WO2024085470A1 - 개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스 - Google Patents

개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스 Download PDF

Info

Publication number
WO2024085470A1
WO2024085470A1 PCT/KR2023/014140 KR2023014140W WO2024085470A1 WO 2024085470 A1 WO2024085470 A1 WO 2024085470A1 KR 2023014140 W KR2023014140 W KR 2023014140W WO 2024085470 A1 WO2024085470 A1 WO 2024085470A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling tube
battery
pack
tube assembly
battery module
Prior art date
Application number
PCT/KR2023/014140
Other languages
English (en)
French (fr)
Inventor
이정훈
엄태기
유재욱
김두승
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024085470A1 publication Critical patent/WO2024085470A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a device including the same, and more specifically, to a battery pack with an improved cooling structure and a device including the same.
  • secondary batteries are receiving much attention as an energy source for not only mobile devices such as mobile phones, digital cameras, laptops, and wearable devices, but also power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles.
  • a battery module and/or a battery pack is constructed by connecting a plurality of battery cells in series/parallel
  • a battery module is composed of at least one battery cell, and other components are added using at least one battery module. This is a common method of constructing a battery pack.
  • the battery cells that make up these medium-to-large battery modules are composed of secondary batteries capable of charging and discharging, such high-output, large-capacity secondary batteries generate a large amount of heat during the charging and discharging process.
  • heat from multiple battery cells is added up in a small space, causing the temperature to rise quickly and severely.
  • high output can be obtained, but it is not easy to remove heat generated from the battery cells during charging and discharging. If the heat dissipation of the battery cell is not performed properly, the battery cell deteriorates faster, its lifespan is shortened, and the possibility of explosion or ignition increases.
  • battery modules included in vehicle battery packs are frequently exposed to direct sunlight and may be placed in high temperature conditions such as summer or desert areas. Additionally, because multiple battery modules are deployed intensively to increase the vehicle's driving range, flame or heat generated from one battery module can easily spread to neighboring battery modules, ultimately leading to ignition or explosion of the battery pack itself. You can.
  • FIG. 1 is a diagram showing a heat discharge path in a conventional battery module.
  • a conventional battery module 30 includes a cell assembly 70 including battery cells 60 stacked in a preset direction, and a module frame 40 for housing the cell assembly 70,
  • the cell assembly 70 is fixed and positioned on the thermally conductive resin layer 50 located on the lower surface of the module frame 40.
  • a heat sink 90 is provided facing the bottom of the module frame 40 located in the -z-axis direction of FIG. 1, and the heat sink 90 ) and the bottom of the module frame 40 may be additionally installed with a heat conduction pad 80 for heat transfer.
  • the heat sink 90 does not receive heat while being in direct contact with the cell assembly 70, the cooling efficiency is not very high, and the cooling path is directed in one direction (-z) of the width direction of the battery cell. axial direction), a temperature gradient may occur.
  • the problem to be solved by the present invention is to provide a battery pack that can minimize space loss that occurs when connecting a coolant supply connection for supplying the insulating coolant circulating in the battery module to the battery module, and a device including the same.
  • the present invention provides a battery pack and a device including the same that can solve the problem of difficulty in connecting the coolant supply connection due to limited space when connecting the coolant supply connection after the battery module is placed in the battery pack.
  • a battery pack includes a battery module including a cell assembly formed by stacking a plurality of battery cells and a module frame for accommodating the cell assembly, a pack housing on which at least one of the battery modules is mounted, and the It includes a cooling tube assembly mounted within the pack housing, and one end of the battery module is arranged to overlap the cooling tube assembly.
  • One end of the battery module and the cooling tube assembly may overlap in the vertical direction.
  • the battery module further includes a sealing cover formed on one end of the battery module to cover the cell assembly, and the sealing cover may overlap the cooling tube assembly in a vertical direction.
  • the sealing cover includes a cover portion that covers one end of the cell assembly from which electrode leads protrude from the plurality of battery cells, and a protrusion protruding from the cover portion, and the protrusion is aligned with the cooling tube assembly in a vertical direction. Can be overlapped.
  • the cooling tube assembly may include a cooling tube extending along a direction in which the plurality of battery cells are stacked, and a fixing frame assembled with the cooling tube.
  • Openings are formed in each of the cooling tube and the protrusion in a direction in which the cooling tube and the protrusion face each other, and the insulating coolant injected into the cooling tube assembly may pass through the openings and flow into the battery module. .
  • the sealing cover and the fixing frame may be coupled to each other by a fastening member.
  • the battery pack may further include a sealing member positioned between the cooling tube and the protrusion.
  • the fixing frame may include a plurality of fixing blocks arranged to be spaced apart from each other along a direction in which the cooling tube extends.
  • the cooling tube may include a main tube, a hose connected to one end of the main tube, and a connector connected to the hose.
  • the cooling tube assembly includes a cooling tube assembly for injection and a cooling tube assembly for discharge, the cooling tube assembly for injection is disposed between one of the side frames of the pack housing and one end of the battery module, and the pack The cooling tube assembly for discharge may be disposed between another one of the side frames of the housing and the other end of the battery module.
  • the battery module further includes a first sealing cover formed on one end of the battery module to cover the cell assembly, and a second sealing cover formed on the other end of the battery module to cover the cell assembly,
  • the injection cooling tube assembly may be located below the first sealing cover, and the discharge cooling tube assembly may be located above the second sealing cover.
  • the cooling tube assembly for discharge includes a main tube, a hose connected to one end of the main tube, and a connector connected to the hose.
  • the hose is a flexible tube, and when the hose is bent, it is connected to the main tube.
  • a height step of the connector may be formed.
  • the cooling tube assembly includes a cooling tube extending along a direction in which the plurality of battery cells are stacked, and a fixed frame assembled with the cooling tube, a plurality of battery modules are mounted on the pack housing, and the battery pack further includes a partition wall disposed between neighboring battery modules, and one end of the partition wall may include a groove portion surrounding the cooling tube.
  • the inside of the module frame can be impregnated with an insulating coolant to directly cool the battery cells.
  • a device includes the battery pack described above.
  • space utilization of the insulated coolant inlet and outlet can be improved by using a cooling tube and a fixed frame.
  • the process of connecting the insulated coolant injection portion and the insulated coolant discharge portion is performed before and after the process of placing the battery module in the battery pack, thereby eliminating the disadvantage of difficult connection work due to limited space.
  • a battery pack and a device containing the same is to provide.
  • FIG. 1 is a diagram showing a heat discharge path in a conventional battery module.
  • Figure 2 is an exploded perspective view showing a battery pack according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing the battery pack of FIG. 2.
  • Figure 4 is a diagram showing a cooling tube assembly for injection according to an embodiment of the present invention.
  • Figure 5 is an enlarged view of part A of Figure 4.
  • Figure 6 is a diagram showing a cooling tube assembly for discharge according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a battery module included in the battery pack of FIG. 2.
  • FIG. 8 is a partially enlarged view showing area B of FIG. 7 enlarged.
  • Figure 9 is a perspective view showing a battery module according to a comparative example.
  • FIG. 10 is a diagram showing the battery module of FIG. 9 disposed within a battery pack.
  • 11 to 16 are diagrams showing a method of manufacturing a battery pack according to another embodiment of the present invention.
  • Figure 17 is a diagram showing the path of the insulating coolant in the battery pack according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a battery pack according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing the battery pack of FIG. 2.
  • the configuration of the battery module 100 of FIG. 2 is omitted for convenience in order to show the discharge cooling tube assembly 205B.
  • the battery pack 1000 includes a pack housing 700 on which at least one battery module 100 is mounted, and the pack housing 700 is a battery module.
  • the lower pack frame 710, the side pack frame 720, and the upper pack frame 730 are coupled to each other by a method such as welding, so that the inside of the battery pack 1000 can be sealed.
  • the side pack frame 720 is provided with pack ports 650 and 660 connected to the cooling tube assembly 205 (FIG. 4), which will be described later.
  • the battery module 100 may include a cell assembly 120 in which a plurality of battery cells are stacked along a preset direction and a module frame 200 that accommodates the cell assembly.
  • the module frame 200 may be a monoframe in the form of a metal plate in which the upper and lower surfaces (z-axis direction and -z-axis direction) and both sides (x-axis direction and -x-axis direction) are integrated.
  • the cell assembly 120 may be mounted inside the module frame 200 to form the battery module 100.
  • the module frame 200 is not limited to the above, and the module frame 200 may include an upper frame and a lower frame, and the lower frame is a floor plate and side plates extending upward from both corners of the floor plate, respectively. It is a U-shaped frame including, and the upper frame may be a flat plate structure.
  • At least one partition wall 500 is formed on the lower pack frame 710.
  • the lower pack frame 710 and the partition wall 500 and/or the side pack frame 720 and the partition wall 500 may be coupled to each other by a method such as welding.
  • a method such as welding.
  • it is not limited to methods such as welding, and can also be joined using an adhesive.
  • the plurality of battery modules 100 may be partitioned from each other by a side pack frame 720 and a plurality of partition walls 500. Specifically, the plurality of battery modules 100 may be respectively disposed in a plurality of areas formed by the side pack frame 720 and the partition walls 500 adjacent to each other.
  • the plurality of battery modules 100 are surrounded by the plurality of partition walls 500 and the side pack frame 720, so that each battery module 100 can be protected from external shock.
  • the side pack frame 720 may be disposed along the edge of the bottom surface of the lower pack frame 710 and extend upward from the bottom surface of the lower pack frame 710. More specifically, it may extend upward from each edge of the bottom surface of the lower pack frame 710.
  • the upper end of the side pack frame 720 may be in contact with the upper pack frame 730.
  • the upper end of the side pack frame 720 and the upper pack frame 730 are coupled to each other by a method such as welding, so that the inside of the battery pack 1000 can be sealed.
  • the plurality of partition walls 500 may be spaced apart from each other.
  • the distance between adjacent partition walls 500 may be equal to or greater than the width of the battery module 100.
  • the width of the battery module 100 may be measured along the direction in which a plurality of battery cells are stacked.
  • the end of the partition wall 500 may contact the inner surface of the side pack frame 720. More specifically, both ends of the partition wall 500 may be in contact with the inner surface of the side pack frame 720, respectively.
  • the battery pack 1000 includes a cooling tube assembly 205 that supplies insulating coolant to the battery module 100.
  • An insulating coolant is a material that has electrical insulating properties and a cooling function. For example, it may be insulating oil.
  • the cooling tube assembly 205 includes a cooling tube assembly 205A for injection and a cooling tube assembly 205B for discharge.
  • the cooling tube assembly 205A for injection is disposed between one of the side pack frames 720 of the pack housing 700 and one end of the battery module 100, and the cooling tube assembly 205B for discharge is located in the pack housing. It may be disposed between another one of the side pack frames 720 of 700 and the other end of the battery module 100.
  • FIG. 4 is a diagram showing a cooling tube assembly for injection according to an embodiment of the present invention.
  • Figure 5 is an enlarged view of part A of Figure 4.
  • Figure 6 is a diagram showing a cooling tube assembly for discharge according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a battery module included in the battery pack of FIG. 2.
  • FIG. 8 is a partially enlarged view showing area B of FIG. 7 enlarged.
  • the cooling tube assembly 205A for injection includes a cooling tube 220 extending along the direction in which a plurality of battery cells are stacked (y-axis direction in Figure 3), and a fixed frame 210 assembled with the cooling tube 220.
  • the cooling tube 220 and the fixing frame 210 may be coupled to each other using an adhesive, but the sealing cover (150 in FIG. 7) and the fixing frame 210, which will be described later, are coupled by a fastening member without using an adhesive, thereby forming the cooling tube. (220) can also be fixed together.
  • an adhesive and a fastening member may be used at the same time, and the fastening member may have a bolted structure.
  • the fixing frame 210 may include a plurality of fixing blocks arranged to be spaced apart from each other along the direction in which the cooling tube 220 extends.
  • the cooling tube 220 included in the cooling tube assembly 205A for injection includes a main tube 221, a hose 250a connected to one end of the main tube 221, And it may include a connector 270 connected to the hose 250a.
  • the hose 250a may be a flexible pipe.
  • the hose 250a of the injection cooling tube assembly 205A may be arranged in a straight line with the direction in which the main tube 221 extends.
  • the main tube 221 may be formed by extruding a metal material, for example, aluminum.
  • the hose 250a can be used for ease of assembly, and the connector 270 can serve to assemble the main tube 221 and the pack port 650 without a separate bonding or connection process.
  • the fixing frame 210 may have a structure that surrounds the lower part and left and right sides of the main tube 221 to expose the upper part of the main tube 221. Due to this structure of the fixed frame 210, an opening 225 may be formed in the upper part of the main tube 221.
  • the insulated coolant flows into the pack inlet port 650 from the outside of the battery pack 1000, and the insulated coolant flows into the cooling tube 220 connected to the pack inlet port 650. supplied. Thereafter, the insulating coolant flows to the sealing cover 150, which will be described later, through the opening 225 of the main tube 221 included in the cooling tube 220, and the insulating coolant flows to the battery module 100 through the sealing cover 150. You can go inside.
  • the insulating coolant inside the battery module 100 can directly cool the electrode lead 111 and the bus bar (not shown) coupled to the electrode lead 111, and the battery cell 110 and the module frame 200.
  • An insulating coolant may be inserted into the gap space GS formed between the cooling channels to form a cooling passage.
  • the insulating coolant may move along the direction of the arrow shown in FIG. 7.
  • a bus bar frame, an insulating cover, an end plate, etc. in which the coupling portions of the bus bar and electrode leads 111 and 112 are formed, may be disposed between the battery cell 110 and the sealing cover 150.
  • the end plate may be formed to cover the outside of the sealing cover 150.
  • the cooling tube assembly 205B for discharge includes a cooling tube 220 extending along the direction in which a plurality of battery cells are stacked (y-axis direction in FIG. 3), and a fixed frame 210 assembled with the cooling tube 220.
  • the cooling tube 220 and the fixing frame 210 may be coupled to each other using an adhesive, but the sealing cover (150 in FIG. 7) and the fixing frame 210, which will be described later, are coupled by a fastening member without using an adhesive, thereby forming the cooling tube. (220) can also be fixed together.
  • an adhesive and a fastening member may be used at the same time, and the fastening member may have a bolted structure.
  • the fixing frame 210 may include a plurality of fixing blocks arranged to be spaced apart from each other along the direction in which the cooling tube 220 extends.
  • the cooling tube 220 included in the cooling tube assembly 205B for discharge includes a main tube 221, a hose 250b connected to one end of the main tube 221, And it may include a connector 270 connected to the hose 250b.
  • the hose 250b of the discharge cooling tube assembly 205B is a flexible pipe, and when the hose 250b is bent, a height difference between the main tube 221 and the connector 270 may be formed. This is a difference from the injection cooling tube assembly (205A) described previously.
  • the hose 250a of the injection cooling tube assembly 205A may be arranged in a straight line with the direction in which the main tube 221 extends.
  • the main tube 221 of the discharge cooling tube assembly 205B may be formed by extruding a metal material, for example, aluminum.
  • the hose 250b can be used for ease of assembly, and the connector 270 can serve to assemble the main tube 221 and the pack port 660 without a separate bonding or connection process.
  • the fixing frame 210 may be structured to surround the top and left and right sides of the main tube 221 to expose the lower part of the main tube 221. Due to this structure of the fixed frame 210, an opening 225 may be formed in the lower part of the main tube 221.
  • the insulating coolant injected into the battery module 100 through the inflow cooling tube assembly 205A described above directly cools the bus bar, battery cell, etc.
  • cooling for discharge is performed through the opening 225 of the main tube 221 of the cooling tube assembly 205B for discharge. It may be discharged into tube assembly 205B.
  • one end of the battery module 100 may be arranged to overlap the cooling tube assembly 205 .
  • one end of the battery module and the cooling tube assembly 205 may overlap in the vertical direction (z-axis direction in FIG. 7).
  • This arrangement structure can increase space efficiency compared to the method of connecting the connector for circulating the insulating coolant inside the battery module directly to the battery module.
  • the battery module 100 may include sealing covers 150 at both ends of the battery module 100 to cover the cell assembly 120 .
  • the sealing cover 150 may overlap the cooling tube assembly 205 in the vertical direction.
  • the sealing cover 150 includes a cover part 150a that covers one end of the cell assembly 120 where the electrode leads 111 and 112 protrude from the plurality of battery cells 110, and a cover part 150a that protrudes from the cover part 150a. It may include a protrusion 150b.
  • the protrusion 150b may overlap the cooling tube assembly 205 in the vertical direction.
  • the sealing cover 150 formed on one end of the battery module 100 to cover the cell assembly 120 is referred to as a first sealing cover, and the sealing cover 150 formed on one end of the battery module 100 to cover the cell assembly 120 is called a first sealing cover.
  • first sealing cover When the formed sealing cover 150 is referred to as a second sealing cover, the injection cooling tube assembly 205A is located at the lower part of the first sealing cover, and the discharge cooling tube assembly 205B is located at the bottom of the second sealing cover. It can be located at the top.
  • An opening 227 is formed in the sealing cover 150, an opening 227 is formed in the lower part of the first sealing cover 150, and an opening 227 is formed in the upper part of the second sealing cover 150. It can be. Specifically, an opening 227 is formed in the protrusion 150b of the sealing cover 150, and the opening 227 communicates with the opening 225 formed in the main tube 221 of the cooling tube to allow the insulating coolant to pass through. there is.
  • a sealing member 230 may be positioned between the cooling tube 220 and the protrusion 150b.
  • the sealing member 230 may be a sealing foam tape.
  • leakage of the insulating coolant between the cooling tube 220 and the protrusion 150b of the sealing cover 150 can be blocked to increase cooling efficiency.
  • an opening (not shown) is formed in the sealing member 230, so that the opening of the sealing member 230 can communicate with the opening 225 of the main tube 221 and the opening of the protrusion 150b described above.
  • the sealing cover 150 and the fixing frame 210 may be coupled to each other by a fastening member 165.
  • the fastening member 165 may be a bolt coupling member.
  • FIG. 9 is a perspective view showing a battery module according to a comparative example.
  • FIG. 10 is a diagram showing the battery module of FIG. 9 disposed within a battery pack.
  • the battery module 800 includes a module frame 820 for housing the cell assembly 805, and a cell assembly excluding the portion of the cell assembly 805 surrounded by the module frame 820. It includes an end plate 810 covering the front and rear surfaces of 805, respectively. At this time, an inlet port 850 and an outlet port 860 are formed on each of the end plates 810 on the front and rear surfaces of the cell assembly 805 to introduce and discharge refrigerant into the battery module 800.
  • DC quick connector
  • FIG. 11 to 16 are diagrams showing a method of manufacturing a battery pack according to another embodiment of the present invention.
  • FIG. 13 is a partially enlarged view showing area C of FIG. 12 enlarged.
  • the cooling tube assembly 205A for injection described in FIG. 4 can be prepared and placed on the lower pack frame 710 of the battery pack 1000.
  • the side pack frame 720 of the pack housing is provided with a pack inlet port 650 connected to the injection cooling tube assembly 205A, and the injection cooling tube assembly 205A
  • the cooling tube 220 may be connected to the pack inlet port 650.
  • At least one partition wall 500 may be disposed on the lower pack frame 710.
  • a plurality of partition walls 500 may be arranged to be spaced apart at a predetermined interval, and the predetermined interval is such that the battery module 100 of FIG. 14, which will be described later, is connected to the lower pack frame 710. It is possible to divide areas where multiple pieces are mounted on the top.
  • the partition wall 500 may be disposed between neighboring battery modules 100 mounted on the lower pack frame 710, which will be described later.
  • one end of the partition wall 500 may include a groove portion 500h surrounding the cooling tube 220 of the injection cooling tube assembly 205A, as shown in FIG. 13.
  • the groove portion 500h may be a hole for the cooling tube 220 to extend along the direction in which a plurality of battery cells are stacked, that is, for the cooling tube 220 to pass through one end of the partition 500.
  • the fixing frames 210 included in the cooling tubes 220 may be disposed between neighboring partition walls 500, and thus the fixing frames 210 are spaced apart from each other along the direction in which the cooling tubes 220 extend. It may be formed of a plurality of fixed blocks arranged.
  • the battery module 100 of FIG. 14 may be mounted on the lower pack frame 710.
  • a plurality of battery modules 100 may be mounted between adjacent partition walls 500, and the partition walls 500 may facilitate alignment of the positions in which the plurality of battery modules 100 are mounted.
  • the sealing cover 150 may be combined.
  • the sealing cover 150 formed at one end of the battery module 100 may be mounted on the pre-installed cooling tube assembly 205A for injection.
  • the opening 227 of the protrusion 150b of the sealing cover 150 may be arranged to communicate with the opening 225 of the main tube 221.
  • a sealing member 230 may be formed on the main tube 221.
  • the cooling tube assembly 205B for discharge may be mounted on the other end of the battery module 100.
  • the discharge cooling tube assembly 205B may be mounted on the upper portion of the protrusion 150b of the sealing cover 150.
  • the fixing frame 210 of the discharge cooling tube assembly 205B is connected by a fastening member such as a bolt coupling method. ) and the sealing cover 150 may be combined.
  • the hose 250b is a flexible tube, and the hose 250b is bent to form a connection between the main tube 221 and the connector. It differs from the inflow cooling tube assembly 205A only in that the height step 270 is formed and in the location where the opening 225 of the main tube 221 is formed. Accordingly, most of the information regarding the inflow cooling tube assembly 205A described with reference to FIGS. 7 and 8 can be applied to the discharge cooling tube assembly 205B.
  • the pack discharge port 660 formed on the side pack frame 720 and the cooling tube 220 may be connected.
  • the injection cooling tube assembly 205A and the discharge cooling tube assembly 205B are formed into two types, and the injection cooling tube assembly 205A is divided into before and after mounting the battery module 100 on the pack housing.
  • the cooling tube assembly 205B for discharge and cooling in the battery pack 1000 the disadvantage of difficult connection due to narrow space when connecting the battery module 100 and the cooling tube assembly 205 can be resolved.
  • an assembly space for the worker to connect the quick connector is required in addition to the space for the quick connector. For example, if the quick connector is inserted by holding it by hand, space may be lost because the pack and module require additional space for the operator's hand and the quick connector.
  • Figure 17 is a diagram showing the path of the insulating coolant in the battery pack according to an embodiment of the present invention.
  • the insulating coolant is impregnated into the battery module 100, thereby directly cooling the bus bar, electrode leads, and battery cells, thereby increasing cooling efficiency.
  • the battery pack according to this embodiment may have a structure in which one or more battery modules are packed together and a battery management system (BMS) that manages the temperature or voltage of the battery, a cooling device, etc. are added.
  • BMS battery management system
  • the battery pack can be applied to various devices. These devices can be applied to transportation means such as electric bicycles, electric cars, and hybrid cars, but the present invention is not limited thereto and can be applied to various devices that can use battery modules, and this also falls within the scope of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 팩은, 복수의 전지 셀들이 적층되어 형성된 셀 어셈블리 및 상기 셀 어셈블리를 수납하는 모듈 프레임을 포함하는 전지 모듈, 상기 전지 모듈이 적어도 하나 장착되는 팩 하우징, 및 상기 팩 하우징 내에 장착되어 있는 냉각 튜브 어셈블리를 포함하고, 상기 전지 모듈의 일 단부가 상기 냉각 튜브 어셈블리와 중첩하도록 배치된다.

Description

개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스
관련 출원(들)과의 상호 인용
본 출원은 2022년 10월 18일자 한국 특허 출원 제10-2022-0133707호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 팩 및 이를 포함하는 디바이스에 관한 것으로, 보다 구체적으로는 개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 특히, 이차전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
소형 모바일 기기들에는 디바이스 1대당 하나 또는 두서너 개의 전지 셀들이 사용됨에 반해, 자동차 등과 같이 중대형 디바이스들에는 고출력 대용량이 필요하다. 따라서, 다수의 전지 셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
한편, 복수개의 전지 셀을 직렬/병렬로 연결하여 전지 모듈 및/또는 전지 팩을 구성하는 경우, 적어도 하나의 전지 셀로 이루어지는 전지 모듈을 구성하고, 적어도 하나의 전지 모듈을 이용하여 기타 구성 요소를 추가하여 전지 팩을 구성하는 방법이 일반적이다.
이러한 중대형 전지 모듈을 구성하는 전지 셀들은 충방전이 가능한 이차 전지로 구성되어 있으므로, 이와 같은 고출력 대용량 이차 전지는 충방전 과정에서 다량의 열을 발생시킨다. 이 경우, 다수의 전지 셀로부터 나오는 열이 좁은 공간에서 합산되어 온도가 빠르고 심하게 올라갈 수 있다. 다시 말해서, 다수의 전지 셀이 적층된 전지 모듈들과 이러한 전지 모듈들이 장착된 전지 팩의 경우, 높은 출력을 얻을 수 있지만, 충전 및 방전 시 전지 셀에서 발생하는 열을 제거하는 것이 용이하지 않다. 전지 셀의 방열이 제대로 이루어지지 않을 경우 전지셀의 열화가 빨라지면서 수명이 짧아지게 되고, 폭발이나 발화의 가능성이 커지게 된다.
더욱이, 차량용 전지 팩에 포함되는 전지 모듈의 경우, 직사광선에 자주 노출되고, 여름철이나 사막 지역과 같은 고온 조건에 놓일 수 있다. 또한, 차량의 주행거리를 늘리기 위해 다수의 전지 모듈들을 집약적으로 배치하기 때문에 어느 하나의 전지 모듈에서 발생한 화염이나 열이 이웃한 전지 모듈로 쉽게 전파되어, 종국적으로 전지 팩 자체의 발화나 폭발로 이어질 수 있다.
도 1은 종래의 전지 모듈에서 열 배출 경로를 나타내는 도면이다.
도 1을 참조하면, 종래의 전지 모듈(30)은 기설정된 방향으로 적층되는 전지셀(60)을 포함한 셀 어셈블리(70), 셀 어셈블리(70)를 수납하는 모듈 프레임(40)을 포함하고, 셀 어셈블리(70)는 모듈 프레임(40)의 하면에 위치하는 열전도성 수지층(50) 상에 고정되어 위치한다. 이 경우, 셀 어셈블리(70)에서 발생되는 열을 냉각하기 위해, 도 1의 -z축 방향에 위치한 모듈 프레임(40)의 바닥부와 마주하는 히트 싱크(90)가 구비되고, 히트 싱크(90)와 모듈 프레임(40) 바닥부 사이에는 열 전달을 위한 열전도 패드(80)가 추가로 설치될 수 있다.
다만, 히트 싱크(90)는 셀 어셈블리(70)와 직접적으로 접하면서 열을 전달받는 것이 아니므로 냉각 효율이 별로 높지 않고, 냉각 경로(cooling path)가 전지 셀의 폭 방향 중 한쪽 방향(-z축 방향)으로 형성되어 온도 구배가 발생할 수 있다.
따라서, 전지 모듈 및/또는 전지 팩의 수명을 늘리기 위해서는 전지 셀의 온도가 높아지지 않도록 전지 모듈/전지 팩의 냉각 효율을 향상시킬 필요가 있다.
본 발명의 해결하고자 하는 과제는, 전지 모듈 내 순환되는 절연 냉각제를 공급하기 위한 냉각제 공급 연결부를 전지 모듈에 연결할 때 발생하는 공간 손실을 최소화할 수 있는 전지 팩 및 이를 포함하는 디바이스를 제공하는 것이다.
또한, 전지 팩에 전지 모듈이 배치된 이후에 상기 냉각제 공급 연결부를 연결하는 경우, 공간이 협소하여 연결 작업이 어려운 단점을 해소할 수 있는 전지 팩 및 이를 포함하는 디바이스를 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 전지 팩은, 복수의 전지 셀들이 적층되어 형성된 셀 어셈블리 및 상기 셀 어셈블리를 수납하는 모듈 프레임을 포함하는 전지 모듈, 상기 전지 모듈이 적어도 하나 장착되는 팩 하우징, 및 상기 팩 하우징 내에 장착되어 있는 냉각 튜브 어셈블리를 포함하고, 상기 전지 모듈의 일 단부가 상기 냉각 튜브 어셈블리와 중첩하도록 배치된다.
상기 전지 모듈의 일 단부와 상기 냉각 튜브 어셈블리는 상하 방향으로 중첩할 수 있다.
상기 전지 모듈은, 상기 셀 어셈블리를 덮도록 상기 전지 모듈의 일 단부에 형성되는 실링 커버를 더 포함하고, 상기 실링 커버는 상기 냉각 튜브 어셈블리와 상하 방향으로 중첩할 수 있다.
상기 실링 커버는, 상기 복수의 전지 셀로부터 전극 리드가 돌출되는 상기 셀 어셈블리의 일 단부를 덮는 덮개부와, 상기 덮개부로부터 돌출되어 있는 돌출부를 포함하고, 상기 돌출부는 상기 냉각 튜브 어셈블리와 상하 방향으로 중첩할 수 있다.
상기 냉각 튜브 어셈블리는, 상기 복수의 전지 셀들이 적층되는 방향을 따라 뻗어 있는 냉각 튜브, 및 상기 냉각 튜브와 조립되는 고정 프레임을 포함할 수 있다.
상기 냉각 튜브와 상기 돌출부가 서로 마주보는 방향을 향해 상기 냉각 튜브와 상기 돌출부에 각각 개구부가 형성되고, 상기 냉각 튜브 어셈블리에 주입된 절연 냉각제가 상기 개구부들을 통과하여 상기 전지 모듈 내부로 유입될 수 있다.
상기 실링 커버와 상기 고정 프레임은 체결 부재에 의해 서로 결합될 수 있다.
상기 전지 팩은 상기 냉각 튜브와 상기 돌출부 사이에 위치하는 실링 부재를 더 포함할 수 있다.
상기 고정 프레임은 상기 냉각 튜브가 뻗어 있는 방향을 따라 서로 이격되도록 배치되는 복수의 고정 블록들을 포함할 수 있다.
상기 냉각 튜브는 메인 튜브, 상기 메인 튜브의 일 단부와 연결되는 호스(hose), 및 상기 호스와 연결되는 커넥터를 포함할 수 있다.
상기 냉각 튜브 어셈블리는, 주입용 냉각 튜브 어셈블리와 배출용 냉각 튜브 어셈블리를 포함하고, 상기 팩 하우징의 측면 프레임 중 하나와 상기 전지 모듈의 일 단부 사이에 상기 주입용 냉각 튜브 어셈블리가 배치되고, 상기 팩 하우징의 측면 프레임 중 다른 하나와 상기 전지 모듈의 다른 일 단부 사이에 상기 배출용 냉각 튜브 어셈블리가 배치될 수 있다.
상기 전지 모듈은, 상기 셀 어셈블리를 덮도록 상기 전지 모듈의 일 단부에 형성되는 제1 실링 커버 및 상기 셀 어셈블리를 덮도록 상기 전지 모듈의 다른 일 단부에 형성되는 제2 실링 커버를 더 포함하고, 상기 주입용 냉각 튜브 어셈블리는 상기 제1 실링 커버의 하부에 위치하고, 상기 배출용 냉각 튜브 어셈블리는 상기 제2 실링 커버의 상부에 위치할 수 있다.
상기 배출용 냉각 튜브 어셈블리는 메인 튜브, 상기 메인 튜브의 일 단부와 연결되는 호스, 및 상기 호스와 연결되는 커넥터를 포함하고, 상기 호스는 굴곡성을 갖는 관이며, 상기 호스가 굴곡됨으로써 상기 메인 튜브와 상기 커넥터의 높이 단차가 형성될 수 있다.
상기 냉각 튜브 어셈블리는, 상기 복수의 전지 셀들이 적층되는 방향을 따라 뻗어 있는 냉각 튜브, 및 상기 냉각 튜브와 조립되는 고정 프레임을 포함하고, 상기 팩 하우징에 복수의 전지 모듈이 장착되고, 상기 전지 팩은 서로 이웃하는 전지 모듈 사이에 배치되는 격벽을 더 포함하고, 상기 격벽의 일 단부는 상기 냉각 튜브를 감싸는 홈부를 포함할 수 있다.
상기 모듈 프레임 내부에 절연 냉각제가 함침되어 상기 전지 셀을 직접 냉각시킬 수 있다.
본 발명의 다른 일 실시예에 따른 디바이스는, 앞에서 설명한 전지 팩을 포함한다.
실시예들에 따르면, 냉각 튜브와 고정 프레임을 사용하여 절연 냉각제 주입부와 배출부의 공간 활용률을 개선할 수 있다.
또한, 절연 냉각제 주입부와 절연 냉각제 배출부의 연결하는 과정을, 전지 팩에 전지 모듈을 배치하는 과정 전후로 수행함으로써, 공간이 협소하여 연결 작업이 어려운 단점을 해소할 수 있는 전지 팩 및 이를 포함하는 디바이스를 제공하는 것이다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래의 전지 모듈에서 열 배출 경로를 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 전지 팩을 나타내는 분해 사시도이다.
도 3은 도 2의 전지 팩을 나타내는 평면도이다.
도 4는 본 발명의 일 실시예에 따른 주입용 냉각 튜브 어셈블리를 나타내는 도면이다.
도 5는 도 4의 A부분을 확대하여 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 배출용 냉각 튜브 어셈블리를 나타내는 도면이다.
도 7은 도 2의 전지 팩에 포함된 전지 모듈의 단면도이다.
도 8은 도 7의 B 영역을 확대하여 나타내는 부분 확대도이다.
도 9는 비교예에 따른 전지 모듈을 나타내는 사시도이다.
도 10은 도 9의 전지 모듈이 전지 팩 내에 배치되는 도면이다.
도 11 내지 도 16은 본 발명의 다른 일 실시예에 따른 전지 팩의 제조 방법을 나타내는 도면들이다.
도 17은 본 발명의 일 실시예에 따른 전지 팩에서 절연 냉각제의 경로를 나타내는 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 2는 본 발명의 일 실시예에 따른 전지 팩을 나타내는 분해 사시도이다. 도 3은 도 2의 전지 팩을 나타내는 평면도이다. 도 3에서는, 배출용 냉각 튜브 어셈블리(205B)를 나타내기 위해, 도 2의 전지 모듈(100) 구성을 편의상 생략하고 있다.
도 2를 참고하면, 본 발명의 일 실시예에 따른 전지 팩(1000)은, 적어도 하나의 전지 모듈(100)이 장착되어 있는 팩 하우징(700)을 포함하고, 팩 하우징(700)은 전지 모듈(100)의 바닥면이 안착되는 하부 팩 프레임(710), 전지 모듈(100)의 측면을 둘러싸는 측면 팩 프레임(720), 및 전지 모듈(100)의 상부에 위치하는 상부 팩 프레임(730)을 포함한다. 여기서, 하부 팩 프레임(710), 측면 팩 프레임(720) 및 상부 팩 프레임(730)은 서로 용접 등의 방법으로 결합되어, 전지 팩(1000) 내부를 밀봉시킬 수 있다.
측면 팩 프레임(720)에는 후술하는 냉각 튜브 어셈블리(205, 도 4)에 연결되는 팩 포트(650, 660)가 구비되어 있다.
전지 모듈(100)은 복수의 전지 셀이 기설정된 방향을 따라 적층된 셀 어셈블리(120) 및 셀 어셈블리를 수납하는 모듈 프레임(200)을 포함할 수 있다. 모듈 프레임(200)은 상하면(z축 방향 및 -z축 방향) 및 양 측면(x축 방향 및 -x축 방향)이 일체화된 금속 판재 형태의 모노 프레임일 수 있다. 셀 어셈블리(120)는 모듈 프레임(200) 내부에 장착되어 전지 모듈(100)을 구성할 수 있다. 다만, 모듈 프레임(200)은 상술한 내용에 한정되지 아니하며, 모듈 프레임(200)은 상부 프레임 및 하부 프레임을 포함할 수 있고, 하부 프레임은 바닥 플레이트와 바닥 플레이트 양측 모서리에서 각각 위로 연장된 측면 플레이트를 포함하는 U자형 프레임이고, 상부 프레임은 평판형의 플레이트 구조일 수도 있다.
하부 팩 프레임(710) 상에는 격벽(500)이 적어도 하나 형성되어 있다. 여기서, 하부 팩 프레임(710)과 격벽(500) 및/또는 측면 팩 프레임(720)과 격벽(500)은 서로 용접 등의 방법으로 결합될 수 있다. 하지만, 용접 등의 방법에 한정되지 않고, 접착제를 사용하여 결합할 수도 있다.
복수의 전지 모듈(100)은 측면 팩 프레임(720)과 복수의 격벽(500)에 의해 서로 구획될 수 있다. 구체적으로, 복수의 전지 모듈(100)은 측면 팩 프레임(720)과 서로 이웃하는 격벽(500)에 의해 형성되는 복수의 영역에 각각 배치될 수 있다.
이에 따라, 복수의 전지 모듈(100)은 복수의 격벽(500) 및 측면 팩 프레임(720)에 의해 둘러싸여 있어, 각 전지 모듈(100)은 외부 충격으로부터 보호될 수 있다.
측면 팩 프레임(720)은 하부 팩 프레임(710)의 바닥면의 가장자리를 따라 배치되고, 하부 팩 프레임(710)의 바닥면으로부터 상부로 연장되어 있을 수 있다. 보다 구체적으로, 하부 팩 프레임(710)의 바닥면의 각 가장자리에서 상부를 향해 연장되어 있을 수 있다. 여기서, 측면 팩 프레임(720)의 상단부는 상부 팩 프레임(730)과 접할 수 있다. 이 때, 측면 팩 프레임(720)의 상단부와 상부 팩 프레임(730)은 서로 용접 등의 방법으로 결합되어, 전지 팩(1000) 내부를 밀봉시킬 수 있다.
복수의 격벽(500)은 서로 이격되어 있을 수 있다. 여기서, 서로 이웃하는 격벽(500)이 이격되어 있는 거리는 전지 모듈(100)의 폭과 동일하거나 이보다 클 수 있다. 여기서, 전지 모듈(100)의 폭은, 복수의 전지 셀이 적층되어 있는 방향을 따라 측정된 크기일 수 있다.
또한, 격벽(500)의 단부는 측면 팩 프레임(720)의 내면과 접할 수 있다. 보다 구체적으로, 격벽(500)의 양 단부는 측면 팩 프레임(720)의 내면에 각각 접할 수 있다.
도 2 및 도 3을 참고하면, 본 실시예에 따른 전지 팩(1000)은 전지 모듈(100)에 절연 냉각제를 공급하는 냉각 튜브 어셈블리(205)를 포함한다. 절연 냉각제는 전기적으로 절연 성능을 가지면서 냉각 기능을 하는 물질이고, 일례로 절연유일 수 있다. 냉각 튜브 어셈블리(205)는, 주입용 냉각 튜브 어셈블리(205A)와 배출용 냉각 튜브 어셈블리(205B)를 포함한다. 주입용 냉각 튜브 어셈블리(205A)는, 팩 하우징(700)의 측면 팩 프레임(720) 중 하나와 전지 모듈(100)의 일 단부 사이에 배치되고, 배출용 냉각 튜브 어셈블리(205B)는, 팩 하우징(700)의 측면 팩 프레임(720) 중 다른 하나와 전지 모듈(100)의 다른 일 단부 사이에 배치될 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 냉각 튜브 어셈블리에 대해 상세히 설명하기로 한다.
도 4는 본 발명의 일 실시예에 따른 주입용 냉각 튜브 어셈블리를 나타내는 도면이다. 도 5는 도 4의 A부분을 확대하여 나타내는 도면이다. 도 6은 본 발명의 일 실시예에 따른 배출용 냉각 튜브 어셈블리를 나타내는 도면이다. 도 7은 도 2의 전지 팩에 포함된 전지 모듈의 단면도이다. 도 8은 도 7의 B 영역을 확대하여 나타내는 부분 확대도이다.
도 4 및 도 5를 참고하면, 본 실시예에 따른 주입용 냉각 튜브 어셈블리(205A)는, 복수의 전지 셀들이 적층되는 방향(도 3의 y축 방향)을 따라 뻗어 있는 냉각 튜브(220), 및 냉각 튜브(220)와 조립되는 고정 프레임(210)을 포함한다. 냉각 튜브(220)와 고정 프레임(210)은 접착제를 사용하여 서로 결합될 수 있으나, 접착제 사용없이 후술하는 실링 커버(도 7의 150)와 고정 프레임(210)이 체결 부재에 의해 결합되면서 냉각 튜브(220)도 함께 고정될 수 있다. 또는, 접착제와 체결 부재를 동시에 사용할 수 있고, 상기 체결 부재는 볼트 결합 구조일 수 있다. 이때, 고정 프레임(210)은 냉각 튜브(220)가 뻗어 있는 방향을 따라 서로 이격되도록 배치되는 복수의 고정 블록들을 포함할 수 있다.
보다 구체적으로, 본 실시예에 따른 주입용 냉각 튜브 어셈블리(205A)에 포함되는 냉각 튜브(220)는 메인 튜브(221), 메인 튜브(221)의 일 단부와 연결되는 호스(250a, hose), 및 호스(250a)와 연결되는 커넥터(270)를 포함할 수 있다. 호스(250a)는 굴곡성이 있는 관일 수 있다. 주입용 냉각 튜브 어셈블리(205A)의 호스(250a)는 메인 튜브(221)가 뻗어 있는 방향과 일직선 상에 배치될 수 있다. 메인 튜브(221)는 금속 물질이 압출되어 형성될 수 있고, 예를 들어 알루미늄으로 형성될 수 있다. 호스(250a)는 조립의 용이성을 위해 사용할 수 있고, 커넥터(270)는 메인 튜브(221)와 팩 포트(650)를 연결할 때 별도의 본딩 공정이나 연결 공정 없이 이들을 조립하는 역할을 할 수 있다.
본 실시예에 따른 고정 프레임(210)은 메인 튜브(221)의 상부를 노출하도록 메인 튜브(221)의 하부 및 좌우면을 감싸는 구조일 수 있다. 이러한 고정 프레임(210) 구조로 인해 메인 튜브(221)의 상부에는 개구부(225)가 형성될 수 있다.
도 2 내지 도 5, 및 도 7을 참고하면, 전지 팩(1000) 외부로부터 절연 냉각제가 팩 유입 포트(650)로 유입되고, 팩 유입 포트(650)와 연결된 냉각 튜브(220)로 절연 냉각제가 공급된다. 이후, 냉각 튜브(220)에 포함된 메인 튜브(221)의 개구부(225)를 통해 절연 냉각제가 후술하는 실링 커버(150)로 흐르고, 실링 커버(150)를 통해 절연 냉각제가 전지 모듈(100) 내부로 들어갈 수 있다. 전지 모듈(100) 내부로 들어간 절연 냉각제는 전극 리드(111) 및 전극 리드(111)와 결합된 버스 바(미도시) 등을 직접 냉각시킬 수 있고, 전지 셀(110)과 모듈 프레임(200) 사이에 형성된 갭 공간(GS)에 절연 냉각제가 삽입되어 냉각 유로를 형성할 수 있다. 도 7에 도시한 화살표 방향을 따라 절연 냉각제가 이동할 수 있다. 전지 셀(110)과 실링 커버(150) 사이에는 도시하지 않았으나, 버스 바와 전극 리드(111, 112)의 결합부가 형성되는 버스 바 프레임, 절연 커버, 엔드 플레이트 등이 배치될 수 있다. 상기 엔드 플레이트는 실링 커버(150) 외부를 덮는 형태로 형성될 수도 있다.
도 6을 참고하면, 본 발명의 일 실시예에 따른 배출용 냉각 튜브 어셈블리(205B)는, 복수의 전지 셀들이 적층되는 방향(도 3의 y축 방향)을 따라 뻗어 있는 냉각 튜브(220), 및 냉각 튜브(220)와 조립되는 고정 프레임(210)을 포함한다. 냉각 튜브(220)와 고정 프레임(210)은 접착제를 사용하여 서로 결합될 수 있으나, 접착제 사용없이 후술하는 실링 커버(도 7의 150)와 고정 프레임(210)이 체결 부재에 의해 결합되면서 냉각 튜브(220)도 함께 고정될 수 있다. 또는, 접착제와 체결 부재를 동시에 사용할 수 있고, 상기 체결 부재는 볼트 결합 구조일 수 있다. 이때, 고정 프레임(210)은 냉각 튜브(220)가 뻗어 있는 방향을 따라 서로 이격되도록 배치되는 복수의 고정 블록들을 포함할 수 있다.
보다 구체적으로, 본 실시예에 따른 배출용 냉각 튜브 어셈블리(205B)에 포함되는 냉각 튜브(220)는 메인 튜브(221), 메인 튜브(221)의 일 단부와 연결되는 호스(250b, hose), 및 호스(250b)와 연결되는 커넥터(270)를 포함할 수 있다. 배출용 냉각 튜브 어셈블리(205B)의 호스(250b)는 굴곡성을 갖는 관이며, 호스(250b)가 굴곡됨으로써 메인 튜브(221)와 커넥터(270)의 높이 단차가 형성될 수 있다. 이점이 앞서 설명한 주입용 냉각 튜브 어셈블리(205A)와 차이가 있는 부분이다. 다시 말해, 주입용 냉각 튜브 어셈블리(205A)의 호스(250a)는 메인 튜브(221)가 뻗어 있는 방향과 일직선 상에 배치될 수 있다. 배출용 냉각 튜브 어셈블리(205B)의 메인 튜브(221)는 금속 물질이 압출되어 형성될 수 있고, 예를 들어 알루미늄으로 형성될 수 있다. 호스(250b)는 조립의 용이성을 위해 사용할 수 있고, 커넥터(270)는 메인 튜브(221)와 팩 포트(660)를 연결할 때 별도의 본딩 공정이나 연결 공정 없이 이들을 조립하는 역할을 할 수 있다.
본 실시예에 따른 고정 프레임(210)은 메인 튜브(221)의 하부를 노출하도록 메인 튜브(221)의 상부 및 좌우면을 감싸는 구조일 수 있다. 이러한 고정 프레임(210) 구조로 인해 메인 튜브(221)의 하부에는 개구부(225)가 형성될 수 있다.
도 2, 3, 6, 및 도 7을 참고하면, 앞에서 설명한 유입용 냉각 튜브 어셈블리(205A)를 통해 전지 모듈(100) 내부로 주입된 절연 냉각제가 버스 바, 전지 셀 등을 직접 냉각시킨 후, 온도가 높아진 상태에서 전지 모듈(100)의 다른 일 단부에 위치하는 실링 커버(150)를 통과한 후 배출용 냉각 튜브 어셈블리(205B)의 메인 튜브(221)의 개구부(225)를 통해 배출용 냉각 튜브 어셈블리(205B)로 배출될 수 있다.
이하에서는 도 7 및 도 8을 참고하여, 전지 모듈(100)과 냉각 튜브 어셈블리(205)가 연결되는 관계를 좀 더 상세히 살펴보도록 한다.
도 7 및 도 8을 참고하면, 전지 모듈(100)의 일 단부가 냉각 튜브 어셈블리(205)와 중첩하도록 배치될 수 있다. 이때, 전지 모듈의 일 단부와 냉각 튜브 어셈블리(205)는 상하 방향(도 7의 z축 방향)으로 중첩할 수 있다. 이러한 배치 구조에 의해 절연 냉각제를 전지 모듈 내부에 순환시키기 위한 커넥터를 전지 모듈에 직접 연결하는 방식 대비하여 공간 효율을 높일 수 있다.
구체적으로, 전지 모듈(100)은 셀 어셈블리(120)를 덮도록 전지 모듈(100)의 양 단부에 각각 실링 커버(150)를 포함할 수 있다. 이때, 실링 커버(150)가 냉각 튜브 어셈블리(205)와 상하 방향으로 중첩할 수 있다. 실링 커버(150)는 복수의 전지 셀(110)로부터 전극 리드(111, 112)가 돌출되는 셀 어셈블리(120)의 일 단부를 덮는 덮개부(150a)와, 덮개부(150a)로부터 돌출되어 있는 돌출부(150b)를 포함할 수 있다. 돌출부(150b)는 냉각 튜브 어셈블리(205)와 상하 방향으로 중첩할 수 있다.
셀 어셈블리(120)를 덮도록 전지 모듈(100)의 일 단부에 형성되는 실링 커버(150)를 제1 실링 커버라고 하고, 셀 어셈블리(120)를 덮도록 전지 모듈(100)의 다른 일 단부에 형성되는 실링 커버(150)를 제2 실링 커버라고 할 때, 주입용 냉각 튜브 어셈블리(205A)는 상기 제1 실링 커버의 하부에 위치하고, 배출용 냉각 튜브 어셈블리(205B)는 상기 제2 실링 커버의 상부에 위치할 수 있다.
실링 커버(150)에는 개구부(227)가 형성되고, 상기 제1 실링 커버(150)의 하부에 개구부(227)가 형성되며, 상기 제2 실링 커버(150)의 상부에 개구부(227)가 형성될 수 있다. 구체적으로, 실링 커버(150)의 돌출부(150b)에 개구부(227)가 형성되고, 개구부(227)는 냉각 튜브의 메인 튜브(221)에 형성된 개구부(225)와 연통되어 절연 냉각제가 통과할 수 있다.
냉각 튜브(220)와 돌출부(150b) 사이에는 실링 부재(230)가 위치할 수 있다. 실링 부재(230)는 실링 폼 테이프일 수 있다. 실링 부재(230)를 형성함으로써, 냉각 튜브(220)와 실링 커버(150)의 돌출부(150b) 사이에서 절연 냉각제가 누설되는 것을 차단하여 냉각 효율을 높일 수 있다. 여기서, 실링 부재(230)에도 개구부(미도시)가 형성되어, 실링 부재(230) 개구부는 앞에서 설명한 메인 튜브(221)의 개구부(225) 및 돌출부(150b)의 개구부와 서로 연통될 수 있다.
실링 커버(150)와 고정 프레임(210)은 체결 부재(165)에 의해 서로 결합할 수 있다. 체결 부재(165)는 볼트 결합 부재일 수 있다.
도 9는 비교예에 따른 전지 모듈을 나타내는 사시도이다. 도 10은 도 9의 전지 모듈이 전지 팩 내에 배치되는 도면이다.
도 9 및 도 10을 참고하면, 비교예에 따른 전지 모듈(800)은 셀 어셈블리(805)를 수납하는 모듈 프레임(820), 모듈 프레임(820)으로 둘러싸인 셀 어셈블리(805) 부분을 제외한 셀 어셈블리(805)의 전후면을 각각 덮는 엔드 플레이트(810)를 포함한다. 이때, 셀 어셈블리(805)의 전후면에 엔드 플레이트(810) 각각에는 전지 모듈(800) 내부에 냉매를 유입 및 배출하기 위한 유입 포트(850)와 배출 포트(860)가 형성되어 있다. 유입 포트(850)와 배출 포트(860)로 절연 냉각제를 순환시키기 위해, 도 10의 퀵 커넥터(DC)를 전지 모듈(800)에 직접 연결하는 방식을 사용하는 경우에는 공간적인 손실이 매우 클 수 있다.
도 11 내지 도 16은 본 발명의 다른 일 실시예에 따른 전지 팩의 제조 방법을 나타내는 도면들이다. 도 13는 도 12의 C영역을 확대하여 나타내는 부분 확대도이다.
도 11 및 도 12를 참고하면, 도 4에서 설명한 주입용 냉각 튜브 어셈블리(205A)를 준비하고, 전지 팩(1000)의 하부 팩 프레임(710) 상에 배치할 수 있다. 이때, 도 14에 도시한 바와 같이, 팩 하우징의 측면 팩 프레임(720)에는 주입용 냉각 튜브 어셈블리(205A)에 연결되는 팩 유입 포트(650)가 구비되어 있고, 주입용 냉각 튜브 어셈블리(205A)의 냉각 튜브(220)가 팩 유입 포트(650)에 연결될 수 있다.
본 실시예에 따른 적어도 하나의 격벽(500)이 하부 팩 프레임(710) 상에 배치될 수 있다. 일례로, 도 12에 도시한 것처럼, 복수의 격벽(500)이 소정의 간격으로 이격되어 배열될 수 있고, 상기 소정의 간격은 후술하는 도 14의 전지 모듈(100)이 하부 팩 프레임(710) 상에 복수개 장착되는 영역을 구획할 수 있다. 다시 말해, 격벽(500)은 후술하는 하부 팩 프레임(710) 상에 장착된 서로 이웃하는 전지 모듈(100) 사이에 배치될 수 있다. 이때, 격벽(500)의 일 단부는 도 13에 도시한 바와 같이, 주입용 냉각 튜브 어셈블리(205A)의 냉각 튜브(220)를 감싸는 홈부(500h)를 포함할 수 있다. 홈부(500h)는 냉각 튜브(220)가 복수의 전지 셀들이 적층되는 방향을 따라 뻗을 수 있도록, 즉 냉각 튜브(220)가 격벽(500)의 일 단부를 통과하기 위한 구멍일 수 있다. 냉각 튜브(220)에 포함되는 고정 프레임(210)은 서로 이웃하는 격벽(500) 사이에 배치될 수 있고, 이에 따라 고정 프레임(210)은 냉각 튜브(220)가 뻗어 있는 방향을 따라 서로 이격되도록 배치되는 복수의 고정 블록들로 형성될 수 있다.
주입용 냉각 튜브 어셈블리(205A)가 하부 팩 프레임(710) 상에 배치된 후, 도 14의 전지 모듈(100)이 하부 팩 프레임(710) 상에 장착될 수 있다. 이때, 복수의 전지 모듈(100)이 서로 이웃하는 격벽(500) 사이에 장착될 수 있으며, 격벽(500)으로 인해 복수의 전지 모듈(100)이 장착되는 위치 정렬이 수월해질 수 있다.
전지 모듈(100)이 하부 팩 프레임(710) 상에 장착될 때, 도 7, 도 8, 및 도 15에 도시한 바와 같이 체결 부재(165)에 의해 고정 프레임(210)과 전지 모듈(100)의 실링 커버(150)가 결합될 수 있다. 전지 모듈(100)의 일 단부에 형성된 실링 커버(150)가 기 설치된 주입용 냉각 튜브 어셈블리(205A) 상부에 장착될 수 있다. 구체적으로 실링 커버(150)의 돌출부(150b)의 개구부(227)가 메인 튜브(221)의 개구부(225)와 연통되도록 배치될 수 있다. 전지 모듈(100)이 장착되기 전에, 메인 튜브(221) 상에 실링 부재(230)를 형성할 수 있다.
도 16을 참고하면, 복수의 전지 모듈(100)이 하부 팩 하우징 상에 장착된 후에 배출용 냉각 튜브 어셈블리(205B)가 전지 모듈(100)의 다른 일 단부에 장착될 수 있다. 배출용 냉각 튜브 어셈블리(205B)의 경우, 도 7의 왼쪽 상단에 도시된 것처럼, 배출용 냉각 튜브 어셈블리(205B)는 실링 커버(150)의 돌출부(150b) 상부에 장착될 수 있다. 이때, 도 8의 주입용 냉각 튜브 어셈블리(205A)에서 설명한 체결 부재(165)에 의한 결합 방식과 동일하게, 볼트 결합 방식과 같은 체결 부재에 의해 배출용 냉각 튜브 어셈블리(205B)의 고정 프레임(210)과 실링 커버(150)가 결합될 수 있다.
배출용 냉각 튜브 어셈블리(205B)는 대부분의 구성이 유입용 냉각 튜브 어셈블리(205A)와 동일하며, 호스(250b)가 굴곡성을 갖는 관으로 상기 호스(250b)가 굴곡됨으로써 메인 튜브(221)와 커넥터(270)의 높이 단차가 형성되는 점과, 메인 튜브(221)의 개구부(225)가 형성된 위치에서만 유입용 냉각 튜브 어셈블리(205A)와 차이가 있다. 따라서, 도 7 및 도 8을 참고하여 설명한 유입용 냉각 튜브 어셈블리(205A)에 관한 내용은 대부분 배출용 냉각 튜브 어셈블리(205B)에 적용될 수 있다.
배출용 냉각 튜브 어셈블리(205B)에 포함되는 호스(250b)가 굴곡됨으로써, 측면 팩 프레임(720)에 형성되어 있는 팩 배출 포트(660)와 냉각 튜브(220)가 연결될 수 있다.
이상과 같이, 주입용 냉각 튜브 어셈블리(205A)와 배출용 냉각 튜브 어셈블리(205B)를 2가지 타입으로 형성하고, 전지 모듈(100)을 팩 하우징에 장착하기 전후로 나누어서 주입용 냉각 튜브 어셈블리(205A)와 배출용 냉각 튜브 어셈블리(205B)를 전지 팩(1000)에 설치함으로써, 전지 모듈(100)과 냉각 튜브 어셈블리(205)를 연결할 때 공간이 협소하여 연결이 어려운 단점을 해소할 수 있다. 구체적으로, 도 10에 도시한 것처럼 모듈의 인렛 포트와 아웃렛 포트를 퀵 커넥터로 직접 연결하는 종래 방식에서는 퀵 커넥터의 공간과 더불어 작업자가 퀵 커넥터를 연결하기 위한 조립 공간이 필요하다. 예를 들어, 손으로 퀵 커넥터를 잡고 끼우는 방식이라면, 팩과 모듈에 작업자의 손과 퀵 커넥터가 들어갈 수 있는 공간이 추가로 필요하기 때문에 공간 손실이 발생할 수 있다.
도 17은 본 발명의 일 실시예에 따른 전지 팩에서 절연 냉각제의 경로를 나타내는 도면이다.
도 7 및 도 17을 참고하면, 팩 유입 포트(650)를 통해 전지 팩(1000) 외부로부터 절연 냉각제가 유입된 이후에 유입용 냉각 튜브 어셈블리(205A), 전지 모듈(100), 배출용 냉각 튜브 어셈블리(205B), 및 팩 배출 포트(660)를 경유하여 전지 팩(1000) 외부로 배출되는 경로를 확인할 수 있다. 이처럼, 절연 냉각제가 전지 모듈(100) 내부로 함침됨으로써, 버스 바, 전극 리드, 및 전지 셀 등을 직접 냉각시킴으로써, 냉각 효율을 높일 수 있다.
본 실시예에 따른 전지 팩은 전지 모듈을 하나 이상 모아서 전지의 온도나 전압 등을 관리해주는 전지 관리시스템(Battery Management System; BMS)과 냉각 장치 등을 추가하여 패킹한 구조일 수 있다.
상기 전지 팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리범위에 속한다.
이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
[부호의 설명]
100: 전지 모듈
1000: 전지 팩
120: 셀 어셈블리
150: 실링 커버
150a: 덮개부
150b: 돌출부
165: 체결 부재
200: 모듈 프레임
205: 냉각 튜브 어셈블리
210: 고정 프레임
220: 냉각 튜브
221: 메인 튜브
225, 227: 개구부
230: 실링 부재
250a, 250b: 호스
270: 커넥터
500: 격벽
500h: 홈부
650: 팩 유입 포트
660: 팩 배출 포트
700: 팩 하우징
710: 하부 팩 프레임
720: 측면 팩 프레임
730: 상부 팩 프레임

Claims (16)

  1. 복수의 전지 셀들이 적층되어 형성된 셀 어셈블리 및 상기 셀 어셈블리를 수납하는 모듈 프레임을 포함하는 전지 모듈,
    상기 전지 모듈이 적어도 하나 장착되는 팩 하우징, 및
    상기 팩 하우징 내에 장착되어 있는 냉각 튜브 어셈블리를 포함하고,
    상기 전지 모듈의 일 단부가 상기 냉각 튜브 어셈블리와 중첩하도록 배치되는 전지 팩.
  2. 제1항에서,
    상기 전지 모듈의 일 단부와 상기 냉각 튜브 어셈블리는 상하 방향으로 중첩하고 있는 전지 팩.
  3. 제1항에서,
    상기 전지 모듈은, 상기 셀 어셈블리를 덮도록 상기 전지 모듈의 일 단부에 형성되는 실링 커버를 더 포함하고,
    상기 실링 커버는 상기 냉각 튜브 어셈블리와 상하 방향으로 중첩하는 전지 팩.
  4. 제3항에서,
    상기 실링 커버는, 상기 복수의 전지 셀로부터 전극 리드가 돌출되는 상기 셀 어셈블리의 일 단부를 덮는 덮개부와, 상기 덮개부로부터 돌출되어 있는 돌출부를 포함하고,
    상기 돌출부는 상기 냉각 튜브 어셈블리와 상하 방향으로 중첩하는 전지 팩.
  5. 제4항에서,
    상기 냉각 튜브 어셈블리는, 상기 복수의 전지 셀들이 적층되는 방향을 따라 뻗어 있는 냉각 튜브, 및 상기 냉각 튜브와 조립되는 고정 프레임을 포함하는 전지 팩.
  6. 제5항에서,
    상기 냉각 튜브와 상기 돌출부가 서로 마주보는 방향을 향해 상기 냉각 튜브와 상기 돌출부에 각각 개구부가 형성되고, 상기 냉각 튜브 어셈블리에 주입된 절연 냉각제가 상기 개구부들을 통과하여 상기 전지 모듈 내부로 유입되는 전지 팩.
  7. 제5항에서,
    상기 실링 커버와 상기 고정 프레임은 체결 부재에 의해 서로 결합되는 전지 팩.
  8. 제5항에서,
    상기 냉각 튜브와 상기 돌출부 사이에 위치하는 실링 부재를 더 포함하는 전지 팩.
  9. 제5항에서,
    상기 고정 프레임은 상기 냉각 튜브가 뻗어 있는 방향을 따라 서로 이격되도록 배치되는 복수의 고정 블록들을 포함하는 전지 팩.
  10. 제5항에서,
    상기 냉각 튜브는 메인 튜브, 상기 메인 튜브의 일 단부와 연결되는 호스(hose), 및 상기 호스와 연결되는 커넥터를 포함하는 전지 팩.
  11. 제1항에서,
    상기 냉각 튜브 어셈블리는, 주입용 냉각 튜브 어셈블리와 배출용 냉각 튜브 어셈블리를 포함하고,
    상기 팩 하우징의 측면 팩 프레임 중 하나와 상기 전지 모듈의 일 단부 사이에 상기 주입용 냉각 튜브 어셈블리가 배치되고, 상기 팩 하우징의 측면 팩 프레임 중 다른 하나와 상기 전지 모듈의 다른 일 단부 사이에 상기 배출용 냉각 튜브 어셈블리가 배치되는 전지 팩.
  12. 제11항에서,
    상기 전지 모듈은, 상기 셀 어셈블리를 덮도록 상기 전지 모듈의 일 단부에 형성되는 제1 실링 커버 및 상기 셀 어셈블리를 덮도록 상기 전지 모듈의 다른 일 단부에 형성되는 제2 실링 커버를 더 포함하고,
    상기 주입용 냉각 튜브 어셈블리는 상기 제1 실링 커버의 하부에 위치하고, 상기 배출용 냉각 튜브 어셈블리는 상기 제2 실링 커버의 상부에 위치하는 전지 팩.
  13. 제12항에서,
    상기 배출용 냉각 튜브 어셈블리는 메인 튜브, 상기 메인 튜브의 일 단부와 연결되는 호스, 및 상기 호스와 연결되는 커넥터를 포함하고,
    상기 호스는 굴곡성을 갖는 관이며, 상기 호스가 굴곡됨으로써 상기 메인 튜브와 상기 커넥터의 높이 단차가 형성되는 전지 팩.
  14. 제1항에서,
    상기 냉각 튜브 어셈블리는, 상기 복수의 전지 셀들이 적층되는 방향을 따라 뻗어 있는 냉각 튜브, 및 상기 냉각 튜브와 조립되는 고정 프레임을 포함하고,
    상기 팩 하우징에 복수의 전지 모듈이 장착되고, 서로 이웃하는 전지 모듈 사이에 배치되는 격벽을 더 포함하고,
    상기 격벽의 일 단부는 상기 냉각 튜브를 감싸는 홈부를 포함하는 전지 팩.
  15. 제1항에서,
    상기 모듈 프레임 내부에 절연 냉각제가 함침되어 상기 전지 셀을 직접 냉각시키는 전지 팩.
  16. 제1항에 따른 전지 팩을 포함하는 디바이스.
PCT/KR2023/014140 2022-10-18 2023-09-19 개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스 WO2024085470A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220133707A KR20240053775A (ko) 2022-10-18 2022-10-18 개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스
KR10-2022-0133707 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024085470A1 true WO2024085470A1 (ko) 2024-04-25

Family

ID=90737927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014140 WO2024085470A1 (ko) 2022-10-18 2023-09-19 개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스

Country Status (2)

Country Link
KR (1) KR20240053775A (ko)
WO (1) WO2024085470A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160140478A (ko) * 2015-05-27 2016-12-07 티에스 주식회사 배터리팩 및 배터리 냉각 시스템
KR20170051024A (ko) * 2015-11-02 2017-05-11 주식회사 엘지화학 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
CN207052729U (zh) * 2017-07-23 2018-02-27 珠海华而美照明有限公司 电动汽车用油恒温电池
KR20190040259A (ko) * 2016-09-21 2019-04-17 비와이디 컴퍼니 리미티드 파워 배터리 팩
JP6921528B2 (ja) * 2016-12-28 2021-08-18 昭和電工株式会社 伝熱装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160140478A (ko) * 2015-05-27 2016-12-07 티에스 주식회사 배터리팩 및 배터리 냉각 시스템
KR20170051024A (ko) * 2015-11-02 2017-05-11 주식회사 엘지화학 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20190040259A (ko) * 2016-09-21 2019-04-17 비와이디 컴퍼니 리미티드 파워 배터리 팩
JP6921528B2 (ja) * 2016-12-28 2021-08-18 昭和電工株式会社 伝熱装置
CN207052729U (zh) * 2017-07-23 2018-02-27 珠海华而美照明有限公司 电动汽车用油恒温电池

Also Published As

Publication number Publication date
KR20240053775A (ko) 2024-04-25

Similar Documents

Publication Publication Date Title
WO2019177275A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019221376A1 (ko) 일체형 냉매 회로 부재를 갖는 프레임 프로파일을 포함한 전지 팩
WO2020054998A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2016043441A1 (ko) 냉매 유로의 절곡이 최소화된 냉각 구조를 포함하는 전지모듈
WO2012044065A2 (ko) 배터리 팩 및 이를 구비하는 배터리 팩 조립체
WO2021221353A1 (ko) 냉각 유로 구조의 효율화 및 안정성을 향상시킨 배터리 팩 및 이를 포함하는 자동차
WO2021025525A1 (ko) 자동차용 언더 바디
WO2019078456A1 (ko) 누설 냉매 유입 방지 기능을 갖는 배터리 팩
WO2016144007A1 (ko) 전기소자 냉각용 열교환기
WO2019117449A1 (ko) 배터리 팩
WO2022065650A1 (ko) 전지 모듈, 전지팩 및 이를 포함하는 자동차
WO2021201408A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2019004553A1 (ko) 배터리 모듈
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021206383A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021221478A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022216016A1 (ko) 배터리 모듈 및 이를 포함하는 ess
WO2021015461A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023158186A1 (ko) 절연유를 포함하는 전지모듈 및 이를 포함하는 전지팩
WO2024085470A1 (ko) 개선된 냉각 구조를 갖는 전지 팩 및 이를 포함하는 디바이스
WO2022059936A1 (ko) 냉각성능이 향상된 전지 모듈 및 이를 포함하는 전지 팩
WO2022158792A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221295A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021201454A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024136428A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23880049

Country of ref document: EP

Kind code of ref document: A1