * 2021-03-09 2021-07-16 广州金升阳科技有限公司 宽电压输入四管Buck-Boost电路
CN115149809A (zh) * 2022-08-01 2022-10-04 上海英联电子系统有限公司 非隔离全桥级联变换器电路及其控制方法

Also Published As

Publication number Publication date
CN115149809A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN109217681B (zh) 一种双向谐振变换器
US6246599B1 (en) Constant frequency resonant inverters with a pair of resonant inductors
Chung et al. A zero-current-switching PWM flyback converter with a simple auxiliary switch
US20230113753A1 (en) Dc/dc converter and method for controlling output voltage thereof
CN110190752B (zh) 一种双向clllc-dcx谐振变换器及其控制方法
Shu et al. Analysis of strategy for achieving zero-current switching in full-bridge converters
CN111262442A (zh) 一种基于on/off控制的谐振变换器
WO2024027360A1 (zh) 非隔离全桥级联变换器电路及其控制方法
US20230155510A1 (en) Switching power supply circuit
CN114938144A (zh) 一种非隔离llc谐振变换器电路
Coccia et al. Wide input voltage range compensation in DC/DC resonant architectures for on-board traction power supplies
CN109302078B (zh) 基于同步整流模式的dc-dc开关电源
Shiva et al. Tap changing transformer based dual active bridge bi-directional DC-DC converter
WO2024045798A1 (zh) 非隔离llc谐振变换器
TW201737607A (zh) 交錯式升壓轉換器
US7548442B2 (en) Power converter with coupled inductor
WO2020007108A1 (zh) 一种开关变换器
TWI501527B (zh) 單輔助開關之交錯式高升壓比柔切式轉換器
Lee et al. High efficiency active clamp forward converter with synchronous switch controlled ZVS operation
CN107659155B (zh) 双向直流变换器及双向直流变换控制方法
WO2022179564A1 (zh) 无桥降压功率因素校正电路
WO2022171290A1 (en) Direct power ac/dc converter
CN114696602A (zh) 功率变换电路
Nayanasiri et al. Soft-switching single inductor current-fed push-pull converter for PV applications
CN219643800U (zh) Dc-dc变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849070

Country of ref document: EP

Kind code of ref document: A1