WO2024082489A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2024082489A1
WO2024082489A1 PCT/CN2023/074972 CN2023074972W WO2024082489A1 WO 2024082489 A1 WO2024082489 A1 WO 2024082489A1 CN 2023074972 W CN2023074972 W CN 2023074972W WO 2024082489 A1 WO2024082489 A1 WO 2024082489A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
thin film
film transistor
driving thin
display
Prior art date
Application number
PCT/CN2023/074972
Other languages
English (en)
French (fr)
Inventor
陈云妮
刘凡成
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2024082489A1 publication Critical patent/WO2024082489A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/54Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being generated by moving a 2D surface, e.g. by vibrating or rotating the 2D surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present application relates to the field of display, and in particular to a display device.
  • the “3D” fan screen uses LED lamp beads as light-emitting devices, and has problems of low resolution and uneven display.
  • Another type of scanning three-dimensional display device uses one side of various display screens as the axis to perform rotational scanning to form a cylindrical display space. This makes the display brightness of this type of display device higher near the rotating axis, and the overall brightness of the display panel is uneven, affecting the actual display effect.
  • the embodiment of the present application provides a display device to solve the technical problem of uneven display brightness when a three-dimensional display device is displaying.
  • An embodiment of the present application provides a display device, including:
  • the display panel can rotate around a rotation axis for display, the display panel comprises a light-emitting layer and a driving device layer which are stacked, the light-emitting layer comprises a plurality of first light-emitting devices which are arranged at intervals; the driving device layer comprises a plurality of driving thin film transistor groups which are sequentially arranged along a first direction, one of the driving thin film transistor groups comprises at least two of the driving thin film transistors, one of the driving thin film transistors is connected to one of the first light-emitting devices, and the first direction is perpendicular to the rotation axis;
  • a driving current of each driving thin film transistor in a driving thin film transistor group close to the rotation axis is smaller than a driving current of each driving thin film transistor in another driving thin film transistor group far from the rotation axis.
  • the driving thin film transistor group includes a plurality of driving thin film transistors arranged along a first direction.
  • a thin film transistor subgroup wherein a driving thin film transistor subgroup comprises at least two driving thin film transistors, and at least two driving thin film transistors in the driving thin film transistor subgroup are evenly arranged along a second direction, and the second direction is parallel to the rotation axis;
  • the driving currents of the driving thin film transistors in the driving thin film transistor subgroups are equal in magnitude.
  • the display panel includes a driving device layer, and in the first direction, the width-to-length ratio of the channel portion of the driving thin film transistor in one of the driving thin film transistor groups close to the rotation axis is smaller than the width-to-length ratio of the channel portion of the driving thin film transistor in another of the driving thin film transistor groups far from the rotation axis.
  • the driving thin film transistor at least includes a gate, a source, a drain, and an active layer, and the active layer includes the channel portion distributed between the source and the drain.
  • the driving thin film transistor is a low-temperature polysilicon thin film transistor, an oxide semiconductor thin film transistor or an amorphous silicon thin film transistor.
  • the display panel includes a plurality of control circuits, and one of the control circuits controls at least one of the first light-emitting devices to emit light for display;
  • the control circuit includes a first thin film transistor, a second thin film transistor, a third thin film transistor, and a storage capacitor.
  • the first thin film transistor is the thin film transistor
  • the second thin film transistor is a switch thin film transistor
  • the third thin film transistor is a detection thin film transistor.
  • the display panel includes a substrate, the driving device layer is disposed on the substrate, and the substrate is made of a transparent material.
  • the substrate is made of transparent glass or polyimide.
  • the light-emitting layer includes a plurality of first light-emitting device groups arranged in sequence along the first direction, and the first light-emitting device group includes at least two first light-emitting devices;
  • a distribution density of the first light-emitting devices in a first light-emitting device group close to the rotation axis is smaller than a distribution density of the first light-emitting devices in another first light-emitting device group far from the rotation axis.
  • a first light emitting device group includes at least one first subgroup, and a first subgroup includes at least two first light emitting devices.
  • the at least two first light emitting devices in the first subgroup are arranged in sequence along a second direction, and the second direction is parallel to the rotation axis.
  • the distribution density of the first light-emitting devices in each of the first subgroups within a device group is the same.
  • a first light emitting device group includes at least two first subgroups arranged along the first direction, the first subgroup includes a plurality of first light emitting devices, and the plurality of first light emitting devices are evenly spaced along the second direction.
  • the first light-emitting devices in one of the first subgroups are staggered with the first light-emitting devices in another of the first subgroups along the second direction.
  • a first light-emitting device group includes at least two first subgroups, and in any two first light-emitting device groups, a spacing between the first subgroups in one of the first light-emitting device groups is equal to a spacing between the first subgroups in another of the first light-emitting device groups.
  • the first light emitting devices are arranged in m rows and n columns, and the display panel is refreshed once every rotation of ⁇ degrees, which satisfies:
  • the first light-emitting devices are evenly distributed on the column, and t is a positive integer greater than 1 and less than or equal to n.
  • the distance between each of the first light-emitting device groups and the rotation axis is within a preset distance range, and outside the preset distance range, the distribution density of the first light-emitting devices is the same everywhere.
  • the display panel includes a first display portion and a second display portion respectively located on opposite sides of the rotation axis, a plurality of first light-emitting device groups are located in the first display portion, the second display portion includes a plurality of second light-emitting device groups arranged along the first direction, and the second light-emitting device group includes a plurality of second light-emitting devices;
  • the rotation paths of the first light emitting devices in the first light emitting device group and the second light emitting devices in the second light emitting device group do not overlap.
  • a change rate of the distribution density of the first light-emitting devices on the first display portion and a change rate of the distribution density of the second light-emitting devices on the second display portion are symmetrical with respect to the rotation axis.
  • the shape of the first display portion and the shape of the second display portion are related to the Rotational symmetry.
  • the distance between each of the first light-emitting device groups and the rotation axis is within a preset distance range, and outside the preset distance range, the distribution density of the first light-emitting devices is the same everywhere.
  • the distance between each driving thin film transistor group and the rotation axis is within the preset distance range. Outside the preset distance range, the distribution density of the first light-emitting device is equal everywhere, and the driving current value of each driving thin film transistor is equal.
  • the present application sets a display panel to rotate around a rotation axis, the display panel includes a stacked light-emitting layer and a driving device layer, the light-emitting layer includes a plurality of first light-emitting devices arranged at intervals; a driving thin film transistor is connected to the first light-emitting device, the plurality of driving thin film transistors include a plurality of driving thin film transistor groups arranged in sequence along a first direction, the driving thin film transistor group includes at least two driving thin film transistors, and the driving thin film transistor is connected to the first light-emitting device.
  • the driving current of each driving thin film transistor in a driving thin film transistor group close to the rotation axis is smaller than that of another driving thin film transistor far away from the rotation axis.
  • the driving current of each driving thin film transistor in the group since the driving thin film transistor controls the first light-emitting device to emit light, and the brightness of the first light-emitting device is positively correlated with the size of the driving current in the driving thin film transistor, the larger the driving current in the driving thin film transistor, the greater the brightness of the first light-emitting device.
  • setting the driving current of the driving thin film transistor in the driving thin film transistor group close to the rotation axis to be smaller than the driving current of the driving thin film transistor in another driving thin film transistor group far from the rotation axis can solve the problem of uneven brightness of light-emitting devices at different positions on the display panel in a three-dimensional stereoscopic display device due to different rotation linear speeds, and further improve the display brightness uniformity of the three-dimensional stereoscopic display device.
  • FIG1 is a schematic diagram of a display device structure provided by an embodiment of the present application.
  • FIG2 is a schematic diagram of a display panel film structure provided in an embodiment of the present application.
  • FIG3 is a top view of a partial structure of a driving device layer provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a structure of a driving device layer in a display device provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the distribution of light-emitting devices of a display panel provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of another display device structure provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the distribution of light-emitting devices of a display panel provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the distribution of light-emitting devices of a display panel provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the distribution of light-emitting devices of a display panel provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the distribution of light-emitting devices of a display panel provided in an embodiment of the present application.
  • the present application provides a display device.
  • the following are detailed descriptions. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments.
  • the "3D" fan screen which uses LED lamp beads as light-emitting devices, and has problems such as low resolution and uneven display.
  • the other is a scanning volume three-dimensional display device, which uses one side of various display screens as an axis to perform rotational scanning to form a cylindrical display space. This makes the display brightness of this type of display device higher near the rotating axis, the transparency of the display device is low, and the overall brightness of the display panel is uneven, affecting the actual display effect.
  • the embodiment of the present application provides a display device, as shown in FIG. 1 and FIG. 4 , including:
  • At least one display panel 10 the display panel 10 rotates around a rotation axis 20, the display panel 10 comprises a light emitting layer M10 and a driving device layer M20 which are stacked, the light emitting layer M10 comprises a plurality of first light emitting devices 102a1 which are arranged at intervals, the driving device layer M20 comprises a plurality of driving thin film transistor groups 103G which are sequentially arranged along a first direction, the driving thin film transistor group 103G comprises at least two driving thin film transistors T1, and the driving thin film transistor T1 is connected to one of the first light emitting devices 102a1, and the first direction F1 is perpendicular to the rotation axis 20;
  • the driving thin film transistor T1 is used to control the driving current of the first light-emitting device 102a1.
  • the driving current of each driving thin film transistor T1 in the driving thin film transistor group 103G close to the rotation axis 20 is smaller than the driving current of each driving thin film transistor T1 in another driving thin film transistor group 103G far away from the rotation axis 20.
  • the display device is a three-dimensional stereoscopic display device, which realizes the display of a three-dimensional image by setting a display panel 10 to rotate around a rotation axis 20, wherein the rotation axis 20 can be a virtual axis or a physical axis, and the rotation axis 20 can be located on the display panel 10 (including being located on one side of the display panel 10, or being located on the display panel 10 to divide the display panel 10), or can be located outside the display panel 10.
  • a display device in which the rotation axis 20 is located on one side of the display panel 10 is taken as an example for description.
  • the display panel 10 can be an organic electroluminescence display (OLED) display panel or a Mini/Micro-LED display panel.
  • OLED organic electroluminescence display
  • Mini/Micro-LED display panel The use of the above display panel has a faster response speed, can achieve a higher refresh rate, and can further improve the color gamut, display brightness, etc. of the display device.
  • the display panel 10 can be a double-sided display display panel 10 or a single-sided display display panel 10.
  • the specific adjustment can be made according to actual production conditions or needs.
  • This application takes a single-sided display panel 10 as an example for explanation.
  • the first direction F1 is perpendicular to the rotation axis 20 , and the first direction F1 extends from the rotation axis 20 to a side of the display panel 10 away from the rotation axis 20 .
  • the display panel 10 includes a driving device layer M20 and a
  • the light emitting layer M10 on the driving device layer M20 includes a plurality of first light emitting devices 102a1 .
  • the driving thin film transistor T1 on the driving device layer M20 is connected to the corresponding first light emitting device 102a1 to control the corresponding first light emitting device 102a1 to emit light.
  • the driving device layer M20 includes a substrate M201, a thin film transistor layer M202 disposed on the substrate M201, the thin film transistor layer M202 includes a planar layer disposed on the substrate M201, a gate layer (including a plurality of gates T102) disposed on the planar layer, a gate insulating layer disposed on the gate layer, an active layer (including a plurality of channel portions T101) disposed on the gate insulating layer, and a source-drain electrode layer (including a source electrode T104 and a drain electrode T103) disposed on the gate insulating layer and overlapping the channel portion T101;
  • the driving thin film transistor T1 at least includes a gate T102, a source T104, a drain T103, and an active layer, wherein the active layer includes a channel portion T101 distributed between a source connection portion connected to the source T104 and a drain connection portion connected to the drain T103.
  • the display panel 10 also includes multiple control circuits, one of which controls at least one of the first light-emitting devices 102a1 to emit light for display (including switching and brightness adjustment of the first light-emitting device 102a1).
  • the embodiments of the present application are described as taking a control circuit controlling a first light-emitting device 102a1 to emit light as an example, but the present application is not limited to this.
  • a control circuit can synchronously control two or more first light-emitting devices 102a1 to emit light, which can be adjusted according to actual production conditions.
  • the control circuit is formed on the substrate M201 of the drive device layer M20.
  • the control circuit may include a first thin film transistor, a second thin film transistor, a third thin film transistor, and a storage capacitor Cst, wherein the first thin film transistor is a driving thin film transistor T1, the second thin film transistor is a switching thin film transistor, and the third thin film transistor is a detection thin film transistor, and the first thin film transistor controls the brightness of the first light-emitting device 102a1.
  • the voltages connected to the driving thin film transistors T1 are of the same magnitude.
  • the driving thin film transistor T1 is a low-temperature polysilicon thin film transistor, an oxide semiconductor thin film transistor, or an amorphous silicon thin film transistor.
  • the specific connection method of the control circuit is: the gate of the second thin film transistor is electrically connected to the scan voltage signal line, the source is electrically connected to the data voltage signal line, and the drain is electrically connected to the gate T102 of the first thin film transistor and one end of the storage capacitor Cst; the source T104 of the first thin film transistor is electrically connected to the positive voltage of the power supply, and the drain T103 is electrically connected to the anode of the first light-emitting device 102a1;
  • the cathode of a light-emitting device 102a1 is electrically connected to a negative power supply voltage, one end of a storage capacitor Cst is electrically connected to a drain of a second thin film transistor and a gate T102 of a first thin film transistor, and the other end of the storage capacitor Cst is electrically connected to a drain T103 of the first thin film transistor, an anode of the first light-emitting device 102a1, and a source of a third thin film transistor; the gate of the
  • the control circuit controls the reset period of the first light-emitting device 102a1, and the scan voltage and data of the control circuit are respectively applied to the gate T102 and the source T104 of the second thin film transistor in the control circuit; in the data writing period of each control circuit, the third switch thin film transistor in the control circuit is turned on to apply the data voltage to the drain T103 of the first thin film transistor; in the light-emitting period when the control circuit controls the first light-emitting device 102a1, the first thin film transistor is turned on, so that the first light-emitting device 102a1 connected to the drain T103 of the first thin film transistor emits light.
  • the plurality of driving thin film transistors T1 include a plurality of driving thin film transistor groups 103G sequentially arranged along a first direction F1, the distance between each driving thin film transistor group 103G and the rotation axis 20 is within a preset distance S range, one driving thin film transistor group 103G includes at least two driving thin film transistors T1, the first direction F1 is perpendicular to the rotation axis 20, and the first direction F1 extends from the rotation axis 20 to a side of the display panel 10 away from the rotation axis 20;
  • the preset distance S is within the brightness adjustment range, and the driving current value of each driving thin film transistor T1 reaches the maximum value under normal working conditions outside the preset distance S, and the driving current values of each driving thin film transistor T1 are equal;
  • the driving thin film transistor T1 controls the brightness of the first light-emitting device 102a1, and when the display panel 10 is displaying, the greater the driving current passing through the driving thin film transistor T1, the greater the brightness of the first light-emitting device 102a1, that is, when the first light-emitting device 102a1 emits light, the brightness of the first light-emitting device 102a1 is positively correlated with the size of the driving current flowing through the driving thin film transistor T1.
  • control method of the driving current flowing through the driving thin film transistor T1 includes but is not limited to presetting the driving chip of the display panel 10, or connecting resistors of different resistance values in series on the control circuit to realize the driving current flowing through the driving thin film transistor T1 in different rows or columns. Regulation.
  • the display panel 10 includes a plurality of spaced driving thin film transistors T1 and a plurality of spaced first light emitting devices 102a1, and one of the driving thin film transistors T1 is connected to one of the first light emitting devices 102a1;
  • the plurality of driving thin film transistors T1 include a plurality of driving thin film transistor groups 103G arranged in sequence along a first direction F1, the distance between each driving thin film transistor group 103G and the rotation axis 20 is within a preset distance S range, one driving thin film transistor group 103G includes at least two driving thin film transistors T1, when the driving thin film transistor T1 controls the first light emitting device 102a1 to emit light, in the first direction F1, the driving current of each driving thin film transistor T1 in one driving thin film transistor group 103G close to the rotation axis 20 is less than the driving current of each driving thin film transistor T1 in another driving thin film transistor group 103G far from the rotation axis 20, because the driving thin film transistor T1 controls the first The light-emitting device 102a1 emits light, and the brightness of the first light-emitting device 102a1 is positively correlated with the size of the driving current in the driving thin film transistor T1.
  • the driving current of the driving thin film transistor T1 in the driving thin film transistor group 103G close to the rotation axis 20 is set to be smaller than the driving current of the driving thin film transistor T1 in another driving thin film transistor group 103G far away from the rotation axis 20. This can solve the problem of uneven brightness of the first light-emitting devices 102a1 at different positions on the display panel 10 due to different rotation linear speeds in the three-dimensional stereoscopic display device, and further improve the display brightness uniformity of the three-dimensional stereoscopic display device.
  • the driving thin film transistor group 103G includes at least one driving thin film transistor subgroup 1031, and the driving thin film transistor subgroup 1031 includes at least two driving thin film transistors T1.
  • the at least two driving thin film transistors T1 in the driving thin film transistor subgroup 1031 are evenly arranged along the second direction F2, and the second direction F2 is parallel to the rotation axis 20.
  • the driving thin film transistor T1 controls the first light emitting device 102a1 to emit light
  • the driving currents of the driving thin film transistors T1 in each of the driving thin film transistor sub-groups 1031 are equal in magnitude.
  • the driving currents of the driving thin film transistors T1 in each of the driving thin film transistor subgroups 1031 in one driving thin film transistor group 103G are equal, but it is not limited to that the driving currents of the driving thin film transistors T1 in each of the driving thin film transistor subgroups 1031 in all the driving thin film transistor groups 103G are equal, so that the driving thin film transistors T1 in the driving thin film transistor subgroups 1031 of the driving thin film transistor groups 103G are equal.
  • the driving current of T1 shows an increasing trend in the first direction F1 as a whole, that is, the driving currents of the driving thin film transistors T1 at some positions can be equal, so that the brightness adjustment flexibility of the display panel 10 is higher and the brightness uniformity of the display device is not affected.
  • the driving currents of multiple driving thin film transistors T1 can be equal or unequal, and can be adjusted according to the shape of the display panel 10 of the display device, or the actual rotation of the rotating axis 20, so that the display brightness of the display device is more uniform.
  • the brightness adjustment flexibility of the display panel 10 of the display device is higher without affecting the brightness uniformity of the display of the display device.
  • the display panel 10 includes a driving device layer M20 , the driving device layer M20 includes an active layer, and the driving thin film transistor T1 includes a channel portion T101 located on the active layer;
  • the width-to-length ratio of the channel portion T101 of the driving thin film transistor T1 in one of the driving thin film transistor groups 103G close to the rotation axis 20 is smaller than the width-to-length ratio of the channel portion T101 of the driving thin film transistor T1 in another of the driving thin film transistor groups 103G far from the rotation axis 20 .
  • the width-to-length ratio of the channel portion T101 is reduced, and accordingly the on-state current of the driving thin film transistor T1 is reduced.
  • the width of the channel portion T101 is shown as W in FIG. 3 , which is the length of the corresponding portion between the source T104 and the drain T103 ; the length of the channel portion T101 is shown as L in FIG. 3 , which is the distance between the source T104 and the drain T103 .
  • the display panel 10 includes a substrate M201 and a thin film transistor layer M202 disposed on the substrate M201 , and the substrate M201 is made of a transparent material.
  • the material of the substrate M201 can be transparent glass, polyimide, etc.
  • the thin film transistor layer M202 includes a plurality of driving thin film transistors T1
  • the thin film transistor layer M202 includes a plurality of insulating layers stacked together, an active layer, a gate layer, and a source and drain T103 layer arranged between the insulating layers, wherein the active layer includes a channel portion T101, a source T104 connecting portion and a drain T103 connecting portion arranged on both sides of the channel portion T101, wherein the source T104 connecting portion is connected to the source T104, and the drain T103 connecting portion is connected to the drain T103, and the gate T102 on the gate layer can be arranged above or below the channel portion T101 (below in Figure 2), and its projection in a direction perpendicular to the driving device layer M20 covers the channel portion T101.
  • the display device has higher transparency, the picture displayed by the three-dimensional display device is more realistic, and the user experience is improved.
  • the display panel 10 includes a light-emitting layer
  • the light-emitting layer includes a plurality of first light-emitting device groups 101a1 arranged in sequence along the first direction F1, the distance between each of the first light-emitting device groups 101a1 and the rotation axis 20 is within the preset distance S range, and one of the first light-emitting device groups 101a1 includes at least two first light-emitting devices 102a1;
  • the distribution density of the first light-emitting devices 102a1 in the first light-emitting device group 101a1 close to the rotation axis 20 is smaller than the distribution density of the first light-emitting devices 102a1 in another first light-emitting device group 101a1 far from the rotation axis 20 .
  • the spacings between the plurality of first light emitting device groups 101a1 may be the same or different, and there is no specific limitation thereto.
  • the different spacings between the plurality of first light emitting device groups 101a1 cannot affect the uniformity of light emission of the display device.
  • FIG. 7 and FIG. 8 both show the case where the spacings between the plurality of first light emitting device groups 101a1 are the same.
  • a first light emitting device group 101a1 includes at least two first light emitting devices 102a1, and the lengths of the plurality of first light emitting device groups 101a1 in the second direction F2 (parallel to the rotation axis 20) are constant.
  • the distribution density of the first light emitting devices 102a1 in the first light emitting device group 101a1 may also gradually increase in the first direction F1 (as shown in FIG. 9 ), or the plurality of first light emitting devices 102a1 in the first light emitting device group 101a1 may be uniformly distributed.
  • the distribution density refers to the number of the first light-emitting devices 102a1 within the same unit area, where the length of the unit area can be the same as the length of one side of the display panel 10 parallel to the rotation axis 20, and the width of the unit panel is at least greater than the width of one first light-emitting device 102a1.
  • the first light emitting devices 102a1 are evenly distributed on the column, wherein t is a positive integer greater than 1 and less than or equal to n;
  • the above technical solution can make the first light emitting device 102a1 on the display panel 10 be used in a state of highest efficiency.
  • the plurality of first light-emitting devices 102a1 include a plurality of first light-emitting device groups 101a1, the distance between each first light-emitting device group 101a1 and the rotation axis 20 is within a preset distance S range, a first light-emitting device group 101a1 includes at least two first light-emitting devices 102a1, and the plurality of first light-emitting device groups 101a1 are arranged in sequence along the first direction F1, and in the first direction F1, the distribution density of the first light-emitting devices 102a1 in a first light-emitting device group 101a1 close to the rotation axis 20 is less than that of the first light-emitting devices 102a1 in another first light-emit
  • a first light-emitting device group 101a1 includes at least one first subgroup 1011, and a first subgroup 1011 includes at least two first light-emitting devices 102a1. At least two first light-emitting devices 102a1 in the first subgroup 1011 are arranged in sequence along a second direction F2, and the second direction F2 is parallel to the rotation axis 20. The distribution density of the first light-emitting devices 102a1 in each first subgroup 1011 in at least one first light-emitting device group 101a1 is the same.
  • the plurality of first light emitting device groups 101a1 include a plurality of first subgroups 1011.
  • the plurality of first subgroups 1011 may be arranged in sequence along the first direction F1.
  • the first light emitting devices 102a1 in a first subgroup 1011 are arranged in sequence along the second direction F2.
  • the distribution density of the first light-emitting devices 102a1 in each of the first subgroups 1011 in a first light-emitting device group 101a1 is the same, but the distribution density of the first light-emitting devices 102a1 in each of the first subgroups 1011 in all the first light-emitting device groups 101a1 is not limited to be the same, so that the multiple light-emitting units of the multiple light-emitting unit groups show an increasing trend in distribution density as a whole.
  • the distribution density of the first light-emitting devices 102a1 in some positions can be equal, so that the brightness adjustment flexibility of the display panel 10 is higher without affecting the brightness uniformity of the display of the display device.
  • multiple first light-emitting devices 102a1 can be evenly spaced or have multiple spacing distances, which can be adjusted according to the shape of the display panel 10 of the display device or the actual rotation of the rotating axis 20 to make the display brightness of the display device more uniform.
  • the brightness adjustment flexibility of the display panel 10 of the display device is higher without affecting the brightness uniformity of the display of the display device.
  • a first light emitting device group 101a1 includes at least two first subgroups 1011 arranged along the first direction F1, the first subgroup 1011 includes a plurality of first light emitting devices 102a1, and the plurality of first light emitting devices 102a1 are evenly spaced along the second direction F2.
  • the reason why the display panel 10 rotates and generates bright lines is due to the rotation of different first light emitting devices 102a1 in the first direction F1.
  • the linear speeds are different, but in the second direction F2, the rotational linear speeds of the first light emitting devices 102a1 are the same.
  • arranging the first light emitting devices 102a1 in the first subgroup 1011 at uniform intervals in the second direction F2 can make the display brightness of the display panel 10 in the second direction F2 more uniform, thereby improving the display brightness uniformity of the display device.
  • the first light-emitting devices 102 a 1 in one of the first subgroups 1011 and the first light-emitting devices 102 a 1 in another of the first subgroups 1011 are alternately arranged along the second direction F2 .
  • the staggered arrangement means that in the first direction F1, two adjacent first subgroups 1011 are respectively a first subgroup 1011 and a second first subgroup 1011, and the first light-emitting devices 102a1 in the first subgroup 1011 and the first light-emitting devices 102a1 in the second first subgroup 1011 are arranged in different rows.
  • the first light-emitting devices 102a1 in one of the first subgroups 1011 are staggered along the second direction F2 with the first light-emitting devices 102a1 in the other first subgroup 1011. This can effectively prevent the problem of horizontal bright lines being generated in some positions due to the concentration of the first light-emitting devices 102a1 during the display process of the display device, thereby further improving the display uniformity of the display device.
  • a first light-emitting device group 101a1 includes at least two first subgroups 1011, and in any two first light-emitting device groups 101a1, the spacing between the first subgroups 1011 in one of the first light-emitting device groups 101a1 is equal to the spacing between the first subgroups 1011 in another of the first light-emitting device groups 101a1.
  • the spacing between the first subgroups 1011 in one of the first light-emitting device groups 101a1 is equal to the spacing between the first subgroups 1011 in another of the first light-emitting device groups 101a1, which can be understood as, in the first direction F1, even in any first light-emitting device group 101a1, the arrangement of the first subgroups 1011 is uniform.
  • the rotating shaft 20 divides the display panel 10 into a first display portion 10A1 and a second display portion 10A2, the first display portion 10A1 includes a plurality of first light-emitting devices 102a1, the second display portion 10A2 includes a plurality of second light-emitting device groups 101a2, the plurality of second light-emitting device groups 101a2 are arranged along a first direction F1, and the second device groups include a plurality of second light-emitting devices 102a2;
  • the multiple first light-emitting devices 102a1 on the first light-emitting device group 101a1 and the multiple second light-emitting devices 102a2 on the second light-emitting device group 101a2 are alternately arranged along the second direction F2.
  • the display panel 10 may be a whole display panel 10 or a spliced display panel 10 . If it is a spliced display panel 10 , the splicing seam coincides with the rotation axis 20 .
  • the area sizes of the first display portion 10A1 and the second display portion 10A2 may be the same or different. This embodiment is described by taking the example that the area sizes of the first display portion 10A1 and the second display portion 10A2 are the same.
  • first display portion 10A1 and the second display portion 10A2 are symmetrically arranged (symmetrical in shape), the first light emitting device 102a1 on the first display portion 10A1 and the second light emitting device 102a2 on the second display portion 10A2 are not symmetrically arranged.
  • the change rate of the first light-emitting devices 102a1 on the first display portion 10A1 (the change rate of the distribution density of the plurality of first light-emitting devices 102a1 relative to the distance from the rotation axis 20) and the change rate of the second light-emitting devices 102a2 on the second display portion 10A2 (the change rate of the distribution density of the plurality of first light-emitting devices 102a1 relative to the distance from the rotation axis 20) are
  • the distribution density of 102a2 has the same rate of change relative to the distance from the rotation axis 20.
  • the first light emitting device group 101a1 and the second light emitting device group 101a2 have the same length from the rotation axis 20, and the first light emitting devices 102a1 in the first light emitting device group 101a1 and the second light emitting devices 102a2 in the second light emitting device group 101a2 are arranged in different rows.
  • the first display portion 10A1 overlaps with the second display portion 10A2 after rotating around the rotation axis 20, but the first light emitting device 102a1 on the first display portion 10A1 and the second light emitting device 102a2 on the second display portion 10A2 do not overlap.
  • the rotation paths of the plurality of first light emitting devices 102a1 in the first light emitting device group 101a1 and the plurality of second light emitting devices 102a2 in the second light emitting device group 101a2 do not overlap.
  • the light emitting devices 102 on the three display panels 10 do not overlap.
  • the display effect of the display device can be made more uniform, and the provision of multiple display panels 10 will not produce bright lines or bright spots when the display device performs three-dimensional display, thereby improving the display effect of the display device and extending the service life of the display device.
  • the distance from the side of the first display portion 10A1 away from the rotation axis 20 to the rotation axis 20 is equal to the distance from the side of the second display portion 10A2 away from the rotation axis 20 to the rotation axis 20 .
  • the area of the first display portion 10A1 is equal to the area of the second display portion 10A2
  • the shape of the first display portion 10A1 is equal to the shape of the second display portion 10A2
  • the change rate of the first light-emitting device 102a1 on the first display portion 10A1 is the same as the change rate of the second light-emitting device 102a2 on the second display portion 10A2
  • the difference in the first display portion 10A1 is that the arrangement position of the first light-emitting device 102a1 on the first display portion 10A1 is different from the arrangement position of the light-emitting device 102 on the second display portion 10A2.
  • the display panel 10 is arranged to rotate around a rotation axis 20 for display, and the display panel 10 includes a stacked light-emitting layer and a driving device layer, wherein the light-emitting layer includes a plurality of first light-emitting devices 102a1 arranged at intervals, and the driving device layer includes a plurality of driving thin film crystals arranged in sequence along a first direction F1.
  • the driving thin film transistor group 103G includes at least two driving thin film transistors T1.
  • the driving current of each driving thin film transistor T1 in the driving thin film transistor group 103G close to the rotation axis 20 is smaller than the driving current of each driving thin film transistor T1 in the driving thin film transistor group 103G far away from the rotation axis 20. Since the driving thin film transistor T1 controls the light emitting device 102 to emit light, and the brightness of the first light emitting device 102a1 is related to the driving current in the driving thin film transistor T1, The sizes are positively correlated. The larger the driving current in the driving thin film transistor T1, the greater the brightness of the first light-emitting device 102a1.
  • the driving current of the driving thin film transistor T1 in the driving thin film transistor group 103G close to the rotation axis 20 is smaller than the driving current of the driving thin film transistor T1 in another driving thin film transistor group 103G far away from the rotation axis 20. This can solve the problem of uneven brightness of the first light-emitting devices 102a1 at different positions on the display panel 10 in the three-dimensional display device due to different rotation linear speeds, and further improve the display brightness uniformity of the three-dimensional display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置,包括一绕旋转轴(20)转动的显示面板(10),显示面板(10)包括多个沿第一方向排列的驱动薄膜晶体管组(103G),一驱动薄膜晶体管组(103G)包括至少两驱动薄膜晶体管T1,驱动薄膜晶体管T1用于控制对应发光器件发光;靠近旋转轴(20)的驱动薄膜晶体管组(103G)内各驱动薄膜晶体管T1的电流小于远离旋转轴(20)的驱动薄膜晶体管组(103G)内各驱动薄膜晶体管T1的电流。

Description

显示装置 技术领域
本申请涉及显示领域,尤其涉及一种显示装置。
背景技术
目前旋转显示装置种类较多,市场上最常见的为“3D”风扇屏,“3D”风扇屏采用LED灯珠为发光器件,存在分辨率较低且显示不均的问题;另一种扫描式体三维显示装置则是利用各类显示屏的一条边长为轴,进行旋转扫描,形成圆柱状显示空间,这使得这类显示装置在靠近转轴的位置显示的亮度较大,显示面板整体亮度显示不均,影响实际显示效果。
目前解决上述问题的主要方法为改变旋转装置的物理结构或通过算法对像素点亮过程进行调整,这些方法不具备普适性且极大的增加了显示方法的复杂性。
技术问题
本申请实施例提供一种显示装置,以解决三维显示装置显示时存在的显示亮度不均的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供了一种显示装置,包括:
至少一显示面板,所述显示面板可绕一旋转轴转动显示,所述显示面板包括层叠设置的发光层和驱动器件层,所述发光层包括多个间隔设置的第一发光器件;所述驱动器件层包括多个沿第一方向依次排列的驱动薄膜晶体管组,一所述驱动薄膜晶体管组包括至少两所述驱动薄膜晶体管,一所述驱动薄膜晶体管连接一所述第一发光器件,所述第一方向与所述旋转轴垂直;
其中,所述第一发光器件发光时,一靠近所述旋转轴的所述驱动薄膜晶体管组内各所述驱动薄膜晶体管的驱动电流小于另一远离所述旋转轴的所述驱动薄膜晶体管组内各所述驱动薄膜晶体管的驱动电流。
在一实施例中,一所述驱动薄膜晶体管组包括沿第一方向排列的多个驱动 薄膜晶体管子组,一所述驱动薄膜晶体管子组包括至少两所述驱动薄膜晶体管,所述驱动薄膜晶体管子组内至少两所述驱动薄膜晶体管沿第二方向间隔均匀排列,所述第二方向与所述旋转轴平行;
所述发光器件发光时,至少一所述驱动薄膜晶体管组内,各所述驱动薄膜晶体管子组中各所述驱动薄膜晶体管驱动电流大小相等。
在一实施例中,所述显示面板包括驱动器件层,在所述第一方向上,其中一靠近所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的沟道部的宽长比,小于另一远离所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的沟道部的宽长比。
在一实施例中,所述驱动薄膜晶体管至少包括栅极、源极、漏极,以及有源层,所述有源层包括分布在所述源极和所述漏极之间的所述沟道部。
在一实施例中,所述驱动薄膜晶体管为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管或非晶硅薄膜晶体管。
在一实施例中,所述显示面板包括多个控制电路,一所述控制电路控制至少一所述第一发光器件发光显示;
所述控制电路包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容,第一薄膜晶体管为所述薄膜晶体管,所述第二薄膜晶体管为开关薄膜晶体管,所述第三薄膜晶体管为检测薄膜晶体管。
在一实施例中,所述显示面板包括基板,所述驱动器件层设置于所述基板上,所述基板的材料为透明材料。
在一实施例中,所述基板的材质包括透明玻璃或聚酰亚胺。
在一实施例中,所述发光层包括多个沿所述第一方向依次排列的第一发光器件组,所述第一发光器件组包括至少两所述第一发光器件;
在所述第一方向上,一靠近所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度小于另一远离所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度。
在一实施例中,一所述第一发光器件组包括至少一第一子组,一所述第一子组包括至少两所述第一发光器件,所述第一子组内至少两所述第一发光器件沿第二方向依次排列,所述第二方向与所述旋转轴平行,至少一所述第一发光 器件组内的各所述第一子组中所述第一发光器件的分布密度相同。
在一实施例中,一所述第一发光器件组包括至少两沿所述第一方向排列的所述第一子组,所述第一子组包括多个所述第一发光器件,且多个所述第一发光器件沿所述第二方向间隔均匀设置。
在一实施例中,任意相邻的两所述第一子组内,其中一所述第一子组中的所述第一发光器件与另一所述第一子组中的所述第一发光器件沿所述第二方向交错设置。
在一实施例中,一所述第一发光器件组包括至少两所述第一子组,任意两所述第一发光器件组中,其中一所述第一发光器件组内的各所述第一子组之间的间距与另一所述第一发光器件组内的各所述第一子组之间的间距相等。
在一实施例中,所述第一发光器件的排布设置为m行n列,每旋转α度显示面板刷新一次,则满足:
第t列的第一发光器件的数量
其中,所述第一发光器件在该列上均匀分布,t取大于1,且小于或等于n的正整数。
在一实施例中,各所述第一发光器件组与所述旋转轴之间的距离在一预设距离范围内,所述预设距离范围外,所述第一发光器件的分布密度各处均相等。
在一实施例中,所述显示面板包括分别位于所述旋转轴相对两侧的第一显示部和第二显示部,多个所述第一发光器件组位于所述第一显示部,所述第二显示部包括多个沿所述第一方向排列的第二发光器件组,所述第二发光器件组包括多个第二发光器件;
其中,在距离所述旋转轴的长度相同的所述第一发光器件组和所述第二发光器件组中,所述第一发光器件组上的多个所述第一发光器件和所述第二发光器件组上的多个所述第二发光器件的转动路径不重叠。
在一实施例中,所述第一显示部上的所述第一发光器件的分布密度的变化率,与所述第二显示部上的第二发光器件的分布密的变化率相对所述旋转轴对称。
在一实施例中,所述第一显示部的形状和所述第二显示部的形状关于所述 旋转轴对称。
在一实施例中,各所述第一发光器件组与所述旋转轴之间的距离在一预设距离范围内,所述预设距离范围外,所述第一发光器件的分布密度各处均相等。
在一实施例中,各所述驱动薄膜晶体管组与所述旋转轴之间的距离在所述预设距离范围内,所述预设距离范围外,所述第一发光器件的分布密度各处均相等,各所述驱动薄膜晶体管的驱动电流数值相等。
有益效果
本申请通过设置显示面板绕一旋转轴转动,显示面板包括层叠设置的发光层和驱动器件层,所述发光层包括多个间隔设置的第一发光器件;一所述驱动薄膜晶体管连接一所述第一发光器件,多个所述驱动薄膜晶体管包括多个沿第一方向依次排列的驱动薄膜晶体管组,一所述驱动薄膜晶体管组包括至少两所述驱动薄膜晶体管,一所述驱动薄膜晶体管连接一所述第一发光器件,所述发光器件发光时,在第一方向上,其中一靠近旋转轴的驱动薄膜晶体管组内各驱动薄膜晶体管的驱动电流小于另一远离旋转轴的驱动薄膜晶体管组内各驱动薄膜晶体管的驱动电流,由于驱动薄膜晶体管控制第一发光器件发光,且第一发光器件的亮度与所述驱动薄膜晶体管中驱动电流的大小呈正相关,驱动薄膜晶体管中的驱动电流越大,第一发光器件的亮度越大,因此设置靠近旋转轴的所述驱动薄膜晶体管组内驱动薄膜晶体管的驱动电流小于另一远离旋转轴的驱动薄膜晶体管组内驱动薄膜晶体管的驱动电流,能够解决三维立体显示装置中,显示面板上不同位置的发光器件因转动线速度不同导致的亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性。
附图说明
图1是本申请实施例提供的一种显示装置结构示意图;
图2是本申请实施例提供的一种显示面板膜层结构示意图;
图3是本申请实施例提供的一种驱动器件层部分结构俯视图;
图4是本申请实施例提供的一种显示装置中驱动器件层结构示意图;
图5是本申请实施例提供的一种显示面板的发光器件分布示意图;
图6是本申请实施例提供的另一种显示装置结构示意图;
图7是本申请实施例提供的一种显示面板的发光器件分布示意图;
图8是本申请实施例提供的一种显示面板的发光器件分布示意图;
图9是本申请实施例提供的一种显示面板的发光器件分布示意图;
图10是本申请实施例提供的一种显示面板的发光器件分布示意图。
附图标记:显示面板-10、旋转轴-20、第一方向F1、第二方向F2、预设距离S、驱动薄膜晶体管-T1、驱动薄膜晶体管组-103G、驱动薄膜晶体管子组-1031、宽-W,长-L、驱动器件层-M20、发光层-M10、基板-M201、薄膜晶体管层-M202、沟道部T101、栅极-T102、源极-T104、漏极-T103、第一子组-1011、第一显示部-10A1,第一显示部-10A2,第一发光器件组-101a1,第二发光器件组-101a2,第一发光器件-102a1,第二发光器件-102a2;
本发明的实施方式
本申请提供一种显示装置,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请实施例提供一种显示装置。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
目前,旋转显示装置种类较多,一种为“3D”风扇屏,“3D”风扇屏采用LED灯珠为发光器件,存在分辨率较低且显示不均的问题,另一种为扫描式体三维显示装置,其利用各类显示屏的一条边长为轴,进行旋转扫描,形成圆柱状显示空间,这使得这类显示装置在靠近转轴的位置显示的亮度较大,显示装置透明度较低等问题,且显示面板整体亮度显示不均,影响实际显示效果。
目前解决上述问题的主要方法为改变旋转装置的物理结构或通过算法对像素点亮过程进行调整,这些方法不具备普适性且大大增加了显示方法的复杂性。
本申请为了解决上述技术问题,提供以下技术方案,具体参照下述实施例 以及附图图1-图10。
本申请实施例提供一种显示装置,如图1和图4所示,包括:
至少一显示面板10,所述显示面板10绕一旋转轴20转动,一所述显示面板10包括层叠设置的发光层M10和驱动器件层M20,所述发光层M10包括多个间隔设置的第一发光器件102a1,所述驱动器件层M20包括多个沿第一方向依次排列的驱动薄膜晶体管组103G,一所述驱动薄膜晶体管组103G包括至少两所述驱动薄膜晶体管T1,一所述驱动薄膜晶体管T1连接一所述第一发光器件102a1,所述第一方向F1与所述旋转轴20垂直;
其中,所述驱动薄膜晶体管T1用于控制所述第一发光器件102a1的驱动电流,在所述第一方向F1上,其中一靠近所述旋转轴20的所述驱动薄膜晶体管组103G内各所述驱动薄膜晶体管T1的驱动电流小于另一远离所述旋转轴20的所述驱动薄膜晶体管组103G内各所述驱动薄膜晶体管T1的驱动电流。
具体地,所述显示装置为三维立体显示装置,其通过设置显示面板10绕一旋转轴20旋转,实现三维图像的显示,其中,所述旋转轴20可以为虚拟轴也可以为实体轴,所述旋转轴20可以位于所述显示面板10上(包括位于所述显示面板10的一侧边上,或位于所述显示面板10上,划分所述显示面板10),也可以位于所述显示面板10外,本实施例中,以旋转轴20位于所述显示面板10的一侧边上的显示装置为例进行说明。
具体地,所述显示面板10可以为有机发光半导体(Organic Electroluminescence Display,OLED)显示面板,也可以为Mini/Micro-LED显示面板,采用上述显示面板具有更快的响应速度,能实现更高的刷新率,可以进一步提高显示装置的色域、显示亮度等。
具体地,当显示面板10有多块时,多块显示面板10绕同一旋转轴20旋转,所述显示面板10可以为双面显示的显示面板10,也可以为单面显示的显示面板10,具体可以根据实际生产情况或者需求进行调整,本申请以单面显示的显示面板10为例进行说明。
具体地,所述第一方向F1与所述旋转轴20垂直,且所述第一方向F1由所述旋转轴20向所述显示面板10远离所述旋转轴20的一侧边延伸。
具体地,如图2所示,所述显示面板10包括驱动器件层M20以及设置于 所述驱动器件层M20上的发光层M10,所述发光层M10包括多个第一发光器件102a1,所述驱动器件层M20上的所述驱动薄膜晶体管T1与其对应的第一发光器件102a1连接,控制对应的所述第一发光器件102a1发光。
具体地,如图2所示,驱动器件层M20包括基板M201,设置于所述基板M201上的薄膜晶体管层M202,所述薄膜晶体管层M202包括设置于所述基板M201上的平坦层,设置于所述平坦层上的栅极层(包括多个栅极T102),设置于所述栅极层上的栅极绝缘层,设置于所述栅极绝缘层上的有源层(包括多个沟道部T101),设置于所述栅极绝缘层上且与所述沟道部T101搭接的源漏极层(包括源极T104和漏极T103);
具体地,驱动薄膜晶体管T1至少包括栅极T102、源极T104、漏极T103,以及有源层,有源层包括分布在源极连接部和漏极连接部之间的沟道部T101,所述源极连接部连接源极T104,所述漏极连接部连接漏极T103。
具体地,所述显示面板10还包括多个控制电路,一所述控制电路控制至少一所述第一发光器件102a1发光显示(包括第一发光器件102a1的开关和亮度大小调整),本申请的实施例中均按照一控制电路控制一第一发光器件102a1发光为例进行说明,但是本申请不限于此,一控制电路可以同步控制两个或多个第一发光器件102a1发光,具体可以根据实际生产情况进行调整,所述驱动器件层M20的基板M201上形成所述控制电路。
具体地,所述控制电路可以包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容Cst,其中,第一薄膜晶体管为驱动薄膜晶体管T1,第二薄膜晶体管为开关薄膜晶体管,第三薄膜晶体管为检测薄膜晶体管,第一薄膜晶体管控制所述第一发光器件102a1的亮度大小。
具体地,各所述驱动薄膜晶体管T1上相连的电压大小相同。
具体地,驱动薄膜晶体管T1为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
具体地,所述控制电路的具体连接方式为:第二薄膜晶体管的栅极电性连接扫描电压信号线上,源极电性连接数据电压信号线上,漏极与第一薄膜晶体管的栅极T102和存储电容Cst的一端电性连接;第一薄膜晶体管的源极T104电性连接电源正电压上,漏极T103电性连接第一发光器件102a1的阳极;第 一发光器件102a1的阴极电性连接于电源负电压,存储电容Cst的一端电性连接第二薄膜晶体管的漏极和第一薄膜晶体管的栅极T102,存储电容Cst的另一端电性连接第一薄膜晶体管的漏极T103、第一发光器件102a1的阳极和第三薄膜晶体管的源极;第三薄膜晶体栅极电性连接数据信号,源极电性连接第一薄膜晶体管的漏极T103,第三薄膜晶体漏极与检测电压相连,第三薄膜晶体管的漏极T103连接检测电压(VCM)为一恒定电压。
控制电路控制第一发光器件102a1重置时段,控制电路的扫描电压和数据分别施加到控制电路中的第二薄膜晶体管的栅极T102和源极T104;在各控制电路的数据写入时段,控制电路中的第三开关薄膜晶体管导通,以将数据电压施加到第一薄膜晶体管的漏极T103;在控制电路控制第一发光器件102a1的发光时段,第一薄膜晶体管导通,使得连接在第一薄膜晶体管的漏极T103上的第一发光器件102a1发光。
具体地,多个所述驱动薄膜晶体管T1包括多个沿第一方向F1依次排列的驱动薄膜晶体管组103G,各所述驱动薄膜晶体管组103G与所述旋转轴20之间的距离在一预设距离S范围内,一所述驱动薄膜晶体管组103G包括至少两所述驱动薄膜晶体管T1,所述第一方向F1与所述旋转轴20垂直,且所述第一方向F1由所述旋转轴20向所述显示面板10远离所述旋转轴20的一侧边延伸;
其中,预设距离S范围内为亮度调整范围,预设距离S范围外为各驱动薄膜晶体管T1的驱动电流值达到正常工作状态下的最大值,各个驱动薄膜晶体管T1的驱动电流大小相等;
具体地,在控制电路中,所述驱动薄膜晶体管T1控制所述第一发光器件102a1的亮度大小,且在显示面板10显示时,经过所述驱动薄膜晶体管T1的驱动电流越大,所述第一发光器件102a1的亮度越大,即所述第一发光器件102a1发光时,所述第一发光器件102a1的亮度与流经所述驱动薄膜晶体管T1的驱动电流的大小呈正相关。
具体地,流经所述驱动薄膜晶体管T1的驱动电流大小的控制方法包括但不限于通过显示面板10的驱动芯片预先设置,或通过在控制电路上串联不同阻值的电阻实现不同行或列上流经所述驱动薄膜晶体管T1的驱动电流大小的 调控。
可以理解的是,通过设置显示面板10绕一旋转轴20转动,显示面板10包括多个间隔设置的驱动薄膜晶体管T1和多个间隔设置的第一发光器件102a1,一所述驱动薄膜晶体管T1连接一所述第一发光器件102a1;
多个所述驱动薄膜晶体管T1包括多个沿第一方向F1依次排列的驱动薄膜晶体管组103G,各所述驱动薄膜晶体管组103G与所述旋转轴20之间的距离在一预设距离S范围内,一所述驱动薄膜晶体管组103G包括至少两所述驱动薄膜晶体管T1,驱动薄膜晶体管T1控制所述第一发光器件102a1发光时,在第一方向F1上,其中一靠近旋转轴20的驱动薄膜晶体管组103G内各驱动薄膜晶体管T1的驱动电流小于另一远离旋转轴20的驱动薄膜晶体管组103G内各驱动薄膜晶体管T1的驱动电流,由于驱动薄膜晶体管T1控制第一发光器件102a1发光,且第一发光器件102a1的亮度与所述驱动薄膜晶体管T1中驱动电流的大小呈正相关,驱动薄膜晶体管T1中的驱动电流越大,第一发光器件102a1的亮度越大,因此设置靠近旋转轴20的所述驱动薄膜晶体管组103G内驱动薄膜晶体管T1的驱动电流小于另一远离旋转轴20的驱动薄膜晶体管组103G内驱动薄膜晶体管T1的驱动电流,能够解决三维立体显示装置中,显示面板10上不同位置的第一发光器件102a1因转动线速度不同导致的亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性。
在一实施例中,一所述驱动薄膜晶体管组103G包括至少一驱动薄膜晶体管子组1031,一所述驱动薄膜晶体管子组1031包括至少两所述驱动薄膜晶体管T1,所述驱动薄膜晶体管子组1031内至少两所述驱动薄膜晶体管T1沿第二方向F2间隔均匀排列,所述第二方向F2与所述旋转轴20平行;
在所述驱动薄膜晶体管T1控制所述第一发光器件102a1发光时,至少一所述驱动薄膜晶体管组103G内,各所述驱动薄膜晶体管子组1031中各所述驱动薄膜晶体管T1驱动电流大小相等。
具体地,一所述驱动薄膜晶体管组103G内各所述驱动薄膜晶体管子组1031内的驱动薄膜晶体管T1驱动电流大小相等,但是并不限制所有的驱动薄膜晶体管组103G内的各所述驱动薄膜晶体管子组1031内驱动薄膜晶体管T1驱动电流大小相等,使得多个驱动薄膜晶体管组103G的多个驱动薄膜晶体管 T1的驱动电流大小在第一方向F1上整体呈现递增的趋势,即部分位置的驱动薄膜晶体管T1的驱动电流大小可以相等,使得显示面板10的亮度调整灵活性更高,不影响显示装置显示的亮度均一性。
具体地,同一驱动薄膜晶体管子组1031内,在第二方向F2上,多个驱动薄膜晶体管T1的驱动电流可以相等,也可以不等,具体可以根据显示装置的显示面板10形状,或旋转轴20实际的旋转情况进行调整,以使显示装置的显示亮度均一性更高。
可以理解的是,通过设置至少一所述驱动薄膜晶体管组103G内的各所述驱动薄膜晶体管子组1031中所述第一发光器件102a1的分布密度相同,使得显示装置的显示面板10的亮度调整灵活性更高,不影响显示装置显示的亮度均一性。
承上述实施例,如图2和图3所示,所述显示面板10包括驱动器件层M20,所述驱动器件层M20包括有源层,所述驱动薄膜晶体管T1包括位于所述有源层上的沟道部T101;
在所述第一方向F1上,其中一靠近所述旋转轴20的所述驱动薄膜晶体管组103G内所述驱动薄膜晶体管T1的沟道部T101的宽长比小于另一远离所述旋转轴20的所述驱动薄膜晶体管组103G内所述驱动薄膜晶体管T1的沟道部T101的宽长比。
具体地,所述驱动薄膜晶体管T1中,沟道部T101宽长比减小,相应驱动薄膜晶体管T1的开态电流会降低。
具体地,所述沟道部T101的宽如图3中的W所示,为源极T104与漏极T103之间相对部分的长度;所述沟道部T101的长如图3中L所示,即源极T104与漏极T103之间的间距。
可以理解的是,通过调整驱动薄膜晶体管T1中沟道部T101的宽长比,实现对驱动薄膜晶体管T1的开态电流的大小的控制,进而实现对第一发光器件102a1的亮度的调整,采用该技术方案,极大的简化了显示装置显示方法的复杂性,且普适性高,不需要额外改变旋转装置的物理结构。
在一实施例中,所述显示面板10包括基板M201和设置于所述基板M201上的薄膜晶体管层M202,所述基板M201的材料为透明材料。
具体地,所述基板M201的材质可以为透明玻璃,聚酰亚胺等。
具体地,所述薄膜晶体管层M202包括多个驱动薄膜晶体管T1,所述薄膜晶体管层M202包括层叠设置的多层绝缘层,设置于各所述绝缘层之间的有源层、栅极层、源漏极T103层,其中所述有源层包括沟道部T101,设置于所述沟道部T101两侧的源极T104连接部和漏极T103连接部,其中源极T104连接部与所述源极T104连接,所述漏极T103连接部与所述漏极T103连接,所述栅极层上的栅极T102可以设置于所述沟道部T101的上方或下方(图2为下方),且其在垂直所述驱动器件层M20的方向上的投影覆盖所述沟道部T101。
可以理解的是,通过设置所述薄膜晶体管层M202的基板M201的材料为透明材料,使得显示装置具有更高的透明度,使得三维显示装置显示的画面更逼真,提升用户的使用体验。
在一实施例中,如图5、图6、图7和图8所示,显示面板10包括发光层,发光层包括多个沿所述第一方向F1依次排列的第一发光器件组101a1,各所述第一发光器件组101a1与所述旋转轴20之间的距离在所述预设距离S范围内,一所述第一发光器件组101a1包括至少两所述第一发光器件102a1;
在所述第一方向F1上,一靠近所述旋转轴20的所述第一发光器件组101a1内各所述第一发光器件102a1的分布密度小于另一远离所述旋转轴20的所述第一发光器件组101a1内各所述第一发光器件102a1的分布密度。
具体地,多个所述第一发光器件组101a1之间的间距可以相同,也可以不同,具体不作限制,但是多个第一发光器件组101a1之间的间距不同不能影响显示装置发光的均一性,图7和图8均为多个所述第一发光器件组101a1之间的间距相同的情形;
具体地,一所述第一发光器件组101a1包括至少两所述第一发光器件102a1,多个第一发光器件组101a1在第二方向F2(与旋转轴20平行)上的长度不变。
具体地,当所述第一发光器件组101a1中包括多个间隔设置的第一发光器 件102a1时,该第一发光器件组101a1内的第一发光器件102a1的分布密度也可以在所述第一方向F1上逐渐增加(如图9所示),或该第一发光器件组101a1内的多个第一发光器件102a1均匀分布。
具体地,所述分布密度是指相同的单位面积内,所述第一发光器件102a1的数量,其中单位面积的长度可以与显示面板10与旋转轴20平行的一侧边的长度相同,单位面板的宽度至少大于一个第一发光器件102a1的宽度。
具体地,在一实例中,假设初始第一发光器件102a1的排布设置为m行n列,每旋转α度显示面板10刷新一次,则满足:
第t列的第一发光器件102a1的数量
且第一发光器件102a1在该列上均匀分布,其中t取大于1,且小于或等于n的正整数;
采用上述技术方案能够使得显示面板10上第一发光器件102a1的使用处于最高效率的状态。
可以理解的是,通过设置显示面板10包括多个间隔设置的第一发光器件102a1,第一发光器件102a1与驱动薄膜晶体管T1为一一对应的关系,多个第一发光器件102a1包括多个第一发光器件组101a1,各第一发光器件组101a1与旋转轴20之间的距离在一预设距离S范围内,一第一发光器件组101a1包括至少两第一发光器件102a1,多个第一发光器件组101a1沿第一方向F1依次排列,在第一方向F1上,一靠近旋转轴20的第一发光器件组101a1内第一发光器件102a1的分布密度小于另一远离旋转轴20的第一发光器件组101a1内第一发光器件102a1的分布密度,通过降低靠近旋转轴20的第一发光器件102a1的分度密度,使得显示装置在进行三维显示时,在预设的范围内靠近旋转轴20的第一发光器件102a1的亮度能够与预设范围外的第一发光器件102a1的亮度相一致,配合调整对应的驱动薄膜晶体管T1中驱动电流大小的技术方案,一方面能够解决三维立体显示装置中,显示面板10上不同位置的第一发光器件102a1因转动线速度不同导致的显示装置整体上亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性,另一方面,通过两种技术方案综合使用,使得其能够解决单一调整第一发光器件102a1分布密度导致的靠近旋 转轴20的第一发光器件102a1之间的间距过大,亮度分布不均,影响显示装置显示的PPI,影响显示效果的问题。
在一实施例中,如图7和图8所示,一所述第一发光器件组101a1包括至少一第一子组1011,一所述第一子组1011包括至少两所述第一发光器件102a1,所述第一子组1011内至少两所述第一发光器件102a1沿第二方向F2依次排列,所述第二方向F2与所述旋转轴20平行,至少一所述第一发光器件组101a1内的各所述第一子组1011中所述第一发光器件102a1的分布密度相同。
具体地,多个所述第一发光器件组101a1则包括多个第一子组1011,多个第一子组1011可以均沿所述第一方向F1依次排列,一第一子组1011内的第一发光器件102a1沿第二方向F2依次排列。
具体地,一所述第一发光器件组101a1内各所述第一子组1011内的第一发光器件102a1的分布密度相同,但是并不限制所有的第一发光器件组101a1内的各所述第一子组1011的第一发光器件102a1的分布密度相同,使得多个发光单元组的多个发光单元在整体上呈现分布密度递增的趋势即可,具体地如图6和图7所示,部分位置的第一发光器件102a1的分布密度可以相等,使得显示面板10的亮度调整灵活性更高,不影响显示装置显示的亮度均一性。
具体地,同一第一子组1011内,多个第一发光器件102a1可以间隔均匀设置,也可以具有多个间隔距离,具体可以根据显示装置的显示面板10形状,或旋转轴20实际的旋转情况进行调整,以使显示装置的显示亮度均一性更高。
可以理解的是,通过设置至少一所述第一发光器件组101a1内的各所述第一子组1011中所述第一发光器件102a1的分布密度相同,使得显示装置的显示面板10的亮度调整灵活性更高,不影响显示装置显示的亮度均一性。
在一实施例中,一所述第一发光器件组101a1包括至少两沿所述第一方向F1排列的所述第一子组1011,所述第一子组1011包括多个所述第一发光器件102a1,且多个所述第一发光器件102a1沿所述第二方向F2间隔均匀设置。
需要说明的是,由于显示面板10是绕旋转轴20旋转,显示面板10旋转对应产生亮线的原因是由于在第一方向F1上不同第一发光器件102a1的旋转 线速度不同,但是在第二方向F2上,各第一发光器件102a1的旋转线速度是相同的。
可以理解的是,设置所述第一子组1011中的第一发光器件102a1在所述第二方向F2上间隔均匀设置,能够使得显示面板10在第二方向F2上的显示亮度更均匀,提升显示装置的显示亮度均一性。
在一实施例中,任意相邻的两所述第一子组1011内,其中一所述第一子组1011中的所述第一发光器件102a1与另一所述第一子组1011中的所述第一发光器件102a1沿所述第二方向F2交错设置。
具体地,在本实施例中,所述交错设置是指,在第一方向F1上,相邻的两所述第一子组1011分别为第一子组1011和第二第一子组1011,第一子组1011中的第一发光器件102a1与所述第二第一子组1011中的第一发光器件102a1不同行设置。
可以理解的是,设置任意相邻的两所述第一子组1011内,其中一所述第一子组1011中的所述第一发光器件102a1与另一所述第一子组1011中的所述第一发光器件102a1沿所述第二方向F2交错设置,能够有效防止显示装置显示过程中,部分位置因为第一发光器件102a1集中导致产生横向亮线的问题,进一步提升显示装置的显示均匀程度。
在一实施例中,一所述第一发光器件组101a1包括至少两所述第一子组1011,任意两所述第一发光器件组101a1中,其中一所述第一发光器件组101a1内的各所述第一子组1011之间的间距与另一所述第一发光器件组101a1内的各所述第一子组1011之间的间距相等。
具体地,其中一所述第一发光器件组101a1内的各所述第一子组1011之间的间距与另一所述第一发光器件组101a1内的各所述第一子组1011之间的间距相等可以理解为,在第一方向F1上,即使任一第一发光器件组101a1中,各第一子组1011的排布是均匀的。
可以理解的是,通过设置一所述第一发光器件组101a1内的各所述第一子组1011之间的间距与另一所述第一发光器件组101a1内的各所述第一子组 1011之间的间距相等,能够使得显示面板10在第一方向F1上的亮度更均匀,同时方便显示面板10的生产。
在一实施例中,如图10所示,所述旋转轴20将所述显示面板10划分为第一显示部10A1和第二显示部10A2,所述第一显示部10A1包括多个所述第一发光器件102a1,所述第二显示部10A2包括多个第二发光器件组101a2,多个所述第二发光器件组101a2沿第一方向F1排列,所述第二器件组包括多个第二发光器件102a2;
其中,在距离所述旋转轴20的长度相同的所述第一发光器件组101a1和所述第二发光器件组101a2中,所述第一发光器件组101a1上的多个所述第一发光器件102a1和所述第二发光器件组101a2上的多个所述第二发光器件102a2沿所述第二方向F2交错设置。
需要说明的是,当旋转轴20上有两块或以上的显示面板10(或两个及以上的显示部)绕旋转轴20旋转时,本实施例以两显示部为例进行说明,当个两显示部上的部分发光器件102关于旋转轴20对称时,显示装置显示时,对应对称的部分使得对应位置亮度重合,产生亮点或亮线,影响三维显示的显示效果,为了避免上述技术问题,提供本实施例的技术方案。
具体地,在本实施例中,所述显示面板10可以为一整块显示面板10,也可以为拼接的显示面板10,若为拼接的显示面板10时,拼接缝与所述旋转轴20重合。
具体地,在本实施例中,所述第一显示部10A1和所述第二显示部10A2的面积大小可以相同,也可以不同,本实施例以所述第一显示部10A1和所述第二显示部10A2的面积大小相同为例进行说明。
具体地,由于第一显示部10A1和第二显示部10A2对称设置(形状对称),但是第一显示部10A1上的第一发光器件102a1和所述第二显示部10A2上的第二发光器件102a2并不对称设置。
具体地,所述第一显示部10A1上的第一发光器件102a1的变化率(多个第一发光器件102a1的分布密度相对距离所述旋转轴20的距离的变化率)与所述第二显示部10A2上的第二发光器件102a2的变化率(多个第二发光器件 102a2的分布密度相对距离所述旋转轴20的距离的变化率)相同。
具体地,在第一方向F1上,距离所述旋转轴20长度相同的第一发光器件组101a1和第二发光器件组101a2,第一发光器件组101a1中的第一发光器件102a1与所述第二发光器件组101a2中的第二发光器件102a2不同行设置。
换而言之,即在本实施例中,第一显示部10A1绕所述旋转轴20旋转后与所述第二显示部10A2重叠,但是第一显示部10A1上的第一发光器件102a1与所述第二显示部10A2上的第二发光器件102a2不重叠。
或者,所述第一发光器件组101a1上的多个所述第一发光器件102a1和所述第二发光器件组101a2上的多个所述第二发光器件102a2的转动路径不重叠。
具体地,当三块显示面板10绕所述旋转轴20旋转,且三块显示面板10相对关于所述旋转轴20轴对称时,三块显示面板10绕旋转轴20旋转重叠后,三块显示面板10上的发光器件102各不重叠。
可以理解的是,通过采用上述技术方案,能够使得显示装置的显示效果更均匀,且设置多块显示面板10也不会在显示装置进行三维显示时产生亮线或者亮点,提升显示装置的显示效果,延长显示装置的使用寿命。
承上述实施例,所述第一显示部10A1远离所述旋转轴20的一侧边至所述旋转轴20的距离与所述第二显示部10A2远离所述旋转轴20的一侧边至所述旋转轴20的距离相等。
具体地,在本实施例中,即所述第一显示部10A1的面积和所述第二显示部10A2的面积相等,且所述第一显示部10A1的形状与所述第二显示部10A2的形状相等,所述第一显示部10A1上的第一发光器件102a1的变化率(多个第一发光器件102a1的分布密度相对距离所述旋转轴20的距离的变化率)与所述第二显示部10A2上的第二发光器件102a2的变化率相同,所述第一显示部10A1上不同之处在于所述第一显示部10A1上第一发光器件102a1的排布位置与所述第二显示部10A2上的发光器件102的排布位置不同。
综上,通过设置显示面板10绕一旋转轴20转动显示,显示面板10包括层叠设置的发光层和驱动器件层,所述发光层包括多个间隔设置的第一发光器件102a1,所述驱动器件层包括多个沿第一方向F1依次排列的驱动薄膜晶体 管组103G,一所述驱动薄膜晶体管组103G包括至少两所述驱动薄膜晶体管T1,所述第一发光器件102a1发光时,在第一方向F1上,其中一靠近旋转轴20的驱动薄膜晶体管组103G内各驱动薄膜晶体管T1的驱动电流小于另一远离旋转轴20的驱动薄膜晶体管组103G内各驱动薄膜晶体管T1的驱动电流,由于驱动薄膜晶体管T1控制发光器件102发光,且第一发光器件102a1的亮度与所述驱动薄膜晶体管T1中驱动电流的大小呈正相关,驱动薄膜晶体管T1中的驱动电流越大,第一发光器件102a1的亮度越大,因此设置靠近旋转轴20的所述驱动薄膜晶体管组103G内驱动薄膜晶体管T1的驱动电流小于另一远离旋转轴20的驱动薄膜晶体管组103G内驱动薄膜晶体管T1的驱动电流,能够解决三维立体显示装置中,显示面板10上不同位置的第一发光器件102a1因转动线速度不同导致的亮度不均的问题,进一步提升三维立体显示装置的显示亮度均一性。
以上对本申请实施例所提供的一种显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示装置,其中,包括:
    至少一显示面板,所述显示面板可绕一旋转轴转动显示,所述显示面板包括层叠设置的发光层和驱动器件层,所述发光层包括多个间隔设置的第一发光器件,所述驱动器件层包括多个沿第一方向依次排列的驱动薄膜晶体管组,一所述驱动薄膜晶体管组包括至少两所述驱动薄膜晶体管,一所述驱动薄膜晶体管连接一所述第一发光器件,所述第一方向与所述旋转轴垂直;
    其中,所述第一发光器件发光时,一靠近所述旋转轴的所述驱动薄膜晶体管组内各所述驱动薄膜晶体管的驱动电流小于另一远离所述旋转轴的所述驱动薄膜晶体管组内各所述驱动薄膜晶体管的驱动电流。
  2. 如权利要求1所述的显示装置,其中,一所述驱动薄膜晶体管组包括沿第一方向排列的多个驱动薄膜晶体管子组,一所述驱动薄膜晶体管子组包括至少两所述驱动薄膜晶体管,所述驱动薄膜晶体管子组内至少两所述驱动薄膜晶体管沿第二方向间隔均匀排列,所述第二方向与所述旋转轴平行;
    所述发光器件发光时,至少一所述驱动薄膜晶体管组内,各所述驱动薄膜晶体管子组中各所述驱动薄膜晶体管驱动电流大小相等。
  3. 如权利要求1所述的显示装置,其中,在所述第一方向上,其中一靠近所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的沟道部的宽长比,小于另一远离所述旋转轴的所述驱动薄膜晶体管组内所述驱动薄膜晶体管的沟道部的宽长比。
  4. 如权利要求3所述的显示装置,其中,所述驱动薄膜晶体管至少包括栅极、源极、漏极,以及有源层,所述有源层包括分布在所述源极和所述漏极之间的所述沟道部。
  5. 如权利要求1所述的显示装置,其中,所述驱动薄膜晶体管为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管或非晶硅薄膜晶体管。
  6. 如权利要求1所述的显示装置,其中,所述显示面板包括多个控制电路,一所述控制电路控制至少一所述第一发光器件发光显示;
    所述控制电路包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容,第一薄膜晶体管为所述驱动薄膜晶体管,所述第二薄膜晶体管为开 关薄膜晶体管,所述第三薄膜晶体管为检测薄膜晶体管。
  7. 如权利要求1所述的显示装置,其中,所述显示面板包括基板,所述驱动器件层设置于所述基板上,所述基板的材料为透明材料。
  8. 如权利要求7所述的显示装置,其中,所述基板的材质包括透明玻璃或聚酰亚胺。
  9. 如权利要求1所述的显示装置,其中,所述发光层包括多个沿所述第一方向依次排列的第一发光器件组,所述第一发光器件组包括至少两所述第一发光器件;
    在所述第一方向上,一靠近所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度小于另一远离所述旋转轴的所述第一发光器件组内各所述第一发光器件的分布密度。
  10. 如权利要求9所述的显示装置,其中,一所述第一发光器件组包括至少一第一子组,一所述第一子组包括至少两所述第一发光器件,所述第一子组内至少两所述第一发光器件沿第二方向依次排列,所述第二方向与所述旋转轴平行,至少一所述第一发光器件组内的各所述第一子组中所述第一发光器件的分布密度相同。
  11. 如权利要求10所述的显示装置,其中,一所述第一发光器件组包括至少两沿所述第一方向排列的所述第一子组,所述第一子组包括多个所述第一发光器件,且多个所述第一发光器件沿所述第二方向间隔均匀设置。
  12. 如权利要求10所述的显示装置,其中,任意相邻的两所述第一子组内,其中一所述第一子组中的所述第一发光器件与另一所述第一子组中的所述第一发光器件沿所述第二方向交错设置。
  13. 如权利要求10所述的显示装置,其中,一所述第一发光器件组包括至少两所述第一子组,任意两所述第一发光器件组中,其中一所述第一发光器件组内的各所述第一子组之间的间距与另一所述第一发光器件组内的各所述第一子组之间的间距相等。
  14. 如权利要求9所述的显示装置,其中,所述第一发光器件的排布设置为m行n列,每旋转α度显示面板刷新一次,则满足:
    第t列的第一发光器件的数量
    其中,所述第一发光器件在该列上均匀分布,t取大于1,且小于或等于n的正整数。
  15. 如权利要求9所述的显示装置,其中,各所述第一发光器件组与所述旋转轴之间的距离在一预设距离范围内,所述预设距离范围外,所述第一发光器件的分布密度各处均相等。
  16. 如权利要求9所述的显示装置,其中,所述显示面板包括分别位于所述旋转轴相对两侧的第一显示部和第二显示部,多个所述第一发光器件组位于所述第一显示部,所述第二显示部包括多个沿所述第一方向排列的第二发光器件组,所述第二发光器件组包括多个第二发光器件;
    其中,在距离所述旋转轴的长度相同的所述第一发光器件组和所述第二发光器件组中,所述第一发光器件组上的多个所述第一发光器件和所述第二发光器件组上的多个所述第二发光器件的转动路径不重叠。
  17. 如权利要求16所述的显示装置,其中,所述第一显示部上的所述第一发光器件的分布密度的变化率,与所述第二显示部上的第二发光器件的分布密的变化率相对所述旋转轴对称。
  18. 如权利要求16所述的显示装置,其中,所述第一显示部的形状和所述第二显示部的形状关于所述旋转轴对称。
  19. 如权利要求9所述的显示装置,其中,各所述第一发光器件组与所述旋转轴之间的距离在一预设距离范围内,所述预设距离范围外,所述第一发光器件的分布密度各处均相等。
  20. 如权利要求19所述的显示模组,其中,各所述驱动薄膜晶体管组与所述旋转轴之间的距离在所述预设距离范围内,所述预设距离范围外,所述第一发光器件的分布密度各处均相等,各所述驱动薄膜晶体管的驱动电流数值相等。
PCT/CN2023/074972 2022-10-18 2023-02-08 显示装置 WO2024082489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211275207.0A CN115662338A (zh) 2022-10-18 2022-10-18 显示装置
CN202211275207.0 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024082489A1 true WO2024082489A1 (zh) 2024-04-25

Family

ID=84989503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074972 WO2024082489A1 (zh) 2022-10-18 2023-02-08 显示装置

Country Status (2)

Country Link
CN (1) CN115662338A (zh)
WO (1) WO2024082489A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115662338A (zh) * 2022-10-18 2023-01-31 武汉华星光电技术有限公司 显示装置
CN115685586A (zh) * 2022-10-18 2023-02-03 武汉华星光电技术有限公司 显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122789A (ja) * 1994-10-19 1996-05-17 Internatl Business Mach Corp <Ibm> 液晶表示装置の製造装置、製造方法及び液晶表示装置
CN107209394A (zh) * 2014-12-08 2017-09-26 沃克森有限公司 立体3d显示器
CN107644610A (zh) * 2017-10-31 2018-01-30 昆山国显光电有限公司 异形显示屏和集成异形显示屏的显示装置
CN112241068A (zh) * 2019-07-18 2021-01-19 三星电子株式会社 能够多深度表达的图像显示装置
CN215674518U (zh) * 2021-06-01 2022-01-28 安徽省东超科技有限公司 显示组件和旋转显示装置
US20220077424A1 (en) * 2020-09-07 2022-03-10 Samsung Display Co., Ltd. Display device
CN115662338A (zh) * 2022-10-18 2023-01-31 武汉华星光电技术有限公司 显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122789A (ja) * 1994-10-19 1996-05-17 Internatl Business Mach Corp <Ibm> 液晶表示装置の製造装置、製造方法及び液晶表示装置
CN107209394A (zh) * 2014-12-08 2017-09-26 沃克森有限公司 立体3d显示器
CN107644610A (zh) * 2017-10-31 2018-01-30 昆山国显光电有限公司 异形显示屏和集成异形显示屏的显示装置
CN112241068A (zh) * 2019-07-18 2021-01-19 三星电子株式会社 能够多深度表达的图像显示装置
US20220077424A1 (en) * 2020-09-07 2022-03-10 Samsung Display Co., Ltd. Display device
CN215674518U (zh) * 2021-06-01 2022-01-28 安徽省东超科技有限公司 显示组件和旋转显示装置
CN115662338A (zh) * 2022-10-18 2023-01-31 武汉华星光电技术有限公司 显示装置

Also Published As

Publication number Publication date
CN115662338A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024082489A1 (zh) 显示装置
US10861924B2 (en) Display panel and display device with notch
US10698282B2 (en) Display substrate, display device and method for driving display device
US9041625B2 (en) Subpixel arrangement structure for a display device and display device
JP4220277B2 (ja) アクティブマトリクス有機電界発光素子
US20090073099A1 (en) Display comprising a plurality of pixels and a device comprising such a display
JP7438972B2 (ja) ディスプレイパネルおよびディスプレイ装置
US10204575B2 (en) Display panel and display device
US20090009673A1 (en) Active Matrix Substance and Display Device Including the Same
JP6253187B2 (ja) アレイ基板、液晶表示装置およびアレイ基板の駆動方法
WO2019119810A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
US11200847B2 (en) Display panel, display device and drive method
CN102414823B (zh) 具有定向的小芯片和总线的小芯片显示器
JP4242766B2 (ja) 液晶表示装置及びこの駆動方法
WO2024082487A1 (zh) 显示装置
CN112767852B (zh) 一种用于透明显示的迷你发光二极管显示面板及拼接屏
JP2008139882A (ja) 表示装置及びその駆動方法
WO2019119812A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
KR20030058156A (ko) 능동행렬 유기전기발광소자
JP2004126106A (ja) エレクトロルミネッセンス表示装置
WO2019119811A1 (zh) 显示面板的驱动方法、驱动装置及显示装置
WO2021258864A1 (zh) 显示屏和电子设备
US11982892B1 (en) Display panel and display device
KR20080062309A (ko) 유기 전계발광소자
US20220359577A1 (en) Light emitting display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18043455

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878495

Country of ref document: EP

Kind code of ref document: A1