WO2024083271A1 - 一种基于stm32的霍尔相位校准方法及其校准装置 - Google Patents

一种基于stm32的霍尔相位校准方法及其校准装置 Download PDF

Info

Publication number
WO2024083271A1
WO2024083271A1 PCT/CN2023/140687 CN2023140687W WO2024083271A1 WO 2024083271 A1 WO2024083271 A1 WO 2024083271A1 CN 2023140687 W CN2023140687 W CN 2023140687W WO 2024083271 A1 WO2024083271 A1 WO 2024083271A1
Authority
WO
WIPO (PCT)
Prior art keywords
stm32
adjustable
phase
configurator
hall
Prior art date
Application number
PCT/CN2023/140687
Other languages
English (en)
French (fr)
Inventor
王帅
吴晓峰
陆阳勇
葛建良
屠风华
Original Assignee
浙江联宜电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江联宜电机有限公司 filed Critical 浙江联宜电机有限公司
Publication of WO2024083271A1 publication Critical patent/WO2024083271A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents

Definitions

  • the invention relates to a motor phase regulation, and in particular to a Hall phase calibration method used in a Hall induction motor phase regulation scheme.
  • phase calibration of the motor winding and the Hall element which are important components of the motor, is also one of the important quality factors directly related to the motor product. Effective calibration is required to maximize the performance and quality of the motor product.
  • the phase of the motor winding and the phase of the Hall element need to be manually adjusted. During each adjustment process, the Hall sensor module needs to be manually adjusted while dynamically observing the changes in the oscilloscope to finally lock the position of the Hall sensing module, so as to adjust the relative physical angle of the Hall and the motor winding to finally complete the phase alignment of the two.
  • the present invention aims to solve the problems of the existing motor Hall phase calibration, such as the time-consuming and laborious calibration operation, low calibration efficiency, high requirements for the physical angle positioning of the Hall sensing module relative to the motor winding, and the fact that the quality of the motor product is affected by artificial calibration deviation factors.
  • the present invention provides a Hall phase calibration method and a calibration device based on STM32, which are simple and convenient to calibrate, have high calibration efficiency, low requirements for the physical angle positioning of the Hall sensing module relative to the motor winding, and high calibration accuracy.
  • the present invention discloses a Hall phase calibration method based on STM32, comprising the following calibration steps:
  • step A4 After executing step A3 above, connect a 5V DC constant voltage power supply and use the STM32-based adjustable configurator to obtain the phase difference between the current Hall sensor module and the locking motor winding;
  • step A5 After executing the above step A3, the phase difference is reconfigured for the Hall sensor module after the compensation algorithm is calculated by the adjustable configurator based on STM32;
  • step A6 After executing the above step A4 or A5, loop back to execute the above step A2 and use an oscilloscope to observe whether the phase of the motor winding and the Hall sensor module meets the requirements;
  • step A7 if the requirements are met, connect the constant voltage power supply and use the adjustable configurator to write the motor parameters;
  • step A8 In the above step A2, if the requirements are met, connect the 5V DC constant voltage power supply, use STM32 to record the current phase value of the Hall sensor module, and use the STM32-based adjustable configurator to write the motor parameters.
  • the calibration is simple and convenient, with high calibration efficiency.
  • the physical angle positioning requirements of the Hall sensor module relative to the motor winding are low, and the calibration accuracy is high.
  • the Hall sensor module can be fixed at any physical angle, and the physical angle deviation is only read through the adjustable configurator based on STM32 to calculate the deviation value that needs to be compensated, and the compensation deviation value is written into the Hall sensor module to achieve phase alignment with the motor winding; this method reduces about 80% of the manual adjustment time, and turns the oscilloscope from an adjustment tool into a verification tool.
  • the calculation is performed by directly collecting and calculating the STM chip to avoid the phase angle deviation generated by the oscilloscope observed by the human eye. Each motor saves about 8 minutes of adjustment time.
  • the STM32-based adjustable configurator adopts STM32 as the algorithm processor of the entire adjustable configurator, which mainly reads the physical angle deviation to calculate the deviation value that needs to be compensated, and the adjustable configurator writes the compensated deviation value into the Hall sensing module to achieve alignment with the motor winding phase.
  • Another invention purpose of the present invention application is to provide a Hall phase calibration device based on STM32, including an oscilloscope, characterized in that: it also includes a 5V DC constant voltage power supply, a DC adjustable constant current power supply, a PC and an adjustable configurator based on STM32, the DC adjustable constant current power supply and the motor winding phase are electrically connected, the 5V DC constant voltage power supply and the STM32-based adjustable configurator are electrically connected, the PC-side host computer is configured with the STM32 chip, the adjustable configurator based on STM32 obtains the phase or phase difference between the Hall sensing module and the locking motor winding, and the oscilloscope observes the phase of the motor winding and the Hall sensing module.
  • the beneficial effects of the present invention are: simple and convenient calibration, high calibration efficiency, low requirements for the physical angle positioning of the Hall sensor module relative to the motor winding, and high calibration accuracy.
  • the method can fix the Hall sensor module at any physical angle, and only read the physical angle deviation through an adjustable configurator based on STM32 to calculate the deviation value that needs to be compensated, and write the compensation deviation value into the Hall sensor module to achieve alignment with the motor winding phase; the method reduces about 80% of the manual adjustment time, and changes the oscilloscope from an adjustment tool to a verification tool.
  • the calculation is performed by directly collecting and calculating the STM chip to avoid the phase angle deviation generated by the oscilloscope observed by the human eye. Each motor saves about 8 minutes of adjustment time.
  • stm32 is a 32-bit microcontroller manufactured by STMicroelectronics (ST). Its CPU is based on the core design of ARM's Cortex-M series, covering multiple series such as M0, M0+, M3, and M7. stm32 has the advantages of low price, multiple peripherals, rich models, excellent real-time performance, and easy-to-use library development. It is used as the main algorithm processing device in this method.
  • FIG1 is a schematic diagram of the structure of a Hall phase calibration method and a calibration device based on STM32 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a Hall phase calibration method based on STM32 includes the following calibration steps:
  • step A4 After executing step A3 above, connect a 5V DC constant voltage power supply and use the STM32-based adjustable configurator to obtain the phase difference between the current Hall sensor module and the locking motor winding;
  • step A5 After executing the above step A3, the phase difference is reconfigured for the Hall sensor module after the compensation algorithm is calculated by the adjustable configurator based on STM32;
  • step A6 After executing the above step A4 or A5, loop back to execute the above step A2 and use an oscilloscope to observe whether the phase of the motor winding and the Hall sensor module meets the requirements;
  • step A7 if the requirements are met, connect the constant voltage power supply and use the adjustable configurator to write the motor parameters;
  • step A8 In the above step A2, if the requirements are met, connect the 5V DC constant voltage power supply, use STM32 to record the current phase value of the Hall sensor module, and use the STM32-based adjustable configurator to write the motor parameters.
  • the STM32-based adjustable configurator uses STM32 as the algorithm processor of the entire adjustable configurator. It mainly reads the physical angle deviation to calculate the deviation value that needs to be compensated. The adjustable configurator writes the compensated deviation value into the Hall sensing module to achieve alignment with the motor winding phase.
  • the Hall calibration process of the calibration method applied by the present invention is automatically completed by the equipment, and the oscilloscope is only used as a process inspection tool to determine whether it meets the requirements. It usually takes less than 1 minute to adjust a motor, which greatly improves the calibration efficiency and accuracy.
  • a Hall phase calibration device based on STM32 includes an oscilloscope 30, a 5V DC constant voltage power supply 50, a DC adjustable constant current power supply 40, a PC70 and an adjustable configurator based on STM32 60, the DC adjustable constant current power supply and the motor winding phase are electrically connected, the 5V DC constant voltage power supply and the STM32-based adjustable configurator are electrically connected, the PC70 host computer is configured with an STM32 chip, the STM32-based adjustable configurator obtains the phase or phase difference between the Hall sensing module and the locking motor 10 winding, the STM32-based adjustable configurator performs compensation algorithm calculation, and reconfigures the phase difference for the Hall sensing module, and the oscilloscope observes the phase between the motor 10 winding and the Hall sensing module 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种基于STM32的霍尔相位校准方法及其校准装置,将基于STM32的可调配置器接入PC端,使用PC端上位机配置STM32芯片,写入电动机相关参数,使用示波器观察电动机绕组与霍尔感应模块的相位是否符合要求,再确定使用STM32记录当前霍尔感应模块相位值或与电动机绕组相位差,使用基于STM32的额可调配置器写入电动机参数,还是接通直流可调恒流电源,使电动机相位锁定;通过基于STM32的额可调配置器进行补偿算法计算后,重新给霍尔感应模块配置相位差。校准简单便捷,校准效率高,对霍尔感应模块相对于电机绕组的物理角度定位要求低,校准精度高。

Description

一种基于STM32的霍尔相位校准方法及其校准装置 技术领域
本发明涉及一种电动机相位调节,尤其是涉及一种使用在霍尔感应电动机相位调节方案中的霍尔相位校准方法。
背景技术
在此处键入随着现代技术的发展应用,电动机也被广泛应用于很多电动控制技术领域中,而构成电动机的重要元件中的电机绕组相位和霍尔元件的相位校准也是直接关联电动机产品的重要品质因素之一,需要有效的校准才可更大程度上的发挥电动机产品性能品质。然而现有技术在校准过程中,需要手动调节电动机绕组相位和霍尔元件的相位,每次调节过程中需要人工一边调节霍尔传感器模块,一边动态观察示波器的变化来最终锁定霍尔感应模块位置,以求调节霍尔与电动机绕组的相对物理角度来最终完成两者的相位对齐,调节一台电机一般需要10-15分钟;校准操作费时费力,校准效率较低,对霍尔感应模块相对于电机绕组的物理角度定位要求也较高;另外也存在着人为校准偏差因素导致影响电动机产品品质。背景技术描述段落。
技术问题
本发明为解决现有电动机霍尔相位校准存在着校准操作费时费力,校准效率较低,对霍尔感应模块相对于电机绕组的物理角度定位要求也较高;另外也存在着人为校准偏差因素导致影响电动机产品品质等现状而提供的一种校准简单便捷,校准效率高,对霍尔感应模块相对于电机绕组的物理角度定位要求低,校准精度高的基于STM32的霍尔相位校准方法及其校准装置。
技术解决方案
为解决上述问题,本发明公开了一种基于STM32的霍尔相位校准方法,包括如下校准步骤:
  A1. 将基于STM32的可调配置器接入PC端,使用PC端上位机配置STM32芯片,写入电动机相关参数;
   A2. 使用示波器观察电动机绕组与霍尔感应模块的相位是否符合要求;
   A3. 如果不符合要求,则接通直流可调恒流电源,使电动机相位锁定;
   A4. 在执行上述A3步骤基础上,接通5V直流恒压电源,使用基于STM32的可调配置器获取当前霍尔感应模块与锁定电动机绕组的相位差;
   A5. 在执行上述A3步骤基础上,通过基于STM32的额可调配置器进行补偿算法计算后,重新给霍尔感应模块配置相位差;
   A6. 执行完上述A4步骤或A5步骤基础上,再次循环返回执行上述A2步骤执行使用示波器观察观察电动机绕组与霍尔感应模块的相位是否符合要求;
   A7. 上述A2步骤中,如果符合要求接通恒压电源使用可调配置器写入电动机参数;
A8. 上述A2步骤中,如果符合要求,则接通5V直流恒压电源,使用STM32记录当前霍尔感应模块相位值,使用基于STM32的额可调配置器写入电动机参数。
校准简单便捷,校准效率高,对霍尔感应模块相对于电机绕组的物理角度定位要求低,校准精度高。可以在任意物理角度固定霍尔感应模块,只通过基于STM32的可调节配置器来读取物理角度偏差用来计算需要补偿的偏差值,并将补偿偏差值写入霍尔感应模块中,来实现与电动机绕组相位的对齐;本方法减少了约80%人工调节时间,将示波器从调节工具变成验证工具,通过给STM芯片直接采集后计算,来进行计算避免人眼观察示波器产生的相位角度偏差。每只电机节约调节时间约8分钟。
优选的,所述的基于STM32的可调配置器采用STM32作为整个可调配置器的算法处理器,主要读取物理角度偏差用来计算需要补偿的偏差值,并由可调配置器将补偿偏差值写入霍尔感应模块中,来实现与电动机绕组相位的对齐。 
本发明申请的另一个发明目的在于提供一种基于STM32的霍尔相位校准装置,包括示波器,其特征在于:还包括5V直流恒压电源、直流可调恒流电源、PC机和基于STM32的可调配置器,直流可调恒流电源和电动机绕组相位电连接,5V直流恒压电源和基于STM32的可调配置器电连接,PC端上位机配置STM32芯片,基于STM32的可调配置器获取霍尔感应模块与锁定电动机绕组的相位或相位差,示波器观察电动机绕组与霍尔感应模块的相位。 
有益效果
本发明的有益效果是:校准简单便捷,校准效率高,对霍尔感应模块相对于电机绕组的物理角度定位要求低,校准精度高。本方法可以在任意物理角度固定霍尔感应模块,只通过基于STM32的可调节配置器来读取物理角度偏差用来计算需要补偿的偏差值,并将补偿偏差值写入霍尔感应模块中,来实现与电动机绕组相位的对齐;本方法减少了约80%人工调节时间,将示波器从调节工具变成验证工具,通过给STM芯片直接采集后计算,来进行计算避免人眼观察示波器产生的相位角度偏差。每只电机节约调节时间约8分钟。
stm32是一款由意法半导体(ST)制造的32位单片机,它的CPU是基于ARM公司的Cortex-M系列的内核设计,覆盖了M0、M0+、M3、M7等多种系列。 stm32具有低价格、多外设、丰富型号、优异实时性、简单易用的库开发等优势,在本方法中用来作为主要算法处理器件。
附图说明
下面结合附图和具体实施方式对本发明做进一步的详细说明。
图1是本发明一种基于STM32的霍尔相位校准方法及其校准装置的结构示意图。
本发明的最佳实施方式
实施例1:
图1所示的实施例中,一种基于STM32的霍尔相位校准方法,包括如下校准步骤:
  A1. 将基于STM32的可调配置器接入PC端,使用PC端上位机配置STM32芯片,写入电动机相关参数;
   A2. 使用示波器观察电动机绕组与霍尔感应模块的相位是否符合要求;
   A3. 如果不符合要求,则接通直流可调恒流电源,使电动机相位锁定;
   A4. 在执行上述A3步骤基础上,接通5V直流恒压电源,使用基于STM32的可调配置器获取当前霍尔感应模块与锁定电动机绕组的相位差;
   A5. 在执行上述A3步骤基础上,通过基于STM32的额可调配置器进行补偿算法计算后,重新给霍尔感应模块配置相位差;
   A6. 执行完上述A4步骤或A5步骤基础上,再次循环返回执行上述A2步骤执行使用示波器观察观察电动机绕组与霍尔感应模块的相位是否符合要求;
   A7. 上述A2步骤中,如果符合要求接通恒压电源使用可调配置器写入电动机参数;
A8. 上述A2步骤中,如果符合要求,则接通5V直流恒压电源,使用STM32记录当前霍尔感应模块相位值,使用基于STM32的额可调配置器写入电动机参数。
基于STM32的可调配置器采用STM32作为整个可调配置器的算法处理器,主要读取物理角度偏差用来计算需要补偿的偏差值,并由可调配置器将补偿偏差值写入霍尔感应模块中,来实现与电动机绕组相位的对齐。
采用本发明申请校准方法霍尔校准过程为设备自动完成,示波器只作为一个过程检验工具,确定是否符合要求,调节一台电机一般在1分钟以内,大幅提升校准效率与校准准确性。
实施例
图1所示的实施例中,一种基于STM32的霍尔相位校准装置,包括示波器30,还包括5V直流恒压电源50、直流可调恒流电源40、PC70机和基于STM32的可调配置器60,直流可调恒流电源和电动机绕组相位电连接,5V直流恒压电源和基于STM32的可调配置器电连接,PC70机端上位机配置STM32芯片,基于STM32的可调配置器获取霍尔感应模块与锁定电动机10绕组的相位或相位差,基于STM32的可调配置器进行补偿算法计算后,重新给霍尔感应模块配置相位差,示波器观察电动机10绕组与霍尔感应模块20的相位。
以上内容和结构描述了本发明产品的基本原理、主要特征和本发明的优点,本行业的技术人员应该了解。上述实例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都属于要求保护的本发明范围之内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

  1. 一种基于STM32的霍尔相位校准方法,其特征在于包括如下校准步骤:
      A1. 将基于STM32的可调配置器接入PC端,使用PC端上位机配置STM32芯片,写入电动机相关参数;
       A2. 使用示波器观察电动机绕组与霍尔感应模块的相位是否符合要求;
       A3. 如果不符合要求,则接通直流可调恒流电源,使电动机相位锁定;
       A4. 在执行上述A3步骤基础上,接通5V直流恒压电源,使用基于STM32的可调配置器获取当前霍尔感应模块与锁定电动机绕组的相位差;
       A5. 在执行上述A3步骤基础上,通过基于STM32的额可调配置器进行补偿算法计算后,重新给霍尔感应模块配置相位差;
       A6. 执行完上述A4步骤或A5步骤基础上,再次循环返回执行上述A2步骤执行使用示波器观察观察电动机绕组与霍尔感应模块的相位是否符合要求;
       A7. 上述A2步骤中,如果符合要求接通恒压电源使用可调配置器写入电动机参数;
    A8. 上述A2步骤中,如果符合要求,则接通5V直流恒压电源,使用STM32记录当前霍尔感应模块相位值,使用基于STM32的额可调配置器写入电动机参数。
  2. 按照权利要求1所述的基于STM32的霍尔相位校准方法,其特征在于:所述的基于STM32的可调配置器采用STM32作为整个可调配置器的算法处理器,主要读取物理角度偏差用来计算需要补偿的偏差值,并由可调配置器将补偿偏差值写入霍尔感应模块中,来实现与电动机绕组相位的对齐。
  3. 一种基于STM32的霍尔相位校准装置,包括示波器,其特征在于:还包括5V直流恒压电源、直流可调恒流电源、PC机和基于STM32的可调配置器,直流可调恒流电源和电动机绕组相位电连接,5V直流恒压电源和基于STM32的可调配置器电连接,PC端上位机配置STM32芯片,基于STM32的可调配置器获取霍尔感应模块与锁定电动机绕组的相位或相位差,基于STM32的可调配置器进行补偿算法计算后,重新给霍尔感应模块配置相位差,示波器观察电动机绕组与霍尔感应模块的相位。
PCT/CN2023/140687 2023-03-31 2023-12-21 一种基于stm32的霍尔相位校准方法及其校准装置 WO2024083271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310336432.9A CN116545306A (zh) 2023-03-31 2023-03-31 一种基于stm32的霍尔相位校准方法及其校准装置
CN202310336432.9 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024083271A1 true WO2024083271A1 (zh) 2024-04-25

Family

ID=87455031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140687 WO2024083271A1 (zh) 2023-03-31 2023-12-21 一种基于stm32的霍尔相位校准方法及其校准装置

Country Status (2)

Country Link
CN (1) CN116545306A (zh)
WO (1) WO2024083271A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545306A (zh) * 2023-03-31 2023-08-04 浙江联宜电机有限公司 一种基于stm32的霍尔相位校准方法及其校准装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275361A1 (en) * 2004-06-11 2005-12-15 International Rectifier Corporation Hall sensor alignment for BLDC motor
CN1728534A (zh) * 2004-06-11 2006-02-01 国际整流器公司 对无刷直流电机的霍尔传感器的定位
CN203589943U (zh) * 2013-12-04 2014-05-07 江苏超力电器有限公司 汽车电机霍尔传感器校准装置
CN204761359U (zh) * 2015-06-29 2015-11-11 上海安沛动力科技有限公司 一种电机驱动器用的霍尔校准系统
CN116545306A (zh) * 2023-03-31 2023-08-04 浙江联宜电机有限公司 一种基于stm32的霍尔相位校准方法及其校准装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275361A1 (en) * 2004-06-11 2005-12-15 International Rectifier Corporation Hall sensor alignment for BLDC motor
CN1728534A (zh) * 2004-06-11 2006-02-01 国际整流器公司 对无刷直流电机的霍尔传感器的定位
CN203589943U (zh) * 2013-12-04 2014-05-07 江苏超力电器有限公司 汽车电机霍尔传感器校准装置
CN204761359U (zh) * 2015-06-29 2015-11-11 上海安沛动力科技有限公司 一种电机驱动器用的霍尔校准系统
CN116545306A (zh) * 2023-03-31 2023-08-04 浙江联宜电机有限公司 一种基于stm32的霍尔相位校准方法及其校准装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUN QIAN, WANG PEILIANG, CAI ZHIDUAN, LI ZUXIN, QIN HAIHONG: "Hall Rotor Position Estimation Method and Its Error Compensation", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 动车组和机车牵引与控制国家重点实验室 北京 100081, vol. 32, no. 6, 25 March 2017 (2017-03-25), pages 145 - 155, XP093161768, ISSN: 1000-6753, DOI: 10.19595/j.cnki.1000-6753.tces.2017.06.017 *

Also Published As

Publication number Publication date
CN116545306A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2024083271A1 (zh) 一种基于stm32的霍尔相位校准方法及其校准装置
CN103389931B (zh) 一种电源自动校准装置及其校准方法
Barack et al. Regularization parameters for the self-force in Schwarzschild spacetime. II. Gravitational and electromagnetic cases
WO2018090782A1 (zh) 电机定子电阻的在线辨识方法、装置和电机控制系统
CN111175595B (zh) 三相全控整流系统直流电容剩余寿命监测方法
CN103235611A (zh) 基于pid控制的呼吸机加温湿化系统控制方法和控制器
CN106849777A (zh) 一种永磁同步电机旋变零点校正方法以及系统
WO2018028067A1 (zh) 三相异步电机在线参数辨识方法及装置
CN107064852A (zh) 一种单相智能电能表计量精度的调校方法
CN108802654B (zh) 一种化成分容测试电源的自动标定采集系统及方法
WO2017113754A1 (zh) 一种检测电网动态无功功率的方法以及无功功率检测装置
WO2022237131A1 (zh) 一种用于永磁同步电机控制器的角度补偿方法及系统
WO2022166231A1 (zh) 电动机及其谐波噪声优化方法和装置
CN107091962A (zh) 旋转变压器的测试系统
CN205449410U (zh) 一种基于单片机的气体测漏仪系统
CN112798881A (zh) 一种压电超声换能器参数测量装置和方法
CN113315122B (zh) 一种计及逆变电源控制系统非线性特征的故障暂态电流解析方法
CN203024988U (zh) 一种用于无创呼吸机开发实验测试的平台
CN202584107U (zh) 一种电源自动校准装置
CN112114189B (zh) 一种基于fpga控制的电参数测量系统及测量方法
CN104398248A (zh) 一种在电子血压计中确定收缩压的斜率差均方根值算法
CN101634691B (zh) 同步表检测系统及方法
CN207600645U (zh) 全自动力度检测机
TWI342478B (zh)
CN107238347A (zh) 应力应变测量系统中应变计连接导线的自动修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879254

Country of ref document: EP

Kind code of ref document: A1