WO2024082823A1 - Procédé de détermination de longueur électrique de ligne de compensation pour amplificateur de puissance principal dans une architecture de doherty - Google Patents

Procédé de détermination de longueur électrique de ligne de compensation pour amplificateur de puissance principal dans une architecture de doherty Download PDF

Info

Publication number
WO2024082823A1
WO2024082823A1 PCT/CN2023/115059 CN2023115059W WO2024082823A1 WO 2024082823 A1 WO2024082823 A1 WO 2024082823A1 CN 2023115059 W CN2023115059 W CN 2023115059W WO 2024082823 A1 WO2024082823 A1 WO 2024082823A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
impedance
electrical length
main power
compensation line
Prior art date
Application number
PCT/CN2023/115059
Other languages
English (en)
Chinese (zh)
Inventor
蔡丽媛
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2024082823A1 publication Critical patent/WO2024082823A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention belongs to the technical field of wireless communications, and in particular relates to a method for determining the electrical length of a Doherty architecture main power amplifier compensation line.
  • the Doherty architecture is a commonly used power amplifier structure, and its existing structure is shown in FIG1 .
  • the Doherty power amplifier is composed of two power amplifiers, a main power amplifier and an auxiliary power amplifier, a power divider, and a load modulation network, wherein the two power amplifiers are biased in different working states, the main power amplifier is biased in class A and B, and the auxiliary power amplifier is biased in class C.
  • the input signal passes through the power divider and the power is input into the main power amplifier circuit and the auxiliary power amplifier circuit respectively according to the power division ratio of 1:n.
  • P U 2 /R (1);
  • the phase of the main power amplifier circuit is changed so that the output impedance of the power amplifier tube of the main power amplifier matches the load impedance Z 0 *(n+1) when in the back-off state, thereby improving the efficiency of the back-off zone, while not changing the matching degree between the output impedance and the load impedance when in saturation.
  • the impedance of compensation line A can be determined based on the impedance of compensation line B as an impedance transformation line. If the impedance matching of the saturated power is not changed, the impedance of compensation line A should be the same as that of compensation line B, so the appropriate electrical length of compensation line A needs to be determined.
  • the process of determining the power back-off point requirement and the peak power ratio based on the preset signal peak-to-average ratio requires a series of formula calculations, and only after obtaining the above parameters can the specific electrical length of the compensation line of the main power amplifier be determined. This process is very complicated and is not conducive to quickly obtaining the electrical length parameters to meet the requirements of the power amplifier design process.
  • the embodiment of the present invention provides a method for determining the electrical length of a main power amplifier compensation line in a Doherty architecture, aiming to solve the problem that the prior art requires a lot of calculations and is relatively complicated in the process of determining the electrical length of the main power amplifier compensation line.
  • an embodiment of the present invention provides a method for determining the electrical length of a main power amplifier compensation line in a Doherty architecture, the method comprising the following steps:
  • a simulation power amplifier circuit is constructed, the connection sequence of which is first port impedance, output matching circuit, compensation line, and second port impedance;
  • the impedance value of the first port impedance corresponding to the center frequency point becomes the same as the output optimal impedance value
  • the impedance value of the center frequency point is determined to be the numerical value of the electrical length when the optimal impedance value is output, and the value is used as the final electrical length value and outputted.
  • the first port impedance is output impedance
  • the second port impedance is load impedance
  • the initial length of the electrical length is 0 mm.
  • simulation environment is based on ADS.
  • an embodiment of the present invention further provides a system for determining the electrical length of a main power amplifier compensation line in a Doherty architecture, comprising:
  • An impedance data acquisition module used to acquire an optimal output impedance value of a main power amplifier, wherein the main power amplifier has a first port impedance and a second port impedance;
  • a simulation module used to build a simulation power amplifier circuit in a simulation environment, the connection sequence of which is first port impedance, output matching circuit, compensation line, and second port impedance;
  • a Smith circle acquisition module used to acquire the Smith circle of the simulated power amplifier circuit, and acquire the S parameter of the first port impedance according to the Smith circle;
  • a line length initialization module used to set the electrical length of the compensation line to an adjustable state
  • An impedance adjustment module used for rotating the center frequency point of the Smith circle so that the impedance value of the first port impedance corresponding to the center frequency point becomes the same as the output optimal impedance value
  • the electrical length output module is used to determine the numerical value of the electrical length when the impedance value of the center frequency point is the output optimal impedance value, and output it as the final electrical length value.
  • an embodiment of the present invention further provides a computer device, comprising: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the steps in the method for determining the electrical length of the compensation line of a main power amplifier in a Doherty architecture as described in any one of the above embodiments are implemented.
  • an embodiment of the present invention further provides a computer-readable storage medium, wherein a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method for determining the electrical length of the main power amplifier compensation line in the Doherty architecture as described in any one of the above embodiments is implemented. step.
  • the beneficial effects achieved by the present invention are as follows: the working state of the main power amplifier and the change process of the load impedance are analyzed according to the working principle of the Doherty architecture power amplifier, the working environment of the auxiliary power amplifier during back-off is established based on ADS according to the back-off requirements of the actual working signal, and the electrical length of the compensation line is further obtained by graphically using the Smith circle, thereby avoiding complex calculation processes and improving the efficiency of the power amplifier design work.
  • FIG1 is a schematic diagram of the existing structure of the Doherty architecture
  • FIG. 2 is a schematic flow chart of the steps of a method for determining the electrical length of a main power amplifier compensation line in a Doherty architecture provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the structure of a simulation power amplifier circuit designed in an embodiment of the present invention.
  • FIG4 is a schematic diagram of obtaining S parameters through a Smith circle provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of obtaining a final electrical length value through a Smith circle according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of a system for determining the electrical length of a main power amplifier compensation line in a Doherty architecture provided by an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the structure of a computer device provided in an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of the steps of a method for determining the electrical length of a main power amplifier compensation line in a Doherty architecture provided by an embodiment of the present invention, specifically comprising the following steps:
  • the first port impedance is the output impedance of the main power amplifier
  • the second port impedance is the load impedance
  • the optimal impedance value can be determined according to actual needs.
  • the optimal output impedance value can be obtained by scanning the power point of the power amplifier tube, etc. This method can be implemented through the load traction simulation platform LoadPull.
  • ADS Advanced Design System
  • Figure 3 is a schematic diagram of the structure of the simulation power amplifier circuit designed in an embodiment of the present invention.
  • the first port impedance Term1 is connected to the output matching circuit, the output matching circuit is connected to the compensation line, and finally the compensation line is connected to the second port impedance Term2.
  • S103 Obtain a Smith circle of the simulated power amplifier circuit, and obtain an S parameter of the first port impedance according to the Smith circle.
  • the Smith circle is an image used for impedance matching between high-frequency circuits. It is divided into two upper and lower halves by the horizontal line of the resistance line. The upper half is called the inductance area, where the imaginary values of all points are positive; the lower half is called the capacitance area, where the imaginary values of all points are negative.
  • the Smith circle is obtained by simulation data constructed by ADS software.
  • Figure 4 is a schematic diagram of obtaining S parameters through the Smith circle provided by an embodiment of the present invention.
  • the centimeter ratio n between the main power amplifier and the auxiliary power amplifier in the Doherty architecture is 1.5
  • the impedance value of the first port impedance is 50 ohms
  • the operating frequency band of the simulated power amplifier circuit is 3.4GHz to 3.6GHz.
  • the output optimal impedance value of the first port impedance is (7.235+j*4.974) ⁇ .
  • the initial length of the electrical length is 0 mm.
  • the purpose of this step is to construct a circuit load state in which the output impedance of the power amplifier tube of the main power amplifier matches the load impedance when the power amplifier tube is in the fallback state.
  • Figure 5 is a schematic diagram of obtaining the final electrical length value through the Smith circle in an embodiment of the present invention.
  • the various parameters of the analog circuit with a compensation line can be obtained, and the position of the center frequency point is adjusted, and then the length of the compensation line is adjusted, and the impedance is continuously changed.
  • the length of the compensation line L 3.1mm, that is, point m1
  • the corresponding impedance at this time (7.211+j*0.467) ⁇ is closest to the obtained output optimal impedance value (7.235+j*4.974) ⁇ . Therefore, under the numerical value of Figure 4, the final electrical length value can be obtained as 3.1mm.
  • the beneficial effects achieved by the present invention are as follows: the working state of the main power amplifier and the change process of the load impedance are analyzed according to the working principle of the Doherty architecture power amplifier, the working environment of the auxiliary power amplifier during back-off is established based on ADS according to the back-off requirements of the actual working signal, and the electrical length of the compensation line is further obtained by graphically using the Smith circle, thereby avoiding complex calculation processes and improving the efficiency of the power amplifier design work.
  • the embodiment of the present invention further provides a system for compensating the electrical length of an auxiliary power amplifier in a Doherty architecture.
  • FIG6 is a structural diagram of a system for determining the electrical length of a main power amplifier compensation line in a Doherty architecture provided by an embodiment of the present invention.
  • the system 200 for determining the electrical length of a main power amplifier compensation line in a Doherty architecture includes:
  • An impedance data acquisition module 201 is used to acquire an optimal output impedance value of a main power amplifier, wherein the main power amplifier has a first port impedance and a second port impedance;
  • a simulation module 202 is used to build a simulation power amplifier circuit in a simulation environment, the connection sequence of which is a first port impedance, an output matching circuit, a compensation line, and a second port impedance;
  • a Smith circle acquisition module 203 is used to acquire the Smith circle of the simulated power amplifier circuit, and acquire the S parameter of the first port impedance according to the Smith circle;
  • a line length initialization module 204 used to set the electrical length of the compensation line to an adjustable state
  • the impedance adjustment module 205 is used to rotate the center frequency of the Smith circle so that the impedance value of the first port impedance corresponding to the center frequency becomes the same as the output optimal impedance value;
  • the electrical length output module 206 is used to determine the value of the electrical length when the impedance value of the center frequency point is the output optimal impedance value, and output it as the final electrical length value.
  • the system 200 for determining the electrical length of the main power amplifier compensation line in the Doherty architecture can implement the steps in the method for determining the electrical length of the main power amplifier compensation line in the Doherty architecture in the above embodiment, and can achieve the same technical effect. Please refer to the description in the above embodiment and will not be repeated here.
  • An embodiment of the present invention further provides a computer device.
  • the computer device 300 includes: a memory 302, a processor 301, and a computer program stored in the memory 302 and executable on the processor 301.
  • the processor 301 calls the computer program stored in the memory 302 to execute the steps of the method for determining the electrical length of the main power amplifier compensation line in the Doherty architecture provided in the embodiment of the present invention, referring to FIG. 2 , specifically including:
  • the first port impedance is the output impedance of the main power amplifier
  • the second port impedance is the load impedance
  • simulation environment is based on ADS.
  • S103 Obtain a Smith circle of the simulated power amplifier circuit, and obtain an S parameter of the first port impedance according to the Smith circle.
  • the initial length of the electrical length is 0 mm.
  • S106 Determine that the impedance value of the center frequency point is the numerical value of the electrical length when the optimal impedance value is output, and output it as the final electrical length value.
  • the computer device 300 provided in the embodiment of the present invention can implement the steps in the method for determining the electrical length of the main power amplifier compensation line in the Doherty architecture in the above embodiment, and can achieve the same technical effect. Please refer to the description in the above embodiment and will not be repeated here.
  • An embodiment of the present invention further provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the various processes and steps in the method for determining the electrical length of the main power amplifier compensation line in the Doherty architecture provided in the embodiment of the present invention are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the storage medium can be a disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM).
  • the above embodiment methods can be implemented by means of software plus a necessary general hardware platform, or by hardware, but in many cases the former is a better implementation method.
  • the technical solution of the present invention, or the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, disk, CD), including
  • the method includes several instructions for enabling a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

La présente invention appartient au domaine technique des communications sans fil et concerne en particulier un procédé de détermination de la longueur électrique d'une ligne de compensation pour un amplificateur de puissance principal dans une architecture de Doherty. Le procédé consiste à : acquérir une valeur d'impédance de sortie optimale d'un amplificateur de puissance principal, l'amplificateur de puissance principal ayant une première impédance de port et une seconde impédance de port ; dans un environnement de simulation, construire un circuit amplificateur de puissance de simulation, dont la séquence de connexion est séquentiellement la première impédance de port, un circuit d'adaptation de sortie, une ligne de compensation et la seconde impédance de port ; acquérir un diagramme de Smith du circuit amplificateur de puissance de simulation et acquérir un paramètre S de la première impédance de port selon le diagramme de Smith ; définir la longueur électrique de la ligne de compensation pour qu'elle soit dans un état réglable ; au moyen de la rotation d'un point de fréquence centrale du diagramme de Smith, modifier la valeur d'impédance de la première impédance de port correspondant au point de fréquence centrale pour qu'elle soit identique à la valeur d'impédance de sortie optimale ; et déterminer la valeur numérique de la longueur électrique lorsque la valeur d'impédance du point de fréquence centrale est la valeur d'impédance de sortie optimale et prendre la valeur numérique en tant que valeur de longueur électrique finale et délivrer celle-ci. Dans la présente invention, un diagramme de Smith est utilisé pour effectuer une solution graphique pour obtenir la longueur électrique de la ligne de compensation pour l'amplificateur de puissance principal, ce qui permet d'améliorer l'efficacité de fonctionnement.
PCT/CN2023/115059 2022-10-21 2023-08-25 Procédé de détermination de longueur électrique de ligne de compensation pour amplificateur de puissance principal dans une architecture de doherty WO2024082823A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211299980.0A CN115577665A (zh) 2022-10-21 2022-10-21 确定Doherty架构主功放补偿线电长度的方法
CN202211299980.0 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024082823A1 true WO2024082823A1 (fr) 2024-04-25

Family

ID=84587055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115059 WO2024082823A1 (fr) 2022-10-21 2023-08-25 Procédé de détermination de longueur électrique de ligne de compensation pour amplificateur de puissance principal dans une architecture de doherty

Country Status (2)

Country Link
CN (1) CN115577665A (fr)
WO (1) WO2024082823A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115577665A (zh) * 2022-10-21 2023-01-06 深圳飞骧科技股份有限公司 确定Doherty架构主功放补偿线电长度的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106503A (ja) * 1998-07-30 2000-04-11 Central Glass Co Ltd 車両用ガラスアンテナ装置
CN104993796A (zh) * 2015-06-25 2015-10-21 江苏大学 一种Doherty功率放大器
CN109067364A (zh) * 2018-06-07 2018-12-21 佛山市顺德区中山大学研究院 一种宽频高效输出的Doherty功率放大器
CN109302151A (zh) * 2018-10-30 2019-02-01 新华三技术有限公司成都分公司 补偿线的电长度确定方法及Doherty功率放大器
CN113746433A (zh) * 2021-07-21 2021-12-03 中山市华南理工大学现代产业技术研究院 高效率宽频多模式Doherty功率放大器及构建方法
CN113765482A (zh) * 2021-09-10 2021-12-07 北京邮电大学 一种频率可重构Doherty功率放大器
CN113938102A (zh) * 2021-09-18 2022-01-14 华南理工大学 一种宽带高效率的功率放大器及实现方法
CN115001406A (zh) * 2022-06-16 2022-09-02 杭州电子科技大学富阳电子信息研究院有限公司 一种双频大回退Doherty功率放大器及其设计方法
CN115189649A (zh) * 2022-07-05 2022-10-14 重庆大学 一种多频带Doherty功率放大器的设计方法及结构
CN115577665A (zh) * 2022-10-21 2023-01-06 深圳飞骧科技股份有限公司 确定Doherty架构主功放补偿线电长度的方法
CN115577666A (zh) * 2022-10-21 2023-01-06 深圳飞骧科技股份有限公司 确定Doherty架构中辅助功放补偿线电长度的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106503A (ja) * 1998-07-30 2000-04-11 Central Glass Co Ltd 車両用ガラスアンテナ装置
CN104993796A (zh) * 2015-06-25 2015-10-21 江苏大学 一种Doherty功率放大器
CN109067364A (zh) * 2018-06-07 2018-12-21 佛山市顺德区中山大学研究院 一种宽频高效输出的Doherty功率放大器
CN109302151A (zh) * 2018-10-30 2019-02-01 新华三技术有限公司成都分公司 补偿线的电长度确定方法及Doherty功率放大器
CN113746433A (zh) * 2021-07-21 2021-12-03 中山市华南理工大学现代产业技术研究院 高效率宽频多模式Doherty功率放大器及构建方法
CN113765482A (zh) * 2021-09-10 2021-12-07 北京邮电大学 一种频率可重构Doherty功率放大器
CN113938102A (zh) * 2021-09-18 2022-01-14 华南理工大学 一种宽带高效率的功率放大器及实现方法
CN115001406A (zh) * 2022-06-16 2022-09-02 杭州电子科技大学富阳电子信息研究院有限公司 一种双频大回退Doherty功率放大器及其设计方法
CN115189649A (zh) * 2022-07-05 2022-10-14 重庆大学 一种多频带Doherty功率放大器的设计方法及结构
CN115577665A (zh) * 2022-10-21 2023-01-06 深圳飞骧科技股份有限公司 确定Doherty架构主功放补偿线电长度的方法
CN115577666A (zh) * 2022-10-21 2023-01-06 深圳飞骧科技股份有限公司 确定Doherty架构中辅助功放补偿线电长度的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG ZHIQUN: "A Broadband Doherty Power Amplifier for Multistandard Wireless Communications", RESEARCH & PROGRESS OF SSE, vol. 38, no. 1, 25 February 2018 (2018-02-25), pages 50 - 55, XP093159958, DOI: 10.19623/j.cnki.rpsse.2018.01.010 *
WANG, FANGYUAN: "High efficiency GaN HEMT Doherty Power Amplifier Design", POPULAR SCIENCE & TECHNOLOGY, vol. 10, no. 146, 20 October 2011 (2011-10-20), pages 30 - 32, XP093159951 *

Also Published As

Publication number Publication date
CN115577665A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
WO2024082822A1 (fr) Procédé de détermination de la longueur électrique d'une ligne de compensation d'amplificateur de puissance auxiliaire dans une architecture doherty
WO2024082823A1 (fr) Procédé de détermination de longueur électrique de ligne de compensation pour amplificateur de puissance principal dans une architecture de doherty
US8354882B2 (en) Doherty amplifier with input network optimized for MMIC
US5543751A (en) Power combiner for use in a radio frequency system and a method of constructing a power combiner
CN105379109B (zh) 用于对大操作平均功率范围的有效功率放大的方法和装置
CN112491365A (zh) 一种基于单并联谐振块的宽带Doherty功率放大器
WO2019134702A1 (fr) Amplificateur de puissance hors phase ainsi que procédé et dispositif pour réaliser une adaptation de sortie pour celui-ci et branche d'amplificateur de puissance
JP2002252526A (ja) アナログ増幅回路
US20050270094A1 (en) Multistage amplifying devices, and reception device and transmission device using the same
CN106411265A (zh) 一种拓展带宽的非对称Doherty功率放大器及其实现方法
CN105637759A (zh) 一种功率放大的方法及功率放大器
JP2019134404A (ja) 負荷変調アンプ
CN205945658U (zh) 一种高效宽带有序的谐波匹配结构
JP2001203539A (ja) 非線形歪み補償電力増幅器
WO2016180130A1 (fr) Circuit amplificateur de puissance et son procédé de modulation d'impédance de charge
US20150130541A1 (en) Doherty Amplifier
CN115833758A (zh) 一种基于电抗补偿结构的宽带Doherty功率放大器
EP3255791A1 (fr) Équipement d'amplification de puissance
WO2022077956A1 (fr) Appareil de commande de puissance pour améliorer une onde harmonique, et amplificateur de puissance et dispositif
WO2021227281A1 (fr) Module amplificateur de puissance et dispositif sans fil
Belchior et al. Output impedance profile selection in sequential LMBAs using an automatic method
CN102739167A (zh) 一种微波放大器的设计方法
CN117742441B (zh) 一种令大功率射频电源在变频环境下输出额定功率的方法
JP2010288133A (ja) 高周波回路の設計方法、高周波回路
CN117134723A (zh) 一种极简负载调制功率放大器及使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878818

Country of ref document: EP

Kind code of ref document: A1