WO2022166231A1 - 电动机及其谐波噪声优化方法和装置 - Google Patents

电动机及其谐波噪声优化方法和装置 Download PDF

Info

Publication number
WO2022166231A1
WO2022166231A1 PCT/CN2021/121836 CN2021121836W WO2022166231A1 WO 2022166231 A1 WO2022166231 A1 WO 2022166231A1 CN 2021121836 W CN2021121836 W CN 2021121836W WO 2022166231 A1 WO2022166231 A1 WO 2022166231A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
noise
compensation
motor
harmonic
Prior art date
Application number
PCT/CN2021/121836
Other languages
English (en)
French (fr)
Inventor
樊铃
秦向南
Original Assignee
广东威灵电机制造有限公司
淮安威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司, 淮安威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Priority to JP2023544588A priority Critical patent/JP2024503917A/ja
Publication of WO2022166231A1 publication Critical patent/WO2022166231A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics

Definitions

  • the present application belongs to the field of electric motors, and in particular relates to electric motors and methods and devices for optimizing their harmonic noise.
  • the embodiments of the present application provide a motor and a method and device for optimizing harmonic noise thereof, so as to solve the problem in the prior art that the motor cannot accurately reduce the harmonic noise, which is not conducive to further improving the quality of electrical equipment.
  • a first aspect of the embodiments of the present application provides a method for optimizing harmonic noise of an electric motor, the method comprising:
  • Voltage compensation is performed on the electric motor according to the determined voltage parameter of the compensation voltage.
  • the method further includes:
  • the corresponding voltage parameter is searched according to the corresponding relationship to perform voltage compensation on the motor.
  • the method before acquiring the noise spectrum information of the electric motor under operating conditions, the method further includes:
  • the detected noise value is compared with a preset noise threshold, and when the detected noise value is greater than the noise threshold, the step of acquiring noise spectrum information of the motor under operating conditions is entered.
  • the method before comparing the detected noise value with a preset noise threshold, the method further includes:
  • the noise threshold corresponding to the current operating condition is searched.
  • the voltage parameter includes a voltage amplitude and a voltage phase
  • the voltage parameter of the injected compensation voltage is adjusted according to a predetermined adjustment range to determine the harmonic noise
  • the voltage parameters of the compensation voltage with the minimum noise value include:
  • the amplitude of the compensation voltage is adjusted within a predetermined voltage amplitude range, and the compensation voltage amplitude corresponding to the minimum noise value is determined.
  • the voltage parameter includes a voltage amplitude and a voltage phase
  • the voltage parameter of the injected compensation voltage is adjusted according to a predetermined adjustment range to determine the harmonic noise
  • the voltage parameters of the compensation voltage with the minimum noise value include:
  • the amplitude of the compensation voltage is adjusted within a predetermined amplitude range, and the amplitude of the compensation voltage corresponding to the minimum noise value is determined;
  • the phase of the compensation voltage is adjusted within a predetermined phase range, and the compensation voltage phase corresponding to the minimum noise value is determined.
  • the method before adjusting the voltage parameter of the injected compensation voltage according to a predetermined adjustment range, and before determining the voltage parameter of the compensation voltage with the smallest noise value of the harmonic noise , the method further includes:
  • the voltage parameter adjustment range corresponding to the order information of the harmonic noise in the noise spectrum information is determined.
  • a second aspect of the embodiments of the present application provides a device for optimizing harmonic noise of an electric motor, the device comprising:
  • noise spectrum information acquisition unit configured to acquire the noise spectrum information of the motor under operating conditions
  • a compensation voltage injection unit configured to determine the harmonic noise included in the noise spectrum information
  • a voltage parameter adjustment unit configured to adjust the voltage parameter of the injected compensation voltage according to a predetermined adjustment range, and determine the voltage parameter of the compensation voltage with the smallest noise value of the harmonic noise;
  • a voltage compensation unit configured to perform voltage compensation on the motor according to the determined voltage parameter of the compensation voltage.
  • a third aspect of the embodiments of the present application provides an electric motor, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor, the processor executing the computer program When implementing the steps of the method according to any one of the first aspects.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the method according to any one of the first aspects A step of.
  • the beneficial effects of the embodiments of the present application are: the present application injects the compensation voltage through harmonic noise in the noise spectrum information of the motor under operating conditions, and adjusts the compensation voltage parameters to obtain the smallest noise value.
  • the voltage parameter of the compensation voltage is used to compensate the voltage of the motor according to the obtained voltage parameter, so that the voltage compensation of the harmonic noise of the motor can be more accurately performed, and the quality of the motor can be further improved.
  • Fig. 1 is the realization flow schematic diagram of the harmonic noise optimization method of a kind of electric motor provided by the embodiment of the present application;
  • FIG. 2 is a schematic diagram of noise spectrum information provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of the implementation of a method for adjusting a voltage parameter of a compensation voltage provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of an implementation flowchart of a method for adjusting a voltage parameter of a compensation voltage provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an optimized noise spectrum provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a control system for optimizing harmonic noise of an electric motor provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of an apparatus for optimizing harmonic noise of an electric motor provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a motor provided by an embodiment of the present application.
  • a motor such as a permanent magnet synchronous motor
  • harmonic noise that is twice the rotation frequency of the motor during operation
  • the motor will produce a dull, humming sound.
  • the motor in the electrical equipment runs, it will affect the working and living environment of people.
  • the noise of the motor can be improved to a certain extent.
  • this structural improvement cannot accurately reduce the harmonic noise of the motor, which is not conducive to the further quality of the motor.
  • FIG. 1 a schematic diagram of the implementation flow of a noise optimization method for an electric motor provided by an embodiment of the present application includes:
  • the noise spectrum information of the motor under the operating condition may include the noise spectrum information of the motor under the current operating condition, or may be obtained by adjusting the operating Noise spectrum information.
  • FIG. 2 is a schematic diagram of noise spectrum information collected at a certain moment according to an embodiment of the present application.
  • the abscissa represents the frequency of the sound
  • the ordinate represents the magnitude of the noise.
  • the step of detecting the noise of the motor may also be included before the step of acquiring the noise spectrum information under operating conditions of the motor.
  • the noise spectrum information of the motor may be collected, and noise reduction processing is performed according to the collected noise spectrum information of the motor.
  • the noise spectrum information in the next operating condition can be collected continuously.
  • a corresponding relationship between the noise threshold and the operating condition of the motor may be set.
  • the corresponding noise threshold can also be increased accordingly.
  • the greater the speed of the motor the greater the corresponding noise threshold.
  • the harmonic noise included in the noise spectrum information is determined.
  • the harmonic order corresponding to the noise signal can be determined.
  • a subsequent voltage compensation operation may be performed.
  • the noise spectrum information does not include noise harmonics
  • the noise spectrum information under the next operating condition can be continuously acquired.
  • the apparent noise signal shown in Figure 2 has a frequency of about 200 Hz, assuming the frequency of the fundamental signal is x. Then, according to the ratio of the frequency of the noise signal to the frequency of the fundamental signal, it can be determined that the noise signal is harmonic noise, and the order of the harmonic noise is 200/x-order harmonic noise.
  • the harmonic noise in this embodiment of the present application may be a single-order harmonic noise, or may include multiple-order harmonic noise.
  • it may include fifth harmonic noise, seventh harmonic noise, eleventh harmonic noise, thirteenth harmonic noise, and the like.
  • the voltage parameter of the injected compensation voltage is adjusted according to a predetermined adjustment range, and the voltage parameter of the compensation voltage with the smallest noise value of the harmonic noise is determined.
  • the voltage parameter may include the phase of the voltage and/or the amplitude of the voltage.
  • the voltage amplitude corresponding to the motor at a small noise value can be found according to the predetermined voltage phase; or the voltage phase corresponding to the motor at a small noise value can be found according to the predetermined voltage phase; or, it can be adjusted by adjusting
  • the voltage amplitude and voltage phase of the compensation voltage are determined to determine the corresponding voltage phase and voltage amplitude when the motor is at a small noise value.
  • the voltage parameter adjustment range of the voltage compensation may correspond to the order information of the preset harmonic noise.
  • the interval in which the compensation voltage corresponding to the harmonic noise is located can be determined in a statistical manner, so as to facilitate the subsequent quick search for the compensation voltage corresponding to the harmonic noise.
  • FIG. 3 is a schematic flowchart of a voltage parameter adjustment process for a compensation voltage provided by an embodiment of the present application, including:
  • the voltage amplitude of the compensation voltage is kept unchanged, and the voltage phase of the compensation voltage is adjusted within a preset phase range.
  • the voltage amplitude of the compensation voltage may be a preset fixed voltage amplitude.
  • the preset voltage amplitude may be 3V or the like.
  • the maintained voltage amplitude can also be determined according to the corresponding relationship between the order of the harmonic noise and the voltage amplitude.
  • the preset voltage phase range may correspond to the order information of the harmonic noise.
  • the corresponding phase range may be [a1, b1]
  • the corresponding phase range may be [c1, d1] ]
  • the corresponding phase range may be [e1, f1].
  • the harmonic noise of the order with a larger noise value can be selected to determine the corresponding phase range, or the phase corresponding to the multiple orders of harmonic noise can be determined.
  • the range is taken as a union to determine the corresponding phase range.
  • the obtained voltage phase is maintained, and the voltage amplitude of the compensation voltage is adjusted within a predetermined amplitude range.
  • the amplitude range may be a preset fixed amplitude range, or may also be a search for the current harmonic noise of the motor according to the corresponding relationship between the order of the harmonic noise and the amplitude range.
  • the amplitude range corresponding to the wave noise can be determined through statistical data.
  • the harmonic noise of an order with a larger noise value can be selected to determine the corresponding amplitude range, or the corresponding amplitude range of the harmonic noise of multiple orders can be selected.
  • the amplitude range is determined by taking the method of union to determine the corresponding amplitude range.
  • a compensation voltage corresponding to the harmonic noise is obtained according to the acquired voltage amplitude and voltage phase.
  • the compensation voltage corresponding to the motor under the current operating condition can be determined.
  • FIG. 4 is a schematic flowchart of voltage parameter adjustment of another compensation voltage provided by an embodiment of the present application, including:
  • the voltage phase of the compensation voltage is kept unchanged, and the voltage amplitude of the compensation voltage is adjusted within a preset amplitude range.
  • the voltage phase of the compensation voltage may be a preset fixed voltage phase.
  • the preset voltage phase may be 0 degrees or the like.
  • the maintained voltage phase may also be determined according to the corresponding relationship between the order of the harmonic noise and the voltage phase.
  • the preset voltage amplitude range may correspond to the order information of the harmonic noise.
  • the corresponding amplitude range can be [a2, b2]
  • the corresponding amplitude range can be [c2] , d2]
  • the order of the harmonic noise is M3
  • the corresponding amplitude range may be [e2, f2].
  • the harmonic noise of an order with a larger noise value can be selected to determine the corresponding amplitude range, or the corresponding amplitude range of the harmonic noise of multiple orders can be selected.
  • the amplitude range is determined by taking the method of union to determine the corresponding amplitude range.
  • the voltage amplitude corresponding to the minimum noise value can be found.
  • the obtained voltage amplitude is maintained, and the voltage phase of the compensation voltage is adjusted within a predetermined phase range.
  • the phase range may be a preset fixed amplitude range, or may also be a search for the current harmonic noise of the motor according to the corresponding relationship between the order of the harmonic noise and the phase range the corresponding phase range.
  • the corresponding relationship can be determined through statistical data.
  • the harmonic noise of the order with a larger noise value can be selected to determine the corresponding phase range, or the phase corresponding to the multiple orders of harmonic noise can be determined.
  • the range is taken as a union to determine the corresponding phase range.
  • a compensation voltage corresponding to the harmonic noise is obtained according to the acquired voltage amplitude and voltage phase.
  • the compensation voltage corresponding to the motor under the current operating condition can be determined.
  • the voltage parameter of the voltage compensation of the electric motor may also be determined by adjusting the voltage phase and the voltage amplitude at the same time.
  • Voltage parameters according to the determined compensation voltage include, for example, voltage amplitude and/or voltage phase.
  • the compensation voltage is superimposed on the fundamental wave voltage output by the inverter in the motor drive circuit.
  • the corresponding relationship between the operating condition of the motor and the compensation voltage parameter may be recorded.
  • the corresponding compensation voltage parameter can be searched according to the corresponding relationship between the pre-recorded rotational speed and the compensation voltage parameter.
  • the fundamental wave signal of the motor drive signal is used for voltage compensation of high frequency harmonics, which can greatly improve the optimization efficiency of the harmonic noise of the motor.
  • the voltage phase or voltage amplitude corresponding to the minimum specific harmonic noise can be obtained when the phase or amplitude of the compensation voltage is adjusted.
  • the voltage compensation parameter corresponding to each harmonic noise included in the spectral noise information can be superimposed on the fundamental wave signal output by the inverter of the motor, so as to realize the suppression of the harmonic noise of the motor.
  • FIG. 5 is a schematic diagram of a noise spectrum after harmonic noise optimization provided by an embodiment of the present application. After harmonic noise optimization, harmonic noise in the noise spectrum is significantly suppressed and improved, and the generation of electric motors during operation is eliminated. hum, which improves the quality of the motor as a whole.
  • FIG. 6 is a schematic structural diagram of a control system for optimizing harmonic noise of a motor provided by an embodiment of the application.
  • the control system includes a motor, a three-phase converter, a modulator, a position estimation module, and a voltage injection module. and multiple signal converters, etc.
  • the motor angle ⁇ and angular velocity ⁇ can be obtained through the position estimation module.
  • Clark Choinese name is Clark
  • Clark's output and the motor angle ⁇ are transformed by Park (Chinese name is Parker).
  • the motor angular velocity ⁇ is different from the input angular velocity ⁇ *, and the current Iq* is obtained through the speed regulator ASR.
  • the first output of the Pakr transformation is different from Iq*, and the current regulator ACR outputs the voltage uq, the voltage uq and the voltage injection
  • the compensation voltage input by the module is superimposed as the first input of the Ipark transformation.
  • the Ipark transform outputs u ⁇ and u ⁇ to the modulator.
  • the modulator can be a pulse width modulator, and the modulator outputs a regulation signal to a three-phase converter, and drives the motor to rotate through the three-phase converter.
  • the compensation voltage corresponding to the voltage parameters can be injected through the voltage injection module to eliminate the high-order harmonic noise included in the motor.
  • FIG. 7 is a schematic diagram of a device for optimizing harmonic noise of an electric motor provided by an embodiment of the present application, and the device includes:
  • a compensation voltage injection unit 702 configured to determine the harmonic noise included in the noise spectrum information
  • a voltage parameter adjustment unit 703 configured to adjust the voltage parameter of the injected compensation voltage according to a predetermined adjustment range, and determine the voltage parameter of the compensation voltage with the smallest noise value of the harmonic noise;
  • the voltage compensation unit 704 is configured to perform voltage compensation on the motor according to the determined voltage parameter of the compensation voltage.
  • the harmonic noise optimization device of the motor shown in FIG. 7 corresponds to the harmonic noise optimization method of the motor shown in FIG. 1 .
  • FIG. 8 is a schematic diagram of a control system of an electric motor provided by an embodiment of the present application.
  • the motor 8 of this embodiment includes a processor 80, a memory 81, and a computer program 82 stored in the memory 81 and executable on the processor 80, such as harmonic noise optimization of the motor program.
  • the processor 80 executes the computer program 82, the steps in the above-mentioned embodiments of the harmonic noise optimization method for each electric motor are implemented.
  • the processor 80 executes the computer program 82
  • the functions of the modules/units in the foregoing device embodiments are implemented.
  • the computer program 82 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 81 and executed by the processor 80 to complete the this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 82 in the electric motor 8 .
  • the motor may include, but is not limited to, a processor 80 and a memory 81 .
  • FIG. 8 is only an example of the motor 8, and does not constitute a limitation to the motor 8, and may include more or less components than the one shown, or combine some components, or different components, such as
  • the motor may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 80 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuits) Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 81 may be an internal storage unit of the electric motor 8 , such as a hard disk or a memory of the electric motor 8 .
  • the memory 81 can also be an external storage device of the electric motor 8, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a Secure Digital (Secure Digital, SD) card equipped on the electric motor 8, Flash card (Flash Card) and so on.
  • the memory 81 may also include both an internal storage unit of the electric motor 8 and an external storage device.
  • the memory 81 is used to store the computer program and other programs and data required by the motor.
  • the memory 81 can also be used to temporarily store data that has been output or will be output.
  • the disclosed apparatus/terminal device and method may be implemented in other manners.
  • the apparatus/terminal device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the present application can implement all or part of the processes in the methods of the above embodiments, and it can also be completed by instructing the relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium.
  • the computer program When executed by the processor, the steps of the above-mentioned various method embodiments may be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electric carrier signal telecommunication signal and software distribution medium, etc.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Excluded are electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本申请属于电动机领域,提出了一种电动机及其谐波噪声优化方法和装置,该方法包括:获取所述电动机在运行工况下的噪声频谱信息;确定所述噪声频谱信息中包括的谐波噪声;按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数;根据所确定的补偿电压的电压参数,对所述电动机进行电压补偿。本申请通过谐波噪声查找相应的补偿电压进行电压补偿,从而能够更为准确的对电动机的谐波噪声进行电压补偿,进一步提升电动机的品质。

Description

电动机及其谐波噪声优化方法和装置
本申请要求于2021年02月07日在中国专利局提交的、申请号为202110169323.3、发明名称为“电动机及其谐波噪声优化方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电动机领域,尤其涉及电动机及其谐波噪声优化方法和装置。
背景技术
随着人们生活水平的提高,人们对电器设备的噪声也越来越关注。一个电器设备的噪声水平的高低,直接影响到用户的使用体验。因此,电器设备的噪声水平的高低,也成为了该产品的市场竞争力的重要指标。
电器设备中的电动机,比如永磁同步电动机在运行时,会出现与永磁同步电动机的转运频率成倍的谐波噪声,该谐波噪声会影响人们的生活与工作。而通过对永磁同步电动机以及风扇扇叶结构进行优化时,可以一定程度的减少电动机噪声,但无法精确的降低谐波噪声,不利于进一步提升电动机的品质。
技术问题
有鉴于此,本申请实施例提供了一种电动机及其谐波噪声优化方法和装置,以解决现有技术中电动机无法精确的降低谐波噪声,不利于进一步提升电器设备品质的问题。
技术解决方案
本申请实施例的第一方面提供了一种电动机的谐波噪声优化方法,所述方法包括:
获取所述电动机在运行工况下的噪声频谱信息;
确定所述噪声频谱信息中包括的谐波噪声;
按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数;
根据所确定的补偿电压的电压参数,对所述电动机进行电压补偿。
结合第一方面,在第一方面的第一种可能实现方式中,在根据噪声值最小时的电压参数所对应的补偿电压,对所述电动机进行电压补偿的步骤之后,所述方法还包括:
记录所述补偿电压的电压参数与电动机的运行工况的对应关系;
当监测到电动机处于所记录的运行工况时,根据所述对应关系查找对应的电压参数对所述电动机进行电压补偿。
结合第一方面,在第一方面的第二种可能实现方式中,在获取所述电动机在运行工况下的噪声频谱信息之前,所述方法还包括:
检测所述电磁同步电动机在运行工况下的噪声值;
将所检测的噪声值与预先设定的噪声阈值进行比较,当所检测的噪声值大于所述噪声阈值时,则进入获取所述电动机在运行工况下的噪声频谱信息的步骤。
结合第一方面,在第一方面的第三种可能实现方式中,在将所检测的噪声值与预先设定的噪声阈值进行比较之前,所述方法还包括:
根据预先设定的噪声阈值与运行工况的对应关系,查找当前的运行工况所对应的噪声阈值。
结合第一方面,在第一方面的第四种可能实现方式中,所述电压参数包括电压幅值和电压相位,按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数,包括:
在预定的电压幅值下,在预定的相位范围内调整所述补偿电压的相位,确定噪声值最小时所对应的补偿电压相位;
根据所确定的补偿电压相位,在预定的电压幅值范围内调整所述补偿电压的幅值,确定噪声值最小时所对应的补偿电压幅值。
结合第一方面,在第一方面的第五种可能实现方式中,所述电压参数包括电压幅值和电压相位,按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数,包括:
在预定的电压相位下,在预定的幅值范围内调整所述补偿电压的幅值,确定噪声值最小时所对应的补偿电压幅值;
根据所确定的补偿电压幅值,在预定的相位范围内调整所述补偿电压的相位,确定噪声值最小时所对应的补偿电压相位。
结合第一方面,在第一方面的第六种可能实现方式中,在按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数之前,所述方法还包括:
确定所述噪声频谱信息中的谐波噪声的阶次信息;
根据预先设定的谐波噪声的阶次信息与电压参数调整范围的对应关系,确定噪声频谱信息中的谐波噪声的阶次信息所对应的电压参数调整范围。
本申请实施例的第二方面提供了一种电动机的谐波噪声优化装置,所述装置包括:
噪声频谱信息获取单元,用于获取所述电动机在运行工况下的噪声频谱信息;
补偿电压注入单元,用于确定所述噪声频谱信息中包括的谐波噪声;
电压参数调整单元,用于按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数;
电压补偿单元,用于根据所确定的补偿电压的电压参数,对所述电动机进行电压补偿。
本申请实施例的第三方面提供了一种电动机,电动机,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面任一项所述方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述方法的步骤。
有益效果
本申请实施例与现有技术相比存在的有益效果是:本申请通过电动机在运行工况下的噪声频谱信息中的谐波噪声注入补偿电压,并通过调整补偿电压参数,得到噪声值最小的补偿电压的电压参数,根据所得到的电压参数对电动机进行电压补偿,从而能够更为准确的对电动机的谐波噪声进行电压补偿,进一步提升电动机的品质。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的一种电动机的谐波噪声优化方法的实现流程示意图;
图2是本申请实施例提供的噪声频谱信息示意图;
图3是本申请实施例提供的一种调整补偿电压的电压参数方法的实现流程示意图;
图4是本申请实施例提供的一种调整补偿电压的电压参数方法的实现流程示意图;
图5为本申请实施例提供的一种优化后的噪声频谱示意图;
图6为本申请实施例提供的一种电动机的谐波噪声优化的控制系统结构示意图;
图7是本申请实施例提供的电动机的谐波噪声优化装置的示意图;
图8是本申请实施例提供的电动机的示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
目前,电动机(比如永磁同步电动机动)在运行过程中出现与电动机转动频率成倍的谐波噪声时,电动机会产生嗡嗡的沉闷声音。当电器设备中的电动机运行时,会影响到人们工作和生活的环境。虽然通过对电动机和电动机的风扇扇叶结构进行优化,能够一定程度上改进电动机的噪声。但是,这种结构上的改进无法精确的降低电动机的谐波噪声,不利于进一步电动机的品质。
基于上述问题,本申请实施例提出了一种电动机的噪声优化方法。如图1所示为本申请实施例提供的一种电动机的噪声优化方法的实现流程示意图,包括:
在S101中,获取所述电动机在运行工况下的噪声频谱信息。
其中,所述电动机在运行工况下的噪声频谱信息,可以包括电动机当前运行工况下的噪声频谱信息,或者可以通过调整所述电动机的运行工况,获取包括电动机所有的运行工况下的噪声频谱信息。
所述噪声频谱信息的获取,可以通过噪声测试系统中的声音传感器进行噪声频谱信息的采集。如图2所示为本申请实施例提供的某一时刻所采集的噪声频谱信息的示意图。在图2中,横坐标表示声音的频率,纵坐标表示噪声的大小。如图2所示,在频率接近于200Hz处存在一个明显噪声信号(谐波信号)。
为了减少运行工况下的噪声频谱信息的采集频次,降低电压补偿参数计算的次数,在获取电动机的运行工况下的噪声频谱信息的步骤之前,还可以包括对电动机的噪声进行检测的步骤。
如果检测到电动机的噪声大于预定的噪声阈值,则可以采集所述电动机的噪声频谱信息,根据所采集的电动机的噪声频谱信息进行降噪处理。
如果检测到电动机的噪声小于或等于预定的噪声阈值,则可以继续采集下一运行工况下的噪声频谱信息。
在本申请可能的实现方式中,可以设定所述噪声阈值与电动机的运行工况的对应关系。当电动机的运行工况中的强度越大,则所对应的噪声阈值也可以相应的增大。比如,电动机的转速越大时,所对应的噪声阈值也越大。通过将所述噪声阈值与电动机的运行工况关系,可以进一步提升电动机谐波噪声的检测精度。
在S102中,确定所述噪声频谱信息中包括的谐波噪声。
根据基波电压的频率,可以确定该噪声信号所对应的谐波阶次。当确定所述噪声频谱信息中包括谐波噪声时,可以进行后续的电压补偿操作。
当噪声频谱信息中未包括噪声谐波时,可以继续获取下一个运行工况下的噪声频谱信息。
比如,图2所示的明显的噪声信号的频率约为200Hz,假设基波信号的频率为x。那么,根据噪声信号的频率与基波信号的频率的比值,可以确定该噪声信号为谐波噪声,且谐波噪声的阶次为200/x阶谐波噪声。
不局限于此,本申请实施例中的谐波噪声,可以为单个阶次谐波噪声,也可以包括多个阶次的谐波噪声。比如,可以包括五次谐波噪声、七次谐波噪声、十一次谐波噪声、十三次谐波噪声等。
在S103中,按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数。
在本申请实施例中,所述电压参数可以包括电压的相位和/或电压的幅值。可以根据预先确定的电压相位,查找电动机处于较小噪声值时所对应的电压幅值;或者根据预先确定的电压相位,查找电动机处于较小噪声值时所对应的电压相位;或者,可以通过调整补偿电压的电压幅值和电压相位,确定电动机处于较小噪声值时所对应的电压相位和电压幅值。
在本申请可能的实现方式中,所述电压补偿的电压参数调整范围,可以根据预先设定谐波噪声的阶次信息对应。可以通过统计的方式确定谐波噪声所对应的补偿电压所在的区间,从而便于后续对谐波噪声所对应的补偿电压的快速查找。
图3为本申请实施例提供的一种补偿电压的电压参数调节流程示意图,包括:
在S301中,保持补偿电压中的电压幅值不变,在预设的相位范围内调整所述补偿电压的电压相位。
所述补偿电压的电压幅值,可以为预先设定的固定的电压幅值。比如,预先设定的电压幅值可以为3V等。或者,也可以根据谐波噪声的阶次与电压幅值的对应关系,确定所保持的电压幅值。
在本申请可能的实现方式中,所述预设的电压相位范围可以与所述谐波噪声的阶次信息对应。比如,当谐波噪声的阶次为N1时,所对应的相位范围可以为[a1,b1],当所述谐波噪声的阶次为N2时,所对应的相位范围可以为[c1,d1],当所述谐波噪声的阶次为N3时,所对应的相位范围可以为[e1,f1]。通过所设定的谐波噪声与相位范围的对应关系,可便于快速的确定电动机的噪声值最小时所对应的电压相位。
当谐波噪声中包括多个阶次的谐波噪声时,则可以选择噪声值较大的阶次的谐波噪声确定对应的相位范围,或者将多个阶次的谐波噪声所对应的相位范围取并集的方式,确定所对应的相位范围。
在S302中,获取所述电动机的噪声值最小时对应的电压相位。
通过在所确定的相位范围中依次改变电压相位的大小,并记录不同电压相位所对应的电动机的噪声值。在记录了相位范围中的所有相位所对应的电动机的噪声值后,可以查找到噪声值最小时所对应的电压相位。
在S303中,保持所获取的电压相位,在预定的幅值范围内调整所述补偿电压的电压幅度。
在本申请实施例中,所述幅值范围可以为预先设定的固定的幅值范围,或者,也可以为根据谐波噪声的阶次与幅值范围的对应关系,查找当前的电动机的谐波噪声所对应的幅值范围。其中,该对应关系可以通过统计数据确定得到。通过建立幅值范围与谐波阶次的对应关系,可以更为高效的进行最优电压幅值的查找。
当谐波噪声中包括多个阶次的谐波噪声时,则可以选择噪声值较大的阶次的谐波噪声确定对应的幅值范围,或者将多个阶次的谐波噪声所对应的幅值范围取并集的方式,确定所对应的幅值范围。
在S304中,获取所述电动机的噪声值最小时所对应的电压幅值。
通过在所确定的幅值范围中依次改变补偿电压的电压幅值的大小,并记录不同电压幅值所对应的电动机的噪声值。在记录了幅值范围中的所有幅值所对应的电动机的噪声值后,可以查找到噪声值最小时所对应的电压幅值。
在S305中,根据所获取的电压幅值和电压相位得到所述谐波噪声对应的补偿电压。
在得到所述补偿电压的电压相位和电压幅值后,即可确定所述电动机在当前运行工况下所对应的补偿电压。
图4为本申请实施例提供的又一补偿电压的电压参数调节流程示意图,包括:
在S401中,保持补偿电压中的电压相位不变,在预设的幅值范围内调整所述补偿电压的电压幅值。
所述补偿电压的电压相位,可以为预先设定的固定的电压相位。比如,预先设定的电压相位可以为0度等。或者,也可以根据谐波噪声的阶次与电压相位的对应关系,确定所保持的电压相位。
在本申请可能的实现方式中,所述预设的电压幅值范围可以与所述谐波噪声的阶次信息对应。比如,当谐波噪声的阶次为M1时,所对应的幅值范围可以为[a2,b2],当所述谐波噪声的阶次为M2时,所对应的幅值范围可以为[c2,d2],当所述谐波噪声的阶次为M3时,所对应的幅值范围可以为[e2,f2]。通过所设定的谐波噪声与幅值范围的对应关系,可便于快速的确定电动机的噪声值最小时所对应的电压幅值。
当谐波噪声中包括多个阶次的谐波噪声时,则可以选择噪声值较大的阶次的谐波噪声确定对应的幅值范围,或者将多个阶次的谐波噪声所对应的幅值范围取并集的方式,确定所对应的幅值范围。
在S402中,获取所述电动机的噪声值最小时对应的电压幅值。
通过在所确定的幅值范围中依次改变电压幅值的大小,并记录不同电压幅值所对应的电动机的噪声值。在记录了幅值范围中的所有幅值所对应的电动机的噪声值后,可以查找到噪声值最小时所对应的电压幅值。
在S403中,保持所获取的电压幅值,在预定的相位范围内调整所述补偿电压的电压相位。
在本申请实施例中,所述相位范围可以为预先设定的固定的幅值范围,或者,也可以为根据谐波噪声的阶次与相位范围的对应关系,查找当前的电动机的谐波噪声所对应的相位范围。其中,该对应关系可以通过统计数据确定得到。通过建立相位范围与谐波阶次的对应关系,可以更为高效的进行最优电压相位的查找。
当谐波噪声中包括多个阶次的谐波噪声时,则可以选择噪声值较大的阶次的谐波噪声确定对应的相位范围,或者将多个阶次的谐波噪声所对应的相位范围取并集的方式,确定所对应的相位范围。
在S404中,获取所述电动机的噪声值最小时所对应的电压相位。
通过在所确定的相位范围中依次改变补偿电压的电压相位的大小,并记录不同电压相位所对应的电动机的噪声值。在记录了相位范围中的所有相位所对应的电动机的噪声值后,可以查找到噪声值最小时所对应的电压相位。
在S405中,根据所获取的电压幅值和电压相位得到所述谐波噪声对应的补偿电压。
在得到所述补偿电压的电压相位和电压幅值后,即可确定所述电动机在当前运行工况下所对应的补偿电压。
在可能的实现方式中,还可以同时调整所述电压相位和电压幅值的方式,来确定所述电动机的电压补偿的电压参数。
在S104中,根据所确定的补偿电压的电压参数,对所述电动机进行电压补偿。
根据所确定的补偿电压的电压参数,包括如电压幅值和/或电压相位。将所述补偿电压叠加至电动机驱动电路中的逆变器输出的基波电压。
在可能的实现方式中,在确定了电动机在该运行工况下所对应的补偿电压后,可以记录所述电动机的运行工况与补偿电压参数的对应关系。当电动机的运行工况处于预先记录的运行工况下时,比如运行在预先记录的转速下,则可以根据预先记录的转速与补偿电压参数的对应关系,查找对应的补偿电压参数,对所述电动机驱动信号的基波信号进行高频谐波的电压补偿,从而能够大大的提升电动机谐波噪声的优化效率。
在本申请实施例中,当噪声频谱信息中包括多个谐波噪声时,可以在调整所述补偿电压的相位或幅值时,获取特定谐波噪声最小时所对应的电压相位或电压幅值。可以将频谱噪声信息中包括的各个谐波噪声所对应的电压补偿参数叠加至电动机的逆变器输出的基波信号上,实现对电动机谐波噪声的抑制。
图5为本申请实施例提供的经过谐波噪声优化后的噪声频谱示意图,经过谐波噪声优化后,噪声频谱中的谐波噪声得到了明显的抑制和改善,消除了电动机在运行过程中产生的嗡嗡声,从而在整体上提升了电动机品质。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图6为本申请实施例提供的一种电动机的谐波噪声优化的控制系统结构示意图,如图6所示,该控制系统包括电动机、三相变换器、调制器、位置估算模块、电压注入模块和多个信号变换器等。通过位置估算模块可得到电动机角度θ和角速度ω。通过采集三相变换器输出的电流ia、ib和ic,经过Clark(中文名称为克拉克)变换为静止的αβ坐标系下。Clark的输出与电动机角度θ经过Park(中文名称为派克)变换。电动机角速度ω与输入的角速度ω*作差,并经过速度调节器ASR得到电流Iq*,Pakr变换的第一输出与Iq*作差,并经过电流调节器ACR输出电压uq,电压uq与电压注入模块输入的补偿电压叠加,作为Ipark变换的第一输入。
Park变换的第二输出与输入的电流Id*=0作差,并经过电流调节器ACR输出电压ud,作为Ipark变换的第二输入。Ipark变换输出uα和uβ至调制器。该调制器可以为脉冲宽度调制器,调制器输出调节信号至三相变换器,通过三相变换器驱动电动机转运。当电动机噪声频谱中包括谐波噪声时,或者电动机运行工况处于预先记录的对应关系中时,可通过电压注入模块注入对应电压参数的补偿电压,消除电动机中包括的高次谐波噪声。
图7为本申请实施例提供的一种电动机的谐波噪声优化装置示意图,该装置包括:
噪声频谱信息获取单元701,用于获取所述电动机在运行工况下的噪声频谱信息;
补偿电压注入单元702,用于确定所述噪声频谱信息中包括的谐波噪声;
电压参数调整单元703,用于按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数;
电压补偿单元704,用于根据所确定的补偿电压的电压参数,对所述电动机进行电压补偿。
图7所示的电动机的谐波噪声优化装置,与图1所示的电动机的谐波噪声优化方法对应。
图8是本申请一实施例提供的电动机的控制系统示意图。如图8所示,该实施例的电动机8包括:处理器80、存储器81以及存储在所述存储器81中并可在所述处理器80上运行的计算机程序82,例如电动机的谐波噪声优化程序。所述处理器80执行所述计算机程序82时实现上述各个电动机的谐波噪声优化方法实施例中的步骤。或者,所述处理器80执行所述计算机程序82时实现上述各装置实施例中各模块/单元的功能。
示例性的,所述计算机程序82可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器81中,并由所述处理器80执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序82在所述电动机8中的执行过程。
所述电动机可包括,但不仅限于,处理器80、存储器81。本领域技术人员可以理解,图8仅仅是电动机8的示例,并不构成对电动机8的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述电动机还可以包括输入输出设备、网络接入设备、总线等。
所称处理器80可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器81可以是所述电动机8的内部存储单元,例如电动机8的硬盘或内存。所述存储器81也可以是所述电动机8的外部存储设备,例如所述电动机8上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器81还可以既包括所述电动机8的内部存储单元也包括外部存储设备。所述存储器81用于存储所述计算机程序以及所述电动机所需的其他程序和数据。所述存储器81还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电动机的谐波噪声优化方法,其特征在于,所述方法包括:
    获取所述电动机在运行工况下的噪声频谱信息;
    确定所述噪声频谱信息中包括的谐波噪声;
    按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数;
    根据所确定的补偿电压的电压参数,对所述电动机进行电压补偿。
  2. 根据权利要求1所述的方法,其特征在于,在根据噪声值最小时的电压参数所对应的补偿电压,对所述电动机进行电压补偿的步骤之后,所述方法还包括:
    记录所述补偿电压的电压参数与电动机的运行工况的对应关系;
    当监测到电动机处于所记录的运行工况时,根据所述对应关系查找对应的电压参数对所述电动机进行电压补偿。
  3. 根据权利要求1所述的方法,其特征在于,在获取所述电动机在运行工况下的噪声频谱信息之前,所述方法还包括:
    检测所述电磁同步电动机在运行工况下的噪声值;
    将所检测的噪声值与预先设定的噪声阈值进行比较,当所检测的噪声值大于所述噪声阈值时,则进入获取所述电动机在运行工况下的噪声频谱信息的步骤。
  4. 根据权利要求3所述的方法,其特征在于,在将所检测的噪声值与预先设定的噪声阈值进行比较之前,所述方法还包括:
    根据预先设定的噪声阈值与运行工况的对应关系,查找当前的运行工况所对应的噪声阈值。
  5. 根据权利要求1所述的方法,其特征在于,所述电压参数包括电压幅值和电压相位,按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数,包括:
    在预定的电压幅值下,在预定的相位范围内调整所述补偿电压的相位,确定噪声值最小时所对应的补偿电压相位;
    根据所确定的补偿电压相位,在预定的电压幅值范围内调整所述补偿电压的幅值,确定噪声值最小时所对应的补偿电压幅值。
  6. 根据权利要求1所述的方法,其特征在于,所述电压参数包括电压幅值和电压相位,按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数,包括:
    在预定的电压相位下,在预定的幅值范围内调整所述补偿电压的幅值,确定噪声值最小时所对应的补偿电压幅值;
    根据所确定的补偿电压幅值,在预定的相位范围内调整所述补偿电压的相位,确定噪声值最小时所对应的补偿电压相位。
  7. 根据权利要求1所述的方法,其特征在于,在按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数之前,所述方法还包括:
    确定所述噪声频谱信息中的谐波噪声的阶次信息;
    根据预先设定的谐波噪声的阶次信息与电压参数调整范围的对应关系,确定噪声频谱信息中的谐波噪声的阶次信息所对应的电压参数调整范围。
  8. 一种电动机的谐波噪声优化装置,其特征在于,所述装置包括:
    噪声频谱信息获取单元,用于获取所述电动机在运行工况下的噪声频谱信息;
    补偿电压注入单元,用于确定所述噪声频谱信息中包括的谐波噪声;
    电压参数调整单元,用于按照预定的调整范围调整注入的补偿电压的电压参数,确定所述谐波噪声的噪声值最小的补偿电压的电压参数;
    电压补偿单元,用于根据所确定的补偿电压的电压参数,对所述电动机进行电压补偿。
  9. 一种电动机,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述方法的步骤。
PCT/CN2021/121836 2021-02-07 2021-09-29 电动机及其谐波噪声优化方法和装置 WO2022166231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023544588A JP2024503917A (ja) 2021-02-07 2021-09-29 モータ、その調波騒音最適化方法、および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110169323.3A CN114915234A (zh) 2021-02-07 2021-02-07 电动机及其谐波噪声优化方法和装置
CN202110169323.3 2021-02-07

Publications (1)

Publication Number Publication Date
WO2022166231A1 true WO2022166231A1 (zh) 2022-08-11

Family

ID=82741817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121836 WO2022166231A1 (zh) 2021-02-07 2021-09-29 电动机及其谐波噪声优化方法和装置

Country Status (3)

Country Link
JP (1) JP2024503917A (zh)
CN (1) CN114915234A (zh)
WO (1) WO2022166231A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603636A (zh) * 2022-10-31 2023-01-13 佛山市尼博微电子有限公司(Cn) 一种基于高频信号注入的电机电压补偿方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833675B (zh) * 2022-11-03 2023-09-05 小米汽车科技有限公司 电机的电磁噪声调控方法、装置电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337283A (zh) * 2015-12-11 2016-02-17 北京天诚同创电气有限公司 降低电机的振动和噪音的方法、装置、控制器及系统
CN110758111A (zh) * 2018-07-09 2020-02-07 福特全球技术公司 电机噪声衰减
CN111245326A (zh) * 2018-11-28 2020-06-05 安徽美芝精密制造有限公司 矢量控制系统、抑制方法、抑制装置、电机和存储介质
CN111713007A (zh) * 2018-02-20 2020-09-25 日本电产株式会社 马达控制系统和助力转向系统
CN111835253A (zh) * 2019-04-23 2020-10-27 广州汽车集团股份有限公司 一种电机振动或噪声控制方法及装置
CN111865160A (zh) * 2019-04-23 2020-10-30 广州汽车集团股份有限公司 一种电机振动或噪声的控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337283A (zh) * 2015-12-11 2016-02-17 北京天诚同创电气有限公司 降低电机的振动和噪音的方法、装置、控制器及系统
CN111713007A (zh) * 2018-02-20 2020-09-25 日本电产株式会社 马达控制系统和助力转向系统
CN110758111A (zh) * 2018-07-09 2020-02-07 福特全球技术公司 电机噪声衰减
CN111245326A (zh) * 2018-11-28 2020-06-05 安徽美芝精密制造有限公司 矢量控制系统、抑制方法、抑制装置、电机和存储介质
CN111835253A (zh) * 2019-04-23 2020-10-27 广州汽车集团股份有限公司 一种电机振动或噪声控制方法及装置
CN111865160A (zh) * 2019-04-23 2020-10-30 广州汽车集团股份有限公司 一种电机振动或噪声的控制方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603636A (zh) * 2022-10-31 2023-01-13 佛山市尼博微电子有限公司(Cn) 一种基于高频信号注入的电机电压补偿方法及系统

Also Published As

Publication number Publication date
JP2024503917A (ja) 2024-01-29
CN114915234A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
Bueno et al. A DSP-and FPGA-based industrial control with high-speed communication interfaces for grid converters applied to distributed power generation systems
WO2022166231A1 (zh) 电动机及其谐波噪声优化方法和装置
CN110061615B (zh) 逆变器非线性特性的定子电流谐波补偿方法
CN113037170B (zh) 电机控制方法、装置及终端设备
CN111896802B (zh) 一种频率自适应的采样方法
CN112255457A (zh) 适用于自动准同期装置的相角差测量方法
CN113691183A (zh) 永磁同步电机的电感辨识方法、系统、介质及终端
CN117293901B (zh) 一种并网逆变器控制结构识别方法、系统、设备和介质
CN111769747B (zh) 一种变频器的控制装置、方法和变频器
CN110082642B (zh) 基于全相位微分滤波的电网工况故障时刻检测方法及装置
CN110596455B (zh) 一种工频电参数提取方法、系统及计算机可读存储介质
CN113644856A (zh) 一种高频变频器的驱动控制方法
EP4318000A1 (en) Range hood and testing method and testing apparatus therefor
CN111416377B (zh) 一种提高电网暂态稳定性的柔性直流控制方法及装置
CN110752607B (zh) 一种柔性直流输电换流器阻抗分析方法、装置及存储介质
CN114527326A (zh) 电网阻抗的测量方法、装置、相关设备及存储介质
CN113036785A (zh) 一种全通道滤波的柔直高频振荡控制方法及系统
CN112485511A (zh) 基于跟踪补偿算法的交流采样装置及其采样补偿方法
CN117762500B (zh) 一种线路参数的高精度数据优化方法及其运行系统
WO2024066069A1 (zh) 脉冲宽度调制指标的评估方法、装置、设备和存储介质
CN117674657A (zh) 谐波消除方法、设备、系统及电机
CN117192206A (zh) 一种基于频域复插值的电流信号高频间谐波的信号分析方法
CN115459653A (zh) 电机的控制方法、装置、介质和电子设备
CN114778928A (zh) 一种电网电压的检测方法及检测装置
CN116742710A (zh) 逆变器的控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544588

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924228

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/01/2024)