WO2024085325A1 - 티플락스티닌을 포함하는 복막 섬유증의 개선, 예방 또는 치료용 조성물 - Google Patents

티플락스티닌을 포함하는 복막 섬유증의 개선, 예방 또는 치료용 조성물 Download PDF

Info

Publication number
WO2024085325A1
WO2024085325A1 PCT/KR2023/002413 KR2023002413W WO2024085325A1 WO 2024085325 A1 WO2024085325 A1 WO 2024085325A1 KR 2023002413 W KR2023002413 W KR 2023002413W WO 2024085325 A1 WO2024085325 A1 WO 2024085325A1
Authority
WO
WIPO (PCT)
Prior art keywords
peritoneal
fibrosis
tiflaxtinin
acceptable salt
pharmaceutically acceptable
Prior art date
Application number
PCT/KR2023/002413
Other languages
English (en)
French (fr)
Inventor
강덕희
김달아
강현정
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2024085325A1 publication Critical patent/WO2024085325A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock

Definitions

  • the present invention relates to a composition for improving, preventing or treating peritoneal fibrosis containing Tiplaxtinin.
  • Fibrosis is a disease in which abnormal production, accumulation, and deposition of extracellular matrix (ECM) by fibroblasts occurs, and is a chronic disease induced by a variety of stimuli, including persistent infections, autoimmune reactions, allergic reactions, chemical insults, and tissue damage. It corresponds to the final result of the inflammatory response.
  • ECM extracellular matrix
  • peritoneal fibrosis in particular has the characteristic of being caused by long-term peritoneal dialysis for the treatment of renal failure, and changes in peritoneal structure and ultrafiltration disorders in patients receiving continuous ambulatory peritoneal dialysis (CAPD). It is considered to be the main cause of.
  • ESP Peritoneal Sclerosis
  • ECM Epithelial-to-mesenchymal transition
  • MCs peritoneal mesothelial cells
  • TGF Transforming Growth Factor
  • PAI-1 plasminogen activator inhibitor-1
  • the present inventors confirmed the role of PAI-1 in peritoneal EMT and the intracellular signaling pathway of PAI-1-mediated peritoneal EMT, and investigated the effect of tiflaxtinin, a type of PAI-1 inhibitor, on peritoneal fibrosis in a peritoneal fibrosis induction model.
  • the present invention was completed by confirming the preventive and therapeutic efficacy.
  • the purpose of the present invention is to provide a pharmaceutical composition for preventing or treating peritoneal fibrosis containing tiflaxtinin or a pharmaceutically acceptable salt thereof.
  • the purpose of the present invention is to provide a food composition for preventing or improving peritoneal fibrosis containing tiflaxtinin or a foodologically acceptable salt thereof.
  • the present invention provides a pharmaceutical composition for preventing or treating peritoneal fibrosis containing tiflaxtinin or a pharmaceutically acceptable salt thereof.
  • tiflaxtinin is a drug that acts as an inhibitor of PAI-1 and is known to increase the activity of plasminogen activator and urokinase, which are enzymes involved in the blood coagulation cascade.
  • This tiflaxtinin has the structure of Chemical Formula 1 below.
  • tiflaxtinin has a peritoneal EMT inhibitory effect in an experiment with an animal model in which peritoneal fibrosis was induced through injection of peritoneal dialysate, and thus tiflaxtinin improves peritoneal fibrosis and It was confirmed that it can be useful for treatment. Additionally, it may exhibit one or more effects selected from the group consisting of inhibition of peritoneal EMT, inhibition of peritoneal apoptosis, and inhibition of immune cell infiltration into the peritoneum.
  • EMT refers to the phenotypic transformation of epithelial cells into mesenchymal cells. Specifically, EMT is a phenomenon in which tissues gain motility as intercellular bonds become loose and the cytoskeleton changes. It refers to a cell losing its original cell phenotype and converting to a mesenchymal cell phenotype. Induction of EMT can lead to the accumulation of fibroblasts, and induction of EMT is recognized as an important early mechanism of peritoneal fibrosis.
  • peritoneal fibrosis refers to a condition in which the peritoneum is fibrosed and refers to the abnormal formation of fibrous cells in the peritoneum.
  • it is used to encompass retroperitoneal fibrosis or encapsulating peritoneal sclerosis, but is not limited thereto. Fibrosis of the peritoneum can occur, for example, due to dialysis.
  • prevention used in the present invention refers to all actions that suppress or delay the onset of peritoneal fibrosis by administering a composition.
  • treatment means any action in which the symptoms of the disease are improved or beneficially changed by administration of the composition.
  • “pharmaceutically acceptable salt” refers to salts commonly used in the pharmaceutical industry, such as inorganic ionic salts made of calcium, potassium, sodium, magnesium, etc.; Inorganic acid salts made from hydrochloric acid, nitric acid, phosphoric acid, hydrobromic acid, iodic acid, perchloric acid and sulfuric acid; Acetic acid, trifluoroacetic acid, citric acid, maleic acid, succinic acid, oxalic acid, benzoic acid, tartaric acid, fumaric acid, manderic acid, propionic acid, lactic acid, glycolic acid, gluconic acid, galacturonic acid, glutamic acid, glutaric acid, glucuronic acid, aspartic acid.
  • inorganic ionic salts made of calcium, potassium, sodium, magnesium, etc.
  • Inorganic acid salts made from hydrochloric acid, nitric acid, phosphoric acid, hydrobromic acid, iodic acid, perchloric acid and sulfur
  • Organic acid salts made from acids, ascorbic acid, carbonic acid, vanillic acid, hydroiodic acid, etc.; Sulfonic acid salts made from methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc.; Amino acid salts made from glycine, arginine, lysine, etc.; and amine salts prepared from trimethylamine, triethylamine, ammonia, pyridine, picoline, etc., but the types of salts meant in the present invention are not limited by these salts listed.
  • tiflaxtinin of the present invention includes not only pharmaceutically acceptable salts, but also all salts, hydrates, and solvates that can be prepared by conventional methods.
  • the pharmaceutical composition of the present invention may contain a pharmaceutically acceptable carrier, and may be prepared in oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, etc. according to conventional methods. It may be formulated in the form of a sterile injectable solution.
  • the pharmaceutically acceptable carriers include those commonly used in the art, such as lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, Including, but not limited to, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • the pharmaceutical composition of the present invention may contain diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, surfactants, and other pharmaceutically acceptable additives, but is not limited thereto.
  • the pharmaceutical composition of the present invention when formulated as an oral solid preparation, it includes tablets, pills, powders, granules, capsules, etc., and such solid preparations contain at least one excipient, such as starch, calcium carbonate, It may contain sucrose or lactose, gelatin, etc., and includes, but is not limited to, lubricants such as magnesium stearate and talc.
  • the pharmaceutical composition of the present invention when formulated in liquid form for oral use, it includes suspensions, oral solutions, emulsions, syrups, etc., and includes, but is not limited to, diluents such as water and liquid paraffin, humectants, sweeteners, fragrances, preservatives, etc.
  • the pharmaceutical composition of the present invention when formulated for parenteral use, it includes sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, and suppositories.
  • Non-aqueous solvents and suspensions include propylene glycol, polyethylene glycol, This includes, but is not limited to, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • a base for suppositories witepsol, macrogol, tween 61, cacao, laurel, glycerogelatin, etc. can be used, but are not limited to these.
  • composition can be administered singly or multiple times in a pharmaceutically effective amount.
  • pharmaceutically effective amount of the present invention means an amount sufficient to prevent or treat a disease with a reasonable benefit/risk ratio applicable to medical prevention or treatment, and the effective dose level is determined by the severity of the disease, the activity of the drug, Including the patient's age, weight, health, gender, patient's sensitivity to drugs, administration time, administration route and excretion rate of the composition of the present invention used, treatment period, and drugs mixed or used simultaneously with the composition of the present invention used. It can be determined according to factors well known in the medical field and other factors. For example, tiflaxtinin or a pharmaceutically acceptable salt thereof can be administered at 0.0001 to 100 mg/kg per day, and the administration may be administered once a day or in divided doses.
  • the pharmaceutical composition of the present invention is administered to mammals such as rats, mice, livestock, and humans by various routes, for example, by oral administration, intrathecium, inner ear, abdominal cavity or vein, muscle, subcutaneous, intrauterine dura, sublingual or cerebrovascular administration. It may be administered by injection, but is not limited to this.
  • the pharmaceutical composition of the present invention may contain 0.01 to 95% by weight, preferably 1 to 80% by weight, of tiflaxtinin or a pharmaceutically acceptable salt thereof, based on the total weight of the composition.
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. Additionally, the pharmaceutical composition of the present invention can be administered singly or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
  • subject of the present invention includes animals or humans whose symptoms can be improved by administration of the pharmaceutical composition according to the present invention.
  • administration of the pharmaceutical composition according to the present invention By administering the therapeutic composition according to the present invention to an individual, peritoneal fibrosis can be effectively prevented and treated.
  • administration means introducing a predetermined substance into a human or animal by any appropriate method, and the route of administration of the therapeutic composition according to the present invention is through any general route as long as it can reach the target tissue. It may be administered orally or parenterally. Additionally, the therapeutic composition according to the present invention can be administered by any device that can move the active ingredient to target cells.
  • Another aspect of the present invention provides a method for preventing or treating peritoneal fibrosis, comprising administering a therapeutically effective amount of tiflaxtinin, or a pharmaceutically acceptable salt thereof, to an individual in need thereof.
  • tiflaxtinin or “peritoneal fibrosis” is as described above.
  • the term "individual" of the present invention refers to any animal that has developed or is capable of developing peritoneal fibrosis, and is typically an animal that can show beneficial effects from treatment with tiflaxtinin or a pharmaceutically acceptable salt thereof of the present invention. However, any individual that has symptoms of peritoneal fibrosis or is likely to have such symptoms is included without limitation. As described above, the peritoneal fibrosis can be effectively prevented or treated by administering the pharmaceutical composition of the present invention to an individual.
  • Another aspect of the present invention provides the use of tiflaxtinin or a pharmaceutically acceptable salt thereof of the present invention for manufacturing a medicine for preventing or treating peritoneal fibrosis.
  • compositions containing tiflaxtinin or a pharmaceutically acceptable salt thereof for use in the prevention or treatment of peritoneal fibrosis.
  • Another aspect of the present invention provides a peritoneal dialysate containing tiflaxtinin or a pharmaceutically acceptable salt thereof.
  • tiflaxtinin and its pharmaceutically acceptable salts are as described above. Since tiflaxtinin or a pharmaceutically acceptable salt thereof of the present invention inhibits EMT and apoptosis of peritoneal cells, it can be included in peritoneal dialysate to improve, delay, prevent or treat peritoneal fibrosis and peritoneal fibrosis.
  • the peritoneal dialysate containing tiflaxtinin or a pharmaceutically acceptable salt thereof of the present invention may contain at least one selected from the group consisting of osmotic agents, buffers, electrolytes, and combinations thereof.
  • osmotic agents include glucose, glucose polymers (e.g., maltodextrin, icodextrin), glucose polymer derivatives, cyclodextrins, modified starch, hydroxyethyl starch, polyols, fructose, amino acids, peptides, proteins, and amino sugars. , glycerol, N-acetyl glucosamine (NAG), or a combination thereof.
  • the buffer may include bicarbonate, lactate, pyruvate, acetate, citrate, Tris (i.e., trishydroxymethylaminomethane), amino acids, peptides, or combinations thereof.
  • Electrolytes may include sodium, potassium, magnesium, calcium, and chloride.
  • the peritoneal dialysate of the present invention may contain one or more dialysis components (elements or components of a dialysis solution) and a therapeutically effective amount of an effective substance, and may be used as an ingredient for improving, alleviating, preventing or treating peritoneal fibrosis and peritoneal fibrosis. Includes tiflaxtinin or a pharmaceutically acceptable salt thereof.
  • the peritoneal dialysate may be a dialysis concentrate, and the dialysate may contain about 0.1 ⁇ M to about 1000 ⁇ M of tiflaxtinin or a pharmaceutically acceptable salt thereof.
  • the peritoneal dialysate can be used as a single dialysis solution in a single container or as a dialysis unit in a separately housed or multi-chambered container, and can be administered to the patient simultaneously with the dialysate previously used during peritoneal dialysis or with a time difference.
  • the present invention provides a food composition for preventing or improving peritoneal fibrosis containing tiflaxtinin or a foodologically acceptable salt thereof.
  • improvement of the present invention refers to any action in which peritoneal fibrosis is improved or beneficially changed by administration of the composition of the present invention.
  • the tiplaxtinin and its salt are preferably contained in an amount of 0.00001 to 0.01% by weight relative to the food composition. If it is less than 0.00001% by weight, the effect is insignificant, and if it exceeds 0.01% by weight, the increase in effect compared to the amount used is minimal, making it uneconomical.
  • Foodologically acceptable salts may apply mutatis mutandis to pharmaceutically acceptable salts.
  • Food compositions of the present invention include, for example, noodles, gums, dairy products, ice cream, meat, grains, caffeinated beverages, general beverages, chocolate, bread, snacks, confectionery, candy, pizza, jelly, alcoholic beverages, alcohol, and vitamin complexes. and other health supplements, but is not necessarily limited thereto.
  • the food composition of the present invention when used as a food additive, it can be added as is or used together with other foods or food ingredients, and can be used appropriately according to conventional methods.
  • the food composition includes health functional foods.
  • health functional food refers to food manufactured and processed using raw materials or ingredients with functionality useful to the human body in accordance with Act No. 6727 on Health Functional Food, and “functionality” refers to the structure of the human body. It means ingestion for the purpose of controlling nutrients for function or obtaining useful effects for health purposes such as physiological effects.
  • the food composition and health functional food of the present invention may contain additional ingredients.
  • it may include biotin, folate, panthotenic acid, vitamins A, C, D, E, B1, B2, B6, B12, niacin, etc.
  • minerals such as chromium (Cr), magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn), iron (Fe), and calcium (Ca).
  • amino acids such as cysteine, valine, lysine, and tryptophan.
  • preservatives potassium sorbate, sodium benzoate, salicylic acid, sodium dihydroacetate, etc.
  • colorants tar color, etc.
  • coloring agents sodium nitrite, sodium nitrite, etc.
  • bleaching agents sodium sulfite
  • disinfectants bleaching powder, high-level bleaching powder, Sodium hypochlorite, etc.
  • swelling agents alum, D-potassium hydrogen tartrate, etc.
  • strengthening agents emulsifiers, thickeners (greasing), coating agents, antioxidants (butylhydroxyanisole (BHA), butylhydroxytoluene (BHT), etc.) , seasonings (MSG monosodium glutamate, etc.), sweeteners (dulcine, cyclamate, saccharin, sodium, etc.), flavorings (vanillin, lactones, etc.), food additives such as gum base agents, anti-foam agents, solvents, improvers, etc. can be added
  • the tiflaxtinin of the present invention has an excellent peritoneal EMT inhibitory effect, it can be usefully used for improving and treating peritoneal fibrosis.
  • Figure 1a is a diagram showing changes in cell morphology resulting from TGF ⁇ treatment in the control group (siCon) and the PAI-1 gene silencing model (siPAI-1) using an inverted phase contrast microscope.
  • Figure 1b is a diagram showing changes in expression of ZO-1 and ⁇ -SMA due to TGF ⁇ treatment in the control group (siCon) and the PAI-1 gene silencing model (siPAI-1) by immunofluorescence analysis.
  • Figure 2 shows changes in expression of cell markers (E-cadherin, ⁇ -SMA, and fibronectin) resulting from TGF ⁇ treatment in the control group (siCon) and the PAI-1 gene silencing model (siPAI-1), analyzed by real-time PCR and Western blotting. It is also a degree.
  • Figure 3a is a diagram showing changes in cell morphology resulting from TGF ⁇ treatment in the control group (Control) and the tiflaxtinin-added model (tiflaxtinin) using an inverted phase-contrast microscope.
  • Figure 3b is a diagram showing changes in the expression of ZO-1, ⁇ -SMA, and fibronectin due to TGF ⁇ treatment in the control group and the tiflaxtinin addition model (tiflaxtinin) analyzed by real-time PCR and Western blotting.
  • Figure 4 is a diagram evaluating changes in E-cadherin promoter activity resulting from TGF ⁇ treatment in the control group (siCon) and the PAI-1 gene silencing model (siPAI-1) using Luciferase Assay.
  • Figure 5 is a diagram analyzing the changes in nuclear translocation of Snail/Slug resulting from TGF ⁇ treatment in the control group (siCon) and the PAI-1 gene silencing model (siPAI-1) by Western Blotting.
  • Figure 6 shows the changes in Smad2/3, ERK, and p38 signals over time (hr) in the control group (siCon) and the PAI-1 gene silencing model (siPAI-1) treated with TGF ⁇ , observed by Western blotting and presented as images and graphs. It is also a degree.
  • Figure 7a is a diagram showing changes in MMP expression resulting from TGF ⁇ treatment in the control group (siCon) and the PAI-1 gene silencing model (siPAI-1) confirmed at the mRNA level through real-time PCR.
  • Figure 7b is a diagram comparing changes in expression of MMP2 and MMP9 over time (hr) in the TGF ⁇ -treated control group (siCon) and the PAI-1 gene silencing model (siPAI-1) at the protein level through Western blotting.
  • Figure 8 is a heatmap and scatter plot showing the expression levels of EMT and fibrosis-related genes in peritoneal mesothelial cells (HPMC) isolated from the mesentery and peritoneal mesothelial cells (PDMC) isolated from peritoneal dialysis patients.
  • HPMC peritoneal mesothelial cells
  • PDMC peritoneal mesothelial cells
  • Figure 9 is a diagram comparing the expression levels of PAI-1 and EMT markers (E-cadherin, ⁇ -SMA) in HPMC and PDMC by Western blotting.
  • Figure 10 is a diagram schematically showing the experimental process of animal testing.
  • Figure 11 is a graphical representation of the peritoneal equilibrium test (PET) results of animal test groups (NC, TT, CC, PC, PT).
  • PET peritoneal equilibrium test
  • Figure 12 is a diagram comparing the thickness of peritoneal tissues of animal test groups (NC, TT, CC, PC, PT) stained with H&E.
  • Figure 13 is a diagram comparing the degree of fibrosis by performing immunofluorescence (IF) on peritoneal tissues of animal test groups (NC, PC, PT).
  • IF immunofluorescence
  • Figure 14 is a diagram comparing the degree of oxidative stress and DNA damage by performing immunohistochemical staining (IHC) on peritoneal tissues of animal test groups (NC, PC, PT).
  • IHC immunohistochemical staining
  • HPMCs and PDMCs peritoneal mesothelial cells
  • Peritoneal mesothelial cells were isolated by centrifugation after culturing human mesentery with 0.05% trypsin-0.02% EDTA for 20 minutes according to the standard method (Stylianou's method). The cells were cultured in medium M199 containing 10% FBS, 100 U/ml penicillin, 100 ⁇ g/ml streptomycin, and 26 mmol/L NaHCO 3 .
  • PDMC Peritoneal mesothelial cells
  • the medium used in the experiment was changed every two days.
  • cells were fixed with 4% phosphate-buffered paraformaldehyde (15 minutes) and permeabilized with 1% Triton X-100/PBS for 5 minutes. After blocking with 5% BSA for 30 minutes, the cells were incubated with ZO-1 or ⁇ -SMA specific primary antibody in 1% BSA overnight. The next day, the cells were washed with PBS for 1 hour and incubated with goat anti-mouse IgG-FITC or anti-rabbit Alexa Fluor 568 in the dark for 1 hour at room temperature. Nuclei were stained with DAPI, and cells were observed using an LSM800 (ZEISS) confocal microscope at 400x magnification.
  • LSM800 ZEISS
  • the lysates were mixed with 5X SDS buffer, boiled, and electrophoresed on an SDS-PAGE gel.
  • the lowered gel was transferred to a PVDF membrane and blocked with 3% BSA/0.01% Tween 20/PBS for 30 minutes at room temperature.
  • PVDF membranes were incubated with primary antibodies (ZO-1, E-cadherin, ⁇ -SMA, Smad2/3, ERK1/2, p38 MAPK, Snail, Slug, MMP2, or MMP9) overnight. After washing the membrane with 0.01% Tween 20/PBS, it was incubated with HRP-conjugated secondary antibodies corresponding to each primary antibody at room temperature for 1 hour.
  • RNAiMAX lipofectamine purchased from Thermo Scientific (San Diego, CA, USA). Transfection of siRNA was performed according to the manufacturer's protocol.
  • RNA library was created and analyzed using the QuantSeq 3’mRNA-seq library prep kit.
  • a control siCon
  • a PAI-1 gene silencing model siPAI-1
  • siPAI-1 improved the morphological changes of cells caused by TGF ⁇ (see Figure 1a).
  • Example 2 Effect of tiflaxtinin on TGF ⁇ -induced EMT in HPMC.
  • tiflaxtinin a type of PAI-1 inhibitor, on TGF ⁇ -induced peritoneal EMT, a model was prepared in which tiflaxtinin was added to control and HPMC, and each group was treated with TGF ⁇ to determine changes. observed
  • tiflaxtinin improves TGF ⁇ -induced changes in cell morphology and expression of ZO-1, ⁇ -SMA, and fibronectin, which suggests that tiflaxtinin, like siPAI-1, alleviates EMT that occurs in HPMC. It means Sikkim.
  • Luciferase Assay was performed to understand the mechanism by which TGF ⁇ induces downregulation of E-cadherin expression. As a result, the decrease in E-cadherin promoter activity caused by TGF ⁇ treatment was relatively alleviated in the PAI-1 gene silencing model (siPAI-1). was confirmed (see Figure 4).
  • MMP2 was the most abundant MMP isoform in HPMC through real-time PCR at the mRNA level (see Figure 7a).
  • peritoneal mesothelial cells HPMC
  • PDMC mesentery and peritoneal mesothelial cells isolated from peritoneal dialysis patients
  • the expression level of each gene was analyzed by heatmap and scatter plot. indicated. As can be seen in Figure 8, the expression level of PAI-1 was significantly increased in PDMC compared to HPMC.
  • PAI-1 and EMT markers (E-cadherin, ⁇ -SMA) in HPMC and PDMC were compared through Western blotting (see Figure 9). Similar to the results in FIG. 8, PAI-1 was expressed at a higher level in PDMCs, meaning that the expression of PAI-1 was associated with changes in the expression of EMT markers.
  • a catheter for dialysate infusion was inserted 7 days before the start of the experiment. After the experiment began, the subjects were administered 100 mL/kg of dialysate daily for one month and fed 5 mg/kg of tiflaxtinin prepared from food slurry every day.
  • mice were intraperitoneally injected with 100 mL/kg of peritoneal dialysate to perform a Peritoneal Equilibration Test (PET). Drainage (D, Dialysate) samples were collected before (D0) and 2 hours after (D2) peritoneal dialysate injection, and blood (P, Plasma) samples were collected 2 hours after (P2).
  • D Dialysate
  • D2 peritoneal dialysate injection
  • P Plasma samples were collected 2 hours after (P2).
  • Indicators of peritoneal movement in the peritoneal balance test include creatinine concentration (D/P Cr) and glucose concentration (D/P Glucose) relative to the drainage-blood ratio (D2/P2) 2 hours after dialysate injection; Glucose concentration (D/D0 Glucose) was used for drainage-drainage ratio (D2/D0) before and 2 hours after dialysate injection.
  • the experimental group used in the experiment was organized as follows.
  • D/D0 Glucose and D/P Glucose were significantly decreased in the PC group compared to the CC group, while they were significantly increased in the PT group compared to the PC group (see Figures 11b and 11c).
  • D/P Cr significantly increased in the PC group compared to the CC group, but significantly decreased in the PT group compared to the PC group (see Figure 11d).
  • peritoneal tissues were collected, paraffin blocks were prepared, and H&E staining was performed.
  • the thickness of the stained peritoneal tissue the thickness of the peritoneum in the PC group increased compared to the NC group, and the thickness of the peritoneum in the PT group decreased compared to the PC group (see Figure 12).
  • tiflaxtinin a type of PAI-1 inhibitor, is effective in improving peritoneal function and alleviating peritoneal fibrosis.
  • IF Immunofluorescence staining
  • tiflaxtinin a type of PAI-1 inhibitor, is effective in improving peritoneal function and alleviating peritoneal fibrosis.
  • Immunohistochemical staining was performed to determine the extent of oxidative stress and DNA damage caused by peritoneal dialysate on peritoneal tissue collected from each experimental group. Results of comparing oxidative stress markers SOD2 (Superoxide dismutase), NT (Nitrotyrosine), 4-NHE (4-hydroxynonenal), and DNA damage marker 8-OHdG (8-hydroxy-2'-deoxyguanosine) in stained peritoneal tissue. , The PC group had increased oxidative stress and DNA damage compared to the NC group, while the PT group had decreased oxidative stress and DNA damage compared to the PC group (see Figure 14).
  • tiflaxtinin a type of PAI-1 inhibitor, is effective in alleviating oxidative stress and DNA damage caused by peritoneal dialysate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 티플락스티닌을 포함하는 복막 섬유증 관련 질환의 개선, 예방 또는 치료용 조성물에 관한 것이다. 본 발명의 티플락스티닌은 우수한 복막 EMT 억제 효과를 보유함에 따라, 복막 섬유증의 개선 및 치료에 유용하게 이용될 수 있다.

Description

티플락스티닌을 포함하는 복막 섬유증의 개선, 예방 또는 치료용 조성물
본 발명은 티플락스티닌(Tiplaxtinin)을 포함하는 복막 섬유증의 개선, 예방 또는 치료용 조성물에 관한 것이다.
섬유증은 섬유아세포에 의한 세포외 기질(ECM)의 비정상적인 생성, 축적 및 침착이 일어나는 질환으로, 지속적인 감염, 자가면역 반응, 알레르기성 반응, 화학적 손상 및 조직 손상을 포함하는 다양한 자극에 의해 유도되는 만성 염증 반응의 최종 결과에 해당한다.
섬유증 중에서도 특히 복막 섬유증(PF, Peritoneal fibrosis)은, 신부전증 치료를 위한 장기간 복막 투석에 의해 발생한다는 특징을 가지고 있으며, 지속적인 외래 복막 투석(CAPD, Continuous Ambulatory Peritoneal Dialysis) 환자의 복막 구조 변화 및 한외 여과 장애의 주요 원인으로 꼽히고 있다. 복막 섬유화의 극단적인 형태인 피막 형성 복막 경화증(ESP, Encapsulating Peritoneal Sclerosis)은 복막 투석을 지속하기 어렵게 만들며, 섬유화-경화증의 특성상 정상 기능으로 복귀가 불가능하기 때문에 한번의 진단만으로도 매우 치명적인 경과를 보인다. 따라서, 복막 섬유증은 그 어떤 섬유증보다도 예방 목적이 우선시되고 있다.
또한, 복막 중피 세포(MCs, Mesothelial Cells)의 상피-중간엽 전이 (EMT, Epithelial-to-mesenchymal transition) 및 ECM 단백질의 복막 축적이 복막 섬유증의 주요한 특징이며, 형질전환 성장 인자(TGF, Transforming Growth Factor)-β1가 복막 섬유증 발달에서 핵심 역할을 하는 것으로 알려져 있다.
구체적으로, 복막 투석 환자로부터 분리한 복막 중피 세포에서는 EMT 수준과 관련이 있는 GPR78/94의 증가가 관찰되며, E-cadherin 및 ZO-1의 발현 감소와 de novo α-smooth muscle actin(α-SMA)의 발현 축적이 관찰된다. EMT는 가역적 과정으로 알려져 있기 때문에, EMT를 억제하는 것은 복막 기능을 보존하기 위한 치료적 타겟으로 고려될 수 있다.
한편, 플라스미노겐 활성제 저해제-1(PAI-1, Plasminogen activator inhibitor)은 TGFβ 신호전달의 잘 알려진 다운스트림 분자이며, ECM 리모델링에서 중요한 역할을 수행한다. 그러나, 복막 EMT와 PAI-1의 연관성에 대해서는 아직까지 보고된 바가 없다.
이에, 본 발명자들은 복막 EMT에서 PAI-1의 역할 및 PAI-1 매개 복막 EMT의 세포 내 신호전달경로를 확인하고, 복막 섬유증 유도 모델에서 PAI-1 억제제의 일종인 티플락스티닌의 복막 섬유증에 대한 예방 및 치료 효능을 확인하여 본 발명을 완성하였다.
본 발명의 목적은 티플락스티닌 또는 이의 약학적으로 허용가능한 염을 포함하는 복막 섬유증 예방 또는 치료용 약학 조성물을 제공하는 것이다.
본 발명의 목적은 티플락스티닌 또는 이의 식품학적으로 허용가능한 염을 포함하는 복막 섬유증 예방 또는 개선용 식품 조성물을 제공하는 것이다.
본 발명은 티플락스티닌 또는 이의 약학적으로 허용가능한 염을 포함하는 복막 섬유증의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명에서, “티플락스티닌”은 PAI-1의 억제제로 작용하는 약물로서, 혈액 응고 캐스케이드에 관여하는 효소 조직인 플라스미노겐 활성화제 및 우로키나아제의 활성을 증가시킨다고 알려져 있다.
이러한 티플락스티닌은 하기 화학식 1의 구조를 가진다.
[화학식 1]
Figure PCTKR2023002413-appb-img-000001
본 발명의 일실시양태에 따르면, 티플락스티닌은 복막 투석액의 주입을 통해 복막 섬유증을 유도한 동물모델을 대상으로 한 실험에서 복막 EMT 억제 효과를 보유함에 따라, 티플락스티닌이 복막 섬유증의 개선 및 치료에 유용하게 이용될 수 있음을 확인하였다. 또한, 복막의 EMT 억제, 복막의 세포사멸 억제 및 복막으로의 면역세포 침윤 억제로 이루어진 군으로부터 선택되는 어느 하나 이상의 효과를 나타내는 것일 수 있다.
"EMT"는 상피세포가 중간엽 세포로 표현형 변이되는 것을 의미한다. 구체적으로 EMT는 세포간 결합이 느슨해지고 세포 골격이 변하면서 조직이 운동성을 획득하는 현상으로, 세포가 본래의 세포 표현형을 상실하고 간엽세포의 표현형으로 전환되는 것을 말한다. EMT가 유도되면 섬유아세포의 축적을 초래할 수 있으며, EMT의 유도는 복막 섬유화의 초기 메커니즘으로 중요하게 인식된다.
본 발명에서 "복막 섬유증"은 복막이 섬유화된 상태를 의미하는 것으로서 복막에 섬유세포가 비정상적으로 형성된 것을 말한다. 예를 들어, 복막후 섬유증 (Retroperitoneal fibrosis) 또는 피막 형성 복막 경화증(encapsulating peritoneal sclerosis)을 포괄하는 의미로 사용되나, 이로 한정되지 않는다. 복막의 섬유화는 예를 들어, 투석에 의해서 발생할 수 있다.
본 발명에서 사용되는 용어 “예방”은 조성물의 투여로 복막 섬유증을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다. 본 발명에 있어서, “치료”란 조성물의 투여로 상기 질환의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 발명에서, “약학적으로 허용가능한 염”은 의약업계에서 통상적으로 사용되는 염을 의미하며, 예를 들어 칼슘, 포타슘, 소듐 및 마그네슘 등으로 제조된 무기이온염; 염산, 질산, 인산, 브롬산, 요오드산, 과염소산 및 황산 등으로 제조된 무기산염; 아세트산, 트라이플루오로아세트산, 시트르산, 말레인산, 숙신산, 옥살산, 벤조산, 타르타르산, 푸마르산, 만데르산, 프로피온산, 젖산, 글리콜산, 글루콘산, 갈락투론산, 글루탐산, 글루타르산, 글루쿠론산, 아스파르트산, 아스코르브산, 카본산, 바닐릭산, 하이드로 아이오딕산 등으로 제조된 유기산염; 메탄설폰산, 에탄설폰산, 벤젠설폰산, p-톨루엔설폰산 및 나프탈렌설폰산 등으로 제조된 설폰산염; 글리신, 아르기닌, 라이신 등으로 제조된 아미노산염; 및 트리메틸아민, 트라이에틸아민, 암모니아, 피리딘, 피콜린 등으로 제조된 아민염 등이 있으나, 열거된 이들 염에 의해 본 발명에서 의미하는 염의 종류가 한정되는 것은 아니다.
또한, 본 발명의 티플락스티닌은 약학적으로 허용되는 염 뿐만 아니라, 통상의 방법에 의해 제조될 수 있는 모든 염, 수화물 및 용매화물을 모두 포함한다.
본 발명의 약학 조성물은 약학적으로 허용가능한 담체를 포함할 수 있으며, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제제화될 수 있다.
상기 약제학적으로 허용가능한 담체는 당업계에서 통상적으로 사용되는 것들, 예컨대 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 포함하나 이에 국한되지 않는다. 또한, 본 발명의 약학 조성물은 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제, 기타 약제학적으로 허용가능한 첨가제를 포함할 수 있으나, 이에 국한되지 않는다.
본 발명의 약학 조성물이 경구용 고형 제제로 제제화된 경우 정제, 환제, 산제, 과립제, 캡슐제 등을 포함하며, 이러한 고형제제는 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토즈, 젤라틴 등을 포함할 수 있으며, 마그네슘 스테아레이트, 탈크 같은 윤활제 등을 포함하나 이에 국한되지 않는다.
본 발명의 약학 조성물이 경구용 액상 제제화된 경우 현탁제, 내용액제, 유제, 시럽제 등을 포함하며, 물, 리퀴드 파라핀 등의 희석제, 습윤제, 감미제, 방향제, 보존제 등을 포함하나 이에 국한되지 않는다.
본 발명의 약학 조성물이 비경구용으로 제제화된 경우 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제를 포함하며, 비수성 용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르류 등을 포함하나 이에 국한되지 않는다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있으나 이에 국한되지 않는다.
상기 조성물은 약학적으로 유효한 양으로 단일 또는 다중 투여될 수 있다. 본 발명의 용어 "약학적으로 유효한 양"이란 의학적 예방 또는 치료에 적용가능한 합리적인 수혜/위험 비율로 질환을 예방 또는 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율, 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 예를 들면, 티플락스티닌 또는 이의 약학적으로 허용가능한 염은 1일 0.0001 내지 100mg/kg으로 투여할 수 있으며, 상기 투여는 하루에 한 번 또는 수회 나누어 투여할 수도 있다.
본 발명의 약학 조성물은 랫트, 마우스, 가축, 인간 등의 포유동물에 다양한 경로로, 예를 들면, 경구 투여, 경막내, 내이, 복강 또는 정맥, 근육, 피하, 자궁 내 경막, 설하 또는 뇌혈관 내 주사에 의해 투여될 수 있으며, 이에 국한되지 않는다.
본 발명의 약학 조성물은 조성물 총 중량에 대하여 티플락스티닌 또는 이의 약학적으로 허용가능한 염을 0.01 내지 95 중량%, 바람직하게는 1 내지 80 중량%로 포함할 수 있다.
본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있다. 또한 본 발명의 약학적 조성물은 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 용어 "대상체"는 본 발명에 따른 약학적 조성물의 투여에 의해 증상이 호전될 수 있는 동물 또는 인간을 포함한다. 본 발명에 따른 치료용 조성물을 개체에게 투여함으로써, 복막 섬유증을 효과적으로 예방 및 치료할 수 있다.
본 발명의 용어 "투여"는 어떠한 적절한 방법으로 인간 또는 동물에게 소정의 물질을 도입하는 것을 의미하며, 본 발명에 따른 치료용 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 경구 또는 비경구 투여될 수 있다. 또한, 본 발명에 따른 치료용 조성물은 유효성분이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
본 발명의 다른 하나의 양태는 티플락스티닌, 또는 이의 약학적으로 허용 가능한 염의 치료학적으로 유효량을 이를 필요로 하는 개체에게 투여하는 단계를 포함하는 복막 섬유증의 예방 또는 치료 방법을 제공한다.
본 발명에서 용어 "티플락스티닌" 또는 "복막 섬유증"은 전술한 바와 같다.
본 발명의 용어 "개체"란 복막 섬유증이 발병하였거나 발병할 수 있는 모든 동물을 의미하며, 전형적으로 본 발명의 티플락스티닌 또는 이의 약학적으로 허용 가능한 염을 이용한 치료로 유익한 효과를 나타낼 수 있는 동물일 수 있으나, 복막 섬유증 증상을 갖거나 이러한 증상을 가질 가능성이 있는 개체이면 제한없이 포함한다. 전술한 바와 같이, 본 발명의 약학 조성물을 개체에게 투여함으로써 상기 복막 섬유증을 효과적으로 예방 또는 치료할 수 있다.
본 발명의 다른 하나의 양태는 복막 섬유증의 예방 또는 치료를 위한 의약을 제조하기 위한 본 발명의 티플락스티닌 또는 이의 약학적으로 허용가능한 염의 용도를 제공한다.
본 발명의 다른 또 하나의 양태는 복막 섬유증의 예방 또는 치료에 사용하기 위한 티플락스티닌 또는 이의 약학적으로 허용 가능한 염을 포함하는 조성물을 제공한다.
본 발명의 다른 또 하나의 양태는 티플락스티닌 또 이의 약학적으로 허용가능한 염을 포함하는 복막 투석액을 제공한다.
상기 티플락스티닌 및 이의 약학적으로 허용가능한 염은 앞서 설명한 바와 같다. 본 발명의 티플락스티닌 또는 이의 약학적으로 허용가능한 염은 EMT 및 복막 세포의 세포사멸을 억제하므로, 복막 투석액 중에 포함되어 복막 섬유화 및 복막 섬유증을 개선, 지연, 예방 또는 치료할 수 있다. 본 발명의 티플락스티닌 또는 이의 약학적으로 허용가능한 염을 포함하는 복막 투석액은 삼투제, 완충액, 전해질 및 이들의 조합으로 구성된 군에서 선택된 어느 하나 이상을 포함할 수 있다. 예를 들어 삼투제는 포도당, 포도당 중합체(예를 들어, 말토덱스트린, 아이코덱스트린), 포도당 중합체 유도체, 시클로덱스트린, 변성전 분, 히드록시에틸 전분, 폴리올, 과당, 아미노산, 펩티드, 단백질, 아미노당, 글리세롤, N-아세틸 글루코사민 (NAG) 또는 이들의 조합을 포함할 수 있다. 완충액은 중탄산염, 락테이트, 피루베이트, 아세테이트, 시트레이트, 트리스(즉, 트리스히드록시메틸아미노메탄), 아미노산, 펩티드, 또는 그들의 조합을 포함할 수 있다.
전해질은 나트륨, 칼륨, 마그네슘, 칼슘 및 염화물을 포함할 수 있다.
본 발명의 복막 투석액은 하나 이상의 투석 성분(투석 용액의 요소 또는 구성 성분) 및 치료적 유효량의 유효물 질을 포함할 수 있으며, 복막 섬유화 및 복막 섬유증을 개선, 완화, 예방 또는 치료하기 위한 성분으로 티플락스티닌 또는 이의 약학적으로 허용가능한 염을 포함한다. 상기 복막 투석액은 투석 농축물일 수 있으며, 투석액에는 약 0.1 μM 내지 약 1000 μM의 티플락스티닌 또는 이의 약학적으로 허용가능한 염이 포함될 수 있다. 상기 복막 투석액은 단일 용기 내의 단일 투석 용액 또는 별도로 수용된 또는 다중-챔버를 가진 용기의 투석부로 사용될 수 있으며, 복막 투석 시 기존에 사용되는 투석액과 동시에 또는 시간차를 두고 환자에게 투여될 수 있다.
본 발명은 티플락스티닌 또는 이의 식품학적으로 허용가능한 염을 포함하는 복막 섬유증 예방 또는 개선용 식품 조성물을 제공한다.
본 발명의 용어, "개선"이란, 본 발명의 조성물의 투여로 복막 섬유증이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.
본 발명의 식품 조성물에 있어, 상기 티플락스티닌 및 그의 염은 바람직하게 식품 조성물 대비 0.00001~0.01 중량% 포함되는 것이 좋다. 0.00001 중량% 미만일 경우에는 그 효과가 미비하고, 0.01 중량%를 초과하는 경우에는 사용량 대비 효과 증가가 미미하여 비경제적이다.
식품학적으로 허용가능한 염은 약학적으로 허용가능한 염의 내용을 준용할 수 있다.
본 발명의 식품 조성물은 일 예로, 면류, 껌류, 유제품류, 아이스크림류, 육류, 곡류, 카페인 음료, 일반음료, 초콜릿, 빵류, 스낵류, 과자류, 사탕, 피자, 젤리, 알코올성 음료, 술, 비타민 복합제 및 그 밖의 건강보조식품류 중 선택되는 어느 하나일 수 있으나, 반드시 이에 한정되는 것은 아니다.
본 발명의 식품 조성물을 식품 첨가물로 사용할 경우, 이를 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다.
본 발명에서 식품 조성물은 건강기능식품을 포함한다.
상기 "건강기능식품"이라 함은 건강기능식품에 관한 법률 제6727호에 따른 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 의미하며, "기능성"이라 함은 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건 용도에 유용한 효과를 얻을 목적으로 섭취하는 것을 의미한다.
본 발명의 식품 조성물 및 건강기능식품은 추가 성분을 포함할 수 있다. 예들 들어, 비오틴(biotin), 폴레이트(folate), 판토텐산(panthotenic acid), 비타민 A, C, D, E, B1, B2, B6, B12, 니아신(niacin) 등을 포함할 수 있다. 또한, 크롬(Cr), 마그네슘(Mg), 망간(Mn), 구리(Cu), 아연(Zn), 철(Fe), 칼슘(Ca) 등의 미네랄을 포함할 수 있다. 또한, 시스테인, 발린, 라이신, 트립토판 등의 아미노산을 포함할 수 있다. 또한, 방부제(소르빈산 칼륨, 벤조산나트륨, 살리실산, 디히드로초산나트륨 등), 착색제(타르색소 등), 발색제(아질산 나트륨, 아초산 나트륨 등), 표백제(아황산나트륨), 살균제(표백분과 고도 표백분, 차아염소산나트륨 등), 팽창제(명반, D-주석산수소칼륨 등), 강화제, 유화제, 증점제(호료), 피막제, 산화방지제(부틸히드록시아니졸(BHA), 부틸히드록시톨루엔(BHT) 등), 조미료(MSG 글루타민산나트륨 등), 감미료(둘신, 사이클레메이트, 사카린, 나트륨 등), 향료(바닐린, 락톤류 등), 검기초제, 거품억제제, 용제, 개량제 등의 식품 첨가물(food additives)을 첨가할 수 있다. 상기 첨가물은 식품의 종류에 따라 선별되고 적절한 양으로 사용될 수 있다.
본 발명의 티플락스티닌은 우수한 복막 EMT 억제 효과를 보유함에 따라, 복막 섬유증의 개선 및 치료에 유용하게 이용될 수 있다.
도 1a는 대조군(siCon)과 PAI-1 유전자 침묵 모델(siPAI-1)에서 TGFβ 처리로 인해 나타나는 세포의 형태 변화를 도립 위상차 현미경으로 관찰한 도이다.
도 1b는 대조군(siCon)과 PAI-1 유전자 침묵 모델(siPAI-1)에서 TGFβ 처리로 인해 나타나는 ZO-1 및 α-SMA의 발현 변화를 면역 형광 분석으로 나타낸 도이다.
도 2는 대조군(siCon)과 PAI-1 유전자 침묵 모델(siPAI-1)에서 TGFβ 처리로 인해 나타나는 세포 마커(E-cadherin, α-SMA 및 fibronectin)의 발현 변화를 실시간 PCR 및 Western blotting으로 분석한 도이다.
도 3a는 대조군(Control)과 티플락스티닌 첨가 모델(티플락스티닌)에서 TGFβ 처리로 인해 나타나는 세포의 형태 변화를 도립 위상차 현미경으로 관찰한 도이다.
도 3b는 대조군(Control)과 티플락스티닌 첨가 모델(티플락스티닌)에서 TGFβ 처리로 인해 나타나는 ZO-1, α-SMA 및 fibronectin의 발현 변화를 실시간 PCR 및 Western blotting으로 분석한 도이다.
도 4는 대조군(siCon)과 PAI-1 유전자 침묵 모델(siPAI-1)에서 TGFβ 처리로 인해 나타나는 E-cadherin의 프로모터 활성 변화를 Luciferase Assay를 통해 평가한 도이다.
도 5는 대조군(siCon)과 PAI-1 유전자 침묵 모델(siPAI-1)에서 TGFβ 처리로 인해 나타나는 Snail/Slug의 핵 전위 변화를 Western Blotting으로 분석한 도이다.
도 6은 TGFβ를 처리한 대조군(siCon) 및 PAI-1 유전자 침묵 모델(siPAI-1)의 시간(hr)에 따른 Smad2/3, ERK 및 p38 신호 변화를 Western blotting으로 관찰하여 이미지 및 그래프로 나타낸 도이다.
도 7a는 대조군(siCon)과 PAI-1 유전자 침묵 모델(siPAI-1)에서 TGFβ 처리로 인해 나타나는 MMP의 발현 변화를 실시간 PCR을 통해 mRNA 수준에서 확인한 도이다.
도 7b는 TGFβ를 처리한 대조군(siCon) 및 PAI-1 유전자 침묵 모델(siPAI-1)의 시간(hr)에 따른 MMP2 및 MMP9의 발현 변화를 Western blotting을 통해 단백질 수준에서 비교한 도이다.
도 8은 장간막에서 분리된 복막 중피 세포(HPMC) 및 복막 투석 환자로부터 분리된 복막 중피 세포(PDMC)에서 EMT 및 섬유증 관련 유전자의 발현량을 히트맵 및 Scatter plot으로 나타낸 도이다.
도 9는 HPMC 및 PDMC에서의 PAI-1 및 EMT 마커(E-cadherin, α-SMA)의 발현량을 Western blotting으로 비교한 도이다.
도 10은 동물실험의 실험과정을 개략적으로 나타낸 도이다.
도 11은 동물실험군(NC, TT, CC, PC, PT)의 복막 평형 검사(PET) 결과를 그래프로 나타낸 도이다.
도 12는 동물실험군(NC, TT, CC, PC, PT)의 복막 조직을 H&E로 염색하여 두께를 비교한 도이다.
도 13은 동물실험군(NC, PC, PT)의 복막조직에 면역형광염색(IF)을 수행하여 섬유화 정도를 비교한 도이다.
도 14는 동물실험군(NC, PC, PT)의 복막조직에 면역조직화학염색(IHC)을 수행하여 산화성 스트레스 및 DNA damage 정도를 비교한 도이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실험예>
하기 실험예들은 본 발명에 따른 실시예 1 내지 7에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.
1. 복막 중피 세포(HPMCs 및 PDMCs)의 분리 및 유지
복막 중피 세포(HPMC)는 표준적인 방법(Stylianou’s method)에 따라 사람의 장간막(omentum)을 0.05% 트립신-0.02% EDTA로 20분 동안 처리하여 배양한 뒤 원심분리를 통해 분리하였다. 상기 세포는 10% FBS, 100 U/ml 페니실린, 100μg/ml 스트렙토마이신 및 26mmol/L NaHCO3를 함유하는 배지 M199에서 배양되었다.
복막 투석 환자에서 유래된 복막 중피 세포(PDMC)는 복막 투석 환자의 체내에 하루동안 있던 투석액으로부터 원심분리를 통해 분리하였다. 상기 세포는 10% FBS, 100 U/ml 페니실린, 100μg/ml 스트렙토마이신 및 26mmol/L NaHCO3를 함유하는 배지 M199에서 배양되었다.
실험에 사용된 배지는 2일에 한 번씩 교체되었다.
2. 시약
본 연구에서 사용되는 모든 물질들은, 다른 언급이 없는 한 Sigma-Aldrich 및 Sellechem으로부터 구입하여 사용하였다.
3. 복막 중피 세포의 형태 변화 관찰 및 면역 형광 분석
세포의 형태 변화는 도립 위상차 현미경(Nikon Ti2-U, Japan)을 통해 분석되었다.
다음으로, 면역 형광 분석을 위해 세포들을 4% 포스페이트-완충 파라포름알데하이드로 고정시키고(15분), 1% 트리톤 X-100/PBS를 5분간 투과시켰다. 5% BSA로 30분간 블로킹한 후, 1% BSA에 ZO-1 또는 α-SMA 특이 1차 항체로 하룻밤동안 배양하였다. 다음날, PBS로 1시간 동안 세척하고, 염소 항-마우스 IgG-FITC 또는 항-토끼 Alexa Fluor 568로 암실에서 1시간 동안 실온 배양하였다. 핵은 DAPI로 염색하고, 세포는 400배로 LSM800 (ZEISS) 공초점 (confocal) 현미경을 통해 관찰하였다.
4. Western Blotting
세포로부터 RIPA 버퍼를 이용하여 단백질을 분리한 후, lysate들을 5X SDS 버퍼를 혼합하여 끓인 뒤, SDS-PAGE 겔로 전기영동하였다. 내려진 겔을 PVDF 막으로 전달한 뒤, 실온에서 3% BSA/0.01% 트윈20/PBS로 30분간 블로킹하였다. 그 후, PVDF 막은 1차 항체(ZO-1, E-cadherin, α-SMA, Smad2/3, ERK1/2, p38 MAPK, Snail, Slug, MMP2 또는 MMP9)와 함께 하룻밤동안 배양되었다. 0.01% 트윈20/PBS로 상기 막을 세척한 후, 각각 1차 항체에 상응하는 HRP-conjugated 2차 항체와 함께 1시간 동안 실온에서 배양하였다.
5. siRNA의 트랜스펙션
HPMC의 TGFβ-유도 EMT에 대한 PAI-1의 기여도를 측정하기 위하여, Thermo Scientific(San Diego, CA, USA)에서 구입한 RNAiMAX lipofectamine으로 인간 PAI-1 siRNA(바이오니아)를 HPMC에 처리하였다. siRNA의 트랜스펙션은 제조업자의 프로토콜에 따라 수행되었다.
6. Luciferase Assay
HPMC에 E-cadherin 프로모터가 포함된 벡터와 luciferase plasmid(Firefly luciferase, Renilla luciferase)를 트랜스펙션한 뒤, 세포를 용해시키고 제조업자의 프로토콜에 따라 Dual-Luciferase Assay를 사용하여 수행되었다.
7. RNA sequencing 분석
HPMC와 PDMC에서 발현되는 유전자를 분석하기 위해 QuantSeq 3’mRNA-seq 라이브러리 prep 키트를 사용하여 RNA 라이브러리를 만들어서 분석하였다.
<실시예 1> HPMC에서 TGFβ로 유도된 EMT에 대한 PAI-1의 역할
HPMC에서 TGFβ로 유도된 EMT에 대한 PAI-1의 역할을 규명하기 위해, 대조군(siCon)과 HPMC에 siPAI-1을 트랜스펙션한 PAI-1 유전자 침묵 모델(siPAI-1)을 준비하고 각각의 그룹에 TGFβ를 처리하여 변화를 관찰하였다.
그 결과, siPAI-1이 TGFβ에 의한 세포의 형태 변화를 개선함을 도립 위상차 현미경을 통해 확인할 수 있었다(도 1a 참조).
또한, 면역 형광 분석을 통해 관찰한 결과, 대조군(siCon)에 TGFβ를 처리한 경우에 ZO-1의 발현은 완전히 소멸되었고 α-SMA가 발현되었다. 그러나, PAI-1 유전자 침묵 모델(siPAI-1)에 TGFβ를 처리한 경우에는 ZO-1의 발현 증가와 α-SMA의 colocalization이 관찰되었다(도 1b 참조).
한편, TGFβ 자극으로 복막 EMT가 유도된 경우, 대조군(siCon)에서는 중간엽 세포 마커인 α-SMA 및 fibronectin의 발현은 증가하고, 상피세포 마커인 E-cadherin의 발현은 감소하는 양상을 보였다. 반면, PAI-1 유전자 침묵 모델(siPAI-1)에서는 TGFβ를 처리하더라도 E-cadherin, α-SMA 및 fibronectin의 발현 변화가 비교적 작게 나타남을 확인하였다. 상기 세포 마커들의 발현 변화는 실시간 PCR 및 Western blotting으로 관찰하여 도 2에 나타내었다.
<실시예 2> HPMC에서 TGFβ로 유도된 EMT에 대한 티플락스티닌의 효과
TGFβ로 유도된 복막 EMT에서 PAI-1 억제제의 일종인 티플락스티닌의 효과를 규명하기 위해, 대조군(Control)과 HPMC에 티플락스티닌을 첨가한 모델을 준비하고 각각의 그룹에 TGFβ를 처리하여 변화를 관찰하였다
그 결과, 티플락스티닌이 TGFβ에 의한 세포의 형태 변화를 개선함을 도립 위상차 현미경을 통해 확인할 수 있었다(도 3a 참조).
한편, TGFβ 자극으로 복막 EMT가 유도된 경우, 대조군(Control)에서는 tight junction 단백질인 ZO-1의 발현은 감소하고, 중간엽 세포 마커인 α-SMA 및 fibronectin의 발현은 증가하는 양상을 보였다. 반면, 티플락스티닌 첨가 모델에서는 TGFβ를 처리하더라도 ZO-1, α-SMA 및 fibronectin의 발현 변화가 비교적 작게 나타났다. 상기 단백질 및 세포 마커들의 발현 변화는 실시간 PCR 및 Western blotting으로 관찰하여 도 3b에 나타내었다.
정리하자면, 티플락스티닌이 TGFβ로 유도된 세포 형태의 변화와 ZO-1, α-SMA 및 fibronectin의 발현을 개선함을 확인하였으며, 이는 티플락스티닌이 siPAI-1과 마찬가지로 HPMC에서 일어나는 EMT를 완화시킴을 의미한다.
<실시예 3> HPMC에서 E-cadherin의 프로모터 활성 및 Snail/Slug의 핵 전위에 대한 siPAI-1의 효과
TGFβ가 E-cadherin 발현의 하향 조절을 유도하는 메커니즘을 이해하기 위해 Luciferase Assay를 실시한 결과, PAI-1 유전자 침묵 모델(siPAI-1)에서는 TGFβ를 처리함으로써 나타나는 E-cadherin의 프로모터 활성 감소가 비교적 완화됨을 확인하였다(도 4 참조).
또한, Western blotting을 통해 siPAI-1이 Snail 핵 전위는 완화시키지만 Slug 핵 전위에는 영향을 미치지 않음을 확인하였다(도 5 참조).
<실시예 4> TGFβ로 유도된 Smad/MAPK 신호전달에 대한 siPAI-1의 효과
PAI-1 매개 EMT의 메커니즘을 확인하기 위해, Western blotting으로 시간(hr)에 따른 Smad2/3, ERK 및 p38 신호 변화를 관찰한 결과를 도 6과 같이 확인하였다. 즉, siPAI-1은 Smad2/3, ERK의 활성화를 개선시켰으나 p38의 활성화는 개선하지 못하였다.
<실시예 5> TGFβ 매개 Matrix Metalloproteases(MMPs) 발현에 대한 siPAI-1의 효과
ECM 리모델링에 핵심적인 역할을 하는 인자인 MMP의 발현 변화를 확인하기 위해, 우선 mRNA 수준에서의 실시간 PCR을 통해 MMP2가 HPMC에 가장 풍부하게 존재하는 MMP isoform임을 확인하였다(도 7a 참조).
다음으로, TGFβ를 처리한 대조군(siCon) 및 PAI-1 유전자 침묵 모델(siPAI-1)의 시간(hr)에 따른 MMP2 및 MMP9의 발현 변화를 Western blotting을 통해 단백질 수준에서 확인하였다(도 7b 참조). 그 결과, HPMC에서 siPAI-1이 MMP2의 발현 증가를 완화시키지만 MMP9의 발현에는 영향을 미치지 않음을 확인하였다.
<실시예 6> HPMC 및 PDMC에서 PAI-1의 발현 비교
장간막에서 분리된 복막 중피 세포(HPMC) 및 복막 투석 환자로부터 분리된 복막 중피 세포(PDMC)에서 EMT 및 섬유증 관련 유전자에 대하여 RNA-seq을 실시한 후, 각 유전자의 발현량을 히트맵 및 Scatter plot으로 나타내었다. 도 8에서 확인할 수 있듯이, HPMC와 비교해 PDMC에서는 PAI-1의 발현량이 크게 증가하였다.
또한, Western blotting을 통해 HPMC 및 PDMC에서의 PAI-1 및 EMT 마커(E-cadherin, α-SMA)의 발현량을 비교하였다(도 9 참조). 상기 도 8의 결과와 마찬가지로 PDMC에서 PAI-1이 더 높게 발현되었으며, 이는 PAI-1의 발현이 EMT 마커의 발현 변화와 연관이 있음을 의미한다.
따라서, PAI-1의 발현 및 활성을 조절함으로써 복막 투석 환자의 복막 섬유증을 예방할 수 있음을 확인하였다.
<실시예 7> 티플락스티닌을 이용한 동물실험
1. 실험과정
우선, 실험 시작 7일 전에 미리 투석액 주입을 위한 catheter를 삽입하였다. 실험이 시작된 후, 대상체에게 한달간 투석액 100mL/kg을 매일 투여하고, food slurry로 제조한 티플락스티닌 5mg/kg을 매일 먹였다.
동물실험 종료 시에는 복막 평형 검사(PET, Peritoneal Equilibration Test)를 시행하기 위해 모든 생쥐에 100mL/kg의 복막 투석액을 복강 주사하였다. 배액(D, Dialysate) 검체는 복막 투석액 주입 전(D0)과 2시간 후(D2)에, 혈액(P, Plasma) 검체는 2시간 후(P2)에 수집하였다.
복막 평형 검사의 복막 이동 지표로는 투석액을 주입하고 2시간이 경과했을 때의 배액-혈액 비율(D2/P2)에 대한 크레아티닌 농도(D/P Cr) 및 포도당 농도(D/P Glucose)와, 투석액 주입 전과 주입하고 2시간 후의 배액-배액 비율(D2/D0)에 대한 포도당 농도(D/D0 Glucose)를 사용하였다.
각 지표들은 모두 AU680 자동분석기(Beckman Coulter, Brea, USA)를 통해 측정하였으며, 상기 서술한 실험과정은 개략적으로 정리하여 도 10에 나타내었다.
2. 실험군 편성
해당 실험에 쓰일 실험군은 아래와 같이 편성하였다.
실험군 편성
Normal Control (NC, n=6)
티플락스티닌 only (TT, n=6)
Catheter only (CC, n=5)
Catheter+PD (PC, n=6)
Catheter+PD+티플락스티닌 (PT, n=6)
상기 표 1의 각 실험군 간에 체중 변화는 나타나지 않았다(도 11a 참조).
3. 복막 평형 검사 (PET) 결과
D/D0 Glucose 및 D/P Glucose는 CC군에 비해 PC군에서 유의하게 감소한 반면에, PC군에 비해 PT군에서는 유의하게 증가하였다(도 11b 및 11c 참조). 또한, D/P Cr은 CC군에 비해 PC군에서 유의하게 증가하였으나, PC군에 비해 PT군에서는 유의하게 감소하였다(도 11d 참조).
정리하자면, 복막 투석으로 인해 생긴 복막 EMT가 티플락스티닌에 의해 개선되었음을 확인할 수 있었다.
4. H&E staining을 통한 복막 두께 비교
동물실험이 종료된 후, 복막 조직을 채취하여 파라핀 블록을 제조하고 H&E 염색을 실시하였다. 염색된 복막 조직의 두께를 비교해본 결과, PC군은 NC군에 비해 복막의 두께가 증가하였으며, PT군은 PC군에 비해 복막의 두께가 감소하였다(도 12 참조).
따라서, PAI-1 억제제의 일종인 티플락스티닌이 복막기능의 개선 및 복막 섬유화의 완화에 효과가 있음을 확인할 수 있었다.
5. 면역형광법(Immunoflurescence method)을 통한 복막의 섬유화 비교
각 실험군에서 채취한 복막조직의 섬유화 정도를 확인하기 위해 면역형광염색(IF)을 실시하였다. 염색된 복막 조직에서 tight junction 단백질인 ZO-1와 EMT 마커인 α-SMA의 발현을 비교한 결과(Antibody ZO-1; 1:200, α-SMA; 1:200), PC군은 NC군에 비해 ZO-1 발현이 감소하고 α-SMA의 발현이 증가한 반면, PT군은 PC군에 비해 ZO-1 발현이 증가하고 α-SMA의 발현이 감소하였다(도 13 참조).
따라서, PAI-1 억제제의 일종인 티플락스티닌이 복막기능의 개선 및 복막 섬유화의 완화에 효과가 있음을 확인할 수 있었다.
6. 면역조직화학(Immunohistochemistry)을 통한 복막의 산화성 스트레스 및 DNA damage 비교
각 실험군에서 채취한 복막조직에서 복막투석액에 의한 산화성 스트레스 및 DNA damage 정도를 확인하기 위해 면역조직화학염색(IHC)을 실시하였다. 염색된 복막 조직에서 산화성 스트레스 마커인 SOD2(Superoxide dismutase), NT(Nitrotyrosine), 4-NHE(4-hydroxynonenal) 및 DNA damage 마커인 8-OHdG(8-hydroxy-2'-deoxyguanosine)을 비교한 결과, PC군은 NC군에 비해 산화성 스트레스 및 DNA damage가 증가한 반면, PT군은 PC군에 비해 산화성 스트레스 및 DNA damage가 감소하였다(도 14 참조).
따라서, PAI-1 억제제의 일종인 티플락스티닌이 복막투석액에 의한 산화성 스트레스 및 DNA damage 완화에 효과가 있음을 확인할 수 있었다.

Claims (13)

  1. 티플락스티닌 또는 이의 약학적으로 허용가능한 염을 포함하는 복막 섬유증 예방 또는 치료용 약학 조성물.
  2. 제1항에 있어서, 티플락스티닌 또는 이의 약학적으로 허용가능한 염은 복막의 EMT (epithelial-tomesenchymal transition) 억제, 복막의 세포사멸 억제 및 복막으로의 면역세포 침윤 억제로 이루어진 군으로부터 선택되는 어느 하나 이상의 효과를 나타내는 것인 약학적 조성물.
  3. 제1항에 있어서, 복막 섬유증은 복막후 섬유증 (Retroperitoneal fibrosis) 또는 피막 형성 복막 경화증(encapsulating peritoneal sclerosis)인 약학적 조성물.
  4. 제1항에 있어서, 복막 섬유증은 복막 투석에 의해 발생하는 것인 약학적 조성물.
  5. 티플락스티닌 또는 이의 식품학적으로 허용가능한 염을 포함하는 복막 섬유증 예방 또는 개선용 식품 조성물.
  6. 티플락스티닌 또는 이의 약학적으로 허용가능한 염을 포함하는 복막 투석액.
  7. 제6항에 있어서, 티플락스티닌 또는 이의 약학적으로 허용가능한 염은 티플락스티닌 또는 이의 약학적으로 허용가능한 염은 복막의 EMT (epithelial-to-mesenchymal transition) 억제, 복막의 세포사멸 억제 및 복막으로의 면역세포 침윤 억제로 이루어진 군으로부터 선택되는 어느 하나 이상의 효과를 나타내는 것인 복막 투석액.
  8. 복막 섬유증의 예방 또는 치료를 위한 의약을 제조하기 위한 티플락스티닌 또는 이의 약학적으로 허용가능한 염의 용도.
  9. 제8항에 있어서,
    상기 복막 섬유증은 복막후 섬유증 (Retroperitoneal fibrosis) 또는 피막 형성 복막 경화증(encapsulating peritoneal sclerosis)인 용도
  10. 제8항에 있어서, 상기 복막 섬유증은 복막 투석에 의해 발생하는 것인 용도.
  11. 티플락스티닌, 또는 이의 약학적으로 허용 가능한 염의 치료학적으로 유효량을 이를 필요로 하는 개체에게 투여하는 단계를 포함하는 복막 섬유증의 예방 또는 치료 방법.
  12. 제11항에 있어서,
    상기 복막 섬유증은 복막후 섬유증 (Retroperitoneal fibrosis) 또는 피막 형성 복막 경화증(encapsulating peritoneal sclerosis)인 치료 방법.
  13. 제11항에 있어서, 상기 복막 섬유증은 복막 투석에 의해 발생하는 것인 치료방법.
PCT/KR2023/002413 2022-10-19 2023-02-20 티플락스티닌을 포함하는 복막 섬유증의 개선, 예방 또는 치료용 조성물 WO2024085325A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0135157 2022-10-19
KR20220135157 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024085325A1 true WO2024085325A1 (ko) 2024-04-25

Family

ID=90737709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002413 WO2024085325A1 (ko) 2022-10-19 2023-02-20 티플락스티닌을 포함하는 복막 섬유증의 개선, 예방 또는 치료용 조성물

Country Status (2)

Country Link
KR (1) KR20240054851A (ko)
WO (1) WO2024085325A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160101112A1 (en) * 2013-05-23 2016-04-14 Immunomet Therapeutics Inc Pharmaceutical composition comprising n1-cyclic amine-n5-substituted biguanide derivatives as an ingredient for preventing or treating fibrosis
KR101617584B1 (ko) * 2015-05-13 2016-05-02 이화여자대학교 산학협력단 복막 섬유증의 예방 또는 치료용 약학적 조성물
KR101762574B1 (ko) * 2009-03-31 2017-07-28 가부시키가이샤 레나사이언스 플라즈미노겐 액티베이터 인히비터-1 저해제
KR20170139747A (ko) * 2016-06-10 2017-12-20 연세대학교 산학협력단 페리오스틴 압타머를 포함하는 섬유증 진단 또는 치료용 조성물
KR102133151B1 (ko) * 2019-03-28 2020-07-13 주식회사 노브메타파마 Chp(사이클로-히스프로)를 포함하는 복막 섬유증의 예방, 개선 또는 치료용 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762574B1 (ko) * 2009-03-31 2017-07-28 가부시키가이샤 레나사이언스 플라즈미노겐 액티베이터 인히비터-1 저해제
US20160101112A1 (en) * 2013-05-23 2016-04-14 Immunomet Therapeutics Inc Pharmaceutical composition comprising n1-cyclic amine-n5-substituted biguanide derivatives as an ingredient for preventing or treating fibrosis
KR101617584B1 (ko) * 2015-05-13 2016-05-02 이화여자대학교 산학협력단 복막 섬유증의 예방 또는 치료용 약학적 조성물
KR20170139747A (ko) * 2016-06-10 2017-12-20 연세대학교 산학협력단 페리오스틴 압타머를 포함하는 섬유증 진단 또는 치료용 조성물
KR102133151B1 (ko) * 2019-03-28 2020-07-13 주식회사 노브메타파마 Chp(사이클로-히스프로)를 포함하는 복막 섬유증의 예방, 개선 또는 치료용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAL-AH KIM: "Effect of Plasminogen activator inhibitor-1 (PAI-1) on Phenotype Transition of Human Peritoneal Mesothelial Cells (MCs)", THE KOREAN SOCIETY OF NEPHROLOGY., 1 May 2022 (2022-05-01) - 29 May 2022 (2022-05-29), XP093160168 *

Also Published As

Publication number Publication date
KR20240054851A (ko) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2013070048A1 (ko) 단핵식세포계 세포의 age-알부민 합성 또는 분비 저해제를 유효성분으로 포함하는 허혈성 심장질환 예방 또는 치료용 조성물
WO2021256665A1 (ko) 락토바실러스 파라카세이 유래 소포를 포함하는 신경질환 또는 정신질환 예방 또는 치료용 조성물
KR20110093925A (ko) 항세균성 화합물
WO2018194309A1 (ko) 인디루빈 유도체를 유효성분으로 포함하는 약학 조성물
WO2016137037A1 (ko) Dpp-4 억제제를 포함하는 판막 석회화의 예방 또는 치료용 조성물
CA3119891A1 (en) Animal models, screening methods, and treatment methods for intraocular diseases or disorders
WO2019088379A1 (ko) 신규 유산균 및 이의 용도
WO2020251245A1 (ko) 우유로부터 유래된 엑소좀을 유효성분으로 포함하는 대사성 질환 치료용 약학적 조성물
WO2020149636A1 (ko) 아우쿠빈을 포함하는 안구 건조증의 예방 또는 치료용 약학적 조성물
Wang et al. Kynurenic acid ameliorates lipopolysaccharide-induced endometritis by regulating the GRP35/NF-κB signaling pathway
WO2024039164A1 (ko) 스테포게닌을 유효성분으로 포함하는 암 예방, 개선, 또는 치료용 조성물
WO2024085325A1 (ko) 티플락스티닌을 포함하는 복막 섬유증의 개선, 예방 또는 치료용 조성물
WO2015178653A1 (ko) Akkermansia muciniphila 균에서 유래하는 세포밖 소포를 유효성분으로 함유하는 대사질환의 치료 또는 예방용 조성물
WO2018074862A2 (ko) Tha를 유효성분으로 포함하는 유방암 치료용 약학적 조성물
WO2020222483A1 (ko) 분리된 미토콘드리아를 유효성분으로 포함하는 패혈증 또는 전신성 염증 반응 증후군 치료용 약학 조성물
WO2018080276A1 (ko) 담즙산을 포함하는 허혈성 재관류 손상의 예방 또는 치료용 약학적 조성물
WO2022114906A1 (ko) 신규 퇴행성 신경질환 치료용 약학적 조성물
WO2021141426A1 (ko) 리수리드 화합물을 유효성분으로 포함하는 취약 x 증후군 또는 관련 발달 장애 치료용 조성물
WO2022145711A1 (ko) 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 대사질환 예방 또는 치료용 조성물
WO2022030976A1 (ko) 트리아졸 유도체를 유효성분으로 포함하는 간 섬유증의 예방 또는 치료용 조성물
WO2023171982A1 (ko) Shlp2를 유효성분으로 포함하는 비만, 당뇨 또는 nash 예방 또는 치료용 조성물
WO2023195798A1 (ko) 타우로데옥시콜린산 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 폐섬유증 예방 또는 치료용 조성물
WO2023177128A1 (ko) Alox5 억제제를 포함하는 근감소증 예방 또는 치료용 조성물
WO2022255553A1 (ko) 락토바실러스 파라카세이 유래 세포외소포를 포함하는 안질환 예방 또는 치료용 조성물
WO2023059040A1 (ko) Cdk 억제제 및 id2 활성화제를 포함하는 방광암의 예방 또는 치료용 약학 조성물