WO2024082952A1 - 一种表面增强拉曼散射的复合基底及其制备方法和应用 - Google Patents
一种表面增强拉曼散射的复合基底及其制备方法和应用 Download PDFInfo
- Publication number
- WO2024082952A1 WO2024082952A1 PCT/CN2023/122399 CN2023122399W WO2024082952A1 WO 2024082952 A1 WO2024082952 A1 WO 2024082952A1 CN 2023122399 W CN2023122399 W CN 2023122399W WO 2024082952 A1 WO2024082952 A1 WO 2024082952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyanamide
- composite substrate
- preparation
- hexylthiophene
- poly
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 71
- 239000002131 composite material Substances 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 57
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims abstract description 38
- 150000001912 cyanamides Chemical class 0.000 claims abstract description 26
- BOVNDVMMYAFMNP-UHFFFAOYSA-N silver cyanamide Chemical compound [Ag+].NC#N BOVNDVMMYAFMNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011259 mixed solution Substances 0.000 claims abstract description 18
- 239000011521 glass Substances 0.000 claims abstract description 17
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 14
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 claims abstract description 11
- 229960000907 methylthioninium chloride Drugs 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- HVICWZVYCLJXNW-UHFFFAOYSA-N cyanamide;zinc Chemical compound [Zn].NC#N HVICWZVYCLJXNW-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000001035 drying Methods 0.000 claims abstract description 4
- DNDJEIWCTMMZBX-UHFFFAOYSA-N n,n-dimethyl-7-methyliminophenothiazin-3-amine;hydrochloride Chemical compound [Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(NC)=CC=C3N=C21 DNDJEIWCTMMZBX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 10
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 4
- JSFMCJBSPUHNHS-UHFFFAOYSA-N silver;cyanoiminomethylideneazanide Chemical compound [Ag+].N#C[N-]C#N JSFMCJBSPUHNHS-UHFFFAOYSA-N 0.000 claims description 3
- ZIPLUEXSCPLCEI-UHFFFAOYSA-N cyanamide group Chemical group C(#N)[NH-] ZIPLUEXSCPLCEI-UHFFFAOYSA-N 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 7
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 229910052709 silver Inorganic materials 0.000 abstract description 4
- 239000004332 silver Substances 0.000 abstract description 4
- 238000001237 Raman spectrum Methods 0.000 abstract description 2
- -1 poly(3-hexylthiophene) Polymers 0.000 abstract 8
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 238000004611 spectroscopical analysis Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 7
- 239000000975 dye Substances 0.000 description 6
- 229910021642 ultra pure water Inorganic materials 0.000 description 6
- 239000012498 ultrapure water Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000001045 blue dye Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- LEMUEGVIWBHWKE-UHFFFAOYSA-N cyanamide;silver Chemical compound [Ag].NC#N LEMUEGVIWBHWKE-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 206010043275 Teratogenicity Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 231100000211 teratogenicity Toxicity 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C3/00—Cyanogen; Compounds thereof
- C01C3/16—Cyanamide; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
Definitions
- the invention belongs to the technical field of Raman detection, and in particular relates to a composite substrate for surface enhanced Raman scattering, a preparation method thereof and an application thereof.
- SERS Surface enhanced Raman spectroscopy
- SERS technology is regarded as an effective tool for trace detection due to its high sensitivity, rapid response and convenience.
- the choice of substrate is the key to achieving efficient SERS response.
- Traditional SERS substrates include noble metal nanoparticles. Although they have sensitive and efficient responses, their instability in air and high cost limit their practical applications.
- Inorganic semiconductor substrates have the advantages of high selectivity, low cost and high stability, making them a hot topic in SERS substrate research.
- the Raman enhancement signal of inorganic semiconductor substrates is still far behind that of noble metal nanoparticles.
- the discovery of organic small molecule semiconductor SERS substrates has opened up new areas for the development of SERS substrates. In addition to the common advantages with inorganic semiconductor substrates, it can also achieve high enhancement of probe molecules, but its preparation process is complicated, the aggregation structure is not tunable, and its reusability is poor.
- the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
- the present invention provides a composite substrate for surface enhanced Raman scattering and a preparation method and application thereof.
- the composite substrate provided by the present invention has low preparation cost and is Raman spectroscopy has high sensitivity, strong stability and can be reused.
- a first aspect of the present invention provides a method for preparing a composite substrate for surface enhanced Raman scattering.
- a method for preparing a composite substrate for surface enhanced Raman scattering comprises the following steps:
- the cyanamide salt and poly 3-hexylthiophene (P3HT) are dissolved in a solvent to obtain a mixed solution; the mixed solution is coated on a glass sheet and dried to obtain a composite substrate; the cyanamide salt is selected from at least one of silver cyanamide, zinc cyanamide and silver dicyanamide.
- the mass ratio of the cyanamide salt to the poly (3-hexylthiophene) is 1:(0.5-15); further preferably, the mass ratio of the cyanamide salt to the poly (3-hexylthiophene) is 1:(1-10); more preferably, the mass ratio of the cyanamide salt to the poly (3-hexylthiophene) is 1:(1-5).
- the total mass concentration of cyanamide salt and poly (3-hexylthiophene) in the mixed solution is 3-10 mg/mL; further preferably, the total mass concentration of cyanamide salt and poly (3-hexylthiophene) in the mixed solution is 5-10 mg/mL.
- the cyanamide salt is a nano cyanamide salt.
- the preparation process of the nano cyanamide salt is as follows:
- Ammonia water is added to a silver nitrate or zinc nitrate solution, and then a cyanamide or dicyanamide aqueous solution is added to react.
- a cyanamide or dicyanamide aqueous solution is added to react.
- the reaction precipitation is complete, the cyanamide salt residue is separated by filtration, and the residue is washed and dried to obtain nano cyanamide salt.
- the concentration of the silver nitrate or zinc nitrate is 15-20 g/L.
- the concentration of the ammonia water is 1-3 mol/L.
- the mass fraction of the cyanamide or dicyanamide aqueous solution is 0.5%-1.5%, such as 0.8%, 0.9%, 1.2%, etc.
- the precipitate produced by the reaction is subjected to high-temperature treatment at 160-200°C for 4-12 hours using a hydrothermal kettle.
- the specific process is: the precipitate produced by the reaction is added to the lining of the reactor, ultrapure water is added and stirred into a sludge, and then the assembled product is put into an oven, the temperature is increased and maintained constant, and after natural cooling, it is filtered, washed and dried.
- the solvent is chloroform.
- the coating process is to use a spin coater to spin coat the mixed solution onto a glass sheet.
- the spin coating speed of the coating apparatus is 2000-6000 rpm, such as 2500 rpm, 4000 rpm and 5500 rpm; the spin coating time is 20-40 seconds, such as 25 seconds, 30 seconds, 35 seconds, 40 seconds, etc.
- the glass sheet is pretreated before coating, and the pretreatment process is as follows: the glass sheet is washed with water, acetone and ethanol in sequence, and then placed in a mixed solution of concentrated sulfuric acid and hydrogen peroxide, and heated to 150-170° C.; finally, it is washed with water and dried for standby use.
- the volume ratio of the concentrated sulfuric acid to the hydrogen peroxide is (5-8): (2-4); further Preferably, the volume ratio of concentrated sulfuric acid to hydrogen peroxide is 7:3.
- the drying process is to dry the coated glass sheet in a vacuum at 50-70° C. for 20-30 hours.
- the drying process is to remove excess solvent.
- a second aspect of the present invention provides a composite substrate for surface enhanced Raman scattering.
- a surface enhanced Raman scattering composite substrate is prepared by the above preparation method.
- a third aspect of the present invention provides an application of a composite substrate for surface enhanced Raman scattering.
- the above-mentioned surface enhanced Raman scattering composite substrate is used in surface enhanced Raman spectroscopy detection; the object of detection is organic dye molecules.
- the organic dye molecule is methylene blue, crystal violet or azure I.
- a fourth aspect of the present invention provides a surface enhanced Raman spectrometer.
- a surface enhanced Raman spectrometer includes the above-mentioned surface enhanced Raman scattering composite substrate.
- the present invention selects ⁇ -conjugated conductive polymer poly 3-hexylthiophene (P3HT) and cyanamide salt (such as silver cyanamide) to prepare a composite film as a composite substrate for surface enhanced Raman scattering, and utilizes the heterojunction structure of organic semiconductor material poly 3-hexylthiophene and inorganic semiconductor material cyanamide salt to enhance the charge transfer efficiency, and the inorganic semiconductor cyanamide salt can further improve the stability and photocatalytic performance.
- the composite substrate layer is used in Raman spectroscopy detection, and has high detection sensitivity, strong stability, and strong reusability.
- the surface enhanced Raman scattering composite substrate provided by the present invention has low preparation cost and simple preparation method, which solves the problem of high cost and complex preparation process of traditional SERS substrates.
- the surface enhanced Raman scattering composite substrate prepared by the present invention can be widely used in the detection of organic dye molecules, such as methylene blue, crystal violet or azure I.
- FIG. 1 is a SEM image of the composite substrate prepared in Example 3.
- FIG. 2 is a Raman spectrum of methylene blue at different concentrations on the composite substrate prepared in Example 3.
- the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial sources or by existing known methods.
- This embodiment provides a composite substrate for surface enhanced Raman scattering, which is a composite film formed based on poly (3-hexylthiophene)/silver cyanamide, and the preparation method thereof is as follows:
- Pretreatment of glass slides First, use a glass cutter to cut the glass slide into 20 mm ⁇ 20 mm glass slides and place them in a beaker. Wash them twice with ultrapure water, and then use acetone and anhydrous ethanol for ultrasonic cleaning to remove residual organic pollutants on the glass slides. After the ultrasonic cleaning, use ultrapure water to clean them three more times. Then, add concentrated sulfuric acid and hydrogen peroxide to the beaker in a volume ratio of 7:3, and then heat them on a hot plate at 160°C until the bubbles gradually disappear. After ultrasonic cleaning with ultrapure water several times, use N2 to blow dry and place them in a clean cuvette for later use.
- This embodiment also provides the application of the composite substrate in surface enhanced Raman spectroscopy detection to detect methylene blue dye, and the specific process is as follows:
- the surface Raman enhancement performance of the composite substrate was evaluated using the enhancement factor and the minimum detection concentration.
- the Raman experiment used a 532-nanometer laser light source, the laser power was 50 microwatts, the exposure time was 5 seconds, and the test wavelength range was from 200 cm -1 to 2200 cm -1 .
- the enhancement factor of the composite substrate prepared in this embodiment was 3800, and the detection limit concentration was 10 -6 mol/L.
- Example 2 The difference between Example 2 and Example 1 is that the mass ratio of silver cyanamide to poly (3-hexylthiophene) is 1:6, and the rest of the preparation method and detection process are the same as Example 1.
- the enhancement factor of the composite substrate prepared in this embodiment is 3500, and the detection limit concentration is 10 -6 mol/L.
- Example 3 The difference between Example 3 and Example 1 is that the mass ratio of silver cyanamide to poly (3-hexylthiophene) is 1:4, and the rest of the preparation method and detection process are the same as Example 1.
- Fig. 1 is a SEM image of the composite substrate prepared in Example 3. As shown in Fig. 1, there are silver cyanamide nanoparticles on the substrate, which are evenly distributed, and the surface and edges of the silver cyanamide nanoparticles become blurred, which may be due to the P3HT film covering the silver cyanamide particles. After testing, the enhancement factor of the composite substrate prepared in this embodiment is 6100, and the detection limit concentration is 10-9 mol/L.
- Fig. 2 is a Raman spectrogram of methylene blue at different concentrations on the composite substrate. As shown in Fig. 2, when the concentration of methylene blue is 10-9 mol/L (M), it still has a strong signal intensity.
- Example 4 The difference between Example 4 and Example 1 is that the mass ratio of silver cyanamide to poly (3-hexylthiophene) is 1:3, and the rest of the preparation method and detection process are the same as Example 1.
- the enhancement factor of the composite substrate prepared in this embodiment is 5500, and the detection limit concentration is 10 -8 mol/L.
- Example 5 The difference between Example 5 and Example 1 is that the mass ratio of silver cyanamide to poly (3-hexylthiophene) is 1:2, and the rest of the preparation method and detection process are the same as Example 1.
- the enhancement factor of the composite substrate prepared in this embodiment is 5400, and the detection limit concentration is 10 -8 mol/L.
- Example 6 The difference between Example 6 and Example 1 is that the mass ratio of silver cyanamide to poly (3-hexylthiophene) is 1:1, and the rest of the preparation method and detection process are the same as Example 1.
- the enhancement factor of the composite substrate prepared in this embodiment is 5000, and the detection limit concentration is 10 -8 mol/L.
- Example 7 The difference between Example 7 and Example 3 is that the total concentration of nano silver cyanamide and poly 3-hexylthiophene is 5 mg/mL, the mass ratio of silver cyanamide to poly 3-hexylthiophene is still 1:4, and the rest of the preparation method and detection process are the same as Example 3.
- the enhancement factor of the composite substrate prepared in this embodiment is 5900, and the detection limit concentration is 10 -9 mol/L.
- Example 8 The difference between Example 8 and Example 3 is that the total concentration of nano silver cyanamide and poly 3-hexylthiophene is 10 mg/mL, the mass ratio of silver cyanamide to poly 3-hexylthiophene is still 1:4, and the rest of the preparation method and detection process are the same as Example 3.
- the enhancement factor of the composite substrate prepared in this embodiment is 5800, and the detection limit concentration is 10 -9 mol/L.
- Example 9 The difference between Example 9 and Example 3 is that dicyanamide silver is used to replace cyanamide silver, and its concentration is the same as that of cyanamide silver.
- the rest of the preparation method and detection process are the same as those of Example 3.
- the enhancement factor of the composite substrate prepared in this embodiment is AA, and the detection limit concentration is BB mol/L.
- Example 10 The difference between Example 10 and Example 3 is that the prepared composite substrate is applied to detect Azure I in surface enhanced Raman spectroscopy detection, and the rest of the preparation method and detection process are the same as in Example 3.
- the enhancement factor of the detection of Azure I in this embodiment is 4500, and the detection limit concentration is 10 -8 mol/L.
- Example 11 The difference between Example 11 and Example 3 is that the prepared composite substrate is applied to detect crystal violet dye in surface enhanced Raman spectroscopy, and the rest of the preparation method and detection process are the same as Example 3.
- the enhancement factor of the crystal violet dye detected in this embodiment is 5000, and the detection limit concentration is 10 -8 mol/L.
- the composite substrate film used in the detection of Example 3 is washed with pure water and dried, and then irradiated with visible light for 4 hours, and then the Raman experiment is continued to test the reusability of the composite substrate.
- the specific operation is: 5 ⁇ L of methylene blue dye is dropped on the washed and dried composite substrate, and the Raman experiment is carried out after the solution is dried.
- the detection conditions are the same as those in Example 4.
- the enhancement factor of the second detection is 6100, and the detection limit concentration is 10-9 mol/L. The above method is repeated 6 times, and the detection limit concentration is 10-9 mol/L.
- the third enhancement factor is 6050, the fourth enhancement factor is 6080, the fifth enhancement factor is 6030, and the sixth enhancement factor is 6010.
- the composite substrate provided by the present invention can be reused, and after repeated use, the SERS performance is still excellent.
- Comparative Example 1 provides a substrate for surface enhanced Raman scattering, which is a substrate film formed based on poly 3-hexylthiophene.
- the difference between Comparative Example 1 and Example 1 is that in Comparative Example 1, no silver cyanamide is added, poly 3-hexylthiophene is dispersed in a chloroform solution to prepare a poly 3-hexylthiophene solution with a total concentration of 8 mg/mL, and then the poly 3-hexylthiophene solution is spin-coated.
- the rest of the preparation method and detection process are the same as in Example 1.
- the enhancement factor of the substrate prepared in this comparative example is 800, and the detection limit concentration is 10 -4 mol/L.
- Comparative Example 2 provides a substrate for surface enhanced Raman scattering, which is a substrate film formed based on silver cyanamide.
- the difference between Comparative Example 2 and Example 1 is that in Comparative Example 2, no poly 3-hexylthiophene is added, silver cyanamide is dispersed in a chloroform solution, a silver cyanamide solution with a total concentration of 8 mg/mL is prepared, and then the silver cyanamide solution is spin-coated.
- the rest of the preparation method and detection process are the same as in Example 1.
- the enhancement factor of the substrate prepared in this comparative example is 200, and the detection limit concentration is 10 -3 mol/L.
- Comparative Example 3 The difference between Comparative Example 3 and Example 3 is that poly-3-hexylthiophene is replaced by an equal amount of polythiophene, and the rest of the preparation method and detection process are the same as Example 3.
- the enhancement factor of the composite substrate prepared in this comparative example is 2500, and the detection limit concentration is 10 -5 mol/L.
- Comparative Example 4 The difference between Comparative Example 4 and Example 1 is that the mass ratio of silver cyanamide to poly (3-hexylthiophene) is 1:19, and the rest of the preparation method and detection process are the same as Example 1.
- the enhancement factor of the composite substrate prepared in this comparative example is 1200, and the detection limit concentration is 10 -4 mol/L.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明属于拉曼检测技术领域,公开了一种表面增强拉曼散射的复合基底及其制备方法和应用。制备方法包括以下步骤:将氰胺盐与聚3-己基噻吩溶于溶剂中,得到混合液;将混合液涂覆于玻璃片上,干燥后得到复合基底;氰胺盐选自氰胺银、氰胺锌、二氰胺银中的至少一种。通过选择聚3-己基噻吩与氰胺盐制备复合膜作为表面增强拉曼散射的复合基底,将复合基底层用于拉曼光谱检测中,其检测灵敏度高、稳定性强,可重复利用性强,能够广泛应用于有机染料分子的检测,如亚甲基蓝、结晶紫或天青Ⅰ。本发明提供的复合基底的制备成本低、制备方法简单。
Description
本发明属于拉曼检测技术领域,具体涉及一种表面增强拉曼散射的复合基底及其制备方法和应用。
随着现代工业化的快速发展,来自于农业、工业以及人类生活所产生的各种有机污染物被排放到自然环境中,对环境造成严重的危害,并随着时间的积累逐渐威胁人类的身体健康。亚甲基蓝、结晶紫等有机染料分子广泛应用在染色织品以及医药等领域,它们具有复杂的芳香结构,在空气中极其稳定,长期的摄入具有极高的致癌、致畸性等风险,即使极其微量的残留也会对人体造成严重的危害,严重影响我们的生命健康。因此,亟需提供能够实现环境及食品安全快速检测的有效检测技术。传统痕量检测的技术有薄层色谱法、分光光度法、高效液相色谱法等,它们技术成熟,具有较好的重现性,但样品制备过程复杂、耗时较长。表面增强拉曼光谱(SERS)作为一种优异的痕量检测工具,能够实现快速、无损、高效的检测,其中SERS基底的选择是发挥高质量SERS响应的关键所在。
SERS技术作为一种光谱分析手段,由于其具有高灵敏度、快速响应及便利性等特点,被视作痕量检测的有效工具。基底的选择是实现SERS高效响应的关键所在,传统的SERS基底有贵金属纳米粒子,尽管其具有灵敏高效的响应,但在空气中的不稳定性以及造价昂贵等缺点限制了它的实际应用。无机半导体基底具有高选择性、低成本、高稳定性等优点,使其成为SERS基底研究热点,但无机半导体基底的拉曼增强信号与贵金属纳米粒子相比,仍然有很大的差距。近几年有机小分子半导体SERS基底的发现,为SERS基底的发展开拓了新的领域,除与无机半导体基底共同的优点外,它还能实现探针分子的高增强,但其制备过程复杂、聚集结构不可调谐,重复利用性较差。
因此,亟需提供一种表面增强拉曼散射的复合基底的制备方法,其制备成本低,制备的复合基底在检测中灵敏度高、稳定性强,且可重复利用。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种表面增强拉曼散射的复合基底及其制备方法和应用。本发明提供的复合基底,其制备成本低,在
拉曼光谱检测中灵敏度高、稳定性强,且可重复利用。
本发明第一方面提供了一种表面增强拉曼散射的复合基底的制备方法。
具体地,一种表面增强拉曼散射的复合基底的制备方法,包括以下步骤:
将氰胺盐与聚3-己基噻吩(P3HT)溶于溶剂中,得到混合液;将所述混合液涂覆于玻璃片上,干燥后得到复合基底;所述氰胺盐选自氰胺银、氰胺锌、二氰胺银中的至少一种。
优选地,所述氰胺盐与所述聚3-己基噻吩的质量比为1:(0.5-15);进一步优选地,所述氰胺盐与所述聚3-己基噻吩的质量比为1:(1-10);更优选地,所述氰胺盐与所述聚3-己基噻吩的质量比为1:(1-5)。
优选地,所述混合液中氰胺盐与聚3-己基噻吩的总质量浓度为3-10mg/mL;进一步优选地,所述混合液中氰胺盐与聚3-己基噻吩的总质量浓度为5-10mg/mL。
优选地,所述氰胺盐为纳米氰胺盐。
进一步优选地,所述纳米氰胺盐的制备过程如下:
向硝酸银或硝酸锌溶液中加入氨水,然后加入氰胺或二氰胺水溶液进行反应,当反应沉淀完全后,过滤分离得氰胺盐滤渣,将所述滤渣清洗,干燥,得到纳米氰胺盐。
优选地,所述硝酸银或硝酸锌的浓度为15-20g/L。
优选地,所述氨水的浓度为1-3mol/L。
优选地,所述氰胺或二氰胺水溶液的质量分数为0.5%-1.5%;如0.8%、0.9%、1.2%等。
为了进一步优化氰胺银、氰胺锌和二氰胺银等氰胺盐的晶体结构,将反应产生的沉淀使用水热釜于160-200℃进行高温处理4-12小时,具体过程为:将反应产生的沉淀加入反应釜内衬中,加入超纯水搅拌成稀泥状组装好后放入烘箱中,升温并保持温度不变,待自然冷却后进行抽滤、洗涤、干燥。
优选地,所述溶剂为氯仿。
优选地,所述涂覆的过程为采用匀胶-旋涂仪将所述混合液旋涂于玻璃片上。
进一步优选地,在所述涂覆的过程中,所述匀胶-旋涂仪的旋涂转数为2000-6000rpm,如2500rpm、4000rpm与5500rpm等;所述旋涂的时间为20-40秒,如25秒、30秒、35秒、40秒等。
优选地,所述玻璃片在涂覆前先进行预处理,所述预处理过程如下:将所述玻璃片依次采用水、丙酮和乙醇清洗后,再置于浓硫酸和双氧水的混合溶液中,加热至150-170℃;最后采用水清洗并干燥处理,备用。
优选地,在所述混合溶液中,所述浓硫酸和双氧水的体积比为(5-8):(2-4);进一
步优选地,所述浓硫酸和双氧水的体积比为7:3。
优选地,所述干燥的过程为将涂覆好的玻璃片于真空中、50-70℃下干燥20-30小时。所述干燥的过程是为了去除多余的溶剂。
本发明第二方面提供了一种表面增强拉曼散射的复合基底。
具体地,一种表面增强拉曼散射的复合基底由上述制备方法制得。
本发明第三方面提供了一种表面增强拉曼散射的复合基底的应用。
具体地,上述表面增强拉曼散射的复合基底在表面增强拉曼光谱检测中的应用;所述检测的对象为有机染料分子。
优选地,所述有机染料分子为亚甲基蓝、结晶紫或天青Ⅰ。
本发明第四方面提供了一种表面增强拉曼光谱仪。
具体地,一种表面增强拉曼光谱仪,包括上述表面增强拉曼散射的复合基底。
相对于现有技术,本发明的有益效果如下:
(1)本发明通过选择π共轭导电聚合物聚3-己基噻吩(P3HT)与氰胺盐(如氰胺银)制备复合膜作为表面增强拉曼散射的复合基底,利用有机半导体材料聚3-己基噻吩与无机半导体材料氰胺盐的异质结结构增强电荷转移效率,无机半导体氰胺盐还能进一步提高稳定性和光催化性能。将该复合基底层用于拉曼光谱检测中,其检测灵敏度高、稳定性强,可重复利用性强。
(2)本发明提供的表面增强拉曼散射的复合基底,其制备成本低,制备方法简单,解决了传统SERS基底成本高、制备过程复杂的问题。
(3)本发明制备的表面增强拉曼散射的复合基底,能够广泛应用于有机染料分子的检测,如亚甲基蓝、结晶紫或天青Ⅰ。
图1为实施例3制得的复合基底的SEM图。
图2为不同浓度亚甲基蓝在实施例3制得的复合基底上的拉曼光谱图。
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
实施例1
本实施例提供了一种表面增强拉曼散射的复合基底,该复合基底是基于聚3-己基噻吩/氰胺银形成的复合薄膜,其制备方法如下:
(1)预处理玻璃片:首先用玻璃刀将载玻片切割成20mm×20mm的玻璃片置于烧杯中,使用超纯水清洗2遍,再依次使用丙酮和无水乙醇超声清洗,以去除玻璃片上残留的有机污染物。超声完成后使用超纯水再清洗3遍,随后将浓硫酸和双氧水按照体积比为7:3依次加入到烧杯中,接着在160℃的热台上加热,直至气泡逐渐消失。使用超纯水超声清洗数次后使用N2吹干,置于干净的比色皿中待用。
(2)制备纳米氰胺银:首先称取5g的硝酸银溶于300mL的超纯水中,然后缓慢滴加600mL浓度为3mol/L的氨水,在滴加过程中溶液会出现沉淀随后立即消失;继续缓慢滴加300mL质量分数为0.9%的氰胺水溶液,在此过程中随着氰胺水溶液的加入会立即出现沉淀,继续加入氰胺水溶液直至沉淀完全。在搅拌半小时后进行抽滤,使用超纯水清洗数遍,放入真空干燥箱中60℃烘干,制得纳米氰胺银。
(3)制备复合薄膜:首先将聚3-己基噻吩与氰胺银分散在氯仿溶液中,纳米氰胺银与聚3-己基噻吩的质量比为1:9,配制成总浓度为8mg/mL的混合液,将混合液置于超声波清洗器中超声10分钟,直至聚3-己基噻吩完全溶解。将混合液使用匀胶-旋涂仪铺展在洗干净的玻璃片(玻璃片厚度为3毫米)上,旋涂转数为4000rpm,旋涂时间为30秒,将旋涂好混合液的玻璃片置于真空干燥箱中,于室温下放置24h去除多余的溶剂,得到复合基底。
本实施例也提供了将上述复合基底应用于表面增强拉曼光谱检测中,用于检测亚甲基蓝染料,具体过程如下:
将5μL的亚甲基蓝染料滴在复合基底上,待溶液干燥后进行拉曼实验,利用增强因子和最低检出浓度来评测复合基底的表面拉曼增强性能。拉曼实验选用532纳米的激光光源,激光的功率为50微瓦,曝光时间为5秒,测试波长范围从200cm-1到2200cm-1。经测试,本实施例制备的复合基底的增强因子为3800,检测极限浓度为10-6摩尔/升。
实施例2
实施例2与实施例1的区别在于,氰胺银与聚3-己基噻吩的质量比为1:6,其余制备方法和检测过程同实施例1。
经测试,本实施例制备的复合基底的增强因子为3500,检测极限浓度为10-6摩尔/升。
实施例3
实施例3与实施例1的区别在于,氰胺银与聚3-己基噻吩的质量比为1:4,其余制备方法和检测过程同实施例1。
图1为实施例3制备的复合基底的SEM图。由图1可知,在基底上存在着氰胺银纳米颗粒,其分布较为均匀,并且氰胺银纳米颗粒的表面和棱角变得模糊,这可能是由于P3HT薄膜覆盖在氰胺银颗粒上。经测试,本实施例制备的复合基底的增强因子为6100,检测极限浓度为10-9摩尔/升。图2为不同浓度亚甲基蓝在复合基底上的拉曼光谱图。由图2可知,当亚甲基蓝的浓度为10-9摩尔/升(M)时,仍然具有较强的信号强度。
实施例4
实施例4与实施例1的区别在于,氰胺银与聚3-己基噻吩的质量比为1:3,其余制备方法和检测过程同实施例1。
经测试,本实施例制备的复合基底的增强因子为5500,检测极限浓度为10-8摩尔/升。
实施例5
实施例5与实施例1的区别在于,氰胺银与聚3-己基噻吩的质量比为1:2,其余制备方法和检测过程同实施例1。
经测试,本实施例制备的复合基底的增强因子为5400,检测极限浓度为10-8摩尔/升。
实施例6
实施例6与实施例1的区别在于,氰胺银与聚3-己基噻吩的质量比为1:1,其余制备方法和检测过程同实施例1。
经测试,本实施例制备的复合基底的增强因子为5000,检测极限浓度为10-8摩尔/升。
实施例7
实施例7与实施例3的区别在于,纳米氰胺银与聚3-己基噻吩的总浓度为5mg/mL,氰胺银与聚3-己基噻吩的质量比仍为1:4,其余制备方法和检测过程同实施例3。
经测试,本实施例制备的复合基底的增强因子为5900,检测极限浓度为10-9摩尔/升。
实施例8
实施例8与实施例3的区别在于,纳米氰胺银与聚3-己基噻吩的总浓度为10mg/mL,氰胺银与聚3-己基噻吩的质量比仍为1:4,其余制备方法和检测过程同实施例3。
经测试,本实施例制备的复合基底的增强因子为5800,检测极限浓度为10-9摩尔/升。
实施例9
实施例9与实施例3的区别在于,采用二氰胺银替换氰胺银,其浓度与氰胺银相同,其余制备方法和检测过程同实施例3。
经测试,本实施例制备的复合基底的增强因子为AA,检测极限浓度为BB摩尔/升。
实施例10
实施例10与实施例3的区别在于,将制备的复合基底应用于表面增强拉曼光谱检测中检测天青I,其余制备方法和检测过程同实施例3。
经测试,本实施例检测检测天青I的增强因子为4500,检测极限浓度为10-8摩尔/升。
实施例11
实施例11与实施例3的区别在于,将制备的复合基底应用于表面增强拉曼光谱检测中检测结晶紫染料,其余制备方法和检测过程同实施例3。
经测试,本实施例检测结晶紫染料的增强因子为5000,检测极限浓度为10-8摩尔/升。
实施例12
本实施例是将实施例3检测使用后的复合基底薄膜用纯净水清洗并干燥,再用可见光照射4小时后,继续进行拉曼实验,测试复合基底的可重复利用性能。具体操作为:将5μL的亚甲基蓝染料滴在经清洗、干燥后的复合基底上,待溶液干燥后进行拉曼实验,检测条件同实施例4,第二次检测的增强因子为6100,检测极限浓度为10-9摩尔/升。按照上述的方法重复6次,检测极限浓度都为10-9摩尔/升,第三次增强因子为6050,第四次增强因子为6080,第五次增强因子为6030,第六次增强因子为6010。本发明提供的复合基底能够重复利用,且重复利用后,SERS性能仍然优异。
对比例1
对比例1提供了一种表面增强拉曼散射的基底,该基底是基于聚3-己基噻吩形成的基底膜。对比例1与实施例1的区别在于,对比例1不加入氰胺银,将聚3-己基噻吩分散在氯仿溶液中,配制成总浓度为8mg/mL的聚3-己基噻吩溶液,然后将聚3-己基噻吩溶液进行旋涂。其余制备方法和检测过程同实施例1。
经测试,本对比例制备的基底的增强因子为800,检测极限浓度为10-4摩尔/升。
对比例2
对比例2提供了一种表面增强拉曼散射的基底,该基底是基于氰胺银形成的基底膜。对比例2与实施例1的区别在于,对比例2不加入聚3-己基噻吩,将氰胺银分散在氯仿溶液中,配制成总浓度为8mg/mL的氰胺银溶液,然后将氰胺银溶液进行旋涂。其余制备方法和检测过程同实施例1。
经测试,本对比例制备的基底的增强因子为200,检测极限浓度为10-3摩尔/升。
对比例3
对比例3与实施例3的区别在于,将聚3-己基噻吩替换为等量的聚噻吩,其余制备方法和检测过程同实施例3。
经测试,本对比例制备的复合基底的增强因子为2500,检测极限浓度为10-5摩尔/升。
对比例4
对比例4与实施例1的区别在于,氰胺银与聚3-己基噻吩的质量比为1:19,其余制备方法和检测过程同实施例1。
经测试,本对比例制备的复合基底的增强因子为1200,检测极限浓度为10-4摩尔/升。
Claims (10)
- 一种表面增强拉曼散射的复合基底的制备方法,其特征在于,包括以下步骤:将氰胺盐与聚3-己基噻吩溶于溶剂中,得到混合液;将所述混合液涂覆于玻璃片上,干燥后得到复合基底;所述氰胺盐选自氰胺银、氰胺锌、二氰胺银中的至少一种。
- 根据权利要求1所述的制备方法,其特征在于,所述氰胺盐与所述聚3-己基噻吩的质量比为1:(0.5-15);优选地,所述氰胺盐与所述聚3-己基噻吩的质量比为1:(1-10)。
- 根据权利要求1所述的制备方法,其特征在于,所述混合液中氰胺盐与聚3-己基噻吩的总质量浓度为3-10mg/mL;优选地,所述混合液中氰胺盐与聚3-己基噻吩的总质量浓度为5-10mg/mL。
- 根据权利要求1-3中任一项所述的制备方法,其特征在于,所述氰胺盐为纳米氰胺盐;所述纳米氰胺盐的制备过程如下:向硝酸银或硝酸锌溶液中加入氨水,然后加入氰胺或二氰胺水溶液进行反应,当反应沉淀完全后,过滤分离得氰胺盐滤渣,将所述滤渣清洗,干燥,得到纳米氰胺盐。
- 根据权利要求1所述的制备方法,其特征在于,所述溶剂为氯仿。
- 根据权利要求1-3中任一项所述的制备方法,其特征在于,所述玻璃片在涂覆前先进行预处理,所述预处理过程如下:将所述玻璃片依次采用水、丙酮和乙醇清洗后,再置于浓硫酸和双氧水的混合溶液中,加热至150-170℃;最后采用水清洗并干燥处理,备用。
- 一种表面增强拉曼散射的复合基底,其特征在于,由权利要求1-6中任一项所述的制备方法制得。
- 权利要求7所述的复合基底在表面增强拉曼光谱检测中的应用,其特征在于,所述检测的对象为有机染料分子。
- 根据权利要求8所述的应用,其特征在于,所述有机染料分子为亚甲基蓝、结晶紫或天青Ⅰ。
- 一种表面增强拉曼光谱仪,其特征在于,包括权利要求7所述的表面增强拉曼散射的复合基底。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211292488.0 | 2022-10-21 | ||
CN202211292488.0A CN115849726A (zh) | 2022-10-21 | 2022-10-21 | 一种表面增强拉曼散射的复合基底及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024082952A1 true WO2024082952A1 (zh) | 2024-04-25 |
Family
ID=85661675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/122399 WO2024082952A1 (zh) | 2022-10-21 | 2023-09-28 | 一种表面增强拉曼散射的复合基底及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115849726A (zh) |
WO (1) | WO2024082952A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115849726A (zh) * | 2022-10-21 | 2023-03-28 | 珠海中科先进技术研究院有限公司 | 一种表面增强拉曼散射的复合基底及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158229A (zh) * | 2015-08-13 | 2015-12-16 | 南京理工大学 | 一种高灵敏性可循环表面增强拉曼光谱基底制备方法 |
CN114965423A (zh) * | 2022-05-10 | 2022-08-30 | 江南大学 | 基于Ag-COF-COOH基底表面增强拉曼光谱检测牛奶中三聚氰胺的方法 |
CN115849726A (zh) * | 2022-10-21 | 2023-03-28 | 珠海中科先进技术研究院有限公司 | 一种表面增强拉曼散射的复合基底及其制备方法和应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103526291B (zh) * | 2013-10-28 | 2016-05-25 | 中国工程物理研究院化工材料研究所 | 表面增强拉曼散射基底及其制备方法和应用 |
WO2018030785A1 (ko) * | 2016-08-09 | 2018-02-15 | 한양대학교 에리카산학협력단 | 전기적 자극 반응성을 지닌 이중 금속-전도성 고분자 야누스 복합 나노구조체, 이의 콜로이드 자가 조립 구조체, 제조방법 및 바이오센싱, 바이오이미징, 약물전달 및 산업적 응용 |
CN106525808B (zh) * | 2016-09-21 | 2019-11-15 | 北京科技大学 | 以聚合物为衬底的柔性表面增强拉曼基底的制备方法 |
CN109799220B (zh) * | 2018-12-21 | 2021-03-26 | 中国科学院合肥物质科学研究院 | 基于金属螯合物拉曼标签技术检测组织液中组胺的方法 |
CN112683877B (zh) * | 2020-12-03 | 2022-08-16 | 苏州大学 | 一种基于银棱锥状纳米颗粒表面增强拉曼基底及其制备方法 |
-
2022
- 2022-10-21 CN CN202211292488.0A patent/CN115849726A/zh active Pending
-
2023
- 2023-09-28 WO PCT/CN2023/122399 patent/WO2024082952A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158229A (zh) * | 2015-08-13 | 2015-12-16 | 南京理工大学 | 一种高灵敏性可循环表面增强拉曼光谱基底制备方法 |
CN114965423A (zh) * | 2022-05-10 | 2022-08-30 | 江南大学 | 基于Ag-COF-COOH基底表面增强拉曼光谱检测牛奶中三聚氰胺的方法 |
CN115849726A (zh) * | 2022-10-21 | 2023-03-28 | 珠海中科先进技术研究院有限公司 | 一种表面增强拉曼散射的复合基底及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
"Master's Theis", 1 June 2022, DONGHUA UNIVERSITY, CN, article WANG, TAO: "Preparation of P3HT Composite Film And SERS Performance Research Thereof", pages: 1 - 73, XP009555278, DOI: 10.27012/d.cnki.gdhuu.2022.000789 * |
MARINA STAVYTSKA-BARBA: "Plasmonic Enhancement of Raman Scattering from the Organic Solar Cell Material P3HT/PCBM by Triangular Silver Nanoprisms", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 115, no. 42, 27 October 2011 (2011-10-27), US , pages 20788 - 20794, XP093161103, ISSN: 1932-7447, DOI: 10.1021/jp206853u * |
Also Published As
Publication number | Publication date |
---|---|
CN115849726A (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024082952A1 (zh) | 一种表面增强拉曼散射的复合基底及其制备方法和应用 | |
Bai et al. | Hollow ZnS–CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline | |
CN112551571B (zh) | 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用 | |
CN106147760B (zh) | 一种过渡金属掺杂碳荧光量子点的制备方法 | |
CN105158229A (zh) | 一种高灵敏性可循环表面增强拉曼光谱基底制备方法 | |
Şahin et al. | Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties | |
CN108126758B (zh) | 一种聚对苯/TiO2复合微球及其制备方法 | |
CN110849865A (zh) | 一种通过外加电场增强钙钛矿表面拉曼的方法 | |
CN104638109B (zh) | 一种有机太阳能电池的阴极界面材料及其制备方法 | |
CN110487772B (zh) | 一种三维SnO2/Ag NPs拉曼增强基底及其制备方法与应用 | |
CN109638164B (zh) | 一种水处理SnO2薄膜及其钙钛矿太阳能电池的制备方法 | |
WO2022100228A1 (zh) | 硫铁矿在污水处理中的应用方法 | |
Xiong et al. | Photoelectrochemical sensor based on nickel phthalocyanine–based metal–organic framework for sensitive detection of curcumin | |
CN106188111A (zh) | 一种卟啉酞菁双层金属配合物及其制备方法和应用 | |
CN114655978B (zh) | 一种空心分级异质结构三组分硫化物光电材料的制备和应用 | |
Zhou et al. | Ternary nano-composite wireless ammonia sensor based on Polyaniline/CuTsPc/AgNPs for food intelligent packaging | |
Rahaman et al. | Nanoarchitectonics earth-abundant chalcogenide Cu 2 SnS 3 thin film using ultrasonic spray pyrolysis for visible light-driven photocatalysis | |
CN109473553A (zh) | 一种稳定的有机太阳能电池及其制备方法 | |
CN114409647B (zh) | 一种基于喹吖啶酮的双功能电致变色材料及其制备方法 | |
CN115463693A (zh) | 一种Ag2O/异烟酸-Bi复合光催化剂及其制备与应用 | |
CN114849762A (zh) | 一种g-C3N4/BiOI/Ag2CrO4三元异质结光催化剂的制备方法及其应用 | |
Zhang et al. | A general protocol for π-conjugated molecule-based micro/nanospheres: artificial supramolecular antenna in terms of heterogeneous photocatalysis | |
Wei et al. | A photoelectrochemical sensor for the sensitive detection of rutin based on a CdSe QDs sensitized TiO2 photoanode | |
CN107497462B (zh) | 一种锡酸铋/银-氯化银光催化薄膜材料及其制备方法 | |
CN105891132A (zh) | 一种高灵敏光学氨敏材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23878944 Country of ref document: EP Kind code of ref document: A1 |