WO2024083081A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2024083081A1
WO2024083081A1 PCT/CN2023/124765 CN2023124765W WO2024083081A1 WO 2024083081 A1 WO2024083081 A1 WO 2024083081A1 CN 2023124765 W CN2023124765 W CN 2023124765W WO 2024083081 A1 WO2024083081 A1 WO 2024083081A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ozone water
washing
tub
ozone
Prior art date
Application number
PCT/CN2023/124765
Other languages
English (en)
French (fr)
Inventor
大江克己
鸢幸生
小西良
中村哲
村下典子
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Publication of WO2024083081A1 publication Critical patent/WO2024083081A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/02Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/04Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a vertical axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/43Control of cleaning or disinfection of washing machine parts, e.g. of tubs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/44Control of the operating time, e.g. reduction of overall operating time
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/06Timing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/22Condition of the washing liquid, e.g. turbidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/28Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements

Definitions

  • the invention relates to a washing machine.
  • washing machines that store water containing ozone (hereinafter referred to as "ozone water”) generated by an ozone generator in an outer drum and use the ozone water to clean an inner drum rotatably arranged in the outer drum are described in, for example, Patent Documents 1 and 2.
  • the washing machine of Patent Document 1 is a so-called vertical washing machine that rotates a stirring body arranged at the bottom of the inner drum to generate a water flow to wash the laundry.
  • the stirring blade can be rotated to generate a water flow while ozone water is stored in the outer drum, and the inner drum can be cleaned and sterilized by the ozone water.
  • the washing machine of patent document 2 is a so-called drum washing machine that rotates a horizontal axis type drum as an inner drum to perform beating washing of laundry.
  • the drum In the drum washing operation, the drum can be rotated with ozone water stored in the outer drum and the drum can be cleaned by ozone water to remove the biofilm formed on the drum.
  • a drainage channel is provided in a place such as a dressing room where a washing machine is installed, and the drainage hose of the washing machine is connected to the entrance of the drainage channel, i.e., the drain outlet.
  • the sewage containing detergent and dirt discharged from the washing machine flows into the drainage channel through the drain outlet. Therefore, the drainage channel is prone to form biofilm (slime) on the drain outlet and the drain pipe downstream of the drain outlet due to the sewage from the washing machine, and there is a concern that an unpleasant odor will be generated from the drain outlet.
  • the user To clean the drain, the user must remove the drain hose from the drain outlet and clean the drain with a brush. The user may need to spend a lot of effort to clean the inside of the drainage channel such as the water outlet or flush the water into the drainage channel.
  • Patent Document 1 Japanese Patent Application Publication No. 2001-187294
  • Patent Document 2 Japanese Patent Application Publication No. 2022-098364
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a washing machine that can effectively remove the biofilm formed in the drainage channel of a house by using ozone water.
  • the first embodiment of the present invention is a washing machine comprising: an outer tub disposed in a housing; a washing and dehydrating tub rotatably disposed in the outer tub; a pulsator rotatably disposed in the washing and dehydrating tub; a driving unit for rotating the washing and dehydrating tub and the pulsator; an ozone water generating unit for generating ozone water mixed with water; a drainage unit for discharging the water in the outer tub to a drainage channel provided in a house; and a control unit for performing a drainage channel cleaning operation for cleaning the drainage channel with the ozone water.
  • control unit In the drainage channel cleaning operation, the control unit generates the ozone water by the ozone water generating unit to store the ozone water in the outer tub, and discharges the ozone water in the outer tub to the drainage channel through the drainage unit without performing any of the actions of rotating the pulsator through the driving unit and rotating the pulsator and the washing and dehydrating tub as one body.
  • the ozone water generating unit when the ozone water generating unit is arranged in the water supply path for supplying water to the outer barrel, the ozone water generated by the water flowing through the water supply path is supplied to the outer barrel, and the ozone water is stored in the outer barrel.
  • the ozone water generating unit when the ozone water generating unit is arranged at the bottom of the outer barrel, the ozone water is generated by the water supplied to the outer barrel, and the ozone water is stored in the outer barrel.
  • the ozone water in the outer barrel will not be consumed during the drainage cleaning operation.
  • the ozone is sent to the drain at a concentration close to that when stored in the outer barrel, so the drain can be well cleaned by the action of sufficient ozone, and the biofilm formed in the drain can be well removed. Therefore, the generation of uncomfortable odors in the drain can be suppressed.
  • the ozone water stored in the outer barrel flows into the drain channel at once, the ozone water easily contacts the entire inner wall surface of the drain channel, and the inside of the drain channel can be cleaned more effectively.
  • the second embodiment of the present invention comprises: an outer barrel disposed in a housing; a washing and dehydrating barrel rotatably disposed in the outer barrel; a pulsator rotatably disposed in the washing and dehydrating barrel; a driving unit for rotating the washing and dehydrating barrel and the pulsator; an ozone water generating unit for generating ozone water mixed with water; a drainage unit for discharging the water in the outer barrel to a drainage channel provided in a house; and a control unit for performing a barrel cleaning operation for cleaning the washing and dehydrating barrel with the ozone water and a drainage channel cleaning operation for cleaning the drainage channel with the ozone water.
  • control unit In the barrel cleaning operation, the control unit generates the ozone water in the outer barrel by the ozone water generating unit, and performs the operation of rotating the pulsator or rotating the pulsator and the washing and dehydrating barrel as a whole through the driving unit.
  • control unit stores the ozone water in the outer tub by generating the ozone water through the ozone water generating unit during the drainage cleaning operation, and discharges the ozone water in the outer tub to the drainage through the drainage unit without performing any of the actions of rotating the pulsator through the driving unit and rotating the pulsator and the washing and dehydration tub as a whole, or discharges the ozone water in the outer tub to the drainage through the drainage unit after performing any of the actions of rotating the pulsator through the driving unit and rotating the pulsator and the washing and dehydration tub as a whole in a time shorter than the tub cleaning operation.
  • the washing and dehydrating tub in the tub cleaning operation, can be cleaned by the water flow generated by the rotation of the pulsator and the action of ozone or the rotation of the washing and dehydrating tub in ozone water and the action of ozone, and the biofilm formed in the washing and dehydrating tub can be removed.
  • the drainage can be cleaned well by the ozone water discharged from the outer barrel, and the biofilm formed in the drainage can be removed well. Therefore, the generation of unpleasant odors in the drainage can be suppressed.
  • the ozone water stored in the outer barrel flows into the drainage in one go, the ozone water easily contacts the entire inner wall surface of the drainage, and the drainage can be cleaned more well.
  • a washing machine comprises: an outer tub disposed in a casing; a drum disposed in a The outer barrel can rotate around a rotation axis inclined relative to a horizontal axis or a horizontal direction; a drive motor is used to rotate the drum; an ozone water generating unit is used to generate ozone water mixed with water; a drainage unit discharges the water in the outer barrel to a drainage channel set in a house; and a control unit performs a drainage channel cleaning operation using the ozone water to clean the drainage channel.
  • control unit In the drainage channel cleaning operation, the control unit generates the ozone water by the ozone water generating unit to store the ozone water in the outer barrel, and discharges the ozone water in the outer barrel to the drainage channel through the drainage unit without performing the operation of rotating the drum through the drive motor.
  • the ozone water in the outer barrel is not consumed in the drum cleaning, but is sent to the drainage in a state close to the ozone concentration when stored in the outer barrel, so that the drainage can be well cleaned by the action of sufficient ozone, and the biofilm formed in the drainage can be well removed. Therefore, the generation of unpleasant odors in the drainage can be suppressed.
  • the ozone water stored in the outer barrel flows into the drainage in one breath, the ozone water easily contacts the entire inner wall surface of the drainage, and the drainage can be cleaned more well.
  • the fourth embodiment of the present invention is a washing machine comprising: an outer tub disposed in a housing; a drum disposed in the outer tub and capable of rotating about a rotation axis inclined relative to a horizontal axis or a horizontal direction; a drive motor for rotating the drum; an ozone water generating unit for generating ozone water mixed with water; a drainage unit for discharging the water in the outer tub to a drainage channel provided in a house; and a control unit for performing a tub cleaning operation for cleaning the drum using the ozone water and a drainage channel cleaning operation for cleaning the drainage channel using the ozone water.
  • the control unit generates the ozone water in the outer tub during the tub cleaning operation, and performs the operation of rotating the drum using the drive motor.
  • control unit stores the ozone water in the outer tub by generating the ozone water through the ozone water generating unit during the drain cleaning operation, and discharges the ozone water in the outer tub to the drain through the drain unit without rotating the drum through the drive motor, or discharges the ozone water in the outer tub to the drain through the drain unit after rotating the drum through the drive motor for a shorter time than the tub cleaning operation.
  • the drum in the tub washing operation, can be cleaned by the rotation of the drum in the ozone water and the action of ozone, and the biofilm formed on the drum can be removed.
  • the ozone water discharged from the outer barrel can be used to clean the drainage channel well.
  • the biofilm formed in the drainage channel can be removed well. Therefore, the generation of unpleasant odors in the drainage channel can be suppressed.
  • the ozone water stored in the outer barrel flows into the drainage channel at one go, the ozone water easily contacts the entire inner wall surface of the drainage channel, and the drainage channel can be cleaned more effectively.
  • the control unit determines whether water is stored in the outer barrel before the action of storing the ozone water in the outer barrel begins, and if water is stored in the outer barrel, the water is discharged through the drainage unit.
  • the drainage channel cleaning operation before the drainage channel cleaning operation, it is possible to prevent the ozone from being consumed by dirt and bacteria contained in the water stored in the outer tub and the concentration of the ozone water from being reduced. Therefore, the drainage channel can be cleaned more effectively with ozone water.
  • the drainage part includes: the drainage valve; and a drainage pipeline for the water discharged from the outer tub by opening the drainage valve.
  • a vortex generating part for generating a vortex in the flow of the ozone water may be provided in the drainage pipeline.
  • the ozone water flows in a swirling manner in the drainage pipe and is discharged into the drainage channel with force. Therefore, since the ozone water flows strongly in the drainage channel, the momentum of its flow and the effect of ozone combine to easily remove the biofilm formed on the inner wall surface of the drainage channel.
  • FIG1 is a side sectional view of a fully automatic washing machine according to a first embodiment.
  • FIG. 2 (a) is a plan view showing a cross section of a water supply unit of the ozone water generating device according to the first embodiment, and (b) is a cross-sectional view taken along the line AA′ of FIG. 2 (a) .
  • FIG3 is a block diagram showing the structure of the fully automatic washing machine according to the first embodiment.
  • FIG. 4 (a) is a flowchart showing the control process of the tub washing operation according to the first embodiment, and (b) is a flowchart showing the control process of the tub washing process included in the tub washing operation according to the first embodiment.
  • FIG. 5 is a flowchart showing a control process of the drainage channel flushing operation according to the first embodiment.
  • FIG. 6 (a) is a plan view of a water supply unit according to a first modification of the first embodiment, and (b) is a cross-sectional view taken along the line B-B' of Fig. 6(a).
  • FIG. 7 is a partial cross-sectional view showing the periphery of the ozone water generating device at the bottom of the outer tub according to a second modification of the first embodiment.
  • FIG. 8 (a) is a flowchart showing a control process of a tub washing process according to a second modification of the first embodiment, and (b) is a flowchart showing a control process of a drainage channel washing operation according to a second modification of the first embodiment.
  • FIG. 9 (a) is a flowchart showing a control process of a tub washing process according to a third modification of the first embodiment, and (b) is a flowchart showing a control process of a drainage channel washing operation according to a fourth modification of the first embodiment.
  • Fig. 10 is a side sectional view showing the structure of a drum washing machine according to a second embodiment.
  • FIG. 11 is a block diagram showing the structure of a drum washing machine according to a second embodiment.
  • FIG. 12 is a flowchart showing a control process of the tub washing process according to the second embodiment.
  • FIG. 13 is a side sectional view showing the structure of a drum washing machine according to a first modification of the second embodiment.
  • FIG. 14 (a) and (b) are diagrams showing the structure of a vortex generating portion provided at a water outlet of a water discharge valve according to another modified example.
  • the fully automatic washing machine 1A is a vertical washing machine.
  • FIG. 1 is a side sectional view of a fully automatic washing machine 1A.
  • the fully automatic washing machine 1A includes a housing 10 constituting an exterior.
  • the housing 10 includes a rectangular cylindrical body 11 with upper and lower surfaces open, an upper panel 12 covering the upper surface of the body 11, and a stand 13 supporting the body 11.
  • An inlet 14 for inlet of laundry is formed in the center of the upper panel 12.
  • the inlet 14 is covered by an openable and closable upper cover 15.
  • An outer barrel 20 with an opening on the upper surface is arranged in the housing 10.
  • the outer barrel 20 is elastically suspended and supported in the housing 10 by four suspension rods 21 with a vibration-proof device.
  • a washing and dehydrating barrel 22 with an opening on the upper surface is arranged in the outer barrel 20.
  • the washing and dehydrating barrel 22 rotates around a rotation axis extending in a vertical direction.
  • Many dehydration holes 22a are formed all around the inner circumference of the washing and dehydrating barrel 22.
  • a balance ring 23 is arranged on the upper part of the washing and dehydrating barrel 22.
  • a pulsator 24 is rotatably arranged at the bottom of the washing and dehydrating barrel 22. On the surface of the pulsator 24, a plurality of blades 24a are radially arranged.
  • a driving unit 30 for generating a torque for rotating the washing and dehydrating barrel 22 and the pulsator 24 is disposed at the outer bottom of the outer barrel 20.
  • the driving unit 30 includes a driving motor 31 and a transmission mechanism 32.
  • the transmission mechanism 32 has a clutch mechanism 32a, and through the switching operation of the clutch mechanism 32a, only the torque of the driving motor 31 is transmitted to the pulsator 24 during the washing process and the rinsing process, so that only the pulsator 24 is rotated, and the torque of the driving motor 31 is transmitted to the pulsator 24 and the washing and dehydrating barrel 22 during the dehydration process and the spray rinsing process, so that the pulsator and the washing and dehydrating barrel 22 are rotated integrally.
  • the driving unit 30 is equivalent to the driving unit of the present invention.
  • a drain port 20a is formed at the outer bottom of the outer barrel 20.
  • a drain valve 41 is provided at the drain port 20a.
  • the drain valve 41 includes, for example, a valve and a torque motor for opening and closing the valve.
  • a drain hose 42 is connected to the water outlet 41a of the drain valve 41.
  • the drain hose 42 includes an internal hose 42a disposed in the housing 10 and an external hose 42b disposed outside the housing 10.
  • the drain valve 41 and the drain hose 42 constitute a drain portion 40 that discharges water in the outer barrel 20 to a drain 2 disposed in the house.
  • the water outlet of the drain valve 41 41 a and the drain hose 42 constitute a drain conduit T1 through which water discharged from the outer tub 20 when the drain valve 41 is opened flows.
  • the drainage channel 2 includes a cylindrical drainage port 2a having an L-shaped or the like, a trap 2b disposed downstream of the drainage port 2a, and a drainage pipe 2c connected to the trap 2b.
  • the drainage port 2a which is the inlet of the drainage channel 2, is disposed on a floor or a washing machine installation plate where the fully automatic washing machine 1A is installed, and a drainage hose 42 is connected to the drainage port 2a.
  • a water supply unit 50 for supplying tap water to the washing and dehydrating tub 22 is disposed at the rear of the upper panel 12.
  • the water supply unit 50 includes a water supply valve 110, a water injection box 120, a detergent case 130, and an ozone water generator 140.
  • Fig. 2(a) is a plan view showing a cross section of the water supply unit 50 of the ozone water generating device 140
  • Fig. 2(b) is a cross-sectional view taken along line A-A' of Fig. 2(a).
  • a water supply valve 110 and a water filling tank 120 containing a detergent box 130 are arranged side by side in the left-right direction, and an ozone water generator 140 is arranged behind the water supply valve 110 and the water filling tank 120.
  • the ozone water generator 140 is equivalent to the ozone water generator of the present invention.
  • the front surface of the water injection box 120 is open, and a water channel forming part 121 is provided at the upper part.
  • a water channel 122 is formed inside the water channel forming part 121.
  • a plurality of water injection holes 123 are formed on the bottom surface of the water channel forming part 121.
  • a water supply port 124 having an L-shaped cylinder is provided on the rear surface of the water channel forming part 121.
  • Guide rails 125 extending in the front-rear direction are provided on the left and right wall surfaces of the water injection box 120.
  • a gap is provided between the detergent box 130 and the bottom and rear surface of the water filling box 120, and the gap becomes a water channel 126.
  • the detergent box 130 is placed on the left and right guide rails 125 and can be pulled forward by sliding on the guide rails 125.
  • the upper surface of the detergent box 130 is open. Liquid or powder detergent is put into the detergent box 130.
  • a siphon mechanism 131 is provided on the bottom surface of the detergent box 130.
  • the siphon mechanism 131 is composed of a siphon tube 132 and a siphon cover 133 covering the siphon tube 132.
  • the detergent in the detergent box 130 and the water flowing into the detergent box 130 are discharged from the detergent box 130 by the siphon principle.
  • a discharge port 134 is provided on the upper rear surface of the detergent box 130. The detergent and water in the detergent box 130 are also discharged from the discharge port 134. discharge.
  • the ozone water generating device 140 includes a housing 141, an ozone electrode 142, and an electrode holder 143.
  • the housing 141 has an elongated cylindrical shape with both ends open.
  • the opening at the end of the housing 141 on the water injection tank 120 side is an outlet 144, and the water supply port 124 of the water injection tank 120 is connected to the outlet 144.
  • a cylindrical inlet 145 is provided near the end of the housing 141 on the water supply valve 110 side.
  • the ozone electrode 142 is arranged inside the housing 141.
  • the ozone electrode 142 includes a round rod-shaped anode 146, a linear cathode 147 spirally wound around the outer circumference of the anode 146, and an ion exchange membrane 148 between the anode 146 and the cathode 147.
  • a diamond electrode is used for the anode 146
  • a platinum electrode is used for the cathode 147.
  • One end of the ozone electrode 142 is held by an electrode holder 143.
  • the electrode holder 143 is installed at the end of the housing 141 on the water supply valve 110 side in a manner to block the opening.
  • the water supply valve 110 is a solenoid valve, and its water inlet 111 is connected to a faucet via a water supply hose (not shown), and its water outlet 112 is connected to an inlet 145 of the housing 141 .
  • the detergent put into the detergent box 130 is supplied to the washing and dehydrating barrel 22, that is, the outer barrel 20, together with water. Furthermore, when water is supplied during the barrel washing operation and the drainage channel washing operation, the ozone electrode 142 is energized, and the water flowing in the housing 141 is electrolyzed to generate ozone. The generated ozone dissolves in water to generate ozone water. The generated ozone water is supplied to the washing and dehydrating barrel 22, that is, the outer barrel 20, through the detergent box 130 and the water injection tank 120.
  • the housing 141 and the water filling tank 120 constitute a water supply path for supplying water into the outer tub 20. Therefore, in the present embodiment, the ozone water generating device 140 is disposed in the water supply path.
  • the water tank 120 may contain a softener box which is integrally arranged with the detergent box 130 and is located next to the detergent box 130. Liquid softener is put into the softener box.
  • the softener box has the same structure as the detergent box 130.
  • a water channel for the softener box is provided in the water channel forming portion 121, and the water channel is connected to the water supply valve for softener input by a connecting hose.
  • the softener box is opened.
  • the water supply valve for washing and dehydrating is opened, the softener put into the softener box is supplied to the washing and dehydrating barrel 22 through the water filling tank 120 together with the water from the faucet.
  • Fig. 3 is a block diagram showing the structure of a fully automatic washing machine 1A.
  • the fully automatic washing machine 1A further includes an operation unit 71 and a water level sensor 72.
  • the fully automatic washing machine 1A includes a control unit 80.
  • the control unit 80 includes a control unit 81, a storage unit 82, a motor drive unit 83, a clutch drive unit 84, a water supply drive unit 85, a drainage drive unit 86, and an electrode energizing unit 87.
  • the operation unit 71 includes various operation buttons such as a power button, a start/pause button, and a mode selection button.
  • the power button is used to turn on and off the power of the fully automatic washing machine 1A
  • the start/pause button is used to start and pause the operation
  • the mode selection button is used to select any operation mode from a plurality of operation modes of washing operation, an operation mode of tub cleaning operation, and an operation mode of drainage channel cleaning operation.
  • the operation unit 71 outputs an input signal corresponding to the operation button operated by the user to the control unit 81.
  • the water level sensor 72 detects the water level in the washing and dehydrating tub 22 , that is, in the outer tub 20 , and outputs a water level signal corresponding to the detected water level to the control unit 81 .
  • the motor driving unit 83 drives the driving motor 31 according to the control signal output from the control unit 81.
  • the motor driving unit 83 includes a rotation sensor for detecting the rotation speed of the driving motor 31, an inverter circuit, etc., and adjusts the driving power so that the driving motor 31 rotates at the rotation speed set by the control unit 81.
  • the clutch drive unit 84 drives the clutch mechanism 32a of the transmission mechanism unit 32 according to the control signal output from the control unit 81.
  • the water supply drive unit 85 drives the water supply valve 110 according to the control signal from the control unit 81.
  • the drainage drive unit 86 drives the drainage valve 41 according to the control signal from the control unit 81.
  • the electrode energizing unit 87 energizes the ozone electrode 142 according to the control signal from the control unit 81.
  • the storage unit 82 includes an EEPROM (electrically erasable programmable read-only memory), a RAM (random access memory), etc.
  • the storage unit 82 stores programs for executing washing operation, tub cleaning operation, and drainage channel cleaning operation.
  • the storage unit 82 stores various operating conditions for washing operation, tub cleaning operation, and drainage channel cleaning operation.
  • the control unit 81 includes a CPU (central processing unit) and the like, and controls the motor drive unit 83, the clutch drive unit 84, the water supply drive unit 85, the drainage drive unit 86, the electrode energizing unit 87, etc. based on various signals from the operation unit 71, the water level sensor 72, etc., according to the program stored in the storage unit 82. As a result, the control unit 81 can be controlled by the program stored in the storage unit 82.
  • the control unit 81 controls the operations of the driving unit 30 , the drainage unit 40 , and the water supply unit 50 .
  • washing operations in various operation modes are performed under the control of the control unit 81.
  • a washing process, an intermediate spin-drying process, a rinsing process, and a final spin-drying process are sequentially performed.
  • the load amount of the laundry is detected.
  • the pulsator 24 rotates without water in the washing and dehydrating tub 22, and the load amount is determined based on the driving current of the driving motor 31 and the inertial rotation amount until the driving motor 31 stops.
  • the water level and time in the washing process and the rinsing process are set according to the detected load amount.
  • the impeller 24 rotates forward and reversely while retaining water containing detergent in the washing and dehydrating barrel 22 to a water level set based on load detection.
  • a water flow is generated in the washing and dehydrating barrel 22, and the washings are cleaned by the water flow and the detergent.
  • the pulsator 24 rotates forward and reversely, and a water flow is generated in the washing and dehydrating tub 22.
  • the laundry is rinsed by the generated water flow, and the detergent contained in the laundry is discharged into the water.
  • the washing and dehydration barrel 22 and the pulsator 24 are integrated and rotated at a predetermined dehydration speed.
  • the washings are dehydrated by the centrifugal force generated in the washing and dehydration barrel 22.
  • a tub cleaning operation for cleaning the washing and dehydrating tub 22 using ozone water and a drain cleaning operation for cleaning the drain 2 using ozone water are performed.
  • Fig. 4(a) is a flowchart showing a control process of a tub washing operation.
  • Fig. 4(b) is a flowchart showing a control process of a tub washing process included in the tub washing operation.
  • the tub washing operation starts.
  • control unit 81 when the tub washing operation starts, the control unit 81 first performs a tub washing process ( S1 ).
  • control unit 81 opens the water supply valve 110 and The oxygen electrode 142 is energized (S101).
  • S101 ozone water having a predetermined ozone concentration is supplied from the water supply unit 50 into the outer tub 20.
  • the drain valve 41 is closed, and the ozone water is stored in the outer tub 20.
  • the rated flow rate of the water supply valve 110 and the current value supplied to the ozone electrode 142 are set so as to achieve an ozone concentration that can clean the washing and dehydrating tub 22 well and remove biofilm from the washing and dehydrating tub 22 .
  • the control unit 81 determines whether the water level in the outer tub 20 has reached a predetermined tub washing water level (S102) based on the water level detected by the water level sensor 72.
  • the tub washing water level is set to, for example, the same water level as the highest water level during washing set based on load detection.
  • the control unit 81 determines that the water level in the outer tub 20 has reached the tub washing water level (S102: YES)
  • the ozone electrode 142 is de-energized and the water supply valve 110 is closed (S103).
  • ozone water at the tub washing water level is stored in the outer tub 20.
  • control unit 81 rotates the pulsator 24 through the driving unit 30 (S104).
  • the pulsator 24 repeatedly rotates forward and reversely, and the washing and dehydrating tub 22 does not rotate.
  • Water flow is generated in the outer barrel 20, that is, the washing and dehydration barrel 22 and the washing and dehydration barrel 22 and the outer barrel 20.
  • the washing and dehydration barrel 22 is cleaned, and the biofilm formed on the outer peripheral surface and the outer bottom surface of the washing and dehydration barrel 22 is removed.
  • Aspergillus niger, Aspergillus niger, etc. can also be killed.
  • the tub cleaning time can be set to, for example, a time of several minutes to about ten minutes.
  • the barrel cleaning process ends. At this moment, because the ozone concentration of the ozone water stored in the outer barrel 20 is greatly reduced because a large amount of ozone is consumed by the rotation of the pulsator 24 to clean the washing and dehydrating barrel 22.
  • the control unit 81 performs the drainage process (S2) through the action of the drainage unit 40. That is, the control unit 81 opens the drainage valve 41.
  • the ozone water is discharged from the outer barrel 20.
  • the removed biofilm, Aspergillus niger, etc. also flow out of the outer barrel 20 together with the ozone water.
  • the drainage process is finished.
  • the drainage valve 41 remains in the open state.
  • the control unit 81 performs a dehydration process (S3). That is, the control unit 81 causes the pulsator 24 and the washing and dehydrating barrel 22 to rotate at a high speed. The ozone water remaining in the washing and dehydrating barrel 22 and the organic matter, bacteria, etc. contained in the ozone water fly out of the washing and dehydrating barrel 22 and are discharged from the outer barrel 20.
  • the control unit 81 stops the rotation of the pulsator 24 and the washing and dehydration tub 22, and closes the drain valve 41. In this way, the dehydration process ends, and the tub washing operation ends.
  • FIG. 5 is a flowchart showing a control process of the drainage channel flushing operation.
  • the control unit 81 opens the drain valve 41 (S201).
  • the control unit 81 determines whether there is water in the outer tub 20 (S202).
  • the control unit 81 determines that there is water in the outer tub 20.
  • the control unit 81 determines that there is water in the outer tub 20 (S202: Yes)
  • the control unit 81 opens the drain valve 41 until it is determined that there is no water in the outer tub 20.
  • the control unit 81 determines that there is no water in the outer tub 20 (S202: No)
  • the control unit 81 closes the drain valve 41.
  • the control unit 81 waits for a specified time to pass before closing the drain valve 41 after determining that there is no water in the outer barrel 20.
  • the control unit 81 may determine whether water exists in the outer tub 20 before opening the drain valve 41 , and open the drain valve 41 when it is determined that water exists.
  • the outer tub 20 can be made empty.
  • control unit 81 opens the water supply valve 110 and energizes the ozone electrode 142 ( S204 ), whereby ozone water having a predetermined ozone concentration is supplied from the water supply unit 50 into the outer tub 20 and stored in the outer tub 20 .
  • the control unit 81 determines whether the water level in the outer tub 20 reaches a predetermined drain cleaning water level (S205).
  • the drain cleaning water level is a water level lower than the tub cleaning water level in the tub cleaning operation, for example, a water level within the low water level range of about 10 to 15 liters in the washing operation.
  • the control unit 81 determines that the water level in the outer tub 20 has reached the drain cleaning water level (S205: Yes)
  • the ozone electrode 142 is powered off and the water supply valve 110 is closed (S206).
  • the ozone water is stored in the outer barrel 20.
  • the control unit 81 opens the drain valve 41 (S207).
  • the ozone water in the outer barrel 20 is discharged from the drain unit 40 to the drain path 2.
  • the control unit 81 does not perform any of the actions of rotating the impeller 24 through the drive unit 30 and rotating the impeller 24 and the washing and dehydration barrel 22 as a whole before opening the drain valve 41. Therefore, the ozone water in the outer barrel 20 will not be consumed in the washing and dehydration barrel 22, but will be sent to the drain path 2 in a state close to the ozone concentration when stored in the outer barrel 20.
  • a large amount of ozone acts, and the biofilm formed on the inner wall surface of the drain port 2a, the water trap 2b, and the drain pipe 2c in the drain path 2 is removed. In the case where Aspergillus niger and the like are produced in the drain path 2, Aspergillus niger and the like will also be killed.
  • the control unit 81 closes the drain valve 41 (S209). For example, when the water level sensor 72 detects no water level or a predetermined time has passed since the water level is no longer detected, the control unit 81 determines that the drainage is completed.
  • control unit 81 performs a drain cleaning operation, in which ozone water is generated by the ozone water generating device 140 and stored in the outer tub 20, and then the ozone water in the outer tub 20 is discharged to the drain 2 through the drain unit 40 without performing any of the actions of rotating the pulsator 24 through the driving unit 30 and rotating the pulsator 24 and the washing and dehydration tub 22 as a whole.
  • the ozone water in the outer barrel 20 is not consumed in the washing of the washing and dehydrating barrel 22, but is sent to the drain 2 in a state close to the ozone concentration when stored in the outer barrel 20, so that the drain 2 can be well cleaned by the action of sufficient ozone, and the biofilm formed in the drain 2 can be well removed. Therefore, the generation of uncomfortable odors in the drain 2 can be suppressed.
  • the ozone water stored in the outer tub 20 flows into the drain channel 2 at once, the ozone water easily contacts the entire inner wall surface of the drain channel 2, and the inside of the drain channel 2 can be cleaned more effectively.
  • control unit 81 determines whether water is stored in the outer barrel 20. If water is stored in the outer barrel 20, the water is discharged through the drainage unit 40.
  • control unit 81 performs a tub cleaning operation in which ozone water is generated by the ozone water generating device 140 to be stored in the outer tub 20 , and then the pulsator 24 is rotated by the driving unit 30 .
  • the washing and dehydrating tub 22 can be cleaned by the water flow generated by the rotation of the pulsator 24 and the action of ozone, and the biofilm formed in the washing and dehydrating tub 22 can be removed.
  • the water supply unit 50 is provided, and the ozone water generating device 140 is disposed in the water supply path for supplying water into the outer tub 20 during the washing operation.
  • a water supply unit 50A may be provided in which the ozone water generating device 140 is disposed in a water supply path separate from a water supply path for supplying water into the outer tub 20 during a washing operation.
  • Fig. 6(a) is a plan view of a water supply unit 50A according to the first modification
  • Fig. 6(b) is a cross-sectional view taken along the line B-B' of Fig. 6(a).
  • the water supply unit 50A is provided with a water supply valve 150 having a first valve 150a and a second valve 150b as a double solenoid valve on the left side of the water injection tank 120.
  • a water supply port 128 having an L-shaped cylinder is provided at the lower part of the rear surface of the water injection tank 120, and the ozone water generating device 140 is arranged at the rear of the lower part of the water injection tank 120 with the inlet 145 of the housing 141 facing upward.
  • the outlet 144 of the housing 141 is connected to the water supply port 128.
  • the water inlet 151 of the water supply valve 150 is connected to the faucet via a water supply hose (not shown).
  • the water outlet 152a of the first valve 150a is connected to the water supply port 124 of the water channel forming portion 121 via a first connecting hose 161
  • the water outlet 152b of the second valve 150b is connected to the inlet 145 of the housing 141 via a second connecting hose 162.
  • the water supply unit 50A opens the first valve 150a when supplying water during the washing process and the rinsing process.
  • the tap water from the faucet flows through the first connecting hose 161, the water path 122 of the water path forming part 121, the detergent box 130 and the water path 126 of the water filling tank 120, and is supplied to the outer tub 20 from the water filling port 127.
  • the second valve 150b is opened.
  • the tap water from the faucet flows through the housing 141 in the state where the ozone electrode 142 is energized, and ozone water is generated.
  • the ozone water discharged from the housing 141 flows through the water path 126 of the water injection tank 120 and is supplied to the outer tub 20 from the water injection port 127.
  • tap water flows into the housing 141 only when ozone water is supplied to the outer tub 20, and tap water does not flow into the housing 141 when water is supplied to the outer tub 20 during washing operation.
  • the frequency of mineral components such as calcium and magnesium contained in tap water adhering to the ozone electrode 142 can be reduced.
  • the ozone water generator 140 is disposed in the water supply unit 50, that is, in the water supply path to the outer tub 20. Therefore, the ozone water is stored in the outer tub 20 by supplying the ozone water from the water supply unit 50.
  • the ozone water generating device 140A is disposed at the bottom of the outer tub 20. Therefore, the ozone water is stored in the outer tub 20 by generating ozone water from the water supplied into the outer tub 20.
  • the water supply unit 50 no longer includes the ozone water generator 140 , and the water supply valve 110 is connected to the water supply port 124 of the water channel forming portion 121 via a connection hose (not shown).
  • FIG. 7 is a partial cross-sectional view showing the periphery of the ozone water generating device 140A at the bottom of the outer tub 20 according to the second modification.
  • the ozone water generating device 140A includes an ozone electrode 142 and an electrode holding unit 143 .
  • the ozone electrode 142 is disposed between the outer bottom surface of the washing and dehydrating tub 22 and the inner bottom surface of the outer tub 20. One end of the ozone electrode 142 is held by an electrode holding portion 143.
  • the electrode holding portion 143 is mounted on a mounting port 20b provided in the outer tub 20.
  • FIG8(a) is a flowchart showing a control process of the tub washing process according to the second modification.
  • the control unit 81 opens the water supply valve 110 and supplies water to the outer tub 20 until the water level in the outer tub 20 reaches the tub cleaning water level (S111-S113). After that, the control unit 81 energizes the ozone electrode 142 (S114). Ozone is generated by electrolysis of the water stored in the outer tub 20. Ozone water is generated in the outer tub 20. As time passes, the ozone concentration of the ozone water in the outer tub 20 gradually increases.
  • the control unit 81 determines whether a first predetermined time has passed since the ozone electrode 142 was energized (S115).
  • the first predetermined time is set to the time when the ozone water in the outer tub 20 reaches an ozone concentration that can clean the washing and dehydrating tub 22 well.
  • the control unit 81 stops energizing the ozone electrode 142 ( S116 ). In this way, ozone water at the tub washing water level is stored in the outer tub 20 .
  • control unit 81 rotates the pulsator 24 through the driving unit 30 for the tub washing time (S104 to S106).
  • FIG8(b) is a flowchart showing a control process of the drainage duct flushing operation according to the second modification.
  • control unit 81 closes the drain valve 41 in step S203, it opens the water supply valve 110 and supplies water into the outer tub 20 until the water level in the outer tub 20 reaches the drain cleaning water level (S211-S213). After that, the control unit 81 energizes the ozone electrode 142 (S214). Ozone water is generated in the outer tub 20, and its ozone concentration gradually increases.
  • the control unit 81 determines whether a second predetermined time has passed since the ozone electrode 142 was energized (S215).
  • the second predetermined time is set to a time when the ozone water in the outer tub 20 reaches an ozone concentration that can clean the drainage channel 2 well.
  • the control unit 81 stops energizing the ozone electrode 142 (S216). In this way, ozone water at the drainage channel cleaning water level is stored in the outer tub 20.
  • control unit 81 opens the drain valve 41 to discharge the ozone water in the outer tub 20 into the drain passage 2 through the drain unit 40 (S207 to S209).
  • FIG9(a) is a flowchart showing a control process of the tub washing process according to the third modification.
  • the control unit 81 stops the rotation of the pulsator 24 and the washing/dehydrating tub 22 (S122).
  • control unit 81 may also make the pulsator 24 and the washing and dehydrating tub 22 rotate integrally for the tub washing time.
  • Fig. 9(b) is a flowchart showing the control process of the drainage duct flushing operation according to Modification 4. It should be noted that, in Fig. 9(b) , only the process after step S214 is shown for the sake of convenience.
  • control unit 81 does not perform any of the actions of rotating the impeller 24 through the driving unit 30 in the outer barrel 20 and rotating the impeller 24 and the washing and dehydration barrel 22 as a whole, and opens the drain valve 41 to discharge the ozone water stored in the outer barrel 20 into the drainage channel 2.
  • the control unit 81 rotates the pulsator 24 for a predetermined stirring time (S217 to S219).
  • the stirring time is a time shorter than the barrel cleaning time, for example, set to a time of several seconds to tens of seconds.
  • the rotation speed of the pulsator 24 is lower than the rotation speed during the barrel cleaning process.
  • the unevenness of the ozone concentration can be suppressed by stirring the ozone water in the outer tub 20.
  • the washing and dehydrating tub 22 is not substantially cleaned. Therefore, ozone is not easily consumed, and the ozone concentration of the ozone water is not easily reduced.
  • control unit 81 may also rotate the pulsator 24 and the washing and dehydrating tub 22 together for a predetermined stirring time.
  • the rotation speed of the pulsator 24 and the washing and dehydrating tub 22 is lower than the rotation speed during the tub washing process.
  • the stirring action of the ozone water caused by the rotation of the pulsator 24 and the rotation of the pulsator 24 and the washing and dehydrating tub 22 may be performed during the power supply to the ozone electrode 142, i.e., during the generation of the ozone water.
  • the stirring action may be performed again or not.
  • the total stirring time is shorter than the tub washing time in the tub washing operation.
  • a drum washing machine 1B according to a second embodiment will be described.
  • Fig. 10 is a side sectional view showing the structure of drum washing machine 1B.
  • Drum washing machine 1B includes square housing 210.
  • a circular inlet 211 for inlet of laundry is formed in the center of the front surface of housing 210.
  • Inlet 211 is covered by door 212 which can be opened and closed.
  • An outer barrel 220 is arranged in the box body 210.
  • the outer barrel 220 is elastically supported by a plurality of shock absorbers 221 and springs 222.
  • a drum 223 is rotatably arranged in the outer barrel 220.
  • the drum 223 rotates around a horizontal axis.
  • the drum 223 may also be arranged to rotate around a rotation axis inclined relative to the horizontal direction.
  • the drum 223 has a circular opening 223 a on the front surface thereof, and the outer tub 220 has a circular opening 220 a in front of the opening 223 a of the drum 223 .
  • the peripheral edge of the opening 220a of the outer tub 220 is connected to the peripheral edge of the inlet 211 of the box 210 via an annular gasket 224 made of elastic material.
  • the peripheral surface of the closed door 212 contacts the gasket 224, and the inlet 211 and the door 212 are water-sealed.
  • a large number of dehydration holes 223b are formed on the inner peripheral surface of the drum 223.
  • three lifting ribs 225 having a substantially triangular prism shape are provided on the inner peripheral surface of the drum 223 at equal intervals in the circumferential direction.
  • a drive motor 230 for generating a torque for rotating the drum 223 is disposed at the rear of the outer tub 220.
  • the drive motor 230 is, for example, an outer rotor type DC brushless motor.
  • the drive motor 230 rotates the drum 223 at a speed such that the centrifugal force applied to the laundry in the drum 223 is smaller than the gravity.
  • the drive motor 230 rotates the drum 223 at a speed such that the centrifugal force applied to the laundry in the drum 223 is much greater than the gravity.
  • a drain port 220b is formed at the bottom of the outer tub 220.
  • a drain port 220b is connected to a drain portion 240 for draining water from the outer tub 220.
  • the drain portion 240 includes a drain valve 241, a drain hose 242, and a drain valve.
  • the drain outlet 220b is connected to a water filter 243.
  • the drain valve 241 is provided downstream of the drain filter 243, and includes, for example, a valve and a torque motor for opening and closing the valve.
  • a drain hose 242 is connected to the water outlet 241a of the drain valve 241.
  • the drain hose 242 is connected to the drain outlet 2a of the drain path 2.
  • the water outlet 241a of the drain valve 241 and the drain hose 242 constitute a drain pipeline T2 for the water discharged from the outer barrel 220 by opening the drain valve 241.
  • the drain valve 241 When the drain valve 241 is opened, the water stored in the outer tub 20 is discharged to the drain passage 2 through the drain port 220b, the drain filter 243 and the drain hose 242, that is, the drain portion 240.
  • the drain filter 243 captures foreign matter such as lint.
  • a water supply unit 250 for supplying water into the outer tub 20 is disposed at the upper portion of the housing 210.
  • the water supply unit 250 includes a first water supply valve 251, a detergent box 252, a water supply hose 253, and a water injection pipe 254.
  • the first water supply valve 251 is disposed at the upper rear portion of the housing 210
  • the detergent box 252 is disposed at the upper front portion of the housing 210.
  • a detergent container 252a containing detergent is contained in the detergent box 252 in a manner that it can be freely drawn out from the front.
  • One end of the water supply hose 253 is connected to the first water supply valve 251, and the other end is connected to the detergent box 252.
  • One end of the water injection pipe 254 is connected to the detergent box 252, and the other end is connected to the upper portion of the outer tub 220.
  • An ozone water supply unit 260 for supplying ozone water into the outer barrel 20 is arranged at the rear of the housing 210.
  • the ozone water supply unit 260 includes a second water supply valve 261, an ozone water generating device 262 for generating ozone water, an inlet pipe 263, and an outlet pipe 264.
  • the second water supply valve 261 is arranged at the upper rear portion of the housing 210, and is composed of a double solenoid valve together with the first water supply valve 251.
  • the ozone water generating device 262 is disposed on the upper portion of the outer tub 220 .
  • the structure of the ozone water generating device 262 is the same as that of the ozone water generating device 140 of the first embodiment, and includes a housing 265 , an ozone electrode 266 , and an electrode holder 267 .
  • One end of the inlet pipe 263 is connected to the second water supply valve 261, and the other end is connected to the inlet of the housing 265.
  • One end of the outlet pipe 264 is connected to the outlet of the housing 265, and the other end is connected to the lower part of the outer tub 220.
  • the second water supply valve 261 When the second water supply valve 261 is opened, tap water flows from the faucet into the housing 265 through the introduction pipe 263.
  • the ozone electrode 266 is energized, and the water flowing in the housing 265 is electrolyzed to generate ozone.
  • the generated ozone dissolves in water to generate ozone water.
  • the ozone water flows out of the housing 265 and is supplied to the outer barrel 220 through the outlet pipe 264.
  • FIG. 11 is a block diagram showing the structure of drum washing machine 1B.
  • drum washing machine 1B further includes control unit 271 , storage unit 272 , operation unit 273 , water level sensor 274 , motor drive unit 275 , water supply drive unit 276 , drainage drive unit 277 , and electrode current supply unit 278 .
  • the operation unit 273 includes a power button, a start/pause button, and a mode selection button.
  • the operation unit 273 outputs an input signal corresponding to a button operated by a user to the control unit 271 .
  • the water level detector 274 detects the water level in the outer tub 220 and outputs a water level signal corresponding to the detected water level to the controller 271 .
  • the motor driver 275 drives the drive motor 230 according to the control signal from the control unit 271.
  • the motor driver 275 includes a rotation sensor for detecting the rotation speed of the drive motor 230, an inverter circuit, etc., and adjusts the drive power so that the drive motor 230 rotates at the rotation speed set by the control unit 271.
  • the water supply driving unit 276 drives the first water supply valve 251 and the second water supply valve 261 according to the control signal from the control unit 271.
  • the drainage driving unit 277 drives the drainage valve 241 according to the control signal from the control unit 271.
  • the electrode energizing unit 278 energizes the ozone electrode 266 according to the control signal from the control unit 271.
  • the storage unit 272 includes an EEPROM (electrically erasable programmable read-only memory), a RAM (random access memory), etc.
  • the storage unit 272 stores programs for executing washing operation, tub cleaning operation, and drainage channel cleaning operation in various operation modes.
  • the storage unit 272 stores various parameters and various control marks for executing these programs.
  • the control unit 271 controls the motor driving unit 275, the water supply driving unit 276, the drainage driving unit 277, the electrode energizing unit 278, etc. based on various signals from the operation unit 273, the water level sensor 274, etc., according to the program stored in the storage unit 272. As a result, the control unit 271 controls the operation of the drive motor 230, the drainage unit 240, the water supply unit 250, and the ozone water supply unit 260.
  • the washing operation of various operation modes is performed based on the user's operation of the operation unit 273.
  • the washing process, the intermediate dehydration process, the rinsing process, and the washing process are sequentially performed. It should be noted that, depending on the operation mode, sometimes the intermediate dehydration process and the rinsing process are performed twice or more.
  • water is stored in the outer barrel 20 to a predetermined water level.
  • the water stored in the outer barrel 220 contains detergent.
  • the drive motor 230 rotates forward or reversely alternately, and the drum 223 rotates forward or reversely alternately.
  • the drum 223 rotates at a speed at which the centrifugal force acting on the laundry in the drum 223 is less than the gravity.
  • the laundry in the drum 223 is lifted by the lifting ribs 225 and then falls, thereby being thrown onto the inner circumferential surface of the drum 223. In this way, the laundry is washed or rinsed.
  • the drive motor 230 rotates at a high speed in one direction, and the drum 223 rotates at a speed at which the centrifugal force acting on the laundry in the drum 223 is much greater than the gravity.
  • the laundry is pressed against the inner circumference of the drum 223 and dehydrated by the centrifugal force.
  • drum washing machine 1B in addition to the washing operation, a tub washing operation for washing drum 223 using ozone water and a drain channel washing operation for washing drain channel 2 using ozone water are performed.
  • operation unit 273 when the operation mode of the tub washing operation is selected by the mode selection button and then the start/pause button is pressed, the tub washing operation starts.
  • control process of the tub washing operation in FIG4(a) is executed by the control unit 271 as in the first embodiment. That is, the control unit 271 executes the tub washing process, the drainage process, and the dehydration process in order (S1 to S3).
  • FIG. 12 is a flowchart showing the control process of the tub washing process.
  • control unit 271 executes the control process shown in FIG. 12 .
  • the control unit 81 opens the second water supply valve 261 and energizes the ozone electrode 266 (S301).
  • the control unit 271 determines that the water level in the outer tub 220 reaches the tub washing water level (S302: Yes)
  • the ozone electrode 266 is stopped from being energized and the second water supply valve 261 is closed (S303).
  • the tub washing water level is set to a water level at which the bottom of the drum 223 is submerged in water and is lower than the lower edge of the pad 224.
  • control unit 271 drives the motor 230 to rotate the drum 223 in one direction (S304).
  • the drum 223 rotates, the outer surface of the drum 223 contacts the ozone water stored in the outer barrel 220 in sequence, and the ozone water reaches the outer surface.
  • Ozone effectively acts on the entire area of the outer surface of the drum 223, removing the biofilm in the entire area of the outer surface.
  • Aspergillus niger and the like Aspergillus niger and others will also be killed.
  • the tub washing time can be set to a time of, for example, several minutes to about ten minutes.
  • control process of the tub washing operation of FIG. 5 is executed by the control unit 271 in the same manner as in the first embodiment described above.
  • control unit 271 opens the drain valve 241 until there is no water (S201-S203). After that, the control unit 271 opens the second water supply valve 261 and energizes the ozone electrode 266 to store ozone water in the outer tub 220 to the drainage cleaning water level (S204-S206).
  • the drainage channel flushing water level may be set, for example, to the same level as the tub flushing water level or to a level lower than the tub flushing water level.
  • control unit 271 stops rotating the drum 223 by the driving motor 230, opens the drain valve 241, and discharges the ozone water in the outer tub 220 into the drain passage 2 through the drain unit 240 (S207 to S209).
  • the ozone water in the outer barrel 220 is not consumed in the cleaning of the drum 223, but is sent to the drain 2 at a concentration close to that when stored in the outer barrel 220, and a large amount of ozone acts to remove the biofilm formed on the inner wall surface of the drain 2. In the case where Aspergillus niger or the like is produced in the drain 2, Aspergillus niger or the like is also killed.
  • the tub washing water level is set to a water level at which the ozone water does not contact the outer peripheral surface of the drum 223, the ozone water does not contact the biofilm formed on the outer peripheral surface of the drum 223, and the consumption of ozone can be further suppressed.
  • the ozone water supply unit 260 may be removed and the water supply unit 260 may be used as the water supply unit.
  • the water supply unit 250 has the function of an ozone water supply unit 260.
  • an ozone water generator 262 is disposed in the middle of the water supply hose 253 of the water supply unit 250.
  • Fig. 13 is a side sectional view showing the structure of a drum washing machine 1B according to a first modification.
  • the ozone water generator 262 is disposed in the ozone water supply unit 260, that is, in the water supply path to the outer tub 220. Therefore, the ozone water is stored in the outer tub 220 by supplying the ozone water from the ozone water supply unit 260.
  • ozone water supply unit 260 is removed from drum washing machine 1B and ozone water generator 262A is disposed at the bottom of tub 220. Therefore, ozone water is generated from water supplied into tub 220 and stored in tub 220.
  • the ozone water generating device 262A includes an ozone electrode 266 and an electrode holding portion 267 .
  • the ozone electrode 266 is disposed between the outer peripheral surface of the drum 223 and the inner bottom surface of the outer tub 20. One end of the ozone electrode 266 is held by an electrode holding portion 267.
  • the electrode holding portion 267 is mounted on a mounting port 220c provided in the outer tub 220.
  • control unit 271 performs the same control process as the control process of FIG. 8 (a) performed in the tub washing process of the second modification, and after water is stored in the outer tub 220, ozone water is generated from the stored water by the ozone water generating device 262A. However, in the process of steps S104 to S106 of FIG. 8 (a), the control unit 271 rotates the drum 223 in the outer tub 220 storing ozone water for the tub washing time.
  • control unit 271 performs the same control process as the control process of FIG. 8 (b) performed in the tub cleaning operation of the second modification, and after water is stored in the outer tub 220, ozone water is generated from the stored water by the ozone water generating device 262A. Thereafter, the ozone water in the outer tub 220 is discharged to the drain 2.
  • control unit 271 may also perform the same control process as the control process of FIG. 9 (b) performed in the tub cleaning operation of the fourth modification. However, in the process of steps S217 to S219 of FIG. 9 (b), the control unit 271 rotates the drum 223 for the stirring time to stir the ozone water in the outer tub 220.
  • a vortex generating unit 300 for generating a vortex in the flow of the ozone water may be provided in the drain pipe T1 downstream of the drain valve 41 .
  • Fig. 14 (a) and (b) are diagrams showing the structure of the vortex generating part 300 provided at the water outlet 41a of the drain valve 41.
  • Fig. 14 (a) is a diagram showing the water outlet 41a from below
  • Fig. 14 (b) is a cross-sectional view taken along line C-C' of Fig. 14 (a).
  • the vortex generating part 300 includes a plurality of, for example, six, blades 301 arranged circumferentially on the inner peripheral surface of the cylindrical water outlet 41a. Each blade 301 extends in the direction of the central axis P of the water outlet 41a so as to be inclined relative to the central axis P and has a twisted shape.
  • the ozone water flows in a vortex state and easily flows on the inner wall surface side. Therefore, the ozone water easily contacts the biofilm formed on the inner wall surface of the drain port 2a, and the biofilm is easily removed.
  • the vortex generating part 300 is provided at the water outlet 41 a of the drain valve 41 .
  • the vortex generating part 300 may be provided at a portion near the water outlet 41 a of the drain hose 42 .
  • a vortex generating portion 300 can also be set in the drainage pipe T2 downstream of the drain valve 241, that is, at the water outlet 241a of the drain valve 241 and the drain hose 242.
  • the structure of the ozone water generating device 140, 262 is not limited to the structure of the above-mentioned embodiment 1, embodiment 2, modification example 2 of the above-mentioned embodiment 1, and modification example 1 of the above-mentioned embodiment 2, and any structure can be used as long as it can generate ozone water.
  • the ozone water generating device can also be a structure as follows: in an ozone generator, ozone is generated from air by corona discharge or the like, and the generated ozone is discharged into the air. Ozone is supplied to the water supply path through which water flows into the outer tub 20, 220, and to the outer tub 20 storing water, using an air pump or the like, thereby generating ozone water.
  • the fully automatic washing machine 1A performs a barrel cleaning operation for cleaning the washing and dehydrating barrel 22 using ozone water.
  • the drum washing machine 1B performs a barrel cleaning operation for cleaning the drum 223 using ozone water.
  • the fully automatic washing machine 1A of the above-mentioned embodiment 1 and the drum washing machine 1B of the above-mentioned embodiment 2 may perform only a drainage cleaning operation without performing a barrel cleaning operation.
  • the fully automatic washing machines 1A of the above-mentioned modification examples 1, 2 and 4 of the above-mentioned embodiment 1 and the drum washing machine 1B of the above-mentioned modification example 1 of the above-mentioned embodiment 2 may perform only a drainage cleaning operation without performing a barrel cleaning operation.
  • the control unit 81, 271 detects the load in the washing and dehydrating barrel 22 and the drum 223, and determines whether there are laundry in the washing and dehydrating barrel 22 and the drum 223 based on the detected load, and does not start the drainage cleaning operation when there are laundry. In this way, it is possible to prevent the drainage 2 from being cleaned by ozone water whose ozone concentration is reduced by the consumption of ozone in the sterilization of the laundry.
  • the fully automatic washing machine 1A of the first embodiment and its first to fourth variations and the drum washing machine 1B of the second embodiment and its first variation may rinse the laundry with ozone water stored in the outer tub 20, 220 during the rinsing process of the washing operation.
  • the stirring time in step S218 of FIG. 9 (b) is shorter than the time for rotating the pulsator 24 or the drum 223 during the rinsing process.
  • the first embodiment above shows an example in which the present invention is applied to a fully automatic washing machine 1A.
  • the present invention can also be applied to a fully automatic washing machine with a drying function.
  • the second embodiment above shows an example in which the present invention is applied to a drum washing machine 1B.
  • the present invention can also be applied to a drum washing machine with a drying function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种能使用臭氧水来良好地去除形成于房屋的排水路的生物膜的洗衣机。洗衣机(1A)具备:洗涤脱水桶(22),以能旋转的方式配置于外桶(20)内;波轮(24),以能旋转的方式配置于洗涤脱水桶(22)内;驱动单元(30),用于使洗涤脱水桶(22)和波轮(24)旋转;臭氧生成装置(140),用于生成臭氧水;排水部(40),将外桶(20)内的水向设置于房屋内的排水路(2)排出;以及控制部。控制部在排水路洗净运转中通过由臭氧水生成装置(140)生成臭氧水来将臭氧水蓄于外桶(20)内,并以不进行通过驱动单元(30)来使波轮(24)旋转的动作和使波轮(24)与洗涤脱水桶(22)一体旋转的动作中的任一动作的方式,通过排水部(40)来将外桶(20)内的臭氧水向排水路(2)排出。

Description

洗衣机 技术领域
本发明涉及一种洗衣机。
背景技术
以往,将由臭氧发生器产生的含有臭氧的水(以下,称为“臭氧水”)蓄于外桶内并使用臭氧水来洗净以能旋转的方式配置于外桶内的内桶的洗衣机例如在专利文献1和专利文献2中有所记载。
专利文献1的洗衣机是使配置于内桶的底部的搅拌体旋转而产生水流来清洗洗涤物的所谓立式洗衣机。在桶洗净运转中,能在外桶内蓄有臭氧水的状态下使搅拌翼旋转而产生水流并通过臭氧水来将内桶洗净、除菌。
专利文献2的洗衣机是使作为内筒的横轴型的滚筒旋转来进行洗涤物的捶洗的所谓滚筒洗衣机。在桶洗净运转中,能在外桶内蓄有臭氧水的状态下使滚筒旋转并通过臭氧水来洗净滚筒来去除形成于滚筒的生物膜。
在房屋中,在更衣室等设置有洗衣机的场所设有排水路,洗衣机的排水软管连接于排水路的入口即排水口。从洗衣机排出的含有洗涤剂和污垢的污水通过排水口流入排水路。因此,排水路容易因来自洗衣机的污水而在排水口、排水口下游的排水管上形成生物膜(黏液),担心会从排水口产生令人不适的气味等。
在由专利文献1、专利文献2的洗衣机进行的桶洗净运转中,通过进行使搅拌翼、滚筒旋转的洗净动作,外桶内的水中含有的多数臭氧与内桶接触而被消耗于内桶的洗净。因此,在桶洗净运转中,从外桶内即洗衣机排出的臭氧水处于臭氧浓度大幅降低的状态。因此,在桶洗净运转中,虽然会从洗衣机排出臭氧水,但很难通过该臭氧水来去除排水口等的生物膜。
为了洗净排水路,用户必须从排水口卸下排水软管,进行用刷子等擦拭排 水口等排水路的内部的作业,或者进行向排水路冲水的作业。因此,用户可能需要花费大量的劳力。
现有技术文献
专利文献
专利文献1:日本特开2001-187294号公报
专利文献2:日本特开2022-098364号公报
发明内容
发明所要解决的问题
本发明是鉴于上述问题而完成的,其目的在于提供一种能使用臭氧水来良好地去除形成于房屋的排水路的生物膜的洗衣机。
用于解决问题的方案
本发明的第一方案的洗衣机具备:外桶,配置于箱体内;洗涤脱水桶,以能旋转的方式配置于所述外桶内;波轮,以能旋转的方式配置于所述洗涤脱水桶内;驱动部,用于使所述洗涤脱水桶和所述波轮旋转;臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及控制部,进行使用所述臭氧水来洗净所述排水路的排水路洗净运转。其中,所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,并以不进行通过所述驱动部来使所述波轮旋转的动作和使所述波轮与所述洗涤脱水桶一体旋转的动作中的任一动作的方式,通过所述排水部将所述外桶内的所述臭氧水向所述排水路排出。
例如,在臭氧水生成部配置于向外桶内供给水的供水路的情况下,由流过供水路的水生成的臭氧水被供给至外桶内,由此臭氧水蓄于外桶内。此外,例如,在臭氧水生成部配置于外桶的底部的情况下,由供给至外桶内的水生成臭氧水,由此臭氧水蓄于外桶内。
根据本方案的洗衣机,在排水路洗净运转中,外桶内的臭氧水不会被消耗 于洗涤脱水桶的洗净,而是以接近蓄于外桶内时的臭氧浓度的状态被送至排水路,因此能通过充足的臭氧的作用来良好地洗净排水路内,能良好地去除形成于排水路内的生物膜。因此,能抑制排水路内产生不适的气味等。
进而,由于蓄于外桶内的臭氧水一口气流入排水路内,因此臭氧水容易与排水路的整个内壁面接触,能更良好地洗净排水路内。
本发明的第二方案的洗衣机具备:外桶,配置于箱体内;洗涤脱水桶,以能旋转的方式配置于所述外桶内;波轮,以能旋转的方式配置于所述洗涤脱水桶内;驱动部,用于使所述洗涤脱水桶和所述波轮旋转;臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及控制部,进行使用所述臭氧水来洗净所述洗涤脱水桶的桶洗净运转和使用所述臭氧水来洗净所述排水路的排水路洗净运转。其中,所述控制部在所述桶洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,并通过所述驱动部来进行使所述波轮旋转的动作或使所述波轮与所述洗涤脱水桶一体旋转的动作。进而,所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,并以不进行通过所述驱动部来使所述波轮旋转的动作和使所述波轮与所述洗涤脱水桶一体旋转的动作中的任一动作的方式,通过所述排水部来将所述外桶内的所述臭氧水向所述排水路排出,或者在以比所述桶洗净运转短的时间进行通过所述驱动部来使所述波轮旋转的动作和使所述波轮与所述洗涤脱水桶一体旋转的动作中的任一动作之后,通过所述排水部来将所述外桶内的所述臭氧水向所述排水路排出。
根据本方案的洗衣机,在桶洗净运转中,能通过由波轮的旋转而产生的水流和臭氧的作用或者洗涤脱水桶在臭氧水中的旋转和臭氧的作用来洗净洗涤脱水桶,能去除形成于洗涤脱水桶的生物膜。
进而,在排水路洗净运转中,能通过从外桶内排出的臭氧水来良好地洗净排水路内,能良好地去除形成于排水路内的生物膜。因此,能抑制排水路内产生不适的气味等。此外,由于蓄于外桶内的臭氧水一口气流入排水路内,因此臭氧水容易与排水路的整个内壁面接触,能更良好地洗净排水路内。
本发明的第三方案的洗衣机具备:外桶,配置于箱体内;滚筒,配置于所 述外桶内,能绕相对于水平轴或水平方向倾斜的旋转轴进行旋转;驱动马达,用于使所述滚筒旋转;臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及控制部,进行使用所述臭氧水来洗净所述排水路的排水路洗净运转。其中,所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,并以不进行通过所述驱动马达来使所述滚筒旋转的动作的方式,通过所述排水部将所述外桶内的所述臭氧水向所述排水路排出。
根据本方案的洗衣机,在排水路洗净运转中,外桶内的臭氧水不会被消耗于滚筒的洗净,而是以接近蓄于外桶内时的臭氧浓度的状态被送到排水路,因此能通过充足的臭氧的作用来良好地洗净排水路内,能良好地去除形成于排水路内的生物膜。因此,能抑制排水路内产生不适的气味等。此外,由于蓄于外桶内的臭氧水一口气流入排水路内,因此臭氧水容易与排水路的整个内壁面接触,能更良好地洗净排水路内。
本发明的第四方案的洗衣机具备:外桶,配置于箱体内;滚筒,配置于所述外桶内,能绕相对于水平轴或水平方向倾斜的旋转轴进行旋转;驱动马达,用于使所述滚筒旋转;臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及控制部,进行使用所述臭氧水来洗净所述滚筒的桶洗净运转和使用所述臭氧水来洗净所述排水路的排水路洗净运转。其中,所述控制部在所述桶洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,并通过所述驱动马达来进行使所述滚筒旋转的动作。进而,所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,并以不进行通过所述驱动马达来使所述滚筒旋转的动作的方式,通过所述排水部将所述外桶内的所述臭氧水向所述排水路排出,或者在以比所述桶洗净运转短的时间进行通过所述驱动马达来使所述滚筒旋转的动作之后,通过所述排水部将所述外桶内的所述臭氧水向所述排水路排出。
根据本方案的洗衣机,在桶洗净运转中,能通过滚筒在臭氧水中的旋转和臭氧的作用来洗净洗滚筒,能去除形成于滚筒的生物膜。
进而,在排水路洗净运转中,能通过从外桶内排出的臭氧水来良好地洗净 排水路内,能良好地去除形成于排水路内的生物膜。因此,能抑制排水路内产生不适的气味等。此外,由于蓄于外桶内的臭氧水一口气流入排水路内,因此臭氧水容易与排水路的整个内壁面接触,能更良好地洗净排水路内。
在第一至第四方案的洗衣机中,可以采用如下结构:所述控制部在所述排水路洗净运转中,在将所述臭氧水蓄于所述外桶的动作开始之前,判定所述外桶内是否蓄有水,在所述外桶内蓄有水的情况下,通过所述排水部将该水排出。
根据上述结构,能在排水路洗净运转之前防止臭氧被蓄于外桶内的水中含有的污垢、细菌消耗而使臭氧水的浓度降低。因此,能通过臭氧水更良好地洗净排水路内。
在第一至第四方案的洗衣机中,可以采用如下结构,即,所述排水部包括:所述排水阀;以及排水管路,供通过所述排水阀的打开而从所述外桶排出的水流动。在该情况下,可以在所述排水管路内设置使所述臭氧水的水流产生涡流的涡流发生部。
根据上述结构,臭氧水在排水管路内以打旋儿的方式流动并强势排出至排水路内。由此,由于臭氧水在排水路内强势流动,因此其流动的势头和臭氧的作用相结合,容易去除形成于排水路的内壁面的生物膜。
发明效果
根据本发明,能提供一种能使用臭氧水来良好地去除形成于房屋的排水路中的生物膜的洗衣机。
通过以下所示的实施方式的说明,本发明的效果和意义将变得更清楚。但是,以下的实施方式只不过是实施本发明时的一个例示,本发明不受以下的实施方式所记载的内容的任何限制。
附图说明
图1是实施方式一的全自动洗衣机的侧剖图。
图2中,(a)是实施方式一的以截面表示臭氧水生成装置的供水单元的俯视图,(b)是图2的(a)的A-A′剖视图。
图3是表示实施方式一的全自动洗衣机的结构的框图。
图4中,(a)是表示实施方式一的桶洗净运转的控制处理的流程图,(b)是表示实施方式一的桶洗净运转中包括的桶洗净过程的控制处理的流程图。
图5是表示实施方式一的排水路洗净运转的控制处理的流程图。
图6中,(a)是实施方式一的变更例一的供水单元的俯视图,(b)是图6的(a)的B-B′剖视图。
图7是表示实施方式一的变更例二的外桶的底部的臭氧水生成装置的周边的局部剖视图。
图8中,(a)是表示实施方式一的变更例二的桶洗净过程的控制处理的流程图,(b)是表示实施方式一的变更例二的排水路洗净运转的控制处理的流程图。
图9中,(a)是表示实施方式一的变更例三的桶洗净过程的控制处理的流程图,(b)是表示实施方式一的变更例四的排水路洗净运转的控制处理的流程图。
图10是表示实施方式二的滚筒洗衣机的结构的侧剖图。
图11是表示实施方式二的滚筒洗衣机的结构的框图。
图12是表示实施方式二的桶洗净过程的控制处理的流程图。
图13是表示实施方式二的变更例一的滚筒洗衣机的结构的侧剖图。
图14中,(a)和(b)是表示其他变更例的设置于排水阀的出水口的涡流发生部的结构的图。
附图标记说明
1A:全自动洗衣机(洗衣机);10:箱体;20:外桶;22:洗涤脱水桶;
24:波轮;30:驱动单元(驱动部);40:排水部;41:排水阀;T1:排水管路;81:控制部;140:臭氧水生成装置(臭氧水生成部);1B:滚筒洗衣机(洗衣机);210:箱体;220:外桶;223:滚筒;230:驱动马达;240:排水部;241:排水阀;T2:排水管路;262:臭氧水生成装置(臭氧水生成部);271:控制部;300:涡流发生部;2:排水路。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
<实施方式一>
对实施方式一的全自动洗衣机1A进行说明。全自动洗衣机1A是立式洗衣机。
图1是全自动洗衣机1A的侧剖图。
全自动洗衣机1A具备构成外观的箱体10。箱体10包括上下表面开放的方形筒状的机身部11、覆盖机身部11的上表面的上面板12以及支承机身部11的脚台13。在上面板12的中央部形成有供洗涤物投入的投入口14。投入口14由能开闭的上盖15覆盖。
在箱体10内配置有上表面开口的外桶20。外桶20由具有防振装置的四根吊杆21弹性地悬吊支承在箱体10内。在外桶20内配置有上表面开口的洗涤脱水桶22。洗涤脱水桶22以沿铅垂方向延伸的旋转轴为中心进行旋转。在洗涤脱水桶22的内周面遍及整周地形成有许多脱水孔22a。在洗涤脱水桶22的上部设置有平衡环23。在洗涤脱水桶22的底部,能旋转地配置有波轮24。在波轮24的表面,呈辐射状设置有多个叶片24a。
在外桶20的外底部配置有产生用于使洗涤脱水桶22和波轮24旋转的转矩的驱动单元30。驱动单元30包括驱动马达31和传递机构部32。传递机构部32具有离合机构32a,通过该离合机构32a的切换操作,在清洗过程和漂洗过程中仅将驱动马达31的转矩传递给波轮24而仅使波轮24旋转,在脱水过程和喷淋漂洗过程中将驱动马达31的转矩传递给波轮24和洗涤脱水桶22而使波轮和洗涤脱水桶22一体旋转。驱动单元30相当于本发明的驱动部。
在外桶20的外底部形成有排水口部20a。排水口部20a设置有排水阀41。排水阀41例如包括阀门和用于对阀门进行开闭的转矩马达。在排水阀41的出水口41a连接有排水软管42。排水软管42包括配置在箱体10内的内部软管42a和配置在箱体10外的外部软管42b。排水阀41和排水软管42构成将外桶20内的水排出至设置于房屋内的排水路2的排水部40。此外,排水阀41的出水口 41a和排水软管42构成供通过排水阀41的打开而从外桶20排出的水流动的排水管路T1。
排水路2包括具有L字等形状的筒状的排水口2a、设置于该排水口2a的下游的存水弯(trap)2b以及连接于该存水弯2b的排水管2c。排水路2的入口即排水口2a配置于设置有全自动洗衣机1A的地板、洗衣机设置盘,排水软管42连接于该排水口2a。
当排水阀41打开时,蓄于洗涤脱水桶22和外桶20中的水通过排水软管42向排水路2排出。
在上面板12的后部配置有用于将自来水供给至洗涤脱水桶22内的供水单元50。供水单元50包括供水阀110、注水箱(box)120、洗涤剂盒(case)130以及臭氧水生成装置140。
图2的(a)是以截面表示臭氧水生成装置140的供水单元50的俯视图,图2的(b)是图2的(a)的A-A′剖视图。
在上面板12的后部,供水阀110和容纳有洗涤剂盒130的注水箱120沿左右方向并列配置,在供水阀110和注水箱120的后方配置有臭氧水生成装置140。臭氧水生成装置140相当于本发明的臭氧水生成部。
注水箱120的前表面开口,在上部具有水路形成部121。在水路形成部121的内部形成有水路122。在水路形成部121的底面形成有多个注水孔123。在水路形成部121的后表面设置有具有L字筒状的供水口124。在注水箱120的左右壁面设置有沿前后方向延伸的导轨125。
在注水箱120内容纳有洗涤剂盒130的状态下,在洗涤剂盒130与注水箱120的底面和后表面之间设置有间隙,该间隙成为水路126。洗涤剂盒130载置于左右的导轨125,能通过在导轨125上滑动而向前方拉出。
洗涤剂盒130的上表面开口。洗涤剂盒130中被投入液体、粉末的洗涤剂。在洗涤剂盒130的底面设置有虹吸机构部131。虹吸机构部131由虹吸管132和覆盖虹吸管132的虹吸盖133构成,利用虹吸原理,将洗涤剂盒130内的洗涤剂与流入洗涤剂盒130内的水一起从洗涤剂盒130排出。此外,在洗涤剂盒130的后表面上部设置有排出口134。洗涤剂盒130内的洗涤剂和水也从排出口134 排出。
臭氧水生成装置140包括壳体(case)141、臭氧电极142以及电极保持部143。壳体141具有两端部开口的细长圆筒状。壳体141的注水箱120侧的端部的开口成为流出口144,注水箱120的供水口124连接于该流出口144。在壳体141的供水阀110侧的端部附近设置有圆筒状的流入口145。
臭氧电极142配置于壳体141的内部。臭氧电极142包括圆棒状的阳极146、以螺旋状缠绕在阳极146的外周的线状的阴极147以及介于阳极146与阴极147之间的离子交换膜148。例如,阳极146使用金刚石电极,阴极147使用铂金电极。臭氧电极142的一端部由电极保持部143保持。电极保持部143以堵塞开口的方式安装在壳体141的供水阀110侧的端部的该开口。
供水阀110为电磁阀,其入水口111经由未图示的供水软管与水龙头连接,其出水口112与壳体141的流入口145连接。
当供水阀110打开时,来自水龙头的自来水流过壳体141和水路形成部121的水路122,从注水孔123放出到洗涤剂盒130内。流入洗涤剂盒130的水从虹吸机构部131和排出口134排出,流过注水箱120的水路126,从注水箱120的前表面的注水口127向洗涤脱水桶22内排出。由此,向洗涤脱水桶22内和外桶20内蓄水。
在洗涤运转的清洗过程中的供水时,投入到洗涤剂盒130内的洗涤剂与水一起供给至洗涤脱水桶22内即外桶20内。进而,在桶洗净运转和排水路洗净运转的供水时,对臭氧电极142进行通电,在壳体141内流动的水被电解而产生臭氧。产生的臭氧溶解于水而生成臭氧水。生成的臭氧水经过洗涤剂盒130和注水箱120供给至洗涤脱水桶22内即外桶20内。
壳体141和注水箱120构成向外桶20内供给水的供水路。因此,在本实施方式中,臭氧水生成装置140配置于供水路。
需要说明的是,也可以是,注水箱120内容纳有与洗涤剂盒130一体设置于该洗涤剂盒130旁边的柔顺剂盒。柔顺剂盒中被投入液体柔顺剂。柔顺剂盒具有与洗涤剂盒130相同的结构。在该情况下,在水路形成部121设置有柔顺剂盒用的水路,该水路与柔顺剂投入用的供水阀由连接软管连接。当柔顺剂投 入用的供水阀打开时,投入到柔顺剂盒内的柔顺剂与来自水龙头的水一起经由注水箱120供给至洗涤脱水桶22内。
图3是表示全自动洗衣机1A的结构的框图。
全自动洗衣机1A除了上述结构之外,还具备操作部71和水位传感器72。此外,全自动洗衣机1A具备控制单元80。控制单元80包括控制部81、存储部82、马达驱动部83、离合驱动部84、供水驱动部85、排水驱动部86以及电极通电部87。
操作部71包括电源按钮、开始/暂停按钮以及模式选择按钮等各种操作按钮,电源按钮用于对全自动洗衣机1A进行电源的接通和切断,开始/暂停按钮用于使运转开始、暂停,模式选择按钮用于从洗涤运转的多个运转模式、桶洗净运转的运转模式以及排水路洗净运转的运转模式中选择任意的运转模式。操作部71将与用户操作的操作按钮相对应的输入信号输出给控制部81。
水位传感器72检测洗涤脱水桶22内即外桶20内的水位,并将与检测到的水位对应的水位信号输出给控制部81。
马达驱动部83根据从控制部81输出的控制信号对驱动马达31进行驱动。马达驱动部83包括检测驱动马达31的转速的旋转传感器、逆变电路等,对驱动电力进行调整,使得驱动马达31以由控制部81设定的转速进行旋转。
离合驱动部84根据从控制部81输出的控制信号对传递机构部32的离合机构32a进行驱动。供水驱动部85根据来自控制部81的控制信号对供水阀110进行驱动。排水驱动部86根据来自控制部81的控制信号对排水阀41进行驱动。电极通电部87根据来自控制部81的控制信号对臭氧电极142进行通电。
存储部82包括EEPROM(电可擦可编程只读存储器)、RAM(随机存取存储器)等。存储部82中存储有用于执行洗涤运转、桶洗净运转以及排水路洗净运转的程序。此外,存储部82中存储有用于洗涤运转、桶洗净运转以及排水路洗净运转的各种运转条件。
控制部81包括CPU(中央处理器)等,基于来自操作部71、水位传感器72等的各个信号,根据存储于存储部82的程序对马达驱动部83、离合驱动部84、供水驱动部85、排水驱动部86、电极通电部87等进行控制。其结果,控 制部81控制驱动单元30、排水部40、供水单元50的动作。
在全自动洗衣机1A中,在控制部81的控制下进行各种运转模式的洗涤运转。在洗涤运转中,按顺序执行清洗过程、中间脱水过程、漂洗过程以及最终脱水过程。
在清洗过程之前,进行洗涤物的负载量检测。在负载量检测中,例如,在投入洗涤物后,在洗涤脱水桶22内没有水的状态下波轮24旋转,基于驱动马达31的驱动电流、到驱动马达31停止为止的惯性旋转量来确定负载量。根据检测到的负载量来设定清洗过程和漂洗过程中的水位和时间。
在清洗过程中,在向洗涤脱水桶22内蓄留含有洗涤剂的水至基于负载量检测而设定的水位的状态下,波轮24进行正旋转和逆旋转。通过波轮24的旋转,洗涤脱水桶22内产生水流,通过水流和洗涤剂来清洗洗涤物。
在漂洗过程中,在洗涤脱水桶22内蓄有水的状态下,波轮24进行正旋转和逆旋转,洗涤脱水桶22内产生水流。通过产生的水流来漂洗洗涤物,洗涤物中含有的洗涤剂排出到水中。
在中间脱水过程和最终脱水过程中,洗涤脱水桶22和波轮24成为一体,以规定的脱水转速高速旋转。通过洗涤脱水桶22中产生的离心力的作用,洗涤物被脱水。
在全自动洗衣机1A中,除了洗涤运转之外,还进行使用臭氧水来洗净洗涤脱水桶22的桶洗净运转和使用臭氧水来洗净排水路2的排水路洗净运转。
首先,对桶洗净运转进行说明。
图4的(a)是表示桶洗净运转的控制处理的流程图。图4的(b)是表示桶洗净运转中包括的桶洗净过程的控制处理的流程图。
在操作部71中,当通过模式选择按钮选择了桶洗净运转的运转模式之后按下开始/暂停按钮时,桶洗净运转开始。
参照图4的(a),当桶洗净运转开始时,控制部81首先进行桶洗净过程(S1)。
参照图4的(b),在桶洗净过程中,控制部81打开供水阀110,并且对臭 氧电极142进行通电(S101)。由此,规定的臭氧浓度的臭氧水从供水单元50供给至外桶20内。排水阀41关闭,臭氧水蓄于外桶20内。
需要说明的是,设定供水阀110的额定流量、向臭氧电极142的通电电流值,以达到能良好地洗净洗涤脱水桶22并能从洗涤脱水桶22去除生物膜的臭氧浓度。
控制部81基于由水位传感器72检测到的水位来判定外桶20内的水位是否到达规定的桶洗净水位(S102)。桶洗净水位例如设定为与基于负载量检测而设定的清洗过程中的最高水位相同的水位。
当控制部81判定为外桶20内的水位到达桶洗净水位时(S102:是),停止向臭氧电极142通电,并且关闭供水阀110(S103)。这样,桶洗净水位的臭氧水蓄于外桶20内。
接着,控制部81通过驱动单元30来使波轮24旋转(S104)。波轮24反复进行正旋转和逆旋转,洗涤脱水桶22不旋转。
外桶20内即洗涤脱水桶22和洗涤脱水桶22与外桶20之间产生水流,通过臭氧和水流的作用,洗涤脱水桶22被洗净,形成于洗涤脱水桶22的外周面、外底面的生物膜被去除。在产生黑曲霉等的情况下,黑曲霉等也会杀灭。
当从波轮24开始旋转起经过了规定的桶洗净时间时时(S105:是),控制部81使波轮24停止旋转(S106)。桶洗净时间例如可以设定为几分钟至十几分钟左右的时间。
这样,桶洗净过程结束。此时,由于通过波轮24的旋转来洗净洗涤脱水桶22消耗了大量的臭氧,因此蓄于外桶20内的臭氧水的臭氧浓度大幅降低。
返回图4的(a),当桶洗净过程结束时,控制部81通过排水部40的动作进行排水过程(S2)。即,控制部81打开排水阀41。臭氧水从外桶20内排出。被去除的生物膜、黑曲霉等也与臭氧水一起从外桶20内流出。当来自外桶20内的臭氧水的排出完成时,排水过程结束。排水阀41保持打开的状态。
接着,控制部81进行脱水过程(S3)。即,控制部81通过驱动单元30使波轮24与洗涤脱水桶22一体高速旋转。残留在洗涤脱水桶22的臭氧水与该臭氧水中含有的有机物、细菌等从洗涤脱水桶22飞散而从外桶20内排出。当经 过规定的脱水时间时,控制部81使波轮24和洗涤脱水桶22停止旋转,并且关闭排水阀41。这样,脱水过程结束,桶洗净运转结束。
接着,对排水路洗净运转进行说明。
图5是表示排水路洗净运转的控制处理的流程图。
在操作部71中,当通过模式选择按钮选择了排水路洗净运转的运转模式之后按下开始/暂停按钮时,排水路洗净运转开始。
参照图5,当排水路洗净运转开始时,控制部81打开排水阀41(S201)。接着,控制部81判定外桶20内是否存在水(S202)。在通过水位传感器72检测到水位的情况下,控制部81判定为外桶20内存在水。控制部81在判定为外桶20内存在水的情况下(S202:是),打开排水阀41直到判定为外桶20内不存在水为止。控制部81在判定为外桶20内不存在水的情况下(S202:否),关闭排水阀41。
需要说明的是,在水位传感器72采用了若外桶20内未蓄留一定程度的水则无法检测到水位的结构的情况下,控制部81在判定为外桶20内不存在水之后,等待经过规定时间后关闭排水阀41。
控制部81也可以在打开排水阀41之前判定外桶20内是否存在水,在判定为存在水的情况下打开排水阀41。
这样,即使在排水路洗净运转开始时外桶20内残留有水,也能使外桶20内成为空的状态。
接着,控制部81打开供水阀110,并且对臭氧电极142进行通电(S204)。由此,规定的臭氧浓度的臭氧水从供水单元50供给向外桶20内而蓄于外桶20内。
控制部81判定外桶20内的水位是否到达规定的排水路洗净水位(S205)。排水路洗净水位是比桶洗净运转中的桶洗净水位低的水位,例如设定为水量10~15升左右的包含在洗涤运转中的低水位范围内的水位。
当控制部81判定为外桶20内的水位到达排水路洗净水位时(S205:是),停止向臭氧电极142通电,并且关闭供水阀110(S206)。这样,排水路洗净水 位的臭氧水蓄于外桶20内。
接着,控制部81打开排水阀41(S207)。外桶20内的臭氧水由排水部40排出到排水路2。此时,控制部81在打开排水阀41之前不进行通过驱动单元30使波轮24旋转的动作和使波轮24与洗涤脱水桶22一体旋转的动作中的任一动作。因此,外桶20内的臭氧水不会被消耗于洗涤脱水桶22的洗净,而是以接近蓄于外桶20内时的臭氧浓度的状态被送至排水路2,大量的臭氧起作用,形成于排水路2内即排水口2a、存水弯2b、排水管2c的内壁面的生物膜被去除。在排水路2内产生了黑曲霉等的情况下,黑曲霉等也会杀灭。
当来自外桶20内的臭氧水的排水完成时(S208:是),控制部81关闭排水阀41(S209)。例如,在水位传感器72检测不到水位时,或者从检测不到水位起经过了规定时间时,控制部81判断为排水已完成。
这样,排水路洗净运转结束。
<实施方式一的效果>
根据本实施方式,控制部81进行排水路洗净运转,在该排水路洗净运转中,通过由臭氧水生成装置140生成臭氧水来将所述臭氧水蓄于外桶20内,之后,以不进行通过驱动单元30使波轮24旋转的动作和使波轮24与洗涤脱水桶22一体旋转的动作中的任一动作的方式,通过排水部40将外桶20内的臭氧水向排水路2排出。
根据该结构,外桶20内的臭氧水不会被消耗于洗涤脱水桶22的洗净,而是以接近蓄于外桶20内时的臭氧浓度的状态被送至排水路2,因此,能通过充足的臭氧的作用来良好地洗净排水路2内,能良好地去除形成于排水路2内的生物膜。因此,能抑制排水路2内产生不适的气味等。
此外,由于蓄于外桶20内的臭氧水一口气流入排水路2内,因此臭氧水容易与排水路2的整个内壁面接触,能更良好地洗净排水路2内。
进而,根据本实施方式,在排水路洗净运转中,在将臭氧水蓄于外桶20内的动作开始之前,控制部81判定外桶20内是否蓄有水,在外桶20内蓄有水的情况下,通过排水部40排出该水。
根据该结构,能防止由于在排水路洗净运转之前蓄于外桶20内的水中含有的 污垢、细菌等消耗臭氧而使臭氧水的浓度降低。因此,能通过臭氧水来更良好地洗净排水路2内。
进而,根据本实施方式,控制部81进行桶洗净运转,在该桶洗净运转中,通过由臭氧水生成装置140生成臭氧水来将臭氧水蓄于外桶20内,之后,通过驱动单元30进行使波轮24旋转的动作。
根据该结构,通过由波轮24的旋转而产生的水流和臭氧的作用,能洗净洗涤脱水桶22,能去除形成于洗涤脱水桶22的生物膜。
<实施方式一的变更例一>
在上述实施方式一中,具备供水单元50,该供水单元50将臭氧水生成装置140配置于在洗涤运转中向外桶20内进行供水的供水路。
然而,也可以代替供水单元50而具备供水单元50A,该供水单元50A将臭氧水生成装置140配置于与在洗涤运转中向外桶20内进行供水的供水路分开的供水路。
图6的(a)是变更例一的供水单元50A的俯视图,图6的(b)是图6的(a)的B-B′剖视图。
供水单元50A在注水箱120的左侧具备作为双联电磁阀的具有第一阀150a和第二阀150b的供水阀150。此外,在供水单元50A中,在注水箱120的后表面的下部设置有具有L字筒状的供水口128,臭氧水生成装置140以其壳体141的流入口145朝上的姿势配置于注水箱120的下部的后方。壳体141的流出口144与供水口128连接。
供水阀150的入水口151经由未图示的供水软管与水龙头连接。此外,第一阀150a的出水口152a经由第一连接软管161与水路形成部121的供水口124连接,第二阀150b的出水口152b经由第二连接软管162与壳体141的流入口145连接。
供水单元50A在清洗过程和漂洗过程中的供水时打开第一阀150a。来自水龙头的自来水流过第一连接软管161、水路形成部121的水路122、洗涤剂盒130以及注水箱120的水路126,从注水口127供给至外桶20内。
另一方面,在桶洗净运转和排水路洗净运转中的臭氧水供给时,打开第二阀150b。来自水龙头的自来水流过对臭氧电极142进行了通电的状态的壳体141内,生成臭氧水。从壳体141排出的臭氧水流过注水箱120的水路126,从注水口127供给至外桶20内。
在本变更例中,仅在向外桶20内供给臭氧水的情况下,自来水流入壳体141内,而在洗涤运转中向外桶20内供水时,自来水不流入壳体141内。由此,能减少自来水中含有的钙、镁等矿物质成分附着在臭氧电极142的频率。
<实施方式一的变更例二>
在上述实施方式一中,臭氧水生成装置140配置于供水单元50即向外桶20内的供水路中。因此,通过从供水单元50供给臭氧水,臭氧水蓄于外桶20内。
与此相对,在本变更例中,臭氧水生成装置140A配置于外桶20的底部。因此,通过由供给至外桶20内的水生成臭氧水来向外桶20内蓄留臭氧水。
供水单元50中不再有臭氧水生成装置140,供水阀110经由未图示的连接软管与水路形成部121的供水口124连接。
图7是表示变更例二的外桶20的底部的臭氧水生成装置140A的周边的局部剖视图。
臭氧水生成装置140A包括臭氧电极142和电极保持部143。
臭氧电极142配置于洗涤脱水桶22的外底面与外桶20的内底面之间。臭氧电极142的一端部由电极保持部143保持。电极保持部143安装在设置于外桶20的安装口20b。
图8的(a)是表示变更例二的桶洗净过程的控制处理的流程图。
在本变更例中,在桶洗净运转的桶洗净过程中,如图8的(a)所示,代替图4的(b)的桶洗净过程中的步骤S101至S103的处理而执行步骤S111至S116的处理。
即,当桶洗净过程开始时,控制部81打开供水阀110,向外桶20内进行供水直到外桶20内的水位到达桶洗净水位(S111~S113)。之后,控制部81对臭氧电极142进行通电(S114)。通过蓄于外桶20内的水的电解来产生臭氧,在 外桶20内生成臭氧水。随着时间经过,外桶20内的臭氧水的臭氧浓度逐渐升高。
控制部81判定从开始对臭氧电极142通电起是否经过了第一规定时间(S115)。第一规定时间设定为外桶20内的臭氧水达到能良好地洗净洗涤脱水桶22的臭氧浓度的时间。
当经过第一规定时间时(S115:是),控制部81停止对臭氧电极142通电(S116)。这样,桶洗净水位的臭氧水蓄于外桶20内。
之后,控制部81通过驱动单元30使波轮24旋转桶洗净时间(S104~S106)。
图8的(b)是表示变更例二的排水路洗净运转的控制处理的流程图。
在本变更例的排水路洗净运转中,如图8的(b)所示,代替图5的的排水路洗净运转中的步骤S204至S206的处理而执行步骤S211至S216的处理。
即,控制部81在步骤S203中关闭排水阀41后,打开供水阀110,向外桶20内进行供水直到外桶20内的水位到达排水路洗净水位(S211~S213)。之后,控制部81对臭氧电极142进行通电(S214)。外桶20内生成臭氧水,其臭氧浓度逐渐升高。
控制部81判定从开始对臭氧电极142通电起是否经过了第二规定时间(S215)。第二规定时间设定为外桶20内的臭氧水达到能良好地洗净排水路2的臭氧浓度的时间。
当经过第二规定时间时(S215:是),控制部81停止对臭氧电极142通电(S216)。这样,排水路洗净水位的臭氧水蓄于外桶20内。
之后,控制部81打开排水阀41,将外桶20内的臭氧水经过排水部40向排水路2内排出(S207~S209)。
根据本变更例的结构,也能起到与上述实施方式一相同的效果。
<实施方式一的变更例三>
图9的(a)是表示变更例三的桶洗净过程的控制处理的流程图。
在上述实施方式一中,如图4的(b)所示,在桶洗净运转的桶洗净过程中,在向外桶20内蓄留臭氧水后,控制部81通过驱动单元30使波轮24旋转桶洗 净时间(S104~S106)。
与此相对,在本变更例中,如图9的(a)所示,在桶洗净过程中,在向外桶20内蓄留臭氧水后(S101~S103),控制部81通过驱动单元30使波轮24和洗涤脱水桶22一体旋转(S121)。波轮24和洗涤脱水桶22反复进行正旋转和逆旋转。洗涤脱水桶22通过在臭氧水中旋转而被洗净,形成于洗涤脱水桶22的生物膜被去除。
当经过桶洗净时间时(S105:是),控制部81使波轮24和洗涤脱水桶22停止旋转(S122)。
需要说明的是,在上述变更例二的桶洗净过程中,控制部81也可以使波轮24和洗涤脱水桶22一体旋转桶洗净时间。
<实施方式一的变更例四>
图9的(b)是表示变更例四的排水路洗净运转的控制处理的流程图。需要说明的是,在图9的(b)中,为了方便,仅示出了步骤S214以后的处理。
在上述变更例二中,如图8的(b)所示,在排水路洗净运转中,控制部81不进行在外桶20内通过驱动单元30使波轮24旋转的动作和使波轮24与洗涤脱水桶22一体旋转的动作中的任一动作,打开排水阀41来将蓄于外桶20内的臭氧水排出到排水路2内。
与此相对,在本变更例中,当外桶20内生成了臭氧水且向臭氧电极142的通电停止时,控制部81使波轮24旋转规定的搅拌时间(S217至S219)。搅拌时间为比桶洗净时间短的时间,例如设定为数秒至数十秒左右的时间。优选的是,波轮24的转速低于桶洗净过程中的转速。
通过搅拌外桶20内的臭氧水,能抑制臭氧浓度的不均。此外,由于是在外桶20内短暂地产生微弱的水流的程度,因此洗涤脱水桶22实质上未被洗净。因此,不易消耗臭氧,臭氧水的臭氧浓度不易降低。
需要说明的是,作为步骤S217~S219的处理,控制部81也可以使波轮24和洗涤脱水桶22一体旋转规定的搅拌时间。优选的是,波轮24和洗涤脱水桶22的转速低于桶洗净过程中的转速。
此外,也可以在对臭氧电极142通电中即臭氧水的生成中进行由波轮24的旋转、波轮24和洗涤脱水桶22的旋转引起的臭氧水的搅拌动作。在该情况下,在臭氧电极142的通电停止后,既可以再次进行搅拌动作,也可以不进行搅拌动作。不过,再次进行搅拌动作的情况下,总搅拌时间比桶洗净运转中的桶洗净时间短。
<实施方式二>
对实施方式二的滚筒洗衣机1B进行说明。
图10是表示滚筒洗衣机1B的结构的侧剖图。
滚筒洗衣机1B具备方形的箱体210。在箱体210的前表面,在中央部形成有供洗涤物投入的圆形投入口211。投入口211由开闭自如的门212覆盖。
在箱体210内配置有外桶220。外桶220由多个减震器221和弹簧222弹性支承。在外桶220内旋转自如地配置有滚筒223。滚筒223绕水平轴旋转。滚筒223也可以采用绕相对于水平方向倾斜的旋转轴旋转的结构。
滚筒223在其前表面具有圆形的开口部223a,外桶220在滚筒223的开口部223a的前方具有圆形的开口部220a。
外桶220的开口部220a的周缘部与箱体210的投入口211的周缘部通过由弹性材料构成的环状的衬垫224连结。关闭的门212的周面与衬垫224接触,投入口211和门212之间被水封。
在滚筒223的内周面形成有许多脱水孔223b。此外,在滚筒223的内周面,沿周向以相等的间隔设有具有大致三棱柱形状的三个提升筋225。
在外桶220的后方配置有产生用于使滚筒223旋转的转矩的驱动马达230。驱动马达230例如为外转子型的DC无刷马达。在清洗过程和漂洗过程时,驱动马达230以使施加给滚筒223内的洗涤物的离心力比重力小的转速使滚筒223旋转。另一方面,在脱水过程时,驱动马达230以使施加给滚筒223内的洗涤物的离心力远大于重力的转速使滚筒223旋转。
在外桶220的底部形成有排水口部220b。在排水口部220b连接有从外桶220内进行排水的排水部240。排水部240由排水阀241、排水软管242以及排 水过滤器243构成。在排水口部220b连接有排水过滤器243。排水阀241设置于排水过滤器243的下游,例如包括阀门和对阀门进行开闭的转矩马达。在排水阀241的出水口241a连接有排水软管242。排水软管242与排水路2的排水口2a连接。排水阀241的出水口241a和排水软管242构成供通过排水阀241的打开而从外桶220排出的水流动的排水管路T2。
当排水阀241打开时,蓄于外桶20内的水经过排水口部220b、排水过滤器243以及排水软管242即排水部240排出到排水路2。线屑(lint)等异物由排水过滤器243捕获。
在箱体210内的上部配置有用于向外桶20内进行供水的供水部250。供水部250包括第一供水阀251、洗涤剂盒252、供水软管253以及注水管254。第一供水阀251配置于箱体210的后方上部,洗涤剂盒252配置于箱体210的前方上部。收容有洗涤剂的洗涤剂容器252a以从前方自由抽出的方式收容于洗涤剂盒252。供水软管253的一端连接于第一供水阀251,另一端连接于洗涤剂盒252。注水管254的一端连接于洗涤剂盒252,另一端连接于外桶220的上部。
当第一供水阀251打开时,自来水从水龙头流过供水软管253、洗涤剂盒252以及注水管254被供给至外桶220内。这时,若洗涤剂容器252a中收容有洗涤剂,则该洗涤剂会被水冲刷而被供给至外桶220内。
在箱体210内的后部配置有用于向外桶20内供给臭氧水的臭氧水供给部260。臭氧水供给部260包括第二供水阀261、用于生成臭氧水的臭氧水生成装置262、导入管263以及导出管264。第二供水阀261配置在箱体210的后方上部,与第一供水阀251一起由双联电磁阀构成。
臭氧水生成装置262配置在外桶220的上部。臭氧水生成装置262的结构与上述实施方式一的臭氧水生成装置140的结构相同,包括壳体265、臭氧电极266以及电极保持部267。
导入管263的一端与第二供水阀261连接,另一端与壳体265的流入口连接。导出管264的一端与壳体265的流出口连接,另一端与外桶220的下部连接。
当第二供水阀261打开时,自来水从水龙头经由导入管263流入壳体265 内而在壳体265内流动。对臭氧电极266进行通电,在壳体265内流动的水被电解而产生臭氧。产生的臭氧溶解于水而生成臭氧水。臭氧水从壳体265流出,经由导出管264供给至外桶220内。
图11是表示滚筒洗衣机1B的结构的框图。
滚筒洗衣机1B除了上述结构之外,还具备:控制部271、存储部272、操作部273、水位传感器274、马达驱动部275、供水驱动部276、排水驱动部277以及电极通电部278。
操作部273包括电源按钮、开始/暂停按钮以及模式选择按钮。操作部273将与用户操作的按钮相对应的输入信号输出到控制部271。
水位检测部274检测外桶220内的水位,并将与检测到的水位相对应的水位信号输出给控制部271。
马达驱动部275根据来自控制部271的控制信号对驱动马达230进行驱动。马达驱动部275包括检测驱动马达230的转速的旋转传感器、逆变电路等,对驱动电力进行调整,使得驱动马达230以由控制部271设定的转速进行旋转。
供水驱动部276根据来自控制部271的控制信号对第一供水阀251和第二供水阀261进行驱动。排水驱动部277根据来自控制部271的控制信号对排水阀241进行驱动。电极通电部278根据来自控制部271的控制信号对臭氧电极266进行通电。
存储部272包括EEPROM(电可擦可编程只读存储器)、RAM(随机存取存储器)等。存储部272中存储有用于执行各种运转模式的洗涤运转、桶洗净运转以及排水路洗净运转的程序。此外,存储部272中存储有用于执行这些程序的各种参数、各种控制标记。
控制部271基于来自操作部273、水位传感器274等的各个信号,根据存储于存储部272的程序对马达驱动部275、供水驱动部276、排水驱动部277、电极通电部278等进行控制。其结果,控制部271控制驱动马达230、排水部240、供水部250以及臭氧水供给部260的动作。
那么,在滚筒洗衣机1B中,基于用户对操作部273的操作来进行各种运转模式的洗涤运转。在洗涤运转中,按顺序执行清洗过程、中间脱水过程、漂洗 过程以及最终脱水过程。需要说明的是,根据运转模式,有时会进行两次以上中间脱水过程和漂洗过程。
在清洗过程和漂洗过程中,向外桶20内蓄水至规定的水位。在清洗过程中,由于洗涤剂容器250a中投入有洗涤剂,因此蓄于外桶220内的水中含有洗涤剂。驱动马达230交替进行正旋转或逆旋转,滚筒223交替进行正旋转或逆旋转。此时,滚筒223以作用于滚筒223内的洗涤物的离心力小于重力的转速进行旋转。滚筒223内的洗涤物被提升筋225托举后落下,由此被摔到滚筒223的内周面。由此,洗涤物被清洗或者漂洗。
在中间脱水过程和最终脱水过程中,驱动马达230向一个方向高速旋转,滚筒223以作用于滚筒223内的洗涤物的离心力远大于重力的转速进行旋转。通过离心力的作用,洗涤物被按压在滚筒223的内周面而被脱水。
在滚筒洗衣机1B中,除了洗涤运转之外,还进行使用臭氧水来洗净滚筒223的桶洗净运转和使用臭氧水来洗净排水路2的排水路洗净运转。
在操作部273中,当通过模式选择按钮选择了桶洗净运转的运转模式之后按下开始/暂停按钮时,桶洗净运转开始。
在桶洗净运转中,与上述实施方式一同样通过控制部271来执行图4的(a)的桶洗净运转的控制处理。即,控制部271按照顺序执行桶洗净过程、排水过程以及脱水过程(S1~S3)。
图12是表示桶洗净过程的控制处理的流程图。
在桶洗净过程中,控制部271执行图12所示的控制处理。
即,控制部81打开第二供水阀261,并且对臭氧电极266进行通电(S301)。当控制部271判定为外桶220内的水位到达桶洗净水位时(S302:是),停止对臭氧电极266通电,并且关闭第二供水阀261(S303)。桶洗净水位设定为例如滚筒223的底部被水淹没的水位并且比衬垫224的下缘低的水位。
接着,控制部271通过驱动马达230来使滚筒223向一个方向旋转(S304)。当滚筒223旋转时,滚筒223的外周面依次与蓄于外桶220内的臭氧水接触,成为臭氧水来到该外周面的状态。臭氧有效地作用于滚筒223的外周面的整个区域,去除外周面的整个区域的生物膜。此外,在产生了黑曲霉等的情况下, 黑曲霉等也会杀灭。
当从滚筒223的旋转开始起经过规定的桶洗净时间时(S305:是),控制部271使滚筒223停止旋转(S306)。桶洗净时间例如可以设定为几分钟至十几分钟左右的时间。
这样,桶洗净过程结束。此时,大量臭氧被消耗于由滚筒223的旋转实现的滚筒223的洗净,因此蓄于外桶220内的臭氧水的臭氧浓度大幅降低。
在操作部273中,当通过模式选择按钮选择了排水路洗净运转的运转模式后按下开始/暂停按钮时,排水路洗净运转开始。
在排水路洗净运转中,与上述实施方式一同样通过控制部271来执行图5的桶洗净运转的控制处理。
即,如果外桶220内存在水,则控制部271打开排水阀241直到没有水为止(S201~S203)。之后,控制部271打开第二供水阀261,并且对臭氧电极266进行通电,向外桶220内蓄留臭氧水至排水路洗净水位(S204~S206)。
排水路洗净水位例如可以设定为与桶洗净水位相同的水位或者比桶洗净水位低的水位。
之后,控制部271不进行通过驱动马达230使滚筒223旋转的动作,打开排水阀241,通过排水部240将外桶220内的臭氧水排出到排水路2内(S207~S209)。
外桶220内的臭氧水不会被消耗于滚筒223的洗净,而是以接近蓄于外桶220内时的臭氧浓度的状态被送到排水路2,大量的臭氧起作用,形成于排水路2内的内壁面的生物膜被去除。在排水路2内产生了黑曲霉等的情况下,黑曲霉等也会杀灭。
需要说明的是,在桶洗净水位被设定为臭氧水不会与滚筒223的外周面接触的水位的情况下,臭氧水不与形成于滚筒223的外周面的生物膜接触,能进一步抑制臭氧的消耗。
以上,根据本实施方式,能起到与上述实施方式一相同的效果。
需要说明的是,在本实施方式中,也可以去掉臭氧水供给部260而使供水 部250具有臭氧水供给部260的功能。在该情况下,在供水部250的供水软管253的中途配置有臭氧水生成装置262。在桶洗净运转和排水路洗净运转中供给臭氧水时,打开第一供水阀251,并且对臭氧电极266进行通电。
<实施方式二的变更例一>
图13是表示变更例一的滚筒洗衣机1B的结构的侧剖图。
在上述实施方式二中,臭氧水生成装置262配置于臭氧水供给部260即向外桶220内的供水路中。因此,通过从臭氧水供给部260供给臭氧水,臭氧水蓄于外桶220内。
与此相对,在本变更例中,从滚筒洗衣机1B中去掉了臭氧水供给部260并将臭氧水生成装置262A配置于外桶220的底部。因此,通过由供给至外桶220内的水生成臭氧水,臭氧水蓄于外桶220内。
臭氧水生成装置262A包括臭氧电极266和电极保持部267。
臭氧电极266配置于滚筒223的外周面与外桶20的内底面之间。臭氧电极266的一端部由电极保持部267保持。电极保持部267安装在设置于外桶220的安装口220c。
在桶洗净运转的桶洗净过程中,由控制部271执行与在上述变更例二的桶洗净过程中执行的图8的(a)的控制处理相同的控制处理,在向外桶220内蓄水后,通过臭氧水生成装置262A由蓄留的水生成臭氧水。不过,在图8的(a)的步骤S104~S106的处理中,控制部271使滚筒223在蓄有臭氧水的外桶220内旋转桶洗净时间。
在排水路洗净运转中,由控制部271执行与在上述变更例二的桶洗净运转中执行的图8的(b)的控制处理相同的控制处理,在向外桶220内蓄水后,通过臭氧水生成装置262A由蓄留的水生成臭氧水。之后,外桶220内的臭氧水被排出到排水路2。
需要说明的是,在排水路洗净运转中,也可以由控制部271执行与在上述变更例四的桶洗净运转中执行的图9的(b)的控制处理相同的控制处理。不过,在图9的(b)的步骤S217~S219的处理中,控制部271使滚筒223旋转搅拌时间以搅拌外桶220内的臭氧水。
<其他变更例>
在上述实施方式一中,可以在排水阀41的下游的排水管路T1内设置使臭氧水的水流产生涡流的涡流发生部300。
图14的(a)和(b)是表示设置于排水阀41的出水口41a的涡流发生部300的结构的图。图14的(a)是从下方观察出水口41a的图,图14的(b)是图14的(a)的C-C′剖视图。
涡流发生部300包括在具有圆筒状的出水口41a的内周面沿周向配置的多个、例如六个叶片部301。各叶片部301以相对于出水口41a的中心轴P倾斜的方式沿中心轴P的方向延伸,并且具有扭转的形状。
当从外桶20排出的臭氧水经过各叶片部301之间时,如图14的(a)的箭头所示,产生绕中心轴P旋转的臭氧水的水流。由此,臭氧水在涡流发生部300的下游的排水管路T1内即排水软管42内以螺旋状地打旋儿的方式流动并强势排出至排水路2内。臭氧水在排水路2内强势流动,其流动的势头和臭氧的作用相结合,容易去除形成于排水路2的内壁面的生物膜。
此外,在排水路2的排水口2a中,臭氧水以涡流状态流动的结果,容易在内壁面侧流动。由此,臭氧水容易与形成于排水口2a的内壁面的生物膜接触,容易去除生物膜。
需要说明的是,在图14的(a)和(b)的例子中,涡流发生部300设置于排水阀41的出水口41a。然而,涡流发生部300也可以设置于排水软管42的出水口41a的附近部分。
与上述实施方式一的全自动洗衣机1A相同,在上述实施方式一的变更例一至四的全自动洗衣机1A和上述实施方式二及其变更例一的滚筒洗衣机1B中,也可以在排水阀241的下游的排水管路T2内即排水阀241的出水口241a、排水软管242处设置涡流发生部300。
进而,臭氧水生成装置140、262的结构并不限定于上述实施方式一、上述实施方式二、上述实施方式一的变更例二以及上述实施方式二的变更例一的结构,只要能生成臭氧水,可以是任意的结构。例如,臭氧水生成装置也可以是如下结构:在臭氧发生器中通过电晕放电等方式由空气生成臭氧,并将生成的 臭氧使用气泵等供给至水向外桶20、220内流动的供水路、蓄有水的外桶20内,由此生成臭氧水。
进而,在上述实施方式一中,全自动洗衣机1A进行使用臭氧水来洗净洗涤脱水桶22的桶洗净运转。同样,在上述实施方式二中,滚筒洗衣机1B进行使用臭氧水来洗净滚筒223的桶洗净运转。然而,上述实施方式一的全自动洗衣机1A和上述实施方式二的滚筒洗衣机1B也可以不进行桶洗净运转而仅进行排水路洗净运转。同样,上述实施方式一的变更例一、二和四的全自动洗衣机1A以及上述实施方式二的变更例一的滚筒洗衣机1B也可以不进行桶洗净运转而仅进行排水路洗净运转。
进而,也可以是,在上述实施方式一及其变更例一至四的全自动洗衣机1A以及上述实施方式二及其变更例一的滚筒洗衣机1B中,在进行了排水路洗净运转的开始操作时,控制部81、271进行洗涤脱水桶22内、滚筒223内的负载量检测,并基于检测到的负载量来判定洗涤脱水桶22内、滚筒223内是否存在洗涤物,在存在洗涤物的情况下不开始排水路洗净运转。这样,能防止通过臭氧被消耗于洗涤物的除菌而降低了臭氧浓度的臭氧水来洗净排水路2。
进而,也可以是,上述实施方式一及其变更例一至四的全自动洗衣机1A以及上述实施方式二及其变更例一的滚筒洗衣机1B在洗涤运转的漂洗过程中用蓄于外桶20、外桶220内的臭氧水来漂洗洗涤物。在该情况下,图9的(b)的步骤S218中的搅拌时间比在漂洗过程中使波轮24或滚筒223旋转的时间短。
进而,上述实施方式一中示出了将本发明应用于全自动洗衣机1A的例子。然而,本发明也能应用于具有烘干功能的全自动洗衣机。此外,上述实施方式二中示出了将本发明应用于滚筒洗衣机1B的例子。然而,本发明也能应用于具有烘干功能的滚筒洗衣机。
此外,本发明的实施方式能在技术方案所示的技术构思的范围内适当地进行各种变更。

Claims (6)

  1. 一种洗衣机,其特征在于,具备:
    外桶,配置于箱体内;
    洗涤脱水桶,以能旋转的方式配置于所述外桶内;
    波轮,以能旋转的方式配置于所述洗涤脱水桶内;
    驱动部,用于使所述洗涤脱水桶和所述波轮旋转;
    臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;
    排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及
    控制部,进行使用所述臭氧水来洗净所述排水路的排水路洗净运转,
    所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,
    所述控制部在所述排水路洗净运转中以不进行通过所述驱动部来使所述波轮旋转的动作和使所述波轮与所述洗涤脱水桶一体旋转的动作中的任一动作的方式,通过所述排水部来将所述外桶内的所述臭氧水向所述排水路排出。
  2. 一种洗衣机,其特征在于,具备:
    外桶,配置于箱体内;
    洗涤脱水桶,以能旋转的方式配置于所述外桶内;
    波轮,以能旋转的方式配置于所述洗涤脱水桶内;
    驱动部,用于使所述洗涤脱水桶和所述波轮旋转;
    臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;
    排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及
    控制部,进行使用所述臭氧水来洗净所述洗涤脱水桶的桶洗净运转和使用所述臭氧水来洗净所述排水路的排水路洗净运转,
    所述控制部在所述桶洗净运转中通过由所述臭氧水生成部生成所述臭氧水 来将所述臭氧水蓄于所述外桶内,
    所述控制部在所述桶洗净运转中通过所述驱动部来进行使所述波轮旋转的动作或使所述波轮与所述洗涤脱水桶一体旋转的动作,
    所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,
    所述控制部在所述排水路洗净运转中不进行通过所述驱动部来使所述波轮旋转的动作和使所述波轮与所述洗涤脱水桶一体旋转的动作中的任一动作,或者,在以比所述桶洗净运转短的时间进行通过所述驱动部来使所述波轮旋转的动作和使所述波轮与所述洗涤脱水桶一体旋转的动作中的任一动作之后,通过所述排水部来将所述外桶内的所述臭氧水向所述排水路排出。
  3. 一种洗衣机,其特征在于,具备:
    外桶,配置于箱体内;
    滚筒,配置于所述外桶内,能绕相对于水平轴或水平方向倾斜的旋转轴进行旋转;
    驱动马达,用于使所述滚筒旋转;
    臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;
    排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及
    控制部,进行使用所述臭氧水来洗净所述排水路的排水路洗净运转,
    所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,
    所述控制部在所述排水路洗净运转中以不进行通过所述驱动马达来使所述滚筒旋转的动作的方式,通过所述排水部来将所述外桶内的所述臭氧水向所述排水路排出。
  4. 一种洗衣机,其特征在于,具备:
    外桶,配置于箱体内;
    滚筒,配置于所述外桶内,能绕相对于水平轴或水平方向倾斜的旋转轴进 行旋转;
    驱动马达,用于使所述滚筒旋转;
    臭氧水生成部,用于生成在水中混入臭氧而成的臭氧水;
    排水部,将所述外桶内的水向设置于房屋内的排水路排出;以及
    控制部,进行使用所述臭氧水来洗净所述滚筒的桶洗净运转和使用所述臭氧水来洗净所述排水路的排水路洗净运转,
    所述控制部在所述桶洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,
    所述控制部在所述桶洗净运转中通过所述驱动马达来进行使所述滚筒旋转的动作,
    所述控制部在所述排水路洗净运转中通过由所述臭氧水生成部生成所述臭氧水来将所述臭氧水蓄于所述外桶内,
    所述控制部在所述排水路洗净运转中不进行通过所述驱动马达来使所述滚筒旋转的动作,或者在以比所述桶洗净运转短的时间进行通过所述驱动马达来使所述滚筒旋转的动作之后,通过所述排水部来将所述外桶内的所述臭氧水向所述排水路排出。
  5. 根据权利要求1~4的任意一项所述的洗衣机,其特征在于,
    所述控制部在所述排水路洗净运转中在将所述臭氧水蓄于所述外桶内的动作开始之前判定所述外桶内是否蓄有水,
    所述控制部在所述排水路洗净运转中在所述外桶内蓄有水的情况下通过所述排水部来将该水排出。
  6. 根据权利要求1~4的任意一项所述的洗衣机,其特征在于,
    所述排水部包括:
    所述排水阀;以及
    排水管路,供通过所述排水阀的打开而从所述外桶排出的水流动,
    在所述排水管路内设置有使所述臭氧水的水流产生涡流的涡流发生部。
PCT/CN2023/124765 2022-10-18 2023-10-16 洗衣机 WO2024083081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022/166638 2022-10-18
JP2022166638A JP2024059145A (ja) 2022-10-18 2022-10-18 洗濯機

Publications (1)

Publication Number Publication Date
WO2024083081A1 true WO2024083081A1 (zh) 2024-04-25

Family

ID=90736955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124765 WO2024083081A1 (zh) 2022-10-18 2023-10-16 洗衣机

Country Status (2)

Country Link
JP (1) JP2024059145A (zh)
WO (1) WO2024083081A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004049826A (ja) * 2002-07-17 2004-02-19 Okuda Yukihiro 洗濯機の浄化・除菌装置
JP2011010770A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 衣類洗濯機
CN102628205A (zh) * 2012-04-12 2012-08-08 河南新飞电器有限公司 除菌、消毒、防霉洁桶洗衣机及其洁桶控制方法
CN111962262A (zh) * 2020-09-08 2020-11-20 海信(山东)冰箱有限公司 洗衣机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004049826A (ja) * 2002-07-17 2004-02-19 Okuda Yukihiro 洗濯機の浄化・除菌装置
JP2011010770A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 衣類洗濯機
CN102628205A (zh) * 2012-04-12 2012-08-08 河南新飞电器有限公司 除菌、消毒、防霉洁桶洗衣机及其洁桶控制方法
CN111962262A (zh) * 2020-09-08 2020-11-20 海信(山东)冰箱有限公司 洗衣机

Also Published As

Publication number Publication date
JP2024059145A (ja) 2024-05-01

Similar Documents

Publication Publication Date Title
US20110048078A1 (en) Washing machine
JP5001827B2 (ja) 洗濯乾燥機および消臭装置
US8844324B2 (en) Washing machine
CN106637810B (zh) 一种具有洗涤水循环利用功能的洗衣机的控制方法及洗衣机
WO2024083081A1 (zh) 洗衣机
JP5315145B2 (ja) 衣類洗濯機
JP2004236704A (ja) ドラム式洗濯機
CN107177953B (zh) 一种絮凝洗衣机及控制方法
JP2016013361A (ja) ドラム式洗濯機
JP2018083054A (ja) 洗濯機
JP2001204993A (ja) 洗濯機及び洗濯方法
JP6040091B2 (ja) ドラム式洗濯機
EP4219821A1 (en) Drainage fluid channel including filter and washing machine having same
JP5979580B2 (ja) 圧送式トイレ装置
JP5599764B2 (ja) ドラム式洗濯機
JP3162527B2 (ja) 洗濯機
CN105696259A (zh) 一种洗衣机的絮凝桶自清洁控制方法及洗衣机
JP7198980B2 (ja) 遠心分離装置、及び、遠心分離装置を搭載した洗濯機
WO2022134507A1 (zh) 滚筒洗衣机
JP6259995B2 (ja) ドラム式洗濯機
JP2004208712A (ja) ドラム式洗濯機
TWI626351B (zh) Laundry dryer
JP6415858B2 (ja) 洗濯機
WO2022134523A1 (zh) 洗衣机
WO2022242566A1 (zh) 洗衣机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879070

Country of ref document: EP

Kind code of ref document: A1