WO2024085011A1 - ウォーキングスピードコントロールシステム及びプログラム - Google Patents

ウォーキングスピードコントロールシステム及びプログラム Download PDF

Info

Publication number
WO2024085011A1
WO2024085011A1 PCT/JP2023/036634 JP2023036634W WO2024085011A1 WO 2024085011 A1 WO2024085011 A1 WO 2024085011A1 JP 2023036634 W JP2023036634 W JP 2023036634W WO 2024085011 A1 WO2024085011 A1 WO 2024085011A1
Authority
WO
WIPO (PCT)
Prior art keywords
music
control system
unit
tempo
walking speed
Prior art date
Application number
PCT/JP2023/036634
Other languages
English (en)
French (fr)
Inventor
正義 孫
Original Assignee
ソフトバンクグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022176626A external-priority patent/JP2024059050A/ja
Application filed by ソフトバンクグループ株式会社 filed Critical ソフトバンクグループ株式会社
Publication of WO2024085011A1 publication Critical patent/WO2024085011A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/40Control within particular dimensions
    • G05D1/43Control of position or course in two dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • This disclosure relates to a walking speed control system and program.
  • the average walking speed of workers varies depending on the work base (including country and region), the company located at the work base, the warehouse or other facility, the floor of the facility, and even the working time (date and time) (collectively referred to as the work environment below).
  • JP 2019-093506 A describes posture control of a humanoid robot to perform tasks automatically on a factory production line.
  • the present disclosure has been made in consideration of the above circumstances, and aims to provide a walking speed control system and program that can synchronize the overall movement within a work environment that includes at least a robot with pre-programmed task execution information, and suppress confusion in the overall movement.
  • the walking speed control system disclosed herein is a walking speed control system for use when a work staff, consisting of a mixture of human workers and robots, moves within a specified area to perform work, and is characterized by having a detection unit that detects the human workers, a calculation unit that calculates the movement speeds of the multiple human workers detected by the detection unit, and a setting unit that sets the movement speed in synchronization with the average movement speed calculated by the calculation unit.
  • the present disclosure is characterized by further having a speaker installed in the specified area and a control unit that outputs music from the speaker based on music information played at a predetermined rhythm.
  • control unit outputs music based on the music information at a speed faster than the normal speed.
  • rhythms of human workers are synchronized, the overall movement speed of human workers can be increased, improving efficiency.
  • the rate of increase in speed can be increased even more than when there is a mixture of robots and human workers.
  • interference between the robots can be avoided by making them move according to the same rhythm.
  • the program disclosed herein is characterized by causing a computer to function as the detection unit, calculation unit, and setting unit of the walking speed control system described above.
  • the walking speed control system is a walking speed control system that controls the movement speeds of at least a plurality of robots when the robots move within a specified area to perform tasks, and includes a synchronization control unit that has a sound collection device for collecting music information, and moves the robots at a first movement speed synchronized with the tempo and rhythm of the music information collected by the sound collection device, and an adjustment unit that, when a human worker performing the task is detected within the specified area, calculates a second movement speed of the human worker that moves in sync with the music information, and adjusts the first movement speed for synchronization between the plurality of robots in the synchronization control unit based on the calculated second movement speed.
  • multiple robots are synchronized to the music information played within a specified area (floor, etc.), but when a human worker enters, the multiple robots move at the same speed as the human worker who is synchronized to the music.
  • the music information is characterized in that it is output at a tempo that is faster than the normal tempo set in the underlying music piece.
  • the tempo of the music information is increased, for example by 1.2 times. If the tempo and rhythm of the human workers match, the overall movement speed of the human workers can be increased, improving efficiency.
  • the synchronization control unit adjusts the period of the first movement speed when the multiple robots move synchronously to be 1/integer of the period of the second movement speed.
  • Robots can move at high speeds between each other, and even when they coexist with human workers, as long as their tempo cycles match, there will be little interference even if, for example, the robot's movement speed (working speed) is 10:1 compared to the human's movement speed (working speed).
  • the rate of increase in speed can be increased even more than when there is a mixture of robots and human workers.
  • interference between the robots can be avoided by making them move at the same tempo and rhythm.
  • the program disclosed herein is characterized by causing a computer to function as a synchronization control unit and adjustment unit of the walking speed control system described above.
  • the walking speed control system is a walking speed control system for use when a work staff, including a mixture of human workers and robots, moves within a specified area to perform work, and is characterized by having at least one robot each equipped with a detection unit that detects the human workers, a calculation unit that calculates the average value of the movement speeds of the multiple human workers detected by the detection unit, and a setting unit that sets the movement speed when moving the robot itself in synchronization with the average movement speed calculated by the calculation unit, a speaker installed in the specified area, a music control unit that outputs music with a constant rhythm at a preset tempo from the speaker, and a timing providing unit that provides timing to the human worker by flashing or vibrating at the same tempo as the tempo of the music output from the speaker.
  • the timing providing unit may be a light-emitting device that provides visual timing to the human worker by flashing at the same tempo as the tempo of the music output from the speaker.
  • the timing providing unit may be a vibration device that provides tactile timing to the human worker by vibrating at the same tempo as the tempo of the music output from the speaker.
  • the present disclosure may further include an operation control unit that detects the hearing of each of the human workers and provides timing from the timing providing unit only to human workers whose detected hearing is equal to or lower than a preset value.
  • the system may further include a photographing unit that photographs an image including the plurality of human workers, and the operation control unit may sequentially output from the speaker a voice that calls the name of the human worker by gradually increasing the volume of the voice output, and detect the hearing ability of the human worker based on which voice output the human worker responds to when the name is called.
  • the program disclosed herein is characterized by causing a computer to function as a detection unit, a calculation unit, a setting unit, a music control unit, and a timing providing unit of the walking speed control system described above.
  • FIG. 1 is a plan view of a warehouse floor where pinking work according to a first embodiment is carried out.
  • FIG. 1 is a front view of a humanoid robot according to a first embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a humanoid robot.
  • FIG. 1 is a flowchart showing a task execution control routine on the humanoid robot side when a human worker and a humanoid robot are mixed, which is executed in the walking speed control system according to the first embodiment (first stage synchronized).
  • FIG. 11 is a flowchart showing a control routine on the management control device side when human workers and humanoid robots are mixed, which is executed in the walking speed control system according to the first embodiment (second stage synchronized).
  • FIG. 1 is a plan view of a warehouse floor where pinking work according to a first embodiment is carried out.
  • FIG. 1 is a front view of a humanoid robot according to a first embodiment.
  • FIG. 11 is a flowchart showing a control routine on the management control device side when human workers and humanoid robots are mixed, which is executed in the walking speed control system according to the first embodiment (third stage synchronized).
  • FIG. 11 is a plan view of a warehouse floor where pinking work is carried out in accordance with a second embodiment.
  • 10 is a flowchart showing a control routine executed by a management control device according to a second embodiment
  • 13 is a flowchart showing a task execution control routine executed by a humanoid robot according to a second embodiment.
  • 13 is a flowchart showing a task performance control routine on the humanoid robot side, which is executed in the walking speed control system according to the third embodiment.
  • FIG. 13 is a flowchart showing a control routine on the management control device side, which is executed in the walking speed control system according to the third embodiment.
  • 13 is a flowchart showing a modified example of the control routine on the management control device side, which is executed in the walking speed control system according to the third embodiment.
  • 13 is a flowchart showing a control routine executed by a management control device according to a fourth embodiment.
  • 13 is a flowchart showing a task execution control routine executed by a humanoid robot according to a fourth embodiment.
  • FIG. 13 is a plan view of a warehouse floor where picking operations are performed in accordance with a fifth embodiment.
  • FIG. 1 shows a human worker wearing a smartwatch.
  • FIG. 2 is a diagram for explaining a detailed configuration of a smart watch.
  • FIG. 1 is a diagram illustrating an example of computer hardware that functions as an information processing device for the humanoid robot according to the first to fifth embodiments.
  • FIG. 13 is an example according to the second and fourth embodiments, showing a flow diagram when a plurality of application actions are synchronized.
  • FIG. 1 is a plan view of a warehouse floor 50 on which pinking work according to a first embodiment is carried out.
  • Pinking is the job of collecting (picking up) the necessary items.
  • Picking staff including human workers 52 and humanoid robots 1
  • the floor 50 shown in FIG. 1 has multiple shelves 54 installed, and between each shelf 54 and between the floor 50 and the shelves 54, there are passageways 56 for picking staff to move around.
  • the picking staff working on floor 50 is a mixture of human workers 52 and humanoid robots 1.
  • the work of the picking staff (movement within floor 50) is managed by a management control device 58 that manages floor 50.
  • the management control device 58 functions as the control unit of this disclosure.
  • the management control device 58 includes a microcomputer 60.
  • the microcomputer 60 is composed of a CPU (Central Processing Unit) 60A, a RAM (Random Access Memory) 60B, a ROM (Read Only Memory) 60C, an input/output unit (I/O) 60D, and a bus 60E such as a data bus or a control bus that connects these.
  • a recording medium 62 is connected to the I/O 60D.
  • a human worker transceiver 66 that transmits and receives work information to and from a mobile terminal 64 carried by the human worker 52
  • a robot transceiver 68 that transmits and receives motion control information, including work information, to and from the control system of the humanoid robot 1.
  • a speaker 70 is connected to the I/O 60D (details will be described later).
  • the human worker 52 receives list and order information on a mobile terminal 64 from the management control device 58 that manages the floor 50, and moves along the moving corridor 56 in accordance with the received information to pick up the desired item.
  • the humanoid robot 1 also receives information from the list or order form via a control system installed in the humanoid robot 1, and moves along the movement path 56 according to the received information to pick up the desired item.
  • the humanoid robot 1 As shown in FIG. 2 , the humanoid robot 1 includes an upper body 2, legs 3, and a connecting portion 4 that rotatably connects the upper body 2 to the legs 3, and is programmed to perform a pinking task on a floor 50.
  • the upper body 2 has two arms 5 and 6.
  • the arms 5 and 6 are attached to the left and right of the upper body 2 so that they can rotate freely.
  • a gripping portion (not shown) for grasping an object is attached to the tip of the arms 5 and 6.
  • the number of arms is not limited to two, and may be one or three or more.
  • the leg 3 has two wheels 7 and 8 attached to its bottom, allowing it to move across the floor on which the humanoid robot 1 is placed.
  • the connecting part 4 rotatably connects the upper body part 2 and the legs 3. This allows the upper body part 2 to lean forward and backward relative to the legs 3.
  • the connecting part 4 has a function that allows the distance between the upper body part 2 and the legs 3 to be changed, as shown in FIG. 2. Therefore, the vertical position of the upper body part 2 relative to the legs 3 can be adjusted, as shown by arrow A, to match the height of the workbench on the production line.
  • the humanoid robot 1 is controlled by a control system 10 implemented within the humanoid robot 1.
  • (General configuration of humanoid robot 1) 3 is a schematic diagram of an example of a control system for the humanoid robot 1.
  • the control system 10 includes a sensor 12 mounted on the humanoid robot 1 and an information processing device 14.
  • the sensor 12 functions as a detection unit of the present disclosure and detects the human worker 52.
  • the sensor 12 also sequentially acquires information indicating at least the distance and angle between the object on which the humanoid robot 1 is working and the arms 5, 6, which are located in the vicinity of the humanoid robot 1.
  • the sensor 12 may be a high-performance camera, a solid-state LiDAR, a multi-color laser coaxial displacement meter, or a variety of other sensors.
  • the sensor 12 include a vibration meter, a thermo camera, a hardness meter, a radar, a LiDAR, a high-pixel, telephoto, ultra-wide-angle, 360-degree, high-performance camera, vision recognition, fine sound, ultrasound, vibration, infrared, ultraviolet, electromagnetic waves, temperature, humidity, spot AI weather forecast, high-precision multi-channel GPS, low-altitude satellite information, or long-tail incident AI data.
  • the sensor 12 detects images, distance, vibration, heat, smell, color, sound, ultrasound, ultraviolet light, or infrared light.
  • Other information detected by the sensor 12 includes the movement of the center of gravity of the humanoid robot 1, the material of the floor on which the humanoid robot 1 is placed, the outside air temperature, the outside air humidity, the up/down/side/diagonal inclination angle of the floor, the amount of moisture, etc.
  • the sensor 12 performs these detections, for example, every nanosecond.
  • the information processing device 14 includes an information acquisition unit 140, a control unit 142, and an information storage unit 144.
  • the information acquisition unit 140 functions as the calculation unit and setting unit of the present disclosure.
  • the information acquisition unit 140 acquires information about the object detected by the sensor 12.
  • the control unit 142 uses the information acquired by the information acquisition unit 140 and AI (artificial intelligence) to control the rotational movement of the connecting unit 4, the vertical movement, and the movement of the arms 5 and 6.
  • AI artificial intelligence
  • control unit 142 executes the following processes:
  • the connecting part 4 is driven to tilt the upper body part 2 forward or backward so that an object on the floor can be picked up.
  • the upper body 2 is driven up and down relative to the legs 3 to match the height of the workbench on the production line.
  • the humanoid robot 1 automatically measures the average walking speed of the human workers 52 in the same work environment using a group of sensors such as LiDAR and cameras.
  • the humanoid robot 1 moves at a speed equivalent to this measured walking speed.
  • a speaker 70 is installed on the floor 50.
  • the speaker 70 is controlled by the management control device 58 and plays a rhythm that can be heard by both the human worker 52 and the humanoid robot 1 at the same time (for example, a marching order song such as "The Nutcracker").
  • the second stage synchronized control using music (rhythm) emitted from the speaker 70 is realized, then, for example, by playing music at 1.2 times the walking speed A of the human worker 52 (A x 1.2), the overall flow of movement will be synchronized with a good rhythm at 1.2 times the speed, with fewer accidents (e.g., contact or collision) (third stage synchronized control).
  • a unified floor can be realized where workers work, for example, at 10 times the speed while playing a marching order song in perfect synchronization, which is safe and has the benefit of a 10-fold cost reduction or cost savings in relation to the subscription fee.
  • FIG. 4 is a flowchart showing the task execution control routine for the humanoid robot when a human worker and a humanoid robot are mixed, which is executed by the walking speed control system according to the first embodiment (first stage synchronization).
  • step 100 the work command is received, and then the process proceeds to step 102 to begin moving to the destination.
  • step 104 it is determined whether a human worker 52 has been detected during movement, and if a positive determination is made, the process proceeds to step 106, where the walking speed of the human worker 52 is calculated, as well as the average walking speed of the multiple detected human workers 52, and then the process proceeds to step 108.
  • step 108 the humanoid robot 1 is controlled to move at a speed synchronized with the average walking speed, and the process proceeds to step 110. Also, if the determination in step 104 is negative, the process proceeds to step 110.
  • step 110 it is determined whether the destination has been reached, and if the determination is negative, the process returns to step 104 and the above process is repeated. If the determination is positive in step 110, the routine ends.
  • FIG. 5 is a flowchart showing the control routine on the management control device side when human workers and humanoid robots are mixed, which is executed in the walking speed control system according to the first embodiment (second stage synchronization).
  • step 112 it is determined whether work has started, and step 112 is repeated until a positive determination is made.
  • step 112 determines whether the rhythm (music) is audibly produced from the speaker 70.
  • the tempo at this time is normal speed (1x speed).
  • step 118 it is determined whether the work has been completed, and this step 118 is repeated until a positive determination is made. If a positive determination is made in step 118, the process proceeds to step 120, where the output of the rhythm (music) is stopped, and this routine ends.
  • the human worker 52 will begin to walk in time with this rhythm (music), and will move at a constant rhythm.
  • the humanoid robot 1 will move in sync with the movements of the human worker 52, resulting in a more harmonious movement overall, and interference (contact, collision) will be avoided more than if the robot moved randomly.
  • FIG. 6 is a flowchart showing the control routine on the management control device side when human workers and humanoid robots are mixed, which is executed in the walking speed control system according to the first embodiment (third stage synchronization).
  • step 122 it is determined whether work has started, and step 122 is repeated until a positive determination is made.
  • step 122 If the determination in step 122 is affirmative, the process proceeds to step 124, where pre-stored rhythm (music) information is read (for example, a piece of music such as "The Nutcracker"), and the process proceeds to step 126.
  • step 1208 output begins with the read rhythm (music) and tempo.
  • step 130 it is determined whether the work has been completed, and this step 130 is repeated until a positive determination is made. If a positive determination is made in step 130, the process proceeds to step 132, where the output of the rhythm (music) is stopped, and this routine ends.
  • the humanoid robot 1 moves in sync with the movements of the human worker 52, resulting in a more harmonious movement overall, and interference (contact, collision) will be avoided more than if it were to move randomly.
  • Second Embodiment 7 is a plan view of a floor 50 of a warehouse where pinking work according to the second embodiment is carried out. Note that the same components as those in the first embodiment are given the same reference numerals, and the description of the components will be omitted.
  • the picking staff working on the floor 50 are humanoid robots 1, and the human workers 52 (see FIG. 1) described in the first embodiment do not exist.
  • the passageway 56 in the work environment of the floor 50 can be said to be a lane exclusively for robots.
  • the speed of flow can be made faster as long as it is within the scope of the lane exclusively for robots, because the management control device 58 can centrally control all picking staff.
  • the management control device 58 keeps track of the movement trajectories of all humanoid robots 1 on the time axis. Then, the overall movement speed of the humanoid robots 1 is perfectly synchronized with the movement speed of the human workers at n times (n>1).
  • the n value can be set to, for example, 10 to 20 times faster than the movement speed of a human worker, or even faster, and problems other than mutual contact or collisions (such as the balance when transporting picked items) can be taken into consideration.
  • FIG. 8A is a flowchart showing a work command control routine executed by the management control device 58 in the second embodiment.
  • step 134 the type of humanoid robot 1 on the floor 50 is confirmed, then the process proceeds to step 136, where the movement pattern of each humanoid robot 1 is calculated, and the process proceeds to step 138.
  • step 138 pre-stored rhythm (music) information is read (for example, a piece of music such as "The Nutcracker"), and the process proceeds to step 140.
  • music for example, a piece of music such as "The Nutcracker
  • step 142 a work command is output to each robot, and then the process proceeds to step 144, where rhythm (music) is output from the speaker 70 at a tempo based on the speed multiplier value n, and this routine ends.
  • FIG. 8B is a flowchart showing a task execution control routine executed by the humanoid robot 1 according to the second embodiment.
  • step 146 When a work command is received in step 146, the process moves to step 148, where a rhythm (music) is received (e.g., collected by a microphone, etc.), and then the process moves to step 150, where the robot moves at a tempo (speed value n) based on the received rhythm and performs the pinking work.
  • a rhythm music
  • step 150 the robot moves at a tempo (speed value n) based on the received rhythm and performs the pinking work.
  • step 152 it is determined whether the work has been completed. If the determination is negative, the process returns to step 150. If the determination is positive, the process proceeds to step 154.
  • step 154 it is determined whether or not to continue the work, and if the determination is negative, the process returns to step 146 and the above process is repeated. If the determination is positive in step 154, the routine ends.
  • the operation of the third embodiment will be described below with reference to the flowcharts of Figures 9 to 11.
  • the configuration of the walking speed control system according to the third embodiment is similar to the configuration of the walking speed control system according to the above-mentioned first embodiment (see Figure 1).
  • FIG. 9 is a flowchart showing a task execution control routine for a humanoid robot executed by a walking speed control system according to the third embodiment.
  • step 200 music is input from the speaker 70 to the floor 50, then the process moves to step 202, communication is performed between the humanoid robots 1, a movement speed (first movement speed) is set, and the process moves to step 204.
  • step 204 the work command is received, and then the process proceeds to step 206 to begin moving to the destination.
  • step 208 it is determined whether a human worker 52 has been detected during movement, and if a positive determination is made, the process proceeds to step 210, where the walking speed of the human worker 52 is calculated, and the average walking speed (second movement speed) of the multiple detected human workers 52 is calculated, and the process proceeds to step 212.
  • step 212 the humanoid robot 1 is controlled to move at a speed synchronized with the average walking speed, and the process proceeds to step 214. Also, if the determination in step 208 is negative, the process proceeds to step 214.
  • synchronization can be broadly divided into the following two types:
  • step 214 it is determined whether the destination has been reached, and if the determination is negative, the process returns to step 208 and the above process is repeated. If the determination is positive in step 214, the routine ends.
  • FIG. 10 is a flowchart showing the control routine on the management control device side executed in the walking speed control system according to the third embodiment.
  • step 216 it is determined whether work has started, and step 216 is repeated until a positive determination is made.
  • step 216 If the determination in step 216 is affirmative, the process proceeds to step 218, where pre-stored tempo and rhythm (music) information is read (for example, a piece of music such as "The Nutcracker"), and the process proceeds to step 220.
  • pre-stored tempo and rhythm (music) information is read (for example, a piece of music such as "The Nutcracker"), and the process proceeds to step 220.
  • step 220 output of the read tempo and rhythm (music) is started. In other words, the tempo and rhythm (music) are vocalized from the speaker 70.
  • the tempo at this time is normal speed (1x speed).
  • step 222 it is determined whether the work has been completed, and this step 222 is repeated until a positive determination is made. If a positive determination is made in step 222, the process proceeds to step 224, where the output of tempo and rhythm (music) is stopped, and this routine ends.
  • the human worker 52 will walk in sync with this tempo and rhythm (music), and will move at a constant tempo and rhythm.
  • the humanoid robot 1 will move in sync with the movements of the human worker 52, resulting in a more harmonious movement overall, and interference (contact, collision) will be avoided more than if the human robot 1 moved randomly.
  • FIG. 11 is a flowchart showing a modified example of the control routine on the management control device side executed in the walking speed control system according to the third embodiment.
  • step 226 it is determined whether work has started, and step 226 is repeated until a positive determination is made.
  • step 226 If the determination in step 226 is affirmative, the process proceeds to step 228, where pre-stored tempo and rhythm (music) information is read (for example, a piece of music such as "The Nutcracker"), and the process proceeds to step 230.
  • pre-stored tempo and rhythm (music) information is read (for example, a piece of music such as "The Nutcracker"), and the process proceeds to step 230.
  • step 232 output of the read tempo and rhythm (music) and tempo is started.
  • step 234 it is determined whether the work has been completed, and this step 234 is repeated until a positive determination is made. If a positive determination is made in step 234, the process proceeds to step 236, where the output of tempo and rhythm (music) is stopped, and this routine ends.
  • the picking staff consists of only humanoid robots 1, and human workers 52 (see Figure 1) are added to the picking staff, and the human workers 52 and humanoid robots 1 coexist
  • the music with a specified tempo and rhythm played from the speakers 70 causes the human workers 52 to synchronize with the music, and by synchronizing with the humanoid robots 1, the movement of the entire floor 50 becomes harmonious, and interference (contact, collision) is avoided more than in the case of random movement.
  • FIG. 12A is a flowchart showing a work command control routine executed by the management control device 58 in the fourth embodiment.
  • step 238 the type of humanoid robot 1 on the floor 50 is confirmed, and then in step 240, a work command is output to each robot, and the process proceeds to step 242.
  • step 242 the movement pattern of each humanoid robot 1 is calculated, and the process proceeds to step 244.
  • step 244 pre-stored tempo and rhythm (music) information is read (for example, a piece of music such as "The Nutcracker"), and the process proceeds to step 246.
  • tempo and rhythm (music) information for example, a piece of music such as "The Nutcracker"
  • step 252 the tempo and rhythm (music) are output from the speaker 70 at a tempo based on the speed multiplier value n, and the process proceeds to step 254.
  • step 254 it is determined whether the work has been completed, and if the determination is negative, the process returns to step 246 and the above process is repeated. If the determination is positive in step 254, the routine ends.
  • FIG. 12B is a flowchart showing a task execution control routine executed by the humanoid robot 1 according to the fourth embodiment.
  • step 256 When a work command is received in step 256, the process proceeds to step 258, where the tempo and rhythm (music) are received (for example, collected by a sound collection device such as a microphone), and then the process proceeds to step 260, where the robot moves at a tempo (speed value n) based on the received music and performs the picking work.
  • the tempo and rhythm music
  • the robot moves at a tempo (speed value n) based on the received music and performs the picking work.
  • step 262 it is determined whether a human worker 52 has been detected, and if the determination is affirmative, the process proceeds to step 264, where the walking speed of the intermediate worker 52 is calculated, and the average walking speed (second moving speed) of the multiple detected human workers 52 is calculated, and the process proceeds to step 266.
  • step 266 the humanoid robot 1 is controlled to move at a speed synchronized with the average walking speed, and the process proceeds to step 268. If the result of step 262 is negative, the process proceeds to step 268.
  • synchronization can be broadly divided into the following two types:
  • step 268 it is determined whether the work has been completed, and if the determination is negative, the process returns to step 260, and if the determination is positive, the process proceeds to step 270.
  • step 270 it is determined whether or not to continue the work, and if the determination is negative, the process returns to step 256 and the above process is repeated. If the determination is positive in step 270, the routine ends.
  • FIG. 13 is a plan view of a floor 50 of a warehouse where a picking operation according to the fifth embodiment is carried out.
  • This embodiment differs from the first embodiment shown in FIG. 1 in that multiple LED lights 100 are arranged on the shelf 54. Also, this embodiment differs from the first embodiment shown in FIG. 1 in that some of the human workers 52 are wearing smart watches 80 on their wrists. Furthermore, this embodiment differs from the first embodiment in that the management control device 58 is equipped with a timing signal transmission unit 69. And, this embodiment of the management control device 58 is connected to a camera 90 via an I/O 60D. In FIG. 13, this camera 90 is shown positioned so that it can capture the state of the warehouse floor 50 where the picking work is performed from the side, but in reality, it is installed so that it can capture the state of the entire floor 50.
  • the timing signal transmission unit 69 also transmits a timing signal to the smart watch 80 worn by the human worker 52 via a wireless communication line such as Wi-Fi (registered trademark) or Bluetooth (registered trademark).
  • This timing signal is a signal indicating a tempo or timing synchronized with the tempo of the music being output from the speaker 70.
  • the smart watch 80 then vibrates based on the timing signal transmitted from the timing signal transmission unit 69, and provides timing by transmitting the vibrations to the human worker 52.
  • FIG 14 shows a human worker 52 wearing a smartwatch 80.
  • the smartwatch 80 worn on the arm of the human worker 52 is shown vibrating.
  • the smartwatch 80 vibrates in synchronization with the transmitted timing signal, and therefore vibrates at a timing synchronized with the tempo of the music being output from the speaker 70. Therefore, even if the human worker 52 wearing the smartwatch 80 has poor hearing and cannot hear the music being output from the speaker 70, by performing an action synchronized with the vibration of the smartwatch 80, the human worker 52 can perform an action synchronized with the music being output from the speaker 70.
  • the smart watch 80 includes a timing signal receiving unit 81, a control unit 82, and a vibrator 83.
  • the timing signal receiving unit 81 receives the timing signal transmitted from the timing signal transmitting unit 69.
  • the control unit 82 vibrates the vibrator 83 based on the timing indicated by the timing signal received by the timing signal receiving unit 81.
  • the management control device 58 outputs music with a constant rhythm at a preset tempo from the speaker 70, thereby synchronizing the actions of the multiple human workers 52 with the same rhythm. However, if some of the multiple human workers 52 have poorer hearing than the other human workers 52, they will not be able to hear the music output from the speaker 70, and will not be able to perform actions in sync with the tempo of the music.
  • the LED lighting 100 provides visual tempo or timing. Furthermore, in this embodiment, the human worker 52 also provides tactile tempo or timing through the smart watch 80 worn on his or her wrist.
  • the LED lighting 100 and smart watch 80 function as a timing providing unit that provides tempo or timing to the human worker 52 by flashing or vibrating at the same tempo as the tempo of the music output from the speaker 70.
  • the LED lighting 100 functions as a light-emitting device that provides visual timing to the human worker 52 by flashing at the same tempo as the music coming from the speaker 70.
  • the smartwatch 80 also functions as a vibration device that provides tactile timing to the human worker 52 by vibrating at the same tempo as the music coming from the speaker 70.
  • a device capable of displaying some kind of information to the human worker 52 such as smart glasses, it is possible to provide visual timing to the human worker 52 wearing the smart glasses. Furthermore, even if it is a device other than a smart watch 80, it is also possible to provide tactile tempo to the human worker 52 by using a device such as a smartphone that has some kind of vibration function.
  • the management control device 58 may detect the hearing of each of the multiple human workers 52, and provide timing via the smart watch 80 only to human workers 52 whose detected hearing is at or below a preset value.
  • the management control device 58 functions as an operation control unit for performing such control.
  • the camera 90 captures video images that include multiple human workers 52 working on the floor 50.
  • the management control device 58 which functions as an operation control unit, then outputs audio calling the names of the human workers 52 from the speaker 70 in a step-by-step manner, increasing the audio output.
  • the management control device 58 then refers to the video images captured by the camera 90 and detects the hearing ability of the human worker 52 based on which audio output the human worker 52 reacts to when the name of that human worker 52 is called. In other words, if the name of a certain human worker 52 is called and that human worker 52 reacts by turning around, for example, it is determined that the human worker 52 can hear the audio output at that stage.
  • FIG. 16 shows a schematic diagram of an example of a hardware configuration of a computer 1200 functioning as an information processing device 14.
  • a program installed on the computer 1200 can cause the computer 1200 to function as one or more "parts" of the device according to the first embodiment, or cause the computer 1200 to execute operations or one or more "parts” associated with the device according to this embodiment, and/or cause the computer 1200 to execute a process or steps of the process according to this embodiment.
  • Such a program can be executed by the CPU 1212 to cause the computer 1200 to execute specific operations associated with some or all of the blocks of the flowcharts and block diagrams described in this specification.
  • the computer 1200 includes a CPU 1212, a RAM 1214, and a graphics controller 1216, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes input/output units such as a communication interface 1222, a storage device 1224, a DVD drive, and an IC card drive, which are connected to the host controller 1210 via an input/output controller 1220.
  • the DVD drive may be a DVD-ROM drive, a DVD-RAM drive, etc.
  • the storage device 1224 may be a hard disk drive, a solid state drive, etc.
  • the computer 1200 also includes input/output units such as a ROM 1230 and a keyboard, which are connected to the input/output controller 1220 via an input/output chip 1240.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the graphics controller 1216 acquires image data generated by the CPU 1212 into a frame buffer or the like provided in the RAM 1214 or into itself, and causes the image data to be displayed on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224.
  • the IC card drive reads programs and data from an IC card and/or writes programs and data to an IC card.
  • ROM 1230 stores therein a boot program, etc., executed by computer 1200 upon activation, and/or a program that depends on the hardware of computer 1200.
  • I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.
  • the programs are provided by a computer-readable storage medium such as a DVD-ROM or an IC card.
  • the programs are read from the computer-readable storage medium, installed in storage device 1224, RAM 1214, or ROM 1230, which are also examples of computer-readable storage media, and executed by CPU 1212.
  • the information processing described in these programs is read by computer 1200, and brings about cooperation between the programs and the various types of hardware resources described above.
  • An apparatus or method may be constructed by realizing the operation or processing of information according to the use of computer 1200.
  • CPU 1212 may execute a communication program loaded into RAM 1214 and instruct communication interface 1222 to perform communication processing based on the processing described in the communication program.
  • communication interface 1222 reads transmission data stored in a transmission buffer area provided in RAM 1214, storage device 1224, a DVD-ROM, or a recording medium such as an IC card, and transmits the read transmission data to the network, or writes received data received from the network to a reception buffer area or the like provided on the recording medium.
  • the CPU 1212 may also cause all or a necessary portion of a file or database stored in an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.
  • an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc.
  • CPU 1212 may perform various types of processing on data read from RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the instruction sequence of the program, and write back the results to RAM 1214.
  • CPU 1212 may also search for information in a file, database, etc. in the recording medium.
  • CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.
  • the above-described programs or software modules may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, thereby providing the programs to the computer 1200 via the network.
  • the blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process in which an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and “parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium.
  • the dedicated circuitry may include digital and/or analog hardware circuitry and may include integrated circuits (ICs) and/or discrete circuits.
  • the programmable circuitry may include reconfigurable hardware circuitry including AND, OR, XOR, NAND, NOR, and other logical operations, flip-flops, registers, and memory elements, such as, for example, field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like.
  • FPGAs field programmable gate arrays
  • PLAs programmable logic arrays
  • a computer-readable storage medium may include any tangible device capable of storing instructions that are executed by a suitable device, such that a computer-readable storage medium having instructions stored thereon comprises an article of manufacture that includes instructions that can be executed to create a means for performing the operations specified in the flowchart or block diagram.
  • Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer-readable storage media may include floppy disks, diskettes, hard disks, random access memories (RAMs), read-only memories (ROMs), erasable programmable read-only memories (EPROMs or flash memories), electrically erasable programmable read-only memories (EEPROMs), static random access memories (SRAMs), compact disk read-only memories (CD-ROMs), digital versatile disks (DVDs), Blu-ray disks, memory sticks, integrated circuit cards, and the like.
  • RAMs random access memories
  • ROMs read-only memories
  • EPROMs or flash memories erasable programmable read-only memories
  • EEPROMs electrically erasable programmable read-only memories
  • SRAMs static random access memories
  • CD-ROMs compact disk read-only memories
  • DVDs digital versatile disks
  • Blu-ray disks memory sticks, integrated circuit cards, and the like.
  • the computer readable instructions may include either assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
  • ISA instruction set architecture
  • machine instructions machine-dependent instructions
  • microcode firmware instructions
  • state setting data or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk (registered trademark), JAVA (registered trademark), C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.
  • Computer readable instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus, or to a programmable circuit, either locally or over a local area network (LAN), a wide area network (WAN) such as the Internet, etc., so that the processor or programmable circuit executes the computer readable instructions to generate means for performing the operations specified in the flowcharts or block diagrams.
  • processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc.
  • the information processing device 14 of the humanoid robot 1 functions as each part of the present disclosure, but the management control device 58 may also perform those functions.
  • First, third and fifth embodiments "Work environment in which human workers and humanoid robots coexist"
  • a humanoid robot an example of a smart robot, automatically measures the average walking speed of human workers in the same work environment using a group of sensors such as LiDAR and cameras, and moves the humanoid robot at a speed equivalent to the measured walking speed.
  • a more perfect movement speed would be if both the workers (human workers) and the participating humanoid robots moved at exactly the same speed or close to it, allowing for safer, more efficient, and synchronized movement operations across the entire floor.
  • a rhythm that can be heard simultaneously by both the workers (human workers) and the humanoid robots is played in the work environment, allowing the entire group to synchronize to the same rhythm.
  • rhythmic synchronization can be achieved, for example, by playing music at 1.2 times the walking speed A (A x 1.2), the overall flow of movement will be synchronized with a good rhythm at 1.2 times the normal speed, with fewer accidents (for example, contact or collisions).
  • the whole floor can be unified, playing marching order songs in perfect synchronization, and working at, for example, 10 times the speed can be realized, which is safe and has the benefit of a 10-fold cost reduction or cost savings in relation to the subscription fee.
  • Second and fourth embodiments "Work environment for humanoid robots only"
  • the speed of the flow can be made faster as long as it is within the scope of that lane.
  • the safest and most speed-efficient working environment (for example, an entire floor) is achieved by eliminating the workers (human workers) working on that floor, and perfectly synchronizing all the robots at n times the overall movement speed, allowing for the most efficient movement flow. For example, it is possible to run at 10 to 20 times the movement speed of the workers (human workers), or even faster.
  • FIG. 17 is an example of the second and fourth embodiments, and is a flow diagram showing how multiple application actions are synchronized.
  • running and arm movements can be made 20 times faster, and finger movements can be made 100 times faster. Also, eyes and head movements can be made 1 million times faster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

人型ロボットは、人間ワーカーの歩行速度の平均をセンサ群で自動計測する。計測した歩行速度と同等の速度で、人型ロボットを移動させる。作業環境全体の移動速度がシンクロナイズドできる(第1段階のシンクロ)。スピーカは、人間ワーカーも、人型ロボットも、同時に聞くことの可能なリズムを流す。このリズム感のある音楽をフロアに流すことで、全体が同じリズムでシンクロする(第2段階のシンクロ)。人間ワーカーの歩行速度Aに対して、1.2倍(A×1.2)で音楽を流せば、全体が、1.2倍でリズム良く、かつ事故(例えば、接触や衝突等)が少なく、移動の流れがシンクロできる(第3段階のシンクロ)。

Description

ウォーキングスピードコントロールシステム及びプログラム
 本開示は、ウォーキングスピードコントロールシステム及びプログラムに関する。
 従来、倉庫のピンキング、工場での製造(部品組み立て)、パッキング作業等(以下、ピンキング作業等という)において、各作業員は異なるスピードで作業を行なっている。
 倉庫のピンキング作業等は、国、地域を含む作業拠点、作業拠点に設けられた企業、倉庫等の施設、施設のフロア毎、及び、作業時間帯(日時)毎(以下、総称して作業環境という)でも、作業者の平均ウォーキングスピードは異なる。
 これは、特定のフロアの平均ワーカーの身長や作業時間帯による多忙さが異なることが一因であり、ピンキング作業にかかる平均時間が異なるからである。
 このような作業環境の中に、自動制御されるロボットが導入される場合がある、ロボットは、作業者(人間ワーカー)と混在し、それぞれの役割を果たすために、移動することになる。
 例えば、特開2019-093506号公報には、工場の生産ラインにおいて、作業を自動で行うための人型ロボットの姿勢制御について記載されている。
 しかしながら、同一の作業環境の領域に、人間ワーカーとロボットがミックスされると、人間ワーカーを含み、全体の移動に混乱が生じる。また、人間ワーカーはおらず、ロボットのみ作業環境においても、移動スピートが異なる複数種類のロボットがミックスされた場合にも、全体の移動に混乱が生じる。
 本開示は上記事情に鑑みなされたものであり、少なくとも予め作業遂行情報がプログラムされたロボットを含む作業環境において、作業環境の領域での全体の移動をシンクロさせ、全体の移動の混乱を抑制することができるウォーキングスピードコントロールシステム及びプログラムを得ることを目的とする。
 本開示によるウォーキングスピードコントロールシステムは、人間ワーカーとロボットとが混在する作業スタッフが、所定の領域内で移動して作業を遂行する場合のウォーキングスピードコントロールシステムであって、前記人間ワーカーを検知する検知部と、前記検知部で検知した複数の前記人間ワーカーの移動速度を演算する演算部と、前記演算部で演算した移動速度の平均値に同期させて、移動速度を設定する設定部と、を有することを特徴としている。
 本開示によれば、人間ワーカーの移動速度(平均値)に同期させて、ロボットを移動させることで、人間ワーカーとロボットとの干渉(接触や衝突等)を回避することができる。
 これにより、少なくとも予め作業遂行情報がプログラムされたロボットを含む作業環境において、作業環境の領域での全体の移動をシンクロさせ、全体の移動の混乱を抑制することができる。
 本開示において、前記所定の領域に設置されたスピーカと、予め定めたリズムで演奏される音楽情報に基づいて、前記スピーカから音楽を出力する制御部と、をさらに有することを特徴としている。
 人間ワーカーが、音楽に合わせリズムをとりながら作業を進めることで、所定の領域全体として、一貫性のある動作(移動速度)で作業を進めることができる。
 また、本開示において、前記制御部が、前記音楽情報に基づく音楽の出力を、通常速度よりも速い速度で出力させることを特徴としている。
 人間ワーカー同士のリズムが合えば、全体的に人間ワーカーの移動速度を増速して、効率の向上を図ることができる。
 また、所定の領域内が、ロボットのみである場合は、増速度合いを人間ワーカーとの混在のときよりも、さらに増速することができる。この場合、異なるプログラミングで制御される複数種類のロボットが存在していても、同じリズムに合わせて移動させることで、ロボット間の干渉も回避することができる。
 本開示によるプログラムは、コンピュータを、上記のウォーキングスピードコントロールシステムの検知部、演算部、及び設定部として機能させることを特徴としている。
 本開示によるウォーキングスピードコントロールシステムは、少なくとも複数のロボットが、所定の領域内を移動して作業を遂行するときの、前記複数のロボットの移動速度を制御するウォーキングスピードコントロールシステムであって、前記複数のロボットが各々、音楽情報を集音する集音デバイスを備え、前記集音デバイスで集音した音楽情報のテンポ及びリズムに同期する第1移動速度で移動させる同期制御部と、前記所定の領域内で、前記作業を遂行する人間ワーカーを検知した場合に、前記音楽情報に同調して移動する前記人間ワーカーの第2移動速度を演算し、前記同期制御部で前記複数のロボットの間で同期させるための第1移動速度を、当該演算した前記第2移動速度に基づいて調整する調整部と、を有している。
 本開示によれば、通常は、所定の領域(フロア等)内で流れる音楽情報に対して複数のロボットが同調しているが、人間ワーカーの参入時、複数のロボットは、音楽に同調する人間ワーカーの移動速度に合わせて移動する。
 これにより、少なくとも予め作業遂行情報がプログラムされたロボットを含む作業環境において、作業環境の領域での全体の移動をシンクロさせ、全体の移動の混乱を抑制することができる。
 本開示において、前記音楽情報は、基礎となる楽曲に設定された通常のテンポよりも速いテンポで出力させることを特徴としている。
 作業効率の向上のために、音楽情報を、例えば1.2倍等にテンポアップする。人間ワーカー同士のテンポ及びリズムが合えば、全体的に人間ワーカーの移動速度を増速して、効率の向上を図ることができる。
 本開示において、前記同期制御部が、前記複数のロボットが同期して移動するときの前記第1移動速度の周期が、前記第2移動速度の周期の1/整数となるように調整する。
 ロボット同士の間では高速移動が可能であり、人間ワーカーと共存したときも、テンポの周期が一致していれば、例えば、ロボットの移動速度(作業速度):人間の移動速度(作業速度)=10:1でも干渉が少ない。
 また、所定の領域内が、ロボットのみである場合は、増速度合いを人間ワーカーとの混在のときよりも、さらに増速することができる。この場合、異なるプログラミングで制御される複数種類のロボットが存在していても、同じテンポ及びリズムに合わせて移動させることで、ロボット間の干渉も回避することができる。
 本開示によるプログラムは、コンピュータを、上記のウォーキングスピードコントロールシステムの同期制御部及び調整部として機能させることを特徴としている。
 本開示によるウォーキングスピードコントロールシステムは、人間ワーカーとロボットとが混在する作業スタッフが、所定の領域内で移動して作業を遂行する場合のウォーキングスピードコントロールシステムであって、前記人間ワーカーを検知する検知部と、前記検知部で検知した複数の前記人間ワーカーの移動速度の平均値を演算する演算部と、前記演算部で演算した移動速度の平均値に同期させて、自装置を移動させる際の移動速度を設定する設定部とをそれぞれ備えた少なくとも1体のロボットと、前記所定の領域に設置されたスピーカと、予め設定されたテンポで一定のリズムを有する音楽を前記スピーカから出力する音楽制御部と、前記スピーカから出される音楽のテンポと同じテンポで点滅又は振動することにより前記人間ワーカーにタイミングを提供するタイミング提供部とを有することを特徴としている。
 本開示によれば、人間ワーカーが、音楽に合わせリズムをとりながら作業を進めることで、所定の領域全体として、一貫性のある動作(移動速度)で作業を進めることができるとともに、聴力が他の人間ワーカーよりも低い人間ワーカーであっても、音楽のテンポに合わせた動作を行うことが可能となる。
 また、本開示において、前記タイミング提供部は、前記スピーカから出される音楽のテンポと同じテンポで点滅することにより前記人間ワーカーに視覚的なタイミングを提供する発光装置であってもよい。
 さらに、本開示において、前記タイミング提供部は、前記スピーカから出される音楽のテンポと同じテンポで振動することにより前記人間ワーカーに触覚的なタイミングを提供する振動装置であってもよい。
 また、本開示において、前記人間ワーカーの聴力をそれぞれ検出して、検出された聴力が予め設定された値以下の人間ワーカーに対してのみ前記タイミング提供部によるタイミングの提供を行う動作制御部をさらに備えるようにしてもよい。
 このようにすることにより、聴力が予め設定された値以下の人間ワーカーに対してのみ音楽以外の手段によるテンポを提供することが可能となる。
 また、本開示において、前記複数の人間ワーカーが含まれる画像を撮影する撮影部をさらに有し、前記動作制御部は、前記人間ワーカーの名前を呼ぶ音声を、音声出力を段階的に大きくするようにして前記スピーカから順次出力し、名前を呼んだ人間ワーカーがいずれの音声出力の際に反応するかにより当該人間ワーカーの聴力を検出するようにしてもよい。
 さらに、本開示によるプログラムは、コンピュータを、上記のウォーキングスピードコントロールシステムの検知部、演算部、設定部、音楽制御部、及びタイミング提供部として機能させることを特徴としている。
第1の実施の形態に係るピンキング作業が行われる倉庫のフロアの平面図である。 第1の実施の形態に係る人型ロボットの正面図である。 人型ロボットの機能構成の一例を概略的に示す図である。 第1の実施の形態に係るウォーキングスピードコントロールシステムで実行される人間ワーカーと人型ロボットとの混在時における、人型ロボット側作業遂行制御ルーチンを示すフローチャートである(第1段階のシンクロナイズド)。 第1の実施の形態に係るウォーキングスピードコントロールシステムで実行される人間ワーカーと人型ロボットとの混在時における、管理制御装置側制御ルーチンを示すフローチャートである(第2段階のシンクロナイズド)。 第1の実施の形態に係るウォーキングスピードコントロールシステムで実行される人間ワーカーと人型ロボットとの混在時における、管理制御装置側制御ルーチンを示すフローチャートである(第3段階のシンクロナイズド)。 第2の実施の形態に係るピンキング作業が行われる倉庫のフロアの平面図である。 第2の実施の形態に係る管理制御装置で実行される制御ルーチンを示すフローチャートである。 第2の実施の形態に係る人型ロボットで実行される作業遂行制御ルーチンを示すフローチャートである。 第3の実施の形態に係るウォーキングスピードコントロールシステムで実行される、人型ロボット側作業遂行制御ルーチンを示すフローチャートである。 第3の実施の形態に係るウォーキングスピードコントロールシステムで実行される、管理制御装置側制御ルーチンを示すフローチャートである。 第3の実施の形態に係るウォーキングスピードコントロールシステムで実行される、管理制御装置側制御ルーチンの変形例を示すフローチャートである。 第4の実施の形態に係る管理制御装置で実行される制御ルーチンを示すフローチャートである。 第4の実施の形態に係る人型ロボットで実行される作業遂行制御ルーチンを示すフローチャートである。 第5の実施の形態に係るピッキング作業が行われる倉庫のフロアの平面図である。 スマートウォッチを装着した人間ワーカーの様子を示す図である。 スマートウォッチの詳細な構成を説明するための図である。 第1の実施の形態~第5の実施の形態における人型ロボットの情報処理装置として機能するコンピュータハードウェアの一例を概略的に示す図である。 第2、第4の実施の形態に係る実施例であり、複数のアプリケーション行動をシンクロナイズドさせるときのフロー図である。
 以下、発明の実施の形態を通じて本開示を説明するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 (第1の実施の形態)
 図1は、第1の実施の形態に係るピンキング作業が行われる倉庫のフロア50の平面図である。
 ピンキング作業とは、必要な品物を集める(ピックアップする)仕事のことである。ピッキングスタッフ(人間ワーカー52、人型ロボット1を含む)は、倉庫内の品物を出荷するために欠かせない役割を持つため、あらゆるジャンルの倉庫に配置される。
 例えば、予め指示されたリストや注文書を基に、指定の品物を集め、まとめたものを検品担当者や梱包担当者へと受け流していくのが主な仕事であり、倉庫規模が大きいほど、保管されている品物の種類や数も膨大で、そのため、多数のピッキングスタッフがフロア50内を移動することになる。
 図1に示されるフロア50には、複数の棚54が設置され、各棚54の間、フロア50と棚54との間は、それぞれピッキングスタッフの移動通路56となっている。
 フロア50で作業するピッキングスタッフは、人間ワーカー52と人型ロボット1とが混在している。
 ピッキングスタッフの作業(フロア50内の移動)は、フロア50を管理する管理制御装置58によって管理されている。管理制御装置58は、本開示の制御部として機能する。
 図1に示される如く、管理制御装置58は、マイクロコンピュータ60を備えている。マイクロコンピュータ60は、CPU(Central Processing Unit)60A、RAM(Random Access Memory)60B、ROM(Read Only Memory)60C、入出力部(I/O)60D、及びこれらを接続するデータバスやコントロールバス等のバス60Eで構成されている。I/O60Dには、記録媒体62が接続されている。
 また、I/O60Dには、人間ワーカー52が所持する携帯端末64との間で作業情報を送受信する対人間ワーカー用送受信部66、人型ロボット1の制御系との間で作業情報を含む動作制御情報を送受信する対ロボット用送受信部68とが接続されている。
 さらに、I/O60Dには、スピーカ70が接続されている(詳細後述)。
 人間ワーカー52は、フロア50を管理する管理制御装置58から、リストや注文書の情報を、携帯端末64で受信し、受信した情報に従って、移動通路56を移動し、目的の品物をピックアップする。
 また、人型ロボット1は、リストや注文書の情報を、人型ロボット1に搭載された制御系で受信し、受信した情報に従って、移動通路56を移動し、目的の品物をピックアップする。
 (人型ロボット1)
 図2に示される如く、人型ロボット1は、上半身部2、脚部3、および上半身部2を脚部3に対して回動可能に連結する連結部4を備え、フロア50でピンキング作業を行うようにプログラミングされている。
 上半身部2は2本の腕部5,6を有する。腕部5,6は上半身部2の左右に回動自在に取り付けられている。また、腕部5,6の先端には物体を把持するための把持部(不図示)が取り付けられている。なお、腕部は2本に限定されるものではなく、1本あるいは3本以上であってもよい。
 脚部3は2つの車輪7,8がその下部に取り付けられており、人型ロボット1が配置される床の上を移動可能とされている。
 連結部4は、上半身部2と脚部3を回動可能に連結する。このため、上半身部2は、脚部3に対して前傾および後傾が可能となっている。
 また、連結部4は、図2に示すように上半身部2と脚部3との距離を変更可能な機能を有する。このため、生産ラインにおける作業台の高さに合うように、脚部3に対する上半身部2の上下方向の位置を矢印Aに示すように調整することができる。
 また、本実施形態に係る人型ロボット1は、人型ロボット1内に実装された制御システム10によりその駆動が制御される。
 (人型ロボット1の概略構成)
 図3は、人型ロボット1の制御システムの一例の概略図である。制御システム10は、人型ロボット1に搭載されるセンサ12と、情報処理装置14とを備えている。
 センサ12は、本開示の検知部として機能し、人間ワーカー52を検出する。また、センサ12は、人型ロボット1の周辺にある、人型ロボット1が作業する物体と腕部5,6との距離および角度を少なくとも表す情報を逐次取得する。センサ12としては、最高性能のカメラ、ソリッドステートLiDAR、マルチカラーレーザ同軸変位計、又はその他様々なセンサ群が採用され得る。また他には、センサ12としては、振動計、サーモカメラ、硬度計、レーダー、LiDAR、高画素・望遠・超広角・360度・高性能カメラ、ビジョン認識、微細音、超音波、振動、赤外線、紫外線、電磁波、温度、湿度、スポットAI天気予報、高精度マルチチャネルGPS、低高度衛星情報、又はロングテールインシデントAI data等が挙げられる。
 なお、センサ12は、上記の情報のほかに、画像、距離、振動、熱、匂い、色、音、超音波、紫外線、又は赤外線等を検知する。他にセンサ12が検知する情報としては、人型ロボット1の重心移動、人型ロボット1が設置される床の材質の検知、外気温度の検知、外気湿度の検知、床の上下横斜め傾き角度の検知、水分量の検知等が挙げられる。
 センサ12は、これらの検知を例えばナノ秒毎に実施する。
 情報処理装置14は、情報取得部140と、制御部142と、情報蓄積部144とを備えている。情報取得部140は、本開示の演算部、及び設定部として機能する。
 情報取得部140は、センサ12によって検知された物体の情報を取得する。
 制御部142は、情報取得部140が取得した情報とAI(Artificial intelligence)とを用いて、連結部4の回動動作、上下方向の移動動作および腕部5,6の動作等を制御する。
 例えば、制御部142は、以下の各処理を実行する。
(1)床にある物体を拾い上げることが可能なように連結部4を駆動して、上半身部2を前傾または後傾させる。
(2)物体をつかむことが可能なように腕部5,6および把持部を駆動する。
(3)生産ラインの作業台の高さに合うように、上半身部2を脚部3に対して上下に駆動する。
(4)人型ロボット1の転倒を防ぐために、バランスを取る。
(5)人型ロボット1がカート等を押し進めることができるように、車輪7,8の駆動を制御する。
 ここで、人型ロボット1は、同一の作業環境にいる人間ワーカー52の歩行速度の平均を、LiDARやカメラ等のセンサ群で自動計測する。この計測した歩行速度と同等の速度で、人型ロボット1を移動させる。
 これにより、作業環境に存在する人間ワーカー52及び人型ロボット1を含む全体の移動速度がシンクロナイズドできる(第1段階のシンクロナイズド制御)。
 第1の実施の形態に係るフロア50には、スピーカ70が設置されている。スピーカ70は、管理制御装置58によって制御され、人間ワーカー52も、人型ロボット1も、同時に聞くことの可能なリズム(例えば、「くるみ割り人形」のようなマーチングオーダーソング)を流すようにしている。
 このリズム感のある音楽をフロア50に流すことで、全体が同じリズムでシンクロする(第2段階のシンクロナイズド制御)。
 スピーカ70から発せられる音楽(リズム)による第2段階のシンクロナイズド制御が実現すれば、さらに、例えば、人間ワーカー52の歩行速度Aに対して、1.2倍(A×1.2)で音楽を流せば、全体が、1.2倍でリズム良く、かつ事故(例えば、接触や衝突等)が少なく、移動の流れがシンクロできる(第3段階のシンクロナイズド制御)。
 つまり、そのフロアに異なった人間ワーカー52が様々な移動速度で移動する混乱したフロア50ではなく、全体が統一され、パーフェクトなシンクロでマーチングオーダーソングを聞かせながら、例えば、10倍速で作業するフロアが実現でき、安全で、且つ、そのサブスクリプション代に対して、10倍のコストダウン又は10倍のコスト削減というメリットが得られる。
 以下に第1の実施の形態の作用を、図4~図6のフローチャートに従い説明する。
 図4は、第1の実施の形態に係るウォーキングスピードコントロールシステムで実行される人間ワーカーと人型ロボットとの混在時における、人型ロボット側作業遂行制御ルーチンを示すフローチャートである(第1段階のシンクロナイズド)。
 ステップ100では、作業指令を受信し、次いで、ステップ102へ移行して目的地への移動を開始する。
 次のステップ104では、移動中に人間ワーカー52を検出したか否かを判断し、肯定判定されると、ステップ106へ移行して、人間ワーカー52の歩行速度を演算すると共に、検出した複数の人間ワーカー52の平均歩行速度を演算し、ステップ108へ移行する。
 ステップ108では、平均歩行速度に同期した速度で移動するように、人型ロボット1を制御し、ステップ110へ移行する。また、ステップ104で否定判定された場合は、ステップ110へ移行する。
 ステップ110では、目的地に到達したか否かを判断し、否定判定された場合は、ステップ104へ戻り、上記工程を繰り返す。また、ステップ110で肯定判定された場合は、このルーチンは終了する。
 図5は、第1の実施の形態に係るウォーキングスピードコントロールシステムで実行される人間ワーカーと人型ロボットとの混在時における、管理制御装置側制御ルーチンを示すフローチャートである(第2段階のシンクロナイズド)。
 ステップ112では、作業が開始されたか否かを判断し、肯定判定されるまで、このステップ112を繰り返す。
 ステップ112で肯定判定されると、ステップ114へ移行して、予め記憶されたリズム(音楽)情報を読み出し(例えば、「くるみ割り人形」等の楽曲)、ステップ116へ移行する。ステップ116では、読み出したリズム(音楽)の出力を開始する。すなわち、スピーカ70からリズム(音楽)を発声させる。このときの、テンポは通常速度(1倍速)である。
 次のステップ118では、作業が終了したか否かを判断し、肯定判定されるまで、このステップ118を繰り返す。ステップ118で肯定判定されると、ステップ120へ移行して、リズム(音楽)の出力を停止し、このルーチンは終了する。
 人間ワーカー52はこのリズム(音楽)に合わせて歩行するようになり、一定のリズムでの移動となる。一方、人型ロボット1は、この人間ワーカー52の移動に同期して移動するため、全体として、調和の取れた移動となり、ランダムに移動する場合よりも、干渉(接触、衝突)が回避される。
 図6は、第1の実施の形態に係るウォーキングスピードコントロールシステムで実行される人間ワーカーと人型ロボットとの混在時における、管理制御装置側制御ルーチンを示すフローチャートである(第3段階のシンクロナイズド)。
 ステップ122では、作業が開始されたか否かを判断し、肯定判定されるまで、このステップ122を繰り返す。
 ステップ122で肯定判定されると、ステップ124へ移行して、予め記憶されたリズム(音楽)情報を読み出し(例えば、「くるみ割り人形」等の楽曲)、ステップ126へ移行する。ステップ126では、リズム(音楽)の出力時のテンポを、通常速度よりも速い速度(例えば、倍速n=1.2倍速)とし、ステップ128へ移行する。
 ステップ128では、読み出したリズム(音楽)及びテンポで出力を開始する。すなわち、スピーカ70から通常速度よりも速い速度(例えば、倍速n=1.2倍速)でリズム(音楽)を発声させる。
 次のステップ130では、作業が終了したか否かを判断し、肯定判定されるまで、このステップ130を繰り返す。ステップ130で肯定判定されると、ステップ132へ移行して、リズム(音楽)の出力を停止し、このルーチンは終了する。
 人間ワーカー52はこのリズム(音楽)に合わせて歩行するようになり、一定のリズムでの移動となる。このとき、テンポが通常速度よりも速い(n=1.2)ため、その分、効率が向上することになる。一方、人型ロボット1は、この人間ワーカー52の移動に同期して移動するため、全体として、調和の取れた移動となり、ランダムに移動する場合よりも、干渉(接触、衝突)が回避される。
 (第2の実施の形態)
 図7は、第2の実施の形態に係るピンキング作業が行われる倉庫のフロア50の平面図である。なお、第1の実施の形態と同一構成部分は、同一の符号を付して、構成の説明を省略する。
 図7に示される如く、第2の実施の形態において、フロア50で作業するピッキングスタッフは、人型ロボット1であり、第1の実施の形態で説明した人間ワーカー52(図1参照)は存在しない。
 言い換えれば、当該フロア50の作業環境の移動通路56は、ロボット専用レーンということができる。ロボット専用レーンである移動通路56では、流れのスピードは、そのロボット専用レーンの範疇であれば、管理制御装置58によって、全てのピッキングスタッフを一括制御できるため、より速くすることができる。
 すなわち、管理制御装置58では、全ての人型ロボット1の時間軸上の移動軌跡を把握する。そして、人型ロボット1の全体移動スピードを、人間ワーカーの移動速度のn倍速(n>1)で、人型ロボット1をパーフェクトにシンクロさせる。
 n値は、例えば、人間ワーカーの移動速度の10倍以上~20倍、或いはそれ以上で走らせることも可能であり、相互の接触や衝突以外の不具合(例えば、ピッキングした物品の搬送時のバランス等)を考慮すればよい。
 なお、人型ロボット1をシンクロさせるためには、あえて、フロア50にスピーカ70から、所定のリズム(音楽)を流さなくても、制御プログラムによって実現可能である。しかし、フロア50に、スピーカ70から、所定のリズム(音楽)を流すことで、異なる制御プログラムで動作するロボットや、新たに参入したロボットに対して、管理制御装置58との間でシンクロさせるプログラミングをせず、参入したロボットが独自で、リズムを聞き取り(受信し)、シンクロすることができる。
 図8A及び図8Bのフローチャートに従い、第2の実施の形態の作用を説明する。
 図8Aは、第2の実施の形態に係る管理制御装置58で実行される作業指令制御ルーチンを示すフローチャートである。
 ステップ134では、フロア50内の人型ロボット1の種類の確認し、次いでステップ136へ移行して、各人型ロボット1の移動パターンを演算し、ステップ138へ移行する。
 ステップ138では、予め記憶されたリズム(音楽)情報を読み出し(例えば、「くるみ割り人形」等の楽曲)、ステップ140へ移行する。
 ステップ140では、出力するリズム(音楽)を演奏するテンポとして、演算した移動パターンに最適な倍速値nを設定する。例えば、ロボットのみであれば、n=10~20倍速であっても問題ない。
 次のステップ142では、各ロボットへ作業指令を出力し、次いで、ステップ144へ移行して、倍速値nに基づくテンポで、リズム(音楽)をスピーカ70から出力し、このルーチンは終了する。
 図8Bは、第2の実施の形態に係る人型ロボット1で実行される作業遂行制御ルーチンを示すフローチャートである。
 ステップ146で作業指令を受信すると、ステップ148へ移行して、リズム(音楽)を受信(例えば、マイク等で集音)し、次いで、ステップ150へ移行して、受信したリズムに基づくテンポ(倍速値n)で移動して、ピンキング作業を実行する。
 次のステップ152では、作業が終了したか否かを判断し、否定判定された場合は、ステップ150へ戻り、肯定判定された場合は、ステップ154へ移行する。
 ステップ154では、作業を継続するか否かを判断し、否定判定された場合は、ステップ146へ戻り、上記工程を繰り返す。また、ステップ154で肯定判定された場合は、このルーチンは終了する。
 (第3の実施の形態)
 以下に第3の実施の形態の作用を、図9~図11のフローチャートに従い説明する。第3の実施の形態に係るウォーキングスピードコントロールシステムの構成は、上述の第1の実施の形態に係るウォーキングスピードコントロールシステムの構成(図1参照)と同様である。
 図9は、第3の実施の形態に係るウォーキングスピードコントロールシステムで実行される、人型ロボット側作業遂行制御ルーチンを示すフローチャートである。
 ステップ200では、スピーカ70からフロア50に流れる音楽を取り込み、次いで、ステップ202へ移行して、人型ロボット1同士の間で通信し、移動速度(第1移動速度)を設定し、ステップ204へ移行する。
 ステップ204では、作業指令を受信し、次いで、ステップ206へ移行して目的地への移動を開始する。
 次のステップ208では、移動中に人間ワーカー52を検出したか否かを判断し、肯定判定されると、ステップ210へ移行して、人間ワーカー52の歩行速度を演算すると共に、検出した複数の人間ワーカー52の平均歩行速度(第2移動速度)を演算し、ステップ212へ移行する。
 ステップ212では、平均歩行速度に同期した速度で移動するように、人型ロボット1を制御し、ステップ214へ移行する。また、ステップ208で否定判定された場合は、ステップ214へ移行する。
 ここで、同期の定義は、大きく分けて、以下の2種類に分類される。
 (同期1) リズムが同一、かつ、テンポが同一
 例えば、第1移動速度の周期(テンポ)=第2移動速度の周期(テンポ)となる場合が想定される。
 (同期2) リズムが同一、かつ、テンポが不同一
 例えば、移動速度の周期(テンポ)が、第2移動速度の周期(テンポ)の1/整数となる場合が想定される。
 ステップ214では、目的地に到達したか否かを判断し、否定判定された場合は、ステップ208へ戻り、上記工程を繰り返す。また、ステップ214で肯定判定された場合は、このルーチンは終了する。
 図10は、第3の実施の形態に係るウォーキングスピードコントロールシステムで実行される、管理制御装置側制御ルーチンを示すフローチャートである。
 ステップ216では、作業が開始されたか否かを判断し、肯定判定されるまで、このステップ216を繰り返す。
 ステップ216で肯定判定されると、ステップ218へ移行して、予め記憶されたテンポ及びリズム(音楽)情報を読み出し(例えば、「くるみ割り人形」等の楽曲)、ステップ220へ移行する。ステップ220では、読み出したテンポ及びリズム(音楽)の出力を開始する。すなわち、スピーカ70からテンポ及びリズム(音楽)を発声させる。このときの、テンポは通常速度(1倍速)である。
 次のステップ222では、作業が終了したか否かを判断し、肯定判定されるまで、このステップ222を繰り返す。ステップ222で肯定判定されると、ステップ224へ移行して、テンポ及びリズム(音楽)の出力を停止し、このルーチンは終了する。
 人間ワーカー52はこのテンポ及びリズム(音楽)に合わせて歩行するようになり、一定のテンポ及びリズムでの移動となる。一方、人型ロボット1は、この人間ワーカー52の移動に同期して移動するため、全体として、調和の取れた移動となり、ランダムに移動する場合よりも、干渉(接触、衝突)が回避される。
 図11は、第3の実施の形態に係るウォーキングスピードコントロールシステムで実行される、管理制御装置側制御ルーチンの変形例を示すフローチャートである。
 ステップ226では、作業が開始されたか否かを判断し、肯定判定されるまで、このステップ226を繰り返す。
 ステップ226で肯定判定されると、ステップ228へ移行して、予め記憶されたテンポ及びリズム(音楽)情報を読み出し(例えば、「くるみ割り人形」等の楽曲)、ステップ230へ移行する。ステップ230では、テンポ及びリズム(音楽)の出力時のテンポを、通常速度よりも速い速度(例えば、倍速n=1.2倍速)とし、ステップ232へ移行する。
 ステップ232では、読み出したテンポ及びリズム(音楽)及びテンポで出力を開始する。すなわち、スピーカ70から通常速度よりも速い速度(例えば、倍速n=1.2倍速)でテンポ及びリズム(音楽)を発声させる。
 次のステップ234では、作業が終了したか否かを判断し、肯定判定されるまで、このステップ234を繰り返す。ステップ234で肯定判定されると、ステップ236へ移行して、テンポ及びリズム(音楽)の出力を停止し、このルーチンは終了する。
 人間ワーカー52はこのテンポ及びリズム(音楽)に合わせて歩行するようになり、一定のテンポ及びリズムでの移動となる。このとき、テンポが通常速度よりも速い(n=1.2)ため、その分、効率が向上することになる。一方、人型ロボット1は、この人間ワーカー52の移動に同期して移動するため、全体として、調和の取れた移動となり、ランダムに移動する場合よりも、干渉(接触、衝突)が回避される。
 (第4の実施の形態)
 以下に第4の実施の形態の作用を、図12A及び図12Bのフローチャートに従い説明する。第4の実施の形態に係るウォーキングスピードコントロールシステムの構成は、上述の第2の実施の形態に係るウォーキングスピードコントロールシステムの構成(図7参照)と同様である。
 なお、ピッキングスタッフが人型ロボット1のみの状況から、ピッキングスタッフに人間ワーカー52(図1参照)が加わり、当該人間ワーカー52と人型ロボット1とが混在する状況にあった場合に、スピーカ70から流れる所定のテンポ及びリズムの音楽によって、人間ワーカー52が音楽に合わせて同調し、これに人型ロボット1と同調することで、フロア50全体として、調和の取れた移動となり、ランダムに移動する場合よりも、干渉(接触、衝突)が回避される。
 図12Aは、第4の実施の形態に係る管理制御装置58で実行される作業指令制御ルーチンを示すフローチャートである。
 ステップ238では、フロア50内の人型ロボット1の種類の確認し、次いでステップ240では、各ロボットへ作業指令を出力し、ステップ242へ移行する。ステップ242では、各人型ロボット1の移動パターンを演算し、ステップ244へ移行する。
 ステップ244では、予め記憶されたテンポ及びリズム(音楽)情報を読み出し(例えば、「くるみ割り人形」等の楽曲)、ステップ246へ移行する。
 ステップ246では、人間ワーカー52を検出したか否かを判断し、否定判定された場合は、ステップ248へ移行して、出力するテンポ及びリズム(音楽)を演奏するテンポとして、演算した移動パターンに最適な倍速値nを設定し、ステップ252へ移行する。例えば、ロボットのみであれば、n=10~20倍速であっても問題ない。
 また、ステップ246で肯定判定された場合は、ステップ250へ移行して、出力するテンポ及びリズム(音楽)を演奏するテンポとして、人間ワーカー52に移動に最適な倍速値nを設定し、ステップ252へ移行する。例えば、人間ワーカー52を主体とした場合は、n=1~1.2倍速が好ましい(図10、図11に準ずる)。
 ステップ252では、倍速値nに基づくテンポで、テンポ及びリズム(音楽)をスピーカ70から出力し、ステップ254へ移行する。
 ステップ254では、作業が終了したか否かを判断し、否定判定された場合は、ステップ246へ戻り、上記工程を繰り返す。また、ステップ254で肯定判定された場合は、このルーチンは終了する。
 図12Bは、第4の実施の形態に係る人型ロボット1で実行される作業遂行制御ルーチンを示すフローチャートである。
 ステップ256で作業指令を受信すると、ステップ258へ移行して、テンポ及びリズム(音楽)を受信(例えば、マイク等の集音デバイスで集音)し、次いで、ステップ260へ移行して、受信した音楽に基づくテンポ(倍速値n)で移動して、ピッキング作業を実行する。
 次のステップ262では、人間ワーカー52を検出したか否かを判断し、肯定判定された場合は、ステップ264へ移行して、間ワーカー52の歩行速度を演算すると共に、検出した複数の人間ワーカー52の平均歩行速度(第2移動速度)を演算し、ステップ266へ移行する。
 ステップ266では、平均歩行速度に同期した速度で移動するように、人型ロボット1を制御し、ステップ268へ移行する。また、ステップ262で否定判定された場合は、ステップ268へ移行する。
 ここで、同期の定義は、大きく分けて、以下の2種類に分類される。
 (同期1) リズムが同一、かつ、テンポが同一
 例えば、第1移動速度の周期(テンポ)=第2移動速度の周期(テンポ)となる場合が想定される。
 (同期2) リズムが同一、かつ、テンポが不同一
 例えば、移動速度の周期(テンポ)が、第2移動速度の周期(テンポ)の1/整数となる場合が想定される。
 ステップ268では、作業が終了したか否かを判断し、否定判定された場合は、ステップ260へ戻り、肯定判定された場合は、ステップ270へ移行する。
 ステップ270では、作業を継続するか否かを判断し、否定判定された場合は、ステップ256へ戻り、上記工程を繰り返す。また、ステップ270で肯定判定された場合は、このルーチンは終了する。
 (第5の実施の形態)
 図13は、第5の実施の形態に係るピッキング作業が行われる倉庫のフロア50の平面図である。
 本実施形態では、棚54の上に複数のLED照明100が配置されている点が図1に示した第1の実施形態とは異なっている。また、一部の人間ワーカー52は腕にスマートウォッチ80を装着している点も図1に示した第1の実施形態とは異なっている。さらに、本実施形態における管理制御装置58はタイミング信号送信部69を備えている点も第1の実施形態とは異なっている。そして、本実施形態における管理制御装置58は、I/O60Dを介して、カメラ90に接続されている。このカメラ90は、図13では、ピッキング作業が行われる倉庫のフロア50の様子を側方から撮影するような位置に配置されているように示されているが、実際にはフロア50の全体の様子を撮影可能なように設置されている。
 また、タイミング信号送信部69は、例えば、Wi-Fi(登録商標)、Bluetooth(登録商標)等の無線通信回線を介して、人間ワーカー52が装着しているスマートウォッチ80に対してタイミング信号を送信する。このタイミング信号は、スピーカ70から出力されている音楽のテンポに同期したテンポ又はタイミングを示す信号となっている。そして、スマートウォッチ80は、タイミング信号送信部69から送信されてきたタイミング信号に基づいて振動して、人間ワーカー52に振動を伝えることによりタイミングを提供する。
 スマートウォッチ80を装着した人間ワーカー52の様子を図14に示す。図14を参照すると、人間ワーカー52の腕に装着されたスマートウォッチ80が振動する様子が示されている。そして、このスマートウォッチ80は、送信されてきたタイミング信号と同期して振動することにより、スピーカ70から出力されている音楽のテンポに同期したタイミングで振動を行う。そのため、スマートウォッチ80を装着した人間ワーカー52の聴力が低くスピーカ70から出力されている音楽を聴くことができない場合でも、スマートウォッチ80の振動とシンクロした動作を行うことにより、スピーカ70から出力されている音楽にシンクロした動作を行うことが可能となる。
 このスマートウォッチ80の詳細な構成について図15を参照して説明する。図15に示されるように、スマートウォッチ80は、タイミング信号受信部81と、制御部82と、バイブレータ83とを備えている。
 タイミング信号受信部81は、タイミング信号送信部69から送信されてきたタイミング信号を受信する。制御部82は、タイミング信号受信部81により受信されたタイミング信号が示すタイミングに基づいて、バイブレータ83を振動させる。
 第1の実施形態では、管理制御装置58は、予め設定されたテンポで一定のリズムを有する音楽をスピーカ70から出力することにより、複数の人間ワーカー52の動作を同じリズムでシンクロさせるようにしていた。しかし、複数の人間ワーカー52の内の一部の人間ワーカー52の聴力が他の人間ワーカー52よりも低い場合、スピーカ70から出力される音楽を聞き取ることができず、音楽のテンポと同期した動作が行うことができなくなってしまう。
 そこで、本実施形態では、人間ワーカー52に対して音楽によるテンポ(タイミング)の提供を行うことに加えて、LED照明100による視覚的なテンポ又はタイミングの提供を行う。さらに、本実施形態では、さらに、人間ワーカー52が腕に装着しているスマートウォッチ80による触覚的なテンポ又はタイミングの提供を行う。
 本実施形態では、LED照明100及びスマートウォッチ80は、スピーカ70から出される音楽のテンポと同じテンポで点滅又は振動することにより人間ワーカー52にテンポ又はタイミングを提供するタイミング提供部として機能する。
 具体的には、LED照明100は、スピーカ70から出される音楽のテンポと同じテンポで点滅することにより人間ワーカー52に視覚的なタイミングを提供する発光装置として機能する。
 また、スマートウォッチ80は、スピーカ70から出される音楽のテンポと同じテンポで振動することにより人間ワーカー52に触覚的なタイミングを提供する振動装置として機能する。
 なお、スマートグラスのように人間ワーカー52に何等かの表示を行うことが可能な装置を利用すれば、スマートグラスを装着している人間ワーカー52に対して視覚的なタイミングを提供するようにすることも可能である。さらに、スマートウォッチ80以外の装置であっても何らかの振動機能を備えた例えばスマートフォン等の装置を利用することにより、人間ワーカー52に触覚的なテンポの提供を行うようにすることも可能である。
 さらに、複数の人間ワーカー52の中には聴力に問題が無い者もいれば、聴力が他の人間ワーカー52よりも低い者もいることが考えられる。そのため、全ての人間ワーカー52に音楽以外の手段によるテンポ又はタイミングの提供が必要なわけではない。そこで、管理制御装置58は、複数の人間ワーカー52の聴力をそれぞれ検出して、検出された聴力が予め設定された値以下の人間ワーカー52に対してのみスマートウォッチ80によるタイミングの提供を行うようにしてもよい。管理制御装置58は、このような制御を行うための動作制御部として機能する。
 具体的には、カメラ90により、フロア50で作業している複数の人間ワーカー52が含まれる動画像を撮影する。そして、動作制御部として機能する管理制御装置58は、人間ワーカー52の名前を呼ぶ音声を、音声出力を段階的に大きくするようにしてスピーカ70から順次出力する。そして、管理制御装置58は、カメラ90により撮影された動画像を参照して、名前を呼んだ人間ワーカー52がいずれの音声出力の際に反応するかによりその人間ワーカー52の聴力を検出する。つまり、ある人間ワーカー52の名前を呼んでその人間ワーカー52が、振り向く等の反応をした場合、その人間ワーカー52はその段階での音声出力による音声が聞こえていると判定する。
 そして、聴力が低いと判定された人間ワーカー52が装着しているスマートウォッチ80に対してのみ、タイミング信号送信部69からタイミング信号を送信するようにすることにより、聴力が低い人間ワーカー52のスマートウォッチ80のみを振動させるようにすることが可能となる。
 このように本実施形態によれば、スピーカ70から音楽を出力して、人間ワーカー52の動作が音楽のテンポと同期したものとする場合に、複数の人間ワーカー52の中に聴力が他の人間ワーカー52よりも低い者がいる場合であっても、フロア50において作業している複数の人間ワーカー52の動作がシンクロした作業環境が実現されることになる。
 (人型ロボット1の情報処理装置14の実施態様)
 図16は、情報処理装置14として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、第1の実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、および/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつか又は全てに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、およびグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ、およびICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブは、DVD-ROMドライブおよびDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブおよびソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230およびキーボードのような入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
 CPU1212は、ROM1230およびRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラムおよびデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取り、および/又はプログラムおよびデータをICカードに書き込む。
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、および/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
 プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200および外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
 また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
 本実施形態におけるフローチャートおよびブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表してよい。特定の段階および「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/又はアナログハードウェア回路を含んでよく、集積回路(IC)および/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、およびプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、および他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 なお、本実施の形態(第1の実施の形態~第5の実施の形態)では、人型ロボット1の情報処理装置14が、本開示の各部として機能するようにしたが、管理制御装置58が当該機能を担ってもよい。
 (本開示の概要)
 ・第1、第3、第5の実施の形態「人間ワーカーと人型ロボットとが混在した作業環境」
 スマートロボットの一例である人型ロボットが、同一の作業環境にいる人間ワーカーの歩行速度の平均を、LiDARやカメラ等のセンサ群で自動計測し、この計測した歩行速度と同等の速度で、人型ロボットを移動させる。
 これにより、作業環境に存在する人間ワーカー及び人型ロボットを含む全体の移動速度がシンクロナイズドでできる。
 よりパーフェクトな移動速度は、作業者(人間ワーカー)も参加した人型ロボットも全く同じか、それに近いスピードで移動すれば、より安全で効率のよい、シンクロナイズドされた全体フロアの移動オペレーションができる。
 パーフェクトな移動速度を実現するために、作業者(人間ワーカー)も、人型ロボットも、同時に聞くことの可能なリズム(例えば、「くるみ割り人形」のようなマーチングオーダーソング)を作業環境下で流すことで、全体が同じリズムでシンクロ可能となる。
 リズムのシンクロが実現すれば、さらに、例えば、歩行速度Aに対して1.2倍(A×1.2)で音楽を流せば、全体が、1.2倍でリズム良く、かつ事故(例えば、接触や衝突等)が少なく、移動の流れがシンクロできる。
 つまり、そのフロアに異なった人々が様々なスピードで移動する混乱したフロアではなく、全体が統一され、パーフェクトなシンクロでマーチングオーダーソングを聞かせながら、例えば、10倍速で作業するフロアが実現でき、安全で、且つ、そのサブスクリプション代に対して、10倍のコストダウン又は10倍のコスト削減というメリットが得られる。
 ・第2、第4の実施の形態「人型ロボットのみの作業環境」
 一方、作業環境の中に、ロボット専用レーンができれば、流れのスピードは、そのロボット専用レーンの範疇であれば、より速くすることができる。
 最も作業環境(例えば、フロア全体)を安全、かつスピード効率をよくするのは、当該フロアで働くことができるようにするには、そのフロアで働く作業者(人間ワーカー)をゼロにして、全体移動スピードをn倍速で、全ロボットをパーフェクトにシンクロしてしまえば、最も効率よく移動の流れが可能になる。例えば、作業者(人間ワーカー)の移動速度の10倍以上~20倍、或いはそれ以上で走らせることも可能である。
 営業の時も、早く統一ロボフロアにしようと営業のメリットトークとして使える。
 なお、図17は、第2、第4の実施の形態に係る実施例であり、複数のアプリケーション行動をシンクロナイズドさせるときのフロー図である。
 例えば、20倍速を全フロアのシンクロリズムとした場合を考える。
 この場合、走る動作及び腕の動作は20倍速にでき、指の動作は100倍速にできる。また、目及び頭に関しては、100万倍とすることができる。
 前記フロアをパーフェクトシンクロの音楽(「くるみ割り人形」を20倍速のリズム)で出力すると、衝突、事故が全くない全体無人倉庫オペレーションが行える、Total Logisutics osと、そのアプリケーションが可能となる。
 以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本開示の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 2022年10月17日に出願された日本国特許出願2022-166242号の開示、2022年11月2日に出願された日本国特許出願2022-176626号、及び2022年11月17日に出願された日本国特許出願2022-184307号は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  人間ワーカーとロボットとが混在する作業スタッフが、所定の領域内で移動して作業を遂行する場合のウォーキングスピードコントロールシステムであって、
     前記人間ワーカーを検知する検知部と、
     前記検知部で検知した複数の前記人間ワーカーの移動速度を演算する演算部と、
     前記演算部で演算した移動速度の平均値に同期させて、移動速度を設定する設定部と、を有するウォーキングスピードコントロールシステム。
  2.  前記所定の領域に設置されたスピーカと、
     予め定めたリズムで演奏される音楽情報に基づいて、スピーカから音楽を出力する制御部と、をさらに有する、請求項1記載のウォーキングスピードコントロールシステム。
  3.  前記制御部が、前記音楽情報に基づく音楽の出力を、通常速度よりも速い速度で出力させる、請求項2記載のウォーキングスピードコントロールシステム。
  4.  少なくとも複数のロボットが、所定の領域内を移動して作業を遂行するときの、前記複数のロボットの移動速度を制御するウォーキングスピードコントロールシステムであって、
     前記複数のロボットが各々、音楽情報を集音する集音デバイスを備え、前記集音デバイスで集音した音楽情報のテンポ及びリズムに同期する第1移動速度で移動させる同期制御部と、
     前記所定の領域内で、前記作業を遂行する人間ワーカーを検知した場合に、前記音楽情報に同調して移動する前記人間ワーカーの第2移動速度を演算し、前記同期制御部で前記複数のロボットの間で同期させるための第1移動速度を、当該演算した前記第2移動速度に基づいて調整する調整部と、
    を有するウォーキングスピードコントロールシステム。
  5.  前記音楽情報は、基礎となる楽曲に設定された通常のテンポよりも速いテンポで出力させる、請求項4記載のウォーキングスピードコントロールシステム。
  6.  前記同期制御部が、
     前記複数のロボットが同期して移動するときの前記第1移動速度の周期が、前記第2移動速度の周期の1/整数となるように調整する、請求項4記載のウォーキングスピードコントロールシステム。
  7.  人間ワーカーとロボットとが混在する作業スタッフが、所定の領域内で移動して作業を遂行する場合のウォーキングスピードコントロールシステムであって、
     前記人間ワーカーを検知する検知部と、前記検知部で検知した複数の前記人間ワーカーの移動速度の平均値を演算する演算部と、前記演算部で演算した移動速度の平均値に同期させて、自装置を移動させる際の移動速度を設定する設定部とをそれぞれ備えた少なくとも1体のロボットと、
     前記所定の領域に設置されたスピーカと、
     予め設定されたテンポで一定のリズムを有する音楽を前記スピーカから出力する音楽制御部と、
     前記スピーカから出される音楽のテンポと同じテンポで点滅又は振動することにより前記人間ワーカーにタイミングを提供するタイミング提供部と、
     を有するウォーキングスピードコントロールシステム。
  8.  前記タイミング提供部は、前記スピーカから出される音楽のテンポと同じテンポで点滅することにより前記人間ワーカーに視覚的なタイミングを提供する発光装置である請求項7記載のウォーキングスピードコントロールシステム。
  9.  前記タイミング提供部は、前記スピーカから出される音楽のテンポと同じテンポで振動することにより前記人間ワーカーに触覚的なタイミングを提供する振動装置である請求項7記載のウォーキングスピードコントロールシステム。
  10.  前記人間ワーカーの聴力をそれぞれ検出して、検出された聴力が予め設定された値以下の人間ワーカーに対してのみ前記タイミング提供部によるタイミングの提供を行う動作制御部をさらに備えた請求項7記載のウォーキングスピードコントロールシステム。
  11.  前記複数の人間ワーカーが含まれる画像を撮影する撮影部をさらに有し、
     前記動作制御部は、前記人間ワーカーの名前を呼ぶ音声を、音声出力を段階的に大きくするようにして前記スピーカから順次出力し、名前を呼んだ人間ワーカーがいずれの音声出力の際に反応するかにより当該人間ワーカーの聴力を検出する、請求項10記載のウォーキングスピードコントロールシステム。
  12.  コンピュータを、
     請求項1~請求項3の何れか1項記載のウォーキングスピードコントロールシステムの検知部、演算部、及び設定部として機能させるためのプログラム。
  13.  コンピュータを、
     請求項4~請求項6の何れか1項記載のウォーキングスピードコントロールシステムの同期制御部及び調整部として機能させるためのプログラム。
  14.  コンピュータを、
     請求項7~請求項11の何れか1項記載のウォーキングスピードコントロールシステムの検知部、演算部、設定部、音楽制御部、及びタイミング提供部として機能させるためのプログラム。
PCT/JP2023/036634 2022-10-17 2023-10-06 ウォーキングスピードコントロールシステム及びプログラム WO2024085011A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-166242 2022-10-17
JP2022166242 2022-10-17
JP2022176626A JP2024059050A (ja) 2022-10-17 2022-11-02 ウォーキングスピードコントロールシステム、プログラム
JP2022-176626 2022-11-02
JP2022184307A JP2024059057A (ja) 2022-10-17 2022-11-17 ウォーキングスピードコントロールシステム及びプログラム
JP2022-184307 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024085011A1 true WO2024085011A1 (ja) 2024-04-25

Family

ID=90737423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036634 WO2024085011A1 (ja) 2022-10-17 2023-10-06 ウォーキングスピードコントロールシステム及びプログラム

Country Status (1)

Country Link
WO (1) WO2024085011A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108089A (ja) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd 作業時間測定システム
JP2012111011A (ja) * 2010-11-26 2012-06-14 Advanced Telecommunication Research Institute International 移動ロボット
JP2019079239A (ja) * 2017-10-24 2019-05-23 日本電信電話株式会社 モビリティ装置及びその制限速度を求める方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108089A (ja) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd 作業時間測定システム
JP2012111011A (ja) * 2010-11-26 2012-06-14 Advanced Telecommunication Research Institute International 移動ロボット
JP2019079239A (ja) * 2017-10-24 2019-05-23 日本電信電話株式会社 モビリティ装置及びその制限速度を求める方法

Similar Documents

Publication Publication Date Title
US20180190034A1 (en) Tactile Interaction in Virtual Environments
CN106346487B (zh) 交互式vr沙盘展示机器人
US20170189803A1 (en) Task-oriented feedback using a modular sensing device
US8886829B1 (en) Methods and systems for robot cloud computing using slug trails
CN109863510A (zh) 冗余跟踪系统
Schöllig et al. A platform for dance performances with multiple quadrocopters
JP6392911B2 (ja) 情報処理方法、コンピュータ、および当該情報処理方法をコンピュータに実行させるためのプログラム
JP4239635B2 (ja) ロボット装置、その動作制御方法、及びプログラム
WO2003100568A2 (en) Interactive modular system
US20180005445A1 (en) Augmenting a Moveable Entity with a Hologram
JP6290467B1 (ja) 情報処理方法、装置、および当該情報処理方法をコンピュータに実行させるプログラム
JP2018523200A (ja) ウェアラブルコンピューティングデバイスの、微細運動に基づく入力ジェスチャ制御のための技術
CN111373410A (zh) 增强现实环境的位所识别
US11908337B2 (en) Information processing device, intermediation device, simulation system, and information processing method
CN108572586B (zh) 信息处理装置和信息处理系统
JP2014180708A (ja) ロボットシステムおよび被加工物の製造方法
Wilson et al. Demonstration of the XWand Interface for Intelligent Spaces
WO2024085011A1 (ja) ウォーキングスピードコントロールシステム及びプログラム
JP2018125003A (ja) 情報処理方法、装置、および当該情報処理方法をコンピュータに実行させるプログラム
US11842496B2 (en) Real-time multi-view detection of objects in multi-camera environments
US20210216139A1 (en) Interactive attraction system and method for object and user association
JP2024059057A (ja) ウォーキングスピードコントロールシステム及びプログラム
CN110556030B (zh) 阅读控制方法、装置、设备及计算机可读存储介质
US20180356956A1 (en) Intelligent command batching in an augmented and/or virtual reality environment
US20230390653A1 (en) Smoothing server for processing user interactions to control an interactive asset