WO2022237131A1 - 一种用于永磁同步电机控制器的角度补偿方法及系统 - Google Patents

一种用于永磁同步电机控制器的角度补偿方法及系统 Download PDF

Info

Publication number
WO2022237131A1
WO2022237131A1 PCT/CN2021/133852 CN2021133852W WO2022237131A1 WO 2022237131 A1 WO2022237131 A1 WO 2022237131A1 CN 2021133852 W CN2021133852 W CN 2021133852W WO 2022237131 A1 WO2022237131 A1 WO 2022237131A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
axis
rotor
pwm
angle
Prior art date
Application number
PCT/CN2021/133852
Other languages
English (en)
French (fr)
Inventor
李卫民
李清平
孙长冬
邵壮
叶亮
王昌朋
Original Assignee
山东中科先进技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东中科先进技术研究院有限公司 filed Critical 山东中科先进技术研究院有限公司
Publication of WO2022237131A1 publication Critical patent/WO2022237131A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the printing field, in particular to an angle compensation method and system for a permanent magnet synchronous motor controller.
  • the current power source used in electric vehicles is a permanent magnet synchronous motor.
  • the comfort of the vehicle is affected by the fluctuation of the motor torque, and the accuracy of the motor torque depends on the signal quality of the position sensor. According to the electromagnetic torque equation, the deviation of the motor rotor position angle will directly affect the torque accuracy.
  • the position sensor that detects the position of the motor rotor will have a deviation when it is installed. This deviation is generally corrected by fine-tuning on the test bench. Another type of deviation is caused by the delay caused by the angle decoding chip and the delay caused by the program algorithm in the actual motor controller. This type of deviation is obvious when the motor is running at high speed, and it is necessary to consider comprehensively compensating the angle value from the aspects of control algorithm and chip computing capability.
  • the angle error caused by chip sampling is not compensated in the usual motor control program.
  • the purpose of the present invention is to provide an angle compensation method and system for a permanent magnet synchronous motor controller, so as to improve the position accuracy of the motor, thereby ensuring the accuracy of the motor torque.
  • the present invention provides the following scheme:
  • An angle compensation method for a permanent magnet synchronous motor controller is applied to the current closed-loop control of a permanent magnet synchronous motor, the method comprising:
  • the current rotor angle calculates the rotor angle at the moment of switching from the current half cycle of PWM to the next half cycle of PWM;
  • the current rotational speed of the motor and the compensation time calculate the rotor angle at the moment of switching from the current half cycle of PWM to the next half cycle of PWM, specifically including:
  • is the rotor angle at the switching moment
  • ⁇ 0 is the rotor angle at the end of ADC sampling
  • ⁇ e is the electrical angular velocity
  • t is the compensation time
  • n is the current speed of the motor
  • N is the number of pole pairs.
  • the duty ratio command value of the next half cycle of the PWM is calculated, specifically including:
  • the duty ratio command value of the next half period of PWM is calculated.
  • the control voltage value in the rotor coordinate system is obtained, specifically including:
  • Clark transformation and Park transformation are performed on the ADC sampling current to obtain a d-axis feedback current and a q-axis feedback current;
  • the PI algorithm is adopted, and the formula Obtain the control voltage value in the rotor coordinate system
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • K pd and K pq are the proportional gains of the d-axis and q-axis of the PI controller, respectively
  • K id and K iq are respectively Integral gain of the d-axis and q-axis of the PI controller
  • s is the Laplacian operator
  • i d is the d-axis feedback current
  • ⁇ e is the electrical angular velocity
  • L d and L q are the d-axis inductance and q-axis inductance
  • i q is the q-axis feedback current, is the permanent magnet flux linkage.
  • the duty ratio command value of the next half cycle of PWM is calculated, specifically including:
  • the SVPWM algorithm is used to calculate the duty cycle command value of the next half cycle of PWM
  • V ⁇ and V ⁇ are the control voltage values of the ⁇ -axis and ⁇ -axis in the stator coordinate system, respectively
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • is the rotor at the switching moment angle.
  • An angle compensation system for a permanent magnet synchronous motor controller is applied to the current closed-loop control of a permanent magnet synchronous motor, and the system includes:
  • the ADC sampling module is used to obtain the sampling time, ADC sampling current, current rotor angle and motor current speed consumed by ADC sampling of the current of the permanent magnet synchronous motor when the current half cycle of the PWM triggers the ADC sampling interruption;
  • Compensation time acquisition module used to subtract the sampling time from the time of PWM half cycle as compensation time
  • the rotor angle calculation module is used to calculate the rotor angle at the moment of switching from the current half cycle of PWM to the next half cycle of PWM according to the current rotor angle, the current speed of the motor and the compensation time;
  • the duty ratio instruction value calculation module is used to calculate the duty ratio instruction value of the next half cycle of PWM according to the rotor angle at the switching moment and the ADC sampling current.
  • the rotor angle calculation module specifically includes:
  • the rotor angle calculation sub-module is used to use the formula according to the current rotor angle, the current speed of the motor and the compensation time Calculate the rotor angle at the moment of switching from the current half cycle of PWM to the next half cycle of PWM;
  • is the rotor angle at the switching moment
  • ⁇ 0 is the rotor angle at the end of ADC sampling
  • ⁇ e is the electrical angular velocity
  • t is the compensation time
  • n is the current speed of the motor
  • N is the number of pole pairs.
  • duty cycle command value calculation module specifically includes:
  • the control voltage value obtaining sub-module is used to obtain the control voltage value in the rotor coordinate system according to the motor control algorithm according to the ADC sampling current;
  • the duty cycle command value calculation sub-module is used to calculate the duty cycle command value of the next half cycle of PWM according to the rotor angle at the switching time and the control voltage value in the rotor coordinate system.
  • submodule for obtaining the control voltage value specifically includes:
  • the d-axis feedback current and the q-axis feedback current obtaining unit are configured to perform Clark transformation and Park transformation on the ADC sampling current according to the motor control algorithm to obtain the d-axis feedback current and the q-axis feedback current;
  • the control voltage value acquisition unit in the rotor coordinate system is used to adopt the PI algorithm according to the d-axis feedback current and the q-axis feedback current, using the formula Obtain the control voltage value in the rotor coordinate system;
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • K pd and K pq are the proportional gains of the d-axis and q-axis of the PI controller, respectively
  • K id and K iq are respectively Integral gain of the d-axis and q-axis of the PI controller
  • s is the Laplacian operator
  • i d is the d-axis feedback current
  • ⁇ e is the electrical angular velocity
  • L d and L q are the d-axis inductance and q-axis inductance
  • i q is the q-axis feedback current, is the permanent magnet flux linkage.
  • duty cycle instruction value calculation submodule specifically includes:
  • the control voltage value calculation unit in the stator coordinate system is used to use the formula according to the rotor angle at the switching moment and the control voltage value in the rotor coordinate system Calculate the control voltage value in the stator coordinate system;
  • the duty ratio instruction value calculation unit is used to calculate the duty ratio instruction value of the next half cycle of PWM by using the SVPWM algorithm according to the control voltage value in the stator coordinate system;
  • V ⁇ and V ⁇ are the control voltage values of the ⁇ -axis and ⁇ -axis in the stator coordinate system, respectively
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • is the rotor at the switching moment angle.
  • the invention discloses the following technical effects:
  • the invention provides an angle compensation method for a permanent magnet synchronous motor controller. First, the half cycle time of the PWM minus the sampling time is used as the compensation time, and then according to the current rotor angle at the end of the ADC sampling, the current speed of the motor and the compensation Time, calculate the rotor angle at the switching moment from the current half cycle of PWM to the next half cycle of PWM, and finally calculate the duty cycle command value of the next half cycle of PWM according to the rotor angle at the switching time and the ADC sampling current.
  • the present invention considers the ADC sampling time, uses the PWM half cycle time to subtract the ADC sampling time to calculate the duty ratio command value required for the next half PWM cycle, so that the position information in the control command given to the inverter unit is The current actual position is no longer the position collected in the last half PWM cycle, thereby improving the position accuracy of the motor and ensuring the accuracy of the motor torque.
  • Fig. 1 is a flow chart of an angle compensation method for a permanent magnet synchronous motor controller provided by the present invention
  • Fig. 2 is the control schematic diagram of the permanent magnet synchronous motor provided by the embodiment of the present invention.
  • Fig. 3 is the schematic diagram of the MCU control algorithm provided by the embodiment of the present invention.
  • FIG. 4 is a PWM timing diagram provided by an embodiment of the present invention.
  • the purpose of the present invention is to provide an angle compensation method and system for a permanent magnet synchronous motor controller, so as to improve the position accuracy of the motor, thereby ensuring the accuracy of the motor torque.
  • the present invention provides an angle compensation method for a permanent magnet synchronous motor controller. As shown in Figure 1, the angle compensation method is applied to the current closed-loop control of a permanent magnet synchronous motor, and the method includes:
  • is the rotor angle at the switching moment
  • ⁇ 0 is the rotor angle at the end of ADC sampling
  • ⁇ e is the electrical angular velocity
  • t is the compensation time
  • n is the current speed of the motor
  • N is the number of pole pairs.
  • Step S104-1 according to the ADC sampling current, according to the motor control algorithm, obtain the control voltage value in the rotor coordinate system, specifically including:
  • Clark transformation and Park transformation are performed on the ADC sampling current to obtain the d-axis feedback current and the q-axis feedback current;
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • K pd and K pq are the proportional gains of the d-axis and q-axis of the PI controller, respectively
  • K id and K iq are respectively Integral gain of the d-axis and q-axis of the PI controller
  • s is the Laplacian operator
  • i d is the d-axis feedback current
  • ⁇ e is the electrical angular velocity
  • L d and L q are the d-axis inductance and q-axis inductance
  • i q is the q-axis feedback current, is the permanent magnet flux linkage.
  • Step S104-2 according to the rotor angle at the switching moment and the control voltage value in the rotor coordinate system, calculate the duty ratio command value of the next half cycle of PWM, specifically including:
  • the SVPWM algorithm is used to calculate the duty cycle command value of the next half cycle of PWM
  • V ⁇ and V ⁇ are the control voltage values of the ⁇ -axis and ⁇ -axis in the stator coordinate system, respectively
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • is the rotor at the switching moment angle.
  • the invention proposes an angle compensation method for a position sensor for a vehicle-mounted high-speed permanent magnet synchronous motor.
  • the method can improve position accuracy, thereby ensuring motor torque accuracy and improving vehicle stability and comfort.
  • the present invention provides the following specific embodiments to describe in detail the principle and working process of the angle compensation method used in the permanent magnet synchronous motor controller.
  • Permanent magnet synchronous motor control generally adopts a closed-loop control method based on the rotor coordinate system.
  • the basic strategy of current closed-loop control is shown in Figure 2.
  • Id_cmd represents the d-axis current drive command
  • Iq_cmd represents the q-axis current drive command
  • EM represents the permanent magnet synchronous motor.
  • FIG. 3 is a software flow chart of the MCU (Motor control Unit) control algorithm principle.
  • Figure 4 is a PWM interrupt timing diagram, where the X-axis direction is the time axis, and the Y-axis direction is the PWM counter value.
  • the PWM interrupt counter flips every half cycle. On the left side of the figure, the PWM counter starts counting from 0, and the half-cycle counting is completed when it reaches the maximum value at the midpoint; Right zero.
  • the duty cycle of the PWM signal needs to be updated at the update point, which is the maximum point and zero point of the PWM count.
  • the starting point of the leftmost time axis in Figure 4 is the zero point of the PWM counter, which starts to enter the PWM interrupt and also triggers ADC sampling.
  • ADC sampling is divided into sampling, holding, quantization and encoding, and it takes a certain amount of time, that is, the time from point 1 to point 2 in the figure.
  • the chip only completes the sampling calculation at time point 2 to obtain the real current value and motor angle at time point 1.
  • the ADC sampling time is related to the hardware speed of different chips. Different chips need to measure and adjust the compensation time, that is, the angle compensation point A.
  • the current closed-loop program needs to be executed once every PWM half cycle, so synchronous PWM interrupt according to the timing is the ideal place to run the current closed-loop program.
  • the PWM interrupt is triggered at each flip point of the PWM counter, and the updated PWM duty cycle calculated by the previous interrupt will take effect only after the next trigger.
  • Such a delay will cause a deviation to the angle used in the inverse Park transformation, that is, the PWM duty cycle calculated earlier, the actual motor rotor angle has changed when it is executed, and the execution time of the actual PWM signal is the last PWM interrupt.
  • the angle used in the inverse Park transformation needs to be corrected to the time point when the PWM is actually executed, that is, the time from point 2 to point 5 in the figure, which is also equal to half the PWM cycle minus the time of angle compensation point A.
  • the working process is:
  • Step 1 Add a signal inversion instruction at the execution point of point 1 and point 2 of the control program, and measure the IO signal inversion time in the chip by adding a logic analyzer, that is, the time between point 1 and point 2 in the figure, so as to obtain the chip
  • a logic analyzer that is, the time between point 1 and point 2 in the figure
  • Step 2 According to the motor control algorithm, the program first executes the Clark transformation and Park transformation in Figure 2, and then obtains the required control voltage value in the rotor coordinate system through PI and other algorithms (as shown in Figure 2).
  • the PI regulator commonly used in the current loop is generally combined with a feedforward control strategy to obtain the voltage in the rotor coordinate system:
  • K pd and K pq are the proportional gains of the PI controller
  • K id and K iq are the integral gains of the PI controller.
  • Step 3 Calculate the compensation time from the half PWM cycle time and the time obtained in step 1. According to the rotor position information obtained at time point 2 and the current speed of the motor, the rotor position at the next PWM switching time is obtained.
  • Step 4 According to the rotor position calculated in step 3 and the voltage value in the rotor coordinate system obtained in step 2, the voltage value in the stator coordinate system can be obtained.
  • V ⁇ and V ⁇ are calculated using the following formula, where ⁇ is the rotor position obtained in step 3.
  • V ⁇ cos( ⁇ )*V d -sin( ⁇ )*V q
  • V ⁇ sin( ⁇ )*V d +cos( ⁇ )*V q
  • the SVPWM (Space Vector Pulse Width Modulation) algorithm is based on the average value equivalent principle, that is, by combining the basic voltage vectors within one switching cycle, the average value is equal to the given voltage vector.
  • Step 5 The chip is at the counter reversal point, and executes the PWM command value obtained in step 4.
  • the PWM instruction electrical signal sent by the chip is converted into a signal with a high level of 15V after being processed by the amplification and conditioning circuit, and directly drives the inverter unit (such as IGBT, etc., the inverter power circuit in Figure 2), thereby controlling the operation of the motor . Simultaneously repeat the aforementioned steps 1 to 4.
  • the present invention finds that the rotor angle sensor in the motor controller program will affect the torque accuracy of the control, and proposes a specific implementation method for rotor angle compensation according to the control algorithm principle and analyzing the running sequence of the actual chip.
  • the position information in the control instruction given by the chip to the inverter unit is the current actual position, which is no longer the position collected in the last half PWM cycle, thereby obtaining higher control precision.
  • the torque accuracy of the motor is improved to a certain extent.
  • the torque smoothness of the motor is better after the compensation method is adopted, and the dynamic performance and stability of the motor during operation are enhanced.
  • the present invention also provides an angle compensation system for a permanent magnet synchronous motor controller.
  • the angle compensation system is applied to the current closed-loop control of a permanent magnet synchronous motor.
  • the system includes:
  • the ADC sampling module is used to obtain the sampling time, ADC sampling current, current rotor angle and motor current speed consumed by ADC sampling of the current of the permanent magnet synchronous motor when the current half cycle of the PWM triggers the ADC sampling interruption;
  • Compensation time acquisition module used to subtract sampling time from the time of PWM half cycle as compensation time
  • the rotor angle calculation module is used to calculate the rotor angle at the moment of switching from the current half cycle of PWM to the next half cycle of PWM according to the current rotor angle, the current speed of the motor and the compensation time;
  • the duty ratio instruction value calculation module is used to calculate the duty ratio instruction value of the next half cycle of the PWM according to the rotor angle at the switching moment and the ADC sampling current.
  • the rotor angle calculation module specifically includes:
  • the rotor angle calculation sub-module is used to use the formula according to the current rotor angle, the current speed of the motor and the compensation time Calculate the rotor angle at the moment of switching from the current half cycle of PWM to the next half cycle of PWM;
  • is the rotor angle at the switching moment
  • ⁇ 0 is the rotor angle at the end of ADC sampling
  • ⁇ e is the electrical angular velocity
  • t is the compensation time
  • n is the current speed of the motor
  • N is the number of pole pairs.
  • the duty ratio instruction value calculation module specifically includes:
  • the control voltage value acquisition sub-module is used to obtain the control voltage value in the rotor coordinate system according to the motor control algorithm according to the ADC sampling current;
  • the duty cycle command value calculation sub-module is used to calculate the duty cycle command value of the next half cycle of the PWM according to the rotor angle at the switching moment and the control voltage value in the rotor coordinate system.
  • the control voltage value acquisition sub-module includes:
  • the d-axis feedback current and the q-axis feedback current obtaining unit are configured to perform Clark transformation and Park transformation on the ADC sampling current according to the motor control algorithm to obtain the d-axis feedback current and the q-axis feedback current;
  • the control voltage value acquisition unit in the rotor coordinate system is used to adopt the PI algorithm according to the d-axis feedback current and the q-axis feedback current, using the formula Obtain the control voltage value in the rotor coordinate system;
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • K pd and K pq are the proportional gains of the d-axis and q-axis of the PI controller, respectively
  • K id and K iq are respectively Integral gain of the d-axis and q-axis of the PI controller
  • s is the Laplacian operator
  • i d is the d-axis feedback current
  • ⁇ e is the electrical angular velocity
  • L d and L q are the d-axis inductance and q-axis inductance
  • i q is the q-axis feedback current, is the permanent magnet flux linkage.
  • the duty cycle command value calculation sub-module includes:
  • the control voltage value calculation unit in the stator coordinate system is used to use the formula Calculate the control voltage value in the stator coordinate system
  • the duty ratio instruction value calculation unit is used to calculate the duty ratio instruction value of the next half cycle of PWM by using the SVPWM algorithm according to the control voltage value in the stator coordinate system;
  • V ⁇ and V ⁇ are the control voltage values of the ⁇ -axis and ⁇ -axis in the stator coordinate system, respectively
  • V d and V q are the control voltage values of the d-axis and q-axis in the rotor coordinate system, respectively
  • is the rotor at the switching moment angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及一种用于永磁同步电机控制器的角度补偿方法及系统,首先将PWM半周期的时间减去采样时间作为补偿时间,然后根据ADC采样结束时的当前转子角度、电机当前转速和补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度,最后根据切换时刻的转子角度和ADC采样电流,计算PWM下一个半周期的占空比指令值。本发明考虑了ADC采样时间,利用PWM半周期的时间减去ADC采样时间去计算得出下一个半PWM周期需要的占空比指令值,使得给到逆变单元的控制指令中的位置信息是当前的实际位置,不再是上一个半PWM周期采集到的位置,从而提高了电机的位置精度,保证了电机扭矩的精度。

Description

一种用于永磁同步电机控制器的角度补偿方法及系统 技术领域
本发明涉及印刷领域,特别是涉及一种用于永磁同步电机控制器的角度补偿方法及系统。
背景技术
当前电动汽车采用的动力源是永磁同步电机,车辆的舒适性受电机扭矩波动影响,而电机扭矩的精度依赖于位置传感器的信号质量。根据电磁转矩方程,电机转子位置角度产生偏差会直接影响扭矩精度。
在实际电机生产过程中,检测电机转子位置的位置传感器安装时会产生偏差,这种偏差一般在测试台架上通过微调来进行校正。另外一类偏差是在实际电机控制器中因角度解码芯片产生延迟,以及程序算法带来的延时所导致的。这类偏差在电机高速运行时表现明显,需要考虑从控制算法、芯片运算能力等方面综合补偿该角度值。
现在通常的电机控制程序中并没有对因芯片采样导致的角度误差进行补偿。
发明内容
本发明的目的是提供一种用于永磁同步电机控制器的角度补偿方法及系统,以提高电机的位置精度,从而保证电机扭矩的精度。
为实现上述目的,本发明提供了如下方案:
一种用于永磁同步电机控制器的角度补偿方法,所述角度补偿方法应用于永磁同步电机的电流闭环控制,所述方法包括:
获取PWM当前半周期触发ADC采样中断时对永磁同步电机的电流进行ADC采样所耗费的采样时间、ADC采样电流、当前转子角度和电机当前转速;
将PWM半周期的时间减去所述采样时间作为补偿时间;
根据所述当前转子角度、所述电机当前转速和所述补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子 角度;
根据所述切换时刻的转子角度和所述ADC采样电流,计算PWM下一个半周期的占空比指令值。
进一步地,根据所述当前转子角度、所述电机当前转速和所述补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度,具体包括:
根据所述当前转子角度、所述电机当前转速和所述补偿时间,利用公式
Figure PCTCN2021133852-appb-000001
计算由PWM当前半周期切换为PWM下一个半周期时切换时刻的转子角度;
其中,θ为切换时刻的转子角度,θ 0为ADC采样结束时的转子角度,ω e为电角速度,t为补偿时间,n为电机当前转速,N为极对数。
进一步地,根据所述切换时刻的转子角度和所述ADC采样电流,计算PWM下一个半周期的占空比指令值,具体包括:
根据所述ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值;
根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值。
进一步地,根据所述ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值,具体包括:
按照电机控制算法,对所述ADC采样电流执行Clark变换和Park变换,获得d轴反馈电流和q轴反馈电流;
根据所述d轴反馈电流和所述q轴反馈电流,采用PI算法,利用公式
Figure PCTCN2021133852-appb-000002
获得转子坐标系下的控制电压值;
其中,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,K pd和K pq分别为PI控制器的d轴和q轴的比例增益,K id和K iq分别为PI控制器的d轴和q轴的积分增益,s为拉普拉斯算子,
Figure PCTCN2021133852-appb-000003
为期望的d轴电流值,i d为d轴反馈电流,ω e为电角速度,L d和L q分别为d轴电感和q轴电感,i q为q轴反馈电流,
Figure PCTCN2021133852-appb-000004
为永磁体磁链。
进一步地,根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值,具体包括:
根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,利用公式
Figure PCTCN2021133852-appb-000005
计算定子坐标系下的控制电压值;
根据定子坐标系下的控制电压值,利用SVPWM算法,计算PWM下一个半周期的占空比指令值;
其中,V α和V β分别为定子坐标系下α轴和β轴的控制电压值,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,θ为切换时刻的转子角度。
一种用于永磁同步电机控制器的角度补偿系统,所述角度补偿系统应用于永磁同步电机的电流闭环控制,所述系统包括:
ADC采样模块,用于获取PWM当前半周期触发ADC采样中断时对永磁同步电机的电流进行ADC采样所耗费的采样时间、ADC采样电流、当前转子角度和电机当前转速;
补偿时间获得模块,用于将PWM半周期的时间减去所述采样时间作为补偿时间;
转子角度计算模块,用于根据所述当前转子角度、所述电机当前转速和所述补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度;
占空比指令值计算模块,用于根据所述切换时刻的转子角度和所述ADC采样电流,计算PWM下一个半周期的占空比指令值。
进一步地,所述转子角度计算模块,具体包括:
转子角度计算子模块,用于根据所述当前转子角度、所述电机当前转速和所述补偿时间,利用公式
Figure PCTCN2021133852-appb-000006
计算由PWM当前半周期切换为PWM下一个半周期时切换时刻的转子角度;
其中,θ为切换时刻的转子角度,θ 0为ADC采样结束时的转子角度,ω e为电角速度,t为补偿时间,n为电机当前转速,N为极对数。
进一步地,所述占空比指令值计算模块,具体包括:
控制电压值获得子模块,用于根据所述ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值;
占空比指令值计算子模块,用于根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值。
进一步地,所述控制电压值获得子模块,具体包括:
d轴反馈电流和q轴反馈电流获得单元,用于按照电机控制算法,对所述ADC采样电流执行Clark变换和Park变换,获得d轴反馈电流和q轴反馈电流;
转子坐标系下的控制电压值获得单元,用于根据所述d轴反馈电流和所述q轴反馈电流,采用PI算法,利用公式
Figure PCTCN2021133852-appb-000007
获得转子坐标系下的控制电压值;
其中,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,K pd和K pq分别为PI控制器的d轴和q轴的比例增益,K id和K iq分别为PI控制器的d轴和q轴的积分增益,s为拉普拉斯算子,
Figure PCTCN2021133852-appb-000008
为期望的d轴电流值,i d为d轴反馈电流,ω e为电角速度,L d和L q分别为d轴电感和q轴电感,i q为q轴反馈电流,
Figure PCTCN2021133852-appb-000009
为永磁体磁链。
进一步地,所述占空比指令值计算子模块,具体包括:
定子坐标系下的控制电压值计算单元,用于根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,利用公式
Figure PCTCN2021133852-appb-000010
计算定子坐标系下的控制电压值;
占空比指令值计算单元,用于根据定子坐标系下的控制电压值,利用SVPWM算法,计算PWM下一个半周期的占空比指令值;
其中,V α和V β分别为定子坐标系下α轴和β轴的控制电压值,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,θ为切换时刻的转子角度。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供了一种用于永磁同步电机控制器的角度补偿方法,首先将PWM半周期的时间减去采样时间作为补偿时间,然后根据ADC采样结束时的当前转子角度、电机当前转速和补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度,最后根据切换时刻的转子角度和ADC采样电流,计算PWM下一个半周期的占空比指令值。本发明考虑了ADC采样时间,利用PWM半周期的时间减去ADC采样时间去计算得出下一个半PWM周期需要的占空比指令值,使得给到逆变单元的控制指令中的位置信息是当前的实际位置,不再是上一个半PWM周期采集到的位置,从而提高了电机的位置精度,保证了电机扭矩的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种用于永磁同步电机控制器的角度补偿方法的流程图;
图2为本发明实施例提供的永磁同步电机控制原理图;
图3为本发明实施例提供的MCU控制算法原理图;
图4为本发明实施例提供的PWM时序图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种用于永磁同步电机控制器的角度补偿方法及系统,以提高电机的位置精度,从而保证电机扭矩的精度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明提供了一种用于永磁同步电机控制器的角度补偿方法,如图1所示,角度补偿方法应用于永磁同步电机的电流闭环控制,方法包括:
S101,获取PWM当前半周期触发ADC采样中断时对永磁同步电机的电流进行ADC采样所耗费的采样时间、ADC采样电流、当前转子角度和电机当前转速;
S102,将PWM半周期的时间减去采样时间作为补偿时间;
S103,根据当前转子角度、电机当前转速和补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度,具体包括:
根据当前转子角度、电机当前转速和补偿时间,利用公式
Figure PCTCN2021133852-appb-000011
计算由PWM当前半周期切换为PWM下一个半周期时切换时刻的转子角度;
其中,θ为切换时刻的转子角度,θ 0为ADC采样结束时的转子角度,ω e为电角速度,t为补偿时间,n为电机当前转速,N为极对 数。
S104,根据切换时刻的转子角度和ADC采样电流,计算PWM下一个半周期的占空比指令值,具体包括:
S104-1,根据ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值;
S104-2,根据切换时刻的转子角度和转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值。
步骤S104-1,根据ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值,具体包括:
按照电机控制算法,对ADC采样电流执行Clark变换和Park变换,获得d轴反馈电流和q轴反馈电流;
根据d轴反馈电流和q轴反馈电流,采用PI算法,利用公式
Figure PCTCN2021133852-appb-000012
获得转子坐标系下的控制电压值;
其中,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,K pd和K pq分别为PI控制器的d轴和q轴的比例增益,K id和K iq分别为PI控制器的d轴和q轴的积分增益,s为拉普拉斯算子,
Figure PCTCN2021133852-appb-000013
为期望的d轴电流值,i d为d轴反馈电流,ω e为电角速度,L d和L q分别为d轴电感和q轴电感,i q为q轴反馈电流,
Figure PCTCN2021133852-appb-000014
为永磁体磁链。
步骤S104-2,根据切换时刻的转子角度和转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值,具体包括:
根据切换时刻的转子角度和转子坐标系下的控制电压值,利用公式
Figure PCTCN2021133852-appb-000015
计算定子坐标系下的控制电压值;
根据定子坐标系下的控制电压值,利用SVPWM算法,计算PWM下一个半周期的占空比指令值;
其中,V α和V β分别为定子坐标系下α轴和β轴的控制电压值,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,θ为切换时刻的转子角度。
本发明提出了一种用于车载高速永磁同步电机的针对位置传感器的角度补偿方法,该方法可以提高位置精度,从而保证电机扭矩精度,提高车辆稳定性和舒适性。
本发明提供以下具体实施例以详细说明用于永磁同步电机控制器的角度补偿方法的原理与工作过程。
永磁同步电机控制一般采用基于转子坐标系下的闭环控制方式。电流闭环控制的基本策略如图2所示,图2中Id_cmd表示d轴电流驱动指令,Iq_cmd表示q轴电流驱动指令,EM表示永磁同步电机。
电机在闭环控制时,会从传感器获取位置信号和电流信号。电流闭环控制要严格按照时序执行,所以需要放在中断服务器程序中运行。图3是MCU(Motor control Unit)控制算法原理的软件流程图。
图4是PWM的中断时序图,其中X轴方向是时间轴,Y轴方向是PWM计数器值。PWM中断的计数器每半个周期实现一次翻转,在图左边PWM计数器由0开始计数,到中点最大值即完成半周期计数;右边从中点开始反转计数,即每个CPU时序递减,直到最右边零点。PWM信号需要在更新点才能更新占空比,更新点是PWM计数的最大值点与零点。
在图4的最左边时间轴的起点是PWM计数器的零点,开始进入PWM中断,同时也触发ADC采样。ADC采样分为采样、保持、量化和编码,要消耗一定的时间,即图中点1到点2的时间,芯片在时间点2才完成采样计算获取到时间点1的真实电流值和电机角度位置。ADC采样的时间与不同芯片硬件速度相关,不同芯片需要测量调整补偿时间,即角度补偿点A。
电流闭环程序需要每个PWM半周期执行一次,所以根据时序同步PWM中断是电流闭环程序的理想运行位置。
不同芯片厂家都会提供PWM中断或者类似触发机制的中断源。 PWM中断在PWM计数器每次翻转点触发,前一次中断计算得到的更新PWM占空比,在后一次触发才能生效。这样的延迟会给反Park变换时采用的角度带来偏差,即前面计算得到PWM占空比,等到执行时实际的电机转子角度已经发生了变化,实际PWM信号的执行时间是后一次PWM中断的开始,所以反Park变换时用到的角度需要修正到PWM真实执行的时间点,也就是图中点2到点5的时间,该时间也等于半PWM周期减去角度补偿点A的时间。
工作过程为:
步骤1:在控制程序的点1和点2执行点处增加信号的反转指令,通过增加逻辑分析仪测量芯片中IO信号反转时间,即图中点1与点2的时间,从而得到芯片采集电流和位置信号并处理所耗费的时间,也就是芯片从发出指令到最终完成的时间。把得到的时间作为标定量写入程序中。
步骤2:按照电机控制算法,程序先执行图2中的Clark变换和Park变换,随后通过PI等算法(如图2中所示)得到需要的转子坐标系下的控制电压值。
PI算法:根据期望电流和真实电流之间的差,得到需要的电压。
电流环常用的PI调节器一般会结合前馈控制策略,得到转子坐标系下的电压:
Figure PCTCN2021133852-appb-000016
其中,K pd和K pq为PI控制器的比例增益,K id和K iq为PI控制器的积分增益。
步骤3:通过半PWM周期时间和步骤1中得到的时间,计算得出补偿时间。根据时间点2所得到的转子位置信息,配合电机当前转速,得出在下一个PWM切换时刻的转子位置。
补偿时间:PWM半周期时间减去步骤1中得到时间;
转子位置(θ):时间点2得到位置+电角速度*补偿时间;(转速*时间=角度位移,Rad/s*s=rad,即转子的角度)
步骤4:根据步骤3计算得到的转子位置,配合步骤2得到的转子坐标系下的电压值,可以得到定子坐标系下的电压值。
定子坐标系下电压值(V α和V β)计算采用下面公式,其中θ为步骤3中得到的转子位置。
V α=cos(θ)*V d-sin(θ)*V q
V β=sin(θ)*V d+cos(θ)*V q
然后通过现有成熟算法(如图1中的SVPWM部分)计算得出下一个半周期需要的占空比指令值;
SVPWM(Space Vector Pulse Width Modulation)算法是根据平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。
步骤5:芯片在计数器反转点,执行步骤4得到的PWM指令值。芯片发出的PWM指令电信号,经放大调理电路处理后,转换为高电平为15V的信号,直接驱动逆变单元(如IGBT等,图2中的逆变器功率回路),从而控制电机运转。同时重复前述步骤1到4的过程。
本发明通过分析电机物理模型,得出电机控制器程序中的转子角度传感器会影响控制的扭矩精度,根据控制算法原理和分析实际芯片的运行时序,提出了转子角度补偿的具体实施方法。
现在通常的电机控制程序中并没有对因芯片采样导致的角度误差进行补偿。本发明中芯片给到逆变单元的控制指令中的位置信息是当前的实际位置,不再是上一个半PWM周期采集到的位置,从而得到更高的控制精度。
利用本发明提出的角度补偿方法在实际试验台架测试电机不同转速、扭矩运行区间,电机扭矩精度均得到一定改善。尤其是在电机高转速情况下,采用该补偿方法后电机的扭矩平顺性更好,增强了电机运行时的动态性能和稳定性。
本发明还提供了一种用于永磁同步电机控制器的角度补偿系统,角度补偿系统应用于永磁同步电机的电流闭环控制,系统包括:
ADC采样模块,用于获取PWM当前半周期触发ADC采样中断时对永磁同步电机的电流进行ADC采样所耗费的采样时间、ADC采样电流、当前转子角度和电机当前转速;
补偿时间获得模块,用于将PWM半周期的时间减去采样时间作为补偿时间;
转子角度计算模块,用于根据当前转子角度、电机当前转速和补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度;
占空比指令值计算模块,用于根据切换时刻的转子角度和ADC采样电流,计算PWM下一个半周期的占空比指令值。
转子角度计算模块,具体包括:
转子角度计算子模块,用于根据当前转子角度、电机当前转速和补偿时间,利用公式
Figure PCTCN2021133852-appb-000017
计算由PWM当前半周期切换为PWM下一个半周期时切换时刻的转子角度;
其中,θ为切换时刻的转子角度,θ 0为ADC采样结束时的转子角度,ω e为电角速度,t为补偿时间,n为电机当前转速,N为极对数。
占空比指令值计算模块,具体包括:
控制电压值获得子模块,用于根据ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值;
占空比指令值计算子模块,用于根据切换时刻的转子角度和转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值。
控制电压值获得子模块,具体包括:
d轴反馈电流和q轴反馈电流获得单元,用于按照电机控制算法,对ADC采样电流执行Clark变换和Park变换,获得d轴反馈电流和 q轴反馈电流;
转子坐标系下的控制电压值获得单元,用于根据d轴反馈电流和q轴反馈电流,采用PI算法,利用公式
Figure PCTCN2021133852-appb-000018
获得转子坐标系下的控制电压值;
其中,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,K pd和K pq分别为PI控制器的d轴和q轴的比例增益,K id和K iq分别为PI控制器的d轴和q轴的积分增益,s为拉普拉斯算子,
Figure PCTCN2021133852-appb-000019
为期望的d轴电流值,i d为d轴反馈电流,ω e为电角速度,L d和L q分别为d轴电感和q轴电感,i q为q轴反馈电流,
Figure PCTCN2021133852-appb-000020
为永磁体磁链。
占空比指令值计算子模块,具体包括:
定子坐标系下的控制电压值计算单元,用于根据切换时刻的转子角度和转子坐标系下的控制电压值,利用公式
Figure PCTCN2021133852-appb-000021
计算定子坐标系下的控制电压值;
占空比指令值计算单元,用于根据定子坐标系下的控制电压值,利用SVPWM算法,计算PWM下一个半周期的占空比指令值;
其中,V α和V β分别为定子坐标系下α轴和β轴的控制电压值,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,θ为切换时刻的转子角度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解 为对本发明的限制。

Claims (10)

  1. 一种用于永磁同步电机控制器的角度补偿方法,其特征在于,所述角度补偿方法应用于永磁同步电机的电流闭环控制,所述方法包括:
    获取PWM当前半周期触发ADC采样中断时对永磁同步电机的电流进行ADC采样所耗费的采样时间、ADC采样电流、当前转子角度和电机当前转速;
    将PWM半周期的时间减去所述采样时间作为补偿时间;
    根据所述当前转子角度、所述电机当前转速和所述补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度;
    根据所述切换时刻的转子角度和所述ADC采样电流,计算PWM下一个半周期的占空比指令值。
  2. 根据权利要求1所述的用于永磁同步电机控制器的角度补偿方法,其特征在于,根据所述当前转子角度、所述电机当前转速和所述补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度,具体包括:
    根据所述当前转子角度、所述电机当前转速和所述补偿时间,利用公式
    Figure PCTCN2021133852-appb-100001
    计算由PWM当前半周期切换为PWM下一个半周期时切换时刻的转子角度;
    其中,θ为切换时刻的转子角度,θ 0为ADC采样结束时的转子角度,ω e为电角速度,t为补偿时间,n为电机当前转速,N为极对数。
  3. 根据权利要求1所述的用于永磁同步电机控制器的角度补偿方法,其特征在于,根据所述切换时刻的转子角度和所述ADC采样电流,计算PWM下一个半周期的占空比指令值,具体包括:
    根据所述ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值;
    根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值。
  4. 根据权利要求3所述的用于永磁同步电机控制器的角度补偿方法,其特征在于,根据所述ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值,具体包括:
    按照电机控制算法,对所述ADC采样电流执行Clark变换和Park变换,获得d轴反馈电流和q轴反馈电流;
    根据所述d轴反馈电流和所述q轴反馈电流,采用PI算法,利用公式
    Figure PCTCN2021133852-appb-100002
    获得转子坐标系下的控制电压值;
    其中,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,K pd和K pq分别为PI控制器的d轴和q轴的比例增益,K id和K iq分别为PI控制器的d轴和q轴的积分增益,s为拉普拉斯算子,
    Figure PCTCN2021133852-appb-100003
    为期望的d轴电流值,i d为d轴反馈电流,ω e为电角速度,L d和L q分别为d轴电感和q轴电感,i q为q轴反馈电流,
    Figure PCTCN2021133852-appb-100004
    为永磁体磁链。
  5. 根据权利要求3所述的用于永磁同步电机控制器的角度补偿方法,其特征在于,根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值,具体包括:
    根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,利用公式
    Figure PCTCN2021133852-appb-100005
    计算定子坐标系下的控制电压值;
    根据定子坐标系下的控制电压值,利用SVPWM算法,计算PWM下一个半周期的占空比指令值;
    其中,V α和V β分别为定子坐标系下α轴和β轴的控制电压值,V d 和V q分别为转子坐标系下d轴和q轴的控制电压值,θ为切换时刻的转子角度。
  6. 一种用于永磁同步电机控制器的角度补偿系统,其特征在于,所述角度补偿系统应用于永磁同步电机的电流闭环控制,所述系统包括:
    ADC采样模块,用于获取PWM当前半周期触发ADC采样中断时对永磁同步电机的电流进行ADC采样所耗费的采样时间、ADC采样电流、当前转子角度和电机当前转速;
    补偿时间获得模块,用于将PWM半周期的时间减去所述采样时间作为补偿时间;
    转子角度计算模块,用于根据所述当前转子角度、所述电机当前转速和所述补偿时间,计算由PWM当前半周期切换为PWM下一个半周期的切换时刻的转子角度;
    占空比指令值计算模块,用于根据所述切换时刻的转子角度和所述ADC采样电流,计算PWM下一个半周期的占空比指令值。
  7. 根据权利要求6所述的用于永磁同步电机控制器的角度补偿系统,其特征在于,所述转子角度计算模块,具体包括:
    转子角度计算子模块,用于根据所述当前转子角度、所述电机当前转速和所述补偿时间,利用公式
    Figure PCTCN2021133852-appb-100006
    计算由PWM当前半周期切换为PWM下一个半周期时切换时刻的转子角度;
    其中,θ为切换时刻的转子角度,θ 0为ADC采样结束时的转子角度,ω e为电角速度,t为补偿时间,n为电机当前转速,N为极对数。
  8. 根据权利要求6所述的用于永磁同步电机控制器的角度补偿系统,其特征在于,所述占空比指令值计算模块,具体包括:
    控制电压值获得子模块,用于根据所述ADC采样电流,按照电机控制算法,获得转子坐标系下的控制电压值;
    占空比指令值计算子模块,用于根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,计算PWM下一个半周期的占空比指令值。
  9. 根据权利要求8所述的用于永磁同步电机控制器的角度补偿系统,其特征在于,所述控制电压值获得子模块,具体包括:
    d轴反馈电流和q轴反馈电流获得单元,用于按照电机控制算法,对所述ADC采样电流执行Clark变换和Park变换,获得d轴反馈电流和q轴反馈电流;
    转子坐标系下的控制电压值获得单元,用于根据所述d轴反馈电流和所述q轴反馈电流,采用PI算法,利用公式
    Figure PCTCN2021133852-appb-100007
    获得转子坐标系下的控制电压值;
    其中,V d和V q分别为转子坐标系下d轴和q轴的控制电压值,K pd和K pq分别为PI控制器的d轴和q轴的比例增益,K id和K iq分别为PI控制器的d轴和q轴的积分增益,s为拉普拉斯算子,
    Figure PCTCN2021133852-appb-100008
    为期望的d轴电流值,i d为d轴反馈电流,ω e为电角速度,L d和L q分别为d轴电感和q轴电感,i q为q轴反馈电流,
    Figure PCTCN2021133852-appb-100009
    为永磁体磁链。
  10. 根据权利要求8所述的用于永磁同步电机控制器的角度补偿系统,其特征在于,所述占空比指令值计算子模块,具体包括:
    定子坐标系下的控制电压值计算单元,用于根据所述切换时刻的转子角度和所述转子坐标系下的控制电压值,利用公式
    Figure PCTCN2021133852-appb-100010
    计算定子坐标系下的控制电压值;
    占空比指令值计算单元,用于根据定子坐标系下的控制电压值,利用SVPWM算法,计算PWM下一个半周期的占空比指令值;
    其中,V α和V β分别为定子坐标系下α轴和β轴的控制电压值,V d 和V q分别为转子坐标系下d轴和q轴的控制电压值,θ为切换时刻的转子角度。
PCT/CN2021/133852 2021-05-13 2021-11-29 一种用于永磁同步电机控制器的角度补偿方法及系统 WO2022237131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110520514.X 2021-05-13
CN202110520514.XA CN113179072B (zh) 2021-05-13 2021-05-13 一种用于永磁同步电机控制器的角度补偿方法及系统

Publications (1)

Publication Number Publication Date
WO2022237131A1 true WO2022237131A1 (zh) 2022-11-17

Family

ID=76929273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133852 WO2022237131A1 (zh) 2021-05-13 2021-11-29 一种用于永磁同步电机控制器的角度补偿方法及系统

Country Status (2)

Country Link
CN (1) CN113179072B (zh)
WO (1) WO2022237131A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179072B (zh) * 2021-05-13 2022-08-19 山东中科先进技术有限公司 一种用于永磁同步电机控制器的角度补偿方法及系统
CN114629402B (zh) * 2022-03-29 2024-05-31 广东逸动科技有限公司 电机控制系统及方法
CN115296583A (zh) * 2022-07-01 2022-11-04 重庆智能机器人研究院 一种伺服系统电角度补偿方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903128A (en) * 1996-02-01 1999-05-11 Denso Corporation Sensorless control system and method of permanent magnet synchronous motor
CN103138671A (zh) * 2013-03-20 2013-06-05 西安航空学院 一种永磁同步电机逆变器死区效应补偿方法及系统
CN108631678A (zh) * 2018-05-22 2018-10-09 江西理工大学 永磁同步电机矢量控制死区补偿方法及系统
CN111092583A (zh) * 2019-12-24 2020-05-01 南京航空航天大学 一种三相永磁同步电机驱动系统电流环延时补偿方法
CN111555669A (zh) * 2020-04-09 2020-08-18 吉利汽车研究院(宁波)有限公司 一种电机控制方法、装置、电子设备及存储介质
CN111817615A (zh) * 2020-07-09 2020-10-23 深圳市法拉第电驱动有限公司 高速永磁同步电机转子位置检测装置及方法
CN113179072A (zh) * 2021-05-13 2021-07-27 山东中科先进技术研究院有限公司 一种用于永磁同步电机控制器的角度补偿方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3346223B2 (ja) * 1997-06-10 2002-11-18 株式会社日立製作所 モータ制御方法及びモータ制御システム
US6388419B1 (en) * 2000-09-01 2002-05-14 Ford Global Technologies, Inc. Motor control system
CN1980207A (zh) * 2005-12-01 2007-06-13 华为技术有限公司 通信系统中的时间同步方法和装置以及系统
JP5396910B2 (ja) * 2009-02-25 2014-01-22 日産自動車株式会社 モータ制御装置
CN108282124B (zh) * 2017-12-20 2020-03-24 上海辛格林纳新时达电机有限公司 电机矢量控制的转子位置角度补偿方法
CN111162712B (zh) * 2018-11-08 2022-06-21 中车永济电机有限公司 直驱永磁同步电机的控制方法、牵引控制器及存储介质
CN110868124A (zh) * 2019-10-24 2020-03-06 中国第一汽车股份有限公司 基于旋变软解码的电机位置确定方法、装置及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903128A (en) * 1996-02-01 1999-05-11 Denso Corporation Sensorless control system and method of permanent magnet synchronous motor
CN103138671A (zh) * 2013-03-20 2013-06-05 西安航空学院 一种永磁同步电机逆变器死区效应补偿方法及系统
CN108631678A (zh) * 2018-05-22 2018-10-09 江西理工大学 永磁同步电机矢量控制死区补偿方法及系统
CN111092583A (zh) * 2019-12-24 2020-05-01 南京航空航天大学 一种三相永磁同步电机驱动系统电流环延时补偿方法
CN111555669A (zh) * 2020-04-09 2020-08-18 吉利汽车研究院(宁波)有限公司 一种电机控制方法、装置、电子设备及存储介质
CN111817615A (zh) * 2020-07-09 2020-10-23 深圳市法拉第电驱动有限公司 高速永磁同步电机转子位置检测装置及方法
CN113179072A (zh) * 2021-05-13 2021-07-27 山东中科先进技术研究院有限公司 一种用于永磁同步电机控制器的角度补偿方法及系统

Also Published As

Publication number Publication date
CN113179072B (zh) 2022-08-19
CN113179072A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2022237131A1 (zh) 一种用于永磁同步电机控制器的角度补偿方法及系统
WO2019136784A1 (zh) 一种五相永磁直线电机一相开路容错直接推力控制方法
CN107317532B (zh) 基于滑模的永磁同步电机预测电流控制方法和系统
CN107592047B (zh) 一种永磁同步电机自适应弱磁控制方法
CN108448982B (zh) 一种基于空间电压矢量预测的直接转矩控制方法
CN111697899B (zh) 一种变磁通永磁电机充磁状态闭环控制方法和系统
CN111342719B (zh) 一种无速度传感器驱动的异步电机控制方法
CN106385216B (zh) 一种永磁同步电机电流预测控制稳态误差消除方法及系统
CN111464096A (zh) 校正用于空气压缩机电机的霍尔传感器的信号延迟的方法
CN108964556A (zh) 用于驱动永磁式同步电机的无速度传感器控制装置
CN107154760A (zh) 一种混合式步进电机的高速高转矩实现方法
CN111082726B (zh) 一种永磁电机伺服系统的电流控制方法
CN117277878A (zh) 一种基于相角补偿的电机带载启动控制方法
CN113258837B (zh) 一种永磁同步电机的鲁棒模型预测电流控制方法及装置
CN114826080A (zh) 一种基于积分补偿的无差拍电流预测控制方法和系统
CN112134495A (zh) 永磁同步电机电流的开环谐波补偿方法
CN108448976B (zh) 一种永磁同步电机最大转矩电流比控制装置
CN111541413A (zh) 压缩机控制方法、控制装置及空调器
WO2020003771A1 (ja) モータ制御装置、モータ制御方法、およびモータシステム
CN111628689A (zh) 一种电压前馈补偿方法的无差拍电流预测控制方法
CN117811445B (zh) 一种永磁同步电机超螺旋滑模鲁棒负载观测方法
Li et al. An Active Flux Model-Based Sensorless Flux Weakening Control Algorithm for Permanent Magnet Synchronous Motors.
WO2023134379A1 (zh) 用于永磁同步电机的控制方法和控制模块
CN116247988B (zh) 超高速永磁同步电机转子位置和转速估计方法
CN112886889B (zh) 模块化多绕组永磁电机系统参数免疫预测控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941695

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.05.2024)