WO2024083012A1 - 锂离子电解液、凝胶聚合物电解质及锂离子电池 - Google Patents

锂离子电解液、凝胶聚合物电解质及锂离子电池 Download PDF

Info

Publication number
WO2024083012A1
WO2024083012A1 PCT/CN2023/123996 CN2023123996W WO2024083012A1 WO 2024083012 A1 WO2024083012 A1 WO 2024083012A1 CN 2023123996 W CN2023123996 W CN 2023123996W WO 2024083012 A1 WO2024083012 A1 WO 2024083012A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion electrolyte
carbonate
electrolyte
lithium
Prior art date
Application number
PCT/CN2023/123996
Other languages
English (en)
French (fr)
Inventor
袁杰
李云飞
张尹
甘朝伦
Original Assignee
张家港市国泰华荣化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港市国泰华荣化工新材料有限公司 filed Critical 张家港市国泰华荣化工新材料有限公司
Publication of WO2024083012A1 publication Critical patent/WO2024083012A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion electrolyte, a gel polymer electrolyte and a lithium ion battery.
  • Lithium ion battery has the advantages of high operating voltage, high energy density, long cycle life, environmental friendliness and low self-discharge. It can be used as a portable energy storage device in electric vehicles, hybrid vehicles, plug-in hybrid vehicles, industry and smart grids, and has broad application prospects.
  • electrolyte As one of the most important components of LIB, electrolyte has a great influence on the safety and electrochemical performance of LIB.
  • Traditional electrolyte materials are mainly organic liquid electrolytes, with others as auxiliary materials.
  • organic liquid electrolytes are prone to leakage and bloating, which leads to a series of safety issues.
  • Solid electrolytes have good safety, but poor contact with electrodes leads to high interface impedance, and most solid electrolytes have low room temperature ionic conductivity, which cannot meet the needs of lithium-ion batteries.
  • Gel polymer electrolytes are electrolytes formed by adding corresponding plasticizers to all-solid polymer electrolytes. This combination has both solid cohesion and liquid diffusivity. It combines the excellent properties of the polymer matrix (such as mechanical stability, flexibility and non-leakage, etc.) with the excellent ionic conductivity of liquid organic electrolytes, and has significant commercial prospects.
  • the technical problem to be solved by the present invention is to provide a lithium ion electrolyte, and the gel polymer electrolyte prepared by the lithium ion electrolyte has good liquid retention and better room temperature cycle performance.
  • the present invention provides a lithium ion electrolyte, which comprises a lithium salt, an organic solvent, a precursor and an additive; the additive comprises one or two of a zero-dimensional carbon nanomaterial and a quasi-zero-dimensional carbon nanomaterial, and a plasticizer.
  • the precursor is selected from methacrylate, vinylene carbonate (VC), acrylonitrile (AN), vinyl acetate (VAC), styrene (ST), polyethylene oxide (PEO), polyphenylene ether (PPO), polyoxymethylene (POM), poly One or more of vinyl acetate (PVA), polyethyleneimine (PEI), polyethylene succinate, polyoxetane, poly ⁇ -propiolactone, polyepichlorohydrin, poly-N-propylaziridine, polyalkylene polysulfide, polyvinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate (TFMA), polyethylene glycol phenyl ether acrylate (PEGPEA), polyethylene glycol diacrylate (PEGDA), polyethylene glycol diglycidyl ether (PEGDE), ethoxylated trimethyl propane triacrylate
  • the precursor accounts for 1-5% of the total mass of the lithium ion electrolyte, for example, 1%, 1.5%, 2%, 2.5%, 3%, 4%, 5%, etc.
  • the plasticizer is selected from one or more of fluorobenzene, ethyl acetate, and methyl phthalate.
  • the plasticizer accounts for 3-12% of the total mass of the lithium ion electrolyte, for example 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, etc.
  • the lithium ion electrolyte when the lithium salt does not include LiPF 6 and/or LiBF 4 , the lithium ion electrolyte further includes an initiator; when the lithium salt includes LiPF 6 and/or LiBF 4 , the lithium ion electrolyte selectively adds an initiator, that is, the initiator may be added or not.
  • LiPF 6 can be partially decomposed to form PF 5 after being left alone under certain conditions
  • LiBF 4 can be partially decomposed to produce BF 3 after being left alone under certain conditions.
  • PF 5 and BF 3 can be used as initiators for forming polymers, respectively, to transform the electrolyte from a liquid state to a gel state.
  • the initiator is selected from one or more of azo initiators, peroxide initiators, redox initiators, cationic polymerization initiators, and anionic polymerization initiators.
  • the azo initiator includes one or two of azobisisobutyronitrile and dimethyl azobisisobutyrate;
  • the peroxide initiator includes dibenzamide peroxide;
  • the cationic polymerization initiator includes one or more of BF3 , PF5 , AlCl3 , Al( CF3SO3 ) 3 , Sn( CF3SO3 ) 2 ;
  • the anionic polymerization initiator includes one or more of alkali metals, organic compounds of alkali metals and alkaline earth metals, tertiary amines, and nucleophiles.
  • the additive further comprises one or more benzenesulfonamide derivatives, the structural formula of the benzenesulfonamide derivatives is Wherein, R1 is selected from any one of F, alkyl and fluoroalkyl, and R2 is selected from any one of H, F, alkyl and fluoroalkyl.
  • the benzenesulfonamide derivative includes N-methyl-N-nitroso-p-toluenesulfonamide (CAS: 80-11-5).
  • the benzenesulfonamide derivative accounts for 0.05-5% of the total mass of the lithium ion electrolyte, for example, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 3%, 4%, 5%, etc.
  • the organic solvent is selected from one or more of ethylene carbonate, fluoroethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, 1,4-butyrolactone, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, acetonitrile, adiponitrile, succinonitrile, glutaronitrile, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, dimethyl sulfone, cyclopentane, and trimethyl phosphate.
  • ethylene carbonate fluoroethylene carbonate
  • propylene carbonate dimethyl carbonate
  • diethyl carbonate dipropyl
  • the organic solvent includes ethylene carbonate, fluoroethylene carbonate and ethyl methyl carbonate.
  • the precursor is selected from a polymer (such as PVA-CN, etc.)
  • the solubility of the polymer in the organic solvent system is poor, and it takes a long time (more than 2 hours) to dissolve.
  • the organic solvent also includes N, N-dimethylformamide. By first dissolving the polymer in N, N-dimethylformamide and then mixing it with the organic solvent system, the dissolution time of the polymer can be greatly shortened.
  • the organic solvent accounts for 70-85% of the total mass of the lithium ion electrolyte, for example, 70%, 72%, 74%, 76%, 78%, 80%, 82%, etc.
  • the lithium salt includes one or more of LiTFSI, LiPF 6 , LiBF 4 , LiBOB, LiBC 2 O 4 F 2 , LiClO 4 , LiCF 3 SO 3 , LiN(FSO 2 ) 2 , and LiN(CF 3 SO 2 ) 2 .
  • the lithium salt accounts for 10-20% of the total mass of the lithium ion electrolyte, for example 10%, 11%, 12%, 13%, 15%, 16%, 17%, 18%, 19%, 20%, etc.
  • the zero-dimensional carbon nanomaterial includes one or more of fullerene, nanodiamond, and carbon nanoonion.
  • the quasi-zero-dimensional carbon nanomaterial includes graphene quantum dots and/or carbon dots.
  • one or two of the zero-dimensional carbon nanomaterials and quasi-zero-dimensional carbon nanomaterials account for 0.05-0.5% of the total mass of the lithium ion electrolyte, for example 0.05%, 0.1%, 0.15%, 0.2%, 0.3%, 0.4%, 0.5%, etc.
  • the precursor is polycyanopolyvinyl alcohol
  • the precursor uses N,N-dimethylformamide solution of polycyanopolyvinyl alcohol as a raw material.
  • the present invention also provides a gel polymer electrolyte, which is formed by reacting the lithium ion electrolyte as described above.
  • the reaction includes standing at a temperature of 55 to 65° C. for 20 to 28 hours to transform the lithium ion electrolyte from a liquid state to a gel polymer electrolyte in a gel state.
  • the present invention also provides a lithium ion battery, which comprises a positive electrode, a negative electrode, a separator and the lithium ion battery electrolyte or gel polymer electrolyte as described above.
  • the material of the positive electrode is a ternary material, and the ternary material includes but is not limited to NCM811.
  • the material of the negative electrode is silicon carbon, which includes but is not limited to SiOx-C.
  • the lithium-ion battery is assembled in the form of an electrolyte, and after the battery is formed, the electrolyte is transformed from a liquid state to a gel polymer electrolyte in a gel state.
  • the present invention has the following advantages compared with the prior art:
  • the lithium ion electrolyte of the present invention has good liquid retention after polymerization, can maintain good interface compatibility with electrodes, improve interface resistance, and enhance the room temperature cycle performance of lithium ion batteries.
  • gel polymer electrolytes have many excellent properties, they have low mechanical strength and are difficult to resist the destruction of lithium dendrites during battery use. Adding graphene quantum dots to the electrolyte can inhibit the growth of dendrites during the charge and discharge cycle of lithium metal electrodes and eliminate the risk of short circuits. However, the cycle performance of the battery cannot be improved.
  • the applicant adjusts the formula of the lithium ion electrolyte to provide a lithium ion electrolyte.
  • the lithium ion electrolyte has good liquid retention after polymerization, can maintain good interface compatibility with the electrode, improves interface resistance, and thus improves the cycle performance of the battery. The scheme of the present application is further described below.
  • the present invention provides a lithium ion electrolyte, which comprises a lithium salt, an organic solvent, a precursor and an additive.
  • the additive comprises one or two of a zero-dimensional carbon nanomaterial and a quasi-zero-dimensional carbon nanomaterial, and a plasticizer.
  • a lithium ion electrolyte comprises:
  • An organic solvent which includes ethylene carbonate, fluoroethylene carbonate and ethyl methyl carbonate;
  • the precursor is PVA-CN
  • the additive comprises one or two of zero-dimensional carbon nanomaterials and quasi-zero-dimensional carbon nanomaterials, and a plasticizer.
  • the additive also includes one or more benzenesulfonamide derivatives, the structural formula of the benzenesulfonamide derivative is Wherein, R1 is selected from any one of F, alkyl and fluoroalkyl, and R2 is selected from any one of H, F, alkyl and fluoroalkyl.
  • the present invention is further described below in conjunction with the following examples. However, the present invention is not limited to the following examples.
  • the implementation conditions used in the examples can be further adjusted according to the different requirements of specific use, and the implementation conditions not specified are conventional conditions in the industry.
  • the technical features involved in each embodiment of the present invention can be combined with each other as long as they do not conflict with each other.
  • the PVA-CN in the following examples was purchased from Wuxi Sanyou New Material Technology Co., Ltd., and is also known as polyvinyl alcohol- ⁇ -cyanoethyl ether.
  • a battery comprises a positive electrode, a negative electrode, a separator and a gel polymer electrolyte.
  • the preparation methods of the positive electrode, the negative electrode, the separator and the gel polymer electrolyte are as follows.
  • NCM811 ternary material
  • NCM811 ternary material
  • NCM811 ternary material
  • NCM811 ternary material
  • conductive agent Super-P conductive agent
  • binder PVDF polyvinylidene fluoride
  • clean the positive electrode collector and then evenly coat the positive electrode active material layer on the surface of the positive electrode collector, and immediately put it into a vacuum drying oven at 60°C for 12 hours for standby use;
  • Preparation of silicon carbon (SiOx-C) negative electrode weigh the negative electrode active material SiOx-C, the conductive agent Super-P and the binder LiPAA in a ratio of 92:2:6, add them to an appropriate solvent and mix them thoroughly into a uniform slurry to form a negative electrode active material layer; clean the negative electrode current collector, and then evenly apply the negative electrode active material layer on the surface of the negative electrode current collector, and immediately put it into a vacuum drying oven at 60°C for 12 hours for standby use;
  • the electrolytes prepared in the following examples and comparative examples were sealed in a glass bottle and left at 60° C. for 24 h to observe whether the electrolytes were completely polymerized from a liquid state to a gel state.
  • the electrolyte was prepared according to the following examples and comparative examples, and the electrolyte prepared in the following examples and comparative examples was injected into a full battery assembled with the above materials (the assembly method refers to the assembly method of batteries in the prior art, and the present invention does not make specific limitations) for testing.
  • Step 1 battery formation: The battery is charged to 4.2V at 0.1C constant current at 25°C, left for 15 minutes, discharged to 2.75V at constant current, and sealed;
  • Step 2 electrostatic state transformation process: place the battery at 60°C for 24 hours;
  • Step 3 Battery cycle test at room temperature: Charge the battery to 4.2V at 0.2C constant current at 25°C, let it stand for 15min, discharge it to 2.75V at 0.2C constant current, and cycle for 5Z; charge the battery to 4.2V at 0.5C constant current at 25°C, let it stand for 15min, discharge it to 2.75V at 1.0C constant current, and cycle for 300Z.
  • ethylene carbonate (EC), 4.49g of fluoroethylene carbonate (FEC), 51.7g of ethyl methyl carbonate (EMC) and 10g of ethyl acetate were mixed, 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2g of PVA-CN (polyvinyl cyanohydrin) and 0.15g of graphene quantum dots were added to the solution.
  • EC ethylene carbonate
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 electrolyte salt
  • ethylene carbonate EC
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 electrolyte salt
  • ethylene carbonate EC
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • dimethyl phthalate 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2g of PVA-CN and 0.15g of graphene quantum dots were added to the solution.
  • ethylene carbonate EC
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • dimethyl phthalate 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2g of PVA-CN and 0.15g of carbon dots were added to the solution.
  • ethylene carbonate (EC), 4.49g of fluoroethylene carbonate (FEC), 51.7g of ethyl methyl carbonate (EMC) and 10g of ethyl acetate were mixed, and 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2g of PVA-CN, 0.15g of graphene quantum dots and 1g of N-methyl-N-nitroso-p-toluenesulfonamide were added to the solution.
  • ethylene carbonate (EC), 4.49g of fluoroethylene carbonate (FEC), 51.7g of ethyl methyl carbonate (EMC) and 10g of ethyl acetate were mixed, and 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2g of PVA-CN, 0.15g of graphene quantum dots and 2g of N-methyl-N-nitroso-p-toluenesulfonamide were added to the solution.
  • ethylene carbonate (EC) 18.64 g of ethylene carbonate (EC), 4.49 g of fluoroethylene carbonate (FEC) and 61.7 g of ethyl methyl carbonate (EMC) were mixed, and 15.17 g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred uniformly.
  • EC ethylene carbonate
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • ethylene carbonate (EC), 4.49g of fluoroethylene carbonate (FEC) and 61.7g of ethyl methyl carbonate (EMC) were mixed, and 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2g of PVA-CN and 0.15g of graphene quantum dots were added to the solution.
  • ethylene carbonate (EC), 4.49g of fluoroethylene carbonate (FEC) and 61.7g of ethyl methyl carbonate (EMC) were mixed, and 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 3.0g of PVA-CN and 0.15g of graphene quantum dots were added to the solution.
  • ethylene carbonate (EC), 4.49g of fluoroethylene carbonate (FEC) and 61.7g of ethyl methyl carbonate (EMC) were mixed, and 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2.0g of PVA-CN and 0.05g of graphene quantum dots were added to the solution.
  • ethylene carbonate (EC), 4.49g of fluoroethylene carbonate (FEC) and 61.7g of ethyl methyl carbonate (EMC) were mixed, and 15.17g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2.0g of PVA-CN and 0.1g of graphene quantum dots were added to the solution.
  • ethylene carbonate (EC), 4.49 g of fluoroethylene carbonate (FEC), 51.7 g of ethyl methyl carbonate (EMC) and 10 g of ethyl acetate were mixed, 15.17 g of electrolyte salt (LiPF 6 ) was added to the mixed solution and stirred evenly; 2.0 g of PVA-CN was then added to the solution.
  • EC ethylene carbonate
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 electrolyte salt
  • ethylene carbonate EC
  • FEC fluoroethylene carbonate
  • EMC ethyl methyl carbonate
  • LiODFB electrolyte salt
  • the electrolytes used in these three embodiments are placed at a high temperature of 60°C for 24 hours, and the electrolytes are completely polymerized into a gel state without electrolyte leakage.
  • Example 4 uses carbon dots to replace graphene quantum dots, and Examples 5 and 6 further add N-methyl-N-nitroso-toluenesulfonamide.
  • the electrolytes of Examples 4 to 6 are placed at a high temperature of 60°C for 24 hours, and the electrolytes are completely polymerized into a gel state without electrolyte leakage.
  • an electrolyte with lithium hexafluorophosphate as the lithium salt containing the precursor PVA-CN, a plasticizer, and zero-dimensional carbon nanomaterials and/or quasi-zero-dimensional carbon nanomaterials, can be completely polymerized from a liquid state to a gel state at high temperature without electrolyte leakage.
  • the experimental results in Table 1 also show that: in the full battery of NCM811/SiOx-C, the capacity retention rate of comparative example 2 after 300 cycles at room temperature is 48%; the capacity retention rate of comparative example 6 after 300 cycles at room temperature is 47%.
  • the capacity retention rates of the batteries of Examples 1 to 3 after 300 cycles at room temperature are 89%, 84% and 79%, respectively. It can be seen that the battery cycle performance is greatly improved compared with the comparative examples. Therefore, the capacity retention rate of the electrolyte battery with lithium hexafluorophosphate as the lithium salt, containing the precursor PVA-CN, a plasticizer, and zero-dimensional carbon nanomaterials and/or quasi-zero-dimensional carbon nanomaterials after 300 cycles at room temperature is significantly improved.
  • Example 4 replaces graphene quantum dots with carbon dots, and the capacity retention rate of the battery after 300 cycles at room temperature is increased from 79% to 91%.
  • Example 5 and Example 6 further add 1g N-methyl-N-nitroso-toluenesulfonamide and 2g N-methyl-N-nitroso-toluenesulfonamide, respectively, and the capacity retention rate of the battery after 300 cycles at room temperature is increased from 89% to 92% and 95%. That is, N-methyl-N-nitroso-toluenesulfonamide can further improve the room temperature cycle performance of the NCM811/SiOx-C full battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

为了解决凝胶聚合物电解质保液量不佳、循环性能差的问题,提供一种锂离子电解液,其包括锂盐、有机溶剂、前驱体以及添加剂,添加剂包括零维碳纳米材料、准零维碳纳米材料中的一种或两种,以及增塑剂。上述锂离子电解液聚合后形成凝胶聚合物电解质,具有良好的保液量,能与电极保持良好的界面相容性,改善界面电阻,提高锂离子电池的常温循环性能。此外,还提供相应的锂离子电池。

Description

锂离子电解液、凝胶聚合物电解质及锂离子电池 技术领域
本发明涉及一种锂离子电解液、凝胶聚合物电解质及锂离子电池。
背景技术
锂离子电池(lithium ion battery,LIB)具有工作电压高、能量密度大、循环寿命长、环境友好且自放电小等优点,可以作为电动汽车、混合动力汽车、插电式混合动力汽车、工业及智能电网中便携储能设备,具有广阔的应用前景。
电解质作为LIB中极为重要的组成部分之一,其对LIB的安全性和电化学性能都有极大的影响。传统的电解质材料是以有机液体电解质为主,其他为辅,但是有机液态电解质极易发生漏液和气胀等问题,从而引发一系列的安全问题。固体电解质的安全性好,但与电极接触性较差导致界面阻抗高,且大多数固体电解质的室温离子电导率较低,不能满足锂离子电池的需要。而凝胶聚合物电解质是基于全固态聚合物电解质添加相应增塑剂形成的电解质,这种组合既具有固体的内聚性,又具有液体的扩散性,它结合了聚合物基体的优异特性(如机械稳定性、柔韧性和不易泄漏等)与液态有机电解质的优异离子传导性,商业化前景显著。
虽然凝胶聚合物电解质具有很多优异的性能,但其也存在机械强度低,难以抵抗在电池使用过程中锂枝晶的破坏。中国专利CN201910732788.8公开使用石墨烯量子点作为添加剂对电解液进行改性,在不影响锂离子传输的前提下,作为形核位点引导锂的均匀形核和生长沉积,抑制锂金属电极充放电循环中的枝晶生长,消除短路隐患,但是其常温循环性能仍有待提高。
发明内容
本发明所要解决的技术问题是提供一种锂离子电解液,用其制备的凝胶聚合物电解质保液量佳,具有较佳的常温循环性能。
为达到上述目的,本发明采用的技术方案如下:
本发明提供一种锂离子电解液,所述锂离子电解液包括锂盐、有机溶剂、前驱体以及添加剂;所述添加剂包括零维碳纳米材料、准零维碳纳米材料中的一种或两种,以及增塑剂。
根据一些实施方式,所述前驱体选自甲基丙烯酸酯、碳酸亚乙烯酯(VC)、丙烯腈(AN)、醋酸乙烯酯(VAC)、苯乙烯(ST)、聚氧化乙烯(PEO)、聚苯醚(PPO)、聚氧化亚甲基(POM)、聚 乙酸乙烯酯(PVA)、聚乙烯亚胺(PEI)、聚乙烯丁二酸酯、聚氧杂环丁烷、聚β‐丙醇酸内酯、聚表氯醇、聚N‐丙基氮杂环丙烷、聚烯化多硫、聚偏氟乙烯(PVDF)、丙烯酸甲酯(MA)、丙烯酰胺(AM)、2‐羟基丙烯酸甲酯、三氟乙基丙烯酸酯(TFMA)、聚乙二醇苯醚丙烯酸酯(PEGPEA)、聚乙二醇二丙烯酸酯(PEGDA)、聚乙二醇二缩水甘油醚(PEGDE)、乙氧基化三甲基丙烷三丙烯酸(ETPTA)、聚氰基聚乙烯醇(PVA‐CN)、1,3‐二氧戊环(DOL)、1,3,5‐三氧六环、1,4‐二氧六环、四氢呋喃(THF)、聚乙烯醇缩甲醛(PVFM)中的一种或多种。
根据一些实施方式,所述前驱体占所述锂离子电解液总质量的1~5%,例如1%、1.5%、2%、2.5%、3%、4%、5%等。
根据一些实施方式,所述增塑剂选自氟苯、乙酸乙酯、邻苯二甲酸甲酯中的一种或多种。
根据一些实施方式,所述增塑剂占所述锂离子电解液总质量的3~12%,例如3%、4%、5%、6%、7%、8%、9%、10%、11%、12%等。
根据一些实施方式,当所述锂盐不包括LiPF6和/或LiBF4时,所述锂离子电解液还包括引发剂;当所述锂盐包括LiPF6和/或LiBF4时,所述锂离子电解液选择性地加入引发剂,即可以添加引发剂,也可以不添加引发剂。LiPF6在一定条件下搁置后可部分分解形成PF5,LiBF4在一定条件下搁置后可部分分解产生BF3,PF5及BF3可分别作为形成聚合物的引发剂,使电解液从液态转变为凝胶态。
进一步地,所述引发剂选自偶氮类引发剂、过氧类引发剂、氧化还原类引发剂、阳离子聚合引发剂、阴离子聚合引发剂中的一种或多种。
具体地,所述偶氮类引发剂包括偶氮二异丁腈、偶氮二异丁酸二甲酯中的一种或两种;所述过氧类引发剂包括过氧化二苯甲酰胺;所述阳离子聚合引发剂包括BF3、PF5、AlCl3、Al(CF3SO3)3、Sn(CF3SO3)2中的一种或几种;所述阴离子聚合引发剂包括碱金属、碱金属和碱土金属的有机化合物、三级胺、亲核试剂中的一种或多种。
根据一些实施方式,所述添加剂还包括苯磺酰胺衍生物中的一种或多种,所述苯磺酰胺衍生物的结构式为其中,R1选自F、烷基、氟代烷基中的任一种,R2选自H、F、烷基、氟代烷基中的任一种。
进一步地,所述苯磺酰胺衍生物包括N-甲基-N-亚硝基对甲苯磺酰胺(CAS:80-11-5)。
进一步地,所述苯磺酰胺衍生物占所述锂离子电解液总质量0.05~5%,例如0.05%、0.1%、0.5%、1%、1.5%、2%、3%、4%、5%等。
根据一些实施方式,所述有机溶剂选自碳酸乙烯酯、氟代碳酸乙烯酯、碳酸丙烯酯、碳酸二甲脂、碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸乙丙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、1,4–丁内酯、乙二醇二甲醚、乙二醇二乙醚、乙腈、己二腈、丁二腈、戊二腈、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,二甲基亚砜、二甲基砜,环丁砜、三甲基磷酸酯中的一种或多种。
进一步地,所述有机溶剂包括碳酸乙烯酯、氟代碳酸乙烯酯以及碳酸甲乙酯。当所述前驱体选自聚合物(例如PVA‐CN等)时,聚合物在该有机溶剂的体系中的溶解性较差,溶解需要较长的时间(2h以上),作为优选,有机溶剂还包括N,N-二甲基甲酰胺。通过将聚合物先溶解在N,N-二甲基甲酰胺中,然后再与该有机溶剂的体系混合,可大大缩短聚合物的溶解时间。
根据一些实施方式,所述有机溶剂占所述锂离子电解液总质量70~85%,例如70%、72%、74%、76%、78%、80%、82%等。
根据一些实施方式,所述锂盐包括LiTFSI、LiPF6、LiBF4、LiBOB、LiBC2O4F2、LiClO4、LiCF3SO3、LiN(FSO2)2、LiN(CF3SO2)2中的一种或多种。
根据一些实施方式,所述锂盐占所述锂离子电解液总质量的10~20%,例如10%、11%、12%、13%、15%、16%、17%、18%、19%、20%等。
根据一些实施方式,所述零维碳纳米材料包括富勒烯、纳米金刚石、碳纳米洋葱中的一种或多种。
根据一些实施方式,所述准零维碳纳米材料包括石墨烯量子点和/或碳点。
根据一些实施方式,所述零维碳纳米材料、准零维碳纳米材料中的一种或两种占所述锂离子电解液总质量0.05~0.5%,例如0.05%、0.1%、0.15%、0.2%、0.3%、0.4%、0.5%等。
根据一些实施方式,所述前驱体为聚氰基聚乙烯醇,所述前驱体以聚氰基聚乙烯醇的N,N-二甲基甲酰胺溶液作为原料。
本发明还提供一种凝胶聚合物电解质,所述凝胶聚合物电解质由如上所述的锂离子电解液反应形成。
根据一些实施方式,所述反应包括在55~65℃的温度下搁置20~28小时,使所述锂离子电解液从液态转变为凝胶态的凝胶聚合物电解质。
本发明还提供一种锂离子电池,所述锂离子电池包括正极、负极、隔膜以及如上所述的锂离子电池电解液或者凝胶聚合物电解质。
根据一些实施方式,所述正极的材料为三元材料,所述三元材料包括但不限于NCM811。
根据一些实施方式,所述负极的材料为硅碳,所述硅碳包括但不限于SiOx-C。
根据一些实施方式,所述锂离子电池以电解液的形式进行组装,在电池化成之后,使所述电解液从液态转变为凝胶态的凝胶聚合物电解质。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明的锂离子电解液在聚合后具有良好的保液量,能与电极保持良好的界面相容性,改善界面电阻,提高锂离子电池的常温循环性能。
具体实施方式
凝胶聚合物电解质虽然具有很多优异的性能,但是其机械强度低,难以抵抗在电池使用过程中锂枝晶的破坏,在电解质中添加石墨烯量子点能够抑制锂金属电极充放电循环中的枝晶生长,消除短路隐患,但是,电池的循环性能无法得到改善。本申请人通过对锂离子电解液的配方进行调整,提供一种锂离子电解液,该锂离子电解液在聚合后具有良好的保液量,能与电极保持良好的界面相容性,改善界面电阻,从而提升电池的循环性能。以下对本申请的方案作进一步描述。
本发明提供一种锂离子电解液,其包括锂盐、有机溶剂、前驱体以及添加剂。添加剂包括零维碳纳米材料、准零维碳纳米材料中的一种或两种,以及增塑剂。
根据一些具体且优选的实施方式,一种锂离子电解液,其包括:
锂盐,该锂盐为LiPF6
有机溶剂,该有机溶剂包括碳酸乙烯酯、氟代碳酸乙烯酯以及碳酸甲乙酯;
前驱体,该前驱体为PVA‐CN;
添加剂,该添加剂包括零维碳纳米材料、准零维碳纳米材料中的一种或两种,以及增塑剂。
进一步地,该添加剂还包括苯磺酰胺衍生物中的一种或多种,苯磺酰胺衍生物的结构式为其中,R1选自F、烷基、氟代烷基中的任一种,R2选自H、F、烷基、氟代烷基中的任一种。
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组 合。下述实施例中的PVA-CN。购自无锡三友新材料科技有限公司,其又名聚乙烯醇-β-氰乙基醚。
一种电池,其包括正极、负极、隔膜以及凝胶聚合物电解质,正极、负极、隔膜以及凝胶聚合物电解质的制备方法如下。
制备三元材料(NCM811)正极:按8:1:1的比例称取正极活性材料NCM811、导电剂Super-P以及粘结剂PVDF(聚偏二氟乙烯),加入适当溶剂中充分混合成均匀浆料制成正极活性材料层;将正极集流体清洗干净,然后将所述正极活性材料层均匀涂覆于正极集流体表面,立马放入真空干燥箱60℃干燥12h,待用;
制备隔膜:将PP(聚丙烯)/PE(聚乙烯)/PP三层隔膜,放在真空干燥箱内备用;
制备硅碳(SiOx-C)负极:按92:2:6的比例称取负极活性材料SiOx-C、导电剂Super-P以及粘结剂LiPAA,加入适当溶剂中充分混合成均匀浆料制成负极活性材料层;将负极集流体清洗干净,然后将所述负极活性材料层均匀涂覆于负极集流体表面,立马放入真空干燥箱60℃干燥12h,待用;
将如下实施例以及对比例制成的电解液放在玻璃瓶内密闭,60℃下搁置24h,观察电解液是否从液态完全聚合为凝胶态。
按照如下实施例以及对比例配置电解液,并将如下实施例以及对比例制得的电解液注入上述材料组装(组装的方式参照现有技术中的电池的组装方式,本发明不作具体限制)的全电池中,进行测试。
第一步(电池化成):电池在25℃下0.1C恒流充电至4.2V,搁置15min,恒流放电至2.75V,二封;
第二步(电解液状态转变过程):将电池在60℃下搁置24h;
第三步(电池常温循环测试):将电池在25℃下0.2C恒流充电至4.2V,搁置15min,0.2C恒流放电至2.75V,循环5Z;将电池在25℃下0.5C恒流充电至4.2V,搁置15min,1.0C恒流放电至2.75V,循环300Z。
实施例1
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、51.7g碳酸甲乙酯(EMC)以及10g乙酸乙酯混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN(聚氰基聚乙烯醇),0.15g石墨烯量子点。
实施例2
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、56.7g碳酸甲乙酯(EMC) 以及5g氟苯混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN,0.15g石墨烯量子点。
实施例3
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、56.7g碳酸甲乙酯(EMC)以及5g邻苯二甲酸二甲酯混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN,0.15g石墨烯量子点。
实施例4
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、56.7g碳酸甲乙酯(EMC)以及5g邻苯二甲酸二甲酯混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN,0.15g碳点。
实施例5
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、51.7g碳酸甲乙酯(EMC)以及10g乙酸乙酯混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN,0.15g石墨烯量子点以及1g N-甲基-N-亚硝基对甲苯磺酰胺。
实施例6
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、51.7g碳酸甲乙酯(EMC)以及10g乙酸乙酯混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN,0.15g石墨烯量子点以及2g N-甲基-N-亚硝基对甲苯磺酰胺。
对比例1
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)以及61.7g碳酸甲乙酯(EMC)混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀。
对比例2
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)以及61.7g碳酸甲乙酯(EMC)混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN以及0.15g石墨烯量子点。
对比例3
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)以及61.7g碳酸甲乙酯(EMC)混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入3.0g PVA-CN,0.15g石墨烯量子点。
对比例4
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)以及61.7g碳酸甲乙酯(EMC)混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2.0g PVA-CN,0.05g石墨烯量子点。
对比例5
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)以及61.7g碳酸甲乙酯(EMC)混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2.0g PVA-CN,0.1g石墨烯量子点。
对比例6
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、51.7g碳酸甲乙酯(EMC)以及10g乙酸乙酯混合,将15.17g电解质盐(LiPF6)加入上述混合溶液中搅拌均匀;在此溶液中再加入2.0g PVA-CN。
对比例7
将18.64g碳酸乙烯酯(EC)、4.49g氟代碳酸乙烯酯(FEC)、51.7g碳酸甲乙酯(EMC)以及10g乙酸乙酯混合,将15.17g电解质盐(LiODFB)加入上述混合溶液中搅拌均匀;在此溶液中再加入2g PVA-CN(聚氰基聚乙烯醇),0.15g石墨烯量子点。
上述实施例以及对比例制成的电解液及电池的性能如下表1所示。
表1
表1的实验结果显示:仅加入PVA-CN和石墨烯量子点,而未加入增塑剂的电解液(对比例2)在高温60℃下搁置24h,仍有电解液渗出;相对于实施例1,对比例7中将LiPF6用LiODFB取代,电解液不能聚合成凝胶态。对比例6中仅加入增塑剂乙酸乙酯和PVA-CN,而未加入零维碳纳米材料或准零维碳纳米材料,其电解液部分聚合,仍有电解液渗出。实施例 1至3中加入有PVA-CN、石墨烯量子点和不同类型的增塑剂,该三个实施例使用的电解液在高温60℃下搁置24h,电解液完全聚合成凝胶态,没有电解液渗出。实施例4采用碳点替代石墨烯量子点,实施例5和6进一步加入N-甲基-N-亚硝基对甲苯磺酰胺,实施例4至6的电解液在高温60℃下搁置24h,电解液完全聚合成凝胶态,没有电解液渗出。因此,以六氟磷酸锂为锂盐,含有前驱体PVA-CN,增塑剂以及零维碳纳米材料和/或准零维碳纳米材料的电解液,才能够在高温下从液态完全聚合成凝胶态,无电解液渗出。
表1的实验结果还显示:在NCM811/SiOx-C的全电池中,对比例2在常温下循环300周的容量保持率为48%;对比例6在常温下循环300周的容量保持率为47%。实施例1至3的电池在常温下循环300周的容量保持率分别为89%,84%以及79%,可见电池循环性能相较于对比例得到极大的改善。因此,以六氟磷酸锂为锂盐,含有前驱体PVA-CN,增塑剂以及零维碳纳米材料和/或准零维碳纳米材料的电解液电池在常温下循环300周的容量保持率得到明显改善。相对于实施例3,实施例4是将碳点取代石墨烯量子点,电池常温下的循环300周的容量保持率从79%提高至91%。相对于实施例1,实施例5和实施例6是进一步分别加入1gN-甲基-N-亚硝基对甲苯磺酰胺和2g N-甲基-N-亚硝基对甲苯磺酰胺,电池常温下的循环300周的容量保持率从89%提高至92%和95%。即N-甲基-N-亚硝基对甲苯磺酰胺能进一步改善NCM811/SiOx-C全电池的常温循环性能。
实施例7
本发明人在研究中发现,PVA-CN在常规电解液中溶解性较差,需要2h以上的搅拌才能溶解。本发明人还尝试了通过使PVA-CN溶解在N,N-二甲基甲酰胺中,例如2g PVA-CN溶解在10g N,N-二甲基甲酰胺,大概30min即可完全溶解,极大的缩短了PVA-CN的溶解时间;再将溶解后的PVA-CN的N,N-二甲基甲酰胺溶液作为原料添加到电解液中。实验结果显示,使用PVA-CN的N,N-二甲基甲酰胺溶液作为原料和直接使用PVA-CN作为原料,两者制得的电解液的效果相当。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (15)

  1. 一种锂离子电解液,其特征在于,所述锂离子电解液包括锂盐、有机溶剂、前驱体以及添加剂;所述添加剂包括零维碳纳米材料、准零维碳纳米材料中的一种或两种,以及增塑剂。
  2. 根据权利要求1所述的锂离子电解液,其特征在于,所述前驱体选自甲基丙烯酸酯、碳酸亚乙烯酯、丙烯腈、醋酸乙烯酯、苯乙烯、聚氧化乙烯、聚苯醚、聚氧化亚甲基、聚乙酸乙烯酯、聚乙烯亚胺、聚乙烯丁二酸酯、聚氧杂环丁烷、聚β‐丙醇酸内酯、聚表氯醇、聚N‐丙基氮杂环丙烷、聚烯化多硫、聚偏氟乙烯、丙烯酸甲酯、丙烯酰胺、2‐羟基丙烯酸甲酯、三氟乙基丙烯酸酯、聚乙二醇苯醚丙烯酸酯、聚乙二醇二丙烯酸酯、聚乙二醇二缩水甘油醚、乙氧基化三甲基丙烷三丙烯酸、聚氰基聚乙烯醇、1,3‐二氧戊环、1,3,5‐三氧六环、1,4‐二氧六环、四氢呋喃、聚乙烯醇缩甲醛中的一种或多种;和/或,所述前驱体占所述锂离子电解液总质量的1~5%。
  3. 根据权利要求1所述的锂离子电解液,其特征在于,所述增塑剂选自氟苯、乙酸乙酯、邻苯二甲酸甲酯中的一种或多种;和/或,
    所述增塑剂占所述锂离子电解液总质量的3~12%。
  4. 根据权利要求1所述的锂离子电解液,其特征在于,当所述锂盐不包括LiPF6和/或LiBF4时,所述锂离子电解液还包括引发剂;当所述锂盐包括LiPF6和/或LiBF4时,所述锂离子电解液选择性地加入引发剂;所述引发剂选自偶氮类引发剂、过氧类引发剂、氧化还原类引发剂、阳离子聚合引发剂、阴离子聚合引发剂中的一种或多种。
  5. 根据权利要求4所述的锂离子电解液,其特征在于,所述偶氮类引发剂包括偶氮二异丁腈、偶氮二异丁酸二甲酯中的一种或两种;
    所述过氧类引发剂包括过氧化二苯甲酰胺;
    所述阳离子聚合引发剂包括BF3、PF5、AlCl3、Al(CF3SO3)3、Sn(CF3SO3)2中的一种或几种;
    所述阴离子聚合引发剂碱金属、碱金属和碱土金属的有机化合物、三级胺、亲核试剂中的一种或多种。
  6. 根据权利要求1所述的锂离子电解液,其特征在于,所述添加剂还包括苯磺酰胺衍生物中的一种或多种,所述苯磺酰胺衍生物的结构式为其中,R1选自F、烷基、氟代烷基中的任一种,R2选自H、F、烷基、氟代烷基中的任一种。
  7. 根据权利要求6所述的锂离子电解液,其特征在于,所述苯磺酰胺衍生物包括N-甲基-N-亚硝基对甲苯磺酰胺;和/或,
    所述苯磺酰胺衍生物占所述锂离子电解液总质量0.05~5%。
  8. 根据权利要求1所述的锂离子电解液,其特征在于,所述有机溶剂选自碳酸乙烯酯、氟代碳酸乙烯酯、碳酸丙烯酯、碳酸二甲脂、碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸乙丙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、1,4–丁内酯、乙二醇二甲醚、乙二醇二乙醚、乙腈、己二腈、丁二腈、戊二腈、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,二甲基亚砜、二甲基砜,环丁砜、三甲基磷酸酯中的一种或多种;
    和/或,所述有机溶剂占所述锂离子电解液总质量70~85%。
  9. 根据权利要求1所述的锂离子电解液,其特征在于,所述锂盐包括LiTFSI、LiPF6、LiBF4、LiBOB、LiBC2O4F2、LiClO4、LiCF3SO3、LiN(FSO2)2、LiN(CF3SO2)2中的一种或多种;和/或,所述锂盐占所述锂离子电解液总质量的10~20%。
  10. 根据权利要求1所述的锂离子电解液,其特征在于,所述零维碳纳米材料包括富勒烯、纳米金刚石、碳纳米洋葱中的一种或多种;所述准零维碳纳米材料包括石墨烯量子点和/或碳点;和/或,
    所述零维碳纳米材料、准零维碳纳米材料中的一种或两种占所述锂离子电解液总质量0.05~0.5%。
  11. 根据权利要求1所述的锂离子电解液,其特征在于,所述前驱体为聚氰基聚乙烯醇,所述前驱体以聚氰基聚乙烯醇的N,N-二甲基甲酰胺溶液作为原料。
  12. 一种凝胶聚合物电解质,其特征在于,所述凝胶聚合物电解质由如权利要求1至11任一项所述的锂离子电解液反应形成。
  13. 根据权利要求12所述的凝胶聚合物电解质,其特征在于,所述反应包括在55~65℃的温度下搁置20~28小时,使所述锂离子电解液从液态转变为凝胶态的凝胶聚合物电解质。
  14. 一种锂离子电池,其特征在于,所述锂离子电池包括正极、负极、隔膜以及如权利要求1至11中任一项所述的锂离子电池电解液,或者如权利要求12或13所述的凝胶聚合物电解质。
  15. 根据权利要求14所述的锂离子电池,其特征在于,所述正极的材料为三元材料,所述负极的材料为硅碳。
PCT/CN2023/123996 2022-10-20 2023-10-11 锂离子电解液、凝胶聚合物电解质及锂离子电池 WO2024083012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211285597.X 2022-10-20
CN202211285597.XA CN117954682A (zh) 2022-10-20 2022-10-20 一种锂离子电解液、凝胶聚合物电解质及锂离子电池

Publications (1)

Publication Number Publication Date
WO2024083012A1 true WO2024083012A1 (zh) 2024-04-25

Family

ID=90736873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123996 WO2024083012A1 (zh) 2022-10-20 2023-10-11 锂离子电解液、凝胶聚合物电解质及锂离子电池

Country Status (2)

Country Link
CN (1) CN117954682A (zh)
WO (1) WO2024083012A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720300A (zh) * 2016-03-31 2016-06-29 成都国珈星际固态锂电科技有限公司 凝胶电解质膜、凝胶聚合物锂离子电池及其制备方法,及电动车
CN107799823A (zh) * 2017-10-23 2018-03-13 华南师范大学 一种电解液添加剂及含有该添加剂的电解液和锂二次电池
CN109546207A (zh) * 2018-11-30 2019-03-29 西安交通大学 一种复合固态聚合物电解质膜及其制备方法和应用
US10873107B2 (en) * 2017-08-01 2020-12-22 Drexel University Additives for suppressing dendritic growth in batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720300A (zh) * 2016-03-31 2016-06-29 成都国珈星际固态锂电科技有限公司 凝胶电解质膜、凝胶聚合物锂离子电池及其制备方法,及电动车
US10873107B2 (en) * 2017-08-01 2020-12-22 Drexel University Additives for suppressing dendritic growth in batteries
CN107799823A (zh) * 2017-10-23 2018-03-13 华南师范大学 一种电解液添加剂及含有该添加剂的电解液和锂二次电池
CN109546207A (zh) * 2018-11-30 2019-03-29 西安交通大学 一种复合固态聚合物电解质膜及其制备方法和应用

Also Published As

Publication number Publication date
CN117954682A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN109713367B (zh) 一种含硅的高能量密度锂离子电池
BR112015005331B1 (pt) Eletrólito de polímero em gel e dispositivo eletroquímico incluindo o mesmo
WO2018094773A1 (zh) 凝胶聚合物电解质动力电池
CN113851707B (zh) 一种凝胶电解质及其制备方法和电池
US11643497B2 (en) Polymers comprising imidazole derivatives and their use in electrochemical cells
JPWO2006095507A1 (ja) 電気化学エネルギー蓄積デバイス用非水電解液及びそれを用いた電気化学エネルギー蓄積デバイス
CN111801836A (zh) 锂二次电池用电解质
WO2024011702A1 (zh) 一种锂离子电池
CN111313092A (zh) 一种可改善正负极成膜的锂离子电池电解液
CN112074984A (zh) 锂二次电池用电解质
WO2024104049A1 (zh) 电解液及锂离子电池
JP4418138B2 (ja) ゲル状の高分子電解質、これを採用しているリチウム電池及びこれらの製造方法
US11489203B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including same
CN116742129A (zh) 钠离子电池电解液和钠离子电池
CN116169363A (zh) 一种钠离子电池电解液及钠离子电池
CN113889667B (zh) 一种适配可快充钴酸锂电池的高电压电解液及其应用
WO2024083012A1 (zh) 锂离子电解液、凝胶聚合物电解质及锂离子电池
WO2023123841A1 (zh) 电解液添加剂和含有该添加剂的电解液及锂离子电池
WO2021031867A1 (zh) 一种电解液及其制备方法和锂离子电池
CN114188603A (zh) 纳米相分离的固体聚合物电解质薄膜及其制备方法和应用
CN113224370A (zh) 凝胶电解质、其制备方法和用途
KR20200044411A (ko) 음극 슬러리의 제조 방법
EP3861582A1 (en) Improved rechargeable batteries and production thereof
CN114464959B (zh) 锂离子电池
CN116779969B (zh) 钠离子电池电解液、钠离子电池和提高钠离子电池性能的方法