WO2018028067A1 - 三相异步电机在线参数辨识方法及装置 - Google Patents

三相异步电机在线参数辨识方法及装置 Download PDF

Info

Publication number
WO2018028067A1
WO2018028067A1 PCT/CN2016/105624 CN2016105624W WO2018028067A1 WO 2018028067 A1 WO2018028067 A1 WO 2018028067A1 CN 2016105624 W CN2016105624 W CN 2016105624W WO 2018028067 A1 WO2018028067 A1 WO 2018028067A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
phase asynchronous
asynchronous motor
resistance
Prior art date
Application number
PCT/CN2016/105624
Other languages
English (en)
French (fr)
Inventor
王雪迪
车向中
杨扬
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2018028067A1 publication Critical patent/WO2018028067A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant

Definitions

  • the invention relates to a method and a device for online parameter identification of a three-phase asynchronous motor, and belongs to the technical field of motor control.
  • the parameters of the three-phase asynchronous motor are not constant during the whole working period, but vary within a certain range as the operating conditions of the motor change continuously, such as the temperature change in the three-phase asynchronous motor, the skin effect, Changes in the saturation of the magnetic field will cause changes in the parameters, but the change law of this parameter is impossible to predict. Therefore, it is necessary to identify the parameters closely related to the internal control of the motor to achieve precise control of the three-phase asynchronous motor.
  • the existing online parameter identification method for three-phase asynchronous motors generally adopts a model reference adaptive method.
  • the method sets two sets of output models with the same physical meaning: reference model and adjustable model, using the deviation of the output of the two models, dynamically updating the parameters of the adjustable model according to a certain adaptive law, so that the two The deviation is continuously reduced.
  • the parameter of the adjustable model is taken as the actual parameter of the current motor, thereby realizing the identification of the motor parameters.
  • this method requires additional strong assumptions. These assumptions are often difficult to meet in practice or only meet certain operating conditions of the motor. It is difficult to achieve stable and accurate global identification parameters.
  • the object of the invention is to provide a three-phase asynchronous motor online parameter identification method and device, so as to solve the problem that the identification parameters of the online parameter identification method of the three-phase asynchronous motor in the prior art are inaccurate.
  • a method for online parameter identification of a three-phase asynchronous motor including the following steps Obtaining: obtaining a stator voltage of the three-phase asynchronous motor; acquiring a stator current of the three-phase asynchronous motor; acquiring a rotor speed of the three-phase asynchronous motor, and calculating according to the rotor speed and a given slip rate Synchronous speed; based on the stator voltage, stator current, rotor speed and synchronous speed, and given stator inductance, rotor inductance and stator resistance, the rotor resistance is calculated using the first calculation formula.
  • the method for identifying the online parameter identification of the three-phase asynchronous motor further includes: performing DQ coordinate system transformation on the stator voltage to obtain a stator voltage space vector DQ component; performing DQ coordinate system transformation on the stator current to obtain a stator current space.
  • Vector DQ component; the rotor resistance is calculated using the first calculation formula based on the stator voltage space vector DQ component, the stator current space vector DQ component, the rotor speed and the synchronous speed, and a given stator inductance, rotor inductance, and stator resistance.
  • the above-mentioned three-phase asynchronous motor online parameter identification method is further improved according to the rotor resistance, the stator voltage space vector DQ component, the stator current space vector DQ component, the rotor rotational speed, the synchronous rotational speed, the stator inductance, the rotor inductance, and the stator resistance.
  • the second calculation formula calculates the rotor mutual inductance.
  • the above-mentioned three-phase asynchronous motor online parameter identification method is further improved, the control parameters of the three-phase asynchronous motor are obtained, and the stator voltage is calculated according to the control parameter.
  • the second aspect provides an online parameter identification device for a three-phase asynchronous motor, comprising: a stator voltage acquisition module, configured to acquire a stator voltage of the three-phase asynchronous motor; and a stator current acquisition module, configured to acquire the three-phase asynchronous motor a stator current acquisition module for obtaining a rotor speed of the three-phase asynchronous motor; a processing module, the processing module comprising: a synchronous speed calculation unit and a rotor resistance calculation unit; Calculating a synchronous rotational speed according to the rotor rotational speed and a given slip ratio; the rotor resistance calculating unit is configured to perform, according to the stator voltage, the stator current, the rotor rotational speed, the synchronous rotational speed, and a given stator inductance, rotor inductance, and The stator resistance is calculated using the first calculation formula.
  • the above-mentioned three-phase asynchronous motor online parameter identification device further includes: a stator voltage conversion module, configured to perform DQ coordinate system transformation on the stator voltage to obtain a stator voltage space vector DQ component; and a stator current conversion module, configured to The stator current is subjected to a DQ coordinate system transformation to obtain a stator current space vector DQ component.
  • the processing module A stator and rotor mutual inductance calculation unit is further included for utilizing the second calculation formula according to the rotor resistance, the stator voltage space vector DQ component, the stator current space vector DQ component, the rotor rotational speed, the synchronous rotational speed, the stator inductance, the rotor inductance, and the stator resistance. Calculate the stator and rotor mutual inductance.
  • the above-mentioned three-phase asynchronous motor online parameter identification device is further improved.
  • the stator voltage acquisition module comprises: a control parameter acquisition unit for acquiring control parameters of the three-phase asynchronous motor; and a stator voltage calculation unit for controlling according to the control The parameters are calculated to obtain the stator voltage.
  • the online parameter identification method and device for three-phase asynchronous motor use the first calculation formula based on the quadratic equation to calculate the rotor resistance, the calculation amount is small, the convergence is good, the accuracy is high, and the motor can be operated in real time.
  • the rotor resistance is identified, and the rotor mutual inductance is calculated according to the rotor resistance to improve the control precision of the vector control of the three-phase asynchronous motor.
  • the online parameter identification method and device for the three-phase asynchronous motor provided by the invention can accurately identify the rotor resistance of the three-phase asynchronous motor under various working conditions, thereby obtaining the mutual inductance of the stator and the rotor, and has strong adaptability and flexibility.
  • FIG. 1 is a flowchart of an online parameter identification method for a three-phase asynchronous motor according to Embodiment 1 of the present invention
  • FIG. 2 is an equivalent circuit diagram of a three-phase asynchronous motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of an online parameter identification device for a three-phase asynchronous motor according to a second embodiment of the present invention
  • FIG. 4 is a partial enlarged view of the controller of FIG. 3.
  • Stator voltage calculation unit 2. Stator current acquisition module;
  • stator and rotor mutual inductance calculation unit 45, stator and rotor mutual inductance calculation unit; 5, stator voltage conversion module;
  • a three-phase asynchronous motor is a type of motor that is powered by a 380V three-phase AC power supply (phase difference of 120 degrees).
  • the rotor and the rotating magnetic field of the three-phase asynchronous motor are in the same direction and different.
  • the rotation speed rotates, there is a difference between the speeds of the two, so it is called a three-phase asynchronous motor.
  • the three-phase stator winding of the motor When the three-phase stator winding of the motor is supplied with three-phase symmetrical alternating current, a rotating magnetic field is generated, which cuts the rotor winding, thereby generating an induced current in the rotor winding (the rotor winding is a closed path), and the current-carrying rotor conductor is The electromagnetic force is generated by the rotating magnetic field of the stator, thereby forming electromagnetic torque on the rotating shaft of the motor, driving the rotor to rotate, and the direction of rotation of the motor is the same as the direction of the rotating magnetic field.
  • FIG. 1 is a flow chart of an online parameter identification method for a three-phase asynchronous motor according to the embodiment.
  • the online parameter identification method for a three-phase asynchronous motor includes:
  • the manner of obtaining the stator voltage of the three-phase asynchronous motor can be performed by any means in the prior art, for example, the stator voltage can be directly detected by the voltage sensor.
  • stator voltage can also be obtained by the following steps:
  • the operation of the three-phase asynchronous motor is generally controlled by the controller.
  • the controller may obtain the control parameter by means of direct input by the user, or may be obtained from the server, or may obtain the corresponding control parameter through feedback adjustment.
  • the controller obtains the corresponding control parameters
  • the corresponding stator voltage can be calculated. More specifically, the calculation of the stator voltage by the control parameters is well known to those skilled in the art, and can be directly implemented by those skilled in the art through the prior art. For brevity, no further details are provided herein.
  • stator voltage can also be obtained by the voltage reconstruction method in the prior art.
  • Steps and Calculation Formulas of Voltage Reconstruction Method Those skilled in the art can also refer to related content in the prior art.
  • stator voltage is subjected to DQ coordinate system transformation to obtain a stator voltage space vector DQ component.
  • the method and the calculation formula for performing the DQ coordinate system transformation on the stator voltage to obtain the stator voltage space vector DQ component are both existing and well known to those skilled in the art, and those skilled in the art can according to the existing formula and method.
  • the above transformation is performed, and details are not described herein again.
  • the D axis represents the excitation axis
  • the Q axis represents the torque axis.
  • the above transformation method and calculation formula can also be solidified into a program or a circuit, thereby directly performing calculations through programs and circuits to simplify the process and improve efficiency.
  • obtaining the stator current of the three-phase asynchronous motor can be performed by any means in the prior art, for example, the stator current can be directly detected by the current sensor.
  • stator current is subjected to DQ coordinate system transformation to obtain a stator current space vector DQ component.
  • the method and calculation formula for performing DQ coordinate system transformation on the stator current to obtain the stator current space vector DQ component are both existing and well known to those skilled in the art, and those skilled in the art can according to existing formulas and methods.
  • the above transformation is performed, and details are not described herein again.
  • the D axis represents the excitation axis
  • the Q axis represents the torque axis.
  • the above transformation method and calculation formula can also be solidified into a program or a circuit, thereby directly performing calculations through programs and circuits to simplify the process and improve efficiency.
  • obtaining the rotor speed of the three-phase asynchronous motor can be performed by any means in the prior art, for example, the rotational speed of the rotor can be directly detected by the rotational speed sensor.
  • the slip rate s can be calculated by a conventional method such as a slip rate measuring instrument, a flash method, an induction coil method, a rotational speed measuring method, and the like. These measuring methods are all well-known methods in the art, and the technician can refer to the existing method. The standard is calculated.
  • the synchronous rotational speed ⁇ s of the three-phase asynchronous motor can be calculated according to the rotor rotational speed ⁇ m and the slip ratio s according to the following formula:
  • ⁇ s ⁇ m /(1-s).
  • S104 Calculate the rotor resistance by using the first calculation formula according to the stator voltage, the stator current, the rotor speed, and the synchronous speed, and a given stator inductance, rotor inductance, and stator resistance.
  • the specific values of the stator resistance Rs, the stator inductance Ls, and the rotor inductance Lr can be obtained from the manufacturer of the three-phase asynchronous motor, or from the instruction manual of the three-phase asynchronous motor, and of course, can also be tested by no-load test. Transfer test or other test methods are obtained.
  • FIG. 2 is an equivalent circuit diagram of the three-phase asynchronous motor given in the embodiment.
  • R s is the stator resistance
  • R r is the rotor resistance
  • X s is the stator reactance
  • X r is the rotor reactance
  • X m is the mutual resistance
  • j is the expression in which it is perpendicular to the vector direction.
  • U sd and U sq are the stator voltage of the motor
  • I sd and I sq are the stator currents
  • U rd and U rq are the rotor voltages of the motor
  • I rd and I rq are the rotor currents
  • U Id and U Iq are the excitations. Voltage.
  • the subscript d represents the D-axis component of the vector
  • q represents the Q-axis component of the vector.
  • R s is the stator resistance of the motor
  • R r is the rotor resistance
  • L s is the stator inductance
  • L r is the rotor inductance
  • L m is the stator and rotor mutual inductance.
  • the rotor resistance Rr can be directly calculated when the stator voltage, the stator current, the rotor rotational speed, the synchronous rotational speed, the stator inductance, the rotor inductance, and the stator resistance are known.
  • the rotor resistance Rr and the stator and rotor mutual inductance can be recognized online in real time.
  • Lm the identified rotor resistance Rr and stator-rotor mutual inductance Lm can be used to make the vector-controlled magnetic field orientation more precise.
  • the magnetic flux and the phase angle are calculated by a known method by the rotor resistance Rr and the stator and rotor mutual inductance Lm, thereby performing more precise vector control of the three-phase asynchronous motor according to the magnetic flux and the phase angle.
  • the online parameter identification method for the three-phase asynchronous motor of the embodiment uses the first calculation formula based on the quadratic equation, the calculation amount is small, the convergence is good, and the accuracy is high, and the rotor resistance can be recognized in real time during the running of the motor, and then The rotor resistance calculates the mutual inductance of the stator and rotor to improve the control precision of the vector control of the three-phase asynchronous motor.
  • the online parameter identification method and device for three-phase asynchronous motor provided by the invention can accurately identify the rotor of the three-phase asynchronous motor under various working conditions.
  • the resistors in turn, give the stator and rotor mutual inductance, which is highly adaptable and flexible.
  • the embodiment provides an online parameter identification device for a three-phase asynchronous motor, which is used to implement the online parameter identification method for the three-phase asynchronous motor of the first embodiment.
  • FIG. 3 is a schematic structural diagram of an online parameter identification device for a three-phase asynchronous motor according to the embodiment, which includes a three-phase asynchronous motor to be identified;
  • FIG. 4 is a partial enlarged view of the controller of FIG.
  • the online parameter identification device for the three-phase asynchronous motor of the embodiment includes:
  • a stator voltage obtaining module 1 for acquiring a stator voltage of the three-phase asynchronous motor
  • a stator current obtaining module 2 configured to acquire a stator current of the three-phase asynchronous motor
  • a rotor speed obtaining module 3 configured to acquire a rotor speed of the three-phase asynchronous motor
  • Processing module 4 the processing module includes: synchronous rotational speed calculation unit 41 and rotor resistance calculation unit 43;
  • the synchronous rotational speed calculating unit 41 is configured to calculate a synchronous rotational speed according to the rotor rotational speed and the given slip ratio; the rotor resistance calculating unit 43 is configured to use the stator voltage, the stator current, the rotor rotational speed, the synchronous rotational speed, and the given stator. Inductance, rotor inductance, and stator resistance are calculated using the first calculation formula.
  • the stator voltage acquisition module 1 may be a voltage sensor
  • the stator current acquisition module 2 may be a current sensor
  • the rotor rotation speed acquisition module 3 may be a rotational speed sensor
  • the processing module 4 may be a program, an integrated circuit, software, or may be processed.
  • the chip, or it may also be a processor, such as a controller for controlling the rotation of a three-phase asynchronous motor.
  • the three-phase asynchronous motor online parameter identification device further includes: a stator voltage conversion module 5 and a stator current conversion module 6; wherein the stator voltage conversion module 5 is configured to perform DQ coordinate system transformation on the stator voltage to obtain a stator voltage space vector.
  • the DQ component; the stator current conversion module 6 is configured to perform a DQ coordinate system transformation on the stator current to obtain a stator current space vector DQ component.
  • the rotor resistance calculation unit 43 in the processing module 4 can utilize the stator voltage space vector DQ component, the stator current space vector DQ component, the rotor rotational speed, the synchronous rotational speed, the stator inductance, the rotor inductance, the stator resistance, and the stator resistance.
  • the first calculation formula of one calculates the rotor resistance, that is, the rotor resistance is calculated by the formula (6) in the first embodiment.
  • the stator voltage conversion module 5 and the stator current conversion module 6 may be separately provided, or may be a program, software or circuit integrated in the controller, and may of course be a storable medium.
  • the processing module 4 further includes a fixed rotor mutual inductance calculation unit 45, so that the stator and rotor mutual inductance Lm can be calculated by the fixed rotor mutual inductance calculation unit 45.
  • the stator-rotor mutual inductance calculation unit uses the second calculation in the first embodiment according to the rotor resistance, the stator voltage space vector DQ component, the stator current space vector DQ component, the rotor rotational speed, the synchronous rotational speed, the stator inductance, the rotor inductance, and the stator resistance.
  • the formula (7) calculates the stator rotor mutual inductance Lm.
  • the fixed rotor mutual inductance calculation unit 45 may be a program, software, circuit, or storable medium that is separate or integrated in the controller.
  • the stator voltage acquisition module 1 includes a control parameter acquisition unit 11 and a stator voltage calculation unit 13.
  • the control parameter acquisition unit 11 is configured to acquire control parameters (control commands) of the three-phase asynchronous motor; the stator voltage calculation unit 13 calculates the stator voltage according to the control parameters.
  • the control parameter obtaining unit 11 may be a subunit of the controller for acquiring a control parameter input by the user for controlling the three-phase asynchronous motor from the input device, or may be a subunit for using the slave server or The control parameters of the three-phase asynchronous motor are read in other storage devices.
  • the stator voltage calculation unit 13 calculates the stator voltage from the above-described control parameters by a calculation method and a calculation step which have been generally known to those skilled in the art in the prior art.
  • the control parameter acquisition unit 11 and the stator voltage calculation unit 13 may be programs, software, circuits, or storable media integrated in the controller.
  • the online parameter identification device of the three-phase asynchronous motor may be hardware, software or a combination of hardware and software.
  • the three-phase asynchronous motor online parameter identification device may be that the method of Embodiment 1 is solidified in a program, software or a storable medium; or the calculation formula may be solidified in the application software of the controller, and the stator current is obtained. Both the module and the rotor speed acquisition module use objective sensors.
  • the online parameter identification device for the three-phase asynchronous motor of the embodiment adopts the first calculation formula based on the quadratic equation, and has small calculation amount, good convergence and high accuracy, and can recognize the rotor resistance in real time during the running of the motor, and then according to The rotor resistance calculates the mutual inductance of the stator and rotor to improve the control precision of the vector control of the three-phase asynchronous motor.
  • the online parameter identification method and device for three-phase asynchronous motor provided by the invention can accurately identify the rotor of the three-phase asynchronous motor under various working conditions.
  • the resistors in turn, give the stator and rotor mutual inductance, which is highly adaptable and flexible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种三相异步电机在线参数辨识方法及装置。其中,三相异步电机在线参数辨识方法包括以下步骤:获取三相异步电机的定子电压(S101)、定子电流(S102)和转子转速,并根据转子转速和给定的转差率计算得到同步转速(S103);根据所述定子电压、定子电流、转子转速和同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻(S104)。三相异步电机在线参数辨识装置包括:定子电压获取模块(1)、定子电流获取模块(2)、转子转速获取模块(3)、以及包括同步转速计算单元(41)和转子电阻计算单元(43)的处理模块。所提供的三相异步电机在线参数辨识方法及装置,利用基于一元二次方程的第一计算式来计算转子电阻,计算量小、收敛性好、准确度高。

Description

三相异步电机在线参数辨识方法及装置 技术领域
本发明涉及一种三相异步电机在线参数辨识方法及装置,属于电动机控制技术领域。
背景技术
随着节能环保意识的增强,三相异步电机的使用越来越多,尤其是在轨道交通设备上基本都已经使用交流电进行传动。
但是,三相异步电机在整个工作运行期间内其各项参数并非恒定不变,而是随着电机工况的不断变化在一定范围内变动,如三相异步电机内温度变化、集肤效应、磁场饱和程度变化均会引起参数的变化,但这种参数的改变规律是无法实现预测的。因此,需要对电机的内部与控制紧密相关的参数进行辨识,以实现对三相异步电机的精准控制。
现有的三相异步电机在线参数辨识方法一般采用的是模型参考自适应法。该方法通过设定两组具有相同物理意义的输出模型:参考模型和可调模型,利用两个模型输出量的偏差,根据一定的自适应规律来动态更新可调模型的参数,使两者的偏差不断减小,最后当两者的偏差稳定在一定的误差范围内时则取此时可调模型的参数为当前电机的实际参数,从而实现电机参数的辨识。但是,这种方法需要附加较强的假设条件,这些假设条件在实践中往往难以满足或仅在电机运行的某些工况满足,很难做到全局辨识的参数稳定、准确。
发明内容
本发明的目的是提供一种三相异步电机在线参数辨识方法及装置,以解决现有技术中三相异步电机在线参数辨识方法辨识参数不准确的问题。
为了达到上述目的,本申请提供了以下技术方案:
第一方面,提供一种三相异步电机在线参数辨识方法,包括以下步 骤:获取所述三相异步电机的定子电压;获取所述三相异步电机的定子电流;获取所述三相异步电机的转子转速,并根据所述转子转速和给定的转差率计算得到同步转速;根据所述定子电压、定子电流、转子转速和同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
上述三相异步电机在线参数辨识方法的进一步改进,还包括:对所述定子电压进行DQ坐标系变换以获得定子电压空间矢量DQ分量;对所述定子电流进行DQ坐标系变换以获得定子电流空间矢量DQ分量;根据所述定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速和同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
上述三相异步电机在线参数辨识方法的进一步改进,根据所述转子电阻、定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速、同步转速、定子电感、转子电感、定子电阻,利用第二计算式计算定转子互感。
上述三相异步电机在线参数辨识方法的进一步改进,获取所述三相异步电机的控制参数,根据所述控制参数计算得到所述定子电压。
第二方面,提供一种三相异步电机在线参数辨识装置,包括:定子电压获取模块,用于获取所述三相异步电机的定子电压;定子电流获取模块,用于获取所述三相异步电机的定子电流;转子转速获取模块,用于获取所述三相异步电机的转子转速;处理模块,所述处理模块包括:同步转速计算单元和转子电阻计算单元;所述同步转速计算单元,用于根据所述转子转速和给定的转差率计算同步转速;所述转子电阻计算单元,用于根据所述定子电压、定子电流、转子转速、同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
上述三相异步电机在线参数辨识装置的进一步改进,还包括:定子电压变换模块,用于对所述定子电压进行DQ坐标系变换以获得定子电压空间矢量DQ分量;定子电流变换模块,用于对所述定子电流进行DQ坐标系变换以获得定子电流空间矢量DQ分量。
上述三相异步电机在线参数辨识装置的进一步改进,所述处理模块 还包括定转子互感计算单元,用于根据所述转子电阻、定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速、同步转速、定子电感、转子电感以及定子电阻,利用第二计算式计算所述定转子互感。
上述三相异步电机在线参数辨识装置的进一步改进,所述定子电压获取模块包括:控制参数获取单元,用于获取所述三相异步电机的控制参数;定子电压计算单元,用于根据所述控制参数计算得到所述定子电压。
本发明提供的三相异步电机在线参数辨识方法及装置,利用基于一元二次方程的第一计算式来计算转子电阻,计算量小、收敛性好、准确度高,可以在电机运行过程中实时辨识转子电阻,进而根据转子电阻计算定转子互感以提升三相异步电机矢量控制的控制精度。而且,本发明提供的三相异步电机在线参数辨识方法及装置可以准确辨识出各种工况下的三相异步电机的转子电阻,进而得到定转子互感,具有很强的适应性和灵活性。
附图说明
图1为本发明实施例一所给出的三相异步电机在线参数辨识方法的流程图;
图2为本发明实施例一所给出的三相异步电机的等效电路图;
图3为本发明实施例二所给出的三相异步电机在线参数辨识装置的结构示意图;
图4为图3中控制器的局部放大图。
图中:
1、定子电压获取模块;               11、控制参数获取单元;
13、定子电压计算单元;              2、定子电流获取模块;
3、转子转速获取模块;               4、处理模块;
41、同步转速计算单元;              43、转子电阻计算单元;
45、定转子互感计算单元;            5、定子电压变换模块;
6、定子电流变换模块。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,本发明不局限于下述的具体实施方式。
实施例一
三相异步电机(Triple-phase asynchronous motor)是靠同时接入380V三相交流电源(相位差120度)供电的一类电动机,由于三相异步电机的转子与定子旋转磁场以相同的方向、不同的转速旋转,二者的转速之间存在差值,所以叫三相异步电机。
当电动机的三相定子绕组通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动转子旋转,并且电机旋转方向与旋转磁场方向相同。
图1为本实施例所给出的三相异步电机在线参数辨识方法的流程图。
如图1所示,本实施例提供的三相异步电机在线参数辨识方法,包括:
S101、获取所述三相异步电机的定子电压。
具体的,获取三相异步电机定子电压的方式可以通过现有技术中的任意手段进行,例如可以通过电压传感器直接检测定子电压。
进一步,还可以通过以下步骤获取定子电压:
获取所述三相异步电机的控制参数,根据所述控制参数计算得到所述定子电压。
在三相异步电机的实际工作过程中,一般通过控制器来控制三相异步电机的工作。具体来说,控制器获取控制参数的方式可以是通过用户直接输入的方式,或者也可以是从服务器中获取,或者还可以是通过反馈调节获取到相应的控制参数。控制器获取到相应的控制参数后可以计算得到相应的定子电压。更具体的,通过控制参数计算定子电压属于本领域技术人员公知的内容,本领域技术人员可以通过现有技术直接实现,为了简洁,在此不再进行赘述。
当然,定子电压还可以通过现有技术中的电压重构法获得,具体的 电压重构法的步骤和计算公式本领域技术人员也可以参考现有技术中的有关内容。
更进一步,对所述定子电压进行DQ坐标系变换以获得定子电压空间矢量DQ分量。
具体的,对定子电压进行DQ坐标系变换以获得定子电压空间矢量DQ分量的方法和计算公式都是现有的且为本领域技术人员所熟知,本领域技术人员可以根据现有的公式和方法进行上述变换,在此不再赘述。其中,D轴表示励磁轴,Q轴表示转矩轴。当然,在实际应用过程中也可以将上述变换方法和计算公式固化到程序或者电路中,从而通过程序和电路直接进行计算以简化流程和提高效率。
S102、获取所述三相异步电机的定子电流。
具体的,获取三相异步电机的定子电流可以通过现有技术中的任意手段进行,例如可以通过电流传感器直接检测定子电流。
进一步,对所述定子电流进行DQ坐标系变换以获得定子电流空间矢量DQ分量。
具体的,对定子电流进行DQ坐标系变换以获得定子电流空间矢量DQ分量的方法和计算公式都是现有的且为本领域技术人员所熟知,本领域技术人员可以根据现有的公式和方法进行上述变换,在此不再赘述。同样的,D轴表示励磁轴,Q轴表示转矩轴。此外,在实际应用过程中,也可以将上述变换方法和计算公式固化到程序或者电路中,从而通过程序和电路直接进行计算以简化流程和提高效率。
S103、获取所述三相异步电机的转子转速,并根据所述转子转速和给定的转差率计算得到同步转速。
具体的,获取三相异步电机的转子转速可以通过现有技术中的任意手段进行,例如可以通过转速传感器直接检测转子转速。
在本实施例中,转差率s指三相异步电机的同步转速(旋转磁场转速)和转子转速的差值与同步转速之比,也即s=(ωsm)/ωs。其中,转差率s可以通过转差率测量仪、闪光法、感应线圈法、转速测量仪法等现有方法计算得到,这些测量方法都是本领域中公知的方法,技术人员可以参照现有的标准进行计算。
此外,在本实施例中,根据转子转速ωm和转差率s可以根据以下公式计算得到三相异步电机的同步转速ωs
ωs=ωm/(1-s)。
S104、根据所述定子电压、定子电流、转子转速和同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
具体的,定子电阻Rs、定子电感Ls和转子电感Lr的具体数值可以从三相异步电机的厂商处获得,或者从该三相异步电机的使用说明书里获得,当然也可以通过空载试验、堵转试验或者其他测试方法获得。
图2为本实施例所给出的三相异步电机的等效电路图。
由图2所示的等效电路,根据电流、电压、感抗之间的关系,可以得到三相异步电机的矢量数学表达式:
Figure PCTCN2016105624-appb-000001
上述表达式中,
Figure PCTCN2016105624-appb-000002
为定子电压,
Figure PCTCN2016105624-appb-000003
为励磁电压,
Figure PCTCN2016105624-appb-000004
为转子电压,
Figure PCTCN2016105624-appb-000005
为定子电流,
Figure PCTCN2016105624-appb-000006
为转子电流,
Figure PCTCN2016105624-appb-000007
为励磁电流。
Rs为定子电阻,Rr为转子电阻Xs为定子电抗,Xr为转子电抗,Xm为互抗,j代表其所在的表达式与其中的矢量方向是垂直的。
可以理解,上述表达式中共有5个矢量等式、6个矢量变量
Figure PCTCN2016105624-appb-000008
以及两个标量变量(ωsm)。
将上述表达式中的一个矢量等式变换成两个标量等式,同时将矢量变量变换为与标量等式相对应的标量变量,并且,在变换过程中,令Usd=0,则:
Figure PCTCN2016105624-appb-000009
从而可以得到下述表达式:
Figure PCTCN2016105624-appb-000010
Figure PCTCN2016105624-appb-000011
Figure PCTCN2016105624-appb-000012
Figure PCTCN2016105624-appb-000013
Figure PCTCN2016105624-appb-000014
上述表达式中,Usd、Usq为电机定子电压,Isd、Isq为定子电流,Urd、Urq为电机转子电压,Ird、Irq为转子电流,UId、UIq为励磁电压。其中,下标d所代表的是该矢量的D轴分量,q所代表的是该矢量的Q轴分量。
Rs为电机定子电阻,Rr为转子电阻,Ls为定子电感,Lr为转子电感,Lm为定转子互感。
对公式(1)、(2)、(3)、(4)和(5)进行化简,得到包括转子电阻Rr的二次一元等式为:
Figure PCTCN2016105624-appb-000015
即,
Figure PCTCN2016105624-appb-000016
对其求解,可得到计算转子电阻Rr的第一计算式:
Figure PCTCN2016105624-appb-000017
上述公式中,
Figure PCTCN2016105624-appb-000018
根据上述公式(6),在已知定子电压、定子电流、转子转速、同步转速、定子电感、转子电感、定子电阻时即可直接计算得到转子电阻Rr。
进一步,得到上述转子电阻Rr后,可以继续执行以下步骤:
S105、根据所述转子电阻、定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速、同步转速、定子电感、转子电感、定子电阻,利用第二计算式计算定转子互感。
具体的,通过将上述第一计算式计算得到的转子电阻Rr带入公式(1)、(2)、(3)、(4)和(5)中进行化简,可以得到计算定转子互感Lm的第二计算式:
Figure PCTCN2016105624-appb-000019
将上述(6)和(7)两个公式离散化并固化在计算机或者计算器的程序中,又或者固化在电路中或者可存储介质中,即可在线实时辨识出转子电阻Rr和定转子互感Lm,然后就可以利用辨识得到的转子电阻Rr和定转子互感Lm来使得矢量控制的磁场定向更加精准。例如,通过转子电阻Rr和定转子互感Lm利用已知方法计算出磁通以及相位角,从而根据磁通以及相位角对三相异步电机进行更精准的矢量控制。
本实施例的三相异步电机在线参数辨识方法,利用基于一元二次方程的第一计算式,计算量小、收敛性好、准确度高,可以在电机运行过程中实时辨识转子电阻,进而根据转子电阻计算定转子互感以提升三相异步电机矢量控制的控制精度。而且,本发明提供的三相异步电机在线参数辨识方法及装置可以准确辨识出各种工况下的三相异步电机的转子 电阻,进而得到定转子互感,具有很强的适应性和灵活性。
实施例二
本实施例提供了一种三相异步电机在线参数辨识装置,用来实现实施例一的三相异步电机在线参数辨识方法。
图3是本实施例提供的三相异步电机在线参数辨识装置的结构示意图,其包括待辨识参数的三相异步电机;图4是图3中控制器的局部放大图。
如图3和4所示,本实施例的三相异步电机在线参数辨识装置,包括:
定子电压获取模块1,用于获取三相异步电机的定子电压;
定子电流获取模块2,用于获取三相异步电机的定子电流;
转子转速获取模块3,用于获取三相异步电机的转子转速;
处理模块4,该处理模块包括:同步转速计算单元41和转子电阻计算单元43;
其中,同步转速计算单元41,用于根据转子转速和给定的转差率计算同步转速;转子电阻计算单元43,用于根据定子电压、定子电流、转子转速、同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
具体的,定子电压获取模块1可以是电压传感器,定子电流获取模块2可以是电流传感器,转子转速获取模块3可以是转速传感器,处理模块4可以是程序、集成电路、软件,或者也可以是处理芯片,或者还可以是处理器,例如用于控制三相异步电机转动的控制器。
进一步,该三相异步电机在线参数辨识装置还包括:定子电压变换模块5和定子电流变换模块6;其中,定子电压变换模块5,用于对定子电压进行DQ坐标系变换以获得定子电压空间矢量DQ分量;定子电流变换模块6,用于对定子电流进行DQ坐标系变换以获得定子电流空间矢量DQ分量。这样,处理模块4中的转子电阻计算单元43即可根据定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速、同步转速、定子电感、转子电感、定子电阻以及定子电阻,利用实施例一中的第一计算式计算转子电阻,也即,利用实施例一中的公式(6)计算转子电阻。当 然,定子电压变换模块5和定子电流变换模块6可以是单独设置的,或者是集成在控制器中的程序、软件或者是电路,当然也可以是可存储介质。
进一步,在一种可选的实施方式中,处理模块4还包括定转子互感计算单元45,从而可以通过定转子互感计算单元45计算定转子互感Lm。具体的,定转子互感计算单元根据转子电阻、定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速、同步转速、定子电感、转子电感以及定子电阻,利用实施例一中的第二计算式(公式(7))计算定转子互感Lm。当然,定转子互感计算单元45可以是单独或者集成在控制器中的程序、软件、电路或者可存储介质。
进一步,定子电压获取模块1包括:控制参数获取单元11和定子电压计算单元13。其中,控制参数获取单元11,用于获取三相异步电机的控制参数(控制指令);定子电压计算单元13根据上述控制参数计算得到定子电压。具体的,控制参数获取单元11可以是控制器中的一个子单元用来从输入装置中获取用户输入的用于控制三相异步电机的控制参数,当然也可以是一个子单元用来从服务器或者其他存储装置中读取三相异步电机的控制参数。定子电压计算单元13则根据上述控制参数通过现有技术中已经被本领域技术人员普遍了解的计算方法和计算步骤计算得到定子电压。控制参数获取单元11和定子电压计算单元13可以是集成在控制器中的程序、软件、电路或者可存储介质。
需要说明的是,在本实施例中,三相异步电机在线参数辨识装置可以是硬件,软件或者软硬件的结合。例如,三相异步电机在线参数辨识装置可以是将实施例1的方法固化在一个程序、软件或者可存储介质中;或者也可以是将计算公式固化在控制器的应用软件中,而定子电流获取模块和转子转速获取模块均采用客观上的传感器。
本实施例的三相异步电机在线参数辨识装置,利用基于一元二次方程的第一计算式,计算量小、收敛性好、准确度高,可以在电机运行过程中实时辨识转子电阻,进而根据转子电阻计算定转子互感以提升三相异步电机矢量控制的控制精度。而且,本发明提供的三相异步电机在线参数辨识方法及装置可以准确辨识出各种工况下的三相异步电机的转子 电阻,进而得到定转子互感,具有很强的适应性和灵活性。
最后应说明的是:以上实施方式仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施方式对本发明已经进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施方式技术方案的范围。

Claims (8)

  1. 一种三相异步电机在线参数辨识方法,其特征在于,包括以下步骤:
    获取所述三相异步电机的定子电压;
    获取所述三相异步电机的定子电流;
    获取所述三相异步电机的转子转速,并根据所述转子转速和给定的转差率计算得到同步转速;
    根据所述定子电压、定子电流、转子转速和同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
  2. 根据权利要求1所述的三相异步电机在线参数辨识方法,其特征在于,还包括:
    对所述定子电压进行DQ坐标系变换以获得定子电压空间矢量DQ分量;
    对所述定子电流进行DQ坐标系变换以获得定子电流空间矢量DQ分量;
    根据所述定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速和同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
  3. 根据权利要求2所述的三相异步电机在线参数辨识方法,其特征在于,
    根据所述转子电阻、定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速、同步转速、定子电感、转子电感、定子电阻,利用第二计算式计算定转子互感。
  4. 根据权利要求1-3任一项所述的三相异步电机在线参数辨识方法,其特征在于,获取所述定子电压包括:
    获取所述三相异步电机的控制参数,根据所述控制参数计算得到所述定子电压。
  5. 一种三相异步电机在线参数辨识装置,其特征在于,包括:
    定子电压获取模块,用于获取所述三相异步电机的定子电压;
    定子电流获取模块,用于获取所述三相异步电机的定子电流;
    转子转速获取模块,用于获取所述三相异步电机的转子转速;
    处理模块,所述处理模块包括:同步转速计算单元和转子电阻计算单元;
    所述同步转速计算单元,用于根据所述转子转速和给定的转差率计算同步转速;
    所述转子电阻计算单元,用于根据所述定子电压、定子电流、转子转速、同步转速,以及给定的定子电感、转子电感和定子电阻,利用第一计算式计算转子电阻。
  6. 根据权利要求5所述的三相异步电机在线参数辨识装置,其特征在于,还包括:
    定子电压变换模块,用于对所述定子电压进行DQ坐标系变换以获得定子电压空间矢量DQ分量;
    定子电流变换模块,用于对所述定子电流进行DQ坐标系变换以获得定子电流空间矢量DQ分量。
  7. 根据权利要求6所述的三相异步电机在线参数辨识装置,其特征在于,所述处理模块还包括定转子互感计算单元,用于根据所述转子电阻、定子电压空间矢量DQ分量、定子电流空间矢量DQ分量、转子转速、同步转速、定子电感、转子电感以及定子电阻,利用第二计算式计算所述定转子互感。
  8. 根据权利要求5-7任一项所述的三相异步电机在线参数辨识装置,其特征在于,所述定子电压获取模块包括:
    控制参数获取单元,用于获取所述三相异步电机的控制参数;
    定子电压计算单元,用于根据所述控制参数计算得到所述定子电压。
PCT/CN2016/105624 2016-08-08 2016-11-14 三相异步电机在线参数辨识方法及装置 WO2018028067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610643768.XA CN106169894B (zh) 2016-08-08 2016-08-08 三相异步电机在线参数辨识方法及装置
CN201610643768.X 2016-08-08

Publications (1)

Publication Number Publication Date
WO2018028067A1 true WO2018028067A1 (zh) 2018-02-15

Family

ID=58064750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105624 WO2018028067A1 (zh) 2016-08-08 2016-11-14 三相异步电机在线参数辨识方法及装置

Country Status (2)

Country Link
CN (1) CN106169894B (zh)
WO (1) WO2018028067A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140009A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 積層体
JP2020140010A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 積層体及び表示装置
JP2020138377A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 フレキシブル積層体
JP2020138378A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 フレキシブル積層体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749822B (zh) * 2019-11-05 2021-07-30 欧瑞传动电气股份有限公司 异步电机转子电阻的辨识方法
CN110932610B (zh) * 2019-12-20 2022-06-21 山东华普特电机有限公司 双异步电机的同步控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188398A (zh) * 2007-11-30 2008-05-28 艾默生网络能源有限公司 异步电机转子电阻的在线识别方法
CN102072779A (zh) * 2010-11-17 2011-05-25 哈尔滨工业大学 基于转子槽谐波分析的潜油电机无传感器转子温度辨识方法
CN103023421A (zh) * 2012-12-24 2013-04-03 深圳市汇川技术股份有限公司 基于功率计算的转差估计系统及方法
CN103956957A (zh) * 2014-05-16 2014-07-30 南车株洲电力机车研究所有限公司 一种异步电机转子电阻辨识方法和装置
CN105811833A (zh) * 2016-04-21 2016-07-27 中国船舶重工集团公司第七〇二研究所 一种交流异步电机转子时间常数调节方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039907A (en) * 1973-08-20 1977-08-02 Otis Elevator Company Thrust control circuit
JPH09304489A (ja) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd 誘導電動機のモータ定数測定方法
KR19990086188A (ko) * 1998-05-26 1999-12-15 윤종용 유도 전동기에서의 고정자 및 회전자 저항값 추정방법
CN1157845C (zh) * 2001-11-28 2004-07-14 艾默生网络能源有限公司 异步电机参数辨识方法
CN103986396B (zh) * 2014-05-16 2015-09-23 南车株洲电力机车研究所有限公司 一种异步电机互感参数辨识方法和装置
KR102286371B1 (ko) * 2014-06-19 2021-08-05 현대모비스 주식회사 모터 온도 변화 제어 장치 및 방법
CN104218866A (zh) * 2014-09-17 2014-12-17 深圳市安邦信电子有限公司 一种异步电机转子电阻在线识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188398A (zh) * 2007-11-30 2008-05-28 艾默生网络能源有限公司 异步电机转子电阻的在线识别方法
CN102072779A (zh) * 2010-11-17 2011-05-25 哈尔滨工业大学 基于转子槽谐波分析的潜油电机无传感器转子温度辨识方法
CN103023421A (zh) * 2012-12-24 2013-04-03 深圳市汇川技术股份有限公司 基于功率计算的转差估计系统及方法
CN103956957A (zh) * 2014-05-16 2014-07-30 南车株洲电力机车研究所有限公司 一种异步电机转子电阻辨识方法和装置
CN105811833A (zh) * 2016-04-21 2016-07-27 中国船舶重工集团公司第七〇二研究所 一种交流异步电机转子时间常数调节方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140009A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 積層体
JP2020140010A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 積層体及び表示装置
JP2020138377A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 フレキシブル積層体
JP2020138378A (ja) * 2019-02-27 2020-09-03 住友化学株式会社 フレキシブル積層体
JP2021184091A (ja) * 2019-02-27 2021-12-02 住友化学株式会社 積層体及び表示装置

Also Published As

Publication number Publication date
CN106169894B (zh) 2018-10-26
CN106169894A (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2018028067A1 (zh) 三相异步电机在线参数辨识方法及装置
JP5446988B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
CN105680754B (zh) 一种永磁同步电机的直交轴电流矢量复合控制器
EP3014760B1 (en) System and method of rotor time constant online identification in an ac induction machine
CN109327171A (zh) 一种适用于轨道交通牵引电机参数在线辨识的策略
CN113131817A (zh) 一种永磁同步电机在线参数辨识系统及方法
CN104852662A (zh) 永磁同步电机静态电感参数的测量方法及系统
CN102647144B (zh) 用于估计同步磁阻电动机的转子角度的方法和设备
TWI469501B (zh) 同步磁阻電動機的控制方法
CN102983807B (zh) 异步电机转子时间常数在线识别系统及方法
CN110635738B (zh) 一种永磁同步电机定子电阻及电机温度的实时辨识方法
CN106602953B (zh) 基于磁场定向准确性的感应电机转子时间常数的验证方法
CN107404273A (zh) 一种永磁同步电机电流解耦控制方法
CN108880367B (zh) 用于识别电动机的转子的电阻的方法
CN105353220B (zh) 三相异步电动机电学性能参数的辨识方法
JP5488044B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
CN106953569B (zh) 感应电机转子电阻估计方法及系统
KR101779613B1 (ko) 매입형 영구 자석 동기 전동기의 센서리스 제어를 위한 온라인 상수 보정 방법
CN103986396B (zh) 一种异步电机互感参数辨识方法和装置
KR101530543B1 (ko) 유도 전동기 및 유도 전동기의 동작을 제어하는 제어 장치
CN111934590B (zh) 一种基于全阶观测器的转速辨识方法及系统
CN108649849A (zh) 一种简单的无传感器永磁同步电机速度估测方法
JP5332667B2 (ja) 誘導電動機の制御装置
CN103888039A (zh) 一种基于转矩估算的感应电机转子磁场定向偏差校正方法
JP6108114B2 (ja) 永久磁石形同期電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912521

Country of ref document: EP

Kind code of ref document: A1